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 27 

Abstract 28 

Criticism has been levelled at climate-change induced forecasts of species range shifts that do 29 

not account explicitly for complex population dynamics. The relative importance of such 30 

dynamics under climate change is, however, undetermined because direct tests comparing the 31 

performance of demographic models versus simpler ecological niche models are still lacking 32 

owing to difficulties in evaluating forecasts using real-world data. We provide the first 33 

comparison of the skill of coupled ecological-niche-population models and ecological niche 34 

models in predicting documented shifts in the ranges of 20 British breeding bird species 35 

across a 40-year period. Forecasts from models calibrated with data centred on 1970 were 36 

evaluated using data centred on 2010. We found that more complex coupled ecological-37 

niche-population models (that account for dispersal and metapopulation dynamics) tend to 38 

have higher predictive accuracy in forecasting species range shifts than structurally simpler 39 

models that only account for variation in climate. However, these better forecasts are 40 

achieved only if ecological responses to climate change are simulated without static 41 

snapshots of historic land use, taken at a single point in time. In contrast, including both static 42 

land use and dynamic climate variables in simpler ecological niche models improves 43 

forecasts of observed range shifts. Despite being less skilful at predicting range changes at 44 

the grid cell level, ecological niche models do as well, or better, than more complex models 45 

at predicting the magnitude of relative change in range size. Therefore, ecological niche 46 

models can provide a reasonable first approximation of the magnitude of species’ potential 47 

range shifts, especially when more detailed data are lacking on dispersal dynamics, 48 

demographic processes underpinning population performance, and change in land cover. 49 

 50 

 51 
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Introduction  52 

There is unprecedented demand for forecasts of biodiversity change owing to the multiple 53 

human threatening processes affecting species and ecosystems worldwide (Mouquet et al., 54 

2015, Pereira et al., 2010). The unparalleled access to large quantities of ecological data, 55 

coupled with increasingly sophisticated statistical and modelling tools, offers great promise 56 

for improving ecological forecasts. However, model usefulness is contingent on them being 57 

able to transfer predictions in space and/or time (Stewart et al., 2015, Willis et al., 2007). But 58 

how can one assess a model’s capacity to anticipate global change impacts on species if 59 

climate change scenarios have not yet occurred?  60 

Pragmatically, performance is usually assessed by testing the model predictions 61 

against records from the regions or time periods used to train the models (Araújo &  Rahbek, 62 

2006). Previous studies based on hindcasts (backwards projections) of past range shifts have 63 

used a variety of time horizons and taxonomic groups, and their results on model 64 

transferability are heterogeneous. For example, predictive ability across time was generally 65 

low in studies on cetaceans (hindcasts for the 1970s, Lambert et al., 2014) and plants (late 66 

Pleistocene; Maguire et al., 2016). In a study on birds, observed changes in abundance were 67 

significantly positively correlated to the model predictions in only 59% of cases (Illán et al., 68 

2014) — little better than an even bet. Even for models that were reasonably accurate in 69 

predicting range area for the training period, predictive skill tended to deteriorate 70 

substantially when used to forecast range shifts (Araujo et al., 2005 [birds], Roberts &  71 

Hamann, 2012 [plants], Smith et al., 2013[mammals]). Possible explanations for poor model 72 

transferability include the appearance of non-analogue climates (Pearson et al., 2006), the 73 

lack of conservatism in species environmental tolerances (Pearman et al., 2008a) and novel 74 

species interactions (Smith et al., 2013). Where studies have found fair to good predictive 75 

accuracy over time, model transferability typically varied across species (Pearman et al., 76 

Page 3 of 42 Global Change Biology



2008b), the level of management (Macias-Fauria &  Willis, 2013), or the degree of stability 77 

in species-environment correlations (Rubidge et al., 2011).  78 

Importantly, all of these studies have used comparisons of different flavours of 79 

correlative ecological niche models (ENMs) — the most frequent type of modelling approach 80 

used to predict species range shifts (Araujo &  Peterson, 2012). These models statistically 81 

correlate species ranges (occurrence or abundance data at known locations) with information 82 

on the environmental characteristics of those locations thought to delimit the species’ 83 

tolerances for those environmental conditions (Elith &  Leathwick, 2009). Once fitted to 84 

historical or present-day data, the models can be used to predict the species ranges across a 85 

landscape under future change. Ecological niche models have a set of inherent limitations 86 

(Guisan &  Thuiller, 2005), but are generally considered to deliver a useful approximation of 87 

suitable areas, contingent on their appropriate use (Araujo &  Peterson, 2012). However, one 88 

of the major shortcomings of ENMs for climate change applications is that they do not 89 

explicitly incorporate a species’ propensity to colonise new locations, nor do they model the 90 

rate at which species will disappear from old locations (Elith et al., 2010).  91 

 It has been argued that a more detailed understanding of species responses to 92 

environmental change, and an improvement in forecasts of species range shifts, requires more 93 

mechanistic models of range dynamics (Fordham et al., 2014, Singer et al., 2016). One 94 

approach is to combine species demography with climate suitability (typically derived from 95 

ENMs) and dispersal across a landscape, to simulate population dynamics within an 96 

integrative framework (Fordham et al., 2013a). These models are potentially more realistic 97 

and less prone to bias than correlative ENMs alone (Zurell et al., 2016), because they account 98 

for potentially important metapopulation processes, and multiple human impacts (Ehrlén &  99 

Morris, 2015, Fordham et al., 2013c). Furthermore, they can directly measure extinction risk 100 

(population declines and other measures of stochastic viability), as well as change in habitat 101 
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area, when assessing climate change impacts on biodiversity (Fordham et al., 2012). Despite 102 

their increased popularity, demographic models linked to ENMs require more detailed field 103 

data for parameterisation, and have never been validated against real-world independent data. 104 

Such testing is critical for determining whether the addition of key information on species’ 105 

vital rates (e.g., growth rate, density dependence) improves estimates of range shifts and 106 

extinction risk under climate change scenarios. 107 

Here, we predict historical range shifts in response to past climate change using 108 

coupled demographic ENMs, and assess model performance using observed changes in 109 

species’ ranges. In addition, we test if the performance of these complex models is superior to 110 

simpler correlative ENMs. To realise this aim, we made use of a unique dataset: a breeding 111 

bird population census of 20 species in the United Kingdom (UK) in 1970 and 2010. Because 112 

the 2010 dataset has only recently become available, results from previous model-validation 113 

studies have been based on observed range movements over 20 years (1970 – 1990) rather 114 

than 40 years period (e.g., Araujo et al., 2005, Pearce-Higgins et al., 2015, Rapacciuolo et al., 115 

