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ABSTRACT   17 

Network dynamics have the ability to reveal information about the adaptive function of 18 

social behaviour and the extent to which social relationships can flexibly respond to 19 

extrinsic pressures. Changes in social networks occur following changes to the social and 20 

physical environment. By contrast, we have limited understanding of whether changes in 21 

social networks precede major group events. Permanent evictions can be important 22 

determinants of gene flow and population structure and are a clear example of an event 23 

that might be preceded by social network dynamics. Here we examine the social networks 24 

of a group of rhesus macaques (Macaca mulatta) in the two years leading up to the eviction 25 

of 22% of adult females, who are the philopatric sex. We found that females engaged in the 26 

same amount of aggression and grooming in the two years leading up to the eviction but 27 

that there were clear changes in their choice of social partners. Females that would 28 

eventually be evicted received more aggression from lower ranking females as the eviction 29 

approached. Evicted females also became more discriminant in their grooming 30 

relationships in the year nearer the split, showing a greater preference for one another and 31 

becoming more cliquish. Put simply, the females that would later be evicted continued to 32 

associate with the rest of the group as the eviction approached but were less likely to 33 

interact with them in an affiliative manner. These results have potential implications for 34 

understanding group cohesion and the balance between cooperation and competition that 35 

mediates social groups.   36 

  37 
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 INTRODUCTION  38 

Animals that live in groups are faced with the challenge of balancing the benefits of group 39 

living with the costs of conflicting interests between group mates (Krause & Ruxton, 2002; 40 

Silk, 2007). Balancing these costs and benefits may be especially difficult for individuals 41 

that live in groups composed of both kin and non-kin (Seyfarth & Cheney, 2012). Much 42 

theoretical and empirical research has focused on how individuals may use aggression, 43 

social status, cooperation, and social bonds to cope with intra-group conflict. Yet a great 44 

deal about the origins and maintenance of group-living remains unclear (Brent, Chang 45 

Gariépy, & Platt, 2014; Krause & Ruxton, 2002; Nowak, Tarnita, & Wilson, 2010; Shultz, 46 

Opie, & Atkinson, 2011). Network dynamics within groups can reveal the processes that 47 

underpin the structuring of animal societies and can uncover information about the 48 

adaptive functions of social behaviours and relationships (Berger-Wolf & Saia, 2006; Bode, 49 

Wood, & Franks, 2011; Pinter-Wollman et al., 2014). Describing dynamic shifts in social 50 

networks and determining when and why these shifts occur is therefore an important route 51 

to understanding the maintenance of social groups, and hence the evolution of sociality.  52 

A growing number of studies have documented network dynamics within groups 53 

that have followed changes to the physical environment. For example, association networks 54 

become more tightly connected when resources are scarce in killer whales (Orcinus orca: 55 

Foster et al., 2012). This finding is in accordance with the hypothesis that prosocial 56 

relationships are more valuable during times of hardship because they help individuals to 57 

cope with intra-group competition (Barrett, Henzi, Weingrill, Lycett, & Hill, 1999; van 58 

Schaik, 1989). In contrast, a negative relationship between network connectedness and the 59 

level of resource competition, as measured by group size, suggests competition rather than 60 

cooperation shapes sociality in wild chimpanzees (Pan troglodytes: Lehmann & Boesch, 61 

2009). In sleepy lizards (Tiliqua rugosa), the number and strength of network connections 62 

does not change in response to changes in climate, although the nature of social 63 

connections differs with fewer inter-sexual associations in drier years (Godfrey, Sih, & Bull, 64 

2013). In contrast, the social networks of some populations do not appear to respond at all 65 

to changes in the physical environment; Although guppies (Poecilia reticulata) from areas 66 

with low levels of predation show more social mixing than their high-predation 67 
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counterparts, no changes to social networks occur within populations following 68 

experimental manipulation of habitat complexity or predation risk (Edenbrow et al., 2011).   69 

In addition to changes in the physical environment, network dynamics following 70 

changes in social factors, such as reproductive seasonality (Brent, Maclarnon, Platt, & 71 

Semple, 2013; Hamede, Bashford, McCallum, & Jones, 2009) and group composition, have 72 

revealed important information about social processes. For instance, network dynamics 73 

following the simulated, experimental, or natural loss of individuals from groups suggests 74 

that some individuals are more important to group cohesion than others (Kanngiesser, 75 

Sueur, Riedl, Grossmann, & Call, 2010; Lehmann, Andrews, & Dunbar, 2010; Manno, 2008) 76 

and can occupy specific social roles (Flack, Girvan, de Waal, & Krakauer, 2006). Following 77 

experimental manipulation of the sex ratio of guppy groups, a breakdown in female-female 78 

associations in populations with a greater number of males, and hence a greater level of 79 

sexual harassment, suggests that repeated social interactions are needed to establish 80 

individual recognition between group mates (Darden, James, Ramnarine, & Croft, 2009). 81 

