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Abstract

The original work presented in this thesis pertains to the design and charac-

terisation of resonant-cavity-based acoustic metamaterials, with a focus on

airborne sound. There are five separate experimental chapters, each with

a unique approach to the design of periodic structures that can support

and manipulate air-bound acoustic surface waves via diffractive coupling

between resonant-cavities. The first two chapters concern measurement of

the acoustic transmission though various kinds of periodic slit-arrays, whilst

the latter three chapters utilise a near-field imaging technique to directly

record and characterise the dispersion of trapped acoustic surface waves.

The first experimental chapter investigates the effect that thermodynamic

boundary layers have on the Fabry-Perot-like cavity resonances that are

so often utilised in acoustic metamaterial design. At audio frequencies,

these boundary layers have a decay length that is typically more than two

orders of magnitude smaller than the width of the resonating slit-cavities,

hence it may näıvely be assumed that their effect can be ignored. However,

by studying in detail the effect that reducing slit-cavity width has on the

frequency of the measured cavity-resonance, for both a single slit cavity

and a slit-cavity array, it is found that these boundary layer effects become

significant on a far larger scale than their characteristic thickness. This

is manifested in the form of a reduction in the resonant frequency as the

slit-width is narrowed. Significant attenuation of the resonance and a 5%

reduction in the effective speed of sound through the cavity is measured

when the boundary layers form only 5% of the total width of each slit.

Hence, it is both shown that the prevalent loss free treatment of acoustic

slit-cavities is unrealistic, and that one may control the effective speed of

sound through the slit-cavities with a simple change in slit-width.

The second chapter explores the effect of ‘compound’ grating structure on

trapped acoustic surface waves, a compound grating having a basis com-

prised of more than one resonating element. The angle dependent acoustic

transmission spectra of four types of aluminium slit-array are recorded, and

for the compound gratings, it is found that sharp dips appear in the spec-

tra that result from the excitation of a ‘phase-resonance’. This occurs as

new degrees-of-freedom available to the acoustic near-field allow the fields

of adjacent cavities within a unit-cell to be both out-of-phase and strongly

enhanced. By mapping the transmission spectra as a function of in-plane

wavevector, the dispersions of the modes supported by each sample are de-

termined. Hence, the origin of the phase-resonant features may be described



as acoustic surface waves that have been band-folded back into the radiative

regime via diffraction from higher in-plane wavevectors than possible on a

simple grating. One of the samples is then optimised via numerical methods

that account for thermodynamic boundary layer attenuation, resulting in

the excitation of a sharp, deep transmission minimum in a broad maximum

that may be useful in the design of an acoustic filter.

The third chapter introduces the near-field imaging technique that can

be utilised to directly characterise acoustic surface waves, via spatial fast

Fourier transform algorithms of high-resolution pressure field maps. The

acoustic response of a square-lattice open-ended hole array is thus charac-

terised. It is found that over a narrow frequency band, the lattice symmetry

causes the acoustic surface power flow to be channelled into specific, pre-

dictable directions, forming ‘beams’ with a well defined width.

In chapter four, the existence of the ‘acoustic line mode’ is demonstrated,

a type of acoustic surface wave that may be supported by a simple line of

open-ended hole cavities. The near-field imagine technique is again used

to extract the mode dispersion. This acoustic line mode may be readily

manipulated, demonstrated by arrangement of the line of holes into the

shape of a ring. The existence of this type of mode offers a great deal of

potential for the control of acoustic energy.

Chapter five explores the effect of ‘glide-symmetry’ on a pair of acoustic

line modes arranged side-by-side. A control sample not possessing glide-

symmetry is first characterised, where measurement of the acoustic near-

fields show that this sample supports two separate modes at different fre-

quencies, with their phase either symmetric or anti-symmetric about the

mirror plane between the lines of holes. One of these lines is then shifted

along its periodicity by half of a grating pitch, thus creating glide-symmetry.

The resulting sample is found to support a single hybrid mode, capable of

reaching a much larger in-plane wavevector than possible on a simple grat-

ing with no gaps in its band-structure, and displaying a region of negative

dispersion. The third sample demonstrates how one may increase the cou-

pling strength between the two lines of holes via manipulation of the cavity

shape, thus enhancing the glide-symmetry effect. The thesis concludes with

preliminary investigations into other possible ways of manipulating acoustic

surface waves, such as with the use of ‘screw-symmetry’.
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on the dispersion curve of an ASW supported by a short-pitch (λg �
λFP) impedance grating, in order of ascending frequency from top to

bottom. In each case, the pressure field has been normalised to the

maximum amplitude present. The top panel shows the infinitely ex-

tending fields of the DC mode, which is the ASW at normal incidence

with a frequency approaching 0. The second panel shows the fields of

the ASW at the first Brillouin zone boundary, kx =
kg
2 , where it has

formed a standing-wave along x with λx = 2λg. The third panel shows

the fields of the fundamental radiative cavity mode (or FPEV) at normal

incidence, kx = 0, also a standing-wave. The final panel shows the fields

of the mode that would be the high-frequency standing-wave pair of the

ASW in the second panel, also with λx = 2λg. This requires fields with

maxima above the rigid-walls and not inside the cavities, and is thus not

a trapped mode but indistinguishable from a grazing-incidence radiative

wave that exists at the point where k0 =
kg
2 . . . . . . . . . . . . . . . . . 40

2.8 ‘Extended-zone-scheme’ dispersion plot for two impedance gratings, iden-

tical except for grating pitch λg. The ratio of grating period λg to free

space wavelength λ0) is plotted against reduced in-plane wavevector kx
kg

.

The top panel is a short-pitch grating, where λg � λFP. The bottom

panel is a long pitch grating, where λg ≈ λFP. In each case, The solid

red line is the fully non-radiative ASW, the blue lines are the FPEV,

and the green lines are the next mode who’s character depends on λg,

as explained in the main text. The dotted lines represent other viable

locations to draw each mode without the band-folding, included to high-

light the break-down of the analogy to the nearly-free electron model

(see main text). Points marked A correspond to the pressure field plots

in figure 2.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
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2.9 Instantaneous pressure field ∆p maps of the primary FPEV modes at

normal incidence kx = 0, within and above two separate impedance

gratings that are identical except for grating pitch λg. (Top) A short

pitch grating, λFP � λg, thus the FPEV is more FP-like. (Bottom) A

long pitch grating, λFP ≈ λg, thus the FPEV is more ASW-like. The

pressure fields have been normalised to their maximum amplitude. . . . 45

2.10 (Left) Dispersion plot of the modes supported by a typical impedance

grating, as the slit-width w is varied (neglecting thermodynamic losses).

The ratio of grating period λg = 12 mm to free space wavelength λ0 is

plotted against reduced in-plane wavevector kx
kg

. The solid lines represent

the behaviour of the Eigenmodes of the system, with different colours

being different slit-widths. The dashed line is the wavelength of the

fundamental FP-limit for a 10 mm deep close-ended cavity, as these

are. (Right) Numerically calculated ∆p field plots for one unit-cell of a

λg = 12 mm pitch grating at normal incidence (kx = 0), corresponding

to the three different slit-widths presented in the left-hand figure. . . . . 47

3.1 (A) Time-domain plot of 4 different Gaussian-Sine pulses, with the colours

(labelled) representing different centre frequencies, from 4−10 kHz. (B)

Frequency response (limited to the human audible range) of the Gaussian

pulses in A, after zero padding has been applied. Colours correspond to

those in A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 Schematic of acoustic pulse kit used to collect experimental data. . . . . 54

3.3 (A) Measured time-domain signals produced by three separate speakers

used during data acquisition throughout this thesis, with the Gaussian

pulse centred at 6 kHz. Signals are normalised to their own maximum.

(B) Frequency-domain data resulting from the FFT functions applied to

the signals in A, with only audible frequencies shown. . . . . . . . . . . 55

3.4 (A) Measured time-domain signals produced by a single speaker, driven

by a Gaussian pulse centered at various frequencies, labelled accordingly.

Amplitudes are normalised to the same number to allow cross compar-

ison, which was the maximum value found in the present signals. (B)

Frequency-domain data resulting from the FFT functions applied to the

signals in A (after zero-padding), with only audible frequencies shown. . 57

3.5 Photographs of the sources and detectors used throughout experimental

measurements, labelled accordingly. . . . . . . . . . . . . . . . . . . . . 58
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3.6 Frequency response function of the Brüel and Kjær type 4190 micro-

phone calibrated at standard temperature and pressure, obtained from

the supplied documentation. The actuator response is that of the inter-

nal mechanism that converts the diaphragm’s free field pressure response

to an electrical signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.7 Frequency response function of the Brüel and Kjær type 4182 probe

microphone calibrated at standard temperature and pressure, obtained

from the supplied documentation, after the actuator has converted the

pressure response of the diaphragm to an electrical signal. . . . . . . . 59

3.8 (A) Example of a time-domain pulse signal measured during an experi-

ment, in this case the transmission through a 0.5 mm width slit-cavity,

as will be explained in chapter 4. Red, Green and Blue lines represent

the raw signal data, the ‘no-gap’ signal, and the signal resulting from

the ‘no-gap subtraction’ technique. (B) Frequency-domain data result-

ing from the FFT functions applied to the separate signals in A, with

only audible frequencies shown. All signals have been normalised to the

speaker response function (see figure 3.3). . . . . . . . . . . . . . . . . . 61

3.9 Schematic of the XY translation stage, with the probe microphone at-

tached and an open-ended hole sample in place. The end of the source

(not shown) is placed inside one of the resonators, according to the sam-

ple type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.10 Examples of the frequency-domain data that can be acquired using the

XY stage method outlined in the text. The sample used is the square lat-

tice of open-ended holes from chapter 6, at frequency 11.65 kHz. Three

different variables are plotted as a function of position. (A) Instanta-

neous pressure field amplitude ∆p at a temporal phase, (B) Absolute

pressure field magnitude |∆p|. . . . . . . . . . . . . . . . . . . . . . . . . 66

3.11 Example of the use of a 2D Spatial FFT on a real dataset acquired using

the XY stage method outlined in the text. The sample used is the square

lattice of open-ended holes from chapter 6, at a frequency of 11.65 kHz.

(A) Instantaneous pressure field ∆p, plotted as a function of real space

coordinates x and y. (B) Result of the 2D FFT algorithm applied to

the complex data in A, after the FFT-shift function has been applied.

Fourier magnitude is plotted as a function of k-space coordinates kx and

ky. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
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3.12 Dispersion relation for this sample, plotting the Fourier magnitude along

unique directions Γ - X, X - M and M - Γ (points of high symmetry in

the reciprocal space of the square Bravais lattice82) as a function of fre-

quency. Again, important features have been highlighted, with the solid

white lines representing the sound-line k0 = 2πf
c and the dotted white

lines the position of the first Brillouin zone boundaries. The frequency

‘slice’ of k-space that 3.11B and 3.11C correspond to are highlighted by

the position of the dot-dashed white line. . . . . . . . . . . . . . . . . . 68

3.13 (A) 2D COMSOL model set-up for a non-periodic system, in this case a

single slit, with different features labelled accordingly. The bottom grey

shaded half is not needed due to the symmetry condition represented by

the blue line. (B) Close up of the boundary layer mesh that can be built

to improve the mesh in sensitive areas, in this case just at the edge of

the single slit, and along its walls. . . . . . . . . . . . . . . . . . . . . . 71

3.14 (A) 3D COMSOL model set-up for a periodic system, in this case the

unit cell of a one-dimensional array of open ended holes. The whole

face on each side (green) has the Floquet periodic boundary condition

applied. Other sections are labelled accordingly. (B) Example of the

mesh used to solve for the arrangement shown in A. . . . . . . . . . . . 73

4.1 (a) Simplified 2D Schematic of the slit-array experimental configura-

tion. The aluminium slats (shaded) were stacked vertically between two

mirrors 3 m apart, with a speaker and microphone placed at their fo-

cal lengths, 1 m away. The sample stand was covered in acoustic ab-

sorber (black fill) and the beam path is indicated by a dashed arrow. (b)

Schematic of the slit-array sample itself, with dimensions labelled (not

to scale). Here, L = 19.8±0.12 mm, d = 2.91±0.03 mm, and λg = d+w. 80

4.2 Simplified 2D Schematic of the single slit experimental configuration.

The shaded blocks represent the aluminium sample, and the black blocks

represent an acoustic baffle. The microphone and speaker are ∼ 20◦

off normal in the xz plane, covered in acoustic absorber (black), and

separated from the sample faces by 220 and 400 mm, respectively. Here,

L = 35.0± 0.1 mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
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4.3 A representation of the slit-array experimental configuration. The sam-

ple was placed on a set of level blocks, normal to the collimated beam

produced by the first mirror, where the pair of mirrors were 3 m apart.

The speaker and microphone were placed at 1 m from the mirrors, their

focal length. The mirrors tilted so that the beam path (labelled dashed

white lines) relative to the speaker/microphone was centred on the op-

posing mirror. The sample height is d = 400 mm, and the width a = 560

mm. The wooden stage was covered in absorber where possible. (Inset)

Real photograph of a close up of the sample face, built with w = 0.25

mm, with the other labelled dimensions described in fig 4.1. . . . . . . 81

4.4 A representation of the single slit experimental configuration. The alu-

minium blocks that form the slit are separated vertically with polyester

spacers and held inside the wooden sample holder, which is covered in

absorbing foam on both entrance and exit sides. Both the speaker and

microphone are wrapped in cotton wool (not rendered) and directed at

the sample, ∼ 20◦ off normal in the xz plane, separated from the sample

faces by 220 and 400 mm respectively. The width of the sample face

ha = 243 mm, while the height hb = 202 mm. . . . . . . . . . . . . . . 81

4.5 Transmission amplitude t (or Transmission magnitude for the single-

slit, as this is only a relative measurement) spectrum as a function of

frequency, for different slit-widths, from several data sources, labelled

accordingly. The line colour corresponds to slit-width w and is labelled in

the legend. (Left column) - Spectra for the slit-array sample, (Top row) -

Experimental data, (Middle row) - Thermo-viscous Navier-Stokes FEM

model data, (Bottom row) - Lossless acoustic wave equation numerical

model. (Right column) As the left column, but pertaining to the single

slit sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
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4.6 (Left Column) The fundamental resonant frequency of each slit-cavity

f ′FP plotted as a function of the slit-width w. The solid black circles are

the mean of the experimentally determined resonant frequencies, with

the error bars representing their standard deviation. The dashed blue

lines represent a lossless FEM numerical prediction, and the solid red

lines a more complete numerical prediction that includes the viscous

and thermal properties of each system. The top and bottom panels

represent the slit-array and single slit samples, respectively (labelled).

(Right column) The fundamental resonant frequency of each slit-cavity

f ′FP, normalized to that predicted by the Fabry-Perot condition fFP as a

function of the ratio of viscous boundary layer thickness δν to slit-width

w. This is the dimensionless form of the plots in the left column. . . . . 85

4.7 (Left) Ratio of the calculated effective speed of sound vp to adiabatic

speed ca in each slit-cavity, as a function of the slit-width w. Trian-

gular points and accompanying error bars are experimental data con-

verted from figure 4.6, with purple and green representing the slit-array

and single slit data, respectively. The dashed lines represent the predic-

tions of Stinson’s57 analytic theory for each sample, coloured accordingly.

(Right) Ratio of the calculated effective speed of sound vp to adiabatic

speed ca in each slit-cavity, as a function of the ratio of viscous boundary

layer thickness δν to slit-width w. This is the dimensionless form of the

left figure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.8 Weston’s predictions for the behaviour of various quantities through a

cross-section of a tube, taken from figure 3 of his study54. (a) Amplitude

of axial particle velocity or temperature fluctuation, (b) amplitude of

radial particle velocity, (c) wavefront or equiphase surface. . . . . . . . 89

4.9 Various quantities plotted as a function of distance z along the cavity slit-

width, measured in mm. Values were extracted from the loss-inclusive

FEM model at a distance of 0.25L from the slit-cavity centre for both

samples. The blue lines correspond to a slit-width w of 1.00 mm, the

red lines a slit-width of 0.15 mm. The left and right columns correspond

to the slit-array and single slit samples respectively. (Top row) Particle

velocity along the slit-length vx. (Second row) Particle velocity across

slit-width vz. (Third row) Excess temperature ∆T , measured in degrees

Kelvin difference from the ambient temperature T0. (Bottom row) In-

stantaneous particle velocity vp, which is the shape of the phase fronts

as they propagate through the slit. . . . . . . . . . . . . . . . . . . . . . 90
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4.10 Experimental and theoretical results of Yazaki et al.58 (figure 3 in their

work, where a detailed explanation is presented), showing the change in

effective speed of sound here labelled v through a long tube as a function

of ωτ, explained in the main text. Also shown (the data with a negative

gradient) is the measured change in signal attenuation caused by the

boundary layers, represented by scaled propagation constant β. The

dashed vertical line represents the point at which propagation within

the tube becomes purely isothermal. . . . . . . . . . . . . . . . . . . . . 92

4.11 (Left column) Data from the FEM model showing the fundamental res-

onant frequency of each slit-cavity f ′FP plotted as a function of the slit-

width w, with the effect of separate loss components compared. The solid

red line represents the full lossy model with both viscous and thermal

loss mechanisms present. The dotted blue line is the result of ‘turning

off’ the thermal boundary layer (by setting α of the air to zero) , leaving

just the viscous loss mechanism, with the green dashed line being the

opposite (by setting µ to zero). The dashed purple line is the result

of disabling both loss mechanisms. The top and bottom panels repre-

sent the slit-array and single slit samples, respectively (labelled). (Right

column) Generalised form of the left column, where the fundamental res-

onant frequency of each slit-cavity f ′FP is normalized to that predicted

by the Fabry-Perot condition fFP as a function of the ratio of viscous

boundary layer thickness δν to slit-width w. . . . . . . . . . . . . . . . . 93

5.1 Schematic of a unit cell of each array sample (not to scale). The grey

blocks represent the aluminium slats that form the sample, of width

wA = 2.9 mm, and length L = 19.8 mm. The air gaps that form the

cavities are the same size as the slats, except for the J = 3b sample,

where the central cavity wB has width 5.9 mm, and the outer two have

wC = 1.5 mm. Each sample has a period λg = 8wA = 23.2 mm. . . . . . 97

5.2 To-scale schematic of the transmission measurement experimental set-

up, labelled accordingly. The speaker was placed at the focal point of

the first mirror, which directed the collimated beam toward the sam-

ple. The transmitted signal was then focused on to the microphone by

the second mirror. The sample frame was placed onto a computer con-

trolled rotating table, allowing control of the incident angle θi. Acoustic

absorber was placed at appropriate positions to reduce unwanted reflec-

tions from the solid surfaces that make up the measuring kit (not shown). 98
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5.3 Normal incidence transmissivity T spectra as a function of the ratio

of array periodicity λg to incident radiation wavelength λ0 for each of

the sample types illustrated in figure 5.1. The solid black line is the

experimental data, the short-dashed red and long-dashed blue lines are

the lossless and viscous-thermal loss-including numerical model spectra

for comparison. The diffraction edge for each experimental sample occurs

when
λg
λ0

= 1. Fluctuations in the ambient temperature are accounted

for in the calculation of λ0. . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.4 FEM simulations of the instantaneous pressure fields ∆p corresponding

to the three available eigenmodes ‘+ + +’, ‘+ − +’, and ‘+ 0 −’, of

the J = 3a system when there is no net phase shift along x between

unit cells, shown at a temporal phase corresponding to maximum field

amplitude. The colour scales have been normalised with normalisation

constants 2.19, 4.01 and 3.39 respectively. The three eigenmodes have

resonant frequencies which correspond to
λg
λ0

values of 0.54, 0.5 and 0.48

respectively. These were calculated using a loss-free FEM model. The

grey blocks represent the aluminium slats, in the same orientation as

illustrated in figure 5.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.5 Lossless (dotted red line) and viscous-thermal (solid blue line) FEM

models of the difference in the phase |∆φInner, Outer| of the tangential

particle velocity vx of the central and outer cavities, for the J = 3a and

J = 3b samples, plotted as a function of the ratio of array periodicity

to incident wavelength
λg
λ0

. The predicted diffraction edge is at
λg
λ0

= 1.

Phases were evaluated in the centre of each cavity on the transmitting

side of the grating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.6 Transmission data illustrating mode dispersion for each sample illus-

trated in figure 5.1, labelled accordingly. The ratio of array periodicity

to incident wavelength
λg
λ0

is plotted as a function of reduced in-plane

wavevector kx
kg

, where a value of kx
kg

= 0.5 corresponds to the first Bril-

louin zone boundary. The left column are the recorded experimental

data, whereas the right column are the numerical results calculated by

the viscous-thermal loss inclusive FEM model. For reference, a solid

green line representing grazing incidence k0 is included on each plot.

The onset of first order diffraction is represented by the green dashed

line. Fluctuations in ambient room temperature are accounted for in all

calculations of λ0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
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5.7 Dispersion diagrams showing the extended zone scheme representation

of the eigenmodes of the J = 1, J = 2 and J = 3a systems (all la-

belled), plotted as a function of the ratio of array periodicity to incident

wavelength
λg
λ0

vs reduced in-plane wave vector kx
kg

. Individual eigenfre-

quencies were calculated using loss-inclusive FEM models. The sound

line k0 is represented by the black solid line. A horizontal black dashed

line represents the resonant frequency predicted by the Fabry-Perot con-

dition for a single open-ended slit-cavity. Integer and half integer values

of kx
kg

correspond to different Brillouin zone boundaries, which have been

marked with vertical black dotted lines. The solid coloured lines repre-

sent the different eigenmodes supported by each grating structure, with

colours signifying different field configurations. Red is the naturally ra-

diative FPEV mode, with blue being its fully non-radiative low frequency

ASW. Green is the ASW coupled to the low energy phase-resonance field

configuration, and purple is the ASW coupled to the high energy phase-

resonance field configuration. Eigenmodes associated with the next FP

harmonic are not included. . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.8 Mode dispersion illustrated by the experimental transmissivity T data

for the J = 3a sample, with its numerically calculated eigenfrequen-

cies associated with the first FP mode overlaid, plotted as a function

of the ratio of array periodicity to incident wavelength
λg
λ0

vs reduced

in-plane wave vector kx
kg

. The value of kx
kg

= 0.5 corresponds to the first

Brillouin zone boundary. The solid black line represents the wavevec-

tor k0 of a grazing incidence pressure wave. The onset of first order

diffraction is represented by the black dashed line, being
λg
λ0

= 1 at

normal incidence (kxkg = 0). The hollow points represent the different

eigenmodes supported by the J = 3a grating structure, with shapes

signifying different field configurations. The triangles are the naturally

radiative Fabry-Perot like mode, circles are the ASW coupled to the ‘+

− +’ phase-resonance and the diamonds are the ASW coupled to the ‘+

0 −’ phase-resonance. The squares are the non-radiative low frequency

ASW which cannot be seen in this transmission experiment. . . . . . . 109
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5.9 (Top) Dispersion diagrams showing FEM calculated eigenmodes of the

two J = 3 samples associated with the fundamental cavity resonance,

plotted as a function of the ratio of array periodicity to incident wave-

length
λg
λ0

vs reduced in-plane wave vector kx
kg

. The black dashed lines

are the resonant frequency predicted by the FP condition, the black solid

lines are the sound lines k0±nkg. The coloured solid lines represent the

band structure of the ASW, with different colours corresponding to dif-

ferent near-field configurations, as in figure 5.7. The purple and green

lines have switched order between samples to highlight the change in en-

ergy of the phase-resonant field configurations at normal incidence. (Bot-

tom Left) Instantaneous pressure field configurations across two unit cells

of the J = 3a sample showing the two possible phase-resonant modes,

at either normal incidence kx = 0 or at the first Brillouin zone boundary
kx
kg

= 0.5. The labelled numbers and kx positions correspond to those

marked by labelled black points in the corresponding dispersion plots.

(Bottom Right) The same, but for the J = 3b sample. Note that com-

pared to the J = 3a sample, the field configurations at normal incidence

have reversed their order, while they have the same character at the first

Brillouin zone boundary. . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.1 Schematic of the open-ended hole-array sample. The acrylic plate is a

square of sides B = 560.00 mm, having thickness (hole depth) H =

9.60± 0.23 mm. There are 60× 60 holes of spacing (periodicity) λg = 8

mm in both x and y directions, and hole radius R = 3.25± 0.05 mm. A

close up of a single unit-cell of the grating is displayed in the inset. . . . 117

6.2 (Top row) Experimental data showing instantaneous pressure field ∆p

(colour scale) at a single frequency, measured as a function of x and y

coordinates over the array surface. The plot labelled A is the pressure

field at 11.65 kHz (
λg
λ0

= 0.272), while B is at 13.02 kHz (
λg
λ0

= 0.304).

The point like source was placed in one of the central holes, positioned at

the centre of these plots, x = y = 227.5 mm. (Bottom row) Experimental

data showing the absolute pressure field |p| from the same data as used

for the top row (where C corresponds to A, and D to B), with a square

root function applied to the colour scale to enhance detail. . . . . . . . . 119
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6.3 (A) Two-dimensional reciprocal space (k-space) plots corresponding to

the spatial Fourier transforms of the experimentally measured pressure

fields at 11.65 kHz (
λg
λ0

= 0.272) (shown in figures 6.2A and 6.2C), plotted

as a function of reduced in-plane wavevectors kx
kg

and
ky
kg

. The colour scale

represents the magnitude of the Fourier transform. For reference, several

important features are marked. The solid white circle represents the

‘sound circle’ k0 =
√
k2

x + k2
y = 2π

λ0
, with the dashed white circles being

the diffracted sound-circles from the reciprocal lattice points. The dotted

straight lines represent the first and second Brillouin zone boundaries,

with the axes truncated at the third. Points of high symmetry for the

square-lattice82 Γ, X and M are labelled accordingly. (B) Identical to A,

but for the pressure fields at 13.02 kHz (
λg
λ0

= 0.304) (shown in figures

6.2B and 6.2D). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.4 Irreducible dispersion diagram for the hole array sample, obtained from

the spatial Fourier transforms of the experimentally measured pressure

fields on its surface. The magnitude of the Fourier transform (colour

scale) is plotted as a function of the ratio of grating periodicity λg to in-

cident wavelength λ0, vs in-plane wavevector k||, which is the wavevector

along the array surface parallel to directions Γ-X, X-M, and M-Γ. These

letters represent the points of high symmetry on the square-lattice sam-

ple’s reciprocal lattice82, as marked in figures 6.3A and 6.3B. The two

horizontal dotted lines mark the frequencies corresponding to those dis-

played in prior figures 6.2 and 6.3. The numerically calculated dispersion

is represented by the overlaid green circles. . . . . . . . . . . . . . . . . 124

7.1 Schematic of the line (subscript L) sample. The acrylic plate has di-

mensions lL = 840.00 mm (truncated in the figure) and wL = 30.00 mm,

with thickness (hole depth) tL = 9.80 ± 0.10 mm. There are 105 holes

of spacing (periodicity) λgL = 8.00 mm in the x direction. The holes

are of radius rL = 3.25± 0.005 mm. B. Schematic of the ring (subscript

R) sample. The acrylic plate has a rectangular cross-section of sides

cR = 290 mm with thickness (hole depth) tR = 7.51 ± 0.06 mm. There

are 80 holes that make up the ring, which is of radius RR = 10.1± 0.05

mm. Each of the holes is of radius rR = 3.35± 0.005 mm, separated by

arc θR = 2π
80 . This gives them a central spacing (periodicity) λgR ≈ 8.00

mm in the θ direction, around the circumference of the ring RR. . . . . 129
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7.2 Experimental data showing (A) Instantaneous pressure amplitude ∆p

and (B) Absolute pressure magnitude |∆p| (with a square root applied to

the colour scale for enhanced detail) at frequency 12.31 kHz
λgL
λ0

= 0.287,

measured as a function of x and y coordinates along the surface of the

line sample. The point-like source was located at x = 0 mm, y = 25 mm. 131

7.3 Two-dimensional reciprocal space plot corresponding to the spatial Fourier

transform of the pressure field at 12.31 kHz shown in figure 7.2A, plot-

ted as a function of reduced in-plane wavevectors kx
kgL

and
ky
kgL

. The

colour scale represents the absolute magnitude of the complex Fourier

transform. The solid white circle represents the sound circle k0 = 2π
λ0

=√
k2

x + k2
y, with the dashed white circles being the diffracted sound lines

originating from the reciprocal lattice ±kgL. The dotted straight lines

represent the first Brillouin zone boundaries ± kx
kgL

= 0.5, with the axis

truncated at the second. The x and y axes have been reversed to match

the orientation of the pressure field in figure 7.2. . . . . . . . . . . . . . 132

7.4 Dispersion for the line sample, obtained from the spatial Fourier trans-

forms of the measured pressure fields on its surface such as in figure 7.3,

the cross-section at ky = 0. The magnitude of the Fourier transform

is plotted as a function of the normalized frequency (ratio of grating
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Chapter 1

Introduction

1.1 Aim of Research and Historical Context

Sound is one of nature’s oldest explored phenomena, affecting all of us in our day to

day lives. On a fundamental level, sound can be described as a simple vibration of

molecules, which create a pressure wave. Hence, classical acoustic theory is often used

to introduce young scientists to basic wave-phenomena, paving the way for perhaps

more ‘exotic’ physics such as quantum mechanics or electromagnetism. Lord Rayleigh,

who published his extensive treatise ‘The Theory of Sound’ in the nineteenth century1,2,

is often considered the father of classical acoustics, though he too built on earlier work

by famous physicists including Thomas Young3 (known for his two slits experiment),

Gustav Kirchhoff4 or even further back, Pierre-Simon Laplace5 who, by accounting

for adiabatic compression, corrected Sir Isaac Newton’s value for the speed of sound

in air6. Since then, most acoustic research has concerned non-linear aerodynamically

generated sound such as that produced by jet engines, many problems of which Sir

James Lighthill7 was the first to satisfactorily resolve, later collecting his novel ideas

into another great work ‘Waves in Fluids’8. Other more recent acoustic work is of

an engineering nature, such as the study of architectural acoustics9 that aims to im-

prove sound quality in buildings, or the design and manufacture of commercial audio

equipment. In the past decade however, classical acoustics has been thrust back into

the limelight, with a dramatic increase in attention associated with the ever-growing

field of acoustic metamaterials: the use of subwavelength, periodic structure to control

sound.

The use of structure to manipulate electromagnetic energy, in particular the propa-

gation electromagnetic energy confined to a surface, can be traced back to advancements

in technology brought on by World War 210. However, the research largely responsi-

ble for the explosion of interest into what are now known as ‘metamaterials’, (a term
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coined by John Pendry11), was Pendry et al.’s work on wire mesh structures in 199612.

They found that if the free-space wavelength of electromagnetic radiation incident on

this three dimensional wire mesh was so large that the propagating fields could not

resolve the periodic structure (i.e., that the structure was ‘subwavelength’), the mesh

could treated as though it were not two separate materials, but rather as a single, ho-

mogeneous ‘effective’ medium. The precise mechanism behind what determines these

effective parameters depends on the system, and typically involves a resonance within

the structure ‘seen’ by the evanescent near-field components of a wave; this has the per-

haps unfortunate side-effect that metamaterials tend to function within only a narrow

frequency band. Broadly speaking however, the resulting effective parameters can be

analytically derived by utilising well established ‘homogenisation’ or ‘effective medium’

theory13.

For the field of electromagnetism, the material parameters in question are its electric

permittivity and magnetic permeability. What makes these metamaterials particularly

exciting is that they may have properties that would not be possible with currently

available traditional materials. The most obvious example of this is the possibility of

a material with simultaneously negative values of both permittivity and permeability,

hence possessing a negative refractive index, an idea that was once posed as a mere

mathematical curiosity by Veselago14. Pendry et al. realised that a carefully-designed

metamaterial would be able to make these properties a reality12, leading to the design

of a perfect lens15, a ‘superlens’ capable or surpassing the Rayleigh diffraction limit

that usually forbids a lens from resolving anything below half a wavelength of the

incident radiation. That these periodic structures have been designed, means that

they can also be tuned, allowing for devices with highly anisotropic properties, such as

science-fiction-like cloaking devices16. Hence, there is a burgeoning field dedicated to

the research of negative index electromagnetic metamaterials, with extensive reviews

having been published17,18.

The possibility of a negative refractive index is not the only trick a metamaterial

can be good for, and also, a whole three dimensional ‘bulk’ material is not necessarily

required to induce the desired behaviour. In light of this, another key piece of research

was Ebbesen et al.’s 1998 work19, who found that by structuring a thin metallic plate

with a periodic array of subwavelength holes, ‘Extraordinary-Optical-Transmission’

could occur: complete transmission of light through the plate at specific, tunable fre-

quencies. This was made possible through the excitation of the ‘Surface-Plasmon’, a

type of electromagnetic surface wave that is confined to the interface between a metal

and a dielectric at optical frequencies, and which importantly, evanescently decays into

both media. A whole class of such thin metamaterials, sometimes referred to as ‘meta-

surfaces’ as they are two-dimensional and relate to waves confined to a surface rather
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than within a bulk material, now exist, and these too are a fruitful research topic20. It

is here important to note that the term ‘metamaterial’ has grown not just to describe

a material who’s properties may be ‘averaged’, but now encompasses any designed ma-

terial that produces an unnatural effect based on its subwavelength structure rather

than its chemistry21 (as is the case for the research presented within this thesis).

Naturally, once the metamaterial concept had established itself in the electromag-

netic regime, attention was soon turned to other fields, including acoustics. Fundamen-

tally, acoustics is a mechanical process operating on a larger scale than the photonic

interactions of electromagnetism. Despite this and other major differences between

the two, the effective medium theories used in the electromagnetic regime could be

readily translated to acoustics as the underlying field equations bear much similarity,

with permittivity and permeability being approximately replaced by the mass density

and the bulk modulus (relating to a materials elastic properties)21,11. The research

that first made use of these similarities and thus paved the way for acoustic analogues

of previous electromagnetic work was Liu et al’s study of elastic waves propagating

through three dimensional arrays of thin coated spheres22. Within a certain frequency

band, this structure was shown to behave as though it had effectively negative elas-

tic constants. Later, a double negative acoustic metamaterial capable of achieving a

negative index was theorised by Li et al.23 consisting of rubber spheres submerged in

water, and soon after this, Fang et al. experimentally demonstrated a negative index

acoustic metamaterial using a chain of water-filled Helmholtz resonators24. The untold

number of combinations of solids, liquids, gases another other more exotic states of

matter, each with unique mechanical properties, means that there are a vast amount of

possibilities for the design of such acoustic metamaterials, and an extensive review of

what has so far been achieved in this emerging field was published in 2012 by Craster

and Guenneau11.

The acoustic metamaterials so far mentioned relate to ultrasonic waves propagating

through solids and liquids. However, when concerned with sound propagating through

air, the impedance mismatch between air and most solids is so great that they can all

be treated as though they were ‘perfectly rigid’, i.e. the sound does not penetrate them

at all. This means that in essence it does not matter what solid is used, the airborne

sound’s behaviour will not change (excepting for a small class of extremely fragile and

hard to manufacture solids known as ‘Aerogels’25, through which sound propagates

more slowly than air). This, as well as audible wavelengths requiring very large samples,

severely limited the options for the creation of air-based acoustic metamaterials, until

an important discovery by Pendry et al. changed the way metamaterial design could

be approached.

It was thought that the surface-plasmon was an essential component of the creation
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of many early electromagnetic metasurfaces, as was the case for the previously men-

tioned work by Ebbeson et al.19 regarding Extraordinary Optical Transmission. This

was until Pendry et al.26 realised that the surface-plasmon effects could be mimicked

even at microwave frequencies, where the metallic plate can be a considered to be a

perfectly conductor that expels all electromagnetic fields, and is consequently not able

to support a surface-plasmon. This was possible by simply structuring of the metal

plate with a periodic arrangement of deep, closely-spaced cavities, whose collective res-

onant excitation give rise to evanescent fields that resemble a surface-plasmon, thus

creating a ‘spoof-surface-plasmon’. This result meant that novel structures with scale

lengths of order of, or less than, the wavelengths being probed, could allow for the

manipulation of electromagnetic surface waves across multiple frequency regimes, not

just visible light. Inevitably, it was realised that acoustic energy confined to the air

and interacting with perfectly rigid solids could likewise be controlled with the use of

‘Acoustic-Surface-Waves’, arising from the diffractive-coupling of periodically arranged

acoustic cavity-resonators27,28. Such structure-induced surface waves were shown to

exist as far back as 1959 by Russian scientists Ivanov-Shits and Rozhin29, but although

further work was carried out30,31,32,33, the potential of air-bound surface-waves for the

design of materials with a novel acoustic response remained untapped. Now beginning

to be realised, and outlined in recent reviews by both Cummer et al.34 and Ma et al.21,

air-based acoustic metamaterials have become a thriving and fruitful topic of inter-

est. Innovate research has produced devices that display phenomena including (but

not limited to) ‘Enhanced Acoustic Transmission’35,27, collimation and focusing36,37,

subwavelength imaging38,39, negative refraction40, or even acoustic cloaking41,42,43.

The aim of this thesis is to take established metamaterial concepts that have been

explored in the electromagnetic regime, in particular the microwave metasurface do-

main, and apply them to the field of acoustics. The work henceforth presented en-

deavours to add to our rapidly expanding understanding of how acoustic energy can be

manipulated in this way, and in particular, concerns itself with the propagation of sound

through air as it interacts with periodically structured rigid-solids. It is hoped that the

research advanced throughout this thesis will either directly or indirectly be useful for

the design of future air-based acoustic devices. For example, the thermodynamic loss

effects studied in the first chapter may be useful for the design of a thin acoustic ab-

sorber made from a simple resonant solid, more robust and less bulky than currently

available foam-based acoustic absorbers. Similarly, the ‘phase-resonant’ structures in

chapter two may be useful for the design of a passive acoustic filter that is readily

tunable. The acoustic-surface-wave supporting structures in the latter three chapters

could aid in design of devices that may, for example, channel acoustic energy based

on how they affect the propagation of acoustic surface waves, and one day allow the
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creation of reasonably-sized, portable acoustic devices that work as well for audible

sound as some of the electromagnetic metamaterial devices just now beginning to be

commercially realised.

1.2 Thesis Outline

The thesis begins with chapter 2, which provides the background theory through which

the experimental work that follows may be understood. The basic properties of acous-

tics are outlined, including a derivation of the acoustic wave equation. The importance

of the thermodynamic properties of the medium through which sound propagates, in

particular, the presence of thermodynamic boundary layers on the interface between a

fluid and a rigid-solid, are discussed. Following this, definitions of acoustic impedance

are included, necessary to explain how a rigid-walled air-filled cavity may support an

acoustic resonance. These concepts are combined to describe in detail how a trapped

evanescent acoustic surface wave may form above a structured solid, a result of the

coupling via diffractive effects between resonant cavities arranged in a periodic fashion.

Finally, well-known solid-based surface acoustic waves are outlined, whose existence is

important, but that do not play a role in this work.

Chapter 3 contains a detailed overview of the methodology behind the various

kinds of experiment undertaken through the work. The acoustic pulse method common

to all of the experimental measurements is discussed, including its advantages and

disadvantages. Two main types of experiment are described, that are the fair-field

measurements of acoustic transmission through a sample, and near-field measurements

that allow the direct characterisation of acoustic surface waves. A discussion of the

numerical finite-element-method used to model each experiment is included at the end.

The first experimental chapter, chapter 4, explores the effect that thermodynamic

boundary layers have on the resonant slit-cavities so often utilised to create acoustic

metamaterials. These boundary layers are usually more than two orders of magnitude

smaller than the width of said cavities, and as such much recent research neglects them,

despite there existing research more than a century old suggesting that this is unwise.

By investigating in detail the effect of reducing the slit-width on the measured resonant

frequency, for both a single-slit-cavity and slit-cavity-array set-up, it is found that these

boundary layers have a significant effect even when the form a small fraction of the total

cavity width. This is manifested in both a reduction of the measured resonant frequency

of each cavity and significant attenuation of that resonance. It is found that effective

speed of sound within the cavity is reduced by 5% when the boundary layers occupy

only 5% of the total cavity-width, which agrees with existing analytic theory. Hence,

the boundary layers cannot simply be ignored, and must be taken into account when
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designing acoustic metamaterials that rely on cavity resonances to achieve their desired

effect.

Chapter 5 is the first chapter directly involving trapped surface acoustic waves and

is a study of ‘compound gratings’, gratings with a unit-cell structure comprised of more

than one resonant element. This is achieved by the experimental characterisation four

aluminium slit-arrays, each having the same periodicity, but with either one, two or

three cavities per grating period. Sharp dips are observed in the transmission spec-

tra of the compound gratings. These features result from the excitation of acoustic

‘phase-resonances’, possible as new degrees-of-freedom available to the acoustic near-

field allow the fields in adjacent cavities of a single unit-cell to be out-of-phase. By

mapping the angle dependent transmission spectrum of each grating, their dispersions

are determined. Hence, the origin of the phase-resonant features is described as the

band-folding of trapped acoustic surface waves back into the radiative regime, where

they may indirectly couple to incident radiation; the phase-change of the fields within

a unit-cell, made possible by the extra field configurations, allows the surface modes

to exist at larger wavevectors than on a simple grating structure. One of the samples

is optimised to include the effect of thermodynamic boundary layers, resulting in the

excitation of a broad, deep transmission minimum that may be useful in the design of

an acoustic filter.

Chapters 6, 7 and 8 all utilise the high-resolution near-field acoustic measurement

technique to directly measure the dispersion of the acoustic surface waves present on

three different kinds of acoustic metamaterial. With this technique, spatial Fourier

transforms of experimentally recorded pressure field maps provide direct information

on the band-structure of the modes present.

In chapter 6, the acoustic response of the square-lattice open-ended hole array that

is commonly found in acoustic metamaterial literature is characterised. As a result of

the lattice symmetry, it is found that over a predicable frequency band, the acoustic

power flow is channelled into specific directions, forming beams with a well defined

width.

Chapter 7 introduces the acoustic line mode, a type of acoustic surface wave that

may exist on a simple one-dimensional line of resonating cavities. Appearing to have

been overlooked in the literature, this type of surface mode is readily customisable,

as it follows the shape in which the holes are arranged. This is demonstrated via the

reshaping of the line into a circular ring of holes, where an acoustic line mode is found

to exist that appears to follow familiar rules of periodicity, except in the theta direction.

This change of co-ordinates also has implications for the definition of a surface wave.

The existence of such easily manipulated acoustic line modes creates a vast amount of

possibility for metamaterial design.

6
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Chapter 8 is the final experimental chapter of the thesis. The effect of ‘glide-

symmetry’ on a pair of acoustic line modes is investigated. This is a kind of symmetry

where a unit-cell is inverted along the direction orthogonal to its periodicity, and then

one side of this mirror plane translated along the periodic direction by half of its grating

pitch, an example being a ‘zig-zag’. Three samples are used to provide the comparison,

all consisting of two adjacent lines of holes. The first does not have glide-symmetry,

and as expected from the results of 5, supports two acoustic line modes with different

phase character. The second sample does have glide-symmetry, and it is observed that

the previously separate line modes merge to form one of mixed character. This hybrid

surface mode does not form a standing wave at the first Brillouin zone boundary but

at some point in the second Brillouin zone, and appears to have a region of negative

dispersion. The third sample changes the shape of the cavities to increase coupling

strength between the two lines, thereby emphasizing the effect that glide-symmetry

has. This sort of sample could be useful in the design of acoustic lenses.

Chapter 9 discusses potential extensions to the preceding research, including some

existing but unfinished work, and speculation on other ideas that may prove fruitful in

future.

Finally, chapter 10 provides a summary of all of the work presented in the thesis.

There are two appendices, A and B, that detail some of the well-known signal processing

techniques used to analyse the various kinds of experimental data throughout, including

the one dimensional and two dimensional fast Fourier transforms.
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Chapter 2

Background Theory

2.1 Introduction

Acoustic metamaterials come in many forms, from thin membrane types to those that

have active components21. To achieve novel desirable properties, many metamaterials

rely on coupled resonators: this is the kind that is focused on in the present work. To

understand how resonant cavities can be utilised to form trapped surface waves and

thus manipulate sound, it is instructive to revise the basic properties of the acoustic

wave. Hence, in this chapter, the fundamentals of classical acoustics are outlined. To

begin, a derivation of the acoustic wave equation that, with a few key assumptions,

describes the propagation of sound through an unbound fluid medium is presented.

Next, some of the complexities that come with the full treatment of the viscous forces

acting within this fluid medium are examined, in particular for the case when fluid-

bound sound interacts with a solid medium, where thermodynamic boundary layers

can become important. Subsequently the interaction of sound with rapidly-varying

geometry changes is discussed, such as when incident on an open or close-ended tube

cavity, which can lead to standing wave resonance conditions. This introduces the end

correction that exists at each end of a diffracting open-cavity, which, when placed in

a periodic fashion, can induce a finite impedance boundary condition that leads to

trapped surface-wave-like features, termed ‘acoustic surface waves’. The concept of the

dispersion relation of such a surface wave is outlined, and later used throughout the

thesis to interpret physical phenomena. Key behavioural aspects of diffraction-induced

surface waves are studied, such as the formation of standing-waves and energy band-

gaps when certain conditions are met. Finally, brief outlines of the various kinds of

solid-based surface acoustic wave are included, which while not playing a part in any

of this research, are important to understand so that they are not confused with the

diffraction based phenomena of the airborne wave that is the key focus of this thesis.
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2. Background Theory

Much of the classical acoustic theory in this chapter is well known, but is included to

support later conclusions regarding metamaterial behaviour. Statements made about

the nature of sound and various derivations are all based on the detailed works of

Kinsler et al.44, Raichel45, Pierce46 and Rayleigh1,2.

