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ABSTRACT 
Cooperative interactions among individuals are ubiquitous despite the possibility of exploitation by selfish free-riders. One mechanism that may promote cooperation is “negotiation”: individuals altering their behaviour in response to the behaviour of others. Negotiating individuals decide their actions through a recursive process of reciprocal observation, thereby reducing the possibility of free-riding. Evolutionary games with response rules have shown that infinitely many forms of the rule can be evolutionarily stable simultaneously, unless there is variation in individual quality. This potentially restricts the conditions under which negotiation could maintain cooperation. Organisms interact with one another in a noisy world in which cooperative effort and the assessment of effort may be subject to error. Here, we show that such noise can make the number of evolutionarily stable rules finite, even without quality variation, and so noise could help maintain cooperative behaviour. We show that the curvature of the benefit function is the key factor determining whether individuals invest more or less as their partner’s investment increases; investing less when the benefit to investment has diminishing returns. If the benefits of low investment are very small then behavioural flexibility tends to promote cooperation, because negotiation enables co-operators to reach large benefits. Under some conditions this leads to a repeating cycle in which cooperative behaviour rises and falls over time, which may explain between-population differences in cooperative behaviour. In other conditions negotiation leads to extremely high levels of cooperative behaviour, suggesting that behavioural flexibility could facilitate the evolution of eusociality in the absence of high relatedness.
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INTRODUCTION
Flexible decision-making in cooperation
A fundamental challenge in evolutionary biology is to explain how cooperative behaviours can emerge and be maintained, especially in situations where cheating is possible (Axelrod and Hamilton 1981, Taylor and Day 2004a, Nowak 2006). In order to explain the ubiquity of cooperative behaviour in nature (Dugatkin 1997, Sachs et al. 2004, Melis and Semmann 2010, Raihani et al. 2012), the evolution of cooperation has been studied using various frameworks based on game theory (Maynard Smith and Price1973, Doebeli and Hauert 2005). Some frameworks considered a simple situation in which organisms cannot use information from previous interactions and the investment in cooperation is a fixed strategy of organisms (Maynard Smith and Price 1973, Doebeli et al. 2004); an assumption that can be justified when the investment is genetically determined without any behavioural flexibility.
Cooperative interactions, however, usually involve ample opportunity to assess the contribution of others, so individuals show flexibility in the amount of investment (McNamara 2013). For example, microbes share their chemical products with their neighbours through chemical diffusion and so the concentration of enzymes around them depends on the production rates of neighbours. As a consequence, each cell can indirectly obtain information about the strategies of neighbours and change their own production rate in response (Rueness et al. 2003, Hense et al. 2007, Czechowska et al. 2014). Social amoebae often cooperate with neighbouring strains in the formation of fruiting bodies, where they change their investment in stem construction depending on that by other strains (Li and Purugganan 2011). Other examples include breeding pairs in which individuals change their own investment in offspring in response to that of their partner (Wright and Cuthill 1990, Markman et al. 1995); gulls that monitor the vigilance behaviour of their neighbours and change their own vigilance accordingly (Beauchamp 2009); and paper wasps that reduce their foraging effort when offspring are artificially provisioned (Donaldson et al. 2013). 