Wild chacma baboon (Papio ursinus) females compensate for the death of close relative by 82 

broadening and strengthening their grooming networks (Engh et al., 2006), particularly by 83 

extending their social relationships to unrelated group mates. This apparent compensatory 84 

behaviour suggests that social relationships are valuable to female baboons, and also 85 

provides preliminary evidence regarding the differential value of social relationships with 86 

kin compared to non-kin. Finally, changes to social networks have been observed in 87 

response to changes in the social hierarchy. The grooming networks of female chacma 88 

baboons were less diverse in the weeks following a period of instability in the alpha male 89 

position in their group (Wittig et al., 2008). Females who contracted their grooming 90 

networks the most showed a less dramatic rise in faecal glucocorticoid metabolite levels 91 

and returned to baseline levels more quickly (Wittig et al., 2008). Taken together, these 92 

findings suggest that affiliative bonds with a small number of preferred partners help these 93 

animals to cope with social instability.   94 

Network dynamics can occur not only in response to changes to the environment 95 

but can also precede or even provoke such changes. Understanding the links between 96 

network dynamics that occur in advance of shifts in the physical or social environment can 97 

therefore also have important implications for our understanding of social processes and 98 
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relationships, and may even allow scientists to predict the occurrence of major events. 99 

Instances where we might expect network dynamics to occur in advance of social or 100 

physical perturbations include: seasonally predictable changes in climate or resource 101 

abundance; the joining/splitting of subgroups in species with high levels of fission-fusion 102 

sociality (Sueur & Maire, 2014); large outbreaks of intra-group aggression; and the 103 

dispersal, death (i.e. in cases where death is preceded by a gradual decline in condition) or 104 

permanent eviction of group mates. However, few studies have documented network 105 

dynamics prior to major events because the occurrence of these events can be difficult to 106 

anticipate and studies of this nature often must rely on coincidental collection of 107 

behavioural data.   108 

Here we evaluate network dynamics preceding the permanent mass eviction of 109 

many females from a group of rhesus macaques (Macaca mulatta). Rhesus macaques, like 110 

many primates, live in social groups composed of multiple adult males and females 111 

(Thierry, 2007). Females are the philopatric sex and membership of females in rhesus 112 

macaque groups is “closed” (i.e. females do not disperse in/out of groups, they must be 113 

born into them). Nevertheless, rhesus macaque groups are characterised by a mixed 114 

relatedness structure, containing both related and unrelated females (Brent, Maclarnon, et 115 

al., 2013; Missakian, 1972). Affiliative relationships are often the strongest and most stable 116 

between kin, but social bonds between unrelated females are also common (Beisner, 117 

Jackson, Cameron, & McCowan, 2011; Cheney, 1992). In addition to high rates of affiliative 118 

interactions, social life in female rhesus macaques is characterized by high rates of 119 

aggression that is unidirectional (i.e. aggression is typically directed from high to low 120 

ranking animals) and that occurs within strict, linear, and relatively stable dominance 121 

hierarchies (Datta, 1988). Females inherit the rank immediately beneath their mother and 122 

thus closely related females tend to be of similar dominance rank (Brent, Heilbronner, et 123 

al., 2013; Missakian, 1972). Permanent evictions of females have been documented in this 124 

species but are rare (Chepko-Sade & Sade, 1979; Ehardt & Bernstein, 1986; Widdig et al., 125 

2006). Because of the relatively stable social structure that characterises female rhesus 126 

macaque life, it is reasonable to assume that social markers of instability would be 127 

detectable prior to a mass eviction but this has not yet been described.   128 
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The eviction that is the focus of this study occurred in a group of 55 adult females 129 

from three separate ancestral lines and resulted in the removal of the 13 highest ranking 130 

females. We examined the aggression and grooming networks of all adult females during 131 

two periods preceding the eviction, the year immediately before the eviction (2011), and 132 

the year before that (2010). We determined whether network dynamics occurred in 133 

advance of the eviction by examining three aspects of social networks: i) the rate at which 134 

individuals engaged in social interactions, ii) individuals’ choice of social partners and the 135 

nature of their interactions with those partners, and iii) the clustering of local subgroups.   136 

  137 

  138 

METHODS  139 

Study Population and Eviction Event  140 

Our subjects were rhesus macaques living in the semi-free-ranging colony on Cayo Santiago 141 

Island, Puerto Rico (18°09 N, 65°44 W; Rawlings & Kessler, 1986). Monkeys are 142 

provisioned daily at this site with commercial feed and with water supplied ad libitum. 143 

There are no predators present. Population control takes the form of annual removal of 144 

mostly juveniles. Beyond these measures, the monkeys are free to roam and to self-145 

organise into groups and there is no medical intervention or contraceptive use.   146 