2.2 Fundamental Acoustics

2.2.1 Pressure Oscillations

At the most basic level, sound can be described as a localised pressure fluctuation

that travels with a well defined speed c through some elastic medium, with properties

that depend on said medium, and that is typically caused by the vibration of some

body contained within it. Sound is a mechanical wave phenomenon carried through

molecular collisions, where individual vibrations that combine to form a ‘sound’ can

be expressed as a Fourier series of components each having frequency f and free space

wavelength λ0, related by c = fλ0.

To understand how sound is generated, consider one side of a large vibrating plate

submerged in some elastic medium (in this case a fluid) that oscillates back and forth

along the x-axis, as illustrated in figure 2.1. The fluid molecules immediately adjacent

to the plate will be compressed into the next adjacent layer of molecules along x, hence

there is a local increase in density ∆ρ and pressure ∆p relative to the undisturbed fluid:

a ‘compression’. The fluid molecules in this adjacent layer will respond by escaping

into a low pressure region further along x, thereby increasing the pressure of that

region and causing the whole process to repeat. Hence, the compression can be said

to travel. Meanwhile, when the plate recedes to its starting position by moving in the

negative x direction, it ‘leaves behind’ empty space causing the fluid layer immediately

adjacent to it to have a localised region of low pressure and density: a ‘rarefaction’. The

adjacent layer of molecules flood back into the region so again the whole process repeats,

leading to a travelling rarefaction. The set of travelling compressions and rarefactions

constitute the pressure wave, with wavelength λ0 measured by the distance between

adjacent compressions or adjacent rarefactions, with the amplitude of the oscillation

corresponding to the deviation ∆p from the background pressure, p0. For a pure sound

wave at a given frequency, this can be represented as a sine-wave oscillation (figure

2.1).

This simplistic picture applies to sound as it propagates through most liquids and

gases over short distances (a few wavelengths), where individual molecules are free to

move, and complex thermodynamic effects negligible. The situation becomes consider-

ably more complicated when discussing the passage of sound through an elastic solid,
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Figure 2.1: Qualitative illustration of a longitudinal pressure wave generated by a
vibrating plate, with the black points representing molecules of a gas.

as the pressure fluctuations displace molecules which - being part of a solid - are tightly

bound to a lattice. Disruption of this lattice generates extra shear waves (‘s-waves’),

which propagate in orthogonal directions to the longitudinal pressure waves (‘p-waves’).

Describing the shear and pressure waves within the solid is complex as their behaviour

strongly depends on many parameters, from the exact molecular structure of the lat-

tice, to the shape of the solid itself. These solid mechanics are not relevant to this

work; all experiments were conducted in air and solids were considered perfectly rigid

(to be justified and discussed in section 2.5), henceforth, only the propagation of sound

through a gas is considered. Note, a gas may be described as a fluid for the purpose of

this chapter.

2.2.2 Equation of State for an Ideal Gas

For the complete mathematical treatment of the acoustic pressure wave, one needs

to define a set of relevant variables that can fully describe the physical mechanisms

involved as the wave propagates through the host medium. Typically used are the

thermodynamic variables of pressure p (Pa), density ρ (kg · m−1) and absolute temper-

ature T (K), which for any fluid medium are related by an equation of state p = p(ρ, T ).

The equation of state arises from applying conservation of energy and momentum laws

to classic kinetic theory, and, depending on the fluid, can have quite a complicated

form, as various intermolecular processes must be accounted for. In the case of an ideal
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2. Background Theory

gas (adequate to describe most acoustics44,45), the equation of state can be written as:

p

ρ
= RT (2.1)

where R is the ‘individual gas constant’, which for air takes value 286.9 J K kg−1 47.

Hence, once two independent thermodynamic variables are known, the gas is com-

pletely described: any of the other variables can be determined. When discussing the

propagation of sound through air, it is typically pressure p and density ρ that are

sought.

If the full description of the gas’ thermodynamic state is obtained from the pressure

p and density ρ, all that remains to fully define the acoustic field is the velocity ~v of

the gas molecules, which has components in Cartesian space of vx, vy and vz. This

leaves five field variables in total, meaning that five independent equations are required

to obtain some solution. These equations can be derived from the the conservation of

energy, the conservation of mass and the conservation of momentum along each of the

principle directions.

The equation of state for an ideal gas 2.1 arises in part from the conservation of

energy, and is sufficient to describe the propagation of sound through an unbound gas

in most situations, when the process can be considered adiabatic. Hence, it provides

one of the equations that will eventually lead to the acoustic wave equation. However,

as will be discussed (section 2.4.1), a more complex form of the equation of state is

required when considering thermodynamic boundary layer effects.

2.2.3 Conservation of Mass

Consider a volume element of a fluid dV = dx dy dz with mass being allowed to flow

in or out. Through conservation of matter, net flow into or out of this region must be

equivalent to the gain or loss of fluid within it. Through consideration of the net mass

flux (flow of the mass of fluid per unit area per unit time t) into this region from any

of the principle directions, it can be shown that44,45:

∂ρ

∂t
− ~∇ · (ρ~v) = 0 (2.2)

which is known as the ‘equation of continuity’, a statement of the conservation of

mass for compressible fluid flow. Here, ~∇ = ∂
∂x x̂ + ∂

∂y ŷ + ∂
∂z ẑ, which is the gradient

operator.
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2.2.4 Conservation of Momentum

Describing the forces acting on a particle within a fluid will lead to a statement of

Newton’s second law, but this quickly becomes a convoluted task, as there are a very

large number of particles to consider. One of the properties intrinsic to a fluid is

its ‘viscosity’, a measure of how easily the fluid can deform, where a higher viscosity

means the fluid is more resistant to change (e.g., honey is far more ‘viscous’ than water).

Viscosity can be quantified in terms of the shear (or ‘dynamic’) viscosity coefficient η,

relating to forces acting on particles between adjacent regions of different net velocity,

and bulk viscosity coefficient ηB, relating to molecular energy dissipation processes.

In many cases the statement of Newton’s second law can be simplified by neglecting

viscous forces altogether, since over short sound propagation distances they are typically

negligible. One can apply this simplification in the derivation of the loss-free acoustic

wave equation, which is sufficient for describing most metamaterial behaviour, as will

be discussed in section 2.7. However, as will be the focus of chapter 4, viscous forces

can become significant in the presence of a rigid-boundary such as a solid wall, hence

it is important to include them in this otherwise brief derivation of the acoustic wave

equation.

A particle moving within velocity field ~v(x, y, z, t) can be shown to have acceleration

~a =
D~v

Dt
(2.3)

where D
Dt is a commonly used operator in fluid mechanics, known as the convective

derivative: a time derivative with respect to a moving coordinate system. This operator

describes the rate of change of some physical quantity y as it is seen by some material

element moving within a macroscopic material, which itself has some velocity field ~v :

Dy

Dt
=
∂y

∂t
+~v ·∇y. (2.4)

The acceleration 2.3 combined with the fluid mass m = ρdV , give one half of

Newton’s second law. Next, one must sum all of the forces d~F acting upon fluid

volume element dV . These consist of gravity g, the surface normal force arising from

pressure σmm (the normal stress tensor) and surface tangential force arising from shear

τmn,m 6= n (the shear stress tensor), where m and n denote axis directions, and both

are expressed in terms of force per unit area (both σmm and τmn relate to viscosity).

Summing all relevant forces, considering only the x direction, and then simplifying

yields:

dFx = (ρgx +
∂σxx

∂x
+
∂τyx

∂y
+
∂τzx

∂z
)dx dy dz. (2.5)
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2. Background Theory

Newton’s second law states:

d~F = dm~a = ρdV
D~v

Dt
(2.6)

which, writing in full for just the x dimension gives:

ρgx +
∂σxx

∂x
+
∂τyx

∂y
+
∂τzx

∂z
= ρ(

∂vx

∂t
+
dx

dt

∂vx

∂x
+
dy

dt

∂vx

∂y
+
dz

dt

∂vx

∂z
). (2.7)

The difficulty in solving this equation lies in the expressions for the σmm and τmn

forces. If it is assumed the stress due to viscosity is proportional to the rate of angular

deformation (i.e. a Newtonian fluid), it is possible to write σmm and τmn in terms of

velocity gradients and the coefficient of shear viscosity:

σxx = −∆p− 2

3
η~∇ ·~v + 2η

∂vx

∂x
(2.8)

τxy = τyx = η(
∂vy

∂x
+
∂vx

∂y
) (2.9)

and similar for the other dimensions. Note, these equations arise from complex

fluid mechanics not discussed here, but a reference is provided48. When substituted

into equation 2.7, and after some complex mathematics, the result is the non-linear

Navier-Stokes equation (see section 2.4.2), which except under a small set of specific

conditions, can currently only be solved via numerical methods. The Navier-Stokes

equation contains the information necessary to predict e.g. turbulence, eddie currents

and capillary flow. However, when discussing acoustic propagation through an unbound

gas, it is safe to treat the fluid as frictionless (inviscid) by setting η = 0. All of the

non-linear effects then become negligible, the shear forces τmn vanish, and the pressure

forces σmm all reduce to σxx = σyy = σzz = −∆p. The gravitational force may also be

taken as negligible, allowing Newton’s second law to be rewritten as:

−~∇(∆p) = ∆ρ
D~v

Dt
(2.10)

which is known as the ‘linear Euler’s equation’45,49.

However, the frictionless fluid assumption is not always valid. There are acoustic

situations where a more full solution is required, such as when the pressure oscillation

is of great magnitude, or when the sound is confined to a narrow channel formed of

rigid walls. The former is not relevant to the work in this thesis, but the latter will be

discussed in section 2.4.
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2.3 The Acoustic Wave Equation

For many models of sound propagation, the complex intermolecular forces occurring

within a fluid can be ignored, leading to the loss-free acoustic wave equation. To derive

this equation from the conservation laws outlined previously, as well as the frictionless

fluid condition, three key assumptions are made. First, that the unperturbed fluid has

definite-valued and time independent thermodynamic variables pressure p0, density ρ0,

temperature T0 and velocity ~v0. Second, that an acoustic wave will cause the fluid’s

pressure, density, temperature and velocity to undergo a small perturbation, stated for

example as p0 + ∆p, where p0 � ∆p, ρ0 � ∆ρ and T0 � ∆T (∆T will henceforth be

referred to as the ‘excess temperature’). As the fluid is assumed to be stationary (i.e.

there is no fluid flow), the background velocity ~v0 is zero. The final assumption is that

no heat transfer occurs between regions of high and low pressure/density. While this is

not strictly true, at audible frequencies, the temperature gradients are so low that heat

transfer is effectively zero (and at still higher frequencies, it cannot occur fast enough).

Thus, the propagation of sound can be considered an adiabatic process. Indeed, this

is the assumption that Newton missed in his original derivation of the speed of sound,

which Laplace later corrected1.

Considering the above assumptions, that ρ0 does not vary in space, that ρ0 ≈
ρ0 + ∆ρ, and treating the x direction only, the continuity equation 2.2 can be shown

to reduce to:

∂∆ρ

∂t
= −ρ0

∂vx

∂x
. (2.11)

Similarly, the momentum equation 2.10 can be expressed as:

∂∆p

∂x
= ρ0

∂vx

∂x
. (2.12)

For an ideal gas, an adiabatic process has the condition that pρ−γ is constant, where

γ =
Cp

Cv
is the gas’ ratio of specific heat capacities at constant pressure and constant

volume (for air, γ = 1.447). By differentiation of this condition and then by further

differentiation with respect to time, it can be shown45:

1

p0

∂∆p

∂t
=

γ

ρ0

∂∆ρ

∂t
(2.13)

combining this equation with 2.11 and differentiating with respect to time, gives:

∂2∆p

∂t2
= γp0

∂2vx

∂t∂x
. (2.14)
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Equation 2.12 can be differentiated with respect to x, resulting in:

∂2∆p

∂x2
= ρ0

∂2vx

∂x∂t
(2.15)

Thus, by equating the cross differential terms in equations 2.14 and 2.15, the acous-

tic wave equation in terms of pressure for the x direction can be written:

∂2∆p

∂x2
=

1

c2
a

∂2∆p

∂t2
. (2.16)

Note, unless otherwise stated, c will henceforth refer to the adiabatic propagation

speed of the sound wave ca predicted by Laplace, not the isothermal value ci predicted

by Newton (where ca
ci

=
√
γ). For an ideal gas,

c =

√
γp0

ρ0
=
√
γRT0. (2.17)

Hence for air at room temperature, c ≈ 343 ms−1 (and ci = 245 ms−1)50. Finally,

by adding in the other dimensions, one obtains the three-dimensional acoustic wave

equation:

~∇2
∆p =

1

c2

∂2∆p

∂t2
. (2.18)

Stating this in terms of angular frequency ω with the Helmholtz equation gives:

~∇2
∆p+

ω2

c2
∆p = 0. (2.19)

Note, it is a simple matter to change this derivation to obtain the wave equation in

terms of particle velocity ~v or density ρ, if necessary.

The general solution of the acoustic wave equation, for a mono-frequency plane

wave travelling along the positive x direction, can be written as:

∆p(x, t) = A ei(ωt−kxx) (2.20)

where A is the complex peak amplitude of the wave, w = 2πf is the angular

frequency, and k = 2π
λ0

is the wavevector, or wavenumber. Similarly, the particle velocity

vx can be expressed:

vx = (
A

ρ0c
ei(ωt−kxx)) (2.21)

and likewise for the other directions.
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2.4 Thermodynamic Loss Effects

For the majority of the work contained in this thesis regarding trapped surface waves,

the lossless acoustic wave equation and its implications (to be discussed) suffice to

describe and understand the physical phenomena. It is tempting to completely ignore

the complex thermodynamic process that occur on the molecular level, and this is often

justified when considering short propagation distances through free space, where these

effects are negligible. Even when longer propagation distances or times are considered,

such as the ringing of a cavity resonance, it may suffice to use a simplistic model of

acoustic attenuation that can account for the gradual dissipation of acoustic energy to

heat. This is not always the case however, such as when the propagation medium is in

contact with a rigid-boundary, and complex viscous and thermal boundary layer effects

come into play that require more thorough analysis.

All acoustic energy will eventually be converted to thermal energy; a sound wave

trapped in a small box will not ring indefinitely, contrary to what the ancient Greeks

believed45. The processes involved in this conversion can be categorised into three

groups; internal molecular effects, viscous effects, and thermal effects. The internal

molecular losses involve complicated molecular processes, such as the excitation of

internal vibrations or rotations, and stored potential energy, all of which depend on the

chemical structure of the fluid and discussions of which are beyond the scope of this

thesis44. Viscous losses can occur within the bulk of medium or at the interface with

a rigid boundary, arising from relative motion between adjacent regions of the fluid,

which causes shear. Thermal losses can also occur either within the bulk of the medium

or near a rigid boundary, as regions of high temperature conduct heat to regions of low

temperature, which is then converted to kinetic energy in the form of random molecular

motion instead of contributing to the pressure wave.

Ignoring the boundary layer problem, it is possible to account for the loss mecha-

nisms intrinsic to the fluid using the acoustic wave equation alone, with a modification

incorporating an acoustic absorption coefficient αc, which can be measured experimen-

tally, and then used to accurately predict the gradual drop in intensity of a propagating

acoustic wave. Alternatively, one could introduce a phase angle between pressure and

density to equation 2.18 by adding an imaginary component to the complex wave speed,

whose exact nature will depend on the absorption mechanism45,44. For waves propagat-

ing through free space, this should suffice, but not when the aforementioned boundary

layer effects are to be accounted for. To do this, one needs to return to the conservation

of momentum equations, and the equation of state for the gas.

17



2. Background Theory

2.4.1 Equation of State Revisited

As already covered, the equation of state for a medium allows one to make predictions

about its behaviour. When deriving the acoustic wave equation, the process was deemed

adiabatic, which simplified the required analysis. However, as was also mentioned, this

was not complete; acoustic propagation through air does undergo loss via thermal

dissipation of the acoustic energy, even if it is almost negligible. To account for these

losses, a more complete equation of state is required, and then the heat transfer that

occurs between regions of high and low density as the acoustic wave propagates needs

to be considered. This is an involved thermodynamic process, but it can be shown that

the energy equation becomes51:

∆ρCp(
∂T

∂t
) = −~∇ · (−κ~∇T )− 1

ρ

∂ρ

∂T

∣∣∣∣
p

T
∂p

∂t
(2.22)

where κ is the thermal conductivity of the fluid. The first term on the right hand

side of this equation is a form of diffusion equation that measures the conduction of

heat through the gas, the second term is a measure of the thermal expansion of the gas

in regions of high pressure.

2.4.2 Navier-Stokes Equation

In section 2.2.4, the force equation for all of the forces acting on an element of fluid was

introduced, with a brief description of and equations for the normal stress tensor σmm

and shear stress tensor τmn. After elaborate analysis48, combining the force equation

2.7 with the two tensor equations 2.8 and 2.9 results in the well known Navier-Stokes

equation (with no external forces):

∆ρ

(
∂~v

∂t
+ (~v · ~∇)~v

)
= −~∇∆p+ (

4

3
η + ηB)~∇(~∇ ·~v)− η~∇× ~∇×~v (2.23)

where η is the dynamic viscosity, a measure of the momentum lost due to inter

molecular collisions between regions of fluid possessing different net velocity (related

to kinematic viscosity ν by ν = η
ρ) and ηB is the bulk viscosity of the fluid, which

concerns dissipation of energy via internal molecular processes.

Individual components of equation 2.23 account for different kinds of loss mecha-

nisms. The (4
3η+ηB)~∇(~∇ ·~v) term is that which accounts for viscous losses that occur

within the fluid bulk, which can be approximated via the aforementioned classical ab-

sorption coefficient αc. The η~∇ × ~∇ × ~v ‘vorticity’ term however deals with viscous

losses that occur due to complex non-linear effects such as turbulence, or in particular
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interest to this thesis (as they can effect cavity-resonance-based metamaterials), those

that occur near a rigid boundary.

With the more robust energy equation 2.22 and force equation 2.23, the internal

viscous and thermal losses can now be accounted for. Under most typical acoustic situ-

ations, the absorption that these mechanisms cause can be treated as wholly separate,

and then added together, which is what results in the classical absorption coefficient αc

that can be used to modify the acoustic wave equation, with the ‘Stoke’s assumption’

that ηB = 0, i.e. that internal molecular loss mechanisms are negligible. The Stoke’s

assumption can fall short in polyatomic gasses such as air, and a full description of

these molecular effects, involving things such as molecular vibrational and rotational

degrees of freedom, would require a lengthy discussion of thermodynamics52,53. Since

their magnitude is negligible at audio frequencies in dry or low humidity air, they will

not be covered. While this is also true of the internal viscous and thermal loss mech-

anisms, unlike these two, the molecular loss mechanisms do not play an enhanced role

in the presence of a rigid boundary.

2.4.3 Thermodynamic Boundary Layers

When sound propagating through a fluid is incident normally on a solid object, such

as a wall, the impedance mismatch (acoustic impedance being a measure of how easily

sound can propagate through a medium, discussed in detail in section 2.5) is so huge,

that the wall can be treated as though it were perfectly rigid, i.e. the sound does not

penetrate the wall and is totally reflected. For sound grazing the wall, the situation

becomes more complicated, with the introduction of viscous and thermal boundary

layer loss mechanisms that, along with diffraction from periodic structures, are the

dominant form of loss in the acoustic experiments conducted throughout this thesis.

Take a lossless plane wave propagating along x, and a wall placed perpendicular to

the wave fronts, at z = 0, as depicted in figure 2.2. At the wall boundary, the particle

velocity of the wave parallel to the wall vx must fall to zero. This is the well known

‘no-slip’ boundary condition8. As one moves away from the wall, the particle velocity

must also evolve back to its free space value. The velocity field within the distance

over which this change occurs can be described as a secondary viscous wave, having its

own particle velocity v′, which can be treated as part of the primary plane wave. Via

consideration of the vorticity term in the Navier-Stokes equation 2.23, one can write a

diffusion equation for v′ 44:

∂v′

∂t
=

η

ρ0

∂2v′

∂z2
. (2.24)

19



2. Background Theory

Figure 2.2: Qualitative illustration of the formation of viscous δν and thermal δα
boundary layers near a rigid-wall, as a planar wave propagates orthogonally to it.

Now, applying the boundary condition that v′ = −vx when z = 0, and assuming

a frequency dependence of eiwt, the method of separation of variables applied to 2.24

results in the complex solution:

v′ = −vxe
−(1+i) z

δν (2.25)

where vx is the plane wave particle velocity with a complex solution to 2.21 and δν

is the frequency-dependent thickness of the viscous boundary layer, a measure of the

size of region over which the decay in particle velocity falls to zero. Note, the complex

v′ is now the result of a Fourier transform. The viscous boundary layer is typically

defined as (although not always, as will be discussed in chapter 4)

δν =

√
2η

ρ02πf
=

√
ν

πf
, (2.26)

and is quoted in terms of kinematic viscosity ν throughout the remainder of this

thesis. For air at 5 kHz, this value is ∼ 20 µm. Forcing the particle velocity to zero

in this way causes loss of acoustic energy via shearing between the regions of different

net velocity, with this concentrated boundary layer effect being far stronger than the

same process occurring in free space. This is not always true however, as the intrinsic

viscous loss increases as a function of frequency, whereas the viscous boundary layer

size has the opposite dependence - though in air, the balance does not switch below

ultrasonic frequencies.

As well as the ‘no-slip’ condition leading to viscous loss effects, the rigid-wall bound-

ary also induces a thermal loss mechanism. The wall acts as an isothermal boundary

condition; it can be considered an infinite heat-sink that is at thermal equilibrium T0
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with the environment. Taking the same plane-wave-perpendicular-to-wall scenario as

developed for the viscous situation (figure 2.2), the problem can similarly be split into

two parts. The excess temperature ∆T generated by the pressure and density fluctu-

ations in the free space propagation of a plane wave of pressure amplitude P can be

written44

∆T = T0 + T0(γ− 1)

(
P

ρ0c2

)
ei(ωt−kx). (2.27)

Far from the wall, these temperature fluctuations are treated as they were for the

lossless case: too slow and insignificant in magnitude to be conducted to surrounding

regions of fluid, hence an adiabatic process (this is true in air at audible frequencies). In

close proximity to the rigid-boundary however, this excess temperature can be thought

of as being immediately conducted into the wall, meaning that the acoustic process

switches to isothermal from adiabatic. So, in a similar way to the tangential particle

velocity being forced to zero and forming a secondary viscous wave v′, a secondary

thermal wave T ′ is formed as the propagation of the acoustic wave evolves from an

isothermal process near the wall back to an adiabatic one in free space. Again, the

full mathematical description of this process is highly involved2,54,55,44, but it can be

shown to reduce to the thermal diffusion equation previously introduced as part of the

equation of state (equation 2.22), applied to the combined thermal field ∆T + T ′:

∂T ′

∂t
= α

∂2T ′

∂z2
(2.28)

with Cp being the heat capacity at constant pressure and α = κ
ρ0Cp

, the thermal dif-

fusivity of the gas. As with equation 2.24, applying boundary conditions and assuming

a frequency dependence of eiwt, the combined field of the primary ∆T and secondary

T ′ temperature waves can be written:

∆T − T0 = (1− e−(1+i) z
δα )T0(γ− 1)

(
P

ρ0c2

)
ei(ωt−kx) (2.29)

where P is the pressure amplitude of the plane wave, γ the ratio of specific heats,

and δα the thermal boundary layer thickness given by:

δα =

√
α

πf
. (2.30)

The viscous and thermal boundary layers operate on similar scales, the square of

ratio between them depends on the gas and is known as the Prandtl number Pr where:

Pr =
δ2
ν

δ2
α

. (2.31)
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Here only the situation of a single rigid-wall adjacent to an unbound medium has

been considered. When the geometry is such that the medium is confined to e.g. a rigid-

walled cylindrical pipe, these boundary layer effects can become far more pronounced54,

not only causing attenuation of the acoustic wave but also changing its phase speed

and effective density. These effects in particular, which have been studied extensively

over the past two centuries4,2,56,54,55,57,58, are the focus of experimental chapter 4, as

they are of utmost importance to the design of acoustic metamaterials even when the

boundary layer thickness is several orders of magnitude smaller than the wavelengths

of interest. As such, they will be revisited in detail.

2.5 Acoustic Impedance, Reflection and Transmission

In this section the different kinds of acoustic impedance are introduced, along with the

most basic form of reflection and transmission coefficients and how they are useful for

describing how waves travel from one medium to another, which will be necessary when

performing the transmission measurements in chapters 4 and 5.

For a wave travelling through an unbound medium, the ‘specific acoustic impedance’

is a measure of the ratio of acoustic pressure to particle velocity, given by

za =
∆p

~v
= ±ρ0c (2.32)

with the right hand side expression applicable when the acoustic wave in question is

a plane wave, the sign denoting direction of propagation. The product ρ0c is known as

the ‘characteristic impedance’ of the material, measured in ‘rayls’ (1 rayl = 1 Pa s m−1).

For more complicated situations such as those involving standing waves or diverging

waves, or interactions with geometry changes, the specific acoustic impedance takes on

the complex form:

za = ra + ixa (2.33)

where ra is the specific acoustic resistance and xa is the specific acoustic reactance,

that will depend on the specifics of the situation. This expression will be necessary

when describing the interaction of sound with pipes, as in section 2.6.

When an acoustic plane wave encounters an impedance mismatch, such as when

it travels from a fluid with zai = ρ0ici to fluid with zat = ρ0tct (neither complex for

a plane wave), some of the acoustic pressure will be transmitted and some reflected,

depending on the ratio of the impedances and the angle of incidence (note, in this

section, subscripts i, t and r donate incident, transmitted and reflected media respec-

tively). The amplitude coefficients of reflection R and transmission T can be defined
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in terms of complex pressure amplitudes Pi (incident wave), Pr (reflected wave), and

Pt (transmitted wave):

R =
Pr

Pi
(2.34)

T =
Pt

Pi
. (2.35)

The intensity of a plane wave is defined as I = P 2

2ρ0c
, hence we can write the reflection

and transmission intensity coefficients as:

RI =
Ir

Ii
= |R2| (2.36)

TI =
It

Ii
=
ρ0ici

ρ0tct
|T2| (2.37)

The acoustic power is defined as the intensity multiplied by the cross-sectional area

of the incident beam. For a reflected wave, the cross-sectional area does not change, so

the power reflection coefficient RΠ is equivalent to RI (RΠ = RI). The cross-sectional

area S may change for the transmitted wave however, so this must be included in

writing power transmission coefficient TΠ = St
Si
TI. The conservation of energy says

that the total power of the incident wave must remain in the transmitted and reflected

waves, so that TΠ + RΠ = 1 (neglecting absorption through losses). This fact and the

previous set of equations hold for when there is a simple planar boundary between two

fluids, where for a plane wave at normal incidence, it can be shown that:

R =
ρ0tct − ρ0ici

ρ0tct + ρ0ici
(2.38)

T =
2ρ0tct

ρ0tct + ρ0ici
(2.39)

A few observations can be made. The reflection amplitude coefficient is always real,

though its sign depends on whether the impedance of the second medium is greater

than the first. If the second medium has a greater impedance (zat > zai), then the

reflected wave is positive, and is in-phase with that of the incident wave. Vice versa,

if zai > zat then the reflective wave is negative and π radians out of phase with the

incident one.

Throughout this thesis we are only concerned with air as the propagating medium,

which at standard temperature and pressure has zaAir = 428.0 rayls47. The structures

of interest consist of either aluminium, with zaAl = 1.7 × 107 rayls or acrylic zaAcr =
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2. Background Theory

1.7×106 rayls59. This means that in all present cases, the impedance mismatch is very

significant, i.e. zai/zat ≈ 0, hence there will be a reflection from the boundary with

no reduction in amplitude, and the particle velocity normal to the boundary is zero.

This is the ‘rigid-wall’ boundary condition which has other ramifications as discussed in

section 2.4.3. Note, if a wave is incident on the impedance boundary at some arbitrary

angle, these expressions will be modified accordingly45,44.

The above equations break down when the impedance mismatch between two re-

gions results from a geometry change. Alone, the expression for the specific acoustic

impedance za cannot predict the reflection that occurs when a wave encounters an

impedance mismatch caused by a sudden change in cross-sectional area S (defined by

a rigid boundary) of the fluid that is comparable to its free space wavelength. This

requires a measure of the conventionally named ‘scalar volume velocity’ U =
∮
S ~v · n̂ dS

(~v · n̂ being frequency-domain particle velocity normal to the sound source, with the

surface integral relating to the cross-sectional area of the geometry), leading to ‘geo-

metric acoustic impedance’ (often, just called the acoustic impedance) Z:

Z =
∆p

U
(2.40)

where ∆p and U are complex. Geometric and specific acoustic impedances are thus

related by Z = za/S. Hence, the sound will not propagate through unhindered when

it encounters a change in cross-sectional area of the fluid (of comparable size to the

acoustic wavelength λ0), such as at the entrance or exit of a region of air bounded by

a rigid-walled cavity. The propagation wavefunction will change and there will be an

impedance mismatch that will cause reflections to occur at the cavity entrance. Note,

the situation becomes still more complicated when multiple cavities are introduced.

This will be covered in section 2.7.

2.6 Acoustic Interaction with Rigid-Walled Cavities

Locally resonant elements, such as rigid-walled cavities, are required to design geome-

tries that support acoustic surface waves, as near resonance they can couple together

via diffraction. Before this is discussed in detail it is necessary to understand how

acoustic waves interact with these cavities individually.

When sound is fully confined to some rigid-walled cavity that is of comparable size

to its wavelength, such as a low frequency source producing sound in a small room, the

full treatment of the acoustic wave equation has the potential to become quite com-

plicated; this is the domain of acoustic waveguides44, or for even larger environments,

architectural acoustics9. Ignoring thermodynamic effects, it is much easier to describe
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the propagation of a wave through a cavity when the dimensions of the cavity are far

smaller than the wavelength of interest, i.e. the frequency is less than the waveguide’s

‘cut-off’ frequency, below which, any sound propagating within the cavity can only have

planar wavefronts (but, importantly, will still propagate, as it is a longitudinal wave).

The waveguide cut-off frequency is determined by the cavity’s exact shape and size

as well as the properties of the fluid medium within it, and must be calculated on an

individual basis44,45. All samples henceforth considered have cavities with dimensions

where the frequencies of interest lie below each cavity’s corresponding cut-off frequency.

Take the case of a small cylindrical cavity which has constant radius a (where

a � λ0) and length L. In acoustic literature, this sort of cavity is known as a pipe

or tube, and can either terminate in a rigid boundary (‘close-ended’) or a return to

free space (‘open-ended’). Both situations are depicted in figure 2.3. First, consider

the close-ended pipe with cross sectional area S = πa2, driven by an acoustic source

(such as an incident plane wave) at x = 0 and terminated by a rigid-wall at x = L.

Provided a � λ0 and thus the frequency is below the calculated cut-off frequency of

the rigid-walled cavity, the wave in the pipe will have planar form:

∆p = Aei[ωt+k(L−x)] + Bei[ωt−k(L−x)] (2.41)

where A and B are complex amplitude coefficients determined by the boundary

conditions at each pipe end. The fluid in the pipe has its own mechanical impedance

Zm (separate from acoustic impedance), where

Zm =
~F

~v
(2.42)

~F being the force on the particles and ~v being their resulting velocity, both having

complex value. At the point of the closed-end at x = L, this mechanical impedance is

ZmL = ρ0cS
A + B

A−B
(2.43)

and the input mechanical impedance Zm0 from the source is

Zm0 = ρ0cS
AeikL + BeikL

AeikL −BeikL
. (2.44)

The quantity ρ0cS is the ‘characteristic mechanical impedance’, which can be used

to normalise the mechanical impedance. Doing this and combining ZmL and Zm0 to
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2. Background Theory

eliminate A and B:

Zm0

ρ0cS
=

ZmL
ρ0cS

+ i tan kL

1 + iZmL
ρ0cS

tan kL
. (2.45)

The substitution Zm0
ρ0cS

= ra + ixa (the general form of specific acoustic impedance

from equation 2.33) allows one to find the conditions of resonance and anti-resonance

within the pipe, which occur when the reactance term ixa falls to zero and the resistance

term ra is small (resonance) or large (anti-resonance). In the simplest case, letting

|ZmL/ρ0cS| → ∞ in equation 2.45 provides

Zm0

ρ0cS
= −i cot kL (2.46)

whereupon we have the condition of resonance when cot kL = 0 (hence no reac-

tance),

knL =
(2n− 1)π

2
(2.47)

rearranging in terms of frequency f

fn =
(2n− 1)c

4L
(2.48)

hence all of the resonant frequencies are the odd harmonics of the fundamental,

which is determined from the length L of the tube and is when a quarter wavelength

fits within it. There is a pressure anti-node at the terminated end of the pipe at x = L,

and a pressure node at the entrance x = 0.

The situation changes slightly when the pipe is terminated by an open-end, and

the sound can thus be re-radiated into the air. The mechanical impedance ZmL at the

pipe end does not fall to zero but to Zr, another type of acoustic impedance known as

the radiation impedance, which is the part of mechanical impedance that relates to the

coupling of a driving source to an acoustic wave,

Zr =

∫
dfs

~v
(2.49)

where dfs is the normal component of force on element dS of the radiating face.

This term will depend on the surroundings immediately outside the vicinity of the open

end, as the air outside the cavity loads the column of air within it. This can be come

an involved integral depending on the geometry (such as for the impedance gratings

in section 2.7.3), but has a few well known approximate solutions. In the case of a

‘flanged’ pipe at the low frequency limit (a/λ0 � 1 ), where the radius of the open pipe
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Figure 2.3: Qualitative illustration of the amplitude of the pressure field for the first
three harmonics supported within both an open-ended and close-ended pipe system.
This is a cross-section through the middle of each pipe, and can also represent the
modes supported within the equivalent slit system, substituting the radius a for slit-
width w 56.

face a is surrounded by a large rigid flange, Zr can be treated as a radiating circular

piston. To first order it can thus be written44

ZmL

ρ0cS
= 0.5(ka)2 + i(

8

3π
) (2.50)

substituting this into 2.45 shows that resonance occurs when tan kL = −8ka/3π,

yielding resonant frequencies

fn =
nc

2(L+ ∆L)
(2.51)

where ∆L = 8a
3π ≈ 0.8a is the ‘end correction’ term, highlighting that for an open-

ended pipe the resonant frequencies depend on an effective length Leff = L + ∆L.

This end correction does not currently have an exact analytic solution, and Rayleigh’s

original approximation of ∼ 0.8a used above remains the accepted value2,44,45.

The form of the standing waves within each of these geometries is illustrated in

figure 2.3. Note, there is a key difference between what figure 2.3 shows, and the above

derivations for pipe resonances, which also relates to the samples studied throughout

this thesis. The derivations above assume a driving source is located directly at x = 0,

with an input mechanical impedance Zm0. Hence, for the close-ended pipe (equation

2.48), there appears to be no end-effect term present. Similarly, the open-ended pipe

equation (2.51) only has an end-effect term arising from the radiation impedance ZmL

at point x = L. In figure 2.3, the eigenmodes of the pipes are shown as if they were

excited by a far field source. This means that as well as the end-effect term at x = L
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2. Background Theory

for the open-ended pipe, there is an additional end-effect term for both closed- and

open-ended pipe geometries arising from the tube entrance at x = 0, which is now free

to radiate back into the surrounding medium28. This does not change the pattern of

the resonances and their harmonics, except for a slight increase in effective length.

Throughout this thesis, this sort of cavity resonance is referred to as ‘Fabry-Perot-

like’, since it can be thought of as a resonance that occurs when reflections from each

end of the pipe are in-phase with each other (as they are in the classic Fabry-Perot

interferometer60), which is the physical interpretation of the conditions which lead to

expressions 2.48 and 2.51. The radiation impedance Zr is dependent on the tube exit’s

surroundings, and placing a series of tubes in a periodic fashion can lead to trapped

surface wave effects, as is discussed in the next section.

Note, for the case of a finite-length 2D slit-cavity, where instead of having a column

of air surrounded by a wall at a fixed radius, the air is only bounded in one dimension

via two infinite parallel walls separated by some slit-width w, the analysis yields a

similar result for the resonant frequencies in both the closed- and open-ended slit cases.

One must only substitute the radius a for slit-width w 56.

When an open-ended cavity such as those discussed above is probed at multiple

frequencies with a plane wave, and the transmission coefficient measured (see chapter

3), the standing wave resonances manifest themselves as a series of Lorentzian-shaped

peaks in the transmission spectrum (the magnitude of either the transmission ampli-

tude coefficient T or transmission intensity coefficient TI as a function of frequency).

The width of the peaks and the level of the background transmission depend on the

end correction term; the larger the tube radius/slit-width, the more damped the reso-

nance, and the higher the background transmission44. Conversely, a narrow slit should

support a sharp resonance on a low background, but as will be seen in chapter 4, the

thermodynamic boundary layer effects present in such a cavity can also cause significant

damping, as well as a reduction in the frequency of the resonance. In a similar vein, if

the reflection amplitude coefficient R (or reflection intensity coefficient RI) is measured

for a close-ended cavity in a solid plate, the resonance conditions will result in a series

of troughs (rather than peaks) in the reflection spectrum, due to absorption within

the cavity (width and depth of the troughs again depending on the end-correction

term). With no loss, there would no dip in reflection coefficient, as the rigid boundary

condition of the solid the cavities are formed from would give a complete reflection.

The analysis within this section is simplified to illustrate how such a close or open-

ended cavity can have resonant conditions despite the air medium being unchanged;

the full treatment of such a problem will depend on the nature of the excitation, the

shape of the cavity, the cavity length, the cavities’ immediate surroundings, and also

attenuation via boundary layer effects.
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2.7 Acoustic Surface Waves

In this section the mechanism by which an acoustic wave contained within the air can

be bound to a surface and thus form a ‘trapped’ Acoustic Surface Wave (ASW) is

presented.

2.7.1 Surface Wave Definition

As discussed in section 2.3, a plane wave that propagates through free space in some

arbitrary direction r has wavevector kr =
√
k2

x + k2
y + k2

z with a maximum value of

k0 = 2π
λ0

= ω
c . Hence, the most momentum a wave can have in one direction, say x, and

still propagate, is kx = k0 - a plane wave travelling at the speed of sound (within the

fluid) along the x direction only.

Consider x being the direction parallel to a boundary between two materials, and

z perpendicular to it. It is possible for a wave to have too much momentum to radiate

away from this boundary, having a kx > k0. In a 2D case where ky = 0, this means that

to conserve momentum, kz must become complex, with an imaginary component. The

physical meaning of a wave which has a pure imaginary is that the wave propagates

along x but exponentially decays from the boundary in z into the medium above (or/and

below): it is an evanescent ‘trapped’ wave, known as a ‘surface wave’. Typically these

waves have longer decay lengths along x than they do in free space, with a 1/x rather

than a 1/x2 amplitude drop off from the source33.

In particular, a trapped surface wave can exist at the boundary of an impedance

mismatch49. For all of the discussion on surface waves that follows (including the rest of

this section regarding acoustic surface waves), consider only a two dimensional system

(x,z) where there is an impedance boundary in z at z = 0, and k0 = 2πf
c =

√
k2

x + k2
z ,

as ky = 0. Consider a harmonic pressure field ∆p = p(x, z)eiωt in the plane above

this impedance surface, which spans z ≥ 0. This wave satisfies the Helmholtz equation

∇2∆p+ k2∆p (from equation 2.19), with boundary condition

∂p(x, 0)

∂z
= − ikρ0c

zas
p(x, 0) (2.52)

where (from equation 2.33) zas = ras + ixas is the specific acoustic impedance of the

boundary material extending through z ≤ 0, ρ0 is fluid density, and c the (adiabatic)

speed of sound. Here, ras is the real-valued specific acoustic resistance, and xas is the

imaginary specific acoustic reactance. Hence, suitable plane wave solutions are

p(x, z) = Ae−(iβx±iζz). (2.53)
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For propagation in positive x, expressions for ζ and β are

ζ = −k0
ρ0c

zas
(2.54)

and

β = k0

√
1−

(
ρ0c

zas

)2

. (2.55)

For an evanescent wave to exist with decreasing exponential amplitude above z = 0,

kz must be imaginary, thus Im(ζ) > 0. So, for solutions to satisfy the boundary

condition 2.52, it follows that Im(zas) > 0, or stated differently

xas > 0, (2.56)

(xas being the imaginary part of zas). The physical interpretation of this quality

is that the surface’s acoustic reactance is a stiffness61, or that it is ‘spring-like’. The

decay length into z of the resulting surface wave is of order z = O(λ0|xas|), O being a

general mathematical operator.

Some more important conclusions can be drawn. To observe the surface wave, the

pressure amplitude decay into z must be sufficiently rapid, a reasonable criterion being

that it falls to 1
e of its initial value within one free-space wavelength λ0, i.e. λ0|xas| > 1.

Also, the decay length along x must not be too short, so λ0|xas| � 1. Combined, this

means that a surface wave will be most easily observable on an impedance boundary zas

provided that the surface’s acoustic reactance is greater in magnitude than its acoustic

resistance, xas > ras, and the reactance term lies within the range 2 < xas
ρ0c

< 632.

2.7.2 Surface Waves in Acoustics

There are many types of trapped surface wave that exist in acoustics. Within the

domain of solid mechanics exist a set of what are commonly known as ‘Surface Acoustic

Waves’, (SAWs), such as the Rayleigh wave that exists at the boundary of an elastic

solid and a vacuum62,63. These involve shear waves and do not play a role in the

measurements taken throughout this thesis, hence they will be ignored - a brief outline

of each type and a justification of their being irrelevant is included in section 2.7.9.

Another type of trapped wave contained purely within a fluid can exist at the boundary

between a fluid of specific acoustic impedance za1 and another material of impedance

za2, provided that the previously discussed impedance conditions are met30. There

is little consistency in the literature regarding this type of surface wave’s name, with

variations including ‘air coupled Rayleigh-wave’ and ‘spoof-surface acoustic wave’; they
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will be referred to as ‘Acoustic Surface Waves’ (ASWs) for the duration of this thesis.

The presence of acoustic surface waves in air was first measured by Ivanov-Shits

and Rozhin in 195929. Indeed, the theoretical treatment of the surface wave existing at

a finite impedance discontinuity has received much attention30,31,32. The difficulty in

creating an observable airborne ASW lies in this impedance condition; the impedance

mismatch between the air and most solids is so great that the surface wave has an ef-

fectively infinite decay length and cannot be considered as bound to the surface in any

meaningful sense - the condition λ0|xas| > 1 is not met. To create a finite impedance

mismatch with a reactive surface then, one option is to deposit a layer of air-filled

porous material above the solid, an idea studied extensively64,65,66,67 and which has

been experimentally observed, such as above soil and grass68 or even snow69. The

other option, utilised through the experimental work in this thesis, is to create an

‘impedance grating’63, a periodic structure formed of rigid material that, near the res-

onance condition of the cavities formed by the structure, may be treated as a medium

with a finite effective impedance. This method has also received a lot of both theoreti-

cal63,70,71 and experimental72,73,33,61 attention, including Van der Heijden and Martens,

who in 1979 dug a series of grooves into the side of a road, thereby creating an ASW

and trapping some of the traffic noise33.

All of this older research came before the explosion of the metamaterial concept -

the idea that a material can have unusual effective properties derived from a structure

factor rather than its molecular make up - after in 1998 Ebbesen et al. observed sur-

face wave assisted Extraordinary-Optical-Transmission (EOT) through a holey-plate

in the electromagnetic regime19. It was thought that the ‘Surface-Plasmon’ (a type of

dispersive trapped electromagnetic surface wave to which no direct equivalent exists

in acoustics) was required to mediate this transmission. However, Pendry et al. later

realised that the EOT effect could be induced with an array of subwavelength cavities

in the microwave regime26, where the metal can be considered a perfect conductor and

thus not support a surface-plasmon - this was an ‘impedance grating’ not unlike those

studied in acoustics, and soon after, a prediction of Enhanced-Acoustic-Transmission

by Zhang et al.74 (alongside other metamaterial-enabled quirks such as negative refrac-

tion24) began the race to design and develop acoustic metamaterials with the insight

gained from the vast amounts of research carried out in the electromagnetic regime.

2.7.3 Acoustic Impedance Gratings

Figure 2.4 is a schematic of a typical periodic structure that forms an impedance

grating, allowing the existence of an ASW on its surface (who’s amplitude is also

illustrated). There are a series of rigid walls spaced λg apart, which is the grating
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Figure 2.4: Qualitative illustration of the acoustic surface wave supported in air
above a typical periodic impedance grating. The rigid solid has a series of equally
spaced ridges, with dimensions as labelled. The yellow shaded region is the region of
air supporting the surface wave, with specific acoustic impedance za1, while the purple
shaded region represents the region of effective impedance za2 induced by the grating.
A sketch of the pressure magnitude |∆p| of such a surface wave is also included.

pitch. This is the spacing between the smallest unit of geometry that could be repeated

to make the whole structure: the ‘unit-cell’ (sometimes referred to as the ‘meta-atom’

when making analogies between metamaterials and molecular crystal structures). In

section 2.6, it was shown how a finite-length rigid-walled cavity of subwavelength cross-

section can support Fabry-Perot like resonances with frequencies that depend on the

cavity length L and the end correction term ∆L. Arranging a set of these cavities into

a periodic structure as in figure 2.4 changes each cavities’ radiation impedance Zr, as

each cavities’ surface integral overlaps, linking them together. This leads to a modified

end correction75,76,28; each cavity’s radiation impedance has an extra term added to its

imaginary reactance xa that is induced by the build up of diffracted evanescent modes

above the surface71. In other words, each individual cavity acts as a resonator that

is coupled to its adjacent cavities, creating an effective impedance condition, where,

as the frequency approaches the cavity resonance frequency, the impedance grating’s

effective imaginary reactance approaches infinity32,28,76. Hence, over a specific range of

frequencies below the now modified Fabry-Perot-like (in reflection) resonant condition,

an ASW is created having kx > k0 and pure imaginary kz above the grating, its phase

seen advancing along the surface as the cavities oscillate between negative and positive

pressure (see panel two in figure 2.7, described later on).