2012) 116 

We trained models of different complexity, using the species’ occurrence in the 117 

1970s, species’ dispersal constraints, and demographic parameters estimated from time series 118 

abundance data centred on 1970, to forecast species ranges in 2010, where we had 119 

(independent) test distribution data. In total, we fitted 8 model types (Fig. 1) that represented 120 

a gradient from simpler correlative ENMs, to dispersal-linked ENMs, through to complex 121 

spatially explicit population models. Our general aim was to examine whether theoretically 122 

more realistic models (by virtue of accounting for a greater level of ecological processes) 123 

would deliver improved approximations of observed species range shifts. More specifically, 124 

we (i) compared models with and without the inclusion of land use and demographic 125 

processes (i.e., population growth and colonisation and extinction dynamics), (ii) evaluated 126 
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models with different dispersal hypotheses (no dispersal, a distance-decay dispersal function, 127 

unlimited dispersal), and (iii) examined which models are more likely to result in ‘false 128 

negative’ or ‘false positive’ errors. Our results improve knowledge of whether simpler 129 

models are more transferable.  130 

Material and Methods 131 

Data 132 

Bird occurrence, climate and land use data 133 

British birds are one of the most extensively surveyed faunas in the world (Baillie et al., 134 

2014). We compiled occurrence data for 20 British bird species using the Breeding Atlas 135 

10km grid-cell data for two time periods: 1968–72 (t1), 2007–2011 (t2). Species were chosen 136 

on the basis that (i) there were sufficient data available to parameterise demographic models; 137 

and (ii) they were not seasonal migrants or shore birds because of difficulties in defining 138 

explicit areas of occupancy for these groups (Bradshaw et al., 2014). We also excluded 139 

species with fewer than 20 occurrence records in the first recording period, because of 140 

problems related to modelling data with small sample sizes (Stockwell &  Peterson, 2002). 141 

There is a risk of biases in extrapolations associated with incomplete characterizations of 142 

climatic niches (Pearson et al., 2004), potentially inflating forecast risks from climate change 143 

(Araújo et al., 2011). To avoid this problem, data for birds for the baseline period (1968-144 

1972) from the British Bird Atlas were amalgamated with European wide distributions at 145 

50km grid-cell resolution from a digitized version of the Atlas of European Breeding Birds 146 

(Hagemeijer &  Blair, 1997). Ecological niche models were thus initially trained with British 147 

and European wide distributions data, and then projected in Britain alone (Pearson et al., 148 

2004).  149 

 Annual mean values (1970–2000) for mean minimum temperature in February (°C), 150 

mean maximum temperature in July (°C), and mean total annual precipitation (millimetres) 151 
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were derived from the Climate Research Unit (CRU) monthly climate data (New et al., 152 

2000). The data provide monthly values for 1901–2000 in a 10' (c.a. 16 x 16 km grid) 153 

resolution that overlapped with the terrestrial area of Europe, including England, Wales, and 154 

Scotland. The baseline climate record was extended to 2010 using the ALARM business-as-155 

might-be-usual (BAMBU) storyline (Fronzek et al., 2012). These combined data provided a 156 

homogenous 40-year annual-step climate data series.  The difference between ALARM 157 

storylines were negligible for the UK in 2010 (see Supporting Information, Fig. S1); and are 158 

similar to more recent CRU TS 3.2 data (< ± 0.5 °C for temperature variables and < ± 0.25 159 

mm/day for annual precipitation; Harris et al., 2014). Our choice of climate variables reflects 160 

those known to impose constraints on bird ranges as a result of widely shared physiological 161 

limitations (Crick, 2004, Lennon et al., 2000), having been used in several modelling studies 162 

of birds in the UK (Araujo et al., 2005, Bradshaw et al., 2014, Pearson et al., 2004). All 163 

climate data were projected onto the British Breeding Bird Atlas occurrence 10km-grid and 164 

the European Breeding Birds Atlas 50km-grid using cubic spline interpolation.  165 

We generated species-specific land-cover suitability maps using CORINE vector 166 

datasets for 1990, 2000, and 2006. We obtained these maps after: (i) classifying land cover 167 

classes as suitable or unsuitable at a 25m grid-cell resolution; and (ii) calculating the 168 

proportion of suitable land-cover within a 10km grid-cell. We used five land use categories 169 

(wet habitats, crop, pastures, forests, shrub lands), corresponding to the main habitats used by 170 

the birds in our study. The output was grid-cell habitat suitability values varying continuously 171 

between 0 and 1, representing the proportion of suitable habitat per grid cell (i.e., 0 = no 172 

suitable habitat; 1 = entire grid-cell consisted of suitable habitat). Habitat classifications were 173 

based on information from the British Bird Atlas (Baillie et al., 2014) and expert advice. 174 

Spatial variation in land-cover suitability was similar between the three available time periods 175 

(Table S1). Therefore, to avoid the risk of uncertainty propagating through to results due to 176 
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classification errors in the temporal sequence of land use layers (Mouquet et al., 2015), and 177 

because we did not have land use data for the initial 20 years of the simulation, we treated 178 

land-cover suitability (centred on 1990, the midpoint of the simulation) as a static variable in 179 

the models focused on the mid-point of the study period. For species specific maps of land 180 

use suitability see Supporting Information, Fig. S2 and Table S1  181 

Modelling 182 

Using ecological niche models as the simplest modelling unit, we generated seven alternative 183 

model types with differing levels of complexity (Fig. 1). These models fell into three families 184 

(described in more detail below): simple Ecological Niche Models (ENMs); dispersal-linked 185 

niche models (Dispersal); and niche-population models (Metapop). More, specifically, these 186 

models were 1) ENMs affected by climate change and assuming unlimited dispersal 187 

(thereafter referred to as ENM_UD), 2) ENMs affected by climate change and land use and 188 

assuming unlimited dispersal (ENM_UD_LU), 3) ENMs affected by climate change and 189 

assuming no dispersal (ENM_ND), 4) ENMs affected by climate change and land use and 190 

assuming no dispersal (ENM_ND_LU), 5) ENMs affected by climate change and species’ 191 

specific dispersal constraints (DISPERSAL), 6) ENM affected by climate change, land use 192 

and species’ specific dispersal constraints (DISPERSAL_LU), 7) ENMs affected by climate 193 

change and species’ specific extinction and colonization dynamics (METAPOP), and 8)  194 