We studied animals in a single social group (‘F’), which at the time of study was the 147 

largest of the six groups on the island (n = 55 adult females). Group F was made up of three 148 

separate female ancestral lines, or matrilines, where all females in a given matriline are 149 

descendants of a single unique female, and where maternal relatedness between members 150 

of different matrilines is typically zero (Figure 1). The three matrilines were named after 151 

their founding females, 065, 004 and 073, who were first documented ranging together in 152 

group F over 50 years ago (unpublished, CPRC database), and varied in size (Mat065, n = 32; 153 

Mat004, n = 17; Mat073, n = 6). Due to the linear nature of dominance hierarchies and the 154 

maternal inheritance of dominance rank, rhesus macaque matrilines can also generally be 155 

categorised according to rank: Mat065 contained the highest-ranking females, females from 156 

Mat004 were the next highest in rank (apart from three members of Mat065 that were lower 157 

in rank than some members of  Mat004 - two of these females did not to have many close 158 
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relatives in the group and may have therefore lacked the social support needed to maintain 159 

high rank), and Mat073 contained the lowest ranking females (Figure 1).   160 

  161 

[INSERT FIGURE 1 ABOUT HERE] 162 

 163 

At the beginning of 2012, we observed a sudden outbreak of aggression which 164 

resulted in the death of the alpha female and the permanent eviction of 12 of group F’s 165 

highest ranking females (22% of all adult females) (Figure 1). Although we could not collect 166 

systematic behavioural data during the aggressive outbreak, we opportunistically recorded 167 

cuts and wounds on the bodies of these members of Mat065. The injuries sustained by the 168 

alpha female were especially severe and she died two weeks later, presumably from sepsis. 169 

The remaining 12 females began to range independently from the group along with their 170 

offspring and a few males. First, they ranged separately in two daughter groups then, 171 

approximately eight months later, as one consolidated group.     172 

  173 

Data Collection   174 

As part of an unrelated study we collected behavioural data on the adult females in group F 175 

for two years prior to the eviction during two temporally similar periods: May-December 176 

2010 and April-December 2011. These two periods were divided by a halt in behavioural 177 

data collection that takes place annually in the colony. All subjects were individually 178 

recognized and habituated to observer presence. We collected a total of 843.70 hours of 179 

continuous data using 10-min focal animal samples with means (SD) per individual of 4.07 180 

(0.39) and 5.02 (0.11) hours in 2010 and 2011, respectively. We balanced observations of 181 

individuals across time to control for within-daily as well as monthly temporal variation. 182 

We recorded all instances of aggression, submissive gestures, and grooming. We used 183 

agonistic win/loss interactions to construct dominance hierarchies for the females 184 

independently in each year, although female ranks were stable across years. We limited our 185 

analyses to females that were present for the entirety of the two years, which excluded a 186 

small number of females that died (n = 2) as well as juvenile females that aged into our 187 

sample (n = 9).   188 

  189 
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Social Network Analysis  190 

We used social network analysis to explore social dynamics.  Social network analysis is 191 

comprised of a suite of statistics that describe various levels of a network: individualized 192 

scores that describe properties of a node (e.g. a node's centrality), metrics that describe 193 

dyadic interactions (e.g. the probability of an edge between two individuals), and metrics 194 

that describe global network properties (e.g. size, shape, connectedness), making it apt at 195 

addressing the variation between individuals within a network and between networks at a 196 

subgroup, group, population, or species level (Brent, 2015; Krause, James, Franks, & Croft, 197 

2014; Wasserman & Faust, 1994).  198 

To determine whether changes to networks occurred as the eviction approached, 199 

we compared the females’ grooming and aggression networks from 2010 to those in 2011. 200 

We created one grooming and one aggression network for each year, resulting in four 201 

networks in total (Figure 2). Edges in these networks represented all observed grooming 202 

and aggressive interactions recorded within a given dyad. We treated networks as directed 203 

(i.e. the donor and recipients of an interaction are defined) and weighted (i.e. the rate at 204 

which a dyad interacted is represented rather than the simple presence/absence of an 205 

interaction). For grooming networks, edges were weighted by the seconds per hour of 206 

grooming that took place within each dyad; for aggression networks, edges were weighted 207 

by the frequency of aggressive interactions per hour per dyad. Within years, our grooming 208 

and aggression networks were not significantly related to one another (2010: correlation 209 

coefficient = -0.025, p = 0.052; 2011: correlation coefficient = 0.026, p = 0.086) and thus we 210 

treat them separately in analyses.   211 

 212 

Changes in rates of social interaction. We first determined whether the general tendency 213 

for all females to engage in social interactions changed as the eviction event approached by 214 

comparing grooming network and aggression network densities across years. We 215 

performed this analysis using the paired nodes density function in UCINET v6.588 216 

(Borgatti, Everett, & Freeman, 2002). Assessing changes to network density is an important 217 

first step before analysing differences in network structure because apparent structural 218 

changes can be brought about by changes to density alone (Brent, Maclarnon, et al., 2013) 219 

and so the impact of density on structural changes must be taken into account.  220 
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  221 