The ASWs arise from the coupling between the end effects from each individual

cavity, finding solutions for which involves surface integrals that can only be solved

numerically (having only approximate solutions for even the simplest scenarios such as
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the ‘baffled piston’ approximation, see section 2.6). Hence, one cannot simply write a

general equation predicting the precise behaviour of the ASW, including its dispersion,

like is possible with the electromagnetic surface-plasmon dispersion curve on a flat sur-

face77. It follows that the ASWs are extremely sensitive to the shape of the resonators

that form them, such as their depth, width, their relative spacing, and the lattice shape

in which they are arranged (i.e. the Fourier decomposition of their surface).

Some analytic theory that expands on the theory presented in section 2.6 has been

developed for the simplest open-ended slit or hole arrays28,76, including expressions

that predict the resonant condition of each coupled slit-cavity, but it is very specific

to those geometries and also does not account for significant boundary layer effects

(see chapter 4). Detailing it here would thus not prove particularly useful, as it would

not necessarily be relevant to the various ASW-supporting geometries to be studied

in this thesis. There do exist many approximate numerical methods to predict ASW

behaviour, some of the most common methods being the modal-matching method that

approximates diffraction effects27,71,78 and the finite-element method that splits a ge-

ometry into small mesh elements and directly solves the necessarily field equations

within them79,80 (used throughout this thesis and covered in section 3). Still however,

the models must be constructed from scratch for each specific geometry, and as such the

specifics will be detailed in their relevant sections. There are some rules that grating-

induced ASWs obey no matter the geometry that allow predictions to be made, to be

discussed henceforth.

2.7.4 Dispersion Relations

When describing the behaviour of surface waves, it is useful to plot their ‘dispersion

relation’, which is how the frequency f of a surface mode changes as a function of

its wavevector along a specific surface direction, the shape of each mode being the

‘band-structure’. This sort of plot is used extensively for the discussion of the three

dimensional band structure of photons or phonons interacting with periodic crystal

structures81, much of the language arising from analogies to the nearly-free electron

model within ionic solids82. These analogies also lend themselves nicely to similar

discussions with periodic meta-atoms of acoustic metamaterials22,83, such as those that

form an impedance grating.

A simplified example of a dispersion plot is shown in figure 2.5, a qualitative repre-

sentation of the dispersion along positive wavevector kx (parallel to the surface) of the

ASW (whose eigenfrequencies occur at frequency denoted by the solid lines) supported

on a typical, very short pitch (λFP � λg) one-dimensional impedance grating such as

the one previously shown in figure 2.4 (for this surface and all those to be studied,
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Figure 2.5: Qualitative Example of a dispersion plot with important features an-
notated, for a typical short-pitch (λg � λFP) impedance grating like the one in figure
2.4. Frequency f is plotted against in-plane wavevector kx. The solid red lines repre-
sent the behaviour of the eigenmodes of the system, including those associated with
the fundamental Fabry-Perot resonance and its first harmonic. Note, the effect of the
grating periodicity λg on the dispersion of each of the modes (other than to allow
them to exist) has been neglected for simplicity.

the band-structure in negative kx and positive kx is symmetric about kx = 0, so usu-

ally only the positive half is displayed). The ASW associated with the fundamental

FP resonance and the ASW associated with the first FP harmonic are included. Also

shown are the Fabry-Perot-Evanescent-Waves (FPEV), which are the grating-perturbed

cavity-resonances that have interesting properties to be discussed forthwith. Note, to

simplify figure 2.5 and the following discussion, the effect of the periodic structure on

the mode dispersion has been omitted, and will instead be introduced in section 2.7.5.

A vital feature of dispersion relation plots is the position of the sound line k0 =

± 2πf
c , the positive k0 shown as a solid black line in figure 2.5. This is the maximum

wavevector a wave that can freely propagate through space can acquire; anything with

a magnitude of kx less than the magnitude of the sound-line (|kx| < |k0|) is free to

propagate, and thus this region of k-space is known as the ‘radiative regime’ (yellow

shaded region in figure 2.5). In the radiative regime, if θi is the angle of incidence from

the surface normal, then kx = k0 sin θi, hence at normal incidence θi = 0◦ and kx = 0,

while at ‘grazing’ incidence θi = 90◦ and kx = k0. Conversely, any magnitude of kx

greater than magnitude of the sound line (|kx| > |k0|) has too much momentum at that

frequency to propagate at the speed of sound c and must have an imaginary component

of kz, hence this is known as the ‘non-radiative regime’ (purple shaded region in figure

2.5).
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A mode can be described as ‘dispersive’ if its phase velocity vp = 2πf
k changes as

a function of frequency, i.e., when the phase velocity is different to the group velocity

vg = 2π∂f∂k (the gradient of any point on a dispersion curve). The ratio between the

speed of sound c and the phase velocity vp is known as the refractive index, N = c/vp,

air being set to have a refractive index of N = 1. When the group and phase velocity

are equal (vp = vg), the wave is non-dispersive.

While except in a small number of cases where analytic theory has been developed,

the precise behaviour of ASWs must be numerically or experimentally determined,

there are a few key patterns and features present in the dispersion of a typical ASW,

highlighted by figure 2.5. Firstly, the set of Fabry-Perot-like cavity resonances that

would exist in each cavity individually, without the presence of the periodic grating

structure, would be visible in the radiative regime of figure 2.5 as just non-dispersive flat

lines. The frequency fFP (with corresponding wavelength λFP) at which this resonance

occurs is predicted by equations 2.48 and 2.51 (or whatever cavity geometry is being

used, e.g. a Helmholtz resonator). For a single cavity, the maximum value fFP can take

for a given cavity-length L is when there is no end-effect length-correction term (∆L =

0), which is designated as the Fabry-Perot-Limit in figure 2.5. Any cavity with a finite

width has a finite end-effect, so the actual resonant frequency fFP will always be lower

than this limit. When such cavities are then placed into a periodic array, the end-effect

term markedly changes (where as discussed, the impedance condition that determines

the end-effect has a term added to its imaginary reactance that is induced by the

diffraction effect) acting to further reduce the resonant frequency fFP of each individual

cavity at normal incidence, while forcing the collective resonance to become dispersive

with a strong evanescent component. As the FP-like mode approaches the sound line,

it interacts with the ASW present in the non-radiative regime (to be discussed), leading

to a strong anti-crossing effect. At grazing incidence, the free radiation has a divergent

density of states84, hence after the anti-crossing interaction, the FPEV mode will lie

on the sound line k0. This radiative mode, the Fabry-Perot Evanescent-Wave (labelled

FPEV) in the yellow region of figure 2.5, has the character of both a normal cavity

resonance and a surface wave, its exact nature depending on the ratio between the

wavelength of the cavity mode at the Fabry-Perot limit λFP and the grating pitch λg

(the behaviour of this radiative mode has been a fruitful research topic27,35,85,28 being

involved in ‘Enhanced Acoustic Transmission’, and will be discussed in detail in section

2.7.6).

The non-radiative trapped ASW (in the purple shaded region of figure 2.5) created

by the periodicity that accompanies the cavity resonances (or FPEV) will always occur

at a lower energy than them, with the position of the radiative mode at normal-incidence

acting as an asymptotic frequency28. This can be seen by restating the general equa-
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tions 2.55 and 2.54. If zag is the effective specific acoustic impedance of the grating,

the wavevector along x of the ASW kASWx has the form

kASWx = k0

√
1−

(
ρ0c

zag

)2

(2.57)

and along kz, it has form

kASWz = −k0
ρ0c

zag
. (2.58)

So, as the frequency approaches the resonance frequency, the imaginary reactance

term xag in zag approaches infinity27,28 (neglecting the significant effect of periodicity),

hence ikASWz → ∞, causing kASWx → ∞, which can be seen in figure 2.5: the ASW

is highly confined to the surface and thus has a huge in-plane wavevector. At low

frequencies away from the resonance, the effective impedance of the grating is little

different to the impedance of the air (neglecting thermodynamic losses), thus the ASW

sits very near the sound line (kASWx ≈ k0), being only loosely confined to the surface

(Im(kASWz) ≈ 0) and resembling a grazing wave. After the frequency of excitation

passes the fundamental FP-limit, and provided the grating pitch λg is sufficiently short

(as in figure 2.5), the pattern repeats for the resonant frequency of the first harmonic

(n = 2 or n = 3 depending on whether the resonant cavity is open- or closed-ended), and

a second ASW with a higher limit frequency is generated. This pattern will occur for

as many FP harmonics that exist below the onset of 1st order diffraction at λ0 = λg,

though as discussed next, the periodicity can significantly perturb the shape of the

mode dispersion, and put a strict limit on what values kASW =
√
kASW

2
x + kASW

2
z can

reach.

2.7.5 The Effect of Periodicity on Acoustic Surface Waves

In the last section, to avoid introducing too many concepts at once, it was instructive

to neglect the effect the grating periodicity λg has on the mode dispersion. However,

this may be misleading, since the periodicity is vital in the creation of the ASW to

begin with, and cannot be neglected. In the context of impedance gratings, without

the periodicity to induce the diffraction effect and thus the ‘springlike’ reactance, there

would be no measurable ASW.

The analogy of meta-atoms to atoms in crystal structure involves the use of solid-

state physics terminology and concepts82. The periodic Bravais lattice structures that

form the acoustic impedance gratings have a corresponding reciprocal space (referred

to as k-space) lattice just as ionic crystal structures supporting nearly-free electrons do,
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and there are many concepts from e.g. Bloch theory that can be transferred accordingly.

To describe how periodicity changes electron band structure in such crystals, the

nearly-free electron model is used, where a weak periodic potential is applied to the free-

electron model, and changes observed86. The effects of periodicity are strongest at the

point whenever the wavevector of the electron k corresponds to the crossing of a Bragg

plane, who’s positions depend on the reciprocal lattice, and differ depending on the

Bravais lattice of the crystal. In one-dimension kx, the first Bragg plane occurs half way

between the origin of k-space and the first reciprocal lattice point kg (the grating wave

vector, kg = 2π
λg

), and the region of k-space this covers is known as the first Brillouin

zone. Hence, the first Brillouin zone is defined as extending over −kg
2 ≤ kx ≤ kg

2 . Higher

nth Brillouin zones represent regions of space separated by different sets of Bragg planes,

so that the nth Brillouin zone corresponds to a region of k-space accessible by crossing

n− 1 Bragg planes from the origin86.

At the edge of each of the Brillouin zones, there are some key features that the

periodicity imposes on the electron energy bands (which are equivalent to ASW bands

on dispersion curves, swapping frequency for energy level). Since the Brillouin zone

boundary represents the mid point between reciprocal lattice vectors, at this point the

electron band that the periodicity has Bragg-scattered with negative group and phase

velocity back from the first reciprocal lattice vector kx = kg has exactly the same

wavevector as the positive group and phase velocity one beginning at the origin kx = 0,

and constructive interference between them means that a pair of standing waves π out

of phase with each other are set up, each of course having zero group velocity. Hence,

the electron band that originated at kx = 0 changes from being a continuous parabola

with increasing energy and wavevector (as it would in the free electron model86), to

having two discrete solutions: an energy band-gap is opened up, the size of which size

depends on the Fourier components of the periodic potential. The physical reason for

these two solutions having different energies is that their anti-nodes are concentrated

in different regions of the ionic lattice that the crystal structures are formed of, thus

sit in different potentials82.

The first Brillouin zone contains all of the information necessary to construct the

entirety of the band structure of the modes supported by the grating, as anything

existing beyond the first Brillouin zone is diffracted back into it: the periodicity of

the grating imparts momentum ± nkg to the surface modes via Bragg diffraction (with

integer n denoting order of diffraction). There are three main ways to represent a band-

structure with periodicity imposed. These are: the ‘repeated-zone’ scheme, where every

energy (or frequency) band is drawn within every Brillouin zone, the ‘reduced-zone’

scheme, where only the first Brillouin zone is included, but with every mode ‘band-
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2. Background Theory

folded’ back to kx = 0 via the addition or subtraction of grating wavevector ± nkg,

and finally, the ‘extended-zone’ scheme, where the band structure is extended from

the origin to higher k in discrete Brillouin zone regions (i.e., without the band-folding

present)86. In two or even three dimensional periodic structures, these band-structures

have the potential to become quite complicated. All work in this thesis except for

chapter 6 deals with one-dimensional periodic structures however, so these are the

focus of the forthcoming explanations.

With the analogy flushed out, the discussion of the band-structure of acoustic sur-

face waves can be resumed. An example of a repeated-zone scheme dispersion plot with

the Brillouin zones included (marked with vertical dashed lines) is presented in figure

2.6. As well as the sound-lines k0 = ± 2πf
c , there are also the diffracted sound lines

± k0 ± nkg.

As the frequency of excitation approaches the resonant frequency, the grating’s

effective reactance xag increases, hence the ASW moves further from the sound line

in kx and is gradually more confined to the surface, since its imaginary component of

kz is rising. All the while, due to approaching the fFP asymptote, the group velocity

vg is gradually decreasing with increasing kx, until at the point of the first Brillouin

zone boundary (kx =
kg
2 ) the group velocity falls to zero, the ASW interferes with the

ASW associated with diffraction from −k0 + kg (or vice-versa) that was propagating

in the opposite direction, and a standing wave is formed over the grating surface, as

expected from the crystal structure analogy (marked by blue arrows in figure 2.6). At

this point, the ASW wavelength along x is exactly twice the grating periodicity λg, i.e.

λASWx = 2λg . There is an apparent problem with the analogy however; there appears

to be no higher energy standing wave solution in the non-radiative regime, as might be

expected. To understand why, it is helpful to see the pressure field on such a surface

at specific values of kx.

Figure 2.7 is a plot of the instantaneous pressure fields ∆p of the Eigenmodes at

specific points on figure 2.6, with the second panel (labelled ASW) being an example of

the standing wave formed at the first BZ boundary. Each cavity is oscillating π out of

phase with its nearest-neighbour; at this point on the dispersion diagram the mode has

wavevector kASWx =
kg
2 and hence must have a spatial wavelength of λASWx = λg (as

λx = 2π
kx

). This commensurate property will hold true at every Brillouin zone boundary

± n
kg
2 with increasing values of n corresponding to shorter spatial wavelengths

2λg
n ,

where, except under special circumstances (such as periodic glide-symmetry, the topic

of chapter 8) a standing wave will always form, provided the near-field has enough

degrees of freedom along kx to support the number of nodes and anti-nodes required

(to be discussed).

As remarked, there appears to be no higher energy standing wave in the non-
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Figure 2.6: (Rotated) Example of a ‘repeated-zone-scheme’ dispersion plot for a
typical short-pitch (λg � λFP) impedance grating. The ratio of grating period λg
to free space wavelength λ0 is plotted against reduced in-plane wavevector kx

kg
, where

kg = 2π
λg

is the grating wavevector. The solid red lines represent the behaviour of

the Eigenmodes of the system. Only modes associated with the fundamental cavity
resonance are included. The pressure field plots in figure 2.7 were calculated at points
highlighted here with blue arrows and labels.
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Figure 2.7: Examples of instantaneous pressure field ∆p maps at four unique points
on the dispersion curve of an ASW supported by a short-pitch (λg � λFP) impedance
grating, in order of ascending frequency from top to bottom. In each case, the pressure
field has been normalised to the maximum amplitude present. The top panel shows
the infinitely extending fields of the DC mode, which is the ASW at normal incidence
with a frequency approaching 0. The second panel shows the fields of the ASW at the
first Brillouin zone boundary, kx =

kg
2 , where it has formed a standing-wave along x

with λx = 2λg. The third panel shows the fields of the fundamental radiative cavity
mode (or FPEV) at normal incidence, kx = 0, also a standing-wave. The final panel
shows the fields of the mode that would be the high-frequency standing-wave pair of
the ASW in the second panel, also with λx = 2λg. This requires fields with maxima
above the rigid-walls and not inside the cavities, and is thus not a trapped mode
but indistinguishable from a grazing-incidence radiative wave that exists at the point
where k0 =

kg
2 .
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radiative regime of figure 2.6. This is due to the lack of degrees of freedom available to

the near-field in such a simple grating structure, having only one cavity per unit cell,

which is so narrow (λ0 � w, excitation frequency is below each cavity’s corresponding

waveguide cut-off frequency) that on or below its fundamental FP resonance, it can only

support either a positive or negative anti-node. The accompanying ASW is present only

within the air, existing because of the effective impedance created by the evanescent

coupling of the periodic air-filled cavities. Hence, the anti-nodes in the pressure field

must be placed primarily inside the resonant cavities, as they are in panel 2 of figure

2.7, since without their excitation, there is no trapped ASW; the impedance mismatch

between the solid and the air is so great that the rigid-wall approximation is applicable,

which forbids the placing of the pressure fields inside the solid material that forms the

cavity surface (Indeed, the rigid wall approximation is necessary for the cavities to

become resonant44).

This is one consideration then where the electron band structure analogy breaks

down. Electrons in solids are existing charges that are perturbed by the imposed

ionic periodicity, whereas in acoustic impedance gratings, the periodicity creates the

‘charges’ (in the form of resonant cavities) to begin with, so the two concepts cannot be

separated. Hence when there is only one resonator per unit cell (as in the 1D grating

explained thus far), and the grating periodicity is significantly smaller than the cavity

resonant frequency (λg � λFP, thus a metamaterial) the rigid boundary condition

leads to a strict limit set upon the upper-branch high-energy standing wave that is

paired with the low-energy one localised in and above the cavities. To be π radians

out of phase with the low energy branch, the high energy branch must have fields

of zero within the cavities, with maxima above the metal surface (since the maxima

cannot occur within the rigid solid). Hence, the high energy standing wave cannot be

a non-radiative mode, as the cavities that create the finite impedance mismatch are

not excited. This high energy standing wave solution is thus ‘pinned’ at the frequency

of the boundary between the radiative and non-radiative regimes k0 where the density

of states in the air diverges84, effectively a grazing sound wave. Stated in terms of the

electron band structure analogy, the Fourier components of the periodic potential are

such that the high-energy standing wave solution at the first Brillouin zone boundary

has a potential approaching infinity. This is the mode in the 4th panel of figure 2.7

labelled ‘non-ASW’, which is clearly not bound in the z direction. As will be shown in

chapter 5, this limit can be overcome with the use of a compound grating structure,

where extra ‘charges’ are available in the form of multiple resonant cavities per grating

period, and the ASW is then able to reach higher values of kx. Also note, the separation

in frequency between the radiative high-energy standing-wave and the ASW standing

wave at the first Brillouin zone band-edge is not a band-gap (as it would be in the
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nearly-free electron model), because of the FPEV at normal incidence occurring at a

slightly higher energy than the low energy ASW standing wave (the separation between

these two is however a band-gap, marked as the shaded grey region in figure 2.6).

If the grazing-wave at the first Brillouin zone is the high energy standing-wave pair

of the ASW, this raises an important point about the nature of the FPEV mode that

is excitable at normal incidence in the radiative regime, as this is what the high index

branch evolved from at kx = 0. Thus, it is implied that the FPEV is the corresponding

upper branch to the ASW that continued to increase in wavevector from the first BZ

boundary at kx = kg/2 to the second BZ boundary at kx = kg, and has then been

band-folded back into the first BZ. Careful inspection of the pressure fields shown in

the 3rd panel of figure 2.7 that correspond to the FPEV excited at normal incidence

appear to confirm this. A weak phase-shift has occurred between each cavity, satisfying

the requirement to have a component of spatial wavelength of exactly
λg
2 , if this mode

was indeed band-folded from kx = kg; the ASW appears to have hybridised with the

originally radiative Fabry-Perot-like mode. However, this mode can not occur in the

purely non-radiative regime beyond the first Brillouin zone due to the lack of available

degrees of freedom (below the fundamental FP-resonance limit), so, while being surface

wave in character, it is not truly bound to the surface, and thus cannot be the upper

branch of the non-radiative ASW. This dilemma is the topic of the next section.

Note, at the other extreme, as kx approaches zero, figure 2.6 shows that the ASW

curves back toward the sound-line, eventually lying on it and being barely distinguish-

able from a grazing sound wave - it becomes ‘sound-like’. At kx = 0 the mode must

have infinite spatial wavelength and extend out to infinity in z from the grating surface,

and this is what is illustrated in figure 2.7 labelled as the ‘DC’ mode in the 1st panel.

2.7.6 The Nature of the Radiative Fabry-Perot Evanescent-Wave (FPEV)

There is one potential cause for confusion in the discussion of ASWs induced by

impedance gratings, regarding whether the ‘Enhanced Acoustic Transmission’ (EAT)

phenomena, i.e. the excitation of the array cavity-resonances at normal incidence in the

radiative regime, can be primarily considered a surface-wave process or a Fabry-Perot-

like resonance process. This debate is highlighted in particular by the work of Hou et

al.35 and Christensen et al.27, after the experimental observation of the phenomenon

required more explanation87.

Another way to frame the discussion is to ask whether the mode excitable at normal

incidence (labelled FPEV in figure 2.6) which appears to disperse, can be considered

the band-folded-from-kg (thus diffracted) upper branch of the non-radiative ASW, or

a resonant cavity mode that exists at normal incidence without the diffraction grating,
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as indeed it would. To resolve this, it is necessary to conclude that the mode is both of

these mechanisms simultaneously; the cavity-resonances hybridise with the diffraction-

grating-induced evanescent waves, causing the cavity resonances to become dispersive

but also causing the evanescent modes to become excitable in the radiative regime (i.e.,

the radiation impedance term Zr that determines each cavity’s resonance condition

has been fundamentally altered by the periodicity76). If the pitch of the grating λg

is short compared to the cavity depth L and thus resonant wavelength λFP ≈ 2L (i.e.

λg � λFP), then the mode is more cavity-resonance like, and if the pitch of the grating

is of the order of the cavity resonance wavelength (i.e. λg ≈ λFP), then the mode is

more surface-wave like. Hence, the labelling of the modes as Fabry-Perot-Evanescent-

Wave35 or as ‘leaky guided surface modes’27. Note, if λg � λFP, then the surface is no

longer a metamaterial and is thus not relevant.

A better understanding of the nature of the FPEV can be achieved with a plot

of the extended-zone scheme86, a useful tool in the discussions of surface modes and

their origin. The extended zone scheme illustrates the band-structure of the modes,

but without their band-folding back into the first Brillouin zone, thereby removing

the 2π degeneracy that allows modes from high kx to be excited at normal incidence.

Attempting to plot this for the ASW and the FPEV highlights the simultaneous nature

of the FPEV as both a radiative FP-mode and a diffractively coupled ASW. This has

been done in figure 2.8, which is the extended zone scheme representation of two simple

acoustic impedance gratings, a short pitch grating (top, λg < λFP) and long pitch

(bottom, large λg > λFP) grating.

The mode starting at kx = 0 and
λg
λ0

= 0 is the non-radiative ASW (red solid lines),

and has the same behaviour in both long- and short-pitch gratings, though in the long

pitch grating, at the first Brillouin zone boundary the ASW is much less confined to

the surface than that in the short pitch one at the same point. Now, in the short-pitch

grating (top panel of figure 2.8) the FPEV mode (solid blue line) is drawn originating

at normal incidence in the first Brillouin zone. In this short-pitch grating the FPEV

is flat-banded at small kx, then strong anti-crossing with the sound-line at high kx

gives it a positive curvature, losing its character as a fundamental FP-resonance as

it crosses the FP-limit and becomes indistinguishable from a grazing wave. The next

mode beyond this would be the ASW associated with the 1st order harmonic of the

cavity (green solid line). The top panel of figure 2.9, a plot of the pressure field ∆p

of this mode at normal incidence, appears to confirm the decision to place this FPEV

mode as originating at kx = 0. The cavities are so close together in this short pitch

grating that the fields above the cavity do not appear to go through the significant

phase-change along x between unit-cells that a mode originating at the point kx = kg

would require. In other words, the evanescent component is relatively weak, and it
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Figure 2.8: ‘Extended-zone-scheme’ dispersion plot for two impedance gratings,
identical except for grating pitch λg. The ratio of grating period λg to free space
wavelength λ0) is plotted against reduced in-plane wavevector kx

kg
. The top panel is a

short-pitch grating, where λg � λFP. The bottom panel is a long pitch grating, where
λg ≈ λFP. In each case, The solid red line is the fully non-radiative ASW, the blue
lines are the FPEV, and the green lines are the next mode who’s character depends
on λg, as explained in the main text. The dotted lines represent other viable locations
to draw each mode without the band-folding, included to highlight the break-down
of the analogy to the nearly-free electron model (see main text). Points marked A
correspond to the pressure field plots in figure 2.9.

behaves more like an unperturbed FP-resonance.

By contrast, in the long-pitch grating, the FPEV mode appears markedly different

in its character. It has a strong negative curvature that would appear to be negative

dispersion if the mode did indeed originate at normal incidence (dotted blue line),

where it is excitable. Inspection of its pressure field ∆p at normal incidence (bottom

panel of figure 2.9) reveals that there is a clear phase shift between each cavity above

the solid, thus it has the character of a surface wave of wavelength
λg
2 band-folded from

± kg with a relatively strong evanescent component. Hence, it would make sense to

draw this mode as belonging in the second Brillouin zone, which is done in figure 2.8

(solid blue line), and then in a reduced-zone scheme, band-folded back into the radiative

regime via diffraction (blue dotted line): it is surface-wave-like. An extra mode below
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Figure 2.9: Instantaneous pressure field ∆p maps of the primary FPEV modes
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are identical except for grating pitch λg. (Top) A short pitch grating, λFP � λg,
thus the FPEV is more FP-like. (Bottom) A long pitch grating, λFP ≈ λg, thus the
FPEV is more ASW-like. The pressure fields have been normalised to their maximum
amplitude.

the fundamental FP-limit has also been drawn in the long-pitch grating that was not in

the short pitch grating. This is the mode on the diffracted sound-line which the FPEV

mode has anti-crossed with, now sitting on the FP-limit. As this mode approaches k0,

it begins to look like a mode associated with the 1st order harmonic, just as this mode

looked on the short pitch grating if numbered the same way, which has been included

figure 2.8 (solid and dotted green lines). This changing character adds another element

of confusion, since the different FP harmonics begin to blend into each other under

heavy perturbation by a periodic grating, whereas on a short pitch grating they appear

to be well defined and separate. The argument about the nature of the FPEV mode at

the 1st harmonic then repeats, hence the inclusion of the two possible locations of this

mode (dotted and solid green lines).

Another important behaviour highlighted by the extended zone scheme representa-

tion is how beyond the first Brillouin zone (the non-radiative part of which is the only

truly non-radiative regime, as nothing in this region can be diffracted back into the

radiative regime), a true non-radiative mode is not supported with only one cavity per

unit cell. This can only occur if there is a second resonator present (i.e. a compound

grating structure, explored in chapter 5), or if the pitch of the grating is sufficiently
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long that the cavities can be excited near their resonant frequency and a full wavelength

in x can still fit between each cavity, though this would mean that the grating was not

a subwavelength one (λg � λFP), hence the impedance grating model would begin to

fail. The fields in figure 2.9 of the long pitch grating approach this condition, which

is why the FPEV is more surface-wave like, but it is still not truly a non-radiative

mode. Beyond the second Brillouin zone for this one-degree-of-freedom grating, there

is no feature present that appears to have a wavelength along x of a something that

originated in the third or higher Brillouin zones (i.e. having λASWx < λg/2), while also

being below the fundamental FP limit (and thus in the frequency regime in which the

impedance grating could be considered subwavelength). Hence, in figure 2.9, there is

simply nothing drawn in this region and beyond.

So, the conclusion to be drawn from the nature of the FPEV mode is that analogies

to solid state physics used to explain acoustic metamaterials need to be viewed with

caution. The existence of the ASW relies on the periodicity being in place to begin with,

so to speak of a mode being perturbed by the addition of a periodicity is misleading,

and care must be taken to explain the nature of each mode when a band-folding picture

is used. It may even be argued that to use the extended-zone scheme representation

as done above is invalid, since one can never have the ASW without the periodicity-

induced band-folding present. Similar conclusions were reached by Christensen et al.27

who remark on a fundamental difference between the oft-compared surface-plasmon-

assisted phenomenon ‘Extraordinary Optical Transmission’ and the acoustic version

(EAT through arrays of open-ended cavities): ‘In the acoustic case, these modes [the

FPEV modes] are not truly surface modes as the two surfaces of the plate are always

connected via a propagating wave. This fact provokes that acoustic guided modes

[ASWs] always hybridize strongly with the Fabry-Perot resonances associated with the

hole or slit cavities’.

2.7.7 The Effect of the Marked-Space Ratio on Acoustic Surface Waves

The size of the frequency band over which the ASW evolves from the sound-line to the

standing-wave condition depends on how strongly the cavities are coupled together,

determined non-trivially by the geometry that creates the diffracted evanescent fields.

A general rule is that periodic structure factors with a lower mark-to-space ratio will

increase the coupling strength between cavities and support ASWs that curve away

from the sound line in kx over a broader frequency range. This behaviour is illustrated

in figure 2.10, where the width of the slit-cavity w is increased in a grating of constant

pitch λg and depth L, and the resulting change in mode shape highlighted.

For the narrowest slit (highest marked-space ratio) the cavities are only weakly
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Figure 2.10: (Left) Dispersion plot of the modes supported by a typical impedance
grating, as the slit-width w is varied (neglecting thermodynamic losses). The ratio
of grating period λg = 12 mm to free space wavelength λ0 is plotted against reduced
in-plane wavevector kx

kg
. The solid lines represent the behaviour of the Eigenmodes

of the system, with different colours being different slit-widths. The dashed line is
the wavelength of the fundamental FP-limit for a 10 mm deep close-ended cavity, as
these are. (Right) Numerically calculated ∆p field plots for one unit-cell of a λg = 12
mm pitch grating at normal incidence (kx = 0), corresponding to the three different
slit-widths presented in the left-hand figure.

coupled, and both the FPEV and ASW are mostly flat banded, the FPEV being very

close to its FP-limit. For the widest slit, (lowest marked-space ratio) the FPEV and

ASW are far more dispersive, the curvature of the modes being apparent over a larger

frequency range. The frequency at which the FPEV occurs at normal incidence has also

decreased, due to the larger end-correction ∆L arising from the increased slit-width (see

section 2.6). Not shown here, is that a smaller mark-to-space ratio will also increase

the level of background transmission as more of the grating is just free-space. Also, the

width of each one of these frequency bands will be affected by the mark-to-space ratio

in a non-trivial way, with both thermodynamic losses and diffraction losses playing a

role.

2.7.8 A Note on Structures with Periodicity in Two-Dimensions (Bi-

Gratings)

The shape of the first Brillouin zone and consequently all of the rest for a in two-

dimensional reciprocal space (e.g. a plot of kx vs ky) will depend on the Bravais lattice

of the metamaterial being studied82. For example, the Brillouin zones of resonant

elements arranged in a square-lattice will have a different shape and different set of

principal directions than a hexagonal or rhombic lattice. For a one-dimensional grating
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periodic in x, the position of the BZ boundaries is simply at every integer multiple of

kx =
kg
2 , having no dependence on the other directions. Throughout this thesis, all but

one of the periodic structures studied are one-dimensional in their periodic nature; the

square-lattice structure studied in section 6 will contain more information about the

Brillouin zones for a two-dimensional square-lattice. Also, in two-dimensional k-space,

the sound-line takes on the form of a circle, with radius k0 =
√
k2

x + k2
y.

2.7.9 Surface Acoustic Waves

A brief note on the Surface Acoustic Wave (SAW) is necessary, to avoid confusion over

the similarity of terminology, and clarify that they play no part in the Acoustic Surface

Wave (ASW) mechanisms introduced.

When sound propagates through a solid, the acoustic wave equation changes dra-

matically62, since as well as the longitudinal pressure waves that exist within a fluid

(P-waves), there are also shear waves (S-waves) that result from the strong restoring

force acting on molecules tightly bound to the solid lattice, which can be polarised.

There is another special subset of trapped surface waves in solids, known as ‘surface

acoustic waves’. There are many types of surface acoustic wave63, and they have long

been a subject of interest, being the main cause of damage when an earthquake occurs,

or being useful in Piezoelectric devices. There also have been many studies on the

creation of phononic crystals, a class of metamaterials devoted to solid-based acous-

tics88,83,22,89,90.

The simplest of the SAWs is the Rayleigh wave, a type of SAW that exists at

the interface between an (infinite) solid and a vacuum, decaying away exponentially

from the boundary into the solid, and with elliptical particle oscillations (as opposed

to purely longitudinal). In this case, the vacuum actually constitutes any gas, since

the interaction between the Rayleigh wave and a gas is vanishingly small; the SAW is

completely confined to the solid medium. The penetration depth of a Rayleigh wave

into the solid is approximately one wavelength and it travels at around 95% of the

speed of the shear waves within the solid. At first glance, this sort of wave may appear

similar to the surface-plasmon in electromagnetism (a form of electromagnetic surface-

wave that is often compared to ASWs), but unlike the surface-plasmon, the Rayleigh

wave present on the flat boundary of a solid does not have a frequency dependence or

limit frequency (in an infinite system); it is non-dispersive. Also, it only decays into

one medium, not both.

Another type of SAW is the Sholte wave. This wave exists between a solid-fluid

interface, such as at the bottom of the ocean between sand and water. The Sholte wave

decays into both media, and does have a slight frequency dependence, but only if the
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fluid layer has some finite depth D, and then acts as a waveguide. In the limit of an

infinitely thick fluid (such as the ocean can be treated) this dependence vanishes. If

the fluid layer shrinks to zero thickness, this is actually the situation described by the

Rayleigh wave, hence is also non-dispersive. The Sholte wave is most similar to the

surface-plasmon as it exists in both bounding media.

Thirdly, at the interface between two solids, there exists a Stoneley wave. This is

the most complicated type of SAW, and decays into both solid media.

The final type of SAW is the Love wave, a type of shear wave whose particle’s

oscillate parallel to an interface rather than transverse to it like all of the others. It

can propagate within solid layers, but also be guided by the existence of a solid-fluid

interface, leading to its SAW classification.

Another key point; all of these SAWs exist when the solid is perfectly flat and of

infinite depth. When finite sized solids are studied, such as separate metal slats that

may make a slit-array, or large metal plates that could be drilled to make a hole array,

the speed of sound in metals is so high that the infinite plane assumption usually made

in the discussion of SAWs is no longer valid, and in treatment of the acoustics in the

solid one must consider the many types of highly shape-dependent plate modes that the

SAWs become, such as the set of Lamb waves or the flexural plate mode91. There are

many types of these plate modes that do indeed disperse, and which may be of interest

to future work regarding ASWs92, but in none of the samples studied throughout this

thesis do these modes play a role. This has been checked for each individual sample

via numerical modelling.

This brief outline of the various kinds of SAW hopefully satisfy the reader that they

are not relevant to the physics of the ASW studied throughout this thesis. All solids

are treated as perfectly rigid, meaning that by definition the SAW cannot exist, but

since this is an approximation, one might assume that the SAW does play a part, but

with the severe impedance mismatch between air and the solids studied, these SAWs

will not be excited with any significant amplitude. Of course if one replaces the air

with water where the impedance mismatch is far less severe, several of the modes which

may exist in the solid could become important.

2.8 Conclusion

In this chapter, the basic properties of an acoustic wave were introduced, including a

description of the loss free acoustic wave equation that can be used to describe the

majority of sound behaviour, and a detailed discussion of the treatment of thermody-

namic acoustic loss mechanisms which are involved in much of the experimental work

contained in this thesis. The details of how sound interacts with subwavelength rigid
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cavities were discussed, leading to the resonant conditions that depend on cavity geom-

etry. Finally, trapped acoustic surface waves were introduced, and how a set of resonant

cavities can be utilised to support them in a gas medium. Dispersion diagrams were

explained, and the basics of the interaction of the surface waves with periodic struc-

tures summarised. A brief description of the many kinds of solid based surface acoustic

wave was included. In the next chapter, the experimental methods used to measure

the behaviour of these coupled acoustic resonances are covered in detail.
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Chapter 3

Methods

3.1 Introduction

In this chapter, the methodology common to the acquisition of the experimental data is

presented. First, the basic principles behind the acoustic-signal processing method are

discussed, followed by a description of the equipment used to collect it, and the tech-

niques used to perform each sort of measurement. Two different types of experiment

are explained, one for far-field radiation measurements that can characterise transmis-

sion spectra, and one for near-field radiation measurements used to characterise the

dispersion of non-radiative surface modes. Other details on e.g. sample fabrication are

present, and a summary of the numerical finite element method is also included.

3.2 The Pulse Measurement Technique

To understand how the experimental samples interact with sound, their acoustic re-

sponse functions must be determined. This is achieved by probing them with a range of

frequencies, and comparing the resulting spectrum to a measurement made without the

sample in place. One way of doing this could be to have a speaker emit a pure sine wave

at a given frequency, perform the measurement with and without the sample. Then,

repeat the measurement while sweeping the frequency through some defined range,

thus collecting the amplitude response for a range of frequencies (Alternatively, ‘white

noise’ or ‘pink noise’ measurements could be used, which radiate all audible frequencies

at once, the latter containing a equal amount of energy in each). This ‘continuous-

wave’ (CW) method would provide a measurement in the frequency-domain directly.

However, this technique is not always preferable for acoustics.

For acoustic waves travelling through a gas or liquid, any solid crossing its path has

such a large impedance mismatch that it will act as a mirror and almost completely
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reflect the acoustic wave (see section 2.5). This is a serious problem, since anything solid

near the sample one wishes to characterise will generate reflections that are likely to

interfere with the desired signal. At lower audible frequencies, most everyday objects

will even have the sound diffract around them, which is not something that is easy

to control. Even the person doing the measurement could interfere with the result.

A second issue with acoustic CW measurements is that of background noise, with

the typical laboratory environment bristling with life and other loud machines. Low

frequency sound can penetrate walls easily, while other frequencies leak through gaps

present in doors or air-vents

There are some possible solutions to both of these problems. For example, air-

porous shaped foam panels are commercially available, capable of scattering the re-

flection of an incident sound wave into multiple directions, and absorbing some of the

energy through losses within the many small air pockets that form them93. However,

acting alone and over small surface areas, they offer only a partial improvement over

the plain solid surface. A sound isolated chamber with acoustic absorber padding posi-

tioned appropriately can be much more effective, as the sound will scatter off multiple

absorbing panels, losing some energy each time. However, building such an ‘anechoic

chamber’ requires a great deal of space and may be expensive. Another potential solu-

tion is to use a device known as an impedance tube, where the sample is placed inside

a tube who’s acoustic response is well defined under a strict set of conditions, allowing

the user to isolate the response of the sample. This piece of equipment however can be

rather expensive, is limited in size and frequency range, and difficult to calibrate94.

A much more cost effective solution is to do experiments in the time-domain, by

probing the sample with an acoustic pulse. The well-known Fast-Fourier-Transform

algorithm can then be utilised to extract frequency-domain information from the time-

domain signal. A detailed breakdown on what this commonly used signal processing

technique involves, including information on various post-processing methods, is pro-

vided in appendix A.

A short length in time corresponds to a broad range in frequency. Hence, if a signal is

excited with an acoustic pulse, a broad range of frequencies are probed simultaneously.

This method avoids the pitfalls of the CW method as the speed of sound in air (∼
343 ms−1 at Standard Temperature and Pressure44) is reasonably manageable; provided

objects are a certain distance apart, the frequency response of a sample can be probed

with a pulse, and the desired time signal recorded before any reflected signals can arrive

at the detector. As mentioned in appendix A, this ‘time-gating’ limits our frequency

resolution, but the distances required to delay the time signal reflections a sufficient

amount are not so large to be insurmountable. A sample with characteristic lengths of

order say 1 mm can be characterised before objects acting as mirrors greater than say 1
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Figure 3.1: (A) Time-domain plot of 4 different Gaussian-Sine pulses, with the
colours (labelled) representing different centre frequencies, from 4 − 10 kHz. (B)
Frequency response (limited to the human audible range) of the Gaussian pulses in A,
after zero padding has been applied. Colours correspond to those in A.

meter away can cause any problems. Another CW pitfall avoided is background noise -

the pulse happens in a fraction of a second when using frequencies of order of 5 kHz, so

fast that background noises are unlikely to be recorded coherently within the allotted

time-window (the period of time over which a signal is recorded). Also, any random

background noise that does cause a problem can have its effect reduced by taking the

mean of multiple repetitions of the pulse. If there is a systematic background noise, such

as the sound of an air conditioning unit, this unchanging signal can be accounted for

either via reference signals, or by redesigning the experiment to place important features

in a different frequency range. A further advantage of the acoustic pulse technique is

that the speed of sound is extremely slow relative to modern electronic signal processing

kits, hence relatively cheap measurement equipment provides adequate service (since

the speed of light is so high, similar time-domain measurements in, for example, the

electromagnetic optical spectrum, can present a formidable challenge).

An acoustic pulse can be tailored in many ways, but for the forthcoming experi-

ments, a simple Gaussian-shaped pulse sufficed, illustrated in figure 3.1. This is the

electronic pulse that is sent for the speaker to reproduce as sound, and as figure 3.1B

shows, it has a broadband response with no sharp features. The ‘centre frequency’ of

the pulse can be altered by having it occur over a shorter time span, as the differ-

ent colour lines in figure 3.1A represent, allowing the experimenter some control over

the amplitude distribution of the frequency spectrum. Also note that the frequency

response in figure 3.1B has been limited to between 20 Hz and 20 kHz, which is the
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typically quoted frequency range of the human ear, a.k.a. audio49.

3.3 Experimental Equipment
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Figure 3.2: Schematic of acoustic pulse kit used to collect experimental data.

Figure 3.2 is a schematic of the equipment used to perform the pulse technique

measurements throughout this thesis, with all utilised cable types and ports labelled

accordingly. A laptop programmed with LabView is connected to an Agilent 3200 series

signal generator, and a digital oscilloscope that is either a PicoScope 2206a series,

or a PicoScope 4262 series. The signal generator is capable of generating arbitrary

waveforms with frequencies in the MHz range, far beyond the kHz signals needed for

audible frequency range measurements. The two PicoScopes are digital oscilloscopes

that differ in their signal recording capabilities. The PicoScope 2206a has an 8 bit

amplitude resolution (one part in 256), with memory allowing recording of up to 12, 000

samples. The PicoScope 4262 can operate at a 16 bit resolution (one part in 65, 536),

and a memory that can record many millions of samples, which was necessary for the

high resolution field scans of later experiments. Both PicoScopes are capable of sample

frequencies that far exceed those necessary for the experiments.
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Figure 3.3: (A) Measured time-domain signals produced by three separate speakers
used during data acquisition throughout this thesis, with the Gaussian pulse centred
at 6 kHz. Signals are normalised to their own maximum. (B) Frequency-domain
data resulting from the FFT functions applied to the signals in A, with only audible
frequencies shown.

The signal generator is connected to a Cambridge Audio Topaz AM5 amplifier,

which then powers one of a variety of standard speakers. As audio equipment for the

reproduction of e.g. music is widely commercially available, almost any speaker will

suffice, as they are designed to have a broad response with no missing audible frequen-

cies. As such, three standard speakers available from the electronics store Maplin were

utilised, chosen based on their frequency response and type of experiment performed,

where ‘tweeters’ were used for the higher frequencies, and either mid-range speakers or

‘woofers’ for the lower frequency measurements. Where the approximation of a point

source was very important (such as in field scan measurements, section 3.5), a tapered

metal cone was attached to a ScanSpeak D3004 tweeter, which limited the sound pro-

duced through a 1 mm radius aperture without changing the response function of the

speaker significantly enough to change the result of any relevant measurements (as was

confirmed). Examples of some of a typical speaker’s response functions are in figure 3.3,

measured via direct transmission of a Gaussian pulse signal from speaker to microphone.

It is clear from the time signals that some of the speakers ring longer than others after

the initial pulse is sent (the difference in time signals from the speakers labelled 1 and

2 in figure 3.3 is very significant), and this causes them to have a narrowed frequency

response. Most importantly in all cases however, is that the signal strength does not

wildly oscillate between very low and high amplitudes across the frequency ranges of
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interest, hence any local minima can be easy normalised out. The effect of changing the

centre frequency of the Gaussian pulse (as in figure 3.1) on a given speaker’s response

function is shown in figure 3.4. A lower quality speaker is shown here to illustrate

that changing the centre frequency does not simply shift the frequency response; the

shape changes because the speaker may have internal resonances that will ring more

loudly when being driven by some frequencies than by others. This is most clear with

the 2 kHz signal in figure 3.4, where some sort of harmonic appears in the frequency

response at ∼ 7 kHz that does not appear when driven at 3 or 4 kHz centre frequencies.

Generally, the better a speaker’s quality the less this is a problem, and in any case, a

normalisation technique involving reference signals made the non-flat response a non-

issue (to be discussed forthwith). Note, the amplifier also has a response function, but

this is linear, stays constant between measurements and is thus also accounted for with

a reference signal normalisation, so long as the voltage is not so high that it causes

the speaker to deform and produce non-linear behaviour. This is tested by increasing

the voltage output until the produced time pulse starts to change shape rather than

just scale in amplitude (it is also strikingly obvious to the human ear when this change

occurs).