Richer games of cooperation 
The evolution of such flexible decision-making and its influence on the degree of cooperative behaviour has been theoretically investigated by developments to game theory (McNamara 2013). One major development followed the insight that in many situations individuals repeatedly play the same game with the same partner (e.g., offspring provisioning per hour, minutes of enzyme secretion, seconds of vigilance or foraging) and so can respond to their partner’s previous behaviour (Trivers 1971, Axelrod 1984). Studies of the iterated prisoner’s dilemma game (Axelrod 1984) and iterated snowdrift game (Posch et al. 1999) suggest that repetition can promote cooperation (Axelrod 1984, Posch et al. 1999, Doebeli and Hauert 2005) by reducing the potential payoff to cheating. 
Although both the iterated prisoner's dilemma and iterated snowdrift games assume a decision process in which there is a limited choice of actions (e.g. cooperation or defection), individuals can often continuously alter their contribution to the cooperation (Doebeli et al. 2005). A few studies have theoretically investigated the evolution of a response rule in these continuous cooperation games. The continuous iterated prisoner's dilemma game (CIPD) proposed by Wahl and Nowak (1999a, b) assumed that each individual continuously changes its own investment as a function of the amount of its partner's investment in the previous interaction. This typically results in a cyclic evolutionary fluctuation of investment, indicating that the possibility of responding to one’s partner makes cooperation unstable (Wahl and Nowak 1999a, b). On the other hand, a high level of cooperation can be stable when individuals react to the amount of obtained reward rather than the investment of the partner in the previous interaction (Killingback and Doebeli 2002). The version of the continuous iterated cooperation game proposed by McNamara et al. (1999) assumes that two players interact repeatedly a sufficiently large number of times. After a large enough number of interactions, their investment and obtained payoff per interaction converge to a stable level. Therefore, if the number of interactions after the convergence to a stable state is sufficiently large, the average payoff can be approximated by the payoff at the stable investment. This approximation solves a difficulty in calculating the payoff from a given response rule in the original CIPD. 
However, there remains a fundamental difficulty for the analysis: very many (or infinite) forms of response rules can be evolutionarily stable simultaneously, which undermines the value of the theory for understanding the natural world (Taylor and Day 2004a). This fundamental problem can be overcome by enriching the game (sensu McNamara 2013). For example, McNamara et al. (1999) assumed that individuals varied in their quality - a property that influences the cost that an individual pays - and thereby identified a single evolutionarily stable response rule. Recently, McNamara and Doodson (2015) have shown that this approach can be used to demonstrate the importance of reputation – when it partly depends on individual quality –for the evolution of cooperation. Taylor and Day (2004b) and André and Day (2007) overlooked the importance of including variation in individual strategies, where players interact with various partners having different response rules. André (2015)  developed a general framework for understanding the influence of variation in individual phenotypic traits on the evolution of response rules, without any specific assumptions about functional shapes of fitness or distribution in phenotypic traits. This general framework confirmed that the existence of variation in phenotypic traits can make the number of evolutionarily stable response rule finite, and highlighted three necessary conditions for the evolution of reciprocity.
A persistent problem in understanding cooperation is how and what factors influence the evolution of responses. André (2015) partially revealed the answer to this question by showing the evolutionary outcomes using simple benefit and cost functions. However, this study did not focus the evolution of response rules with negative slopes; the importance of the functional forms of benefits and costs; nor the potential for polymorphism in strategies. These are likely to be important in nature: exploitation of a co-operator (by having a negative response to their investment) is an important force preventing cooperation going to fixation in a population; the evolution of cooperation is likely to be depend on the relative slopes of costs and benefits at particular levels of investment; and the evolution of polymorphisms could drive isolation and so speciation. Consequently, although various types of individual variation have been investigated in previous studies, the evolutionary outcomes for response rules in the presence of individual variation has not been fully resolved, nor do we have a broad predictive theoretical framework that can be tested in empirical systems. 

The importance of noise
Whilst cooperative behaviour is ubiquitous among social species, there may not always be sufficient variation in quality to maintain cooperation and/or it may be impossible for individuals to assess their own quality. Most organisms live in a noisy world where their levels of cooperation may be affected by many uncontrolled environmental influences, leading to contribution errors. Therefore, selection on response rules will be influenced by the contribution error of organisms. Furthermore perception of the behaviour of others will also be subject to error. Whilst contribution error causes  variation in the focal individual’s own behaviour, perception error causes variation in the perceived investment of its partner, which in turn results in the variation in the response of the focal individual.
The aim of the present study is to reveal the evolutionary outcomes in terms of response rules under individual variation caused by contribution and perception errors. We consider a two-player game with repeated interactions between the players. For each interaction, individuals can contribute to a common good at a cost to themselves. Each individual determines its contribution in response to its perception of the partner’s previous investment, but both this perception and the contribution may be subject to error. Using adaptive dynamics (Dieckmann and Law 1996, Metz et al. 1996, Geritz et al. 1998) and numerical simulations, we analysed the evolutionary dynamics of the response rule and investigated the factors that influence the evolution of cooperation, mainly focusing on the influence of contribution error. We also investigated the evolutionary dynamics under the existence of perception error.
We found that the curvature of the benefit function is an important factor determining the evolution of response rules. When the cooperative benefit is subject to diminishing returns, individuals should respond to increased investment by their partner by decreasing their own investment. On the other hand, an accelerating benefit can lead to mutualistic investment and run-away cooperation. Moreover, the realized investment in the negotiation game can be either higher or lower than a game without negotiation depending on the curvature of the benefit function. The curvature of the cost function also has strong effects in some conditions, when it can determines whether investment either does not evolve at all or evolves to a very high level. Our results indicate that negotiation between players does not always promote cooperation, and negotiation often leads to two extreme results, i.e., either extremely high levels of cooperation or no investment in cooperation. Our work has several implications for our understanding of the fundamental basis of cooperation in the natural world. 

THE MODEL
[bookmark: _Toc416425670][bookmark: _Toc416426275]Basic Framework
In order to assess the influence of noise on cooperation, we modify the negotiation game (McNamara 1999) by including contribution error instead of variation in individual quality. It is assumed that two individuals are randomly chosen from an infinitely large population and have a large number of cooperative interactions. Individuals have a response rule, which is a function of the amount of investment by the partner at the previous interaction. The parameters of their response rule are genetically determined. Here, we present the model with contribution error only; see Appendix D for the model with perception error. 






