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Abstract 

The geometrical information from imaging, if combined with optimization-based methods of 

neuromuscular assessment, may provide a unique platform for personalized assessment of 

trunk neuromuscular behavior. Such a method, however, is feasible only if differences in lumbar 

spine kinematics due to differences in trunk neuromuscular behavior can be captured by the 

current imaging techniques. A finite element model of the spine within an optimization procedure 

was used to estimate segmental kinematics of lumbar spine associated with five different 

hypothetical trunk neuromuscular strategies (TNSs). Each TNS optimized one aspect of lower 

back biomechanics and was assumed to either represent the TNS of asymptomatic persons or 

a neuromuscular abnormality. For each TNS, the segmental kinematics of lumbar spine was 

estimated for a single static trunk flexed posture involving, respectively, 40° and 10° of thoracic 

and pelvic rotations. Minimum changes in the angular and translational deformations of a motion 

segment with alterations in TNS ranged from 0° to 0.5° and 0 mm to 0.04 mm, respectively. 

Maximum changes in the angular and translational deformations of a motion segment with 

alterations in neuromuscular strategy ranged from 2.4° to 7.5° and 0.11 mm to 0.39 mm, 

respectively. The differences in kinematics of lumbar segments between each combination of 

two TNSs in 97% of cases for angular deformation and 55% of cases for translational 

deformation were within the reported accuracy of current imaging techniques. Combined 

imaging and computational modeling appears to have potentials for predicting alterations in 

neuromuscular strategies. 

Keywords: Muscle forces and spinal loads, Finite element analysis, optimization procedures, 

Trunk neuromuscular strategies, Lumbar segmental kinematics, Image-based modeling  



Introduction 

Neuromuscular control of spinal equilibrium and stability changes in the presence of pain or 

following exposure to known risk factors for low back pain (LBP) (Muslim et al., 2013; Radebold 

et al., 2000; Radebold et al., 2001; Toosizadeh et al., 2013). Such alterations may cause 

deformations and/or forces in lower back tissues such that exceed injury/pain thresholds 

instantaneously or cumulatively (Adams et al., 2013; Coenen et al., 2014; Marras et al., 2001; 

Panjabi, 1992a, b). Despite such a significant role, the current methods for assessment of trunk 

neuromuscular behavior are limited. Kinematic measures of lumbo-pelvic coordination, though 

capable of distinguishing patients with LBP from controls (Vazirian et al., 2016), do not provide 

much information about abnormalities in trunk neuromuscular control. Specifically, 

neuromuscular redundancy in control of lumbo-pelvic motion as well as individual variability in 

mechanical behavior of passive lumbar tissues hinder relating measured kinematics data to 

trunk neuromuscular control. The commonly used surface electromyography (EMG)-based 

methods for the assessment of trunk neuromuscular behavior, on the other hand, can only 

provide information about the activity of superficial trunk muscles. Further, the literature on 

EMG-based assessment of neuromuscular abnormalities in patients with LBP is not consistent 

(van Dieën et al., 2003) which has been attributed to normalization of EMG values to sub-

maximal contractions due to unwillingness and/or inability of patients with LBP to generate 

maximum voluntary contractions (van Dieën et al., 2003). Finite element and multi-joint 

biomechanical models of the spine with detailed musculature have also been developed and 

used for general assessment of trunk neuromuscular behaviors (Arjmand and Shirazi-Adl, 

2006a, b; Dreischarf et al., 2014; Ezquerro et al., 2004; Hughes, 2000; Stokes and Gardner-

Morse, 2001). These models often implemented optimization procedures to estimate trunk 

neuromuscular behavior (Arjmand and Shirazi-Adl, 2006b; Daniel, 2011; Hughes, 2000; Stokes 

and Gardner-Morse, 2001) and are not suitable for personalized assessment of trunk 



neuromuscular behavior due to the requirement for a priori knowledge of trunk neuromuscular 

strategy (e.g., a strategy that minimizes stress in muscles).  