The speaker’s emitted signal is recorded via one of either two microphones. For all

transmission measurements (section 3.4), the Brüel and Kjær type 4190 microphone

was used, whereas for all field scan measurements (section 3.5), the Brüel and Kjær type

4182 probe microphone was used (see figure 3.5). Both microphones were necessary as

they have different specifications. The type 4190 microphone specialises in sensitivity,

allowing the accurate recording of very small amplitude signals that transmit through

some of the samples. However, this microphone has a relatively large, 1 cm diameter

aperture, which can significantly perturb near-field scans (see section 3.5), as the hard

surface of the microphone acts as a mirror to sound. It also provides poor spatial

resolution. The type 4182 probe microphone has a very small aperture protruding

from a long metal tube (which can be interchanged with others of varying length),

keeping the body of the microphone far away from the near field and recording near

field signals without disrupting them significantly, solving this problem at the expense

of sensitivity, which is sufficient for near-field signals but making it undesirable for use

in far-field measurements (see section 3.4). The response function of both high quality

microphones is flat up to around 5 kHz, but then rapidly diminishes as the frequency

is increased, as can be seen in the supplied documentation, scans of which are provided

in figures 3.6 and 3.7 for reference. In practise, it was found that useful data could be

recorded up to around 30 kHz. Both of these microphones are connected to a Brüel

and Kjær type 2690-A Nexus amplifier, allowing the user to adjust the sensitivity of

the microphones accordingly with a negligible effect on their response function.
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Figure 3.4: (A) Measured time-domain signals produced by a single speaker, driven
by a Gaussian pulse centered at various frequencies, labelled accordingly. Amplitudes
are normalised to the same number to allow cross comparison, which was the maximum
value found in the present signals. (B) Frequency-domain data resulting from the FFT
functions applied to the signals in A (after zero-padding), with only audible frequencies
shown.
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(a) Speaker drivers of different sizes,
placed near a ruler for scale

(b) Makeshift point source, consisting
of a metallic cone attached to a tweeter
and covered in blutac to reduce signal
leakage

(c) Brüel and Kjær type 4190 micro-
phone, used in transmission measure-
ments

(d) Brüel and Kjær type 4190 micro-
phone, used in transmission measure-
ments

Figure 3.5: Photographs of the sources and detectors used throughout experimental
measurements, labelled accordingly.

The microphone amplifier amplifies the microphone’s detected pressure fluctuations

(converted to an electrical signal via an internal actuator, whose response for the type

4190 microphone is also shown in figure 3.6, but was not shown separately in the equiv-

alent documentation for the type 4182 probe microphone) and sends it to the connected

digital oscilloscope (either a PicoScope 4262 or PicoScope 2206a) that can then sample

that signal for use in an FFT algorithm. To make sure that the oscilloscope’s recording

of time is synchronised to the pulse emission, it is connected to the signal generator,

which produces a rectangular ‘trigger’ pulse that signals to the oscilloscope that the

Gaussian pulse is about to be emitted. The time accuracy with which the oscilloscope

can detect that trigger pulse is determined by the sample frequency. For consistency

across measurements, it may be necessary to increase this to its maximum value to

ensure that all recorded pulses start measuring from as consistent a point in time as

possible, then discard surplus points after measurement. This is not an issue for far-

field measurements, which only record a time signal arriving at a single position in
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Figure 3.6: Frequency response function of the Brüel and Kjær type 4190 micro-
phone calibrated at standard temperature and pressure, obtained from the supplied
documentation. The actuator response is that of the internal mechanism that converts
the diaphragm’s free field pressure response to an electrical signal.

Figure 3.7: Frequency response function of the Brüel and Kjær type 4182 probe
microphone calibrated at standard temperature and pressure, obtained from the sup-
plied documentation, after the actuator has converted the pressure response of the
diaphragm to an electrical signal.
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space (with no phase information, only amplitude), but it is necessary for the near-

field measurements, since the time signals must be synchronised to each other as the

microphone is scanned across a coordinate grid from which phase information can be

determined. This sample rate setting and many others, such as voltage, bit-rate and

number of samples recorded are all controlled via the Labview program. In particular,

the sample frequency is set based on what is labelled by the digital oscilloscope’s brand

PicoScope as the ‘timebase’, an integer value with a minimum value of zero (highest

sample frequency). The equation that converts this number to a sample frequency and

allows the user to determine their time axis (hence frequency axis) depends on both the

model of the PicoScope, the bit-rate used, and the value of the timebase itself. Tables

for this information can be found in the programmers documentation95. The LabView

code also controls the signal generator, with parameters such as centre frequency, pulse

rate, pulse shape and pulse amplitude being set within the code.

3.4 Transmission Measurements

As has been alluded to already, there are two main types of experiment performed

throughout this thesis. The first one involves measurements where sound is projected

onto some sample, transmitted through it, then recorded on the other side. By com-

parison to a signal recorded with no sample in place, the transmission spectra of the

sample in question can be obtained. These transmission measurements concern the

far-field radiation component, i.e. the ‘radiative-regime’ (see section 2.7), where sound

interacting with the sample can couple to modes of the structure, and then re-radiate

into free-space.

Specifically, a sample will be set up such that a speaker and microphone are directly

or indirectly transmitting to each other, and the sample placed in the beam path, so that

to a good approximation, only signals that travelled through the sample are recorded

by the microphone. The specifics of how this sample is mounted and what kind of wave

(e.g. planar) was used to probe it change significantly depending on the experiment

and so will be detailed in the relevant chapters (these are chapters 4 and 5). However,

with the sample in place, the underlying method is identical for both.

A Gaussian pulse such as those in section 3.2 is sent to the speaker, which will

then produce a pressure wave containing a broad range of frequencies, designed to

have most amplitude in the frequency spectrum of interest. This signal interacts with

the sample, is transmitted through it, and the resulting pressure signal recorded by

the microphone at a point in space. To improve the signal to noise ratio, this pulse

measurement is recorded at least 60 times (although this could increase to ∼ 1000

for some of the more sensitive measurements), with the mean amplitude for each time
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Figure 3.8: (A) Example of a time-domain pulse signal measured during an ex-
periment, in this case the transmission through a 0.5 mm width slit-cavity, as will
be explained in chapter 4. Red, Green and Blue lines represent the raw signal data,
the ‘no-gap’ signal, and the signal resulting from the ‘no-gap subtraction’ technique.
(B) Frequency-domain data resulting from the FFT functions applied to the separate
signals in A, with only audible frequencies shown. All signals have been normalised
to the speaker response function (see figure 3.3).
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coordinate taken as the final time-domain signal. This signal is passed to the FFT

algorithm, and a frequency spectrum obtained. Then, the sample is removed, and

the experiment is repeated, to provide reference spectra such as those in figure 3.3.

The two signals are normalised to the same measurement voltage and then the sample

signal is divided by the reference signal, accounting for the (linear) response of the

experimental circuit. Note, the sensitivity of the oscilloscope may need to change to

maximise amplitude resolution if the sample only transmits a small amount compared

to the reference, a particularly common issue with the 8-bit amplitude resolution of the

PicoScope 2206a, but this is trivial to account for when performing the normalisation.

This reference normalisation technique nearly isolates the transmission spectrum, but

is not perfect, as not all sound transmitted through the sample may come from where

it was intended. To correct for this problem, a ‘No-gap’ subtraction technique is used.

3.4.1 No-gap Subtraction

When the sample is in place, it is assumed the signal transmitted through it dominates

the signal reaching the microphone. However, sound can travel through any gap with

sound hard walls (section 2.6), and diffract around or reflect off of any solid object,

so there will be extra signal transmitted from imperfections present in the set up that

may interfere with the measurement. This is particularly true when the transmission

spectra is expected to be weak, such as when measuring transmission through narrow

slit-cavities in chapter 4, or at high angles of incidence when recording angle dependent

spectra in chapter 5. A simple technique can be employed to correct for most of this.

With the ‘no-gap’ subtraction, the experimenter can isolate the transmission through

the intended part of the sample from the unwanted transmission. To achieve this, the

intended transmitting area of the sample face is covered in a sound hard material that

fits its shape perfectly, and that sound hard material is covered in specialised sound

absorbing foam to minimise reflection. This is done on both incident and transmit-

ting sides. Then, the pulse measurement is repeated, and any signal that is being

transmitted to the microphone must come from somewhere other than through the

sample. While it is desirable to find and reduce the sources of this signal, it is not

always possible to completely eliminate them. Instead, the extra signal can be isolated

and subtracted (in the time-domain) from the transmitted signal intended for analysis,

and thus leaving behind only what was transmitted through the area that was covered

up. This method works very well, particularly when the transmitted signal is weak, as

shown in figure 3.8, an example of each of the component signals and their frequency

spectra. In this case, transmission through a 0.5 mm wide single slit-cavity was being

measured (see chapter 4), and it is clear that the isolated no-gap signal is having a
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significant effect on the recorded frequency spectra, since when it is subtracted, the

signal becomes a smooth peak with a significant reduction in noise.

3.5 Surface Wave Measurements

The latter half of this thesis, chapters 6, 7 and 8, concerns the characterisation of

acoustic-surface-waves (ASWs), outlined in section 2.7. Briefly, these are sound waves

that possess too much momentum to propagate away from the sample’s surface (i.e. are

in the non-radiative regime), and are thus ‘trapped’, evanescently decaying away from

the surface normal. They arise from near-field diffractive coupling between acoustic

resonators, such as periodically arranged open-ended hard-walled cavities. The far-field

measurement techniques are thus of no use, since with this method only modes which

can couple to free-space waves (i.e. the radiative regime) will be detected. Instead,

a near-field measurement technique must be used, which will allow the recording of

information present in the non-radiative regime. To achieve this, both a speaker source

and a probe microphone must be placed very close to the sample surface, to both

evanescently excite and detect the ASWs with as good a signal-to-noise ratio as possible.

Directly measured ASWs will be characterised via their dispersion in k-space rather

than their effect on the transmission coefficient, and to do this it is important to measure

accurately how the near-field varies across the sample surface, thereby providing a 2D

pressure field ‘map’. In this section, each part of this process is explained in detail.

Unlike the far-field measurements, all of the near-field measurements in this thesis use

the same set-up, and will be fully described here.

3.5.1 XZ Translation Stage

To create the required 2D pressure field maps, the Brüel and Kjær type 4182 microphone

probes the pressure field at a range of points in some grid. A specially designed XY

translation stage has been built to this end, and is illustrated in 3.9 (a real photo of

the probe microphone aligned to a sample is provided in figure 3.5d). There are two

precision stepper motors, one that drives the track of the two horizontal arms and thus

the x position of the probe microphone, and one that controls the track of the vertical

y arm, which has the probe microphone attached. Each of these motors are capable of

driving ∼ 5 µm steps, over a maximum area of 640× 640 mm. The probe microphone

has an aperture of ∼ 1 mm diameter, and the sample is aligned so that this aperture

is within 1 mm of the sample surface. The stepper motors can be programmed to

move in a grid of specified coordinates, such as a standard Cartesian grid, or a grid

based on the polar coordinates r and θ. The narrowest end of the source (not shown in
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Figure 3.9: Schematic of the XY translation stage, with the probe microphone
attached and an open-ended hole sample in place. The end of the source (not shown)
is placed inside one of the resonators, according to the sample type.

figure 3.9, but a real photo is provided in figure 3.5b) is placed behind the sample on

the opposite side of the scanning face inside one of the sample’s cavities. This way it

minimises free-space radiation direct through the air to the detector, it strongly excites

the first cavity resonance, and also it does not impede the probe microphone’s scanning

path. In samples with close-ended holes this is not possible, so the source was instead

placed at one of the sample ends with the normal of the speaker’s aperture parallel

to the sample’s surface (i.e. pointing along the same direction as the excited ASW’s

in-plane wavevector, usually kx). The sample itself is held in place with either a series

of simple clamp stands, or a specially designed frame. In each case, it is important

that the sample’s xy plane is aligned to the grid that will be scanned by the translation

stage, and also that the distance in z from the probe microphone to the sample is kept

constant and less than 1 mm (this will be affected by variations in sample thickness

and by it not being perfectly flat, but in negligible amounts).
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With the sample, source and microphone in place and the scanning size and resolu-

tion chosen, the sample can be probed in a method similar to that used for the far-field

measurements. The source emits a Gaussian pulse containing a broad range of frequen-

cies (as before), which will excite the ASW to be characterised. The microphone is then

moved to the next point on the grid, and the pulse measurement repeated. This process

continues until the time-domain pulse has been recorded at every position in the spec-

ified grid. To reduce background noise, the mean of multiple pulses can be combined

at each position, although the strength of the acoustic near-field is so great near the

source that this is a small problem. It is a bigger problem at larger distances from the

source, but this signal has proportionally less effect on the calculated dispersion of the

ASW.

3.5.2 2D Pressure Field Maps

With the time-domain data collected, it is then be combined into one file and plotted as

a function of position. This allows the creation of an animation in time that shows how

the pressure field propagated over the sample. Sadly, interactive paper does not exist

as I write this in 2017, so these often revealing animations can only be shown as part of

online supplementary material. What is possible however, is show the evolution of the

pulse with a select few time snapshots, or perhaps more usefully, perform a time-to-

frequency FFT (see appendix A) for the signal at each point, hence producing a picture

of the pressure field at a given frequency. An example of this sort of plot for the sample

used in chapter 6 is shown in figure 3.10, where features such as cavity resonators are

clearly visible in the oscillation of pressure amplitude. It is also possible to animate a

full phase cycle at each frequency - it is not known if the waves are travelling forward

or backward at each individually recorded point since the absolute phase information

was not included in the time signal, but how the signal changed relative to the adjacent

points is known, providing relative phase information in the chosen coordinate grid.

While inspection of the near-field pressure plots can prove useful for understanding

how an ASW behaves, it is not very good for actually quantifying the behaviour, since

there are so many waves with different wave momenta (or wave number/vector k = 2π
λ )

superimposed on each other. To do this, the dispersion of the ASW is explored, which

is a measure of how the wave vector of a mode in a specified direction changes with

frequency (dispersion relations are explained in detail in section 2.7.4). To obtain this

information one transfers from the real-space domain of meters and unit cells, to the

reciprocal-space (or k-space) domain of m−1 and Brillouin zones. This is achieved via

the spatial fast Fourier transform, or 2D FFT. As with the 1D time-to-frequency FFT,

the signal processing techniques involved are well known, though some details on the
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Figure 3.10: Examples of the frequency-domain data that can be acquired using
the XY stage method outlined in the text. The sample used is the square lattice of
open-ended holes from chapter 6, at frequency 11.65 kHz. Three different variables
are plotted as a function of position. (A) Instantaneous pressure field amplitude ∆p
at a temporal phase, (B) Absolute pressure field magnitude |∆p|.

2D spatial FFT process are included in appendix B. An example of the result of such

a technique is shown in figure 3.11.

3.5.3 Extracting Dispersion Relations

While examining the reciprocal-space images for individual frequencies is revealing, it

is often more useful to plot the dispersion relation which, as described in section 2.7.4,

looks at a cross-section in frequency of the Fourier magnitude of a specific plane in

reciprocal-space. Once all of the reciprocal-space FFTs have been calculated, this is

a simple task, as no new number crunching is required. A range of k coordinates are

chosen, such as along kx when ky = 0, and then the Fourier magnitude at each k is

plotted as a function of frequency. An example of the result of this process is shown in

figure 3.12. These plots are useful in that they allow one to visualise the band structure

of an ASW, which has the many benefits described in section 2.7.4.

The aformentioned method of spatial field characterization has been undertaken in

the electromagnetic case96,97 and also recently in the solid-acoustics case by Otsuka et

al.98 who used an ultra-fast imaging technique to measure acoustic pulses propagat-

ing through two dimensional phononic crystals, hence directly visualising the present

surface acoustic waves (section 2.7.9).
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Figure 3.11: Example of the use of a 2D Spatial FFT on a real dataset acquired
using the XY stage method outlined in the text. The sample used is the square lattice
of open-ended holes from chapter 6, at a frequency of 11.65 kHz. (A) Instantaneous
pressure field ∆p, plotted as a function of real space coordinates x and y. (B) Result of
the 2D FFT algorithm applied to the complex data in A, after the FFT-shift function
has been applied. Fourier magnitude is plotted as a function of k-space coordinates
kx and ky.

3.5.4 A Note on Colour Scales

Throughout this thesis, there are many data sets with three variables of interest that

are plotted as a colour map imposed on a two-dimensional grid. There are two types of

colour scale employed. For colour scales that oscillate about zero, such as any pressure

field amplitude plot (e.g. figure 3.10A), a smooth transition from blue to red is used,

with zero represented by white. This allows the reader to quickly determine the shape

of the wavefronts and the position of nodes, reducing the potential for illusions created

by sharp changes in colour, which is a common problem with the commonly used ‘jet’

colour scheme that does not account for the frequency response of the human eye, and

has some arbitrary colour at the mid-point. The second type of colour scale involves

any variable that starts at zero, such as the pressure magnitude (e.g. 3.10C) or Fourier

magnitude (e.g. 3.12). These plots make use of the R viridis package99, which contain

colour scales designed to be perceptually uniform to the average human eye, both in

colour and brightness. Combined with the use of a square root function applied to the

scaling designation to prevent the brightest features ‘washing out’ the weakest features

(except where absolute magnitude is important, such as in the transmissivity plots of

chapter 5), maximum detail is presented to the reader.
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Figure 3.12: Dispersion relation for this sample, plotting the Fourier magnitude
along unique directions Γ - X, X - M and M - Γ (points of high symmetry in the
reciprocal space of the square Bravais lattice82) as a function of frequency. Again,
important features have been highlighted, with the solid white lines representing the
sound-line k0 = 2πf

c and the dotted white lines the position of the first Brillouin zone
boundaries. The frequency ‘slice’ of k-space that 3.11B and 3.11C correspond to are
highlighted by the position of the dot-dashed white line.

3.5.5 Measurement Constraints

Ideally, when setting up near-field measurements, one would choose a coordinate grid

that spanned the greatest distance possible (for maximum k-space resolution), in the

smallest steps possible (to reach maximum k values), recording a sample for as long

as possible (for maximum frequency resolution) and with many repeats at each point

(to improve signal-to-noise ratio). However, in practise there are severe constraints

imposed by time of measurement, computer memory, and computer processing power.

A typical sample could be 80 unit cells long, with a periodicity of 8.2 mm, requiring

a spatial resolution less than 4.1 mm to avoid aliasing, ideally a distance incommen-

surate with the periodicity such as 1 mm. To scan a typical whole sample (or at least

the maximum area the XY stage allows) then requires a grid of around ∼ 600 mm2,

in steps of ∼ 1 mm in each direction. At each one of these points, a time signal with

around 10, 000 samples is recorded, which could take anywhere from half a second to

3 seconds depending on the number of averages used, with the information recorded

including pressure amplitude and axis position in both space and time. So, combining
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all this information, a quality scan will need to have 40, 000 high precision numbers

for 360, 000 different coordinates, giving a total amount of numbers of 14, 400, 000, 000.

Performing calculations on this amount of data in a reasonable time requires extremely

powerful computers, so realistically one must impose limits on what is recorded. As for

measurement time, with 360, 000 points at an average of 1 second each, not including

hard drive write speed and calculations to be done, the scan is already at an acquisition

time of 100 hours, or more than 4 days. Considering atmospheric conditions constantly

fluctuate, the conditions at the end of the scan could be very different to those at the

start, and that is assuming nothing goes wrong in those 4 days. One could tackle these

number problems with an increasingly expensive laboratory, but in practise this is not

needed. On the computing side, one can work out the minimum resolution needed in

each parameter to show the behaviour of interest thus limiting the data size. Also, mod-

ern programming algorithms such as the data.table package in the open-source Rstats

software are continuously updated, providing incremental improvements in calculation

efficiency From the time perspective, the measurements can be performed at less busy

times of day, such as overnight, where less averages are needed to reduce signal-to-noise,

allowing the measurement to finish before the environment changes significantly. The

most ambitious scan performed for this thesis was that of the two-dimensional array in

chapter 6, which took just over two days, and produced 92 gigabytes of raw data, which

is 11.5 times more than the RAM available in a typical laptop (as of 2016). Hence, a

specialised workstation had to be used for subsequent analysis.

3.6 Sample Fabrication

Presently the complex properties of sound when travelling through solid objects are

not of concern. Hence, when designing the acoustic metamaterials used in this thesis,

only the structuring of the material was of importance and not what it was made

of, provided that it was acoustically rigid (section 2.5). In practise, almost any solid

can be treated as perfectly-rigid when compared to air, as the impedance mismatch is

so huge. Indeed, even cellotape was found to satisfy the acoustically hard-boundary

approximation. Sample fabrication then becomes a matter of whatever is cheapest

to produce while maintaining its structure. For the first two experimental chapters,

Aluminium was cut to shape with standard metal-work techniques to create the various

slit-cavity structures. For the latter 3 experimental chapters, Acrylic was sent to a local

company to be precision cut with a high powered laser, which proved cheaper and faster

than drilling Aluminium, yet precise enough for these experiments. 3D printed samples

were also tested and shown to be viable, but studies of these are not included in this

thesis.
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3.7 Numerical Modelling - The Finite Element Method

Throughout this thesis, experimental results are compared to numerical simulations.

These simulations will arise from a set of fundamental equations that have no simple

solution (such as you might find with an analytical model), but by application of a set of

boundary conditions, numerical solutions can be calculated with brute force computer

power. This achieves several things. First, if the models predict the same behaviour

as the experiment shows, then it is confirmed that important physical variables have

not been omitted. Secondly, once it is ascertained that the model is predicting the

correct behaviour, it can be used to extract detailed information about the experiment

that cannot be easily measured with the equipment, for example, the shape of the

fields contained within a small resonant cavity, or how the particle velocity field ~v

varies. Expanding on this, purely numerical experiments can be performed to test

what happens if some fundamental variable is altered, such as the temperature of the

air, or what would happen if the air was replaced with some other medium. In this

way new experiments can be conceived of that would have been too expensive to test

on a whim.

There are many possible ways to numerically model a system, one such being the

modal-matching technique mentioned in section 2.7. In this work, the ‘Finite-Element-

Method’ (FEM)100 is exclusively made use of, a computationally expensive technique

that has become gradually more feasible as computing power has improved. A geom-

etry is divided into a large amount of small mesh elements (usually tetrahedra in a

three-dimensional model and triangles in a two-dimensional one), boundary conditions

applied and material properties set, and a system of equations solved in each individual

element that all combine to produce a final result. The commercially available software

COMSOL Multiphysics101 has been used for this purpose.

3.7.1 Model Construction

The first step of the finite element method involves building a model of the experimental

environment one wishes to test. This starts with creating a basic geometry, and then

assigning parts of that geometry material properties, e.g. a solid cavity surrounded by

air. Exactly which parts of the geometry to include will depend on the experiment,

it is preferable to make the system as simple as possible. For example, a real three-

dimensional slit-cavity sample does not vary significantly along the breadth of the

slit, and can adequately be treated as a two-dimensional system with only two spatial

variables. An example of such a single slit-cavity model is shown in figure 3.13. In this

model and all others, the solid is treated as perfectly rigid, so the solid itself does not

need to be meshed for inclusion in the calculations (though this assumption was checked
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Figure 3.13: (A) 2D COMSOL model set-up for a non-periodic system, in this case
a single slit, with different features labelled accordingly. The bottom grey shaded half
is not needed due to the symmetry condition represented by the blue line. (B) Close
up of the boundary layer mesh that can be built to improve the mesh in sensitive
areas, in this case just at the edge of the single slit, and along its walls.

with the use of the solid mechanics module102 for each individual experiment). It is

only necessary to model the gas medium, hence the model includes only a narrow strip

of air (coloured purple) surrounded by two larger semicircles of air (coloured yellow).

The next step is to choose what conditions will apply at the geometry’s many

boundaries. A quick way to simplify the model is to look for any symmetries that

could reduce the necessary computation time. In this particular model there is one

symmetry plane along the middle at y = 0, highlighted by the blue line in figure 3.13A.

Next, the other boundary conditions are chosen. Bounding the slit-cavity, are walls that

have the rigid wall condition applied. The surrounding air is not bound by anything,

but it is not possible to extend the model to infinity, nor feasible even to the size of the

laboratory. Instead, a ‘Perfectly-Matched-Layer’ (PML) condition is used 3.7, which

is a region of space designed to simulate infinity by applying a complex coordinate

scaling that can absorb any incident radiation before it can hit the edge of the PML

and reflect, which would interfere with calculation of the fields in the model. This

works very well at most angles of incidence, but breaks down when a wave is incident

nearly tangentially to the PML. This means that the shape of the PML is important

and must be chosen carefully based on the geometry. In this case a semi-circle works

most effectively.

With the boundary conditions determined, the set of equations to be solved are

chosen. For acoustics, two systems are used. Where thermodynamic effects are not

significant (yellow regions), the COMSOL ‘Pressure-Acoustics’ (PA) model102 is used,

which solves the basic loss free acoustic wave equation, (in the form of the Helmholtz

equation 2.19), described in section 2.3. This module is computationally cheap, since
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it is used for regions of linear acoustics described only by a scalar pressure variable. It

allows for some basic modelling of loss, for example by adding an imaginary component

to the wave speed (see section 2.4), but for application to acoustic metamaterials, this

tends to be too simplistic, as will be examined in chapter 4. So, where necessary, such as

in the small acoustic cavities (purple) the ‘Thermoviscous-Acoustics’ (TA) module102

must be employed, which solves the linearised Navier-Stokes equation for fluid flow

(equation 2.23), as well as a detailed form of the equation of state (equation 2.22) hence

computing the intermolecular effects on acoustic variations of pressure, velocity, and

temperature that are outlined in section 2.4. This system of equations has many more

degrees of freedom than the simpler PA module, dramatically increasing computation

time. It also requires a finer mesh than the pressure acoustics module since there are

so many small scale mechanisms at play, particularly in confined spaces such as solid

walled cavities, where the complex interaction of sound with the viscous and thermal

boundary layers (section 2.4.3) must be accounted for correctly.

The next stage is to define the mesh that will determine where to solve the relevant

equations. The more dense the mesh the better, but this comes at the cost of computa-

tion time and memory. There is a great deal of literature regarding the optimisation of

this process103,104 but this goes beyond the scope of this thesis, and is mostly handled

by COMSOL’s internal programming. All the user needs to do is choose a basic maxi-

mum size of element. A good rule of thumb is setting this to be 5 times smaller than

the shortest wavelength of interest, though this figure might rise to 10 or even 20 in the

regions where there is spatially fast variation. To test whether the mesh is adequate,

COMSOL runs the model with a slightly finer mesh, and compares the result to the one

obtained with previous mesh density, by subtracting the fields at each point. There will

always be some variation, but the magnitude of the result of the subtraction is below

the tolerance level, such as 1 × 10−6, then the model has ‘converged’, and the mesh

is assumed to be adequate. An example of a typical mesh is shown in figure 3.13B,

which is a close up of the transition between the slit-cavity section and free-space. The

mesh in the yellow region is much less dense than the mesh in the purple section, since

the equations are simpler, and the unbound fields do not vary as significantly. Also

shown is how it is possible to apply special refinements to the mesh, such as defining

a boundary layer mesh. At the rigid cavity walls, the thermo-viscous boundary layers

exist (see section 2.4.3) and strongly affect the sound propagation even though they are

tiny (see chapter 4). The boundary layer mesh allows the user to increase the resolution

of the mesh in these regions, without slowing down the rest of the model.

Finally, the system of equations can now be solved to find specific answers. One

way of doing this is to use the Eigenvalue solver. This type of solver explores the

shape of the geometry supplied, and finds the frequencies of the unique fundamental
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Eigenmodes that will fit inside, by finding solutions for the relevant equations when the

field is initially zero everywhere (i.e. there is no source). This is very useful when trying

to find the shape of the modes that are being excited in the experiment, and also for

finding precise resonant frequencies. As will be explained, this type of model can also

be used to map the dispersion of a mode. However, it does not tell us about coupling

strength to the mode, only that it exists. To acquire that information, an acoustic

source can be placed in the model. This sort of driven ‘frequency sweep’ model will

find full solutions to the relevant equations at a set of desired frequencies as though

they were emitted by the source, coupling to multiple eigenmodes simultaneously. In

this way one can more closely simulate an experiment thus and determine transmission

or reflection spectra. Both types of model are made use of throughout this thesis.

3.7.2 Periodic Boundary Conditions

Figure 3.14: (A) 3D COMSOL model set-up for a periodic system, in this case the
unit cell of a one-dimensional array of open ended holes. The whole face on each
side (green) has the Floquet periodic boundary condition applied. Other sections are
labelled accordingly. (B) Example of the mesh used to solve for the arrangement
shown in A.

Another important feature to explain is the periodic boundary condition. Most of

the samples studied in this thesis can be broken down to one periodic unit-cell, repeated

in a given direction. An example of this would be the ‘line-mode’ sample in chapter

7, or the phase-resonant compound grating configurations in chapter 5. It would be

far too computationally expensive to model the whole sample, so instead the model

is split it into its unit-cells and the Floquet periodic boundary conditions are applied
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3. Methods

to each unit-cell boundary. An example of this is shown in figure 3.14A, which is a

single unit-cell of the line-mode sample from chapter 7. This 3D model is periodic

in one direction only, so only has one pair of periodic conditions, on the front face

(green) the back face (not visible). The periodic condition will set up the fields such

that they must be identical on either side of the unit-cell (normal incidence) or they

must have a specified difference in wavevector (oblique incidence). When using the

Eigenfrequency solver, this difference is not limited to the radiative regime, and modes

that exist with k beyond the sound-line (i.e. |k| > |k0|) can be found, allowing one

to map out dispersion relations for periodic structures. It is important that the mesh

elements have an identical layout on each periodic face, so that the fields are solved for

correctly.

3.8 Conclusions

In this section the important experimental techniques that underpin the results of this

thesis were outlined, and also looked at post processing methods that allow us to ex-

tract information about our results. First, the Gaussian pulse measurement technique

was explained, and a breakdown of all the equipment used to make such measurements

presented. The radiative-regime transmission measurement technique used in chapters

4 and 5 is explained next, followed by an explanation of the field measurement tech-

niques that allow the characterisation of acoustic-surface-waves, as done in chapters 6,

7 and 8. This includes a discussion of how two-dimensional pressure field maps can be

analysed with two-dimensional spatial fast-Fourier-transforms to measure the disper-

sion of a mode. A brief discussion of sample fabrication methods is included. Finally,

the finite-element-method that is used to produce numerical simulations of all of the

experiments contained in this thesis is explained.
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Chapter 4

Thermodynamic boundary layer

Effects on Acoustic Transmission

Through Narrow Slit Cavities

4.1 Introduction

Fundamentally, sound is a result of the vibration of adjacent particles in some medium.

This means that there are complex molecular effects at play, beyond the simple os-

cillation of a particle. Typically, when describing the propagation of sound though a

gas-medium over a short distance, it is safe to ignore these effects, thereby significantly

simplifying analytic or numerical calculations. However, this is not always the case.

One such manifestation of these molecular dynamics are the thermodynamic boundary

layers that exist on a rigid-wall, discussed in section 2.4.3.

Resonant cavities, such as narrow slits or holes, formed of hard materials, are often

utilised in the design of acoustic metamaterials24,87,79,39. When considering the propa-

gation of sound through air, it is common to consider any solid as being perfectly rigid,

as the mismatch between acoustic impedances can be phenomenally large (typically

of order 105, see section 2.5). Thus, thermodynamic boundary layers must exist on

any given cavity wall where the airborne sound is confined. This scenario was first

tackled by Kirchhoff4 nearly 150 years ago, who presented a detailed analysis of the

thermodynamic effects in an infinitely long narrow-tube, with many subsequent studies

exploring its implications54,55,57, including a specific treatment of the narrow slit-cavity

by Lord Rayleigh56. However, despite this full treatment, most of the recent acoustic

metamaterial studies do not incorporate thermodynamic effects; in the interest of sim-

plicity they are naively assumed to be negligible, which may seem justified given that
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the boundary layers are typically more than two orders of magnitude smaller than the

slit-width or tube radius of the cavities being used54,44.

In this chapter, the resonant transmission of airborne sound through slit-cavities

of subwavelength widths is studied, for both a periodic array structure and a single

element. It is found that viscous and thermal boundary layer effects become important

for slit-widths far greater than, as one might expect, the boundary layer thickness.

This is manifested through both a reduction in the effective speed of sound through

the apertures, and significant attenuation of the transmitted signal. Lord Rayleigh’s

prediction is compared to experimental results and fully verified, in the form of a

generalised analytic theory that Stinson57 derived from Lord Rayleigh’s work. Finally,

exactly how the different boundary layers manifest themselves is explored in some detail,

with results compared to the detailed analysis of Weston54 and Tijdeman55. This study

shows how the prevalent loss-free treatment of resonant cavities in the wider acoustic

metamaterial community is unrealistic.

4.2 Fabry-Perot-like Cavity Resonances

Consider a single, open-ended cavity of length L, enclosing air bounded by two in-

finitely wide, perfectly rigid parallel walls spaced w apart. Since, in a gas, sound is

a longitudinal wave, there will be no cut-off frequency or slit-width below which the

sound will not propagate through it. Instead, if the slit-width is much less than the

free space wavelength (w � λ0) sound will propagate through as a plane wave only44.

Hence sound of any wavelength incident upon the cavity will be guided through it, with

the impedance mismatch at each end causing partial reflections (see section 2.6). At

specific frequencies, determined mostly by the cavity length L, the reflections will form

a standing wave within the cavity. This will result in resonant enhanced transmission

via a Fabry-Perot (FP)-like resonance at frequencies given by:

fFP =
nca

2(L+ ∆L)
(4.1)

here n is a positive integer, ca is the adiabatic speed of sound, and ∆L is a correc-

tion to the cavity length that arises from diffractive end-effects, which to first order is

approximately 8w/3π75,44,2. Hence, when studying the transmission spectra of a slit-

cavity, it is expected that there will be a background transmission associated with the

mark-space-ratio, and a series of broad peaks that are predicted by the FP resonance

condition as described in section 2.6. Note that, in the case of the slit-array, the end

correction takes on a more complex form, as each periodically arranged slit-cavity can

couple to its neighbours via evanescent field. It is the collective excitation of periodic
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subwavelength cavities that leads to the acoustic-surface-wave (ASW) effects that have

been studied extensively in recent years74,87,27,28,105,35,79,106,107, and which the later

chapters of this thesis are concerned with. However, numerical models typically em-

ployed to describe them, such as the modal-matching model developed by Christensen

et al.27, or the analytic model developed by Wang28, do not take into account boundary

layer perturbation of these guided modes.

In the forthcoming experiment the effect of reducing slit-width w while keeping slit-

length L constant is explored. For both the slit-array and single-slit, the characteristic

resonant frequency f ′FP strongly diverges from the prediction of the simple FP analysis.

For narrow slits there is a significant reduction in the resonant frequency away from

equation 4.1 which is attributed to the thermodynamic boundary layer effects within

the air, present on each rigid wall.

4.3 The Viscous and Thermal Boundary Layers

For any acoustically rigid solid material bounding a fluid cavity, the particle velocity

tangential to the wall is forced to zero, i.e. the well known ‘No-slip’ condition44,8.

As illustrated in figure 2.2 of section 2.4.3, the tangential particle velocity gradually

evolves back to its original free space value with increasing distance away from the

wall, causing layers of different velocities to shear. This gives rise to a lossy viscous

boundary layer, having a characteristic thickness58:

δν ≈
√

ν

2πf
(4.2)

where ν is the kinematic viscosity. A second boundary layer arises due to the

heat exchange between the gas and the wall, which acts as an infinite heat-sink. In

free space, any heat generated by the rapid oscillation of the air particles cannot be

conducted to its surrounding regions due to the rapidity of said oscillation, the increase

in kinetic energy of the particle instead contributing to the speed of sound (see section

2.4.1). This is known as the adiabatic speed of sound ca, first calculated by Laplace.

Near the wall however, the heat generated is absorbed by the wall, reducing the speed

of sound to its isothermal value ci, which is the value first calculated by Newton,

who neglected to include the effect of heat56. The two are linked by the specific heat

capacity of the fluid γ, where ca
ci

=
√
γ (at standard temperature and pressure, ca and

ci are 343 ms−1 and 240 ms−1 respectively44). As with the viscous boundary layer, the

switching from adiabatic to isothermal speed causes a lossy thermal boundary layer,
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having characteristic thickness58:

δα ≈
√

α

2πf
(4.3)

where α is the thermal diffusivity of the gas (note, expressions 4.2 and 4.3 are√
2 smaller than the commonly used definitions (section 2.4.3), to be consistent with

Weston54, Tijdeman55, and Yazaki et al.58). The ratio between the two thicknesses

squared is known as the Prandtl number, σ = δ2
ν/δ

2
α, and for air it is ∼ 0.744. The

origin of the thermodynamic boundary layers is discussed in greater detail in section

2.4.3.

4.4 Boundary Layer Effects on Propagation of Sound Through

Tubes

A mathematical treatment of the propagation of sound through gas confined to narrow

channels was first sought by Kirchhoff4, who constructed a full solution which describes

waves propagating through infinitely long, circularly cross-sectioned ‘tube’ geometries.

This full treatment is complicated, being in the form of a complex transcendental

equation, but depending on the tube-radius-to-frequency-ratio, different assumptions

can be applied to define a set of regimes. Kirchhoff himself studied the ‘wide-tube’

regime, with Lord Rayleigh2 later including narrower tube geometries, and Weston54

many more such as the ‘wide-to-narrow’ transition regime.

One might naively expect that boundary layer effects would only become important

when the radius of the tube through which the sound propagates is of the order of either

δν or δα, which have a thickness of δν ∼ 20 µm at frequency 5 kHz (at atmospheric

pressure). However, a detailed analysis of Kirchhoff’s theory undertaken by Weston54,

showed that both the wave attenuation and the particle velocity across the entire tube

are affected by the boundary layers, even when they form only a tiny fraction of the

tube radius r.

Weston’s study54 detailed the various regimes where different mechanisms govern

the exact nature of the wave perturbation, depending on the precise ratio of the tube

radius to the frequency of sound. As mentioned, these regimes are called, for exam-

ple, ‘very-wide-tube’, ‘narrow-tube’ or ‘wide-to-narrow transition’, and differ by what

assumptions can be used to simplify Kirchhoff’s full equations. Generally, for the nar-

rowest cases the viscous layer dominates, since the entire tube becomes isothermal (i.e.,

the thermal boundary layers vanish), but for larger tubes, both viscous and thermal

mechanisms play a role. In 1975, Tijdeman55 was able to unify all of these regimes

into a general model, which more recently Yazaki et al.58 experimentally verified. They
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found experimental agreement in the predicated attenuation and phase velocity of a

wave propagating through an ‘infinitely’ long tube, over 4 orders of magnitude of tube

radii. A 10% reduction in the phase velocity of the pressure wave vp = fλ0 (λ0 =

free space wavelength) relative to the adiabatic speed of sound ca is exhibited when

the tube radius is roughly 10 times larger than the thickness of the thermodynamic

boundary layers.

Lord Rayleigh extended Kirchhoff’s solutions to the ‘parallel wall’ geometry (i.e.,

the slit)2,56, remarking that Kirchhoff’s treatment of tubes is still valid for slits with a

substitution of the slit-width w for tube radius r, a statement that (until now) had not

been verified by experiment. Stinson57 simplified Kirchhoff’s equations for tube cross

sections of arbitrary shape, including an infinitely long slit-cavity, finding agreement

with Lord Rayleigh, and providing a simplified method for predicting the phase velocity

of a confined sound wave.

While much attention has been paid to what effects thermodynamic boundary layers

have on confined sound, not much attention has been paid to their effect on diffraction

from periodic structures. There has been some recent work, with Homentcovschi and

Miles108,109 studying a non-resonant system of periodic, very thin screens (L � λ0)

with slit-widths of the order of the boundary layer thickness, also investigating the

acoustic attenuation. However, no research has explored the effect of boundary layer

perturbation on a resonant slit system, which is the focus of the current study.

4.5 Experimental Configuration

Figures 4.1 through 4.4 show the experimental set ups for the measurement of each

sample. To make the slit-array sample depicted in figures 4.1 and 4.3, thin aluminium

slats (d� λ0) of size 600× 2.9× 19.8 mm were stacked vertically in a wooden sample

holder, separated by sets of polyester spacers of sizes 0.05±0.01 mm, 0.1±0.01 mm, and

0.5± 0.03 mm, resulting in a sample area of width b = 560 mm by height a = 400 mm.

In order to have incidence sound approximate an infinite planar wave, the sample was

placed between two parabolic mirrors of radius 220 mm and focal length 1 m. One

mirror collimated a sound signal from a Scan-Speak D3004 speaker positioned at its

focal point; the other focused the sound to a Brüel and Kjær 4190 microphone. The

sample was positioned such that the collimated beam was incident normal to the front

face of the array of slit cavities. The transmission measurement technique outlined

in section 3.4 of the methods chapter was applied, including the no-gap subtraction,

to obtain transmission spectra for each slit-width. The experiment was repeated four

times for each slit-width, and the mean resonant frequencies were extracted from the

transmission spectra by the fitting of a Lorentzian function to each peak. Error bars
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Figure 4.1: (a) Simplified 2D Schematic of the slit-array experimental configuration.
The aluminium slats (shaded) were stacked vertically between two mirrors 3 m apart,
with a speaker and microphone placed at their focal lengths, 1 m away. The sample
stand was covered in acoustic absorber (black fill) and the beam path is indicated by
a dashed arrow. (b) Schematic of the slit-array sample itself, with dimensions labelled
(not to scale). Here, L = 19.8± 0.12 mm, d = 2.91± 0.03 mm, and λg = d+ w.
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Figure 4.2: Simplified 2D Schematic of the single slit experimental configuration.
The shaded blocks represent the aluminium sample, and the black blocks represent
an acoustic baffle. The microphone and speaker are ∼ 20◦ off normal in the xz plane,
covered in acoustic absorber (black), and separated from the sample faces by 220 and
400 mm, respectively. Here, L = 35.0± 0.1 mm.
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Figure 4.3: A representation of the slit-array experimental configuration. The
sample was placed on a set of level blocks, normal to the collimated beam produced by
the first mirror, where the pair of mirrors were 3 m apart. The speaker and microphone
were placed at 1 m from the mirrors, their focal length. The mirrors tilted so that
the beam path (labelled dashed white lines) relative to the speaker/microphone was
centred on the opposing mirror. The sample height is d = 400 mm, and the width
a = 560 mm. The wooden stage was covered in absorber where possible. (Inset) Real
photograph of a close up of the sample face, built with w = 0.25 mm, with the other
labelled dimensions described in fig 4.1.

Figure 4.4: A representation of the single slit experimental configuration. The
aluminium blocks that form the slit are separated vertically with polyester spacers
and held inside the wooden sample holder, which is covered in absorbing foam on
both entrance and exit sides. Both the speaker and microphone are wrapped in cotton
wool (not rendered) and directed at the sample, ∼ 20◦ off normal in the xz plane,
separated from the sample faces by 220 and 400 mm respectively. The width of the
sample face ha = 243 mm, while the height hb = 202 mm.
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represent the standard deviation from these means. This process was repeated for the

single slit case (Figures 4.2 and 4.4), with two blocks of aluminium of dimensions width

hb = 243 mm, height ha = 202 mm and depth Lss = 35 mm. The only difference

in the method was the lack of collimating mirrors. With only one slit in the sample,

a collimated beam was not required to approximate a planar wave since the phase

difference across the narrow gap is insignificant (w � λ0, i.e. the slit is below the

waveguide cut-off frequency discussed in section 2.6), and recording direct transmission

between the receiver and detector produced significantly stronger signals, offsetting the

problem of low total transmission caused by having only one slit-cavity for a signal to

pass through. Both the microphone and speaker were tilted ∼ 20◦ off the x axis and

covered in absorber to weaken standing waves set up between them and the sample

faces. Typical transmission spectra for both the slit-array and single slit samples are

shown in figure 4.5.

The samples were chosen to ensure that the slit-widths and array periodicities re-

mained subwavelength to incident sound (100w < λ0 < 300w, and 8λg < λ0 < 14λg),

avoiding any strong acoustic-surface-wave phenomena (i.e. the Fabry-Perot-evanescent-

wave supported by the slit-array was more Fabry-Perot-like than acoustic-surface-wave

like, see section 2.7.6). The measurements were taken under different temperatures,

pressures, and humidities, the latter two having negligible effect50. However, a change

in temperature alters the adiabatic speed of sound and thus the frequency of each res-

onance. To determine the size of this shift, an FEM loss-inclusive model (section 3.7)

was solved with different ambient temperatures, for a number of slit-widths, in the case

of both the slit-array and the single slit. A polynomial fit to the resulting resonant

frequency as a function of temperature then provided a value for the frequency shift of

1.64× 10−3f K Hz−1, hence all data points were normalized to 293.15 K.

In the slit-array, owing to random bowing of the slats and machining imperfections

in the aluminium, the slit-width was not constant across the area of the sample. Air

gaps that are slightly larger in size allow more signal through and may contribute more

to the overall response, particularly for the narrow slits, where the deviation in gap size

could be as high as 40% of that which was intended. To account for this systematic

error, all of the experimental slit-widths were increased by 40 µm from the measured

polyester spacer slit-widths, resulting in excellent agreement with the loss-inclusive

FEM model.