Consider two individuals, X and Y, whose response rules are represented by rx and ry, respectively. The investments of X and Y at the i-th interaction, xi and yi, are determined by their investments at the previous  interaction  (xi-1 and yi-1) as
	, and								(1a)
	,								(1b)
where  and  are errors made by X and Y and are normally distributed random variables with mean zero and variance σ2. Note that we assume that the value of the error is constant during the whole interaction of each pairing. After individuals determine their investment following their response rules, individuals obtain the payoff depending on their investment. We considered the payoff function based on the continuous snowdrift game (Doebeli et al. 2004), where individual X obtains the payoff at the i-th interaction:
	W(xi, yi) = f(xi + yi) - g(xi), 							(2)
where f and g are functions that determine the benefit and cost, respectively. We assume that f and g are the quadratic functions
	 and				(3a)
	.							(3b)
pf and pg control the curvatures of the benefit and cost functions, respectively, and s determines the magnitude of the cost relative to the magnitude of the benefit. Note that when pf is zero, the benefit is simply proportional to the sum of the investments. When pf and pg are positive the benefit and cost increase at an accelerating rate (Figure 1). When pf and pg are negative the benefit and cost increase at a diminishing rate. Note that when pf and pg are negative these functions have negative slope at high (x+y) and x respectively, meaning that more investment reduces the benefit or cost of cooperation (see Figure 1), which is not realistic. However, we find that the mean cooperation in the population never reaches this unrealistic level except in cases where the investment tends to infinity (see Results). 


We assume that there are sufficiently many interactions between individuals such that their investments reach an equilibrium (x̂, ŷ), which is a solution of the simultaneous equations 
	, 								(4a)
	. 								(4b)
It should be noted that whilst x̂ and ŷ can be negative depending on the values of contribution error (x and y) the mean investment of the population is always positive or zero. When there is a sufficiently long sequence of interactions, the mean payoff per interaction with a given partner is approximately W(x̂, ŷ). 

Consider an invasion of a rare mutant into a population of existing residents. Let us denote the investment of a mutant with response rule r' as x, which has a certain range of the distribution caused by contribution error. Similarly, we denote the investment of residents with response rule r as y. The fitness of the mutant in the monomorphic resident population H(r'| r) can be calculated as the average payoff, which by Taylor expansion can be written as
		(5)
Because W is a quadratic function, this expression is exact since the terms of more than second order differential of W are all zero.

Evolution of cooperation without behavioural flexibility



First we consider the situation when individuals cannot react to their partner’s action. In this case individuals X and Y adjust their investments to genetically fixed values, cx and cy, regardless of the investments of their partners. Then, the investments by X and Y at equilibrium are
	 and								(6a)
	, 									(6b)
 respectively. When the population is monomorphic (i.e. cx = cy = c), the mean investment is c for all individuals. We analysed the evolution of the response rule using adaptive dynamics (Dieckmann and Law 1996, Geritz et al. 1998, Doebeli et al. 2004). In this approach, it is assumed that a focal trait is coded by many genes each of small effect and evolves gradually.  The fitness of a rare mutant with rule c' in a monomorphic resident population with rule c is given by (see Appendix A):
	 . 						(7)
If c' is sufficiently close to c, the rate of change of c over evolutionary time can be represented as


	, 							(8)
where β(c) is a positive coefficient determining the evolutionary rate of c (Dieckmann and Law 1996).  The rule will have reached a stable state if ∂H/∂c = 0 at an evolutionarily singular strategy c*, the condition of which is
	.							(9)
In order to predict the endpoint of evolution, we must examine two types of stabilities of the evolutionarily singular strategy:  convergence stability (CS) and evolutionary stability (ES). Following the methodology in Geritz et al. (1998), the conditions for CS and ES are
	pf < 2spg and									(10)
	pf < 4spg,									(11)
respectively (see Appendix A). Note that, perhaps surprisingly, the condition of the singular solution, CS and ES are not influenced by the magnitude of contribution error, σ2.

Evolution of cooperation with behavioural flexibility 







Next, we assume that individuals have a linear response rule r specified by the parameter pair (b, c). An individual with such a rule invests r(y) = by + c when the observed investment of partner is y (-1 < b < 1 and c≥0). When two individuals X and Y that have response rules (bx, cx) and (by, cy) have a reciprocal interaction, the equilibrium investment after large number of reciprocal interactions, x and y are
	, 							(12a)
	. 								(12b)
The equilibrium investments become:
	,						(13a)
	.						(13b)
When the population is monomorphic and all individuals have an identical response rule (i.e., (bx, cx) = (by, cy) = (b, c)), the amount of investment is
	, 							(14)
for all individuals. Because the mean values of  and  are zero, the mean investment in the population is c/(1-b).