Currently, imaging is used to detect structural and geometrical/kinematics abnormalities in the 

lumbar spine (Fujii et al., 2007; Iwata et al., 2013; Keller et al., 2003; Kjaer et al., 2005; Ochia et 

al., 2006). The image-based geometrical/kinematics information have also been used for 

development of geometrically personalized biomechanical models of normal and scoliotic spine 

(Eskandari et al., 2017; Ghezelbash et al., 2016; Lafon et al., 2010; Petit et al., 2004), 

biomechanical comparison of healthy and metastatically involved vertebrae (O’Reilly and 

Whyne, 2008), material sensitivity analysis of intervertebral disc (Fagan et al., 2002), indirect 

estimation of spinal loads (Shymon et al., 2014), and estimation of elastic modulus of cancellous 

bone (Diamant et al., 2005). The geometrical information from imaging if combined with 

optimization-based methods of neuromuscular assessment may provide a unique platform for 

personalized assessment of trunk neuromuscular behavior. Particularly, it will be possible to use 

an optimization-based computational model to search for a neuromuscular strategy, that when 

accounted in the cost function of the optimization-based method, results in lumbar kinematics 

similar to those obtained from imaging. Such a method, however, is reliable only if differences in 

lumbar spine kinematics due to differences in trunk neuromuscular behavior can be captured by 

the current imaging techniques. 

Recently, we have used our finite element model of the spine within an optimization procedure 

to estimate kinematics of lumbar spine that is associated with a trunk neuromuscular strategy 

(TNS) that minimized sum of squared stress across all trunk muscles (Shojaei et al., 2015). The 

resultant kinematics were consistent with image-based reports of lumbar spine kinematics of 

asymptomatic individuals. Using the proposed algorithm, estimation of lumbar segmental 

kinematics for other hypothetical TNSs that optimize other aspects of lower back biomechanics 

is possible. Therefore, the objective of this feasibility study is to determine changes in lumbar 



segmental kinematics due to alterations in TNS and to verify if such changes are within the 

reported precision of current imaging techniques.  

 

Methods 

Five different TNSs, each represented by a distinct cost function for the optimization procedure, 

were selected and assumed to either represent the TNS of asymptomatic persons or a 

neuromuscular abnormality that minimizes loading on a specific aspect of lower back tissues (i.e., 

muscles, ligaments, intervertebral discs, and facet joints). As noted earlier, a neuromuscular 

strategy associated with the minimum value of sum of squared muscle stresses across the entire 

trunk muscles resulted in lumbar segmental kinematics consistent with image-based reports of 

lumbar spine kinematics of asymptomatic individuals, hence, was regarded to represent a normal 

TNS (Shojaei et al., 2015). On the other hand, abnormal neuromuscular strategies that minimize 

loads in muscles, ligaments, intervertebral discs, and facet joints were represented by strategies 

that respectively minimize sum of squared muscle forces across the entire trunk muscles, passive 

moment, compression, and shearing force at the L5-S1 intervertebral disc. For each TNS, the 

change in distance between centers of two vertebrae of each motion segment (i.e., translational 

deformation) as well as changes in their relative angular orientations with respect to each other 

(i.e., angular deformation) were estimated as lumbar segmental kinematics for a single static trunk 

flexed posture involving, respectively, 40° and 10° of thoracic and pelvic rotations (i.e., equal to a 

total lumbar flexion of 40° - 10° = 30°) in the sagittal plane. Forward trunk bending is a common 

posture used for X-ray imaging of patients with LBP and the specific thoracic and pelvic rotations 

considered here are the same rotations we used in a recent study for validation of our method 

(Shojaei et al., 2015). 