4.6 Experimental and Numerical Results

Figure 4.5 shows the transmission amplitude spectra for both the slit-array (left col-

umn) and single slit (right column) samples, for a variety of slit-widths. These spectra
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Figure 4.5: Transmission amplitude t (or Transmission magnitude for the single-
slit, as this is only a relative measurement) spectrum as a function of frequency,
for different slit-widths, from several data sources, labelled accordingly. The line
colour corresponds to slit-width w and is labelled in the legend. (Left column) -
Spectra for the slit-array sample, (Top row) - Experimental data, (Middle row) -
Thermo-viscous Navier-Stokes FEM model data, (Bottom row) - Lossless acoustic
wave equation numerical model. (Right column) As the left column, but pertaining
to the single slit sample.
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were acquired from both the experimentally recorded data (top row) and the frequency

domain solver of the finite element method (FEM) software COMSOL multiphysics

(detailed in section 3.7) with and without thermo-viscous effects accounted for (mid-

dle and bottom rows, respectively). The results of the multiple experimental spectra

recorded for each slit-width were then used to create figure 4.6, which shows the mean

measured fundamental n = 1 resonant frequency f ′FP of the slit-cavity vs the slit-width

w for both the slit-array (top) and single slit (bottom) samples. A dimensionless form

of this data is also shown, where the ratio of f ′FP to that predicted by the Fabry-Perot

condition (4.1) fFP is plotted as a function of the fraction of slit-width w occupied

by viscous boundary layer δν. Both experimental data sets are compared with nu-

merical data obtained from the eigenfrequency solver of the FEM model, again with

and without thermal and viscous contributions. Note, the eigenfrequency solver was

employed instead of fitting a Lorentzian to find the peak of the modelled frequency

spectra depicted in figure 4.5, as this method was both computationally faster and

more accurate.

Resonant frequency uncertainties at the smallest gaps are increased due to broad-

ening of the modes, as well as a reduction in the signal-to-noise ratio. For the array, the

largest gap resonances were also significantly broader, due to a reduction in the quality

factor caused by decreasing the rigid body filling-fraction w
d . These effects are visible

in both the experimental and loss-inclusive numerically-calculated frequency spectra

shown in figure 4.5.

For gaps where (δνw ) < 0.03 (i.e. w > 0.5 mm), the trend of the data agrees with

the predictions of the lossless FEM models (dashed blue lines in figure 4.6), which solve

the acoustic wave equation (2.18). The diffractive end correction ∆L is the dominant

physical mechanism shifting the resonance down in frequency in these regimes, increas-

ing with w. It has been confirmed that Christensen’s lossless model-matching model27

agrees very well with these lossless FEM models in both single element and array cases

(not shown here because it is too difficult to separate from the loss-free model), serving

to illustrate a typical model used in modern acoustic metamaterial research.

The important result for both samples is the marked deviation between the lossless

models and the experiment for (δνw ) > 0.03 (i.e. w ≤∼ 0.5 mm). To explain this, the

thermal and viscous properties of the air need to be incorporated into the FEM model.

This is done by utilising the linearised Navier-Stokes equation for a viscous fluid (2.23)

and setting tangential particle velocity to zero at the walls by applying the no-slip

boundary condition. Also, heat transfer between the fluid and solid walls is allowed

via use of the isothermal boundary condition and the equation of state (2.22). Figure

4.6 demonstrates good agreement between these more complete models (solid red line)

and the experimental data for all slit-widths. Hence, on a scale more than an order
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Figure 4.6: (Left Column) The fundamental resonant frequency of each slit-cavity
f ′FP plotted as a function of the slit-width w. The solid black circles are the mean of
the experimentally determined resonant frequencies, with the error bars representing
their standard deviation. The dashed blue lines represent a lossless FEM numerical
prediction, and the solid red lines a more complete numerical prediction that includes
the viscous and thermal properties of each system. The top and bottom panels repre-
sent the slit-array and single slit samples, respectively (labelled). (Right column) The
fundamental resonant frequency of each slit-cavity f ′FP, normalized to that predicted
by the Fabry-Perot condition fFP as a function of the ratio of viscous boundary layer
thickness δν to slit-width w. This is the dimensionless form of the plots in the left
column.
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of magnitude larger than the boundary layer thickness, these thermodynamic effects

are significant. Upon closer inspection, the results of the loss-free and loss-inclusive

models have not converged even for the largest measured slit-widths (( δνw ) < 0.03 or

w > 0.5 mm). Note: it is not just the position of the resonant frequency f ′FP that

the lossless equation fails to predict; inspection of the spectra obtained by said models

in figure 4.5 reveals the prediction of the resonance quality factor to increase with a

reduction in slit-width, in stark contrast to the drastic decrease that the experimental

and loss-inclusive model spectra demonstrate.

As the slits are narrowed, the influence of the boundary layers becomes more sub-

stantial, and there is a strong reduction in the resonant frequency attributed to a

decrease in the phase velocity vp (i.e. the effective speed of sound)54. This is because

the wavelength is fixed by the FP condition (4.1) that is tied to unchanging cavity

length L. It is important to note that the simplistic treatment of loss possible by in-

corporating the classical absorption coefficient αc in the wave equation, or by adding

a phase delay to the sound velocity in air (for both, see section 2.4), does not predict

this frequency reduction in the FEM model. Such treatment yields only part of the

increased signal attenuation for the narrowest slits, lacking both the complex shear

velocity information that the vorticity term in the Navier-Stokes equation accounts for,

and the thermal diffusion term from the improved equation of state. In addition, it was

checked that the ratios of slit-width to array periodicity w
λg

, slit-width to slat-width

w
d , or array periodicity to incident wavelength

λg
λ0

do not significantly impact on the

phenomena of interest, provided that λ � λg. The effects that the thermodynamic

boundary layers can have on some diffraction phenomena, i.e. when λ is of the order

of λg, are discussed in later chapters.

4.7 Comparison to Stinson’s Generalised Form of Kirch-

hoff’s Equations

To confirm Lord Rayleigh’s statement that Kirchhoff’s equations for a tube are applica-

ble to the slit-cavity, with a simple substitution of tube radius in place of slit-width56,

it is useful to compare the present results to such an analytic model. Calculating an

answer directly from Kirchhoff’s transcendental equations would be a formidable chal-

lenge, it is instead fruitful to use a model based on those equations but simplified to the

single slit-cavity case. Stinson has derived such a model57, providing solutions for the

wave vector k = 2π
λ0

of a wave travelling through an infinitely long slit of a given width

at a given frequency, from which one can extract the phase velocity vp. Application of

Stinson’s model to the present resonant slit geometry requires the determination of the
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Figure 4.7: (Left) Ratio of the calculated effective speed of sound vp to adiabatic
speed ca in each slit-cavity, as a function of the slit-width w. Triangular points and
accompanying error bars are experimental data converted from figure 4.6, with purple
and green representing the slit-array and single slit data, respectively. The dashed
lines represent the predictions of Stinson’s57 analytic theory for each sample, coloured
accordingly. (Right) Ratio of the calculated effective speed of sound vp to adiabatic
speed ca in each slit-cavity, as a function of the ratio of viscous boundary layer thickness
δν to slit-width w. This is the dimensionless form of the left figure.

characteristic frequency f ′FP in order to calculate the boundary layer thickness for each

slit-width. This was estimated from the loss-inclusive FEM model. Further, to directly

compare the experimental results with Stinson’s prediction for vp, the wavelength of

the fundamental resonance of the finite-length slit cavities corresponding to 2(L+ ∆L)

must be determined. This allows a calculation of vp by solving the Fabry-Perot equation

4.1. An estimate of ∆L that includes the effects of the viscous and thermal boundary

layers can be extracted from the FEM loss-inclusive model (and then applied to the

experimental data), using the relation

∆L = Ln=2 − 2Ln=1 (4.4)

where Ln=2 is the length of slit for which the n = 2 mode matches the resonant

frequency of the fundamental n = 1 mode for Ln=1. Applying (4.4) and then fitting

a polynomial to the calculated ∆L as a function of w allows one to determine an

approximate ∆L for any given slit-width. This was performed separately for the slit-

array and the single slit. Note, for a single slit, to first order ∆L = 8w
3π

75, so ∆L → 0

when w → 0. For a slit-array this diffraction-induced end correction has a different

form75, but it contains a similar dependence, and also tends to zero (the boundary
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layers do not significantly alter ∆L in this case108, confirmed by comparison between

the loss-inclusive and loss-free FEM models). Thus, for the smallest and thus most-

important slit-widths, any error in this estimation of ∆L is negligible, allowing the

calculation of the phase velocity vp for the experimental data using 4.1, plotted in

figure 4.7.

Figure 4.7 shows the dependence on slit-width w of the effective speed of sound

vp, as a fraction of the adiabatic speed of sound ca (at standard temperature and

pressure). The experimental results (triangular points) are compared with those derived

analytically by Stinson57 (dashed lines). Both samples are plotted simultaneously, with

purple and green colours representing the slit-array and single-slit samples respectively.

The separate data sets follow the same trend, but lie on different curves. This is because

of the different lengths L used for each sample (hence different fixed wavelengths), where

the array sample was Las = 19.80 mm, and single slit Lss = 35.05 mm. This can be

accounted for by scaling the slit-width as a ratio of boundary layer thickness δν
w , as

done in figures 4.5 and 4.6. This dimensionless form is shown on the right hand column

of fig 4.7. There is very good agreement between Stinson’s prediction for vp and the

experimental data across the whole range of measured slit-widths for both samples. The

change from infinite to finite-length tubes does have an effect on Kirchoff’s formulae,

however, as Weston54 remarks, this correction is negligible for all but the shortest

tubes, supported by the agreement between the present results and Stinson’s model.

The reduction in effective sound speed follows the same linear trend for both the

slit-array and single slit, confirming that it is the ratio of slit-width to thermodynamic

boundary layer size that is the important parameter. There is a negligible systematic

shift resulting from slight inaccuracies in the modelled prediction for ∆L. For the

smallest gap in the single slit case, where δν
w ≈ 0.18, vp falls by nearly 15%, consistent

with the results of Yazaki58 (substituting slit-width w for tube radius r) and thus

verifying Lord Rayleigh’s theory. Even when the size of a viscous boundary layer is

only 5% that of the whole slit, there is a significant ∼ 5% drop in vp, indicating that

it is unwise to use an idealistic loss-free model in the design of an airborne-acoustic

metamaterial.

4.8 Boundary Layer Effects on Individual Acoustic Vari-

ables

It is useful to use the FEM model to inspect in detail the loss mechanisms at work in

the present study, and compare the results with the analytic theory previously devel-

oped. As already mentioned, different solutions to Kirchhoff’s4 general tube equations
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Figure 4.8: Weston’s predictions for the behaviour of various quantities through
a cross-section of a tube, taken from figure 3 of his study54. (a) Amplitude of axial
particle velocity or temperature fluctuation, (b) amplitude of radial particle velocity,
(c) wavefront or equiphase surface.

result in the definition of separate regimes, the ‘narrow-tube’, the ‘wide-tube’ and the

‘very-wide-tube’2, depending on the ratio of tube radius to excitation frequency. We-

ston’s detailed analysis of Kirchhoff’s solutions included a boundary layer model that

was able to predict the dependence of particle velocity v across the tube, in both the

axial and radial directions, as well as the shape of the instantaneous phase fronts as the

sound propagates along the tube, all of which he plotted for the ‘wide-tube’ geometry,

presented here in figure 4.8. In Stinson’s57 further analysis of this problem, he adds

a plot of the excess temperature ∆T (which he labels T ′), the ‘trapped’ temperature

generated by the motion of particles that is not conducted away in an adiabatic pres-

sure wave (see section 2.4). Stinson also compares the variation of these quantities

between the wide-tube and narrow-tube geometry. For the slit-cavity scenario then,

the behaviour of the different variables should be identical, but for the substitution of

slit-width for radius.

Figure 4.9 shows the values of the tangential particle velocity amplitude |vx| in

the direction of the slit-length (equivalent to tube axial particle velocity), the normal

particle velocity amplitude along the direction of the slit-width |vz| (equivalent to tube

radial particle velocity), the excess temperature ∆T , and the shape of the phase fronts

represented by plotting |vp|, all plotted as a function of distance z along the cavity
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Figure 4.9: Various quantities plotted as a function of distance z along the cavity slit-
width, measured in mm. Values were extracted from the loss-inclusive FEM model
at a distance of 0.25L from the slit-cavity centre for both samples. The blue lines
correspond to a slit-width w of 1.00 mm, the red lines a slit-width of 0.15 mm. The
left and right columns correspond to the slit-array and single slit samples respectively.
(Top row) Particle velocity along the slit-length vx. (Second row) Particle velocity
across slit-width vz. (Third row) Excess temperature ∆T , measured in degrees Kelvin
difference from the ambient temperature T0. (Bottom row) Instantaneous particle
velocity vp, which is the shape of the phase fronts as they propagate through the slit.
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slit-width. Both the slit-array and single-slit are presented, with the blue and red

lines corresponding to slit-widths w of 1.00 and 0.15 mm respectively. All values were

extracted from the loss-inclusive FEM model, a slit cross-section taken at 0.75L (the

middle distance between nodes in the pressure and velocity fields, which, being π out-of-

phase with each other, are in opposite locations). By inspection of Weston’s54 table and

figure that define separate regimes, and also by using Yazaki’s58 definition of ωτ � 2

(angular frequency and thermal relaxation time, which Tijdeman55 used to unite all

of the different tube regimes under one mathematical framework, without having to

apply different assumptions to Kirchoff’s original equations), it can be seen that for

both samples, the slit-widths measured range from the ‘wide-tube’ regime, to the ‘wide-

to-narrow-tube’ transition regime, each of which have been chosen for representation in

figure 4.9. Yazaki’s experimental and theoretical work have been included for reference

in figure 4.10.

Comparison between our results and Weston’s/Stinson’s show that the behaviour of

particle velocity, excess temperature and phase fronts for the w = 1.00 mm slit matches

those of Weston’s and Stinson’s wide-tube predictions. In this regime, the motion is

mostly adiabatic; the thermal boundary layers do not overlap. Hence both thermal and

viscous loss mechanisms play an important role in the behaviour of the resonator. The

generation of a thermal wave occurs in the thermal boundary layer as excess heat is

conducted to the isothermal region, while the shear forces between particles generate

a lossy viscous wave inside the viscous boundary layer (section 2.4). These effects are

directly illustrated by the particle velocities |vx|, |vz| and excess temperature ∆T falling

to zero at the slit-walls. Note, the small peak in each of these values near the walls are a

result of the Bessel functions in Kirchhoff’s formulae. Toward the centre of the cavity,

|vx| and ∆T stabilise to their adiabatic values, while |vz| falls to zero - the normal

particle velocity switches sign across the cavity and integrates to zero, its effect being

to distribute the extra forces generated by the boundary layers at the walls across the

cavity cross section54.

The ‘narrow-tube’ regime differs from the ‘wide-tube’ one in that since the ther-

mal boundary layers have overlapped in the latter, the whole tube takes on Newton’s

isothermal speed of sound. Thus no loss can occur from conduction between adiabatic

and isothermal regions, the remaining losses are of pure viscous form (ignoring intrinsic

losses). The behaviour of the plotted quantities in figure 4.9 for the w = 0.15 mm slit

is closer to the behaviour of the ‘narrow-tube’ prediction shown by Stinson, although

strictly not falling into that category, as the thermal boundary layers have not quite

overlapped - it is clearly different to the wide-tube regime however, which is why a

transition regime definition was deemed necessary by Weston.

A different way to measure the contribution of separate boundary layer mechanisms
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Figure 4.10: Experimental and theoretical results of Yazaki et al.58 (figure 3 in
their work, where a detailed explanation is presented), showing the change in effective
speed of sound here labelled v through a long tube as a function of ωτ, explained in the
main text. Also shown (the data with a negative gradient) is the measured change in
signal attenuation caused by the boundary layers, represented by scaled propagation
constant β. The dashed vertical line represents the point at which propagation within
the tube becomes purely isothermal.

is shown by the FEM modelling in figure 4.11, which plots the contribution of the

thermal and viscous boundary layers to the resonant frequency f ′FP reduction separately.

This is achieved in the loss-inclusive FEM model by either reducing the kinematic

viscosity ν of the air to zero (thus removing the viscous boundary layer), or by reducing

the thermal diffusivity of the air α to zero (thus removing the thermal boundary layer).

The frequency ‘turn down’ is present when each type of boundary layer is isolated

in this way, once more confirming that, as realised by Tijdeman55, both the thermal

diffusivity and the viscosity contribute to the turn down and can be subsumed within

a single constant, the exact nature of amalgamation dependent on the slit-width. This

is perhaps a better way of interpreting Kirchhoff’s equations, Tijdeman55, showed that

S = r
δν

(r is the tube radius) is the universal parameter describing the propagation of

sound through narrow-tubes, allowing all regimes to be unified and showing that the

terms ‘wide-tube’ and ‘narrow-tube’ are arbitrarily defined (their results are presented

in figur 4.10). Using Tijdeman’s definition of when the sound propagation within the

tube becomes isothermal (ωτ < 2), it is predicted that slit-widths of ∼ 0.06 mm and

∼ 0.09 mm are required for the slit-array and single-slit samples to support purely
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Figure 4.11: (Left column) Data from the FEM model showing the fundamental
resonant frequency of each slit-cavity f ′FP plotted as a function of the slit-width w,
with the effect of separate loss components compared. The solid red line represents
the full lossy model with both viscous and thermal loss mechanisms present. The
dotted blue line is the result of ‘turning off’ the thermal boundary layer (by setting
α of the air to zero) , leaving just the viscous loss mechanism, with the green dashed
line being the opposite (by setting µ to zero). The dashed purple line is the result of
disabling both loss mechanisms. The top and bottom panels represent the slit-array
and single slit samples, respectively (labelled). (Right column) Generalised form of
the left column, where the fundamental resonant frequency of each slit-cavity f ′FP is
normalized to that predicted by the Fabry-Perot condition fFP as a function of the
ratio of viscous boundary layer thickness δν to slit-width w.
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isothermal propagation. Also note, with no kinematic viscosity ν, the sharp reduction

in f ′FP does occur at a smaller w, as the viscous loss that has been eliminated has a

larger characteristic thickness than its thermal counterpart in air (the Prandtl Number

Pr = 0.7).

4.9 Conclusions

In this chapter, the resonant transmission of sound in narrow air slits (100w < λ0 <

300w) through both a subwavelength periodic slit-array (8λg < λ0 < 14λg) and a

single slit-cavity has been measured for a range of slit-widths. It was found that slit-

widths an order of magnitude larger than viscous and thermal boundary layer thickness

showed a significant reduction in resonant frequency and substantial damping of the

resonance compared to the simple end-corrected Fabry-Perot condition and to lossless

modal matching models27. A detailed discussion of the thermodynamic effects that

cause this frequency reduction is included, with comparisons to work previously done

by Weston54, Tijdeman55 and Stinson57, where it is concluded that the boundary

layers cause a significant reduction in the effective speed of sound through each cavity.

Not only does this study show that boundary layer effects play a significant role in

slit-cavities where they only form a tiny fraction of the whole width (e.g. in a 1 mm

air-filled slit at 5 kHz), but it also opens up new possibilities for metamaterial design.

Irrespective of the solid material used, a simple rigid-walled cavity filled with air can

act as a broadband absorber, and the effective speed of sound inside it can be controlled

via the slit-width.
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Chapter 5

Acoustic Transmission Through

Compound Subwavelength

Slit-Arrays

5.1 Introduction

In the present chapter, the angular dependence of the transmission of sound in air

through four types of two-dimensional slit-arrays, each formed of aluminium slats, is ex-

plored. Both experimental and numerical methods are utilised. For a simple, subwave-

length periodic slit-array, it is well known that Fabry-Perot-like wave-guide resonances,

supported by the slit-cavities and coupled to diffracted evanescent waves, result in

‘Enhanced Acoustic Transmission’ at frequencies determined by the length, width and

separation of each slit-cavity (section 2.7). It is demonstrated that altering the spacing

or width of some of the slits to form a compound array (i.e. an array having a basis com-

prised of more than one slit) results in sharp dips in the transmission spectra, that may

have a strong angular dependence. These features correspond to ‘phase-resonances’,

which have been studied extensively in the electromagnetic case110,111,112,113,114,115.

This geometry allows for additional near-field configurations compared to the simple

array, whereby the field in adjacent cavities can be out-of-phase. This allows the exci-

tation and diffraction of trapped acoustic surface waves that posses a greater in-plane

wave-momentum than those supported by a simple grating structure. Several types of

compound slit-array are investigated; one such structure is optimised to minimise the

effect of boundary-layer loss mechanisms present in each slit-cavity, thereby achieving

a deep, sharp transmission minimum in a broad maximum.
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5.2 Background

The experimental discovery of Extraordinary Optical Transmission (EOT) through

subwavelength hole arrays19 opened a whole new area of research into how structured

resonant layers can affect the propagation of light. This research has been extended

to the acoustic case, where similar behaviour is observed, sometimes termed Enhanced

Acoustic Transmission (EAT)74,116,35,87,27,28 (not extraordinary, since below the acous-

tic waveguide cut-off frequency, longitudinal sound waves can still propagate as plane

waves through gaps/holes in rigid sound-hard bodies, as explained in section 2.6). The

observed phenomena for both electromagnetic and acoustic cases in such structures are

due to complex interplay between surface-wave (or surface-wave-like) modes and wave-

guide (Fabry-Perot-like) modes, the exact nature being dependent on many structural

parameters117,35,27,28.

Other types of transmission anomaly have been discovered in the electromagnetic

case that stem from EOT. One such anomaly is the ‘phase-resonance’, which appears

as a sharp dip in the transmission of transverse-magnetic polarised light through ‘com-

pound grating’ structures110,111,112,113,114,115. In the case of a two-dimensional metal

slit-array this can be achieved by having unequally-sized slits, or multiple slits in each

period (i.e. unequally-sized metal slats). In a singularly periodic grating structure,

symmetry requires that the fields in all slit-cavities are identical when excited by a

normally incident planar wave. Compound gratings introduce new degrees of freedom

to the near-field configurations, and at specific frequencies fields in adjacent cavities

may be both out-of-phase with one another and strongly enhanced111 leading to ‘phase-

resonant’ features in their electromagnetic response. Being simply a lattice/symmetry

phenomenon, there is an expectation that these phase-resonances will also exist in the

acoustic case118,106,119.

Here, the existence of the airborne acoustic phase-resonance is experimentally demon-

strated with a compound slit-array grating, where good agreement with numerical

model predictions is found. One of the grating structures is then optimised via mod-

elling to achieve stronger coupling to its phase-resonance excitable at normal incidence,

accounting for viscous and thermal boundary layer effects that have a significant impor-

tance in the phase-resonant coupling mechanism. Finally, the existence of the phase-

resonance is explained in terms of the band-folding of an acoustic surface wave, with

extra degrees-of-freedom available to the near-field allowing the ASW to exist at, and

hence be diffracted from, larger wavevectors. Being coupled to ASWs, different phase-

resonant configurations can occupy different energies depending on their structure fac-

tor, the finer details of which are also discussed.
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5.3 Sample Design and Experimental Set-Up

J = 1
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Figure 5.1: Schematic of a unit cell of each array sample (not to scale). The grey
blocks represent the aluminium slats that form the sample, of width wA = 2.9 mm,
and length L = 19.8 mm. The air gaps that form the cavities are the same size as the
slats, except for the J = 3b sample, where the central cavity wB has width 5.9 mm,
and the outer two have wC = 1.5 mm. Each sample has a period λg = 8wA = 23.2
mm.

The periodic unit-cells that form the experimental samples are illustrated in fig-

ure 5.1, and the measurement set-up in figure 5.2. J denotes the number of slits per

grating period, with J = 3a and J = 3b having the same number of slits but with

different slit-width ratios. Such gratings are formed of aluminium slats of size 600 mm

× 2.9 mm × 19.8 mm, stacked in a wooden sample holder, with small polyester spacers

used to create the appropriately-sized air gaps. The total sample area is 560 mm ×
400 mm, and it is placed with the slats vertical, on a rotating table, symmetrically

situated between two spherical mirrors 3 m apart, of radius 220 mm and focal length

1 m. One mirror collimates the sound of a speaker placed at its focal point, directed

so that the beam is normal to the face of the slit-cavities when the rotating table is set

to θi = 0°(normal incidence) producing a beam-width smaller than the sample face to

approximate an infinite sample size. The other mirror focuses the beam transmitted

through the sample on to a Brüel and Kjær 4190 microphone. The speaker is driven

by a signal generator producing a Gaussian pulse centred on 8 kHz, containing a broad
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Figure 5.2: To-scale schematic of the transmission measurement experimental set-
up, labelled accordingly. The speaker was placed at the focal point of the first mirror,
which directed the collimated beam toward the sample. The transmitted signal was
then focused on to the microphone by the second mirror. The sample frame was placed
onto a computer controlled rotating table, allowing control of the incident angle θi.
Acoustic absorber was placed at appropriate positions to reduce unwanted reflections
from the solid surfaces that make up the measuring kit (not shown).

range of audible frequencies. The sample is rotated over the range −2.5◦ ≤ θi ≤ 65◦

(limited by the sample size and frame), and the averaged time-domain signal from mul-

tiple pulses of the speaker for each angle is recorded by a PC-based oscilloscope. To

account for small leakage of the signal around the sample, a large sound-opaque slab

with anti-reflection absorber foam attached is placed on the incident side of the source.

Transmission measurements are then repeated for all angles, and the resulting data

subtracted from the original sample data in the time-domain spectra, leaving only the

signal transmitted through the sample holder. This is then Fourier analysed to obtain

the angular dependent frequency response of the sample. A reference spectrum for each

angle is obtained by repeating the experiment with only the wooden sample frame in

place, and used to normalise the transmitted signal in the frequency domain. Further

detail on this experimental method is presented in section 3.4.

5.4 Normal Incidence Transmissivity Spectra

Figure 5.3 shows the transmissivity spectra for each sample when probed at normal in-

cidence, as a function of the ratio of array periodicity λg to incident wavelength of radi-

ation λ0. Also included are the predicted spectra calculated using the Finite-Element-

Method (FEM) detailed in section 3.7. The red dashed line is the result obtained from

the model solving the lossless acoustic wave equation (equation 2.18), while the blue
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Figure 5.3: Normal incidence transmissivity T spectra as a function of the ratio of
array periodicity λg to incident radiation wavelength λ0 for each of the sample types
illustrated in figure 5.1. The solid black line is the experimental data, the short-dashed
red and long-dashed blue lines are the lossless and viscous-thermal loss-including nu-
merical model spectra for comparison. The diffraction edge for each experimental
sample occurs when

λg

λ0
= 1. Fluctuations in the ambient temperature are accounted

for in the calculation of λ0.
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long-dashed line comes from a model that solves the linearised Navier-Stokes equa-

tion (equation 2.23) and allows heat conduction within the air (equation 2.22), thus

accounting for viscous and thermal boundary layer effects at each rigid, sound-hard

wall, the importance of which, in the context of resonant-cavity-based metamaterials,

is discussed at length in chapter 4. The position of the onset of diffraction corresponds

to
λg
λ0

= 1. The calculated incident wavelength for each sample takes into account

changes in ambient temperature T0 between measurements which varied between 18 K

and 21 K, acting to vary the adiabatic speed of sound in air c. Atmospheric pressure

and humidity changes have negligible effect on these measurements50,44.

It is well known that sound incident on an air cavity bounded by two parallel, in-

finitely wide, rigid-solid walls of length L will have a broad transmission peak at a

frequency näıvely predicted by the Fabry-Perot (FP) condition, fFP = nc
2(L+∆L) , where

n is an integer (section 2.6), hence for the fundamental resonance, λFP = 2(L + ∆L).

There is a correction ∆L that takes into account end effects at the exit/entrance of each

cavity. For each flanged open-end of the cavity this correction is to first order approxi-

mated by ∆L = 8w
3π , w being the width of the slit75,28. When such cavities are placed in

an equally spaced array of period λg, such as in sample J = 1, the radiation impedance

term Zr (see section 2.7)that determines the end effect changes significantly28,76, re-

sulting in the build-up of diffractive evanescent waves71. As explained in section 2.7,

the coherent effect of these evanescent waves is to form a collective resonance, effec-

tively creating a finite impedance mismatch. This gives rise to an air-bound Acoustic

Surface Wave (ASW) that is guided along the surface of the grating but decays ex-

ponentially away from it. The enhanced fields associated with the ASW on each face

of the array couple together via the FP-like modes within the slit-cavities, forming

Fabry-Perot-Evanescent-Waves (FPEVs) (see section 2.7 for more detail). This is the

mechanism by which EAT can occur at specific frequencies, where on resonance the

effective impedance of the grating can match that of the air (excepting losses) and re-

sult in large peaks in its transmission spectrum76. Indeed, figure 5.3 shows two broad

peaks in the J = 1 spectrum, at
λg
λ0

= 0.5 and 0.92. These correspond to the first

and second order FPEV modes, with the frequency of the n = 2 mode perturbed by

the strong evanescent diffracted fields near the onset of diffraction (i.e., the waveguide

modes within the cavities are so strongly perturbed by the diffracted fields that the

FPEV is more ASW-like than FP-like). This mechanism has been studied extensively

in the past decade87,35,27,28,76.

The transmission spectrum of the J = 2 sample is little different, except for a slight

broadening of the FPEV modes and a small upward frequency shift due to a reduction

in the strength of the Fourier amplitude component of the grating profile that causes

first order scattering (and, as will be explained later, the ASW that hybridises with
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Figure 5.4: FEM simulations of the instantaneous pressure fields ∆p corresponding
to the three available eigenmodes ‘+ + +’, ‘+−+’, and ‘+ 0 −’, of the J = 3a system
when there is no net phase shift along x between unit cells, shown at a temporal phase
corresponding to maximum field amplitude. The colour scales have been normalised
with normalisation constants 2.19, 4.01 and 3.39 respectively. The three eigenmodes
have resonant frequencies which correspond to

λg

λ0
values of 0.54, 0.5 and 0.48 respec-

tively. These were calculated using a loss-free FEM model. The grey blocks represent
the aluminium slats, in the same orientation as illustrated in figure 5.1.

the FP resonance to create the FPEV now sits at a higher frequency). For the J = 3

samples, as well as further broadening and upward-frequency-shifting of the FPEV

modes, a new feature, the ‘phase-resonance’, appears in the low frequency wing of each

primary resonance. As described in the electromagnetic case by both Skigin et al.111

and Hibbins et al.113, this is because there is a new degree of freedom available to

the system. In the J = 1 and J = 2 cases, the fields in each adjacent cavity must

have identical phase at normal incidence, hence an incident planar wave cannot excite

a phase-resonance. However, with three cavities per period, the outer two slits have

different surroundings to the central one. Hence, by symmetry, two field configurations

can now be excited at normal incidence; all of the fields in-phase (labelled the ‘+ + +’

mode), and the central and outer cavity fields out-of-phase (the ‘+ − +’ mode, where

‘−’ corresponds to a phase shift of π radians relative to ‘+’). This is illustrated in

(both) figures 5.4 and 5.5.

Figure 5.4 shows the instantaneous pressure field of the eigenmodes of the J = 3a

system with no net phase change across the unit cell in the x direction (which simulates
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5. Acoustic Transmission Through Compound Subwavelength Slit-Arrays

excitation by a plane wave at normal incidence), calculated with the lossless FEM

model, and normalised to their maximum amplitude of ∆p, different for each mode.

The mode labelled ‘+ + +’ corresponds to the primary resonance at
λg
λ0

= 0.53, where

all of the fields within the cavities are resonating in-phase, with similar amplitude. This

is the FPEV mode that is highly radiative and results in the broad transmission peak,

with the maximum absolute pressure amplitude within the slits being 3.1 times greater

than in the incident wave. The second panel, with the mode labelled ‘+−+’, illustrates

the phase-resonance eigenmode that is excitable at normal incidence. The outer two

cavities are oscillating exactly π radians out of phase with the central one, which, as

the colour scale shows, has a greater field amplitude. Note, the maximum absolute

pressure field amplitude within the cavities has now become 55.7 times greater than

in the incident wave, a significant increase compared to the ‘+ + +’ mode, indicating

a stronger degree of localisation. Another interesting feature is the apparent standing

wave that has formed in the x-direction, seen from looking at just the top or bottom of

the slits; the cavity resonances appear to be coupled with each other within a single unit-

cell. There is a third field configuration available in the form of the anti-symmetric ‘+ 0

−’ mode, where the outer two cavities are π radians out-of-phase with each other, and

π/2 radians out-of-phase with the central cavity, in which there is no mode amplitude.

The J = 2 configuration supports a similar ‘+−’ mode, but in neither configuration

are these modes excitable by an incoming plane wave at normal incidence, as they

each have an opposite-phase degenerate pair and thus a phase-change along the surface

in the x direction is required to excite one of them (incidentally, a weak feature has

appeared in the experimental data for the J = 2 sample as the collimating mirror does

not produce a perfect planar wave, and allows weak coupling to one of these modes).

Direct coupling to any of the phase-resonant configurations is impossible as the pressure

field within the slit-cavities is out of phase with the incident field. Hence, they can only

be excited via coupling between slits, and appear as sharp dips in transmission within

the primary ‘+ + +’ FPEV resonance peak.

Another way of illustrating the phase-resonance is shown in figure 5.5, which is a

plot of the numerically calculated phase difference |∆φInner, Outer| of the velocity field vx

between the central and outer slits, evaluated at the mid-width of the transmitting side

of each slit-cavity. The structure was excited by a normally incident planar wave, with

varying frequency. For both J = 3a and J = 3b samples, at frequencies corresponding

to the position of the transmission dips in figure 5.3, the lossless acoustic wave equation

model (red dashed line) predicts a π radian phase difference between the slits, while

away from these resonances and below the onset of diffraction, |∆φInner, Outer| is close

to zero.

To obtain the strongest possible reduction in transmission at the phase-resonance
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Figure 5.5: Lossless (dotted red line) and viscous-thermal (solid blue line) FEM
models of the difference in the phase |∆φInner, Outer| of the tangential particle velocity
vx of the central and outer cavities, for the J = 3a and J = 3b samples, plotted as
a function of the ratio of array periodicity to incident wavelength

λg

λ0
. The predicted

diffraction edge is at
λg

λ0
= 1. Phases were evaluated in the centre of each cavity on

the transmitting side of the grating.

frequency, there must be perfect balance between the radiative and non-radiative losses

in the system. This is the well known ‘critical coupling condition’. Non-radiative

thermodynamic loss effects form a part of this balance and thus must be accounted for.

With sample J = 3a, the ‘+−+’ resonance is a weak feature in the experiment, only

reducing transmission by 15% at
λg
λ0

= 0.49, being much stronger in the second order

mode (
λg
λ0

= 0.94), reaching a reduction of ∼ 50%. The lossless FEM model, solving

the acoustic wave equation, predicts a very sharp, 100% deep resonance at
λg
λ0

= 0.49 in

the transmission spectrum. However, when viscous-thermal contributions are included

(via solving of the linearised Navier-Stokes equation 2.23 and allowing heat conduction

within the gas), which results in a much better agreement with the experimental data,

this resonance is significantly more damped. The effect stems from the viscous-thermal

boundary layers at the rigid, sound-hard walls, that cause significant attenuation of the

fields within the slit-cavities, as was measured in chapter 4. Note, it has been verified

that a simpler model including only a bulk-loss term added to the free-space acoustic

wave equation (section 2.4.3) does not predict the increased damping effect; once again,

it is the boundary-layer loss rather than the loss intrinsic to the air that is having such

a large effect on the resonances, despite forming a tiny fraction of each slit-cavity (in

this case < 1 %, an even smaller fraction than the largest slits studied in chapter 4).
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5. Acoustic Transmission Through Compound Subwavelength Slit-Arrays

Sample J = 3b is optimised geometrically to balance the radiative and non-radiative

loss effects as close to critical coupling as possible while keeping periodicity and slat-

size constant. This grating is a simple modification of the J = 3a sample, with an

inner-cavity-to-outer-cavity-width ratio of around four-to-one. As figure 5.3 shows, the

experimental data exhibits a much deeper, broader phase-resonance in both the funda-

mental and second order modes. Figure 5.5 gives extra insight into this phenomenon,

showing that the loss-inclusive model for the J = 3a sample predicts a maximum

|∆φInner, Outer| of ∼ 0.75π radians at the occurrence of the phase-resonance, while it

reaches ∼ 0.9π radians for the optimised J = 3b sample, thus displaying stronger

coupling to the ‘+−+’ eigenmode.

5.5 Mapping the Mode Dispersions with Angle-Dependent

Transmissivity Spectra

By recording angle (θi) dependent transmissivity data, the mode dispersion is mapped

and a greater understanding of their origin is attained. Figure 5.6 shows the trans-

missivity of each grating as a function of the ratio of array periodicity to incident

wavelength, and reduced in-plane wave vector kx
kg

, where kx = k0 sin θi and kg = 2π
λg

.

The simplest J = 1 grating exhibits a fundamental mode that is largely flat-banded,

being strongly localized in the slit-cavity with FP-like fields, where the cavity’s length

L and width wA are the dominant variables in determining the resonance position, the

surface wave hybridisation being of less importance. This mode starts from just below

the FP frequency at kx = 0, and only becomes perturbed as the diffracted sound line

from kx = kg is approached. There is similar perturbation of the second order FPEV

mode (
λg
λ0

= 0.9), although as this mode is far closer to the diffraction edge at
λg
λ0

= 1,

the periodicity and thus coupling between adjacent cavities dominate the position of

this resonance: the second order mode is more ASW-like than FP-like35,28.

Additional transmission dips become apparent in the response of the J = 2, 3a and

3b samples at
λg
λ0

= 0.5 and 0.1 ≤ kx
kg
≤ 0.4. These are the anti-symmetric phase-

resonances that can now be excited with the addition of a phase difference along the

grating surface111,113, associated with θi 6= 0. For J = 2, at high kx it is now possible

to excite the ‘+ −’ mode, were the two cavities are π radians out-of-phase. The J = 3a

and J = 3b samples also exhibit the additional feature, which has appeared on the

low frequency wing of the FPEV resonance at
λg
λ0

= 0.5. This corresponds to the anti-

symmetric ‘+ 0 −’ phase-resonance shown in figure 5.4. In all cases, one can see that

at least one of the phase-resonances has a strong kx dependence, indicating that they

are surface-wave-like in character. It is possible to deploy a surface-wave band-folding
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Figure 5.6: Transmission data illustrating mode dispersion for each sample illus-
trated in figure 5.1, labelled accordingly. The ratio of array periodicity to incident
wavelength

λg

λ0
is plotted as a function of reduced in-plane wavevector kx

kg
, where a

value of kx
kg

= 0.5 corresponds to the first Brillouin zone boundary. The left column

are the recorded experimental data, whereas the right column are the numerical re-
sults calculated by the viscous-thermal loss inclusive FEM model. For reference, a
solid green line representing grazing incidence k0 is included on each plot. The on-
set of first order diffraction is represented by the green dashed line. Fluctuations in
ambient room temperature are accounted for in all calculations of λ0.
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5. Acoustic Transmission Through Compound Subwavelength Slit-Arrays

picture to explain the dispersion relations in figure 5.6, like those introduced in section

2.7.4. To understand this it is helpful to plot the band-structure of each sample using

the extended zone scheme representation, i.e., by drawing the band-structure without

band-folding present. This is illustrated in figure 5.7.

Adding cavities to the structure of each periodic unit-cell opens up new degrees

of freedom to the system, and allows coupling of the phase-resonant near-field con-

figurations to diffracted fields (ASWs) that originate from the diffractive end effects.

Figure 5.7 is a plot of the underlying band structure of the eigenmodes of the J = 1,

J = 2 and J = 3a samples, in the form of a dispersion diagram with the same axes as

those in figure 5.6. The eigenfrequencies were calculated using the loss-inclusive FEM

model. Note that the thermodynamic losses strongly affect only the coupling strength

to each mode in this instance, the band structure changing with only a slight reduction

in the frequency of each band.

With one cavity per unit-cell, the J = 1 configuration has only two modes avail-

able (considering only first order cavity-resonance harmonics); the naturally radiative

primary FPEV resonance (denoted by the solid red line) and the low frequency ASW

(denoted by the solid blue line). The latter is only accessible in the non radiative regime

as it has in-plane-wavevector kx > k0. Here, k0 is represented by the black dashed line,

i.e. the ‘sound line’, this is the wavevector that a grazing incidence pressure wave would

possess. Since this structure has only one cavity per unit cell, and the sample walls can

be treated as perfectly rigid, the only degree of freedom available to the near-field is the

cavity being either a positive or negative anti-node, which is the fundamental FP-like

cavity resonance. This means that any mode that has a shorter surface wavelength λx

than the spacing of the cavities λg cannot exist in the non-radiative regime, as they

require a pressure field maximum within the walls, and zero within the cavities. This

is not possible, since the walls are effectively perfectly rigid (as discussed in section 2.7,

there may be a pressure maximum above the rigid walls in the non-radiative regime

only if λg > λFP, which would not be a subwavelength grating structure, hence not of

interest to this work). Thus, beyond the first Brillouin zone at kx =
kg
2 , the ASW ceases

to exist in the non-radiative regime - this mode instead hybridises with the otherwise

non-dispersive and naturally radiative FP cavity mode27,35. So, at normal incidence,

with band-folding (where the grating periodicity kg can be added or subtracted to any

mode, thereby scattering non-radiative modes into the radiative regime), only the pri-

mary FP-like mode which has surface wave character (an FPEV) is excitable. Note

that because of the ASW hybridisation, the FPEV mode is fixed at the crossing point

of the sound-line k0 at the first Brillouin zone, becoming just a grazing wave (see sec-

tion 2.7). The ratio of grating pitch λg to cavity length L (hence λFP) will determine

exactly how the FPEV evolves with kx.
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Figure 5.7: Dispersion diagrams showing the extended zone scheme representation
of the eigenmodes of the J = 1, J = 2 and J = 3a systems (all labelled), plotted as a

function of the ratio of array periodicity to incident wavelength
λg

λ0
vs reduced in-plane

wave vector kx
kg

. Individual eigenfrequencies were calculated using loss-inclusive FEM

models. The sound line k0 is represented by the black solid line. A horizontal black
dashed line represents the resonant frequency predicted by the Fabry-Perot condition
for a single open-ended slit-cavity. Integer and half integer values of kx

kg
correspond

to different Brillouin zone boundaries, which have been marked with vertical black
dotted lines. The solid coloured lines represent the different eigenmodes supported
by each grating structure, with colours signifying different field configurations. Red
is the naturally radiative FPEV mode, with blue being its fully non-radiative low
frequency ASW. Green is the ASW coupled to the low energy phase-resonance field
configuration, and purple is the ASW coupled to the high energy phase-resonance field
configuration. Eigenmodes associated with the next FP harmonic are not included.
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5. Acoustic Transmission Through Compound Subwavelength Slit-Arrays

When there are two cavities per unit cell (sample J = 2), there is another possible

field configuration apart from the FPEV ‘+ +’ mode. The adjacent cavities can now

oscillate π radians out of phase with each other, creating the anti-symmetric ‘+ −’ (or

‘− +’) phase-resonance. Now, it is possible for a ASW with a shorter wavelength in

x than λg to exist, since the extra anti-node per unit cell it requires can be satisfied.

Thus, the low frequency ASW which previously vanished from the non-radiative regime

above kx =
kg
2 now band-splits at this first Brillouin zone, and continues up to the next

at kx = kg. This mode is represented by the green line in figure 5.7, and in the

experiment, is band-folded back into the radiative regime by first order scattering from

kg, forming the deep, sharp resonance in the experimental data for the J = 2 sample at

high kx. Above kx = kg, the ASW again ceases to exist as a trapped mode; as before, it

requires another anti-node per unit cell, and this is forbidden by the lack of a possible

near-field configuration. Further, the creation of this extra non-radiative band by the

extra degree-of-freedom allows the radiative FPEV mode to increase in frequency from

k0 at the first Brillouin zone boundary (where it was previously fixed) since it is no

longer paired with the low frequency ASW; this mode now hybridises with an ASW

band-folded from a larger wavevector and thus at a higher energy than for the simple

grating. Hence, the FPEV mode rises in frequency (to its FP-limit), anti-crossing with

the diffracted sound line at a lower wavevector than before, eventually interacting with

set of ASWs that arise from the second FP harmonic (not shown in figure 5.7), as with

rising frequency the grating ceases to be subwavelength.

Finally, by increasing the number of cavities per unit cell to three (sample J = 3a),

yet another degree of freedom is available in terms of near-field distribution. There

is now the primary ‘+ + +’ configuration, the ‘+ − +’ mode, and the ‘+ 0 −’ anti-

symmetric mode. Thus, the three-anti-nodes-per-unit-cell condition required for wave-

vectors larger than kx = kg is satisfied, the ASW band-splits at kx = kg and extends to

the next Brillouin zone at kx =
3kg
2 , where the same pattern repeats, and beyond this

point the mode once again ceases to exist. The second order scattering at kx = 2kg

band-folds this ASW back into the radiative regime, resulting in the two sharp dips

seen in the experimental dispersion data for the J = 3a sample (the band structure for

the J = 3b sample is identical in shape since it has the same number of cavities per unit

cell, only the coupling strengths and frequencies have changed). This is illustrated in

figure 5.8, where the band-folded eigenmodes calculated using the loss-inclusive FEM

model are overlaid onto the J = 3a experimental transmission data. One can see that

the dips in transmissivity correspond to the diffracted ASWs. Once again the radiative

FPEV mode is able to rise slightly higher in frequency, as it has hybridised with a

higher frequency band-folded ASW than was previously possible. Using this band-

folding picture it is easy to see that every time one adds an air cavity to the unit-cell,
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Figure 5.8: Mode dispersion illustrated by the experimental transmissivity T data
for the J = 3a sample, with its numerically calculated eigenfrequencies associated
with the first FP mode overlaid, plotted as a function of the ratio of array periodicity
to incident wavelength

λg

λ0
vs reduced in-plane wave vector kx

kg
. The value of kx

kg
= 0.5

corresponds to the first Brillouin zone boundary. The solid black line represents the
wavevector k0 of a grazing incidence pressure wave. The onset of first order diffraction
is represented by the black dashed line, being

λg

λ0
= 1 at normal incidence (kxkg = 0).