[bookmark: Eq_Fitness]The fitness of a rare mutant with response rule (b', c') in a monomorphic resident population with response rule (b, c) becomes
	, 		(15)
(see Appendix B1). It is important to note that the second term on the right-hand side in Eq. (15) is multiplied by the variance of contribution error, σ2. In the absence of error (i.e. σ2 = 0), this term disappears. We explain the importance of this below. 




[bookmark: Eq_ad_dbc][bookmark: Eq_ad_sgl]If the response rule of a rare mutant (b', c') is sufficiently close to that of resident individuals (b, c), the rate of change of b and c over evolutionary time can be represented as
	,						(16a)
	, 						(16b)
where βb(b, c) and βc(b, c) are positive coefficients (Dieckmann and Law 1996). Those coefficients are generally functions of the resident traits b and c, although we can ignore those effects because we focus on signs of Eqs. (16a, b) in the analysis. The population will have reached an evolutionarily singular solution if (b, c) = (b*, c*) and if db/dt = 0 and dc/dt = 0 at this combination of values (Geritz et al. 1998). b* and c* simultaneously satisfy
	, 	and					(17a)
	,					(17b)
(see Appendix B2). This is the condition for the singular solution in interior region (-1 < b < 1 and 0 < c). When σ2 = 0, Eq. (17a) becomes trivial so Eq. (17b) is the only condition. In this case, any x values within a certain range can be a singular solution with corresponding response rules. This implies that infinite numbers of combination of b and c can be singular sets. This is the reason for the appearance of infinite numbers of singular solutions in previous studies (Taylor and Day 2004b), resulting in difficulties for the analysis. On the other hand, when σ2 > 0, Eq. (17a) restricts the value of b at the singular solution, by which the number of solutions becomes finite. Interestingly, the magnitude of σ2 does not influence the evolutionarily singular solution itself because σ2 is merely a multiplier in Eq. (17). 


[bookmark: Eq_ad_CS][bookmark: Eq_ad_nsES][bookmark: Eq_ad_ES]We find (Appendix B3) that the conditions for CS are 
		 and				(18a)	,	(18b)
and the condition for ES is
	pf(1+b*) – 4spg < 0 .									(19) 
Those conditions indicate that the magnitude of the error σ2 influences the condition for CS (Eq. (18)), but not that of ES (Eq. (19)). The singular solution is more likely to be convergent stable as σ2 increases when it is evolutionarily stable, but less likely when it is not (Appendix B4). In addition to Eqs. (17), (18) and (19), we also investigated the singular solutions on the border (i.e. b ≅ ±1 or c = 0) and their stabilities (see Appendix A5).
We can use the analytical approach to predict the evolutionary process to some degree (Appendix B) but such an analysis is restrictive and makes it difficult to represent the exact consequences of evolution. For example, when the system has multiple possible endpoints that satisfy both ES and CS conditions, which endpoint is reached depends on the initial conditions and the evolutionary pathway. In addition to this, the analytical approach cannot provide sufficient information about oscillatory solutions and divergence to infinity of the trait values. Therefore, we also analysed the evolutionary dynamics using numerical methods. In the numerical approach, we assumed that at the initial time all resident individuals in a population are uncooperative and unresponsive (b=0; c=0). We calculated the change in b and c at each moment by using Eqs. (16a, b) and so their evolutionary trajectory and evolutionary outcome. The numerical results correspond remarkably well to those of the analytical approach (Appendix C).

RESULTS
3.1. Effects of the curvature of the benefit and costs functions
Figure 2a shows how the mean investment (x*) is determined by the curvatures of the benefit and cost functions (pf and pg) when negotiation is possible. When the benefit is diminishing (pf<0) and the cost is accelerating (pg>0) the investment reaches a unique stable state (Appendix B6), because these values lead to maxima in the payoff function and give a small incentive to exploit the partner. When the benefits are accelerating (pf>0), x* would eventually evolve to be infinitely large in much of parameter space with negotiation (black regions). This is intuitive because an accelerating benefit means that any increase in investment increases the marginal benefits of further investment. However, too strong acceleration (pf>>0, extreme right) initially produces only small benefits, which prevents the evolution of cooperation (white region). When both the benefit and cost functions are saturating (pf < 0 and pg < 0, bottom-right), the investment becomes zero for most parameters, but around pf ≅ pg the amount of investment tends to infinity. This can be explained as follows. When pg << pf < 0, the initial cost of cooperation is too large for the evolution of cooperation, therefore the investment becomes zero. On the other hand, when pf < pg < 0, the quick saturation of the benefit function prevents the evolution of infinitely large investment, and finally the investment becomes zero because of the emergence of a strongly cheating response. Consequently, it is only when pf ≅ pg < 0 that cooperation can evolve from the initial state, overcoming the selection on cheating. This then results in an infinitely large investment.
Our analysis shows that the effect of behavioural flexibility on investment qualitatively depends on whether the benefit is accelerating or diminishing (Figure 3a). When diminishing (pf<0) negotiation suppresses cooperation, because individuals should reduce their investment as their partner’s increases. When accelerating (pf >0) negotiation either promotes cooperation (because b*>0) or has a neutral effect (because investment is zero or infinite). Provided it is positive, the particular value of pg does not affect this pattern, nor do the magnitude of cost s and the magnitude of error σ2. However, increasing the magnitude of the cost (s) reduces the strength of response |b| and the mean investment by reducing the magnitude of c (Figure 3b). 