In the optimization procedure, rather than implementing a force-driven approach for estimation of 

lumbar segmental kinematics associated with a given TNS, we used our kinematics-driven 

methods. Such a methodological choice was mainly because of the lower computational cost of 

kinematics-driven approach. Specifically, the potential neuromuscular strategies searched in the 

optimization, where a kinematics-driven approach is used, readily satisfy spine equilibrium. 

Hence, the solution space that is searched by the optimization search engine is much smaller 

than the case when a force-driven approach is implemented. Therefore, in our approach, from all 

possible sets of lumbar segmental kinematics that can be distributed across lumbar vertebrae 

and generate the total 30° lumbar flexion, we will search (i.e., through optimization procedures) 

for a set of lumbar segmental kinematics where the associated TNS minimizes the desired cost 

function. Such a methodological choice (i.e., kinematics- versus force-driven), however, does not 

affect the outcomes. In the following subsections, we first elaborate on the kinematics-driven 

approach for the estimation of TNS and subsequently present the structure of the optimization 

algorithm.  

1. Estimating trunk neuromuscular strategy using the kinematics-driven approach 

A nonlinear finite element (FE) model of spine, developed in the ABAQUS software (Version 

6.13, Dassault Systémes Simulia, Providence, RI), is used in the kinematics-driven approach to 

estimate the moment at each lumbar vertebra to be balanced by muscles attached to that same 

vertebra (Arjmand et al., 2009; Bazrgari et al., 2007).  

In the FE model of spine, the thoracic region and lumbar spine vertebrae are simulated by rigid 

elements and intervertebral discs are simulated by nonlinear flexible beam elements (Fig. 1). 

Inputs to the FE model include sagittal plane rotational boundary conditions at the T12 to S1 

spinal levels along with the ~50% of total body weight distributed across the entire spine 

(Arjmand and Shirazi-Adl, 2006b). A muscle architecture including 56 muscles attached to the 



spine from lumbar and thorax to pelvis is considered for estimation of TNS required to balance 

moments at lumbar vertebrae. Since the attached muscles to each level (i.e., 10 muscles in 

each level from T12 to L4 and 6 muscles in the level L5) outnumbers the moment equilibrium 

equations, a local1 optimization procedure is used to estimate muscle forces at each level as 

follows: 

{
 
 
 
 

 
 
 
 

Var 𝑭
 

𝐶𝑜𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑔(𝑭)
 

Minimize (𝑐𝑜𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛)
 

Subject to∑𝑟𝑖

𝑚

𝑖=1

× 𝐹𝑖 = 𝑀

 

 (1) 

where Fi and ri  denote the force and the moment arm of the ith muscle, respectively and m is 

the number of muscles attached to that level and M is the output (reaction) moment. Depending 

on the assumed TNS, the cost function g(F) was considered to be sum of squared muscle 

stresses, sum of squared muscle forces, passive moment, compression, and shearing force at 

the L5-S1 intervertebral disc. A classic optimization technique (i.e., Lagrange Multiplier Method) 

is used to solve the local optimizations. Given the nonlinearity of FE model, the impact of 

estimated muscle forces on mechanical response of the model is also considered by application 

of the estimated muscle forces to the model as external loads and accounting for any residual 

moment estimated at each lumbar level in calculation of muscle forces. Such iterative procedure 

is stopped when the residual moments estimated at each lumbar level become negligible (i.e., < 

0.1 Nm). 

 

 
1 The local optimization was used to estimate muscle forces and is different from the main optimization algorithm introduced in the 

next subsection. 