The hollow points represent the different eigenmodes supported by the J = 3a grating
structure, with shapes signifying different field configurations. The triangles are the
naturally radiative Fabry-Perot like mode, circles are the ASW coupled to the ‘+ −
+’ phase-resonance and the diamonds are the ASW coupled to the ‘+ 0 −’ phase-
resonance. The squares are the non-radiative low frequency ASW which cannot be
seen in this transmission experiment.
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5. Acoustic Transmission Through Compound Subwavelength Slit-Arrays

a new degree of freedom is available to the near-field, hence a shorter wavelength ASW

is able to be band-folded back into the radiative regime, resulting in the appearance of

a sharp dip in the transmission spectrum.

5.6 Ordering of Phase-Resonant Field Configurations

The frequency ordering of the phase-resonant field configurations at normal incidence

is dependent on sample geometry. This is demonstrated by comparing the behaviour

of samples J = 3a and J = 3b (figure 5.6). For the identical-width-cavity J = 3a

case, one can see that the ‘+ 0 −’ configuration (not excitable at normal incidence) is

occupied by the low energy band with high curvature, while the ‘+−+’ configuration

is the high energy flat-banded mode scattered by 2kg. When the central slit is widened

to create the J = 3b sample, this behaviour is reversed, and now the low energy

band is excitable at normal incidence. This is because widening the central cavity

has redistributed the energies of the ASWs coupling to the ‘+ − +’ configuration and

the ‘+ 0 −’ configuration, where the ‘+ 0 −’ ASW now has the greater energy of the

two (possessing a sharper field gradient along x), and is at a higher frequency. The

FEM modelled phase-resonant field configurations at normal incidence for two adjacent

unit-cells, shown in figure 5.9 (with corresponding FEM modelled dispersion diagrams)

illustrate this mode switching behaviour. While it is clear the shape of the band

structure does not change significantly between the samples, the model does predict

the switching in frequency order of the field configurations, labelled modes 2 and 3 in

the figure according to the order in which they occur with rising frequency.

This ‘mode-switching’ highlights another important point regarding the discussion

of ASWs. At arbitrary values of kx, it is meaningless to assign ‘+ 0 −’ and ‘+ − +’

labels to each of the modes, as there is no standing wave formed across the grating

surface. This is only true when kx is some integer or half integer value of kg, hence

the surface mode phase change is commensurate with the grating periodicity λg (the

wavelength along x is the ASW wavelength, λx = λASW = 2π
kx

). In addition, such a

labelling system still breaks down at the first Brillouin zone kx =
kg
2 ; the π phase shift

across each unit cell in the x direction requires that two grating wavelengths be labelled

before the pattern repeats (λASW = 2λg). This is shown in the field configurations at

the first Brillouin zone boundary in figure 5.9. The phase shift of the ASW at this

wavevector results in, for example, the ‘+−+−+−’ or ‘+ 0 − − 0 +’ configurations.

Incidentally, the order of the field configurations at normal incidence bears no re-

lation to how they appear at this first Brillouin zone. At normal incidence, depending

on from which Brillouin zone the mode was band-folded, λASW is either λg or 3
2λg (or

higher if there are more degrees of freedom available to the near field). If the mode
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Figure 5.9: (Top) Dispersion diagrams showing FEM calculated eigenmodes of the
two J = 3 samples associated with the fundamental cavity resonance, plotted as a
function of the ratio of array periodicity to incident wavelength

λg

λ0
vs reduced in-

plane wave vector kx
kg

. The black dashed lines are the resonant frequency predicted by

the FP condition, the black solid lines are the sound lines k0±nkg. The coloured solid
lines represent the band structure of the ASW, with different colours corresponding
to different near-field configurations, as in figure 5.7. The purple and green lines have
switched order between samples to highlight the change in energy of the phase-resonant
field configurations at normal incidence. (Bottom Left) Instantaneous pressure field
configurations across two unit cells of the J = 3a sample showing the two possible
phase-resonant modes, at either normal incidence kx = 0 or at the first Brillouin
zone boundary kx

kg
= 0.5. The labelled numbers and kx positions correspond to those

marked by labelled black points in the corresponding dispersion plots. (Bottom Right)
The same, but for the J = 3b sample. Note that compared to the J = 3a sample, the
field configurations at normal incidence have reversed their order, while they have the
same character at the first Brillouin zone boundary.
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labelled ‘+ 0 −’ is at the higher energy and thus band-folded from 2kg, it will still

evolve to look like the ‘+−+−+−’ mode at the first Brillouin zone. The ‘+−+−+−’

configuration’s pressure field is forced through a π phase shift between every cavity as

at kx = 2kg, λASW = λg/2, so this field configuration always possesses a greater energy

than the ‘+ 0 − − 0 +’ configuration no matter what the sizes or separations of the

cavities are, as the latter has a wavelength of λASW = 2λg hence must occur at the first

Brillouin zone boundary.

A further change in behaviour is visible when the central cavity is widened. In the

J = 3b sample, the ‘+ 0 −’ mode is significantly weaker than it was for the J = 3a

configuration. Narrowing the cavities to 1.5 mm has both increased the quality factor

of the mode and increased the relative size of the viscous and thermal boundary layers,

leading to significant attenuation (see chapter 4).

It is also possible to reduce the frequency of the primary ‘+++’ FPEV mode down

below the ‘+ − +’ and ‘+ 0 −’ phase-resonances, if the ratio of grating pitch λg to

cavity length L is such that
λg
λFP
−→ 1. Perturbing the grating in this way can cause

the FPEV to cross the threshold whereby it can be considered more ASW-like than

FPEV like, splitting into two separate high frequency and low frequency modes due

to anti-crossing with the mode present on the diffracted sound-line at a low angle of

incidence (as discussed at length in section 2.7.6). Hence the low frequency FPEV

can then be considered part of the ASW band structure, whereby it may occur at a

lower frequency than the phase resonances. Indeed, careful inspection of the modes

associated with the second order FPEV (which has a resonant cavity wavelength λFP

of the order of λg) for both the J = 3 samples in figure 5.6 show that this has occurred.

While not included here, numerical models have shown it is also possible for the

phase-resonances to occur at a higher frequency than the primary FPEV mode without

changing the grating pitch λg. This is made possible by heavily perturbing the grating

structure, so that the two inner rigid slats are very thin and thus the three cavities are

very closely spaced (with periodicity constant). This increases the coupling strength

between cavities, so that they begin to behave as a single wide cavity, thereby increasing

the strength of the first order scattering Fourier component. This increases length

correction ∆L, hence reducing the resonant frequency of the primary FPEV mode.

The phase-resonances simultaneously rise to a higher frequency; the phase shift between

cavities has to occur over a shorter distance in x, increasing their energy as before. For

the grating periodicity of the samples studied in this chapter, where λFP ≈ λg
2 , the

anti-crossing and thus splitting of the FPEV mode occurs near grazing incidence.
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5.7 Conclusions

The existence of the acoustic phase-resonance phenomenon has been experimentally

and numerically demonstrated, by studying the transmission of sound through a two-

dimensional array of airborne metal slits arranged in four separate configurations. It

is found that increasing the number of slit-cavities per array period, while keeping

that period constant, opens up new degrees of freedom to the near-field. As well as

the standard coupling of the Fabry-Perot modes with diffracted evanescent waves that

result in broad transmission peaks, dips in the normal incidence transmission spectra

appear when there are three cavities per grating period, these being the ‘phase-resonant’

modes. The transmission of these structures is also mapped as a function of incident

angle θi, where it is found that extra field configurations can be excited with the addition

of a phase change across the grating surface, for any sample that has more than one slit

per period. With this information the origin of each feature is described with a surface-

wave band-folding picture; each mode is a diffractively coupled acoustic-surface-wave

band-folded from increasingly higher orders of diffraction (larger in-plane wavevectors),

which can be excited via the new field configurations. In addition, the importance of

including thermodynamic loss effects when modelling this sort of structure is once

again demonstrated. One of the samples is optimised with attenuation by viscous and

thermal boundary layer effects accounted for, resulting in measured broad and deep

phase-resonances that could be useful for the design of acoustic filters.
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Chapter 6

Acoustic Surface Wave Beaming

6.1 Introduction

In this chapter, the acoustic surface wave supported by a set of open-ended hole-

cavities arranged as a square-lattice is characterised. This bi-grating structure is found

to support an acoustic surface wave exhibiting strong ‘acoustic beaming’ over a nar-

row frequency band, whereby the acoustic energy is channelled into specific directions

forming ‘beams’ with a well defined width. This is visualised using the high resolution

near-field imaging technique detailed in section 3.5, which, from high quality pressure

field maps, allows direct characterisation of the reciprocal-space band structure and

the full dispersion of this surface wave. As well as providing new experimental insight

into the open-holed square-lattice configuration typically used to support for example

enhanced acoustic transmission35 or subwavelength imaging39, this chapter serves as a

demonstration of what can be achieved with the acoustic near-field imaging technique,

offering a contrast to the acoustic-line-mode-type samples studied in the forthcoming

chapters 7 and 8.

6.2 Background

Metamaterials typically consist of an array of ‘meta-atoms’, which are sufficiently small

that an impinging wave cannot resolve them fully. Possibly the simplest ‘meta-atom’

is a void in an otherwise rigid structure. At wavelengths much greater than their

periodicity, a regular array of such voids forms a two-dimensional metamaterial solid,

supporting the Acoustic Surface Waves (ASWs) introduced in section 2.7. Briefly, an

ASW bound to the material surface can exist when a periodic array of subwavelength

cavities, each supporting its own resonance, couple together over the array surface (in

the x-y plane, parallel to it) via diffractive effects and create an effective impedance
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condition71,27,76. One simple form of acoustic metamaterial consists of an array of

open-ended holes cut into a rigid body (which most solid bodies approximate to for

airborne sound: see section 2.5). However, as mentioned in section 2.7, both the exact

periodic arrangement and the shape of the resonant cavities have a significant effect on

the supported acoustic surface wave, not only in terms of the position of the asymptotic

resonant frequency (dictated most significantly by the depth and thus Fabry-Perot-like

resonant wavelength λFP of the cavities), but also in how the ASW band structure

evolves as a function of in-plane momentum components kx and ky.

One of the more common configurations is the square-lattice of either open87,35,79,27,28,39

or close-ended38,37 holes, the former typically involved in (but not limited to39) the EAT

phenomenon, the latter in subwavelength imaging or acoustic lensing. In this study, a

high resolution near-field acoustic imaging technique is utilised to characterise in detail

and visualise directly the trapped acoustic surface waves present on the open-ended-

hole version of the square-lattice configuration, where spatial fast Fourier transforms

can extract the mode dispersion in the non-radiative regime. It is found that in a range

of predictable frequencies, the array channels the ASW into specific directions, form-

ing ‘beams’ with well-defined widths, creating the potential for the control of acoustic

energy.

6.3 Sample Design and Experimental Configuration

The sample, depicted in figure 6.1, is a two-dimensional hole array, consisting of circular,

open-ended holes of radius R = 3.25± 0.05 mm, arranged in a 60× 60 element square

lattice. It was formed via laser cutting of an acrylic plate of sides 560× 560 mm (B),

with thickness H = 9.60± 0.23 mm. The separation between hole centres in both the

x and y directions is λg = 8.00 mm. This structure supports a trapped ASW on its

surface in the x-y plane, which decays away exponentially in the z direction. Exciting

and then measuring the ASW is made possible by using the near-field measurement

technique outlined in section 3.5. Briefly, it is achieved by placing the source inside one

of the sample holes and scanning a detector probe over a grid of coordinates in the x-y

plane, the probe being within 0.8± 0.05 mm of the sample surface in the z-plane. This

distance is much less than the wavelength of the fundamental cavity resonances λFP ≈
2H ≈ 19.60 mm (chosen to make the sample of manageable size and allowing the use of

audible frequencies), and thus detects the evanescently decaying fields associated with

the surface waves. Variation in sample thickness and slight bowing of the acrylic made

it impossible to maintain the same separation distance across the whole sample face,

but the maximum change of ∼ 0.3 mm has only a negligible effect on the measurements.

The chosen set of discrete points was a grid of 455×455 mm in steps of ∆x = ∆y = 1.25
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Figure 6.1: Schematic of the open-ended hole-array sample. The acrylic plate is a
square of sides B = 560.00 mm, having thickness (hole depth) H = 9.60 ± 0.23 mm.
There are 60×60 holes of spacing (periodicity) λg = 8 mm in both x and y directions,
and hole radius R = 3.25± 0.05 mm. A close up of a single unit-cell of the grating is
displayed in the inset.
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mm, satisfying (∆x = ∆y)� λg, thus preventing aliasing at wavevectors of interest in

the measured near-field. The choice of resolution was limited by measurement time and

data usage constraints. The mean ambient temperature during the measurement was

292.15 K, with fluctuations in this temperature, atmospheric pressure and humidity

being small enough to have negligible effect.

Once all of the time domain data had been collected, it was Fourier analysed,

providing a corresponding frequency spectrum for the signal at each coordinate. From

this the pressure field could be displayed at any measurement frequency as a function

of x-y coordinate, creating a map of the field’s phase and amplitude pattern at any

given instant (the process undertaken to produce figure 6.2). Finally, a spatial Fourier

transform algorithm was applied to each of these field maps (see appendix B), allowing

visualisation of the wavevector amplitude in reciprocal space (or k-space) at any given

frequency (figure 6.3), and thus providing the dispersion of the excited surface modes

(figure 6.4). The spatial pressure field maps were zero-padded to improve resolution,

and a standard Hanning window function was applied to remove Fourier transform

artefacts which result from the measurement area having finite width. More information

on these processes can be found in chapter 3.

6.4 Real and Reciprocal Space Pressure Field Maps

The plots in the top row of figure 6.2 (labelled A and B) show the experimentally

recorded instantaneous pressure field ∆p on the surface of the square-lattice sample at

an arbitrary temporal phase for two specific frequencies, 11.65 kHz (
λg
λ0
≈ 0.27) and

13.02 kHz (
λg
λ0
≈ 0.3) respectively. The bottom row of figure 6.2 (labelled C and D)

shows the corresponding absolute pressure field |∆p|, with a square root applied to

enhance the detail of weaker features.

These two frequencies have been carefully chosen to show the two kinds of ASW

that this sample supports. The low frequency images (figures 6.2A and 6.2C) are in

the deep subwavelength regime, where the periodicity of the grating is much less than

the wavelength of the sound λg � λ0, and here the ASW supported by the structure

propagates almost isotropically, hence, the pressure field looks the same in almost every

direction. Note that even though the radius of the cavity holes R is 3.25 mm, which

is only ∼ 9% of the free space wavelength at this frequency (λ0 = 29.42 mm), they

are still clearly visible in the pressure field map; the microphone is detecting near-field

radiation.

The higher frequency images (figures 6.2B and 6.2D) are at a frequency where the

grating pitch is still subwavelength (λ0 = 26.34 mm), but here the pressure fields in

figure 6.2B appear to be confined to the diagonal directions only, giving a distinct,
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Figure 6.2: (Top row) Experimental data showing instantaneous pressure field ∆p
(colour scale) at a single frequency, measured as a function of x and y coordinates over

the array surface. The plot labelled A is the pressure field at 11.65 kHz (
λg

λ0
= 0.272),

while B is at 13.02 kHz (
λg

λ0
= 0.304). The point like source was placed in one of the

central holes, positioned at the centre of these plots, x = y = 227.5 mm. (Bottom
row) Experimental data showing the absolute pressure field |p| from the same data
as used for the top row (where C corresponds to A, and D to B), with a square root
function applied to the colour scale to enhance detail.
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narrow ‘beaming’ effect. This is clearer in the absolute pressure field plot figure 6.2D,

where the amplitude decay length from the centre hole along either the vertical or

horizontal directions is much shorter than for the diagonal. This behaviour arises in

part because while the spacing of the nearest holes in the diagonal directions is
√

2

bigger than it is along the horizontal and vertical directions, the lines of holes are

closer by
√

2
2 (i.e. the mode has both kx and ky and can ‘zig-zag’ between holes along

the diagonal axis). This means that the frequency at which the ASW forms a standing

wave, and thus at which the group velocity vanishes, is higher than for the other

directions. Hence there must be a range of frequencies where the mode is propagating

in the diagonal direction but not the horizontal or vertical. Figures 6.2B and 6.2D

are at a frequency in this range. It is clear from these figures that the beaming is

quite strong and the beam-width narrow relative to the periodicity. This arises not

just because of the frequency gap discussed above, but also because the mode’s equi-

energy contour has very straight regions. This can be seen directly by inspection of the

reciprocal space corresponding to each individual frequency’s pressure field map.

Figures 6.3A and 6.3B are the reciprocal space plots that are the spatial Fourier

transforms of the pressure field plots in figure 6.2, with A and B being the low and

high frequencies respectively. The magnitude of the Fourier transform is plotted as a

function of kx and ky, centred on zero. The ‘grazing’ sound wave k0 = 2π
λ0

, which is

the maximum wave vector a propagating wave can possess along the surface plane, is

represented by the solid white circle k0 =
√
k2

x + k2
y. Anything within the radius of

this circle is in the radiative regime (kz is real-valued). Conversely, anything outside of

the circle, the non-radiative regime, has momentum greater than k0; the wave cannot

propagate from the surface into free space and is thus a ‘trapped’ wave, in this case

having an imaginary kz component. The dashed white circles represent sound circles

k0 ± nkgx ± mkgy (n and m are integers representing orders of diffraction) diffracted by

the periodic lattice k0 = 2π
λg

in which the holes are arranged. In this case, the periodic

structure is a square Bravais lattice82, hence having three principal directions: Γ-X, X-

M, and M-Γ, with the points of high symmetry Γ, X and M that define these directions

marked on figure 6.3. The boundaries of the first and second Brillouin zones for this

type of lattice are represented by the short-dashed and dotted white lines respectively,

while the plot axes terminate at the third.

Several important features are visible in these k-space maps. In the low frequency

spatial Fourier transform (figure 6.3A) there is a strong (bright), almost circular fea-

ture centred on the origin, with a radius just larger than that of the sound circle. This

is the trapped ASW that the array supports, arising from the coupling together of

sound in each neighbouring hole. Acoustic power flow is given by the energy gradient

in k-space, being orthogonal to the equi-energy contours82. At the low frequency the
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Figure 6.3: (A) Two-dimensional reciprocal space (k-space) plots corresponding
to the spatial Fourier transforms of the experimentally measured pressure fields at
11.65 kHz (

λg

λ0
= 0.272) (shown in figures 6.2A and 6.2C), plotted as a function of

reduced in-plane wavevectors kx
kg

and
ky
kg

. The colour scale represents the magnitude

of the Fourier transform. For reference, several important features are marked. The

solid white circle represents the ‘sound circle’ k0 =
√
k2x + k2y = 2π

λ0
, with the dashed

white circles being the diffracted sound-circles from the reciprocal lattice points. The
dotted straight lines represent the first and second Brillouin zone boundaries, with the
axes truncated at the third. Points of high symmetry for the square-lattice82 Γ, X
and M are labelled accordingly. (B) Identical to A, but for the pressure fields at 13.02

kHz (
λg

λ0
= 0.304) (shown in figures 6.2B and 6.2D).
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6. Acoustic Surface Wave Beaming

almost circular nature of the equi-energy contour gives nearly isotropic power flow, with

no significant differences between the principal propagation directions Γ-X, and Γ-M.

However, the slight difference that is present is the cause of the faint interference pat-

terns visible in figures 6.2A and 6.2C. Also visible as circular features are the diffracted

ASWs which mirror the original, but are centred on different reciprocal lattice points

k0 ± nkgx ± mkgy. At this frequency, none of these features overlap, as the periodicity

of the grating is much less than the freespace wavelength (λg � λ0). Note, the data

within the sound circle k0 can be disregarded as the experiment was not optimised to

accurately characterise the radiative regime.

The spatial Fourier transform of the higher frequency data is shown in figure 6.3B.

At this frequency, the ASW features that previously formed a circle now intersect the

Brillouin zone boundary and are distorted by the formation of standing wave band-gaps.

This results in the ‘beaming’ effect visible in figures 6.2B and 6.2D. The previously

almost circular equi-energy contours have become almost square, with the ‘square’

tilted 45◦ to the x-y directions. As mentioned, these straight portions mean that power

flow is channelled into the Γ-M directions, giving the strong beaming present in the

pressure field maps (fig 6.2B and 6.2D). As the frequency is further increased, the side

length of this 45◦ square is gradually reduced, consequentially increasing the width of

the beams in real space. Eventually, the squares reduce to points located on each of

the high symmetry M positions. Beyond this frequency, the surface wave ceases to

exist, as there is only one degree of freedom per unit cell and the standing wave with

its maximum amplitude between the holes and zero within them is not supported (see

chapter 5).

Similar ‘beaming’ behaviour has been documented in the electromagnetic infra-red

regime by Ulrich and Tacke120, though at the time their set up did not enable direct

visualisation of the surface waves. More recently, Dockrey et al.97 used an analogous

field scanning technique to that employed here in the microwave case, reporting both

strong beaming as well as a region of true negative dispersion present for a ‘Sievenpiper

mushroom’ array. In acoustics, this ‘beaming’ behaviour was utilised on a close-ended

hole version of the square-lattice array to achieve subwavelength imaging38, though,

being optimised to detect a small area of pressure field, the sample was too small and

experimental set-up too limited to directly extract the ASW dispersion.
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6.5 Dispersion of the ASWs Supported by the Square Lat-

tice

The dispersion curve for the ASWs supported by the square-lattice hole-array structure

is presented using the irreducible Brillouin zone representation in figure 6.4. This shows

the dispersion relation of the supported ASWs along each of the unique symmetry

planes Γ-X, X-M, and M-Γ normalised to the ratio of periodicity λg to wavelength λ0.

The solid white lines again represent the sound line k0. Above this line is the radiative

regime, and below it is the non-radiative regime. In the frequency range studied, all of

the X-M segment is beyond k0 and is thus non-radiative. The dashed vertical lines at

the X and M points indicate the edge of the first Brillouin zone. At the M point, this

dashed line also represents the edge of the second Brillouin zone. The low and high

frequencies to which the plots in figures 6.2 and 6.3 correspond are represented by the

constant frequency (horizontal) dotted white lines.

In the Γ-X direction, a bright feature is clearly visible in the non-radiative regime

(k|| > k0), which is the localised ASW propagating in the x direction. As k|| is increased,

the group velocity of the ASW drops and at
λg
λ0

= 0.29, the ASW reaches the first

Brillouin zone at k|| =
kg
2 , where the group velocity falls to zero and the mode forms a

standing wave along either the horizontal or vertical axis (i.e. along either kx or ky).

Changing direction and increasing k|| beyond this point from X-M (the ASW now has y

momentum with fixed x momentum, so k|| has both a kx =
kg
2 component and a varying

ky component) this standing wave becomes a ‘zig-zag’ state, remaining a standing wave

in x but simultaneously propagating along y. At the M point,
λg
λ0

= 0.32, a standing wave

is now formed in the diagonal Γ-M directions, where lines of holes are spaced closer than

in the Γ-X direction by
√

2
2 , thus shortening the effective lattice periodicity λg. Following

k|| from M-Γ shows the ASW having very similar behaviour to the Γ-X segment, except

over a broader frequency range. As highlighted, the two frequencies chosen for display

in figures 6.2 and 6.3 have an important difference. At the lower frequency, a slice

through k|| intersects a surface wave feature in x, y and the (x,y) directions, but at the

higher frequency there is no ASW propagating in the x or y direction alone. ‘Beaming’

will occur at frequencies between the two asymptotes, 0.29 ≤ λg
λ0
≤ 0.32, the beam-

width tending to be narrowest at the lower frequencies where the mode is most ‘flat’

and wide in k-space. Also plotted are Eigenfrequency solutions calculated using the

numerical finite element method, accounting for the thermodynamic losses discussed

in chapter 4. These show excellent agreement with the data (green circles), and it is

noted that thermodynamic losses act only to shift and dampen the resonance slightly

in this grating set-up.

Another detail to remark upon is the presence of dark bands in the bright ASW
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Figure 6.4: Irreducible dispersion diagram for the hole array sample, obtained from
the spatial Fourier transforms of the experimentally measured pressure fields on its
surface. The magnitude of the Fourier transform (colour scale) is plotted as a function
of the ratio of grating periodicity λg to incident wavelength λ0, vs in-plane wavevector
k||, which is the wavevector along the array surface parallel to directions Γ-X, X-M,
and M-Γ. These letters represent the points of high symmetry on the square-lattice
sample’s reciprocal lattice82, as marked in figures 6.3A and 6.3B. The two horizontal
dotted lines mark the frequencies corresponding to those displayed in prior figures 6.2
and 6.3. The numerically calculated dispersion is represented by the overlaid green
circles.

feature. The separation in k|| of these bands corresponds to the quantisation caused by

the finite-sized sample121; the sample edges act as mirrors, due to the abrupt change in

surface impedance. The dark banding is weaker and more closely spaced in the diagonal

Γ-M directions, as the quantisation corresponds now to the (x,y) direction, where the

square sample is both larger and has a less well defined edge. A final important detail,

or lack thereof, is the non-existence of an upper branch to this mode, due to there being

only one degree of freedom per unit cell. The addition of a second cavity per unit cell

to form a compound array would of course allow this mode to exist, as it did in the

phase-resonant compound slit-array configurations (see chapter 5), though exactly how

this occurred would require further study.

As the beaming is determined by the coupling between adjacent holes in the lattice,

some degree of control over its nature is possible with manipulation of the shape of

the resonant cavities (keeping periodicity λg and plate thickness H constant). For
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example, one could make the hole filling fraction much greater with the use of square

cavities rather than circular ones, each be separated by thin walls. This would enable

the fields in the cavities to couple over the surface more easily35,76, thereby increasing

the contribution of the end-effect terms that determine the cavity resonances and ASW

behaviour and perturbing the dispersion in such a way as to increase the range over

which the beaming would occur. However, doing so would simultaneously cause the

equi-energy contours to be less flat, as the power flow between the now-more-strongly-

coupled cavities is less restricted, hence the beaming would not be as narrow. Increasing

the hole filling fraction by having small radius holes would have the opposite effect,

reducing the frequency range over which the beaming would occur whilst narrowing the

beam-width. The ratio of periodicity λg to hole depth D would also play an important

role in the nature of the beaming, appropriately changing the coupling strength between

adjacent-unit cells.

6.6 Conclusions

A high-resolution spatial-imaging technique has been employed to measure the evolu-

tion in time of acoustic pulses over the surface of an acoustic metamaterial formed from

a square array of open-ended circular holes cut into a plate of acrylic. By recording, in

time, acoustic pulses propagating over the sample surface, and then performing spatial

Fourier transforms on the resulting two-dimensional field maps, it has been possible to

directly measure the fields and the dispersions of the trapped acoustic surface waves

supported by the structure. It is found that this kind of metamaterial supports a highly

anisotropic surface wave over a narrow frequency band, which leads to the ‘acoustic

beaming’ phenomenon, where acoustic power flow is confined to specific and predictable

directions. Design of future metamaterials could incorporate this phenomenon to con-

trol the flow of sound trapped on a surface.
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Chapter 7

The Acoustic Line Mode

7.1 Introduction

This chapter studies how a line of identical, equally-spaced holes cut into in a flat rigid

material can support a trapped acoustic surface mode: an Acoustic Line Mode. Its

dispersion is fully characterised for both a straight line of holes, and more interestingly

for a circle of holes. The existence of the mode for a curved line, the circle, illustrates

the potential for manipulating sound propagation by the simple use of lines of patterned

holes on a rigid surface.

7.2 Background

So far throughout this thesis, the samples of interest have all been varieties of two types

of resonant-cavity-based acoustic metamaterial; the two-dimensional square-lattice hole-

array (chapter 6) and each of the slit-arrays in chapters 4 and 5, which can be repre-

sented with only two dimensions but are treated as though extending infinitely into the

third. Indeed, in recent years, studies using different variations on these two dimen-

sional arrangements of either holes or slits have reported phenomena such as Enhanced

Acoustic Transmission (EAT)35,27, acoustic filtering122,123, collimation and focusing37,

and subwavelength imaging38,39, with more complicated hole arrangements like the

‘honeycomb lattice’ enabling phenomena such as negative refraction40, or acoustic ana-

logues to graphene124. These structures all utilise the trapped ‘Acoustic Surface Wave’

(ASW) phenomenon and thus share some aspects of their behaviour. The surface nor-

mal (z) dimension contains the hole depth or plate thickness that dictates each individ-

ual cavities resonant condition, the coherent coupling between these cavities enabling

the existence of the trapped ASW (see section 2.7). The remaining two dimensions in

the plane of the surface (x and y) dictate the band structure of the surface mode as a
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function of in-plane momentum kx and ky, changing band structure as well as coupling

strength. (Although, a study on how the band structure of the ASW in the slit-array

varies with ky has not been included in this thesis and to the authors knowledge, has

not been characterised in detail for acoustics). However, notwithstanding this exten-

sive development, the simplest patterned structure which supports a surface-localized

acoustic wave appears to have been overlooked. This structure, where the third di-

mension is of little significance lending itself easily to the manipulation and control of

sound, is simply a line of identical holes cut into a rigid solid.

Here, using a near-field measurement technique that allows direct imaging and hence

characterisation of acoustic fields, the dispersion of the acoustic surface mode formed

on a single straight line of equi-spaced, rigid-walled, and open-ended hole resonators,

termed ‘The Acoustic Line Mode’ (ALM), is presented. Further, this line of holes is

arranged to form a closed ring, thereby demonstrating how the ALM follows readily

around a curved path: the ALM may be readily directed by design, opening up the

potential for novel manipulation of acoustic energy.

7.3 Experimental Configuration

The two experimental samples studied are depicted in figures 7.1A and 7.1B. The first,

figure 7.1A, is a simple line of 105 equally separated open-ended holes, laser cut into

a plate of acrylic. Figure 7.1B illustrates the second sample, which is an RR radius

ring of 80 holes (giving them a periodicity in θ along their centre equivalent to the

periodicity in x of the line sample), mechanically drilled into a square plate of acrylic.

All relevant dimensions are included in the figure caption, with dimensions chosen such

that the resonances of interest would occur around 14 kHz, i.e. λ0 ∼ 20 mm, meaning

that the samples are of a manageable size and that widely available audio equipment

could be used for the measurements.

These structures both support acoustic line modes, which, being a form of trapped

acoustic surface wave, decay away exponentially from the surface normal in z. The

ALM on the line sample is non-radiative, and is excited using a near-field source, then

detected using a near-field probe. The mode supported by the ring sample will radiate

slightly due to the curvature of the arrangement of holes125 but similarly cannot be

easily excited by a far-field plane wave due to its bound nature. Hence, the near-field

measurement technique explained in detail in section 3.5 was utilised to characterise

both ALMs. Briefly, a source was placed inside one of the holes at the positions

indicated in figure 7.1, which emitted a Gaussian-shaped pulse containing a broad

range of frequencies (∼ 4 − 18 kHz), thus exciting the cavity resonances. A probe

microphone, mounted on a motorized translation stage and with its 0.5 mm radius tip
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Figure 7.1: Schematic of the line (subscript L) sample. The acrylic plate has
dimensions lL = 840.00 mm (truncated in the figure) and wL = 30.00 mm, with
thickness (hole depth) tL = 9.80±0.10 mm. There are 105 holes of spacing (periodicity)
λgL = 8.00 mm in the x direction. The holes are of radius rL = 3.25 ± 0.005 mm.
B. Schematic of the ring (subscript R) sample. The acrylic plate has a rectangular
cross-section of sides cR = 290 mm with thickness (hole depth) tR = 7.51± 0.06 mm.
There are 80 holes that make up the ring, which is of radius RR = 10.1 ± 0.05 mm.
Each of the holes is of radius rR = 3.35± 0.005 mm, separated by arc θR = 2π

80 . This
gives them a central spacing (periodicity) λgR ≈ 8.00 mm in the θ direction, around
the circumference of the ring RR.
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7. The Acoustic Line Mode

placed less than 1 mm in front of the sample (which lies in the x-y plane), recorded the

pulse in the time domain, with the measurement repeated for an array of points in the

x-y plane (or the θ-r plane for the ring sample). The microphone was scanned across an

area of 640×50 mm in ∆x = ∆y = 0.5 mm steps for the line sample using a computer-

controlled translation stage. Data for the ring sample was measured in polar coordinates

to allow analysis of the θ dependence, across an area of 70 mm × 2π radians in steps

of ∆r = 70
175 ≈ 0.4 mm and ∆θ = 2π

500 radians. For both samples, the resolution in each

coordinate was fine enough to satisfy (∆x, ∆y, ∆θ, ∆r )� (λgL, λgR), and microphone

close-enough to detect the acoustic near-field. The choice of resolution was limited by

measurement time and data constraints. The mean ambient temperatures were 292.35

K and 292.15 K during the line array and ring array measurements respectively, with

fluctuations in the temperature, atmospheric pressure and humidity during the sample

measurements being small enough to have negligible effect50.

7.4 One-Dimensional Line of Open-Ended Holes

The experimental pressure-field map (at 12.31 kHz) illustrating excitation and propa-

gation of the ALM on a single line of holes is presented in figures 7.2A (instantaneous

pressure field amplitude ∆p) and 7.2B (absolute pressure field magnitude |∆p|). The

geometry of the open-ended holes is clearly evident in the pressure fields of both figures,

despite the radius rL being ∼ 10% of the excitation wavelength of the radiation λ0,

demonstrating subwavelength resolution in the measurements of the near-field. Even

though only the first cavity resonance was directly excited, at this frequency, chosen

just below the FP-like cavity resonance limit of the open-ended holes (equation 2.51),

all of the other holes are clearly also ‘ringing’. Hence they are coupled together, with

a gradual decay in amplitude along the x direction but no propagation along y or z:

a form of air-bound surface wave is present, termed the ‘Acoustic Line mode’. This

frequency was chosen such that the ALM has not yet formed a standing wave at the

first Brillouin zone boundary (see section 2.7.8), but has kx > k0, thus is distinct from a

simple grazing-incidence pressure wave. In contrast to the samples studied in chapters

4, 5 and 6 as well as the ASW being bound in the surface normal z direction, here there

is also an evanescent decay along the y dimension, since the evanescent fields generated

by each resonator have no grating periodicity along y to couple to. What is also visible

as a sudden change in field amplitude at y = ±15 mm (significantly more so in 7.2B)

is the edge of the sample in this y dimension, which acts as a weak mirror due to the

sudden geometric acoustic impedance change. Hence, the shape and size of the sample

in y dimension has an effect on the propagation length along x, despite there being no

periodicity.
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Figure 7.2: Experimental data showing (A) Instantaneous pressure amplitude ∆p
and (B) Absolute pressure magnitude |∆p| (with a square root applied to the colour

scale for enhanced detail) at frequency 12.31 kHz
λgL

λ0
= 0.287, measured as a function

of x and y coordinates along the surface of the line sample. The point-like source was
located at x = 0 mm, y = 25 mm. 131
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Figure 7.3: Two-dimensional reciprocal space plot corresponding to the spatial
Fourier transform of the pressure field at 12.31 kHz shown in figure 7.2A, plotted as
a function of reduced in-plane wavevectors kx

kgL
and

ky
kgL

. The colour scale represents

the absolute magnitude of the complex Fourier transform. The solid white circle

represents the sound circle k0 = 2π
λ0

=
√
k2x + k2y, with the dashed white circles being

the diffracted sound lines originating from the reciprocal lattice ±kgL. The dotted
straight lines represent the first Brillouin zone boundaries ± kx

kgL
= 0.5, with the axis

truncated at the second. The x and y axes have been reversed to match the orientation
of the pressure field in figure 7.2.

By taking the 2D spatial Fourier transform of the pressure field at each frequency

component of the excitation pulse, the amplitude of each wave-vector-component (kx

and ky) is calculated, allowing visualization of the dispersion of the eigenmodes of the

surface. The result of this is presented in figure 7.3, the reciprocal space image of the

measured pressure field at 12.31 kHz (as in figures 7.2A and 7.2B, with the inclusion of

the imaginary component of ∆p in the calculation). To improve this data, the matrix

of pressure data was convolved with a Hanning window function, and then padded with

zeros, to artificially increase spatial resolution and remove Fourier transform artefacts.

Several key features have been marked on this plot such as the sound-circle k0 and

positions of the Brillouin zones, detailed in the figure caption. Since this sample is only

periodic in one direction, x, the Brillouin zones are one-dimensional, and are represented

by a straight line extending to infinity in ky, spaced
kgL
2 apart along kx. The existence

of the ALM in this data is clear as a bright yellow feature in the Fourier spectrum,

sitting outside of the sound circle at kx
kgL
≈ 0.37 (and also its diffracted counterpart

at kx
kgL
≈ −0.63, and thus in the non-radiative regime. Again, because of the sample

only having periodicity in the x direction, the shape of the mode has no significant

ky dependence, and it appears as a flat line with a well-defined width (as opposed

to a one-dimensionally periodic slit-array, or the previously studied two-dimensional
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Figure 7.4: Dispersion for the line sample, obtained from the spatial Fourier trans-
forms of the measured pressure fields on its surface such as in figure 7.3, the cross-
section at ky = 0. The magnitude of the Fourier transform is plotted as a function of
the normalized frequency (ratio of grating periodicity λgL to incident wavelength λ0)
vs the normalized in-plane wavevector, kx

kgL
, along the array surface. A numerically-

calculated dispersion is represented by the overlaid green circles. The positions of the
sound-lines ± k0 are marked by the solid white lines, while diffracted sound lines from
± (k0 +kgL) (where kgL = 2π

λgL
) are represented by dashed white lines. The edge of the

first Brillouin zone is at kx
kgL

= 0.5, and the value of
λgL

λ0
corresponding to the pressure

field plot in figure 7.2 is represented by the horizontal dotted line.

square-lattice arrangement). However, as would be expected, the Fourier amplitude

changes with ky, illustrating a change in coupling strength. The bright ALM feature

(and its would-be associated diffractions) does not appear in the first Brillouin zone of

the negative half of k-space, as the sample was only excited in one direction. There is

an additional interference pattern arising from the finite width of the resonant cavities,

which is visible as dark bands in the feature at
ky
kgL
≈ ±1.3. The effect that the width

wL of the sample has on the surface mode is too weak to be visible.

Stacking in frequency each of the two-dimensional arrays of data that represent the

reciprocal space (such as that in figure 7.3) and taking an intersection through ky = 0

allows direct visualization of the f − kx dispersion relation of the modes supported by

such a structure (as explained in section 3.5.3). This procedure has been followed to

create figure 7.4, the experimentally determined dispersion of the ALM supported by

the line sample along the kx direction. The surface mode is clear as a bright feature
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7. The Acoustic Line Mode

in the non-radiative regime (kx > k0, k0 being represented by the solid white line)

and forms a standing wave at the first Brillouin zone boundary. See section 2.7.4 for

a discussion of important dispersion relation features. Note, the amplitude of each

wavevector component is normalized to the mean amplitude across all of k for each

frequency, to compensate for the varying frequency response of the speaker and detector.

Overlaid (green circles) are the eigenfrequencies of the structure (in air) calculated using

a finite-element-method (FEM) model (see section 3.7), accounting for thermodynamic

losses, and showing great agreement with the experimental data. As with the ASW on

the square-array sample in chapter 6, the thermodynamic losses examined in chapter 4

act only to shift down in frequency and broaden the ALM in this configuration. Note

there is also an indication of a much weaker ALM in the negative half of k-space, which

arises from waves reflected from the far end of the sample. Also, note that data within

the sound lines |kx| > |k0| in figure 7.4 arises from weak bulk air-borne sound reaching

the detector directly from the source, and can be ignored.

7.5 Two-Dimensional Ring of Open-Ended Holes

The ALM (and indeed any similar acoustic surface wave) exists because of near-field

coupling between adjacent resonant cavities (see section 2.7) and, provided that they

are sufficiently well coupled (which is dependent on the geometry and spacing of the

resonators), these ALMs will exist on any arrangement of the hole geometry, opening

up the potential for bespoke control of acoustic energy on a surface. The second sample

studied in this chapter, designed to test this, comprises a ring (radius RR) of equally

spaced holes (Figure 7.1B).

Figure 7.5A illustrates the experimentally measured instantaneous pressure field ∆p

(while figure 7.5B is the absolute pressure field |∆p|) at 14.625 kHz, corresponding to
λgR
λ0

= 0.341, for the ring sample when excited by an acoustic pulse, launched as for the

line sample in one of the holes in the ring. Once again, it is clear that all of the cavities

are excited, and are thus coupled, as the pressure field is concentrated above them (This

is even more striking in the animation of the pulse in the time-domain data where the

contrast in the group velocity of the mode compared to the speed of sound is directly

visualised, although this cannot be easily shown here). The phase difference across

each unit cell in figure 7.5A is approaching the standing wave condition, indicating

that there must be a kθ dependence of the ALM with a set of Brillouin zones spaced in

equal amounts of kgθ. It can also be seen that the cavities, while supporting a trapped

mode in z, radiate more sound in the outward radial direction compared to the inward,

a consequence of the mode having to radiate in this direction eventually due to the

curvature of the geometry in which the holes are arranged125. Eigenmodes, quantised
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Figure 7.5: (A) Experimental data showing instantaneous pressure field ∆p at

frequency of 14.63 kHz (
λgR

λ0
= 0.341), measured as a function of r and θ coordinates

along the ring sample’s surface. The point-like source was located inside the hole at
r∼ 100 mm, θ = 2.3 rad. (B) The same as (A) except for the time averaged absolute
pressure magnitude |p| (with a square root applied to the colour scale for enhanced
detail).
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Figure 7.6: Experimental dispersion diagram for the ring sample, obtained from
the spatial Fourier transforms (in polar coordinates) of the measured pressure fields
on its surface around radius r = RR. The magnitude of the Fourier transform is
plotted as a function of the ratio of grating periodicity λgR to incident wavelength
λ0 vs normalized in-plane wavevector kθ, along the array surface in the θ direction,
along the holes. λgR is defined at the radius RR, the centre of each hole. Solid white
lines represent the ‘sound-lines’, the maximum wavevector k0θ = 2π

λ0θ
that a grazing

incidence sound wave can possess, here in the kθ direction, while the dashed white
lines are the diffracted sound lines ± (k0θ + kgR), where k0θ and kgR have also been
defined at the radius r = RR. A horizontal dot-dashed line marks the frequency to
which figure 7.5 corresponds. The numerically calculated dispersion is represented by
the overlaid green circles.

in circumference will exist, but are not easily identifiable because in this experiment,

the acoustic power is mostly radiated away from the ring before strong circular standing

waves can form.

The dispersion of the mode supported by the ring sample (figure 7.6) is obtained

following a similar procedure used for the line, the key difference being that the spatial

Fourier transforms are performed with an orthogonal grid of polar coordinates rather

than Cartesian. This allows representation of the reciprocal lattice as a function of kθ

(which is proportional to the angular momentum125) and kr. This change of geometry

and co-ordinates also has important implications for the definition of a trapped surface

wave. The angular wavelength λθ is given proportional to r (λθ = θr), hence the

magnitude of the circumferential wavevector kθ = 2π
λθ

is not fixed. This means that for

a given frequency, the phase speed of the radial wavefronts will depend on the radial
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Figure 7.7: Two-dimensional reciprocal space plot corresponding to the spatial
Fourier transform of the pressure field at 14.63 kHz shown in figure 7.5A, plotted as
a function of reduced in-plane wavevectors kr

kgR
and kθ

kgR
. The colour scale represents

the absolute magnitude of the complex Fourier transform. The solid white circle
represents the sound-circles k0θ = 2π

λ0θ
=
√
k2r + k2θ, with the dashed white circles

being the diffracted sound lines originating from the reciprocal lattice ±kgR. The
dotted straight lines represent the first Brillouin zone boundaries ± kθ

kgR
= 0.5. The

r dependent values k0θ and kgR have been defined at the radius r = RR, hence the
sound lines are approximate.

coordinate r. At some radius, part of the wavefront will travel faster than the speed of

sound c, and hence the wave will always have a radiative component125. In addition,

to directly compare the dispersion of the ALM on the line sample and that on the ring

sample requires that we choose a radius to define λθ, in order that k0θ be defined. To

provide this comparison, the Fourier transform was performed on a single arc of the

pressure field at radius r = RR, this radius corresponding to the centre of each hole

cavity. Here, the periodicity in θ, (λgR) is approximately equivalent to the periodicity

in x (λgL) of the line sample (∼ 8 mm). The result is shown in figure 7.6, where the

marked sound lines and Brillouin zones use kgR and k0θ defined accordingly, as well as

the grating periodicity λgR. It is also possible to perform a Fourier transform with the

use of all radial coordinates and produce a reciprocal space plot like the one for the

line sample in figure 7.3, which is what has been done in figure 7.7, but the varying in

magnitude of the kθ coordinate (and the θ ‘periodicity’ kgR) in units of m−1 makes this

plot difficult to interpret. What is clear is that just as with ky in the line sample, the kr

component affects only the mode amplitude, not significantly changing its dispersion.