3.2. Effects of negotiation on the cooperation 
The comparison between the mean investment with and without negotiation (Figure2a and 2b) shows that negotiation increases the parameter region where we predict both infinite cooperation and no cooperation. When negotiation is not possible populations are predicted to be polymorphic in some cases (dotted region in Figure 2b). On the other hand, when negotiation is possible, evolutionary branching did not appear in our numerical simulation. This is also supported by our analytical investigation (Appendix B4), i.e., evolutionary branching can occur only situation when the partner’s additional investment in cooperation decreases the cooperative payoff (i.e., ∂W/∂y < 0), which seems unlikely in nature. 
Interestingly, when negotiation is possible for some values of pf and pg we predict that the slope and intercept of the response rule can continuously fluctuate without reaching a steady state, which results in evolutionary oscillation of the amount of investment (hatched region in Figure 2a, see example in Figure 4). Because both the increments of slope and intercept contribute to the higher cooperation level at the equilibrium state, both c and b increase at first. However, once the cooperation level reaches an approximately optimal level, there is selection to cheat and invest less as the partner invests more, causing b to become negative. Progressive cheating responses finally cause a collapse in c, but under very low cooperation b gradually increase again to obtain higher benefit from the error of partners, whereupon there is again selection for increased cooperation. Such evolutionary oscillation of the amount of investment never occurs in the absence of negotiation because the evolution on one dimensional trait space (i.e., c) necessarily either reaches a convergent stable solution or diverges to infinity.

3.3. Effect of the magnitude of contribution error and perception error
Although the analytical investigation shows that the magnitude of contribution error σ2 does not influence the singular solution itself, the condition for CS depends on σ2. Therefore, the magnitude of error influences the evolutionarily realized state from any given initial condition. Indeed, when the magnitude of error is large, the parameter region with oscillations tends to be narrower (Figure 5 with σ2 = 1.0, cf. Figure 2a with σ2 = 0.1). This fact is also supported by an analytical approach, i.e., large contribution error always relaxes the condition of CS for an ES solution (Appendix B4). The larger errors also suppress the evolution of infinitely large investment in pf ≅ pg < 0 through facilitating a convergence of investment toward zero (bottom-left region in Figure 5).
When the magnitude of error is smaller, the opposite change is predicted, i.e., the occurrence of oscillation in a wider parameter regions and the evolution of infinitely large investment around pf ≅ pg < 0. However, no clear difference was detected between Figure 2a and the result of the numerical simulation with smaller error (i.e., σ2 < 0.1).
So far, we have focused on contribution error, which directly affects the amount of one's own investment. We have also investigated evolutionary dynamics under the existence of perception error, which affects the perceived investment by the partner and so indirectly one's own investment (Appendix D). In the presence of perception error without contribution error, the slope of the response rules at the evolutionarily stable state becomes zero, and therefore the evolutionary outcomes is very similar to when negotiation cannot occur (i.e., b=0, Figure 2b). However, if we assume the existence of both contribution and perception errors, the evolutionary outcomes and the properties become very similar to when there is only contribution error (Figure 2a). Consequently, error in perception has negligible effects on our predictions. 