Fig. 1 may be inserted here 

 

2. Finding the lumbar segmental kinematics that is associated with a desired 

neuromuscular strategy  

An optimization procedure (hereafter called global optimization), that implements a heuristic 

genetic algorithm to find the lumbar segmental kinematics associated with a desired TNS, was 

developed (Shojaei et al., 2015). The genetic algorithm involves 100 generations and 30 

individuals in each generation (i.e., a total number of 3000 individuals/iterations), and the stop 

criterion is considered as the tolerance of 10-3 for both variables (i.e., segmental kinematics and 

cost function). For each set of generated lumbar segmental kinematics (e.g., the kinematics for 

ith individual in the jth generation) by the algorithm, TNS is estimated using the method described 

in the previous section and is used to calculate the cost function of optimization (see Eq. 2). The 

optimization procedure was formulated as: 

{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
Var 𝜽 = [𝜃𝐿1𝜃𝐿2𝜃𝐿3𝜃𝐿4𝜃𝐿5]

 

𝐶𝑜𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑛 = 𝑔(𝑭)(1 + 𝛼 ∑ 𝑚𝑎𝑥[0, 𝑘]

𝑛=62

𝑖=1

)

 
Minimize (𝑐𝑜𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛)

 
 

Subject to
 

0 ≤ 𝐹𝑖 ≤ 𝜎𝑚𝑎𝑥 × 𝑃𝐶𝑆𝐴𝑖
−9.6° ≤ 𝜃𝑇12 − 𝜃𝐿1 ≤ 6

°

−9.6° ≤ 𝜃𝐿1 − 𝜃𝐿2 ≤ 6
°

−12° ≤ 𝜃𝐿2 − 𝜃𝐿3 ≤ 3.6
°

−14.4° ≤ 𝜃𝐿3 − 𝜃𝐿4 ≤ 1.2
°

−15.6° ≤ 𝜃𝐿4 − 𝜃𝐿5 ≤ 2.4
°

−10.8° ≤ 𝜃𝐿5 − 𝜃𝑆1 ≤ 6
°

 (2) 



where θL1 to θL5 are vertebral kinematics from L1 to the L5 respectively and are generated by 

global optimization procedure. n = 62 denotes the number of optimization constraints including 

56 constraints for muscle forces and 6 rotational constraints. Fi and PCSAi denote the force and 

the physiological cross section area of ith trunk muscle respectively, k is the number of estimated 

muscle forces that exceed the muscle force boundaries plus the number of violated rotational 

constraints, 𝛼 is a penalizing value, and σmax is the maximum allowable stress in the muscle 

(i.e., assumed to be 1.0 MPa). θT12 and θS1 are inputs of the global optimization representing the 

rotation of the T12 and the S1 vertebrae. The rotational inequality constraints denote modified 

sagittal plane range of motion of lumbar motion segments with negative sign denoting flexion. 

These were obtained by adding a 20% increase to the mean reported values in Adams et al., 

(2013) to account for individuals’ variability. 

The flowchart of the procedure for finding the lumbar segmental kinematics that is associated 

with a desired TNS is presented in Fig. 2. 

 

Fig. 2 may be inserted here 

 

Results  

The estimated angular and translational deformations of lumbar motion segments in the sagittal 

plan under the five TNSs studied here are presented in the Table 1. Minimum changes in the 

angular and translational deformations of a motion segment with alterations in TNS ranged from 

0° (L2-L3 segment) to 0.5° (L4-L5 segment) and 0 mm (L1-L2 and L2-L3) to 0.04 mm (L4-L5), 

respectively (Table 1). Similarly, maximum changes in the angular and translational deformations 

of a motion segment with alterations in TNS ranged from 2.4° (L2-L3 segment) to 7.5° (L5-S1 

segment) and 0.11 mm (L2-L3) to 0.39 mm (L3-L4), respectively (Table 1). For each TNS, the 



values of all five cost functions used to estimate different neuromuscular strategies are 

summarized in Table 2. As expected, the minimum value of a cost function was associated with 

the TNS estimated to minimize that cost function.  