With increasing kθ, the mode forms a standing wave in θ at its equivalent Brillouin

zone asymptote kθ
kgR

= 0.5, with its decay length along θ decreasing as this asymptote

is approached. Eigenmode predictions from FEM modelling were obtained by applying
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7. The Acoustic Line Mode

cyclic symmetry periodic boundary conditions on a wedge-shaped unit-cell and then

sweeping angular momentum number, which is equivalent to the use of Floquet periodic

boundary conditions with a finite phase difference applied used in Cartesian based

models as described in section 3.7. Agreement between the data and the eigenmode

prediction (the overlaid green circles), is excellent.

Note, there is recent related theoretical work regarding Rayleigh-Bloch modes (a

different type of ASW) formed by a two-dimensional ring of circular inclusions126,

which has some helpful mathematical insight. However, the geometry of that work is

fundamentally different since the trapped surface mode there decays purely in the radial

direction, unlike the ALM presented here, which also decays normal to the surface in

the z-direction, with a limit frequency defined by the hole depths.

7.6 Conclusions

The experimental work presented in this chapter explored the existence of an acous-

tic surface wave supported by a simple line of holes, the Acoustic-Line-Mode. This

line mode has been demonstrated for both a single line of open-ended cavity reso-

nances and more significantly, for when such resonators are arranged into the shape

of a circle. Using an acoustic imaging technique which involved a temporal Fourier

transform to extract field amplitude and phase for a range of frequencies, followed by a

two-dimensional spatial Fourier transform, the dispersion of the ALMs supported are

obtained using both the Cartesian and Polar coordinate systems. This strongly local-

ized acoustic line mode, whose behaviour is dominated by coupling between resonators

along the line in which they are arranged, offers opportunity as a novel method for the

control of sound.
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Chapter 8

Acoustic Line Modes With Glide

Symmetry

8.1 Introduction

In this final experimental chapter, the effect of ‘glide-symmetry’ on the dispersion of

acoustic surface waves is investigated. Glide-symmetry is a type of symmetry possible

in a two-dimensional periodic system. It is the result of a reflection along a line perpen-

dicular to its periodicity, combined with a translation along that line in the direction

of its periodicity, such as a ‘zig-zag’ pattern, or the footprints left by a person walking

through snow. Three separate samples are compared, each formed of a pair of open-

ended-hole line-arrays arranged side-by-side, two of them possessing glide-symmetry.

All of the measurements performed are of the near-field acoustic imaging type, which,

from the creation of detailed pressure field maps, allow direct characterisation of the

dispersion relations of surface modes supported by the samples. First, the sample with

the lines of holes arranged so that they are symmetric along the mid-plane between

them is characterised. Insight gained from both chapters 5 and 7 is combined to ex-

plain the resulting pair of acoustic surface waves that are observed: acoustic line modes

present on the two adjacent lines of holes strongly couple across the mid-plane between

them, either in-phase or in anti-phase. Following this, one of the lines of holes is shifted

along the direction of the periodicity exactly half of its grating pitch relative to the

other, thus creating glide-symmetry. It is found that on this sample, the two surface

modes that existed without glide-symmetry become indistinguishable from each other

at the first Brillouin zone boundary. Importantly, this removes the conditions that

usually result in the formation of standing-waves at this boundary, thus allowing a

surface mode to evolve continuously with increasing frequency, and reach a far greater

in-plane wavevector than without the glide-symmetry. It is observed that a standing-
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8. Acoustic Line Modes With Glide Symmetry

wave is eventually formed, but at an arbitrary wavevector determined non-trivially by

the structure-factor of the geometry. Consequently, this shift in the position of the

standing-wave appears to a create region of negative dispersion. A third sample is

characterised, consisting of two lines of triangular holes inverted along the mid-plane

between them, also arranged in glide-symmetry. This causes the near-fields of the two

lines of holes to have a large overlap, significantly enhancing the coupling strength

between them, and thus enhancing the glide-symmetry effect on the mode dispersion.

This sample illustrates the degree of control possible over the surface mode dispersion,

which could aid in the design of acoustic devices.

8.2 Background: Glide-Symmetry

So far throughout this thesis, every sample studied that supports a form of ‘Acoustic-

Surface-Wave’ (ASW), the trapped surface waves that may exist when a periodic ar-

rangement of resonant cavities couple together via diffraction (see section 2.7), have

had one key aspect of their behaviour in common: at the edge of the first Brillouin Zone

(BZ), the ASW group velocity falls to zero, and it splits to form a pair of standing-waves.

Also, if the periodic unit-cell contained only one resonator, hence the acoustic near-field

had only one degree-of-freedom available, only the low energy standing-wave formed

at the Brillouin Zone Boundary (BZB) could be non-radiative (see section 2.7.6). This

was the case for the square-lattice hole-array sample studied in chapter 6, the slit-array

in chapter 4, and both types of line-array sample in chapter 7. The study of phase-

resonances in chapter 5 showed how the addition of one or more cavities to the structure

of the unit-cell (thereby creating a ‘compound’ grating) created additional degrees-of-

freedom and allowed a second higher energy ASW to exist in the non-radiative regime,

which also formed a standing wave at the first BZB. The difference in strength of the

Fourier components of the fields of each of the available standing wave solutions, which

had field amplitude concentrated in different regions of space, meant that there was

still a significant frequency band-gap between them.

If a system could be designed such that the two standing waves formed by ASWs at

the first BZB had exactly the same energy and thus became degenerate, no band-gap

would form there, allowing the ASWs to exist continuously over a very broad frequency

and wavevector range. This could be useful for the design of acoustic devices such as

broadband acoustic absorbers. The ‘glide-symmetry’ configuration provides conditions

necessary to achieve this127,128.

If the periodicity λg of a system is along x, and this system also has some structure-

factor component in y, glide-symmetry is defined as a system that is invariant under

an inversion in the y dimension along its mid-plane, except for a shift of exactly half
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its periodicity λg/2 along x. Many commonly found shapes have this property, such

as a ’zig-zag’, or the shape of monofrequency sine-wave. The glide operator G can be

Stated mathematically as

G =


x→ x+

λg
2

y → −y

z → z

(8.1)

A generalised Floquet theory of electromagnetic systems with glide-symmetry has

been developed in an extensive study by Hessel and Oliner127, which, along with

Mcweeny’s treatise regarding symmetry and crystal band-structure129, has since formed

the basis for much research in this area (also discussed is ‘screw-symmetry’, a topic of

interest to chapter 9). Hessel and Oliner’s127 work predicts that glide-symmetry can

have a significant effect on the dispersion of surface modes. Summarised briefly, if a

patterned electromagnetic waveguide containing periodic structure is re-arranged to

become glide-symmetric, two surface modes that were originally separate with different

energies, one having ‘even’ character (symmetric about the cavity mirror plane), and

one ‘odd’ (anti-symmetric about the mirror plane), will form a single mode of mixed

character. As separate even and odd modes, they interact with modes diffracted from

kx = kg to form standing waves at the first BZB, kx = kg/2, with a frequency band-gap

between them. By displacing the position of the field anti-nodes by exactly half a unit-

cell, the glide-symmetry results in the even and odd modes becoming degenerate at

the first BZB, neither forming a standing-wave or band-gap. This mode instead forms

a standing wave at some arbitrary point in k-space shifted from the BZB, but before

crossing the second BZB at kx = kg, thus it is capable of reaching in-plane wavevectors

beyond the first BZ with no discontinuities in its dispersion.

In the optical electromagnetic case, the interaction of surface-plasmons (a type

of electromagnetic trapped surface wave) with diffraction gratings that have glide-

symmetry has been studied before. Constant et al.130 characterised the surface-plasmon

dispersion on a ‘zig-zag’ grating, and confirmed that the dispersion of the surface-

plasmon becomes gap-less at the first Brillouin zone boundary in such a system. Sim-

ilarly, Quesada et al.128 studied glide-symmetry in the microwave regime and found

that the gap-less dispersion of surface plasmons within a waveguide possessing glide-

symmetry enabled regions of subwavelength negative dispersion.

In this chapter, the effect that glide-symmetry has on acoustic surface waves is inves-

tigated, with conclusions drawn using analogies to the aforementioned electromagnetic

research. To achieve this, the ease of manipulation of the Acoustic Line Mode (ALM)

studied in chapter 7 is exploited with the creation of two easily-compared samples, one
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8. Acoustic Line Modes With Glide Symmetry

with and one without the glide-symmetry condition. Further, the relative insensitivity

of the longitudinal acoustic pressure field to the shape of subwavelength resonant cavi-

ties is taken advantage of, resulting in the design of a glide-symmetric system where the

separate lines of cavities support fields with significant overlap, thereby enhancing their

coupling strength and thus the glide-symmetry effect. Via precise measurements of the

acoustic near-field for each sample, high-resolution two-dimensional pressure maps are

created, from which spatial fast-Fourier-transform algorithms can be applied to extract

the dispersion relations of the trapped surface modes. It is found that, as well as re-

moval of the band-gap at the first BZ and thus the possibility of very high-momentum

ALMs, a region of negative dispersion within the second BZ also becomes apparent.

Furthermore, it is shown that simple manipulation of the structure-factor allows for

significant freedom in the design of the glide-symmetric ALM band-structure.

8.3 Sample Design and Experimental Method

Figure 8.1 is a schematic of the unit-cells that make up each of the periodic samples,

whilst figure 8.2 depicts the samples in their entirety. In each case, important dimen-

sions are labelled. All three samples were laser-cut into acrylic plates, and consist of 105

periodic unit-cells of grating pitch λg, thereby providing an adequate approximation to

an infinitely periodic system. Sample A consists of two adjacent lines of circular holes,

which are symmetric in the unit-cell’s y mirror plane, providing a contrast to sample

B, where one of the lines of holes is shifted along x by λg/2 and thus the unit-cell has

glide-symmetry. Also, the y-separation of holes in sample B has been made as small

as the manufacturing process allows, both to increase the diffractive coupling strength

between fields of the two lines of holes, and make hole-centre-to-hole-centre displace-

ment as close as possible to what it was in sample A. Sample C is markedly different.

The triangular cavities are not only shifted along x but are also inverted in y (this is

also true of sample B due to the radial symmetry of each cavity). The triangular shape

thus allows the centre-to-centre separation between the two lines to be smaller than in

sample B, significantly increasing coupling strength between them. For all samples, the

acrylic thickness and thus hole-depth is H = 9.7 ± 0.2 mm, placing the fundamental

resonant wavelength λFP ≈ 2H = 19.6 mm. This is more than twice the grating pitch

λg = 8 mm, and thus they are short-pitch gratings. Also, this plate thickness places

the cavities’ resonant frequencies in the 10 − 15 kHz range, making them possible to

both excite and measure with widely available audio equipment.

To characterise the dispersion of each sample, the near-field measurement technique

outlined in section 3.5 was utilised. Briefly, the samples’ surface planes were aligned

with a motorised XY stage that has a probe microphone attached, its aperture spaced <
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Figure 8.1: 2D schematic of the three different unit-cells that make up each of
the full length samples A, B, and C depicted in figure 8.2, where grey represents
the acrylic, and white-space the air. All three samples have constant periodicity
λg = 8 ± 0.01 mm along x. A is the sample consisting of two adjacent open-ended
holes of radius rA = 3.20 ± 0.05 mm, with hole centres spaced dA = 7 ± 0.01 mm
apart in y, the acrylic plate being DA = 36.30 ± 0.05 mm wide. Sample B has acrylic
plate width DB = 35.55 ± 0.05 mm, and radius of holes rB = rA, but compared
to sample A, the top line of holes are all shifted by λg/2 in x, and hole centres
are separated by dB = 6 ± 0.01 mm in y (thus with total displacement between
centres 7.21 ± 0.01 mm). Sample C consists of approximately equilateral-triangle
cavities inverted along the mid plane in y, with triangle-hole centres separated by
dC = 4 ± 0.05 mm in y (total displacement thus 5.65 ± 0.10 mm). Labelled triangle
dimensions are rC1 = 6.8 ± 0.05 mm and rC2 = 5.9 ± 0.05 mm, while acrylic width
DC = 44.40 ± 0.05 mm.
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Figure 8.2: Schematic of the three types of acrylic samples, which have had 210
open-ended cavities laser-cut into them. The length of all 3 samples L = 840 mm,
whilst the thickness H = 9.7 ± 0.2 mm. The position of the source of excitation is
marked on each sample by the purple arrow labelled ‘S’.

1 mm from each sample surface. The motors are programmed to move the microphone

in a precise grid of x and y coordinates. At each point, the microphone records the

average value of a series of Gaussian pulses emitted by a point-like source placed inside

one of the holes at a position near the sample edge in L, as marked in figure 8.2. The

source was not placed directly within a hole on the sample edge, as reflections from the

impedance mismatch presented by this edge could interfere with the recorded signal.

Placing the source inside a hole further along in x significantly reduced the contribution

of these weak reflections by both delaying them in time and reducing their amplitude.

Also, the sample was longer in x than the XY stage’s available scanning length, ensuring

maximum possible spatial frequency resolution kx. The resulting time-domain signals

for each point are then combined to make detailed two-dimensional real-space pressure

field maps, from which dispersions can be extracted via two-dimensional spatial Fourier

transform algorithms. The resolution in (x,y) recorded for each sample is presented in

their relevant captions, but in each case (∆x,∆y) � λg, preventing the occurrence of

aliasing in the regions of interest of the reciprocal space maps produced by the spatial

Fourier transform analysis. For all samples, both zero-padding and Hanning-window

functions are applied to the 2D real-space data matrices to reduce Fourier transform

artefacts and enhance k-space resolution (the details of which can be found in both

appendices A and B).
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8.4 Double-Line-Array Without Glide-Symmetry (Sam-

ple A)

To understand how glide-symmetry changes the dispersion of an acoustic surface wave,

first a system which does not possess it but that is otherwise identical to one which

does, is characterised. Sample A provides this comparison. Figure 8.3 shows the

experimentally-recorded instantaneous pressure field amplitude ∆p and absolute pres-

sure field magnitude |∆p| of sample A at two frequencies 11.5 kHz and 13.1 kHz, which

correspond to ratios of free-space wavelength to grating pitch of
λg
λ0

= 0.26 and 0.30

respectively. The shape of the individually-excited cavities is very clear in all four im-

ages despite them having a radius much smaller than the excitation wavelength; the

acoustic near-field is being measured (and this is true for all of the forthcoming sample

measurements).

In chapter 7, it was shown that a single line of holes was all that was required

to excite an acoustic surface wave, in the form of an acoustic line mode. Since a full

two-dimensional hole array also supports an ASW, it follows that two adjacent lines of

holes will support one, as it falls between the extremes of the line-array and the square-

array. The lower frequency shown in figure 8.3 confirms this, being at a frequency

where the fundamental ASW is excited strongly. This frequency is not-quite at the

frequency where a standing-wave could form, but the phase shift between cavities in

the x direction is clear. The other important detail is that each pair of holes are in-

phase with each other, as marked by the black dashed line at x = 57 mm. Hence,

across the y-dimension mirror plane, at this frequency the ASW is symmetric, i.e. it

has ‘even’ character.

A key difference between this sample and both the square-array and line-array

samples in chapters 7 and 6 is that the unit-cell here contains two resonant cavities,

not just one. As seen in the ‘compound’ slit-array structures studied in chapter 5,

this means that there should be an extra degree of freedom available to the near-field,

allowing a ‘phase-resonance’ to become excitable. Indeed, this is the mode excited at

the higher frequency in figure 8.3. Inspection of the fields show that not only is there

a clear phase-shift between cavities along the x direction, but also that there is a π

phase-shift between pairs of cavities in the y direction (also marked by a black dashed

line at x = 63 mm); this mode is anti-symmetric in y, i.e. it has ‘odd’ character.

This character is emphasized in the plot of the absolute pressure field |∆p| at the same

frequency: there is a sharp dip in pressure magnitude directly along the y mirror plane

of the entire sample, compared to the same plot for the even mode, which has some

pressure amplitude visible between holes in y as well as x. Another difference between

the fields of the two frequencies is the decay length in the direction of ASW propagation
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8. Acoustic Line Modes With Glide Symmetry
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Figure 8.3: (Sample A) 2D real-space plots of the experimentally measured instan-
taneous pressure field amplitude ∆p (left) and absolute pressure |∆p| (right) at two
separate frequencies (labelled), that have been normalised to their maximum ampli-
tude for each individual frequency. The point-like source was located in the open-
ended hole at x = 0 mm, y = 4 mm. Here, the spatial resolution is ∆x = 0.5 mm and
∆y = 0.5 mm. The dashed-lines represent the cross-section of the fields referenced in
the main text.
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Figure 8.4: (Sample A) 2D k-space plots corresponding to the pressure field plots
in figure 8.3 (oriented in the same way). Wavevectors kx and ky are scaled to grating
wavevector kg, with the colour scale representing the magnitude of Fourier compo-

nents. The solid white circle represents the sound-circle k0 =
√
k2x + k2y = 2π

c , the

dashed circles k0 ± nkg. Dotted horizontal lines are Brillouin zone boundaries ±nkg2 .
Dot-dashed vertical lines are the cross-sections of ky used to create dispersion plots in
figure 8.5.

x, where the low frequency even mode has a much longer amplitude decay length than

the high frequency odd one. This is because, as will be seen in the dispersions to

be discussed forthwith, the odd mode must have a finite ky component as well as kx

and kz. The pressure field plots are not definitive however; the choice of frequency

may place one of these modes closer to its standing-wave condition, where the group

velocity necessarily decreases and so to the propagation distance. For both frequencies,

the presence of the sample edge across dimension DA is visible, as the change in surface

impedance causes a reflection, but as with the line-sample in chapter 7, it is not expected

that this will have a significant effect on the dispersion of the ALMs.

Inspection of the reciprocal-space maps of the surface modes excitable on sample A

reveals much about their nature. Figure 8.4 are the reciprocal-space (or k-space) plots

that resulted from spatial Fourier transforms of the experimentally recorded pressure

fields in figure 8.3, truncated to show only the first three Brillouin zones (which are

in this case one-dimensional), and with important features marked such as the sound-

circle k0 =
√
k2

x + k2
y = 2π

c (see section 2.7.4 for a discussion of the basic features of

k-space plots).

The low frequency k-space map is markedly similar to the equivalent plot seen for

the simple line-array sample in chapter 7 (figure 7.3), in that there is a clear bright,
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8. Acoustic Line Modes With Glide Symmetry

ky independent feature that exists in the non-radiative regime of the first Brillouin

zone (kx > k0 and kx < kg/2). This even character acoustic line mode’s strongest

amplitude is at
ky
kg

= 0, and there is a sudden drop in amplitude visible at
ky
kg

= 0.6 that

corresponds to the total width formed by the combined diameter and hole separation in

y of each pair of holes. Features that result from the diffraction of the ALM are present

just ‘outside’ the diffracted sound-circles at kx
kg

= ±1, having identical character to the

original. There is a also a weak feature within the first Brillouin zone in the negative

half of k-space, which is the result of a reflection from the end of the sample exciting

the ALM that propagates in the opposite direction.

The higher frequency k-space plot on the right of figure 8.4 has some new features

of interest. First, the ALM visible that was visible in the low frequency k-space plot

is no longer present (this is confirmed via inspection of the dispersions in 8.5, to be

discussed). Second, the strong feature that is visible has a sudden drop in amplitude

near
ky
kg

= 0, in contrast to the low frequency mode which had a maximum at that point.

This feature thus corresponds to the ALM with odd (or anti-symmetric) character not

excitable without some component of ky, since it requires a π phase-change orthogonal

to the x-axis. It still does not appear to disperse in the ky direction as there is no

y-periodicity, but the pattern of its amplitude is significantly different from the low

frequency even mode. The other facet of the odd mode’s behaviour to remark upon

is its existence in the first BZ and not the second, unlike the anti-symmetric ‘phase-

resonant’ ASWs on the compound grating structures in chapter 5. This is because,

although there is an extra degree of freedom available to the acoustic near-field, it is

along y and not x, thus does not enable the mode to reach a higher in-plane wavevector

kx than the simple line-array sample from chapter 7. A higher frequency mode can

exist due to the extra ky component of the grating’s Fourier coefficients, but not at a

higher wavevector kx.

Also marked on figure 8.4 as vertical dot-dashed lines are the values of ky used to

create the two cross-sections of k-space in figure 8.5, necessary to show the dispersion

of both the even and odd modes. Note, the sudden drop in the amplitude of the mode

expected at ky/kg = 0 is slightly shifted toward negative ky - this is the result of the

sample not being perfectly aligned in either one or both of the xy and yz planes, and the

resolution of ky (∆ky) not being high enough to prevent spectral leakage (see appendix

B).

Following the method outlined in section 3.5.3, dispersion plots created from the

experimental data are shown in figure 8.5, with important features marked. Results

from a loss-inclusive FEM model are overlaid as coloured lines, to be discussed forth-

with. Cross-sections of k-space at two values of ky are included to further demonstrate

the strong dependence on ky of the high frequency odd mode, whilst the low frequency
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Figure 8.5: Dispersion diagrams calculated from the experimental data for sample
A, at two different cross-sections of k-space wavevector ky (labelled). The ratio of

free-space wavelength to grating wavevector
λg

λ0
is plotted as a function of reduced in-

plane wavevector kx
kg

. Solid-lines represent sound-line k0, dashed lines their diffracted

counterparts ± k0 ± nkg. Vertical dotted lines represent the first Brillouin zone

boundaries ±nkg2 , and horizontal dot dashed-lines the frequencies at which figures
8.3 and 8.4 are plotted. In both plots, eigenfrequency predictions of a loss-inclusive
numerical model are overlaid as coloured lines. Green represents the even modes, Red
the odd modes. A solid line is a mode that has not undergone diffraction from ± kg,
a dashed line is one that has.

even mode does not change significantly with ky.

The dispersion of the low frequency mode originating at kx = 0 (represented by

green solid lines calculated from the numerical model in both positive and negative k-

space) follows the expected pattern (section 2.7). At low frequencies, this mode occurs

very near the sound-line k0 = 2π/c and is thus indistinguishable from a grazing sound-

wave. As the frequency increases, the ALM gradually increases its wavevector in x

beyond k0, becoming a fully trapped surface mode, until at the first BZB at kx
kg

, its

group velocity falls to zero.

In the dispersion plot taken from a cross-section of k-space at ky = 0, the high

frequency odd mode is barely visible as a feature, since it requires a component of ky

to be excited (and as mentioned, it is only visible at all due to imperfections in sample

alignment and lack of ky resolution). When the cross-section is taken at the non-zero

value of ky marked in figure 8.4, the odd mode appears as a well defined feature at

high-frequency (solid red lines, with its diffracted counterparts marked by dashed red

lines). Since this mode originates in the first BZ due to not having the necessary degrees

of freedom available along x, it disperses positively, with behaviour almost identical to
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8. Acoustic Line Modes With Glide Symmetry

that of the low frequency even mode. Also, instead of following the sound-line k0 at

low frequency, it appears to cease to exist in the non-radiative regime, instead crossing

k0 at some finite frequency: the pair of holes act like a waveguide along x with a cut-

off frequency dictated by the hole separation in y. The model predicts that this odd

mode would continue to exist in the radiative-regime that was not measured in this

experiment (thus the model is also not shown here).

8.5 Double Line-Array With Glide-Symmetry (Sample B)

With the non-glide symmetric sample examined, the effect that glide-symmetry has on

the mode dispersion can be isolated. Figure 8.6 shows the experimentally measured

pressure fields for sample B at frequencies 11.5 and 13.1 kHz, the same as figure 8.3

for sample A. Many of the same features are visible, such as the strong localisation of

the field above individual holes, and the reduction in intensity as x increases. However,

there is a fundamental difference between the high and low frequencies compared to

sample A.

In the previous case, there was a clear change in behaviour between the high and

low frequency modes, where the low frequency one had even character (phase of the

holes’ pressure fields ∆p symmetric in the y mirror plane) and the high frequency one

odd character (a π phase-shift across the fields in the y mirror plane). For the glide-

symmetric sample shown here, one cannot make this distinction. For both frequencies,

at some cross-section of y, the excited ALM has both even and odd character. The low

frequency mode generally has more even character, such as the point marked with a

short-dashed line at x = 56 mm, whereas at a different cross-section such as marked

by the long-dashed line at x = 178 mm, it appears to have odd character. Similarly,

the high frequency mode has mostly odd character, such as at the cross-section marked

by the long dashed line at x = 48 mm, with some areas of even character, again

marked by the short-dashed line at x = 32 (one can also see the mixed behaviour in the

absolute pressure field plots, where in the high frequency plot, there are intermittent

pressure nodes along in the y mirror plane, inter-spaced with regions of even character).

These frequencies represent the two extremes, the change in behaviour evolves as a

continuum between them. Not included here (but an equivalent later shown for sample

C), a frequency near the first BZ would show that the two types of character become

very hard to distinguish. Other important changes in behaviour become clear in the

corresponding k-space and dispersion diagrams.

Figure 8.7 shows the k-space plots of the fields in figure 8.6, with all of the marked

features having the same meaning as they did in figure 8.4. Once again, there are some

features similar to the non-glide symmetric sample A. First, for the low frequency,
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Figure 8.6: (Sample B) 2D real-space plots of the experimentally measured pressure
field ∆p (left) and absolute pressure |∆p| (right) at two separate frequencies (labelled,
in units of kHz), that have been normalised to their maximum amplitude for each
frequency. The point-like source was located in the open-ended hole at x = 0 mm,
y = −3 mm. ∆x = ∆y = 0.5 mm. Short-dashed and long-dashed lines mark cross-
sections of x referenced in the main text.
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Figure 8.7: (Sample B) 2D k-space plots corresponding to the pressure field plots
in figure 8.6 (oriented in the same way). Wavevectors kx and ky are scaled to grating
wavevector kg, with the colour scale representing the magnitude of Fourier compo-

nents. The solid white circle represents the sound-circle k0 =
√
k2x + k2y = 2π

c , the

dashed circles k0 ± nkg. Dotted horizontal lines are Brillouin zone boundaries ±nkg2 .
Dot-dashed vertical lines are the cross-sections of ky used to create dispersion plots in
figure 8.8.

there is a bright, flat feature within the first BZ but outside of the sound-circle that

corresponds to the trapped ALM. Its peak amplitude is at
ky
kg

= 0, and a sudden drop

in intensity is visible at
ky
kg

= 0.6 that stems from the diameter of each hole. The

two modes visible that correspond to the diffraction from ± kg of the original, have

a substantial change in their behaviour. These modes have a strong ky dependence,

implying that some finite component of ky is required to excite the diffracted order, but

not the original. This is the character that only the odd mode had in the dispersion

of sample A, showing that the two modes have now mixed to create a new hybridised

mode. This aspect of the mode dispersion implies that the glide-symmetry has removed

first-order diffraction in the x plane alone, and as explained by Hessel and Oliner127,

this is due to a destructive phase cancellation resulting from the shift of the holes along

x. This is the same reason that this mode does not now form a standing wave at the

first BZB (visible in figure 8.8, to be discussed); the pressure anti-nodes that would

form a standing wave along one of the pair of holes occur at a position directly in-line

with the locations of the pressure nodes on the adjacent line of holes, and vice-versa,

cancelling them out.

The ky dependent diffraction is again clear in the high frequency k-space plot in

figure 8.6. Here, there are now two modes visible in the positive half of the first BZ
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(0 < kx < kg/2) at one frequency, a result of the band-gap and standing wave pair

not forming at the edge of this first Brillouin zone. There is a bright feature occuring

at the first BZB kx = kg/2, and another feature just outside k0 whose amplitude

falls to zero with no ky component. In the second BZ of the negative half of k-space

(−kg < kx < −kg/2), this behaviour is reversed; the feature at the first BZB has a null

at ky = 0, and a feature with a maximum at ky = 0 is apparent just outside of the first

diffracted sound-circle −k0. This is a result of the hybrid ALM forming a standing wave

at an arbitrary value of kx between the two features, and the curvature of the mode thus

changing its sign: part of it appears to disperse negatively. Hence, a feature appears

in the negative half of k-space which corresponds to the region of apparent negative

dispersion that is excitable on the mode originating at kx = 0 but propagating in the

negative x direction. The equivalent segment of the mode travelling in the positive

direction is in contrast not visible, as its negative-x group velocity prevents it from

being excited when the source is only placed on one end of the sample. This behaviour

is easier to understand with inspection of the corresponding dispersion relations.
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Figure 8.8: Dispersion diagrams calculated from the experimental data for sample
B, at two different cross-sections of k-space wavevector ky (labelled). The ratio of

free-space wavelength to grating wavevector
λg

λ0
is plotted as a function of reduced in-

plane wavevector kx
kg

. Solid-lines represent sound-line k0, dashed lines their diffracted

counterparts ± k0 ± nkg. Vertical dotted lines represent the first Brillouin zone

boundaries ±nkg2 , and horizontal dot dashed-lines the frequencies at which figures 8.3
and 8.4 are plotted. Eigenfrequency predictions of a loss-inclusive numerical model
are overlaid as coloured lines, with the colour change explained in the main text. Solid
lines are modes that are not diffracted, dashed lines are modes diffracted from ± kg.

The plots in figure 8.8 are experimentally determined dispersions of sample B taken
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8. Acoustic Line Modes With Glide Symmetry

at cross-sections through ky indicated by vertical dot-dashed lines in figure 8.7, with

appropriate features labelled as before. Again, coloured lines represent the prediction

of a loss-inclusive FEM model, the choice of colour and line-type dependant on the

character of the mode they represent, to be discussed.

What is striking about this dispersion compared to that of sample A is that for

both ky cross-sections there are no longer two distinct modes with a clear separation in

frequency. Instead, the low frequency non-diffracted (or non-band-folded) mode that

previously formed a standing wave at kx
kg

= 0.5 and
λg
λ0

= 0.28 (green lines in figure

8.5) continues to rise in frequency and kx beyond the first BZB, until its group velocity

eventually falls to zero at kx
kg
≈ 0.6. The limit imposed by the lack of degrees of freedom

in the x direction of the unit-cell in sample A is removed, as the shift of the second row

of holes along x has created one. This feature is marked by a numerically calculated

solid line whose colour changes from green to red, highlighting the changing character

of the hybrid surface mode from mostly even at low frequency, to mostly odd at high

frequency.

At
λg
λ0

= 0.28, a second feature has appeared at a lower wavevector than the non

diffracted mode, whose origin is understood by comparing the two ky cross-sections.

For the cross-section at
ky
kg

= 0, this second feature appears only as a weak feature just

outside the sound-line in the positive half of k-space, the same character that the high-

frequency odd mode did for sample A (figure 8.5, red lines). However, the low frequency

mode associated with diffraction from −kg is simultaneously weakened (marked by the

changing colour dashed line in the negative half of kx), suggesting that the two features

are somehow linked. Indeed, there is another feature above this diffracted mode visible

just below the k0 − kg sound line, which has similar strength in both cross-sections of

k-space, and which figure 8.7 showed did not have a minimum at
ky
kg

= 0: this feature

is associated with the mode excitable at −k0 existing in the negative half of k-space

that has not been diffracted (again, marked by a changing colour solid line).

Beyond the kx value which the non-diffracted ALM excited in the positive half of

k-space (solid line in figure 8.8) has formed a standing wave at an arbitrary wave-vector,

its sign changes, and it continues to evolve with a negative group velocity. Hence, as

the source was placed at one end, this region of the mode’s band structure ceases to

be excitable. In the negative half of kx, this same negative region of the other non-

diffracted mode has become excitable, as relative to the source, it now has a positive

group velocity. With the same argument, the equivalent feature in the positive half of

k-space is associated with the negatively dispersing branch of the mode diffracted from

−kg, requiring a component of ky to be excited (thus represented by the dashed-line).

Thus, on the glide-symmetry sample there is a frequency band where the ALM appears

to be dispersing negatively, as was observed by Queseda et al.128 in an electromagnetic
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waveguide. However, this region of the mode dispersion is not truly negative index,

as the ASW fundamentally arises from diffraction. Note, as with the previous sample,

weak coupling to the mode existing within the first Brillouin zone of negative k-space

occurs because of reflections from the sample edge. Also, the cross-section through
ky
kg

= 0 is not quite at zero due to imperfections in sample alignment.

In summary then, the effect of the glide-symmetry is to remove the distinction

between the even and odd character modes, creating one ALM with mixed character;

at low frequencies, it appears more even-like, and at high frequencies, it appears more

odd-like. Also, a new standing wave is formed at an arbitrary point in kx, beyond

the first Brillouin zone, where the ALM group velocity changes sign and thus appears

to disperse negatively. This behaviour is analogous to that predicted by Hessel and

Oliner127 and observed by Queseda et al.128, for an electromagnetic waveguide with

glide-symmetry. The kx value of the standing-wave that now forms is determined non-

trivially via the Fourier coefficients of the unit-cell structure-factor, as it results from

the balance between forward and back scattered ALMs that do not have to obey the

symmetry conditions usually imposed at the first Brillouin zone boundary. The next

sample studied illustrates this property further.

8.6 Triangular Cavities with Glide-Symmetry (Sample C)

The third sample studied in this chapter is designed to increase the coupling strength

between the lines of holes that are arranged in glide-symmetry, and thus further perturb

the dispersion of the excitable acoustic line modes. In sample B, the cylindrical cavities

that formed the unit-cell were arranged so that they were as close together in the y

dimension as possible, while remaining separated cylinders with the same radius as

those in sample A. Sample C (figures 8.1 and 8.2) has different resonators altogether,

consisting of open-ended cavities in the shape of equilateral triangular prisms. The two

sets of prisms are inverted about the y mirror plane, and then shifted by λg/2 to create

the glide-symmetry condition. This allows them to have their central axes far more

closely spaced without the cavities overlapping, thus reducing mean distance between

resonator near-fields, and as a result increasing coupling strength between them. The

distance in y measured in-between the centres of each triangular prism was as small

as the manufacturing technique would allow (with the triangles remaining equilateral).

Since the plate thickness H and thus resonator depth is the same as for samples A

and B, it is expected that the resonant frequency fFP would not change significantly,

although the end-effect term can not now be approximated using a radiating circular

piston model (such as described in section 2.6).

As with the previous two samples, figure 8.9 shows both the experimentally mea-
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Figure 8.9: (Sample C) 2D real-space plots of the experimentally measured pressure
field ∆p (left) and absolute pressure |∆p| (right) at two separate frequencies (labelled),
that have been normalised to their maximum amplitude for each frequency. The point-
like source was located in the open-ended triangular hole at x = 0 mm, y = 3 mm,
and xy scan resolution was ∆x = ∆y = 0.8 mm.
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sured instantaneous pressure field amplitude ∆p and the absolute pressure magnitude

|∆p|, at two frequencies 11.5 kHz and 13.1 kHz. Once again, the resonating cavities

are clearly visible as the field amplitude is concentrated above the open-ended holes,

though this time they form distinct triangular shapes. The difference between the two

pressure fields is similar to that found with sample B; cross-sections across y show

that the low-frequency field appears to have mostly even character, the high frequency

more odd character. Also, the amplitude of the pressure field gradually reduces as x is

increased, more so for the high frequency image. However, compared to the same high

frequency image of sample B, the odd-like mode here decays over a longer distance in

x, and also displays a greater percentage of regions of even character. This is because

the stronger coupling of the two lines has pushed the point at which the standing-wave

condition occurs to a larger in-plane wavevector and higher frequency, hence the field

map pictured occurs at a relatively lower point on the dispersion of the mode com-

pared to that of sample B. The reciprocal space plots in figure 8.10 and the resulting

dispersions in figure 8.11 help to understand this.
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Figure 8.10: (Sample C) 2D k-space plots corresponding to the pressure field plots
in figure 8.6 (oriented in the same way). Wavevectors kx and ky are scaled to grating
wavevector kg, with the colour scale representing the magnitude of Fourier compo-

nents. The solid white circle represents the sound-circle k0 =
√
k2x + k2y = 2π

c , the

dashed circles k0 ± nkg. Dotted horizontal lines are Brillouin zone boundaries ±nkg2 .
Dot-dashed vertical lines are the cross-sections of ky used to create dispersion plots in
figure 8.8.

Following the same pattern as the previous two sections, figure 8.10 is the result of

applying spatial Fourier transform algorithms to the two frequencies of pressure field

plots for sample C in figure 8.9, with important features labelled in the same way as
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8. Acoustic Line Modes With Glide Symmetry

figures 8.4 and 8.7. Not all data is shown; the range of both k-axes is limited to the

third Brillouin zone in either half of k-space, allowing greater detail to be visible in this

region.

The low frequency plot is very similar to the same plot for sample B in figure 8.7.

There is a bright feature in the non-radiative regime of the positive half of the first BZ

that has its maximum amplitude at
ky
kg

= 0, corresponding to the acoustic line mode

of mostly even character, with similar properties to that studied in 7. As before, there

is a sudden drop in the amplitude of this mode at
ky
kg
≈ 0.8 associated with the size

of the resonating cavities, though this time it is at a higher value of ky because the

combined width in y of two triangular cavities (including their y-separation) is smaller

than that of the previous two samples. Also, the same behaviour of the flat feature

arising from diffraction from −kg is observed as in sample B, where this mode has a

dip in intensity at
ky
kg

= 0 and a maximum value at some arbitrary point higher in ky.

Indeed, this dip in amplitude is broader than it was for sample B, suggesting that this

diffracted mode is relying on yet stronger coupling across the y dimension (i.e. that

the x-direction phase cancellation effect arising from the glide-symmetry is enhanced).

The high frequency reciprocal space plot is markedly different from the equivalent plot

in figure 8.7: only one mode is visible at this frequency, and it has not yet crossed

the first Brillouin zone boundary. This implies that the dispersion of the ALM on this

sample has changed quite significantly from that observed on sample B.

Figure 8.11 is the dispersion of sample C created from two cross-sections of k-space

across the ky coordinate at values indicated by the dot-dashed lines in figure 8.10, chosen

to highlight the dependence of the dispersion of each mode on said ky component. Once

again, coloured lines represent the prediction of the loss-inclusive FEM model, with solid

lines and dashed lines representing non-diffracted and diffracted modes respectively, and

the change in colour from green to red representing the change in mode character from

even to odd. The different features visible in each section of k-space are again very

similar to those observed for sample B. For the cross-section at ky = 0, there is only

one strong feature visible in the positive half of the first Brillouin zone, which crosses

the first BZB without forming a standing wave. The horizontal dashed lines represent

where the frequencies chosen for figures 8.9 and 8.10 lie on the dispersion curve of the

mode, and it is clear that the higher frequency no longer intersects the ALM at the

point where it crosses the first Brillouin zone boundary, unlike at the same frequency in

figure 8.8. The ALM now reaches a significantly greater in-plane wavevector (kxkg ≈ 0.7,

compared to kx
kg
≈ 0.6 in figure 8.8) before forming a standing-wave, thereby possessing

far greater in-plane momentum than possible on a simple grating structure. There is

still a high frequency feature visible just below the k0− kg sound-line that results from

the change of sign of the group velocity of the non-diffracted ALM excitable in the
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Figure 8.11: Dispersion diagrams calculated from the experimental data for sample
A, at two different cross-sections of k-space wavevector ky (labelled). The ratio of

free-space wavelength to grating wavevector
λg

λ0
is plotted as a function of reduced in-

plane wavevector kx
kg

. Solid-lines represent sound-line k0, dashed lines their diffracted

counterparts ± k0 ± nkg. Vertical dotted lines represent the first Brillouin zone

boundaries ±nkg2 , and horizontal dot dashed-lines the frequencies at which figures 8.3
and 8.4 are plotted. Eigenfrequency predictions of a loss-inclusive numerical model
are overlaid as coloured lines, with the colour change explained in the main text. Solid
lines are modes that are not diffracted, dashed lines are modes diffracted from ± kg.

negative half of the first BZ, though this region of negative dispersion is significantly

less broad than in sample B, as it occurs at a much larger wavevector.

Not shown here, FEM models predict that the position of the formation of the

standing wave, hence the maximum positive wave vector that the ALM can reach, is

controllable via the separation between the two separate lines of holes. When they are

closer and thus more strongly coupled, the standing wave forms at a higher value of kx,

and vice versa. Note, it is possible to further perturb the structure via changing the

aspect ratio of the triangular shapes, though this requires further study.

8.7 Conclusions

The last experimental chapter of this thesis investigated the effect of glide-symmetry

on acoustic surface waves, in the form of acoustic line modes. Glide-symmetry refers

to a kind of symmetry where a periodic system’s unit-cell is inverted along its y axis

mid-plane, and then one side translated by exactly half of the grating periodicity, such

as in a ‘zig-zag’. Three samples were characterised using a high resolution acoustic

near-field measuring technique, whereby high quality two-dimensional pressure field
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8. Acoustic Line Modes With Glide Symmetry

maps can be created, then via spatial Fourier transforms, the dispersion of any present

trapped surface modes extracted. The first sample consisted of two line-arrays arranged

side-by-side, completely symmetric about a mirror plane in y, where two separate modes

were found to exist; a low frequency mode whose fields had phase symmetry about y,

i.e. having ‘even’ character, and a high frequency mode whose field’s phase was anti-

symmetric about y, i.e. having ‘odd’ character. Both modes had broadly the same

characteristics of the acoustic surface waves investigated throughout the thesis, each

forming a standing-wave at the first Brillouin zone boundary. The second sample was

similar to the first, except one line of holes was translated along x by half of the width

of a unit-cell, thereby creating glide-symmetry. As a result, it was observed that the

previously distinct even and odd modes become mixed, and at the first Brillouin zone

boundary, a standing wave was no longer formed. Instead, it formed at an arbitrary

value of in-plane wavevector determined non-trivially by the Fourier components of

the unit-cell structure-factor, as a generalised theory for the electromagnetic case con-

structed by Hessel and Oliner also predicted127. The resulting change in sign of the

group velocity of the mode appeared to create a region of negative dispersion, as mea-

sured by Quesada et al.128 in a similar electromagnetic system, though it is not really

negative index as it arises from a diffraction effect. Finally, the third sample investi-

gated was designed to increase the coupling strength between the two lines of holes by

changing them from cylinders to triangular prisms, hence allowing their ‘centres’ to be

separated by a shorter distance in y. It was observed that this configuration caused

the standing-wave to form at a significantly larger in-plane wavevector, allowing an

acoustic surface wave to exist with a gapless dispersion and a much greater mode index

than usually possible in a simple acoustic impedance grating. As well as demonstrating

one way in which the acoustic line modes that are the focus of chapter 7 can be easily

manipulated, this chapter showed how the simple addition of glide-symmetry to a sys-

tem can allow an improved degree of control over the dispersion of an acoustic surface

wave, which could be useful for the design of e.g. a broadband acoustic absorber.
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Chapter 9

Future Work

9.1 Introduction

In this chapter are suggestions for extensions of the experiments performed in the

previous five chapters, to be completed in the future. Some of these ideas include

preliminary experimental data, some are at the stage where prototype samples exist to

be characterised, and others still are in the speculation stage. The majority of these

suggestions expand on the work presented in chapter 7, utilising the existence of the

‘Acoustic Line Mode’ (ALM) in increasingly exotic geometries. There are other ideas

relating to acoustic surface waves in general, and a brief discussion on how surface

acoustic waves may be exploited closes the chapter.

9.2 Glide-Symmetry in a Hole-Patterned Slit-Cavity

In chapter 8, the effect of glide-symmetry on lines of holes placed side-by-side in the

surface x-y plane was investigated, with the z-plane that was perpendicular to the

sample not playing a role apart from being the direction of surface wave evanescent

decay. The diameter of the open-cavities put a limit on how closely the lines of holes

could be spaced, as they lay on the same surface plane and could thus not overlap. A

different way to create glide-symmetry is to have two lines of holes on separate surfaces,

this time separated in z and facing each other, thereby creating a patterned slit-cavity.

This arrangement may offer a much greater degree of control as the slit-width w of

this cavity can vary readily. Also, with this geometry the thermodynamic loss effects

studied in chapter 4 may provide another method of changing ALM index, as narrowing

the separation between the lines of holes changes the effective speed of sound within the

patterned slit-cavity. This style of glide-symmetry was studied in the electromagnetic

case by Quesada et al.128, and more closely resembles the electromagnetic waveguide
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Figure 9.1: Schematic of the alternative glide-symmetry sample, from two perspec-
tives. Grey represents aluminium. (Left) View through a cross-section across the
centre of the hole cavities in the x-z plane. Each hole, of depth h = 5 mm and radius
a = 2 mm, is part of a series of holes of periodicity λg = 10 mm. The two lines of holes
are inverted along their z-axis mirror plane halfway between the two aluminium plates,
which are separated by variable width w. One of the aluminium plates is shifted by
λg/2 to create glide-symmetry between the holes. (Right) x-y plane cross-section of
the sample. The aluminium plates are of width d = 12 mm.

that was presented by Hessel and Oliner127.

A schematic of the periodic unit-cell which forms such a sample is depicted from

two separate viewpoints in figure 9.1. This sample has been made from aluminium,

and is pictured in figure 9.2. There are two aluminium blocks of length L = 650 mm

and width d = 10 mm, which have been drilled with circular holes of radius a = 2 mm

and depth h = 5 mm, spaced λg = 10 mm apart. The aluminium blocks are joined via

vertical rods, which allow them to be arranged in two different ways. The first is so

that the two lines of holes mirror each other in the z-plane, the second is so that one of

the lines is shifted by λg/2 along x to create glide-symmetry. The separation between

plates w can be varied, thereby changing both the coupling strength between the two

lines of holes, and the contribution of thermodynamic loss within the cavity formed by

the plates.