ENMs affected by climate change, land use and species’ specific extinction and colonization 195 

dynamics (METAPOP_LU). 196 

Ecological Niche Models  197 

We used 12 different ecological niche modelling techniques fitted with climate and land use 198 

predictors, using BIOENSEMBLES (Diniz-Filho et al., 2009). An ensemble of ENMs was  199 

generated for each one of the 20 species considered. Ensemble forecasting approaches 200 

account for inter-model variation in predictions (Araújo &  New, 2007), and there is 201 
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empirical evidence that consensus predictions derived from multiple models within 202 

ensembles can improve projections of individual models in contexts of transferability under 203 

climate change (Araujo et al., 2005). We fitted ensembles of forecasts using the following 204 

techniques: BioClim; Euclidian Distance (EUC); Gower Distance (GOW); Mahalanobis 205 

Distance (MAH); Generalized Linear Models (GLM); Generalized Additive Models (GAM); 206 

Random Forests (RF); Genetic Algorithm for Rule-set Production (GARP); Ecological Niche 207 

Factor Analysis (ENFA); MaxEnt, Neural Networks (NN); and Multivariate Adaptive 208 

Regression Splines (MARs). BIOCLIM, MAH, EUC and GOW were fitted to species 209 

occurrence records (presence only), while MaxEnt, ENFA and GARP use background 210 

information, describing a random sample of non-occurrences from the region of interest. 211 

GLM, GAM, RF, NN and MARs were parameterized assuming that absences represent true 212 

absence of the species. By varying the assumptions regarding absence data we captured the 213 

variability in projections accrued from such assumption in the models.  214 

 Models were calibrated using European-wide occurrence data for t1 matched to 215 

average climate data for 1968–72. Models were trained using 80% random sample of the 216 

initial data and tested against the remaining 20% of data (Fielding &  Haworth, 1995). 217 

Accuracy of predicted distributions in the training set were measured for every model using 218 

the area under the curve (AUC) of the receiver operation characteristic (ROC) and the true 219 

skill statistic (TSS) (Liu et al., 2005). Models with low performance (TSS<0.3) were 220 

discarded from the ensemble (Garcia et al., 2012). The remaining ENMs were used to predict 221 

probability of occurrence or climate suitability and presence and absence at annual time-steps 222 

from 1970 to 2010. Modelled probabilities or climate suitabilities were transformed into 223 

predictions of presence and absence of species in the grid cells, using thresholds defined by 224 

AUC for presence-absence models and fixed cut-offs for presence only models. Consensus 225 
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about the predicted distribution of the species was obtained by recording the areas where at 226 

least 40% of the models agreed that the species would occur there (Araújo et al., 2011).  227 

In total, we generated four different types of ENMs (see above and Fig. 1). The 228 

‘unlimited dispersal’ scenario (ENM_UD) assumes that the species can completely migrate to 229 

future suitable areas (in 2010), that no individuals remain in unsuitable grid cells, and that all 230 

suitable areas are occupied. In other words, species are presumed to be constantly in 231 

equilibrium with climate (Araujo &  Peterson, 2012). The ‘no dispersal’ scenario (ENM_ND) 232 

assumes that the species cannot migrate beyond its observed range for the training period 233 

(1970). Therefore, only grid cells that were suitable in 1970 and 2010 were assumed to be 234 

occupiable between these time periods. The ENMs with climate, land use and unlimited 235 

dispersal (ENM_LU) were generated by classifying grid cells as unsuitable if land use 236 

suitability was below a minimum area threshold (even if the ENM classified those grid-cells 237 

as climatically suitable) of 0.0025 (i.e., a grid-cell needed 250m x 250m of suitable habitat to 238 

be considered habitable) needed to sustain a breeding pair of birds. This is likely to be a 239 

conservative threshold for some bird species in our analysis. The ENMs with climate, land 240 

use and no dispersal (ENM_LU_ND) used ENM_LU predictions but assumed that only grid 241 

cells that were occupied in both 1970 and 2010 were occupiable between these time periods.   242 

Dispersal Models  243 

Projections by ENMs of future grid cells suitable for colonization were linked to a stochastic 244 

dispersal model, using a cellular/lattice spatial structure consisting of 2 665 grid-cells (10 km 245 

x 10 km longitude/latitude grid-cell resolution). Cells were classed as either suitable or not 246 

suitable at each time step. Natal dispersal was modelled using published estimates from 247 

Paradis et al. (1998). More specifically, we used species’ specific dispersal kernels to model 248 

the probability of dispersal between grid cells of suitable habitat during each time step as an 249 

exponential function: P = a.exp(D1/b), where D is the distance between grid cell centroids, a is 250 
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the proportion of individuals that disperse in all radial directions, b is the mean dispersal 251 

distance of the species (Akcakaya &  Root, 2005). When D exceeds a specified maximum 252 

distance (Dmax) that a species is expected to be able to disperse P is set to zero. See Table S2 253 

for species-specific dispersal parameters. We modelled a high level of stochasticity in 254 

dispersal rates (co-efficient of variation = 1; Paradis et al. 1998) and assumed that colonised 255 

cells stabilise at a species-specific maximum density (set at maximum K between 1970 and 256 

2010; see below) within a three year period using an exponential population growth function. 257 

The approach we used is similar to MigClim (Engler et al., 2012), in that the model’s basic 258 

unit is a cell that is occupiable or not, dispersal is defined by a dispersal kernel and propagule 259 

pressure is a function of the time since colonisation. It differs from MigClim in that it models 260 

the probability of the proportion of individuals that move between cells, not the probability of 261 

a dispersal event. This has both advantages and limitations (Engler &  Guisan, 2009), 262 

however, we chose this method because outputs are directly comparable to those from the 263 

coupled niche-population models described below. The dispersal-only models were 264 

implemented in RAMAS Metapop (Akcakaya &  Root, 2005). The model was initialised 265 

using the approach described for coupled niche-population models (see below), allowing us 266 

to directly compare model output with and without stochastic population growth and its 267 

interaction with dispersal. 268 

Coupled niche-population models  269 

ENMs with climate and with and without land use were coupled with a stochastic population 270 

model that captures extinction as well as colonization dynamics (Metapop) by simulating 271 

landscape-level population processes and dispersal with source and sink dynamics (Fordham 272 

et al., 2013a). The demographic models for British birds used an identical cellular/lattice 273 

spatial structure to the dispersal-only models and were implemented in RAMAS Metapop. 274 