Changes in the identity of social partners and the nature of social relationships. We 222 

next explored whether the identity of social partners and/or the nature of social 223 

relationships changed in the year nearer to the eviction. Due to the maternal relatedness 224 

structure that underpins aggressive and affiliative interactions in this species (Brent, 225 

Heilbronner, et al., 2013; Missakian, 1972), we divided females according to their three 226 

ancestral matrilines in order to explore changes in social partnerships that occurred within 227 

and between related partitions of females. We further divided matriline 065 into two 228 

partitions, ‘Evicted’ and ‘Resident’ to reflect the fact that the eviction was localised within 229 

this matriline and to allow us to examine any social changes that occurred 230 

between/amongst these females.   231 

We evaluated the extent to which social interactions were directed within and 232 

between partitions in each study period using a joint-count analysis. This procedure starts 233 

by calculating the ratio of the observed edge weights that occurred within or between a 234 

particular partition(s) and the expected edge weights, which are generated from networks 235 

of similar size, density, and for which the edge weights are the median of the observed 236 

values. The ratio of observed to expected edge weights therefore describes the extent to 237 

which observed edge weights differ from those that would be observed if individuals 238 

interacted at random (that is, a model in which our chosen partitions were not meaningful). 239 

We then simulated 5000 random graphs in which the edges were reshuffled randomly 240 

between nodes (Erdős–Rényi networks). For each permuted network we calculated the 241 

observed to expected edge weight ratio. We evaluated the statistical significance of our 242 

observed edge weights by determining the proportion of permuted values that met or 243 

exceeded the observed value, a technique that is akin to traditional p-values (Croft, 244 

Madden, Franks, & James, 2011). We also compared the ratio of observed to expected edge 245 

weights across study periods in order to assess how partner choice changed as the eviction 246 

approached.  247 

We predicted that the nature of aggressive interactions would change the year 248 

nearer to the eviction in a manner that would indicate instability in the dominance 249 

hierarchy. We therefore determined if there was greater tendency for females from lower 250 

ranking partitions to direct aggression at higher ranking partitions in the year closer to the 251 
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eviction. We additionally explored changes to aggression within partitions, as instability 252 

could also be localised to more closely related females. For affiliative interactions, we 253 

predicted that grooming would be more focused onto related partners (i.e. within 254 

partitions) in the year nearer the eviction, as an additional indicator of social instability 255 

(Beisner et al., 2011) and in accordance with previous findings in Old World monkeys that 256 

suggest that kin-based relationships are more valuable during times of hardship (e.g. Engh 257 

et al., 2006).  258 

  259 

Changes to clustering of local networks. Finally, we determined whether there were 260 

changes to the nature of local grooming networks across years. To do this, we compared 261 

the mean clustering coefficient for each partition in each study period. Clustering 262 

coefficient measures the degree to which an individual's social partners are connected to 263 

each other (Newman, 2003). The mean of this measure is therefore an indicator of the 264 

degree to which a partition is structured into tightly-knit cliques or clusters. We explored 265 

clustering coefficients of the grooming networks only due to the linear, non-triadic, nature 266 

of aggressive interactions in this species (Datta, 1988). We calculated a weighted version of 267 

clustering coefficient of using the tnet package in R (Opsahl, 2009), which first necessitated 268 

converting our directed networks to undirected. We evaluated the statistical significance of 269 

observed clustering coefficients in two ways. First, we compared the clustering coefficient 270 

of a given partition within each study period to the clustering coefficient derived from a 271 

model of random association. To create random models, we generated 5000 (Erdős–Rényi 272 

graphs of similar size and density to the observed networks and calculated the mean 273 

weighted clustering coefficient in each partition for each permutation. We determined the 274 

proportion of these permuted values that met or exceeded observed values as a measure of 275 

statistical significance. In order to compare clustering coefficients across partitions, we 276 

performed a two-sample bootstrapping test. Here, we took the difference in mean 277 

clustering coefficients of the two partitions being compared (either the same partition 278 

across years, or different partitions within the same year). Then, we pooled together the 279 

clustering coefficients for each female in each partition. We resampled from this pool with 280 

replacement sets of equal size 5000 times, and calculated the difference in the clustering 281 

coefficients that were generated to create a null distribution. We calculated p-values as the 282 
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proportion of differences in clustering coefficients between bootstrapped partitions that 283 

were more extreme than observed differences. To visualize differences in clustering across 284 

years, we generated 5000 random graphs in which the edge weights from a given partition 285 

were permuted but the positions of the edges held constant and created violin plots of the 286 

resulting values.   287 

Ethical note. This research complied with protocols approved by the Institutional Animal 288 

Care and Use Committee of the University of Puerto Rico (protocol #A6850108) and by the 289 

University of Exeter School of Psychology’s Ethics Committee. 290 

 291 

 292 

RESULTS  293 

Rates of social interactions were static across years. We found no evidence for changes 294 

between 2010 and 2011 in the overall rate of aggression (2010: 0.02, 2011: 0.02; 295 

tstat=0.49; p =0.31) or grooming (2010: 1.20; 2011: 1.17; t-stat=0.13; p = 0.43), as 296 

indicated by network densities. Any other structural differences in the observed networks 297 