Preliminary FEM models of this system predict effects similar to that described in

chapter 8, where it was observed that with glide-symmetry, it is possible to remove

the standing wave at the first Brillouin zone boundary and thus create a mode of very

high index. This resulted from the mixing of two modes that would exist at separate

frequencies without the glide-symmetry. They were a low frequency ALM having ‘even’
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Figure 9.2: Labelled photo of aluminium sample. An alternative view is shown
within the inset. Close-ended holes of depth h = 5 mm are drilled into a pair of
aluminium plates of length L = 400 mm. The lines of holes are arranged in glide-
symmetry along the z axis, and source placed on one end. The plate separation w can
be varied with the use of acrylic spacers.

character, with the phase of its fields symmetric about the mirror plane, and a high

frequency ALM having ‘odd’ character with its fields across the mirror plane in anti-

phase. At kx = kg/2, these modes became indistinguishable and formed a degenerate

pair. A notable difference between the samples in that chapter and the one presented

here is the possible strength of the coupling between each line of holes. In chapter 8 the

two lines coupled via diffraction in the surface plane y, perpendicular to the periodicity

x, both evanescently decaying away from the surface in z. However, in this sample,

the z-plane evanescent decay of each mode directly overlaps with the other, and the

separation in z that determines this coupling strength can be controlled by the plate

separation w. This appears to significantly increase the coupling strength between the

holes, allowing for a hybrid ALM to posses wavevector far beyond the first Brillouin

zone.

Figure 9.3 shows experimentally determined dispersion diagrams for this sample,

using the near-field measurement technique outlined in chapter 3 and similarly used

in chapters 6 through 8 (although, as this was actually the first use of the technique,

it had not been optimised, and as such the measurements need to be repeated). The

ALMs were excited with the point-like source placed at one end of the sample, the

pointing along x (marked in figure 9.2). In figure 9.3, which has important features

such as the sound-line k0 = 2π
c marked, two measurements are shown. In the left panel,

the measurement was performed with the sample arranged in glide-symmetry, and a

separation between the two lines of w = 1.6 mm, and in the right, the same but with

w = 1.0 mm.

For the w = 1.6 mm measurement, a very bright feature is visible in figure 9.3

above kx = k0, which is the hybrid ALM that is a combination of modes supported

on each separate line. This mode has character markedly different to that observed on
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Figure 9.3: Dispersion diagrams calculated from near-field measurements of the
sample pictured in figure 9.2, with two different values of plate separation w = 1.6
and w = 1.0 mm. The ratio of free-space wavelength to grating wavevector

λg

λ0
is

plotted as a function of reduced in-plane wavevector kx
kg

. Solid-lines represent sound-

line k0, dashed lines their diffracted counterparts ± k0 ± nkg. Vertical dotted lines

represent the first Brillouin zone boundaries ±nkg2 . The pressure fields were recorded
along one line along x, hence with no information about wavevectors ky or kz measured
directly.

either glide-symmetric samples B or C in chapter 8. The most notable contrast is how

great an in-plane wavevector kx the ALM can reach without forming a band-gap, as it

now continues to exist as a bright feature close to the second Brillouin zone boundary

at kx = kg, as opposed to just crossing kx = kg/2. A second difference is that this

hybrid ALM has a near-constant phase and group velocity over a large subwavelength

frequency range, rather than having a group velocity that tends to zero before reaching

the first Brillouin zone boundary (such as did the various kinds of ASW measured

throughout this thesis). This property in particular is useful for device design, as

its mode index N is almost fixed over a broad frequency band. The third change in

behaviour is visible at
λg
λ0
≈ 0.17. Here, the ALM appears to approach the sound-

line k0 without gradually changing its group velocity to resemble a grazing surface

wave, instead having a gradient discontinuity. This property appears to result from the

arrangement of the two metal plates into a cavity, thus forming a waveguide. As the

cavity length L is much greater than the wavelengths of the ALM and also L� w, one

may expect the cavity formed to be below the waveguide cut-off and thus only allow

planar wavefronts within it. However, the patterning of the slit walls with cylindrical

cavities, as well as the finite width d = 10 mm of the aluminium blocks in y, both

appear to change the waveguide behaviour in a complex way. More work needs to be
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done to investigate the effect each of these parameters have on the ALM, including

measurement of the dispersion of the same two-plate system, but with no hole cavities

present.

The w = 1.0 mm measurement also shown in figure 9.3 is not directly comparable to

the w = 1.6 mm measurement, as both the probe microphone and high resolution digital

oscilloscope were not available at the time of this experiment. Hence, a microphone

with the larger diameter of 10 mm was used, with its detecting surface placed adjacent

to slit-cavity in y, detecting the near-fields that were emitted either side of it. This set-

up limited what near-fields the microphone could detect, as it was placed relatively far

from each hole-cavity, and thus the measured fields not as highly confined. Still, some

comparisons can be made. In contrast to the w = 1.6 mm measurement, the ALM here

appears to have both a less-variable and larger mode index N within the first Brillouin

zone, demonstrating how the mode index may easily be controlled via changing w. The

ALM feature also appears to be broader, likely a result of the thermodynamic loss

effects becoming significant, which from the conclusions drawn in chapter 4, implies

that the effective speed of sound within the cavity is also reduced. The point at which

the mode crosses the sound line k0 is also at a lower frequency than before, suggesting

that the plate separation w is having an important effect on this aspect of the mode’s

behaviour.

More work remains to be done with the sample, including new measurements with

an optimised set-up, and a detailed study on how both the plate separation w and glide-

symmetry condition effect the dispersion of the resulting ALM. In particular, a study of

what effect thermodynamic boundary layers have on the propagation of the ALM itself

(rather than just the cavity resonators which make their excitation possible) may prove

insightful. As well as potentially allowing a great degree of control over mode index,

this set-up provides many possibilities for further research. One may envision a system

where each of the parameters unique to the set-up vary, such as a gradually decreasing

plate separation w or deepening of hole resonators h as x is increased. Another idea is

to create a system with ‘double-glide-symmetry’, by combining the samples in chapter

8 with the one discussed here, having a glide-symmetry plane in both the surface plane

y and surface normal z. This would be one step closer to having a pair of full two

dimensional square-arrays arranged in glide symmetry, being displaced by half of a

unit-cell in both x and y, and separated by z. Such a sample has recently been explored

in the electromagnetic regime131, and an enhanced version of the ‘beaming’ effect such

as that measured here in chapter 6 appeared to be possible. The idea is not constrained

to the square array, as it could also be achieved with either a hexagonal, rectangular or

rhombic Bravais lattice used as the basis. It may even be possible to use the patterned

slit-cavity geometry outlined here as a basis for the creation a full periodic slit-array
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such as those studied in chapters 4 and 5, where the ALMs supported by each one of

the slit-cavities may couple to those of its nearest neighbours.

9.3 Acoustic Orbital Angular Momentum from Screw-Symmetry

in a Cylindrical Patterned Tube

In the detailed study by Hessel and Oliner of the effect that glide-symmetry has on

electromagnetic waveguides is also included a second type of higher symmetry: ‘screw-

symmetry’127. In a system possessing screw-symmetry, the unit-cells periodic along z

are arranged such that they are invariant under a translation Sp, which is a shift along

z by some fraction of grating pitch λg/p, and then a rotation by some angle 2π/p, where

p is a positive integer. Stated mathematically in cylindrical polar coordinates,

Sp =


r → r

θ→ θ + 2π
p

z → z +
λg
p

(9.1)

A good example of system possessing such a symmetry is the slanted ridges which

pattern a screw, hence the name, or alternatively the coil of a spring. The choice of

p determines how many unit-cells overlap within any single one. In the 2D case of

glide-symmetry, p is always two (and each unit-cell is overlapped by one other, so there

are two in total). Hence, the two types of symmetry are related.

An example of how one may design an acoustic metamaterial with screw-symmetry

is shown in figure 9.4. On the left is a cross-section across the z-plane of a hollow

cylinder having some length in z, with outer radius ha + hb and inner radius hb. This

cylinder is patterned with smaller open-holed cavities of radius a (and hole depth ha),

equally spaced around the ring by angle θ = 2π/3, each shifted along z by λg/3, though

this is not visible. Thus the sample has screw-symmetry of order p = 3. A different

way of representing this sample is depicted on the right of figure 9.4, which is what the

surface of the cylinder would look like if one varied θ at constant radius r = hb. The

shift of each line of holes relative to the others along the z axis is thus clear. Some

preliminary FEM modelling of the above sample is presented in figure 9.5. Just as

with the glide-symmetric systems, this sample appears to support an ALM that does

not form a standing-wave at the first Brillouin zone boundary kz = kg/2. Further,

it also does not form one at the second boundary, kz = kg, a result of the increase

of integer p from 2 (glide-symmetry) to 3 (screw-symmetry). Indeed, FEM models of

systems where p > 3 predict that the mode is able to continue beyond another Brillouin

zone boundary each time p is increased (not shown), behaviour theorised by Hessel and
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Figure 9.4: Schematics of example of a cylindrical sample, with holes arranged so
at to create screw-symmetry. (Left) r-θ plane of the sample, with the periodicity in
z not visible. There are three separate lines of holes of depth ha and radius a, built
into a hollow ring of acrylic with inner radius hb. The holes are periodic in z having
periodicity λg, and hole centres are equally distributed around the ring by θ = 2π

3 ,
Each line is shifted by λg/3 relative to the others to create screw symmetry. (Right)
Example of z-θ plane, showing the surface of the cylinder as it would appear from a
constant radius of r = hb. The periodicy along z of each of the 3 lines of holes is
visible, including the λg/3 shift that creates the screw symmetry.
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Figure 9.5: Dispersion diagram with numerically calculated eigenfrequencies of a
screw-symmetric cylindrical waveguide with p = 3, as in figure9.4. In this reduced
zone scheme, the red line represents the mode originating from kz = 0, the blue line
the mode band folded from the second Brillouin zone, and the green line that from
the third. Black solid and dashed lines represent k0 and −k0 + kg respectively.
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Oliner127. As well as this however, the models predict that it may be possible to create

an acoustic line mode having pseudo ‘orbital angular momentum’, with a characteristic

zero in field amplitude along the central axis z of the cylinder at r = 0. This was

very recently shown to be possible by Jiang et al.132 using a different mechanism. If

such a sample was made, it could be characterised by measuring the near-fields emitted

outside of the cylinder by each open-ended cavity, or by recording a cross section in z

of the fields at the entrance and exit of the long cylinder.

9.3.1 A Note on Future Sample Fabrication

While it has not yet been experimentally characterised, a sample possessing screw-

symmetry of the kind outlined above has been designed and created using a 3D rapid

prototype machine, or ‘3D printer’. This machine can create samples from acrylic with

a precision of between ∼ 0.1 and 0.5 mm depending on printing orientation. A repeat

of the measurements in chapter 7 with 3D-printed samples returned results indistin-

guishable from those obtained using the laser-cut or drilled samples, demonstrating

that for acoustics, this fast and cheap method of sample creation is feasible. A picture

of the screw-symmetry sample created this way is included in figure 9.6. The final

version will require assembly of each segment into one long cylinder, a simple task if

each piece is designed to fit together like a jigsaw puzzle. Acrylic dissolved in acetone

can be applied to each join and acts as a strong glue, providing robust samples for

measurement.
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Figure 9.6: Picture of unassembled sample with screw-symmetry, printed by the
3D-prototype machine.
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9.4 Acoustic Line Modes on Curved Geometry

The previous two samples were both ways of manipulating acoustic line modes using

higher order symmetries. However, there remains much work to be done in charac-

terising relatively simpler systems. In chapter 7, an ALM was shown to follow a line

of holes when they were arranged into the shape of a ring. That system itself needs

further investigation, such as a study on how the radius of the ring affects the mode,

or for example whether a second circle of holes could be arranged in glide-symmetry

along the θ axis relative to the first (either in z or r). However there is a different way

to arrange the cylindrical holes altogether. Instead of having each cylindrical-cavity

with its axis pointing along surface normal z, they could be arranged such that the

axis points along surface normal r, via their placement on the inside of a larger solid

cylinder. A 3D-printed sample created in this way is pictured in figure 9.7, with a

labelled periodic unit-cell overlaid.

The major difference between this sample and the ring sample of chapter 7 is that

instead of the surface mode being bound primarily in the z-plane, it is now bound in

primarily in the radial r plane. This poses a few questions. Each cylinder is arranged

periodically in θ, by a spacing of λgθ. The faces of each open-ended hole are thus spaced

more closely in Cartesian coordinates at radius r = R than at radius r = R+L, L being

plate thickness and thus hole-depth. However, a surface wave with the same frequency

must exist on both surfaces as they are always connected27, though the fields at each end

must traverse separate distances and would thus have different periodicities if arranged

in a straight line. This was also true of the radii of each hole in the ring sample of

chapter 7, but to a lesser degree. As discussed there, this dilemma has important

implications for the definition of a trapped mode. Berry125 detailed similar geometries

for surface-plasmons on curved surfaces, with the conclusion that on a convex surface,

the surface mode must eventually radiate due to the speed of the radial wavefronts

surpassing that of free-space radiation at some calculated radius. What Berry also

concludes is that on a concave surface, the opposite is true, so that a real surface-wave

is supported. Hence one might expect that the surface mode on the inside ring of the

sample in figure 9.7 (or that in chapter 7) would be truly bound, but the one on the

outside will radiate. Increasing the length L however gives a degree of control over the

difference between the two radii, pushing this theory to its limits. Also, the fields would

be strictly confined to each cavity before they emerge on the outer surface rather than

being free to radiate, which may have an important effect. One could also cover the

outer surface thus closing the outer end of the cylindrical cavities, and create a true

surface mode that only existed on the inner radius. A long tube patterned with such

rings of holes may prove useful as an acoustic baffle.
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Figure 9.7: Picture of 3D-prototype printed sample, with schematic overlaid. A
set of 46 open-ended cylindrical holes of depth L = 8 mm and radius a = 3 mm
are periodically arranged into the shape of a ring, with periodicity λgθ = 2π/46, and
cylinder axis pointing along r.
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9.5 Other Future Work

As well as the ideas and preliminary work outlined so far in this chapter, there are

many other potential routes that the research throughout this thesis could be taken.

In regard to ways of manipulating acoustic surface waves, the ever improving accuracy

of modern 3D rapid-prototype machines is particularly exciting for acoustic metamate-

rials, as for airborne sound, almost any solid is rigid enough to be considered rigid and

thus support the local resonances that are crucial to the acoustic impedance grating

mechanism. Sample designs that may take a long time to assemble with more conven-

tional methods can be created through simply sending a computer generated schematic

to a 3D printer, which then proceeds to print it in as little time as a few hours. Not

only is it faster and cheaper, but intricate structures can be replicated with precision

in ways that may not be possible with traditional machine work, a highly important

property for periodic metamaterials. A sample that demonstrates this capability is

pictured in figure 9.8. This sample consists of a square-array of meta-atoms, each con-

taining four-open ended cylinders. The cylinders do not go straight through the sample

however (as they did in the sample studied in chapter 6), but instead their exit side is

translated in either x or y such that it emerges in line with the position of one of the

other four holes on the entrance side. This produces a ‘twist’ effect, where one might

expect a rotation in phase of the pressure fields emitted on the exit side relative to

the entrance side as the phase of the field cannot change within the resonant cavities

(for the fundamental resonance), though modelling or experimental work that investi-

gates this in detail is yet to be undertaken. What this sample does demonstrate is how

readily such a complex structure may be created. The idea itself is based on recent

research involving ‘Synthetic Gauge Flux’133, a property of systems that may support

topologically protected acoustic modes134 that make possible the excitation of modes

that can transverse obstacles with zero reflection. This topic is a complicated one that

requires a very detailed discussion; the reader is referred to the references.

Finally, one area of research that has so far received little attention is the interaction

between the air-bound acoustic surface waves that have been the focus of this thesis,

and the solid-based surface acoustic waves (SAWs) outlined in section 2.7.9. While

there exists much work regarding the interaction of SAWs with periodic solid-structures

(phononic crystals)88,83,22,89,90, how they interact with fluid bound acoustic surface

waves has thus far only been explored in water, where the impedance mismatch between

water and solid is not so great to forbid their interaction92,135. It may seem implausible

that such modes could also play a role in air-based metamaterials due to the huge

impedance mismatch, but with careful design of the sample, it could indeed be possible.

For example, one could utilise a soft material such as rubber, or indeed, the class of
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Figure 9.8: Picture of 3D-prototype printed sample, consisting of a square lattice of
open-ended cylinders. Each unit cell contains 4 cylinders, and each cylinder is ‘twisted’
so that they emerge in a different location on the surface plane of the exit side than
on the entrance side.
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materials known as ‘aerogels’136 (with speed of sound through these materials less

than that of air). The lowest frequency Lamb mode91 supported by a finite thickness

plate crosses into the radiative regime of a dispersion diagram at the ‘coincidence

frequency’ (determined by geometry and material properties), where the mode splits

into a radiative and non-radiative pair137. A patterning of the surface could place

an ASW at the same frequency of this non-radiative SAW, with the two potentially

interacting in unforeseen ways. Further, the interaction between solid-based acoustics

and thermoviscous-boundary layers appears to have been completely unexplored, as the

rigid boundary approximation assumes that the wave in the fluid cannot penetrate the

solid. This is only an approximation however, and a sufficient amplitude plate resonance

placed at the correct frequency could lead to interesting behaviour, as the boundary

layer effects studied in chapter 4 are very sensitive to slit-width or tube radius. Hence,

a displacement of the plate induced by a SAW could change the response of the ASW

supported by each resonant cavity, potentially producing a non-linear effect.

9.6 Conclusion

In this chapter, some ideas for extensions of the experimental work presented in chapters

4 through 8 are outlined. The majority of these ideas relate to extensions of the acoustic

line mode research in chapter 7. The first extension is a different way to create a system

with glide-symmetry than explored in chapter 8,which perhaps allows for a greater

degree of control of the surface mode index . The second idea outlined how a different

type of higher order symmetry, ‘screw-symmetry’, may be able to create a surface mode

possessing acoustic orbital angular momentum. The third avenue for possible future

research builds on the work presented in chapter 7, investigating a system where a

ring of holes is arranged on a larger three-dimensional cylinder than a flat surface,

which could have intriguing implications. Each of these ideas has a sample that has

already been produced, and this was achieved with the use of a 3D rapid prototype

machine. A brief discussion of the significant potential this device has for the design

of acoustic metamaterials is included, its use further demonstrated with a picture of

a complicated 3D structure. Finally, other ideas are touched upon, such as how well

known solid-based surface acoustic waves may provide a new way to perturb airborne

acoustic surface waves.
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Chapter 10

Conclusions

The research contained within this thesis concerned the design and characterisation of

acoustic metamaterials that all supported airborne acoustic surface waves, that were

excitable via the diffractive coupling of periodically arranged resonant cavities. The

experimental chapters of the thesis could be broken down into two sections, with regards

to the type of measurement employed. The first two experimental chapters, 4 and 5,

focused on measuring the far-field acoustic transmission spectra of sets-of or individual

aluminium slit-cavities, arranged to create a variety of periodic structures, and thus

indirectly detect the presence of acoustic surface waves. The latter three chapters, 6,

7 and 8, concerned the measurement of the near-field acoustic response of a variety

of samples formed of open-ended hole cavities arranged into periodic lattices, thereby

directly detecting the excitable acoustic surface waves.

Of all of the experimental chapters, the first in particular stands out from the rest,

as it concerned fundamental physics that had ramifications for all of the chapters that

followed it, and indeed all impedance-grating-style acoustic metamaterials. Chapter 4

explored in detail the effect of thermodynamic boundary layers on sound propagating

through air confined to narrow slit-cavities. On the boundary of any perfectly-rigid

material (such as most solids can be treated relative to air) exists a pair of thermody-

namic boundary layers associated with the properties of the gas medium: the viscous

boundary layer, and the thermal boundary layer. Their effect on sound propagating

through long narrow tubes was studied in detail over a century ago by famous physi-

cists such as Kirchhoff and Lord Rayleigh, with much work being done since. However,

these boundary layers are typically very thin compared to the propagation wavelength

of the sound, being two orders of magnitude or more smaller than the width of a res-

onant slit-cavity typically used in the design of acoustic metamaterials. A study by

Lord Rayleigh at the turn of the 20th century predicted that the work done regarding

narrow tubes was also relevant to the slit-geometry, with a simple substitution of radius
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for slit-width, but this work has been largely ignored. As such, much modern acous-

tic metamaterial research has naively assumed boundary layers effects to be negligible

when constructing their models, as they introduce much mathematical complexity. By

careful measurement of the resonant frequency as a function of slit-width for both a

slit-array and single slit, it was shown that on the contrary, boundary layer effects

become important on a scale more than two orders of magnitude larger than their size.

This was manifested as a reduction of the measured resonant frequency and signifi-

cant attenuation of the resonance, the opposite behaviour to that predicted by loss-free

models. The experimental data was compared to analytical theory, where it was found

that a 5% reduction of the effective speed of sound through the slit is observed when

the boundary layers formed only 5% of the cavity width for both samples, confirming

Lord Rayleigh’s predictions. Hence, not only was it shown that the loss-free treatment

common in the wider acoustic metamaterial community is unrealistic, but also that it

is possible to control the effective speed of sound through a slit-cavity just by changing

its size, providing a new degree of control for future metamaterial design.

In chapter 5, four separate slit-array samples, each formed of aluminium slats,

were utilised to demonstrate the existence of the acoustic ‘phase-resonance’. This was

achieved via both experimental and numerical measurement of the angular dependence

of the transmission spectra of each of the gratings. It is well known that arranging a

set of resonant cavities into a simple periodic periodic slit-array can lead to ‘Enhanced

Acoustic Transmission’, whereby acoustic surface modes arising from diffraction can

hybridise with the Fabry-Perot like resonant cavity modes, and lead to strong peaks in

the grating’s transmission spectrum. Altering the grating structure so that its basis was

comprised of more that one slit-cavity, (i.e. it became a ‘compound’ grating structure)

resulted in sharp dips in the transmission spectra, that may have had a strong angu-

lar dependence. These dips resulted from the excitation of phase-resonances, whereby

the fields in adjacent cavities may be out-of-phase, made possible by extra degrees-

of-freedom being available to the near-field. Mapping the angular dependence of the

transmission spectra of these compound gratings illustrated the dispersion of the phase-

resonances. Hence, it was shown that the phase-resonant features could be considered

as acoustic-surface-waves band-folded into the radiative regime from larger wave-vectors

than possible on a simple periodic grating, and could thus indirectly couple to the in-

cident radiation to create dips in the transmission spectra. Also, one of the compound

grating structures was optimised via numerical methods to account for the thermo-

dynamic boundary-layer effects studied in chapter 4, thereby achieving deep, sharp

transmission minimum in a broad transmission maximum, which may be useful for the

design of acoustic filters.

Chapter 6 was the first chapter to utilise the high resolution near-field imaging
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technique that allowed direct measurement of acoustic surface waves. The ASWs ex-

citable on a two-dimensional square-lattice of open-ended holes were characterised, via

creation of high-resolution pressure field maps that visualised how sound interacted

with the sample. It was found that over a range of frequencies, the acoustic power flow

is channelled into specific, predictable directions, forming narrow beams with a well

defined width. Two-dimensional spatial Fourier transforms of the real-space pressure

field maps showed that this was a result of the dispersion of the acoustic surface waves

being strongly dependent on the direction of propagation relative to the lattice. Over a

controllable frequency band, an ASW could only form in one set of principle directions,

thus creating the strong beaming effect.

In chapter 7 was demonstrated the existence of the ‘Acoustic-Line-Mode’, a type

of acoustic surface wave that is excitable on a simple one-dimensional line of holes.

High-resolution measurements of the acoustic near-field were again utilised to charac-

terise the surface mode dispersion via spatial Fourier transforms. More significantly, it

was demonstrated that the acoustic line mode may be readily manipulated. This was

achieved via arrangement of the line of holes into a circular ring, and the measurement

repeated using polar-coordinates, whereby an acoustic line mode was shown to propa-

gate around the ring. This strongly localized acoustic line mode, whose behaviour was

dominated by coupling between resonators along the line in which they are arranged,

offers opportunity as a novel method for the control of sound.

The final experimental chapter, chapter 8, explored the effect that ‘glide-symmetry’

had on a pair of coupled acoustic line modes. Glide symmetry is achieved when a system

periodic along x is inverted along its y-mirror plane, and then shifted by exactly half of a

unit-cell, such as a ‘zig-zag’ shape. Three samples were characterised. The first was an

arrangement of two lines of open-ended holes, symmetric about y and periodic along x.

Two acoustic lines modes were found to exist, one with ‘even’ character (the phase of the

adjacent cavities equal) and a higher frequency mode with ‘odd’ character (the fields of

adjacent holes in anti-phase). The second sample was the glide-symmetric arrangement

of the first, with one of the lines of holes appropriately shifted with respect to the other.

It was then found that the two acoustic line modes excitable on the first sample become

indistinguishable from each other at the first Brillouin zone boundary, where the glide-

symmetry forbade the formation of a standing-wave. Hence, a mode with mixed ‘even’

and ‘odd’ character became excitable, with a larger in-plane wavevector and thus mode

index than previously possible, as well as a region of apparent negative mode dispersion.

The third sample is similar to the second, except that the cylindrical holes were replaced

with triangular-prisms. These were able to be arranged in glide-symmetry in such a

way that the fields within each cavity could couple strongly to its neighbours. This

allowed a mode to form with a very large in-plane wavevector, demonstrating a degree
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of control possible over the band-structure of acoustic line modes with glide-symmetry,

that may be useful for the design of devices such as acoustic-lenses.

In conclusion then, it has been successfully demonstrated that metamaterial design

concepts can be applied to the classical field of acoustics. The experimental and numer-

ical work throughout the thesis is in good agreement, and the ideas presented may well

prove useful for future design of novel acoustic devices. As explored in chapter 9, many

more ideas have since been spawned that when investigated could further contribute to

the ever-growing field of acoustic metamaterial research.
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Appendix A

Time-Domain to

Frequency-Domain (1D) Fast

Fourier Transform

Throughout this thesis, the key technique underpinning all of the experimental methods

- from recording transmission spectra to creating near-field pressure maps - is recording

a signal in the time domain, and then extracting from it a frequency domain spectrum.

This ‘Fourier transform’ is a very well known technique, but it is useful to outline

the concepts behind it, and detail both the basic and more complex signal processing

techniques that were used to produce all of the experimental data with which this thesis

is concerned.

First, consider a simple time signal, whose frequency is already known. Figure A.1A

is a computer generated 1D sine function in the time-domain, which goes through a

full cycle from 0 to 2π in 1 second, thus having a frequency of 1 Hz. When recording

this signal with digital equipment, it will be split into discrete points on the time

axis, spaced ∆T apart. This value, multiplied by the total number of points N , will

give the duration of the time-window over which data is recorded T (in figure A.1A,

∆TN = T = 1 s, though as will be explained, this total time does not appear to

correspond to the signal shown). The sample rate fs is thus equal to N
T

138,139,140.

Figure A.1A shows two possible measurements of the sine wave signal, one with an

odd number of points N = 19 (red), and one with an even number of points N = 20

(blue). In order to see what frequency components make up the time signal (which will

allow characterisation of complex experimental data), one must convert from the time-

domain to the frequency-domain139. Since the signal is divided into discrete points,it

is necessary to use the discrete Fourier transform rather than the standard Fourier
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Figure A.1: Example of the properties of a time-to-frequency FFT. (A) One cycle of
a 1 Hz sine wave oscillation, measured with number of samples N = 19 (red triangular
points and red solid line) and N = 20 (blue circular points and blue dashed line). (B)
Direct result of the FFTs on the two signals in plot A, with colours and points having
corresponding meaning. The vertical dashed lines (coloured black and with line-type
solid for odd, dashed for even) mark the Nyquist frequency, with higher valued points
corresponding to negative frequencies. Zero represents the DC signal. (C) Result of
applying the ‘FFT-shift’ function to B, placing DC in the centre, with positive and
negative frequencies either side. Again, colours and line types are inherited from plot
A. The extra point at the Nyquist frequency included in the N = 20 dataset has been
placed on the negative side.
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transform function140 (Note, not a discrete-time Fourier transform - this produces a

continuous result rather than a discrete one). One algorithm that makes this possible is

the Fast-Fourier-Transform (FFT), commonly available in statistical analysis software

such as R or MATLAB. This function can take any consistently sampled time signal

and return a complex valued discrete frequency spectrum, containing amplitude and

phase information. A detailed description of the computing processes behind such an

algorithm is beyond the scope of this work, a reference is included141. Such a function

is utilised in all subsequent signal analysis.

Note a potential point of confusion here - as it appears in figure A.1A, the time

between first and last points is not 1 s. This is because the total time measured also

has a period ∆T after the final point, as the FFT function treats the signal as though

it repeated infinitely, and thus wraps around back to the start point (this property has

important consequences to be discussed forthwith).

Figure A.1B shows the absolute value of the result of the FFT function applied

to the two differently sampled time signals in figure A.1A. The properties of the re-

sulting frequency spectrum are dependent on the parameters ∆T, T,N and fs. The

maximum frequency it is possible to extract from a given discrete time signal is known

as the Nyquist-Limit or Nyquist frequency, given by Nq = fs = fs
2 = 1

2∆T , and this

is represented by the red dashed and blue dot-dashed vertical lines. This limit arises

because any frequencies present in the signal greater than it, will fall victim to aliasing,

where a lack of information means it is possible to reconstruct a lower frequency wave

between the recorded points than the signal actually was. There is no way to know that

this has not occurred without increasing the number of samples in the measured time

window, thus the Nyquist limit. After the FFT is applied, the frequency resolution of

the resulting frequency spectrum ∆f , i.e the spacing between each unique frequency f

(known as a ‘bin’) is given by ∆f = fs
N = 1

T , hence, the longer the time recorded, the

better the frequency resolution becomes.

The direct result of the FFT (figure A.1B) appears counter-intuitive, with the

Nyquist frequency appearing in the centre of the spectrum and not on the high end.

This is because the FFT function returns both positive and negative frequencies, sepa-

rated by the Nyquist limit. If the original sample included complex phase information,

then these frequencies represent forward and backward travelling waves respectively.

Both odd and even length samples will return a result with the bin at the origin f = 0

being the DC component, followed by the positive frequencies up to the Nyquist limit,

and then the negative frequencies in descending order back down to the first non-zero

bin. In figure A.1B both samples show a peak at f = 1 Hz and zero everywhere else

since that was the original signal and no other frequencies were present.

A key distinction between the odd length and even length samples is that the
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Nyquist frequency Nq always falls
∆f

2 outside of the maximum frequency bins of the

odd sample, whereas it lies exactly on either the positive or negative maximum bin of

the even one, as can be seen in figure A.1B. This is important when rearranging the

spectrum as has been done in figure A.1C. Here, the ‘FFT-shift’ function is applied,

which places the DC component in the centre of the signal and the positive and negative

components either side, with the extra Nyquist point in the even length data set placed

in the negative half (this choice is arbitrary, but is the pattern that the rest of this

thesis follows). The frequency axis is thus given by:

f =

−fmax,−fmax + ∆f, ..., 0, ..., (fmax −∆f) if N is even

−(fmax − ∆f
2 ),−(fmax − ∆f

2 ) + ∆f, ..., 0, ..., (fmax − ∆f
2 ) if N is odd

(A.1)

For the frequency spectrum analysis that used with the experimental measurements

contained in this thesis, the negative half of frequency space is not needed, since phase

information was not recorded in the time-domain data (the signals do not have an

imaginary component, only the pressure amplitude at a given time was measured).

This means that the two halves of frequency space are always mirror images of each

other; mathematically it isn’t possible to know what direction the waves were travelling

in. Henceforth, the result of any experimental 1D FFT will only show the positive half

of frequency space (and usually, only a small relevant section of that).

With the basics behind the fast-Fourier-transform outlined, it is clear that the ideal

time domain measurement would have a very high sampling frequency fs, measured

over as long as possible a time T , in order to get the best frequency resolution ∆f over

the relevant frequency range 0 → fmax. This is not always possible however, so the

next step is to explain some of the difficulties encountered when performing real-world

signal analysis, that may lead to false features in the measured frequency spectrum.

One of the most problematic causes of these false features is ‘spectral leakage’.

A.1 Spectral Leakage

As mentioned in the previous section, the FFT result figure A.1B of the 1 Hz sine wave

in figure A.1A returned an answer where all of the Fourier amplitude was contained

in the 1 Hz frequency bin. This is actually a rare scenario, which was possible to

construct through suitable choice of fs
N because the exact frequency of the original sine

wave was already known. This is not possible in an experiment where one may wish to

determine the frequency response of some sample: it is by definition unknown. A more

realistic measurement scenario is presented in figure A.2, which shows the result of what
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Figure A.2: (A) A 1 Hz sine wave signal sampled in the time-domain, measured with
number of samples N = 19 (red triangular points and red solid line) and N = 20 (blue
circular points and blue dashed line) (B) Result of the FFT function applied to the
signals in A, with the FFT-shift function applied. Colours and line types correspond
to those in A. The Nyquist frequency for each signal is represented by the vertical
lines, styled accordingly.

happens if recorded sample points are not exactly commensurate with the underlying

signal. In this sample, the number of points N in the odd and even time samples is

the same as it was in figure A.1A, but the sample rate fs has been increased slightly

so that the first and last sampled points lie on the same point in the sine wave signal,

and the resulting FFT does not have a frequency bin lying exactly at 1 Hz. Now, in

the resulting FFT (figure A.2B) most of the amplitude is contained in the bin nearest

to 1 Hz (in this case, ∆f = 0.952, so at 0.952 Hz), however, the nearby bins are also

non-zero. This is a phenomenon known as ‘spectral leakage’139,140, and is a result of

the finite-width time segment, or ‘window’, that must be applied to analyse any time

signal.

When the FFT function is performed, the segment of the signal that has been

recorded is treated as though it repeated infinitely in both positive and negative time

around the start point. This means that if the recording window was not exactly

commensurate with the wavelength of the underlying signal, then there will appear a

false feature where each end of the signal is ‘stitched’ together. In figure A.1A, we see

that the first sample is exactly where the point following the last sample would be,

perfectly reproducing the whole 1 Hz sine wave when treated as infinite. The same is

not true of the signal A.2A, where the next point that would be in the sequence would

not correspond to the first recorded sample - i.e. when this signal is ‘stitched’ together

in an infinite chain, the first and last points have zero change in amplitude, producing

a brief artificial flat feature. Sharp features in time lead to broad features in frequency,
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so this artefact ‘leaks’ into frequency bins surrounding the real signal, causing them

to have a non-zero amplitude. Aside from giving us an incorrect measurement of the

width of a peak in the spectrum, spectral leakage can be a particularly big problem when

working with noisy signals, or when more than one frequency is present, and the signal

one trying to measure is not as strong as a different signal present in the data. This is

because the desired signal can be lost in the amplitude of the spectral leakage of the

larger signal. Further, unless the bins are perfectly placed, the amplitude of the signal

at its peak will be incorrect, as its true peak lies in between the available frequency

bins - this is a problem known as scalloping loss, or the ‘picket fence effect’139,140.

Numerous methods have been developed to account for spectral leakage, some of

which have been used throughout this thesis and are covered next.

A.2 Zero Padding

As will be explained in section 3.2, experimental samples will be excited with a broad-

band pulse, and resulting signals recorded while they ‘ring-out’ in order to determine

the sample’s frequency response. So, for the best frequency resolution ∆f , one must

record for as long as it is possible after the initial pulse is sent. However, there are

realistic limits in place that prevent this, such as unwanted stray signals arriving at the

detector that originate from e.g. a reflection from the wall of the room the experiment

is contained in. These extra signals interfere with the signal emitted from the sample,

and must be eliminated. The most effective way to do this is to ‘time-gate’ them out,

i.e. stop the recording of the signal before any extra signals can interfere with it. How-

ever, this necessarily limits frequency resolution ∆f , even if no reflections are recorded

as a result. A method known as ‘zero-padding’ can reduce this problem, provided a

few assumptions are made.

To access all of the possible frequency bins in the time-gated signal after it is de-

termined that the most important part of the spectra have been allowed to ring-out

(i.e., long enough that the sharpest signal one wished to measure will be within the

frequency resolution), zero-padding can artificially increase the resolution of our fre-

quency spectrum. This involves computationally adding time-points with no amplitude

(zeroes) either end of the original time signal, still spaced ∆T apart, thus artificially

increasing the total time measured T . This is the procedure followed to create the red

signal in figure A.3A, where T and thus ∆f has been tripled (the total number of points

is now N = 57, up from 19, hence ∆f is reduced by 1
3). Figure A.3B compares the

result of the original FFT with the zero-padded one, highlighting the resulting differ-

ence in frequency spectrum. Of course, since there is no new information contained in

the extra zero points, it will not suddenly be possible to pick out two separate signals
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Figure A.3: (A) A single cycle of a 1 Hz sine wave signal, without (red triangles
and solid line) and with (blue circles and dashed line) zero padding of the dataset. (B)
Result of the FFT function applied to the signals in A, with the FFT-shift function
applied. Colours and line types correspond to those in A. The Nyquist frequency is
represented by the solid vertical line, and does not change between samples.

spaced less than ∆f apart in the underlying signal, but what this does allow for is to

see extra frequency bins and thus know which bin contains the strongest amplitude,

giving a more accurate centre frequency (and reducing the scalloping loss). There is

an obvious consequence; the perfect continuity of the signal at each end is destroyed,

thereby introducing large amounts of spectral leakage, as is visible in the multiple new

non-zero peaks in the zero-padded signal (figure A.3B). These extra peaks are known

as ‘side lobes’; an explanation of ‘window’ functions allows a better understanding why

this occurs, and hence how to reduce the issue, discussed in the forthcoming section.

Note, there is another reason one might want to use zero-padding. There exists a

subset of FFT algorithms that are far more efficient than others, but they can only be

used if the number of sampled points N is a power of two, which can be achieved by

selectively adding zeroes139,140. The small size of the recorded time signals (less than

20,000 points) meant computer processing speed was generally not an issue here, so

this feature was ignored.

A.3 Window Functions

When one records a finite length time segment from a continuous signal, what has

effectively occurred is that the signal has been multiplied by a rectangular window

function139,140. This is a function which has a value of one for some defined width (T ),

while being zero elsewhere. This rectangular function has its own frequency response,

which is a sinc function, and this sinc function is convolved in frequency space with
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Figure A.4: (A) A zero padded single cycle of a 1 Hz sine wave signal, with the
red solid line multiplied by a rectangular window function (dark red solid line) and
with the blue dashed line multiplied by a Hanning window function (dark blue dashed
line). (B) Result of the FFT functions applied to the signals in A, with the FFT-
shift function applied. Colours and line types correspond to those in A. The Nyquist
frequency is represented by the solid vertical line, and is unchanging between samples.

the frequency response of the signal that is being analysed142. When the finite width

signal is zero-padded (section A.2) or spectral leakage occurs (section A.1), all that is

actually happening is that more of the response of this rectangular window function is

uncovered, manifesting as the ‘side-lobes’ that appear either side of the fundamental

peak. When the signal is sampled such that the bins of the FFT overlap perfectly with

the frequency of the signal (as in figure A.1), the bins coincide perfectly with the nulls

of the rectangular window’s sinc function, so it appears not to exist. This is clearly

illustrated in figure A.3B, where the extra resolution gained from the zero-padding

uncovers the sinc function between the nulls of the original signal’s frequency response.

So, since this sinc function appears in the frequency spectrum due to the response

of the imposed rectangular window (alternatively, because the signal is forced suddenly

to zero at each end), it follows that one could reduce this problem by changing the

fundamental window function. Numerous such window functions have been developed,

each having its own set of strengths and weaknesses143,142,139,140. Window functions are

characterised by the strength of its FFT’s side-lobes, as well as a few other properties

such as the window’s effect on the accuracy of the amplitude or the sharpness of the

main peak. Throughout the measurements in this thesis, it is the shape of the frequency

response that is sought, with specific and accurate values for amplitude and width made

less important with the use of a reference signal. Hence, the window function that has

been chosen is the ‘Hanning’ window that is in particular useful for reducing spectral

leakage143,144, since it smoothly tailors the recorded signal to zero at each end of the
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finite time window.

The effect of the Hanning window in the time-domain is shown by the red signal

in figure A.4A, compared with the plain rectangular window function (blue signal).

In both cases the signal is zero padded (after application of their respective window

functions). The differences in the resulting FFT spectra (figure A.4B) are stark. As

before, the original signal shows a strong peak at 1 Hz, with the rectangular window’s

sinc function spread out through the rest of the bins. The signal that was multiplied

by the Hanning window is much lower in amplitude, also being broadened, but the

side lobes have been significantly weakened. With this spectrum we can be much

more confident that the true signal is contained within the main peak, and that any

sharp features that could be either side of it in a more complex time signal will not be

‘drowned out’ by the side lobes of the imposed rectangular window function. It is also

far easier to fit a Lorentzian peak to this signal, allowing a more accurate extraction

of the centre frequency of the resonance - this is particularly true if the real signal is

significantly damped, unlike the perfect sine wave example used here.

These are the fundamental techniques that have been applied to analyse experi-

mentally recorded time signals throughout this thesis. Section 3 contains details on

how these times signals are generated and recorded in the first instance, with a few

examples of FFTs that have been performed on real measurements.
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Appendix B

Real-Space-Domain to

Reciprocal-Space-Domain (2D)

Fast-Fourier-Transforms

The two dimensional fast Fourier transform that converts from real-space to reciprocal-

space is fundamentally the same as the one dimensional version that allowed transition

from the time-domain to the frequency-domain covered in appendix A (also, it is not

necessarily two-dimensional, though only 2D datasets are used within this thesis). This

means that all of the implications of e.g. spectral leakage, apply here as well, only with

an extra degree of freedom145. The only differences are the factor of 2π introduced, and

that the 2D FFT is performed on a two-dimensional matrix of complex values (since

phase information is now known) rather than a one-dimensional real valued vector. It is

possible to apply window functions or to zero pad each dimension separately, which may

be useful depending on the sample. The methodology behind zero-padding and window

functions is as described in section A, but it is still useful to examine a basic 2D FFT

and examine the differences between having an odd and even number of samples. There

is an important difference to remark upon between the results of the experimental 2D

spatial FFTs when compared to the 1D time-to-frequency FFTs. Since the 2D pressure

fields contain complex phase information, the positive and negative halves of k-space

will no longer necessarily mirror each other as they did with the 1D frequency axis.

The extra information allows discrimination between waves propagating in different

directions along the surface vectors.

Figure B.1 shows the result of the FFT applied to a simple 2D image, and the

effect of the ‘FFT-shift’ function as applied in two dimensions. The top row (labelled

A and B) are plots of the Hanning window function over a square grid of x and y
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Figure B.1: Example of two basic spatial (2D) FFTs, with colour scale representing
an arbitrary magnitude. (A) 2D signal generated from the Hanning window function,
with number of points in each dimension Nx = Ny = 10 (i.e. an even dataset). (B)
Same as A, except with an odd number of points Nx = Ny = 9. (C-D) Reciprocal
space plot showing the absolute value of the direct result of the FFT of the signals in A
and B respectively. The white-dashed line represents the 2D Nyquist limit. (E-F) The
FFTs from C and D after the FFT-shift function is applied across both dimensions,
highlighting the difference between even and odd length signals, with the white-dashed
Nyquist limit appearing outside of the odd sample F.
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coordinates, with the colour scales indicating relative (arbitrary) values, where bright

(yellow) corresponds to a high value. There is no imaginary component to keep the

example simple. The left column (A) has an even length grid of Nx = Ny = 10, while

the right column (B) shows the same function applied over an odd length grid of size

Nx = Ny = 9. For clarity, individual ‘pixels’ have a border drawn around them. The

second row (labelled C and D) shows the direct result of the 2D FFT as applied to the

values in A and B. Just as with the 1D FFT, the direct results are counter intuitive,

with the maximum values of wave vectors kx and ky placed in the centre of the plot,

and the small values in each corner. The white dashed line represents the 2D version

of the Nyquist limit, i.e. the maximum wave vector accessible kxmax = π
∆x , similarly

kymax = π
∆y . The Nyquist limit in 2D represents the boundary between quadrants,

where the bottom left quadrant represents the positive values of k, while the top right

represents the double negative quadrant of k-space. As with the 1D case, an even length

number of samples has an extra pixel on this boundary, while the boundary lies between

the pixels of an odd length sample. The k-space resolution ∆kx is determined from
2π
Lx

, where Lx is the total number of steps in the real space direction Nx multiplied by

the step size ∆x (it is not simply the length of the sample as it appears, for the same

reasons as explained in appendix A). So, rearranging the data using the 2D version

of the FFT-shift function (which simply applies the 1D FFT-shift over each row and

column individually), results in the plots labelled E and F, where the high k components

are placed on the edge and the low k components in the centre, in the order:

kx =

−kxmax,−kxmax + ∆kx, ..., 0, ..., (kxmax −∆kx) if Nx is even

−(kxmax − ∆kx
2 ),−(kxmax − ∆kx

2 ) + ∆kx, ..., 0, ..., (kxmax − ∆kx
2 ) if Nx is odd

(B.1)

This is how all reciprocal space plots throughout the thesis are presented, as it

allows clear definition of different regions of reciprocal space such as the radiative regime

|k| < |k0|, where k0 = 2π
λ =

√
k2

x + k2
y and Brillouin zone boundaries, as explained in

sections 2.7 and 6. An example of one of these spatial FFTs as applied to the sample

in chapter 6 is shown in figure 3.11.
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