Each grid cell was modelled with a scalar-type stochastic model, which simulates the finite 275 
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rate of population increase “R”, its variance and the population carrying capacity (Dunham et 276 

al., 2006). The carrying capacity of birds in each grid cell for simulations with land use was 277 

calculated as: 278 

K = thr (maximum abundance × land cover × climate suitability, minimum abundance) 279 

Where, maximum abundance was the highest density of birds expected in a 10 km grid-cell 280 

when land cover = 1 and climate = 1. If abundance at any time was less than a minimum 281 

abundance, then a threshold function (thr) set abundance to zero, simulating a simple Allee 282 

effect. Land cover was the proportion of the grid cell that is potentially habitable based on 283 

land use type. Climate suitability was the output of the ecological niche model (with no 284 

threshold for prevalence), scaled between 0 and 1. The minimum abundance value was set 285 

iteratively by maximising the kappa score (Monserud &  Leemans, 1992) between simulated 286 

and observed range in t1  (i.e., 1970) using 10-fold cross validation for minimum abundance 287 

values ranging from 1 to 1,000 females per 10 x 10 km grid cell. 288 

The carrying capacity of birds in each grid cell for simulations without land use was 289 

calculated as: 290 

K = thr (maximum abundance× climate suitability× max land cover, minimum abundance) 291 

Where, max land cover is the maximum area of suitable land use in any given 10km x 10km 292 

cell divided by the area of that cell.  This scaling parameter prevents superabundant 293 

populations that can arise as a result of the relatively coarse spatial resolution of the model 294 

(10 km grids) (Fordham et al., 2013b). The minimum abundance value was set using an 295 

identical technique to K with land use. Climate suitability was the same for K with and 296 

without land use.  297 

 We used long-term population dynamics time-series data to calculate finite rates of 298 

population increase and their variance (Brook &  Bradshaw, 2006). The minimum length of 299 

these time series were 12 year-to-year transitions with a mean duration of 27 year-to-year 300 

Page 12 of 42Global Change Biology



transitions. The time series overlapped closely with the study period (mean focal year = 301 

1965), which is close to the year used to calibrate the ENMs (1970), and, therefore, 302 

reasonable as the basis to estimate demographic parameters in the Metapop models. 303 

Estimates of maximum finite rate of population increase (Rmax) and standard deviation around 304 

the intrinsic rate of population growth were calculated following Brook and  Bradshaw 305 

(2006) and are reported in Table S2. The standard deviation value was used to model 306 

population fluctuations driven by environmental stochasticity (Fordham et al., 2013b). We 307 

used multi-model inference (Burnham &  Anderson, 2002) to assign strengths of evidence for 308 

two population dynamics models commonly used to describe phenomenological time series 309 

data: a density independent model (random walk) and a density dependent model (Ricker-310 

logistic population growth). On this basis, each species was assigned either a density 311 

independent or density dependent model of population growth (Table S2). Density 312 

dependence was modelled using the “scramble competition” function in RAMAS, whereby as 313 

population abundance in a grid-cell increases, the amount of resources per individual 314 

decreases, as dictated by K.  Density independence was modelled independent of K, by 315 

allowing K to affect grid-cell abundance only when climate and /or land use suitability = 0. 316 

The proportion of dispersers moving between grid cells of suitable habitat during each time 317 

step was modelled using a species-specific dispersal kernel and a CV = 1 (see Dispersal-only 318 

Model).  Stochasticity in dispersal was driven by temporal variability in population growth 319 

rate as well as variability in the natal dispersal kernel.  320 

Initial abundance in the first time step (t) was firstly modelled as being equal to 80% 321 

of K. A burn-in period of 10 years (1 000 iterations) was used to generate a stable initial 322 

equilibrium abundance and patch (occupied grid-cell) structure under the assumption of 323 

constant 1970 climate conditions (Fordham et al., 2012). All simulations were based on 1 000 324 

stochastic replicates and run over a 41 year period (i.e., 1970–2010). 325 
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Independent Model Testing 326 

We compared observations and predictions for all 20 species using the three types of models 327 

with varying levels of realism and complexity (ENM, Dispersal, Metapop). Specifically, we 328 

compared observed and predicted spatial patterns of species ranges for t2, and changes in 329 

range size between t1 and t2. This allowed us to identify models that give similar spatial 330 

projections and make generalisations across species regarding which model types best 331 

describe observed range dynamics (Garcia et al., 2012). Change in range area between t1 and 332 

t2 was calculated as the difference between the number of 10 km grid-cells gained by the 333 

species (i.e., sites where the species was present in t2 but absent in t1) and the number of sites 334 

lost (i.e., sites where the species was absent in t2 but present in t1) relative to the total number 335 

of sites occupied in t1 and t2 (i.e., the stable range) (Delean et al., 2013).  336 

We used the True Skill Statistic (TSS) to compare predicted with observed patterns of 337 

presences and absences in 2010 for each species. This metric has been shown to be a simple 338 

and intuitive measure for discerning the accuracy of predictions when they are expressed as 339 

presence-absence maps (Allouche et al., 2006).  Because choice of evaluation metric can 340 

influence estimates of predictive accuracy (Allouche et al., 2006) we also show results for 341 

area under the Receiver Operating Characteristic curve (AUC) (Swets, 1988). We used 342 

Generalized Linear Models (GLM, Gaussian-identity distribution-link) to explore the relative 343 

importance of different predictor variables on overall prediction accuracy (TSS and AUC), 344 

omission  (falsely predicted absences) and commission errors (falsely predicted presences) 345 

i.e., based on results from 20 species x 8 different model configurations  (n = 160). The 346 

predictor variables were ‘species’, ‘model type’, ‘land use’ and ‘dispersal type’. In each case, 347 

we inspected model residuals for normality and then chose an exponential transformation for 348 

TSS and omission error; and a log transformation for commission error.  These 349 

transformations achieved normality for the response variable. We compared these models to a 350 
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null model, which assumes a single rate across ‘species’, ‘model type’, ‘land use’ and 351 