(e.g. differences in clustering) cannot therefore be owed to differences in network density.  298 

Aggression directed up the hierarchy was more likely in the year nearer the eviction.  299 

Aggressive interactions generally reflected the dominance hierarchy, with the majority of 300 

aggression emanating from higher ranking females and being directed at lower ranking 301 

females in both years (Table 1). However, changes from 2010 to 2011 in the extent to 302 

which aggression was directed up the hierarchy occurred and may suggest that there was 303 

instability in the dominance hierarchy that was largely localised to the 065 matriline.  In 304 

particular, females from low-ranking matrilines 004 and 073 were more likely to give 305 

aggression to the Evicted females in 2011 compared to in 2010. Females from Mat004 were 306 

also more likely to give aggression to the Resident females in 2011 compared to 2010 307 

(Table 1). Although these increases represent only a small absolute number of aggressive 308 

interactions, reflecting the smaller number of females that belonged to the lower ranking 309 

matrilines (Figure 2), they are notable due to the typically unidirectional nature of 310 

aggression in rhesus macaques. The probability of aggressive interactions also increased 311 
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amongst Evicted females from 2010 to 2011. However, there were decreases in the 312 

probability of aggression being directed from the Evicted females to the Resident females, 313 

and from the Resident females to the Evicted females.   314 

 315 

[INSERT FIGURE 2 ABOUT HERE] 316 

  317 

Females changed grooming partners as the eviction approached. We found that, as 318 

expected, females were more likely to engage in grooming with members of their own 319 

partition. The Evicted, Resident, and Mat004 females were more likely to groom members of 320 

their own partition compared to members of other partitions in both 2010 and 2011 (Table 321 

1). This pattern was not significant for females from the small 073 matriline Females also 322 

tended to groom females outside their own partition at rates either expected by chance or 323 

significantly lower than chance in both years. Yet there were notable differences in the 324 

identities of grooming partners both within and between partitions across years (Figure 2). 325 

For example, the tendency for females to groom members of their own partition increased 326 

from 2010 to 2011 for Evicted, Resident, and Mat004 females, with the Evicted females 327 

showing the largest increase in within-partition grooming (2010: 5.02 𝑂𝑏𝑠⁄𝐸𝑥𝑝, p < 0.01; 328 

2011: 6.45, p < 0.01). In addition, the amount of grooming that occurred between Evicted 329 

and Resident females did not differ from chance levels in 2010 but was smaller than 330 

expected in 2011 (2010: 0.96, p = 0.25; 2011: 0.34, p = 0.01). In other words, in the year 331 

nearer to the eviction, Evicted females were more likely to groom one another and less 332 

likely to groom the Resident members of their matriline.   333 

Evicted females formed tighter grooming clusters in the year before their eviction. 334 

The mean clustering coefficient of the grooming network of Evicted females was 335 

significantly greater than expected in 2011 but not in 2010 (Table 2). The mean clustering 336 

coefficient of no other partition differed from expected values in either year. In other 337 

words, the grooming relationships of Evicted females were more cliquish than expected 338 

based on random association in the year directly before their eviction, whereas no such 339 

differences were observed in the other partitions, including the Resident members of this 340 

matriline.  The grooming relationships of the Evicted females were also significantly more 341 

clustered in 2011 than in 2010, and were significantly more clustered in 2011 than any 342 
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other partition examined (Figure 3). Although there were small increases in clustering 343 

from 2010 to 2011 for the Resident and Mat004 females, this was only significant for the 344 

latter (Table 2). The clustering coefficient for Mat073 was zero because there were no closed 345 

triads within the network and thus no amount of edge-weight reshuffling could produce a 346 

result other than zero.  We found relative similarities between our random graphs across 347 

years (Figure 3). Because changes in network densities were the central drivers of 348 

differences between the random graphs, which further suggests that differences across 349 

time in our observed clustering coefficients were not driven by differences in density alone.   350 

[INSERT FIGURE 3 ABOUT HERE] 351 

 352 

 353 

DISCUSSION  354 

The study of dynamic social networks is an area of rapidly growing research interest (Bode, 355 

Wood, & Franks, 2011; Ilany, Booms, & Holekamp, 2015; Pinter-Wollman et al., 2014). 356 

Although social networks appear to be able to flexibly respond to changes in the social and 357 

physical environment, whether changes to social networks also precede major events is 358 

less clear. Here we report network dynamics in advance of the mass eviction of members of 359 

the philopatric sex. Prior to the eviction, researchers present in the group reported no 360 

conspicuous signs of social instability. Therefore the changes to the networks of these 361 

animals occurred in advance of a major event but were subtle and revealed only through 362 

subsequent analysis. Permanent evictions can have serious consequences for individuals; 363 

intragroup aggression prior to evictions can result in fatal injuries (Ehardt & Bernstein, 364 