DISCUSSION
Response rules for a noisy world
Organisms are always exposed to noisy environmental factors so can obtain only inaccurate information about the behaviour of others (Dall et al. 2005, Evans et al. 2015). The influence of such noise can be amplified through reciprocal interactions with repeated decision-making, which makes it more difficult to predict potential outcomes. Therefore, it is a serious challenge for organisms attempting to optimize their response when engaged in cooperative interactions. We have explored how we expect response rules to have evolved in a noisy world. Our results show that whether individuals are able to adjust their investment critically affects whether cooperation evolves, and that the curvatures of the benefit and cost functions are key factors determining the outcome of the selection process.
In the continuous cooperation game with behavioural flexibility, the emergence of an infinite number of evolutionarily stable response rules has been an obstacle to understanding the evolution of cooperation in detail. In the present study, we show that variation caused by perception or contribution error makes the number of evolutionarily stable response rules finite, as explained by André (2015) building on the earlier work by McNamara et al. (1999) focussing on variation in phenotypic traits. Importantly, although in the present model an individual cannot assess its own and its partner’s contribution error, the influence of contribution error on the evolution of response rule is qualitatively equal to that of individual quality within the population (McNamara et al. 1999), where an individual can assess its own individual quality. This means that the present results extend the range of phenomena that can be understood using continuous cooperation games.
Despite the critical importance of the presence of errors, under most conditions the magnitude of error has no influence on the evolutionary outcome. In other words, although larger errors make information less reliable, the evolutionarily stable response rule is independent of the accuracy of information. This suggests that the results of our analysis can be applied even if the organisms can adaptively change the magnitude of error or there is spatiotemporal variation in the magnitude of error among populations. To be exact, this prediction can be applied only when the range of investment caused by error is small enough that it is adequate to approximate the benefit and cost as quadratic functions within their range of application. Under extremely large error, the stable response rule is not completely independent of the magnitude of error. Moreover, although in the present study we do not consider the cost of a conditional response, if the strength of the response (i.e., the magnitude of slope b) increases such a cost then the magnitude of error will influence the evolution of any response rule (André 2015). However, our results suggest little influence of the magnitude of error on the evolution of response rule, especially in the situation with small error and no cost of response strength.
André (2015) also investigated the influence of the variation in cooperative behaviour on the evolution of the response rule, but our study revealed properties of the evolution of response rule that are not shown therein: the strong influence of the curvature of the benefit function on the sign of the slope of the response rule; the evolution of exploitation in much of parameter space; the evolution of infinitely large cooperation level when both the benefit and cost functions are saturating, and the occurrence of evolutionary fluctuations of the response rule. These differences might be caused by the aspect focused by each study, i.e., André (2015) was interested in the emergence of reciprocal cooperation and focused on the additional benefit from investing cooperatively (i.e., pf > 0, called "synergy" in André 2015), which always favours positive slope of the response rule. On the other hand, our study focused on the importance of the shapes of benefit and cost functions for the continuous snowdrift game. This is a natural extension of André (2015) that assumed the cost as an accelerating function only (pg=1, in our notation) in the analysis assuming specific functions, although note that these specific assumptions are not necessary for general framework of André (2015). Consequently, the findings in the present study suggest a potential for error to cause dynamic change in evolutionary outcomes that are different from that of André (2015), and are important for considering how noise influence the behaviours of a broad range of organisms. 

The distribution of cooperativeness in nature
The response rule can be categorized into two types depending on whether an individual responds positively or negatively to the others’ investment; increasing or decreasing its own contribution when its partner increases their contribution. Which evolves largely depends on the shape of the benefit function. The importance of the shape of benefit function on the amount of investment was demonstrated by McNamara and Doodson (2015), where reputation is an honest signal of individual effort and so individuals evolve to either exploit or cooperate with high quality individuals; which case evolves depends on the shape of the benefit function. Here we have shown that these patterns may also occur in the absence of the ability to assess one’s own quality.
When the realized investment is predicted to be zero or diverge to infinity, we will be unable to assess the response because there is either no cooperation or full cooperation. According to our results, moderate investments are mainly predicted in the parameter region with a diminishing benefit function and an accelerating cost function. This may be the reason why observed reactions in empirical examples of cooperation tend to show a negative response (Wright and Cuthill 1990, Markman et al. 1995, Beuchamp 2009). 
Although accelerating benefits are unlikely to result in moderate levels of cooperation, there is an exception (see Figure 2a): when the benefit function is weakly accelerating (0<pf<<1) and the cost function is strongly accelerating (pg>>0). Such conditions may occur in the interactions among microbes, where enzyme production can accelerate the efficiency of digestion via biofilm formation (Hense et al. 2007), but enzymes are increasing costly to produce as resources are limited. Observations show that individual enzyme production tends to increase with an increasing amount total enzyme (Rueness et al. 2003, Hense et al. 2007, Czechowska et al. 2014), indicating that the response rule is positive, which supports our prediction.
 For mathematical convenience we have assumed that both the benefit and cost follow quadratic functions, which means that the terms higher than second order in the Taylor expansion can be omitted, making the analysis of evolutionary dynamics tractable (see Eq. (5)). Of course, in natural systems the benefit and cost functions might follow more complex forms, such as exponential or sigmoid. In such cases, the evolutionary trajectory and its outcomes might be different from our models, but even then we can still give some predictions about the slope of response rule at the evolutionary stable state. When the magnitude of error σ is sufficiently small that the influence of terms of more than second order can be ignored, the condition for the evolutionary stable state becomes the same as predicted in this study, i.e., the convex shape of the benefit function is required for the evolution of a positive slope at evolutionary stable state.
We show that in the negotiation game the negative response can emerge under the saturating shape of benefit function. By using a negotiation game, the evolution of negative response was also predicted by McNamara et al. (1999) and McNamara and Doodson (2015), the latter of which used a more general functional form for the cooperative benefit. On the other hand, previous studies using the iterated prisoner’s dilemma or CIPD have reported the evolution of only the positive response rule (Axelrod 1984, Roberts and Sherratt 1998, André and Day 2007). This inconsistency is caused by differences in the assumption about the influence of contributions on the benefit. In the iterated prisoner’s dilemma game or CIPD, the cooperative behaviours of an individual have no direct contribution to its own cooperative benefit, where the cooperation is motivated only by the indirect benefit from the cooperative reaction by its partner. Therefore under the negative response rule cooperation cannot be maintained and only the positive response rule is predicted. On the other hand, in the negotiation game, the cooperative investments make a direct contribution to the benefit. In such a case, cooperation is motivated regardless of the positive response of the partner, which permits mild exploitation of others’ investments. Consequently, both positive and negative response rule can be an evolutionarily stable strategy in the negotiation game.
Surprisingly, we predict that perceptive errors alone will not have significant effects on evolutionary outcomes (Appendix D). This occurs because the error (δ) is multiplied by b, and so when b is zero this error has no effect. When in concert with contribution errors, the presence of perceptive errors has negligible impacts on the evolutionary outcome, even though the contribution errors lead to responsiveness (b≠0). It is difficult to explain this result intuitively, but one possible explanation might be that the effect of perceptive error on behaviour is indirect and so the relative influence of perceptive error is smaller than that of contribution error. It is possible that under some situations perception errors will be important, such as if they are much greater in magnitude than contribution errors. The assessment of the relative magnitudes of errors and their effects, both empirically and theoretically, is a potentially fruitful direction for future research. 