‘dispersal type’. For each GLM, we calculated the log-likelihood (LL), percentage of 352 

deviance explained, change in AIC compared to the best-ranked model (∆AIC), model 353 

weights (ωAIC). To avoid over parameterising GLMs we tested single term models for 354 

omission and commission errors and models with simple two-way interaction terms (model 355 

type : land use; dispersal type : land use) for predictive accuracy. 356 

Results 357 

Predicting changes in patterns of occurrence 358 

Projections of geographic patterns of range contraction and expansion varied considerably 359 

across models and species (Fig. S3), as illustrated in detail for two selected species (Fig. 2 & 360 

3). We show that both the choice of dispersal type (no dispersal, unlimited dispersal, 361 

dispersal function) and how to model land use (and their interaction) influenced model skill 362 

in predicting observed patterns of occurrence in 2010 (Fig. 4 & Fig S4).  363 

A multi-termed model with explanatory variables dispersal and land use (and their 364 

interaction) had the largest effect on predictive accuracy based on TSS (TSS ~ species; ωi = 365 

0.78), explaining 22% of the variance when compared to the null model (Table 1).  There was 366 

also some support for the next two best-ranked models that modelled TSS as a function of 367 

species (TSS ~ model; ωi = 0.13, ∆AICc =3.58, DEV = 36%); and as a function of type of 368 

model, land use and their interaction (TSS ~ model : land use; ωi = 0.01, ∆AICc =0.01, DEV 369 

= 24%). Likewise, the choice of method of dispersal, and whether to consider land use, had 370 

the largest influence on AUC predictive accuracy (AUC ~ dispersal : land use; ωi = 0.89), 371 

explaining 24% of structural deviance (Table 1). Including land use in ENM models tended 372 

to improve predictions of occurrence patterns in 2010 (Figures 4 & 5). In strong contrast, 373 

including land use in DISPERSAL and METAPOP models tended to provide less accurate  374 
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predictions of occurrence patterns (Figures 4 & 5).  In general, DISPERSAL and 375 

METAPOPmodels were most skilful in predicting changes in occurrence patterns, but only if 376 

land use was not considered in the model. 377 

Predicting changes in range area 378 

Models tended to do a fair-to-good job at predicting observed proportional changes in range 379 

area, regardless of model type (Figure 6). The difference from observed values was low (< 380 

10%) for ≥ 50% of the birds modelled (with and without land-use) using ENMs (n = 10-11), 381 

≥ 45% of birds with DISPERSAL models (n = 9-11), and ≥ 30 % of birds with METAPOP 382 

models (n = 6-9). The median difference between observed and predicted change in range 383 

area was 8.6 – 9.8 % for ENMs, 10.1 – 11.2 % for DISPERSAL and 9.9 – 16.3 % for 384 

METAPOP. Although skill in predicting changes in range area for a given modelling 385 

approach varied across species (Figure 6), all models did poorly at predicting observed range 386 

increases and decreases for some species. For example, no models were able to accurately 387 

predict the large range expansion undergone by Alectoris rufa or the large contraction 388 

experienced by Perdix perdix (Fig. 6). There were only three species (Carduelis cannabina, 389 

Corvus corone and Pyrrhula pyrrhula) for which all eight models predicted < ± 10% 390 

difference between observed and predicted net losses or gains of habitat (Figure 6). None of 391 

these species were in the upper or lower quartiles for observed range movement (i.e., they did 392 

not undergo relatively large levels of range expansion or contraction during the observation 393 

period). On average, models consistently predicted the correct direction of observed change 394 

(i.e., expansion or contraction) in range shifts in about 50% of cases (Figure S5), ranging 395 

from 25 - 35% (ENM_ND_LU and ENM_ND) to 60 to 70% (METAPOP_LU, METAPOP) 396 

depending on the type of model (10 ± 1.03 species, mean  ± standard error).  397 

In general more complex models without land use tended to better predict range size 398 

in 2010 (Table S3). The median difference between observed and predicted range size in 399 
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2010 was ± 9% for METAPOP, ± 10% for DISPERSAL, ± 13% for ENM_ND, ± 22% for 400 

ENM_UD.  Accounting for land use greatly improved predictions of 2010 range size for 401 

ENM_UD_LU (± 13%), but reduced predictive accuracy for DISPERSAL and METAPOP 402 

models (± 20% and 23%, respectively). Masking unsuitable land-use types had no noticeable 403 

effect on predictions of 2010 range size for ENM_ND_LU (± 13%).  404 

Commission and omission errors 405 

There was greatest AIC support for modelling commission errors (falsely predicted 406 

presences) as a function of ‘model type’ (ωi = 0.63, DEV = 25.3%). There was slightly less 407 

support for the alternative hypothesis that ‘dispersal type’ affects commission errors (ωi = 408 

0.37, ∆AICc =1.1, DEV = 23.8%). There was much less support for modelling commission 409 

errors as either a function of ‘land use’, or ‘species’ (ωi = 0, ∆AICc =34.7, DEV = 4.8%; ωi = 410 

0, ∆AICc =41.8, DEV = 23.4%), compared to ‘model type’. Using ENMs to predict 411 

occurrence patterns in 2010 generally resulted in larger commission errors (Figure S6), 412 

particular when land use was not used to mask out unsuitable areas for occupancy because of 413 

non-climatic factors. 414 

The explanatory variable ‘land use’ had the largest effect on omission errors (falsely 415 

predicted absences), explaining 22.5% of model structural deviance (ωi=0.68). Including land 416 

use resulted in higher omission errors. There was much less support for modelling omission 417 

errors as a function of ‘model type’, ‘dispersal’ and ‘species’ (ωi = 0, ∆AICc =15.1, DEV = 418 

17.1%, ωi = 0, ∆AICc =17.4, DEV = 14.7%, ωi = 0, ∆AICc =38.8, DEV = 24.1%). Including 419 

land use in model predictions resulted in greater omission errors (Figure S6). 420 

 421 

Discussion 422 

Using independent validation data over a 40-year period, we found support for the view that 423 

more realistic and complex coupled niche-population models are likely to have higher 424 
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predictive accuracy in forecasting species range shifts than structurally simpler models that 425 

only account for variation in climate (Ehrlén &  Morris, 2015, Fordham et al., 2013c). 426 

However, these better predictions of observed presence-absence patterns were only achieved 427 

when the effects of a single static snapshot of land use (focused on the midpoint of the 428 

simulation) on dispersal and other demographic processes were not considered in model 429 

simulations.  In strong contrast, a mixture of static land use and dynamic climate variables 430 

improved ecological niche model forecasts of observed range shifts. These results reinforce 431 

the need for using statistically independent data to validate model outputs prior to making 432 

firm conclusions about the relative value of alternative modelling options (Araújo &  Rahbek, 433 