1986; Gygax, Harley, & Kummer, 1997; Samuels & Henrickson, 1983), decreased 365 

reproduction, (Dettmer, Woodward, & Suomi, 2015) and smaller post-eviction daughter 366 

groups can be subjected to higher risks of predation and reduced foraging efficiency 367 

(Krause & Ruxton, 2002). There is some evidence that reproductive competition is the 368 

trigger for evictions in cooperative breeding species (Thompson et al., 2016) but it is 369 

unclear whether similar factors would be at play in a primate such as the rhesus macaque 370 

that has highly polygynous mating and only moderate levels of reproductive skew (Dubuc, 371 

Ruiz-Lambides, & Widdig, 2014). Although we do not know whether there are causal links 372 
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between changes to the social networks in this study and the eviction, a consistent 373 

patterning of network dynamics prior to evictions would nevertheless allow evictions to be 374 

predicted in future, which could have implications for the management of captive groups 375 

(Beisner et al., 2011) and the design of naturalistic experimental studies.   376 

A number of theories have been put forward regarding the maintenance of group 377 

cohesion and the balance of competition and cooperation between unrelated group mates. 378 

For instance, group cohesion may be limited by the amount of time individuals have 379 

available to spend engaged in social interactions. This ‘time-constraints’ model predicts 380 

that groups break apart once individuals can no longer maintain or keep track of 381 

relationships with all other groups members (Dunbar, 1991, 1992). Prior to the mass 382 

eviction in this study, we did not detect any changes in the amount of time individuals 383 

dedicated to grooming or aggressive interactions. Although these animals are provisioned 384 

and may not easily suffer from restrictions in their daily time budgets, our results 385 

nonetheless suggest that the break down in group cohesion did not follow from reductions 386 

in social effort.   387 

Group cohesion may depend not only on the amount of time individuals engage in 388 

social interactions but also on with whom they interact. For example, pay-to-stay 389 

mechanisms, whereby individuals ‘pay’ their group mates with affiliative interactions, have 390 

been proposed as a means to maintain groups of cooperative breeders with highly skewed 391 

reproductive success (Bergmüller & Taborsky, 2005; Gaston, 1978; Johnstone & Cant, 392 

1999), as well as groups of unrelated animals faced with intense between-group 393 

competition (Radford, 2008; van Schaik, 1989; Wrangham, 1980). In the latter instance, 394 

dominant animals are proposed to use social interactions, e.g. grooming, to establish 395 

alliances with their lower-ranking group mates in order to ensure they will help in contests 396 

with other groups (Cheney, 1992; van Schaik, 1989). A meta-analysis of data from 397 

cercopithecine primates suggests the link between grooming relationships, intra-group 398 

contest, and the maintenance of group cohesion is weak if non-existent (Cheney, 1992) 399 

(although see: Majolo, de Bortoli Vizioli, & Lehmann, 2016). In the present study, an 400 

increase in cliquishness in the local grooming networks of evicted females suggests that 401 

grooming relationships amongst kin and non-kin of divergent social status may indeed play 402 

a role in the cohesion of rhesus macaque groups. However, cause and consequence cannot 403 
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be disentangled here and just as the reduced diversity of grooming relationships may have 404 

caused the eviction, the pending eviction may have resulted in the reduction of diversity in 405 

grooming relationships.  406 

Changes to affiliative relationships leading up to a mass eviction also reveal more 407 

direct information about the patterns and processes that underpin social relationships in 408 

these animals. Biologists’ understanding of the evolution of social bonds in animals has 409 

grown rapidly in recent years (Archie, Tung, Clark, Altmann, & Alberts, 2014; Brent, 410 

Heilbronner, et al., 2013; Chang et al., 2013; Seyfarth & Cheney, 2012; Silk et al., 2009). 411 

Affiliative tendencies have been shown to be heritable (Brent, Heilbronner, et al., 2013; 412 

Brent, Semple, et al., 2014; Lea, Blumstein, Wey, & Martin, 2010), and a positive association 413 

between affiliative relationships and proxies of fitness have been found in a small range of 414 

species, including baboons (Archie et al., 2014; Silk et al., 2009; Cheney et al. 2016) and 415 

rhesus macaques (Brent, Heilbronner, et al., 2013; Brent et al. 2017). Yet despite these 416 

advances, the adaptive functions of social bonds remains unclear (Brent, Chang, et al., 417 

2014). A growing number of studies that have shown that affiliative social relationships 418 

between members of the philopatric sex are more flexible in nonhuman primates than 419 

traditionally believed (e.g. (Barrett, Gaynor, & Henzi, 2002; Barrett & Henzi, 2002; Engh et 420 

al., 2006; Wittig et al., 2008). In accordance with this work, we found evidence for dynamic 421 

shifts in affiliative relationships in this study. Together, these findings may reflect the use of 422 

social relationships to cope with the vicissitudes of life such as death, disease, and shifts in 423 

social status, as well as other short-term social, environmental, and demographic events.   424 