Behavioural flexibility may facilitate the evolution of sociality
The shape of response rules influences the pattern of investment during a sequence of reciprocal interactions with the same partner. In the case of a positive response with an accelerating benefit function, both players initially invest a small amount, and then repeatedly increase their investment toward an equilibrium investment. For a negative response with a decelerating benefit function, one player initially invests a lot and the other player invests a small amount, and their investments gradually converge on an intermediate level.  Since the mode of response depends on curvature of benefit function, we may be able to predict the property of a benefit function if the negotiation process can be observed in interactions between organisms.
Difference in the pattern of investment during reciprocal interaction change the influence of behavioural flexibility on the amount of investment, i.e., flexibility in deciding investment can either promote or suppress the evolution of cooperation depending on the curvature of the benefit function. Hence, flexibility greatly increases the region of parameter space where investment is predicted to be infinite (Figure 2a), especially where both the benefit and the cost are accelerating. This influence can be explained by the mechanism reported by McNamara and Doodson (2015) and André (2015), i.e., once the ability to respond to others is acquired, the positive response of others makes it adaptive for an individual to respond positively, which leads to a positive evolutionary feedback of the positive response and more cooperation.
For tractability we have assumed that the benefit and cost functions are either accelerating or decelerating over their whole range. However, even if the benefits are initially accelerating, they will eventually reach some limit because of the depletion of investing resource, e.g., time or some chemical materials (similar limitation is assumed in Wahl and Nowak (1999a, b)). Therefore, where the model predicts infinite cooperation, we actually expect animals to show a high level of cooperation at some ecological or physiological limit. At the limit there may be little need for a response rule, so whilst these animals may have evolved under response rules and negotiation, this may be little evident amongst contemporary individuals. An example may be eusocial insects, which have presumably had an evolutionary history of primitive sociality typical of many wasps (Bourke 1999), which involves behavioural plasticity with negotiation (Donaldson et al. 2013) that has been lost. Accelerating benefits of investment are likely where cooperation among small organisms has synergistic effects, such as where the productivity of a colony is much greater than the sum of individual efforts. Thus, negotiation in noisy interactions may facilitate the evolution of eusociality, even when relatedness is not very high, such as in polygamous seasonal species that are weakly related and produce reproductives at the end of the colony cycle, which have been perceived to undermine the inclusive fitness hypothesis for eusociality (Nowak et al. 2010).
Behavioural flexibility also increases the region where investment becomes zero, especially where both the benefit and the cost functions are saturating (compare the bottom-left region in Figure 2a and 2b). Importantly, in general behavioural flexibility could be acquired after the establishment of a cooperative interaction in a population. This suggests that in this region the acquisition of the ability to respond flexibly collapses the cooperative interactions which had previously been stably maintained. Because the reduction of the investment decreases the average fitness of the population, the acquisition of flexible response ability could cause the extinction of the population.