2006). 434 

Comparison of models with and without land use 435 

Approaches for combining dynamic and static environmental variables in range dynamics 436 

models for forecasting range shifts under climate projections remain poorly understood 437 

(Stanton et al., 2012). Using maps of land use in 1990 to mask out areas that are unsuitable 438 

because of non-climatic factors in 2010, tended to improve predictions of observed range 439 

shifts from ecological niche models, by reducing false positive predictions (commission 440 

errors; Figure S6), with two rare exceptions. For Cygnos olor and Gallinula chloropus the 441 

addition of land use in ecological niche models largely reduced predictive performance 442 

(Figure 5). It might be that our classification of unsuitable habitat for these two species was 443 

incorrect and they were more flexible in their habitat requirements than assumed or that land 444 

use preferences changed markedly for these two species between 1990 and 2010. 445 

Alternatively, they might today be ‘committed’ to extirpation in these areas with unsuitable 446 

land use, and these delayed local extinction events have not yet been realised (Fordham et al., 447 

2016). 448 

Page 18 of 42Global Change Biology



In strong contrast, masking out areas that are unsuitable for occupancy because of 449 

non-climatic factors in models with species’ specific dispersal constraints (DISPERSAL_LU) 450 

and extinction and colonization dynamics (METAPOP_LU) resulted in a decrease in 451 

predictive accuracy, brought about by higher false negative predictions (Omission errors; 452 

Figure S6). This is because these more mechanistic approaches model dispersal and 453 

metapopulation processes as dynamic functions of land use (as well as climate suitability) 454 

continuously (usually at annual time steps) for the entire simulation period. By using a static 455 

snapshot of land use, focused on the midpoint of the simulation, the interactions between land 456 

use and ecological processes were simulated under the unlikely assumption that land use in 457 

the UK did not change between 1970 and 2010, and that the snapshot is a reliable projection 458 

of land use 20 years before and after 1990. Since land use and land cover in the UK has 459 

changed over short timescales since 1970 (Rounsevell &  Reay, 2009), mismatches between 460 

simulated and actual land use prior to 1990 is likely to have resulted in the propagation of 461 

incorrect trajectories of species range movement early in the simulations, leading to 462 

inaccurate maps of presences and absences in 2010.  463 

Although land use has been assumed to be important in models of range dynamics 464 

(Triviño et al., 2011) and its capacity to improve range predictions has been tested previously 465 

using virtual species ranges (Stanton et al., 2012), our new analysis provides an important 466 

test of these findings using a real-world independent validation dataset.  We show that the 467 

common practice of using static land use predictors in coupled niche-population models to 468 

continuously mask out areas from forecasts that are unsuitable because of non-climate factors 469 

(e.g., Fordham et al., 2013b, Harris et al., 2012) should be abandoned if there is a high 470 

probability that land use will change over the simulation period. However, applying 471 

restrictive masks to ecological niche model predictions of habitat suitability will improve 472 

forecasts if land use closely resembles the future landscape. This is because the end point is 473 
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what matters for the predictive accuracy of statistical-based models, not the conditions 474 

leading up to this end point (i.e., the road travelled). Models fitted with land use tended to 475 

have higher omission rates then models without land use regardless of model complexity.  476 

Comparison of models with different dispersal hypotheses 477 

In our models, we used a gradient of different dispersal hypotheses from unlimited to no 478 

dispersal and, unsurprisingly, the more restrictive assumptions (no dispersal or a dispersal 479 

function) generated predictions of smaller range sizes than unlimited dispersal. Different 480 

model types with different dispersal hypotheses explained > 20 % of the variance in the 481 

predictive accuracy (TSS, AUC), when choice of whether or not to model land use was also 482 

considered.  Models with species’ specific dispersal constraints and no land use tended to 483 

provide the most accurate presence/absence maps in 2010. This result supports the view that 484 

models, which explicitly simulate dispersal, should provide improved predictions of range 485 

shifts (Bocedi et al., 2014), but only when there are reliable enough projections of land use 486 

change to effectively simulate the dynamic interaction between land use and  dispersal. Not 487 

constraining dispersal in ecological niche models (ENM_UD) always resulted in lower TSS 488 

values then ecological niche models that assumed no dispersal at all (ENM_ND). This result 489 

provides a cautionary note for the common practice of using ecological niche models with an 490 

unlimited dispersal simplification to forecast species range movement under climate change, 491 

and differs from conclusions based on model convergence (Engler et al., 2009), as opposed to 492 

our independent model validation.  493 

Complex vs. simple models 494 

Simpler models might theoretically be expected to outperform more complex demographic 495 

models because they are arguably more transferable, due to their generality (Bell &  496 

Schlaepfer, 2016, Randin et al., 2006). Although, more complex (and potentially more 497 

ecologically realistic) models that included dispersal and other demographic processes as 498 
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explicit parameters tended to improve predictions of recent range changes for our sample of 499 

British breeding birds, large levels of variation in predictive performance (TSS and AUC) 500 

were found among species. For example, the simplest model for Alectoris rufa − fitted with 501 

only climate variables and assuming unlimited dispersal − had as high, or higher, TSS than 502 

any of the alternative models that accounted for land use, dispersal or demography (Fig. 5). In 503 

contrast, species like Accipiter nisus were better modelled by the most complex METAPOP 504 

and DISPERSAL models without land use (Fig. 2). Similar results were found in a recent 505 

study that systematically examined model performance against complexity for families of 506 

ecological niche models (García-Callejas &  Araújo, 2016), whereby properties of species 507 

ranges strongly influenced model performance (even more than model complexity). 508 