Our results may also hint that some social bonds are more valuable than others. 425 

Previous work has shown that instability in primate groups can be followed by shifts in 426 

social partners. Following the death of the alpha male in wild chimpanzees, individuals 427 

became more socially discriminant of grooming partners that failed to reciprocate (Kaburu 428 

& Newton-Fisher, 2013). In cercopithecines, social relationships are most common 429 

amongst related females (Cheney, 1992). Relatedness may be a useful shorthand for 430 

reliable cooperative partners because of the ability to gain inclusive fitness benefits via 431 

these relationships. Female baboons focused their grooming networks onto close kin 432 

following instability in the male hierarchy (Wittig et al., 2008). In the current study, 433 

grooming relationships largely collapsed along kin-lines prior to the mass eviction, with the 434 
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females that would be evicted focusing their relationships onto their closest kin; in times of 435 

social instability, affiliative relationships with non-relatives may become too risky for 436 

rhesus macaque females.    437 

The adaptive role of social relationships in variable contexts begs an understanding 438 

of how individuals of variable phenotypes integrate to form particular group dynamics. 439 

Here, we focused on rates of interactions and the formation of clusters as indicators of 440 

changes in network structure and partner choice. Other network metrics with alternative 441 

properties might differently elucidate social dynamics (Brent 2015). For example, 442 

eigenvector centrality, which uses direct and indirect connections to parse socially 443 

integrated from marginal individuals, was found to positively correlate with proxies of 444 

fitness in wild baboons (Cheney et al. 2016) and in the Cayo Santiago rhesus macaques 445 

(Brent et al. 2013). As our current analyses indicated the emergence of distinct 446 

subgroupings over time without any changes in the overall rates of interactions, we felt 447 

eigenvector centrality would be of limited analytical power (although will nevertheless 448 

continue to be important to consider in future studies focused on revealing information 449 

about differences in social connectedness between individuals) and we instead performed 450 

a joint count analysis to explore not just how involved the different subgroups were in 451 

social life, but with whom. 452 

The stability of a group is not attributable to the phenotype of any one particular 453 

individual but it is nevertheless likely to impact upon individual fitness. Research in group-454 

living species suggests that the interplay between group stability and individual fitness is 455 

complex (Muir, 2005; Saltz, 2013; Wolf, Brodie, & Cheverud, 1998). A more thorough 456 

understanding of how the metagenome (i.e. the influence of one individual’s genotype and 457 

phenotype on another’s) influences network dynamics will also be useful for behavioural 458 

ecologists approaching these questions.   459 
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 623 
FIGURE LEGENDS 624 

 625 
Figure 1. Maternal relatedness structure for the adult females in group F. Female names are 626 
listed along the top and right-hand edge and are coloured by matriline membership. Matriline 065 627 
has been partitioned into females that were evicted and those that remained in the parent group 628 
(‘resident’) Females are ordered by descending dominance rank. Cells represent the maternal 629 
relatedness coefficient for each pair of individuals.   630 

 631 

 632 
Figure 2. Grooming and Aggression Networks. The grooming (A,B) and aggression (C, D) 633 
networks for 2010 (A,C) and 2011 (B,D). Node colour represents partition membership where 634 
Evicted females are red, Resident females purple, Mat004 females green and Mat073 females blue. 635 
Colour intensity of the edge arrows indicates the relative weight of the interaction, with darker 636 
edges indicating greater intensity. Each network is force-directed using the Fruchterman-Reingold 637 
algorithm. Inset chord diagrams: width of chords represents that summation of interactions 638 
emanating from a given partition to other partitions. Chords take the colour of the partition from 639 
which interactions emanate.  640 
 641 

Figure 3. Mean Clustering Coefficients by Partition. Violin Plots showing estimates of the 642 
mean clustering coefficient for each partition in each study period. Grey plots show 643 
estimates for the given partition and year based on Erdős–Rényi random graphs. 644 
Coloured densities represent mean clustering coefficients from 5000 permuted graphs 645 
in which we shuffled weights across edges while holding the positions of edges 646 
constant.   647 
 648 
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Table 1. Observed and expected rates of grooming and aggression within and between females 

        Grooming Networks 

Donor   Recipient   2010   2011 

        Exp Obs Obs / Exp (Pval)   Exp Obs Obs / Exp (Pval) 

 
Evicted 

  themselves   142 712 5.02 (0.001)   140 904 6.45 (<0.001) 
  Resident   207 201 0.96 (0.25)   205 69 0.34 (0.01) 
  Mat004   185 3 0.02 (<0.001)   183 19 0.10 (0.001) 
  Mat073   65 0 0.00 (0.05)   65 0 0.00 (0.03) 

           

Resident 

  Evicted   207 290 1.40 (0.48)   205 176 0.86 (0.17) 
  themselves   303 825 2.73 (0.01)   299 983 3.29 (0.001) 
  Mat004   271 147 0.54 (0.03)   268 168 0.63 (0.04) 
  Mat073   96 0 0.00 (0.02)   95 25 0.27 (0.05) 