 

Table 1 may be inserted here 

Table 2 may be inserted here 

 

Discussion 

Estimation of lumbar segmental kinematics for neuromuscular strategies that optimize specific 

aspects of lower back biomechanics was conducted using a finite element musculoskeletal model 

of the spine within an optimization procedure, and the changes in lumbar segmental kinematics 

due to alterations in TNS were determined. The differences in kinematics of at least five (out of 

twelve: i.e., six angular and six translational deformations) cases between each two 

neuromuscular strategies appears to be detectable by current imaging techniques (e.g., 

computed tomography, magnetic resonance) whose precision have been reported to be ~ 0.1 mm 

and ~ 0.1° (Iwata et al., 2013; Keller et al., 2003; Ochia et al., 2006; Shymon et al., 2014). 

Particularly, the differences in kinematics of lumbar segments between each combination of two 

TNSs (10 possible combinations) are detectable in 97% of cases for angular deformation and 

55% of cases for translational deformation. Therefore, combined imaging and computational 

modeling appears to have potentials for predicting alterations in TNS.  

While image-based information have been used for development of subject-specific mechanical 

models of spine (Diamant et al., 2005; Eskandari et al., 2017; Fagan et al., 2002; Ghezelbash et 

al., 2016; Lafon et al., 2010; O’Reilly and Whyne, 2008; Petit et al., 2004; Shymon et al., 2014), 

previous studies have primarily used image-based information to personalize geometry (e.g., 



vertebra/disc dimensions, muscles cross-sectional areas and insertion points) and/or mechanical 

property of spine models (Diamant et al., 2005; Eskandari et al., 2017; Fagan et al., 2002; 

Ghezelbash et al., 2016; Lafon et al., 2010; O’Reilly and Whyne, 2008; Petit et al., 2004). 

Furthermore, some of these studies have been conducted in tissue level (Diamant et al., 2005; 

Fagan et al., 2002), have been designed for specific group of patients (Lafon et al., 2010; Petit et 

al., 2004), and oversimplified the spine model by disregarding the effects of muscle forces when 

calibrating using experimental measures (Lafon et al., 2010; Petit et al., 2004). To the best of our 

knowledge, the current study is the first effort toward personalized assessment of trunk 

neuromuscular behavior through geometrical information from imaging combined with 

optimization-based modeling. 

The value of each cost function when calculated using its associated deformations of lumbar 

motion segments (i.e., the diagonal in Table 2) was, as expected, the minimum value in each 

column of Table 2. However, what is notable in results presented in Table 2 is that an abnormal 

TNS could result in loads and/or deformations in some areas of lower back that are larger than 

what is normally resisted by those areas. For instance, a hypothetical TNS that minimizes 

shearing force at the L5-S1 intervertebral disc resulted in an increase of ~ 350N in compression 

force when compared to a strategy that was considered normal in this study (i.e., the strategy that 

minimizes sum of squared muscle stresses). Similarly, a strategy that minimizes compression 

force or muscle forces, compared to the normal strategy, led to large muscle stresses. Although 

the short term effect of a specific TNS can be beneficial, for instance by protecting the injured 

tissues, the long term consequences of altered TNS could be an injury to other lumbar tissues 

due to compensatory resisted larger than normal loads (Hodges and Smeets, 2015). Therefore, 

prediction of any abnormality in trunk neuromuscular control of spinal equilibrium and stability 

using the proposed imaged-based method may offer a platform for better control and 

management of LBP. 



In the present study, we postulate that TNSs optimize some aspects of lower back biomechanics. 

Though alterations in TNS have been reported in the literature, our assumption might not be 

accurate and were merely made for the purpose of this feasibility study. Furthermore, in all cases, 

the abnormal TNS that minimizes loads in a tissue was represented by a single-force cost function 

which was a simplified assumption. For example, minimizing the loads on the facet joint involves 

reducing both shearing and compression forces, though shearing is the dominant force in 

characterizing facet join environment. In conclusion, results of this feasibility study, support the 

idea of image-based assessment of TNS using computational models. Specifically, a 

geometrically and materially subject-specified model of the spine can be used in future to obtain 

the neuromuscular strategy that generates the closest lumbar kinematics to those measured from 

imaging. The accuracy of such assessment strategy can further be improved by implementing 

dynamic rather than static assessment tasks. 
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TABLE AND FIGURE CAPTIONS 

Table 1: The estimated angular (°) and translational (mm) deformations of lumbar motion 

segments in the sagittal plane under TNSs that minimize 1) sum of squared muscle stresses, 2) 

sum of squared muscles forces, 3) L5-S1 compression force, 4) L5-S1 anterior-posterior 

shearing force, and 5) L5-S1 passive moment. 