The critical question is whether it is possible to classify (and predict) the 509 

circumstances in which different species are best predicted by different models. This is still 510 

an open question, but our results suggest that good estimates of dispersal dynamics and close 511 

approximations between future land use and species’ occurrence will improve forecasts of 512 

species distributions. When there is scarce knowledge on a species dispersal dynamics, but 513 

their relationship between land use and occupancy is well understood for the model 514 

calibration period, and this relationship is unlikely to change greatly in space in the future, 515 

forecasts of species distributions will be maximised using simple ecological niche models 516 

with static land use masks. Conversely if species’ dispersal dynamics are well documented, 517 

but the effect of land use on spatial colonisation patterns is unlikely to be static, forecasts of 518 

species’ distributions will be maximised using a DISPERSAL model without land use. If 519 

robust estimates of population growth as well as dispersal constraints are available, and the 520 

model is to be used to estimate extinction risk as well as range movement, a METAPOP 521 

model should be used since the relationship between change in range area and extinction risk 522 

is often weak (Fordham et al., 2012). The METAPOP model should be simulated with land 523 
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use, only if land use is not expected to vary, or if spatiotemporal change in land use can be 524 

accurately projected. Furthermore, by modelling spatiotemporal abundance, coupled niche-525 

population models not only allow extinction risk to be directly quantified, but the cost 526 

effectiveness of regional conservation alternatives and demographically oriented management 527 

interventions to be tested (Fordham et al., 2013a). 528 

Our research shows that for many species of British breeding birds, ecological niche 529 

models can provide a good approximation of the magnitude (but not necessarily the direction) 530 

of climate driven changes in geographic extent. Therefore if the objective of the study is to 531 

identify species that are likely to experience large range contractions and expansions in the 532 

future (regardless of where these play out in space and time), simple ecological niche models 533 

can routinely provide as good if not better predictions then more complex models. Similarly, 534 

Rapacciuolo et al. (2012) used temporally independent records to show that ecological niche 535 

models did well at predicting observed changes in total range area despite failing to predict 536 

correctly specific range changes at the grid cell level. 537 

Previous findings and limitations 538 

Previous studies have advocated the use of more complex range dynamics models that 539 

overcome some of the limitations of correlative ecological niche models by integrating 540 

demographic and physiological responses so that range shifts emerge from the interplay of 541 

relevant abiotic and biotic processes (Singer et al., 2016). The use of more complex models 542 

to explore how changes in large-scale abundance distributions arise is leading to a more 543 

mechanistic understanding of the underlying processes of range dynamics (Lurgi et al., 544 

2015). Although the methodological frameworks of dynamic range models have been 545 

developed, empirical tests and applications of these models are rare because demographic 546 

data and time series of local abundances remain scarce (Urban et al., 2016).  547 
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 Accordingly, Zurell et al. (2016) recently compared model types using simulated data. 548 

They concluded that under present-day climatic conditions, complex demographic models are 549 

only marginally better than simple correlative models. However, in rapidly changing 550 

climates, complex range dynamic models that account for dispersal and/or demography, are 551 

likely to provide better forecasts. When community processes were included in simulated 552 

benchmarking data, and models were tested under conditions that better approximate real 553 

world conditions, DISPERSAL type-models often proved most reliable. In our study, biotic 554 

interactions were not directly considered in model forecasts, yet real world benchmarking 555 

data also revealed good evidence for using more complex models to predict where occupancy 556 

status changed due to observed climate change. Our study inevitably focused on low levels of 557 

observed climate change in the UK over the last 40 years, which are small compared to what 558 

is forecast for the future (Fordham et al., 2016 ). Therefore, caution must be shown when 559 

using our results to make generalisations regarding how well models of species range 560 

dynamics will do at predicting range movement for the twenty-first century and beyond, 561 

because a models ability to predict (limited) 20th century climate-driven range movement 562 

does not necessarily equate to better predictions in response to forecast (larger) climate 563 

exposure (Fordham et al., 2016 , Rapacciuolo et al., 2012). Nevertheless, the in silico 564 

findings by Zurell et al. (2016) that models with dispersal and/or demography provide better 565 

predictions as climate change intensifies, gives us some confidence that our results will hold 566 

true, even under more extreme climate change.  567 

 The most complex models in our study were scalar-based demography models, which 568 

can be useful for ecological assessments but can overestimate risk of extinction (Dunham et 569 

al., 2006). Further analysis should focus on testing more complex demographic models (e.g., 570 

stage/age structured demographic models (Caswell, 2001); Bayesian models of source-sink 571 

dynamics (Schurr et al., 2012)) and improving model parameterisation using Approximate 572 
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Bayesian Computing (ABC) techniques to calibrate metapopulation models (Rougier et al., 573 

2015). These techniques offer the prospect of accumulative fine tuning of model parameters 574 

via the iterative re-casting of updated information in the prior distribution (van der Vaart et 575 

al., 2015, Wells et al., 2015). We suspect that our most complex (METAPOP) models would 576 

have provided even better predictions of species range dynamics if they captured life-history 577 

traits that permit population density to vary in different ways in response to key local spatial 578 

drivers (Csergő et al., 2017), including dynamic land use change and recent conservation 579 

intervention. 580 
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Table 1: Generalised linear model results for True Skill Score (TSS) and Area Under 778 

the Receiver Operating Characteristic Curve (AUC)  779 

 780 

 781 

Metric GLM LL k AICc ∆AICc ωi DEV 

TSS dispersal:landuse -190.59 6 395.73 0.00 0.78 22.45 

 species -175.64 20 399.32 3.58 0.13 35.68 

 model:landuse -190.50 8 399.96 4.22 0.09 22.55 

 dispersal -203.99 3 416.14 20.41 0.00 8.32 

 model -203.98 4 418.21 22.48 0.00 8.34 

 landuse -209.82 2 425.72 29.99 0.00 1.39 

 null -210.94 1 425.91 30.18 0.00 0.00 

        

AUC dispersal:landuse 151.46 6 -288.38 0.00 0.89 23.81 

 model:landuse 151.61 8 -284.27 4.11 0.01 23.96 

 species 160.68 20 -273.32 15.06 0.00 32.11 

 dispersal 130.04 3 -268.63 19.75 0.00 10.28 

 model 138.39 4 -266.52 21.86 0.00 10.29 

 null 129.70 1 -255.37 33.01 0.00 0.00 

 landuse 130.04 2 -254.02 34.37 0.00 0.43 

 782 

 783 

Log likelihood (LL), Akaike’s information criterion corrected (AICc), number of parameters 784 

(k), difference in AIC between the model with the lowest AIC (∆AICc), AICc weights (ωi), 785 

percentage deviance explained (DEV). GLM predictors were species being modelled (n=20), 786 

model (ENM_ND, ENM_UD, DISPERSAL, METAPOP), dispersal (no dispersal, unlimited 787 

dispersal, dispersal function) and land use (present or absent in the model). 788 

 789 

  790 
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Figure Captions 791 

Fig. 1 Hierarchy of eight models used to predict species’ ranges for British Breeding birds in 792 