           

Mat 004 

  Evicted   185 48 0.26 (0.01)   183 177 0.97 (0.24) 
   Resident   271 244 0.90 (0.17)   268 245 0.91 (0.15) 
  themselves   242 890 3.67 (<0.001)   240 666 2.78 (0.01) 
  Mat073   86 72 0.84 (0.32)   85 14 0.17 (0.04) 

           

Mat073 

  Evicted   65 32 0.49 (0.22)   65 5 0.08 (0.04) 
  Resident   96 0 0.00 (0.01)   95 21 0.22 (0.04) 
  Mat004   86 68 0.79 (0.29)   85 7 0.08 (0.02) 
  themselves   30 45 1.49 (0.30)   30 104 3.49 (0.08) 

                      

        Aggression Networks 

        Exp Obs Obs / Exp (Pval)   Exp Obs Obs / Exp (Pval) 

Evicted 

  themselves   2.43 8.00 3.30 (<0.001)   2.18 8.37 3.84 (<0.001) 
  Resident   3.56 11.73 3.29  (<0.001)   3.18 8.98 2.82 (<0.001) 
  Mat004   3.18 7.94 2.50 (<0.001)   2.85 9.56 3.35 (<0.001) 
  Mat073   1.12 2.50 2.23 (0.04)   1.01 2.93 2.92 (0.004) 

           

Resident 

  Evicted   3.56 0.59 0.17 (<0.001)   3.18 0.40 0.13 (<0.001) 
  themselves   5.20 6.21 1.19 (0.38)   4.65 5.26 1.13 (0.19) 
  Mat004   4.65 7.77 1.67 (0.08)    4.16 5.76 1.38 (0.48) 
  Mat073   1.64 2.56 1.56 (0.27)   1.47 1.48 1.01  (0.15) 

           

Mat 004 

  Evicted   3.18 0.25 0.08 (<0.001)   2.85 0.49 0.17 (<0.001) 
  Resident   4.65 1.13 0.24 (<0.001)   4.16 1.20 0.29 (<0.001) 
  themselves   4.16 4.35 1.05 (0.19)   3.72 5.16 1.38 (0.37) 
  Mat073   1.47 2.80 1.92 (0.09)   1.32 2.75 2.09 (0.08) 

           

Mat073 

  Evicted   1.12 0.00 0.00 (<0.001)   1.01 0.10 0.10 (<0.001) 
  Resident   1.64 0.12 0.07 (<0.001)   1.47 0.10 0.07 (<0.001) 
  Mat004   1.47 0.12 0.08 (<0.001)   1.32 0.10 0.07 (<0.001) 
  themselves   0.51 0.95 1.82 (0.14)   0.46 1.17 2.52 (0.04) 

The observed (Obs) and expected rates (Exp) of interaction, and the ratio of observed to expected for each network 
within and between the 4 partitions (Evicted, Resident, Mat004, and Mat073). Interactions emanate from "donors" and 
are received by "recipients." Pval is calculated as the proportion of simulated networks in which the Obs/Exp value 
exceeded or met the observed Obs/Exp value. Values in bold differed significantly from chance. 
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Table 2. Clustering of grooming relationships: Observed compared to randomised networks, 
comparisons between partitions of females, and comparisons within partitions of females across 
years. 

  
Observed 
Clustering 
Coefficient 

 Randomised 
Networks 

Evicted Resident Mat004 Mat073 

  Year   2010 2011 2010 2011 2010 2011 2010 2011 

Evicted 
2010 0.04 0.01 (0.49)     0.23 (<0.01) -0.01 (0.31) -0.02 (0.23) 0.03 (0.08) 0.05 (0.05) 0.05 (0.09) 0.05 (0.09) 

2011 0.28 0.21 (<0.01)    
 0.24 (<0.01) 0.21 (<0.01) 0.26 (<0.01) 0.18 (<0.01) 0.28 (<0.01) 0.28 (<0.01) 

Resident 
2010 0.02 0.02 (0.35)       0.03 (0.13) 0.02 (0.15) 0.06 (0.03) 0.04 (0.17) 0.04 (0.17) 

2011 0.07 0.001 (0.43)       0.04 (0.01) 0.03 (0.15) 0.06 (0.02) 0.06 (0.02) 

Mat004 
2010 0.02 0.03 (0.22)         0.08 (<0.01) 0.02 (0.14) 0.02 (0.14) 

2011 0.08 0.02 (0.24)          0.09 (0.01) 0.09 (0.01) 

Mat073 
2010 0.00 0.04 (0.69)           0.00 (1.00) 

2011 0.00 0.06 (0.29)   
            

P-values for the difference in observed and random networks are calculated as the proportion of 
random networks that produced values as extreme the observed value. P-values for the 
difference of observed values across partitions and study periods are based on a bootstrap two-
sample permutation tests. Values in bold differ significantly from chance. 
 