Table 2: The value of cost functions (horizontal top) under the five neuromuscular strategies 

(vertical left) studied here. 

Figure 1: A schematic model of the spine and its components (left), the musculatures in the 

sagittal (right) and frontal (middle) planes in upright posture. ICpl: iliocostalislumborum pars 

lumborum, ICpt: iliocostalislumbroum pars thoracis, IP: iliopsoas, LGpl: longissimusthoracis pars 

lumborum, LGpt: longissimusthoracis pars thoracis, MF: multifidus, QL: quadratuslumborum, IO: 

internal oblique, EO: external oblique and RA: rectus abdominus. 

Figure 2: The algorithm used for finding a set of lumbar segmental kinematics that its 

associated neuromuscular strategy minimizes a cost function 

  



Table 1: The estimated angular (°) and translational (mm) deformations of lumbar motion segments in the 

sagittal plane under TNSs that minimize 1) sum of squared muscle stresses, 2) sum of squared muscles 

forces, 3) L5-S1 compression force, 4) L5-S1 anterior-posterior shearing force, and 5) L5-S1 passive 

moment. 

 Angular deformations translational deformations 

 T12-L1 L1-2 L2-3 L3-4 L4-5 L5-S1 T12-L1 L1-L2 L2-L3 L3-L4 L4-L5 L5-S1 

∑𝑆𝑡𝑟𝑒𝑠𝑠2 3.0 5.1 4.8 3.6 5.7 7.5 0.70 1.10 1.22 1.24 1.48 0.75 

∑𝐹𝑜𝑟𝑐𝑒2 7.8 7.5 4.8 1.5 2.4 5.7 0.97 1.19 1.22 1.09 1.20 0.70 

Compression force 7.9 6.8 6.0 2.1 1.9 5.6 0.97 1.10 1.24 1.07 1.15 0.69 

Shearing force 5.7 3.3 5.1 7.5 7.8 0.9 0.89 0.96 1.21 1.37 1.52 0.81 

L5-S1 passive moment 4.2 6.6 7.2 7.8 4.2 0.0 0.87 1.18 1.32 1.46 1.44 0.86 

Minimum change 0.1 0.2 0.0 0.3 0.5 0.1 0.02 0.0 0.0 0.02 0.04 0.01 

Maximum change 4.9 4.2 2.4 6.3 5.9 7.5 0.27 0.23 0.11 0.39 0.37 0.17 

Minimum and maximum change in each column were, respectively, the smallest and largest value of difference between 

the deformations of any two TNS.   

  



Table 2: The value of cost functions (horizontal top) under the five neuromuscular strategies (vertical left) 

studied here.  

 ∑𝑆𝑡𝑟𝑒𝑠𝑠2 ∑𝐹𝑜𝑟𝑐𝑒2 
Compression 

force (N) 

Shearing 

force (N) 

L5-S1 passive 

moment (Nm) 

∑𝑆𝑡𝑟𝑒𝑠𝑠2 8.39e+11 1.53e+05 1.49e+03 622.9 16.0  

∑𝐹𝑜𝑟𝑐𝑒2 2.28e+12 6.37e+04 1.34e+03 626.2 12.1 

Compression force 3.02e+12 7.02e+04 1.32e+03 601.8 12.1 

Shearing force 7.10e+12 1.73e+05 1.84e+03 518.0 2.7 

L5-S1 passive moment 2.86e+12 1.92e+5 1.78e+03 610.5 0.0 

 

 