2010 using 1970 training data. (i) Bioensembles was used to generate ecological niche 793 

models (ENM) with or without a land-use, assuming either unlimited or no dispersal, (ii) 794 

RAMAS was used to mechanistically simulate annual dispersal over the 40 year period using 795 

species specific dispersal constraints (Dispersal), (iii) RAMAS was used to simulate 796 

metapopulations as well as dispersal dynamics (Metapop).  See Methods for further details. 797 

 798 

Fig. 2 Forecasts of range expansion vary between models. An example of where more 799 

complex models without land use are best at projecting range expansion. Maps are shown for 800 

observed and predicted range change between 1970 and 2010 for Accipter nisus. ENM_ND = 801 

climate with no dispersal; ENM_ND_LU = climate with no dispersal and land use; ENM_UD 802 

= climate with full dispersal; ENM_UD_LU = climate with full dispersal and land use; 803 

Dispersal= Climate with a dispersal function; Dispersal_LU= climate with a dispersal 804 

function and land use; Metapop = climate with a dispersal function and population model; 805 

Metapop_LU = climate with a dispersal function and population model and land use. True 806 

Skill Score values for predictions of range change between 1970 and 2010 for Accipter nisus 807 

are shown in Figure 5. 808 

 809 

Fig. 3 Forecasts of range contractions vary between models. An example of where more 810 

complex models without land use are best at projecting range contraction. Maps are shown 811 

for observed and predicted range change between 1970 and 2010 for Parus montanus. 812 

ENM_ND = climate with no dispersal; ENM_ND_LU = climate with no dispersal and land 813 

use; ENM_UD = climate with full dispersal; ENM_UD_LU = climate with full dispersal and 814 

land use; Dispersal= Climate with a dispersal function; Dispersal_LU= climate with a 815 
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dispersal function and land use; Metapop = climate with a dispersal function and population 816 

model; Metapop_LU = climate with a dispersal function and population model and land use. 817 

True Skill Score values for predictions of range change between 1970 and 2010 for Parus 818 

montanus are shown in Figure 5. 819 

 820 

Fig. 4: Independent tests of model predictions for 20 species of British birds, showing the 821 

influence of model and land-use. Observed and predicted spatial patterns of species ranges 822 

are compared using True Skill Score (TSS) for three families of models: simple ecological 823 

niche models (ENMs), dispersal-linked niche models (Dispersal) and niche-population 824 

models (Metapop); each plotted with and without land-use (LU). Results for ENMs are 825 

shown assuming no dispersal (ND) and unlimited dispersal (UD). 826 

 827 

Fig. 5: True Skill Score (TSS) for models independently validated using observed data on 828 

occurrence in 2010. Expanders represent the upper quartile for observed range movement (> 829 

9 % increase in range area between 1970 to 2010). Contractors represent the lower quartile (> 830 

13% decrease in range area between 1970 to 2010). ENM_ND = climate with no dispersal; 831 

ENM_ND_LU = climate with no dispersal and land use; ENM_UD = climate with full 832 

dispersal; ENM_UD_LU = climate with full dispersal and land use; Dispersal = Climate with 833 

a dispersal function; Dispersal_LU = climate with a dispersal function and land use; Metapop 834 

= climate with a dispersal function and population model; Metapop_LU = climate with a 835 

dispersal function and population model and land use. 836 

 837 

Fig. 6: Absolute differences in observed and predicted percentage change in range area 838 

between 1970 and 2010 (%). Expanders represent the upper quartile for observed range 839 

movement (> 9 % increase in range area between 1970 to 2010). Contractors represent the 840 
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lower quartile (> 13% decrease in range area between  1970 to 2010). ENM_ND = climate 841 

with no dispersal; ENM_ND_LU = climate with no dispersal and land use; ENM_UD = 842 

climate with full dispersal; ENM_UD_LU = climate with full dispersal and land use; 843 

Dispersal = Climate with a dispersal function; Dispersal_LU = climate with a dispersal 844 

function and land use; Metapop = climate with a dispersal function and population model; 845 

Metapop_LU = climate with a dispersal function and population model and land use. 846 

 847 
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Fig. 1 Hierarchy of eight models used to predict species’ ranges for British Breeding birds in 2010 using 1970 
training data. (i) Bioensembles was used to generate ecological niche models (ENM) with or without a land-

use, assuming either unlimited or no dispersal, (ii) RAMAS was used to mechanistically simulate annual 

dispersal over the 40 year period using species specific dispersal constraints (Dispersal), (iii) RAMAS was 
used to simulate metapopulations as well as dispersal dynamics (Metapop).  See Methods for further details. 
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Fig. 4: Independent tests of model predictions for 20 species of British birds, showing the influence of model 
and land-use. Observed and predicted spatial patterns of species ranges are compared using True Skill 
Score (TSS) for three families of models: simple ecological niche models (ENMs), dispersal-linked niche 

models (Dispersal) and niche-population models (Metapop); each plotted with and without land-use (LU). 
Results for ENMs are shown assuming no dispersal (ND) and unlimited dispersal (UD).  
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Fig. 5: True Skill Score (TSS) for models independently validated using observed data on occurrence in 
2010. Expanders represent the upper quartile for observed range movement (> 9 % increase in range area 
between 1970 to 2010). Contractors represent the lower quartile (> 13% decrease in range area between 

1970 to 2010). ENM_ND = climate with no dispersal; ENM_ND_LU = climate with no dispersal and land use; 
ENM_UD = climate with full dispersal; ENM_UD_LU = climate with full dispersal and land use; Dispersal = 
Climate with a dispersal function; Dispersal_LU = climate with a dispersal function and land use; Metapop = 
climate with a dispersal function and population model; Metapop_LU = climate with a dispersal function and 

population model and land use.  
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Fig. 6: Absolute differences in observed and predicted percentage change in range area between 1970 and 
2010 (%). Expanders represent the upper quartile for observed range movement (> 9 % increase in range 
area between 1970 to 2010). Contractors represent the lower quartile (> 13% decrease in range area 

between  1970 to 2010). ENM_ND = climate with no dispersal; ENM_ND_LU = climate with no dispersal and 
land use; ENM_UD = climate with full dispersal; ENM_UD_LU = climate with full dispersal and land use; 

Dispersal = Climate with a dispersal function; Dispersal_LU = climate with a dispersal function and land use; 
Metapop = climate with a dispersal function and population model; Metapop_LU = climate with a dispersal 

function and population model and land use.  
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