Maintenance of variation in cooperativeness  
Numerical simulations showed that cyclic evolutionary oscillations of the reaction strategy can occur (Figure 4), but its occurrence is suppressed by increased contribution error (Figure 6). This pattern is related to the fact that contribution error makes the number of singular solutions finite. In the absence of contribution error, an infinite number of reaction strategies is evolutionarily stable in the negotiation game, while only some points of them are evolutionarily stable in the presence of error. Therefore, when the magnitude of error is large enough, the selective force caused by contribution error drives the reaction strategy of a population to such stable states. However, when the magnitude of error is small, only some finite number of strategies are evolutionarily stable but the selective force is too small to reach such a stable state, which results in the cyclic oscillation of the reaction strategy.
Evolutionary fluctuation in the amount of investment is also predicted by Wahl and Nowak (1999ab), but the mechanism is different to the present study. Wahl and Nowak (1999ab) assumed invasions by mutants whose reaction strategies are randomly selected rather than being slightly different to that of the resident population. Hence, a cooperative population is exposed to invasion by fully cheating mutants, which causes the fluctuation in the amount of investment. On the other hand, in the present study, the evolutionary fluctuations are caused by the reciprocal invasions of a mutant which moderately exploits the population, resulting in a slow collapse of cooperation in the population. This implies that in a noisy world the collapse of cooperation can occur in the absence of fully cheating mutants. Even if an ecological or physiological factor prevents the emergence of a mutant with a completely different strategy from residents’ ones, a cooperative population can gradually change to non-cooperative.  The  prediction of repeated oscillations may explain why some populations of a species show higher levels of cooperative behaviour than others (Gols et al. 2008, Lamba and Mace 2011, Sanchez 2013), because we are observing them for a snapshot in evolutionary time. 
The present analysis shows that the response rule usually does not diverge due to evolutionary branching in the continuous negotiation game. This implies that behavioural flexibility tends to prevent the emergence of genetic polymorphisms for cooperation. Such abilities of plants or microbes tend to be limited compared to animals, and this might be one of the reasons why the observations of genetic polymorphism in investment are mainly limited to plants and microbes (Agrawal et al. 2002, Hare and Elle 2002, Greig and Travisano 2004).  

Future prospects
Our results suggest future research directions that we believe will lead to a deeper understanding of the evolution of cooperation. First, we have assumed that individuals make errors in the amount of their own investment, and the error is fixed during reciprocal interactions a given partner, but other types of noise should be considered. For example, organisms may make errors in assessing the investment of others, or the magnitude of error might be different in each interaction. Such different types of noise may differentially affect the evolution and maintenance of cooperation.  
Second, we considered the direct response to the investment of the partner, but organisms may change their behaviour depending on other information sources. For example, gregarious caterpillars live in groups in order to reduce the risk of predation (Gamberale and Tullberg 1998) and caterpillars change their investment in defence depending on the group size, rather than the investment of others (Daly et al. 2012). Such a difference in the source of information may change the evolutionary dynamics of the reaction. A complete understanding of sociality may depend on the development of evolutionary games among many individuals. 
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Influence of the parameters pf and pg on the curvature of the benefit function f(y) and the cost function g(y). When pf (or pg) is negative the benefit (cost) function is decelerating; when positive the function is accelerating.
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[bookmark: _Toc416425678][bookmark: _Toc416426283]Figure 2
Mean investment (x*)  (a) with negotiation and (b) without negotiation as a function of the curvature of the benefit function (pf, x-axis) and cost function (pg, y-axis). Evolutionary outcomes include no investment (x*=0, white areas);  x* tending to infinity as the negotiation proceeds (black); intermediate stable investment (grey, x* indicated on lines); evolutionary branching leading to a dimorphic population (dotted); the investment fluctuate over evolutionary time (hatched). Other parameter values: s = 0.40, σ = 0.10.
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Figure 3
Influence of the curvature of benefit function pf (a) and the relative magnitude of cost s (b). Top row shows investment x* with negotiation (solid lines), without negotiation (dashed lines). Bottom row shows slope b* (solid lines) and intercept c* (dashed lines). (a) If pf<0 then negotiation reduces investment and the slope of response rule becomes negative, whereas if pf > 0 negotiation increases investment and the slope becomes positive. s =0.40. (b) Both b* and c* get smaller in magnitude as the cost of investment increases, and the self-interest exaggerates the negative effect of the cost both with and without negotiation. pf = -0.60. Other parameter values in both cases: pg= 0.40, σ = 0.10.
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Figure 4
An example of the oscillation of the investment over time. Over evolutionary time the negotiation rule(b, c) shows (a) limit-cycle trajectory, resulting in (b) fluctuations in the mean investment (x*)). Other parameter values: pf = 0.40, pg = 0.52, s = 0.40, σ = 0.50.
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The mean investment x* with negotiation under large contribution error (σ = 1.0). The meaning of axes, colours and other parameter values are same with Figure 2. Large error makes the parameter region of the fluctuation of investment (hatched region) narrower, and prevents the evolution of infinitely large investment in pf ≅ pg < 0.
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