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It is well known that the addition of noise to a multistable dynamical system can induce random transitions from
one stable state to another. For low noise, the times between transitions have an exponential tail and Kramers’
formula gives an expression for the mean escape time in the asymptotic limit. If a number of multistable systems
are coupled into a network structure, a transition at one site may change the transition properties at other sites.
We study the case of escape from a “quiescent” attractor to an “active” attractor in which transitions back
can be ignored. There are qualitatively different regimes of transition, depending on coupling strength. For
small coupling strengths, the transition rates are simply modified but the transitions remain stochastic. For large
coupling strengths, transitions happen approximately in synchrony—we call this a “fast domino” regime. There
is also an intermediate coupling regime where some transitions happen inexorably but with a delay that may be
arbitrarily long—we call this a “slow domino” regime. We characterize these regimes in the low noise limit in
terms of bifurcations of the potential landscape of a coupled system. We demonstrate the effect of the coupling
on the distribution of timings and (in general) the sequences of escapes of the system.
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I. INTRODUCTION22

A number of important physical, biological, and socioe-23

conomic questions involve understanding how a dynamical24

change of one subsystem within a network affects other25

subsystems that are coupled to it. Indeed, there is extensive26

work on noisy coupled bistable units, motivated by trying27

to understand the collective response and phase transitions.28

This includes work on stochastic resonance on networks [1,2].29

For example, Ref. [3] uses a master equation approach while30

Refs. [4,5] consider the noise-induced switching of bistable31

nodes in complex networks. Much of this work aims to32

explain the properties of attracting (statistically steady) states33

perturbed by noise; nonetheless, many important questions are34

related to the transient dynamics of networks affected by noise.35

We consider transient noise-induced behavior in a network36

of asymmetric bistable attractor systems, where noise induces37

an effectively irreversible transition spread through coupling.38

Each node (corresponding to a subsystem) is assumed to have39

two states, a shallow, marginally stable mode (the “quiescent”40

state) and a deep, more stable mode (the “active” state) that is41

consequently more resistant to noise. We start with the system42

in the marginally stable mode and say it “escapes” when it43

crosses some threshold to the deeply stable mode. The time of44

first escape is a random variable that is jointly determined by45

the nonlinear dynamics and the noise process. The assumption46

of asymmetry means that escape from the deeper state occurs47

very rarely and so we can view the process as an irreversible48

cascade of escapes, similar to a cascade of toppling dominos.49

The coupling of the systems can promote (or hinder) the escape50

of others on the network and may cause certain sequences of es-51

cape to appear preferentially depending on coupling strength.52

In this paper we highlight that the timings and sequences of es-53

capes are effectively “emergent properties” of the system, and54

we demonstrate that these properties can be usefully classed55

by coupling strength into qualitatively different regimes.56

We consider an idealization of behavior that has been seen in57

a variety of applications. This includes: (a) signal propagation58

by sequential switching between asymmetric stable states 59

(observed experimentally in chains of bistable electronic 60

circuits [6] or in cases where the bistability is noise induced 61

[7]), (b) waves along unidirectionally coupled chains (or 62

lattices) of bistable nodes with forcing at one end [8], (c) 63

photoinduced phase transitions in spin-crossover materials 64

with bistable dynamic potentials [9–11], (d) avalanches of gene 65

activation in gene regulatory pathways to drive cell differentia- 66

tion/development/cancer [12,13], or (e) cell fate in biofilm for- 67

mation [14]. Other applications that could benefit from a better 68

understanding of similar transient dynamics induced by noise 69

include (a) the contagion of bank defaults in a system of finan- 70

cial institutions interconnected by mutual loans [15–18], (b) 71

interconnections between “tipping elements” [19–21], (c) the 72

role of spreading of abnormal large-amplitude oscillators in the 73

modeling onset of epileptic seizures [22,23], (d) multiple organ 74

failure [24], or (e) cascading failures in power systems [25]. 75

The role of coupling strength in noise-induced transitions 76

on networks is considered by Refs. [26,27] for idealized 77

symmetric bistable systems. Neiman [28] shows similar 78

synchronization effects in coupled stochastic bistable systems 79

and Ref. [29] shows them in coupled ratchet systems. The 80

authors of Refs. [26,27] give rigorous mathematical results that 81

identify the existence of different regimes of synchronization 82

of escapes in the low noise limit that can be linked to changes 83

in the structure of the underlying system attractors (see, for ex- 84

ample, Ref. [30] for some review of the role of coupling in the 85

noise-free context). In particular, Ref. [26] identifies the most 86

likely sequences of escape and how their probabilities change 87

qualitatively with coupling strength: There can be synchro- 88

nized transitions in the strong coupling limit. Many properties 89

of the transitions can be understood using Friedlin-Wentzell 90

methodology and the Eyring-Kramers formula [31–33] to 91

study the pathwise properties of transitions between attractors. 92

We show in the context of asymmetric potentials that 93

there are typically several qualitatively different regimes 94

in the transient sequences of escapes. These regimes of 95
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weak, intermediate, and strong coupling, and the intermediate96

case may be quite complicated, but in general there are97

qualitative changes in behavior for the weak noise limit that98

can be characterized in terms of bifurcations of steady states of99

the noise-free system. As a row of toppling dominos depends100

on the properties and spacing of the dominos [34], we identify101

different domino effects that can be characterized by different102

coupling regimes. Specifically, we identify “slow domino”103

and “fast domino” regimes corresponding to intermediate and104

strong coupling regimes, respectively. Within these different105

regimes, certain sequences of escape may be preferred by the106

coupling, and the distribution of times to the next escape may107

have significant deviations from the exponential.108

II. SEQUENTIAL ESCAPES FOR TWO109

COUPLED SYSTEMS110

We consider a diffusively coupled network of prototypical111

asymmetric bistable nodes under the influence of additive112

noise for an asymmetric case of the Schlögl model [35]. For113

N = 2 nodes and bidirectional coupling, there are qualitative114

changes in the escape time distributions as the coupling115

strength increases [36]. For N = 3 nodes with unidirectional116

coupling, we show that, although the mean and distributions of117

the escape times of an individual node are not much affected118

by the coupling, the probability of a given sequence appearing119

and the distribution of timings within the sequence of escapes120

can be greatly affected.121

We consider a network where each node is governed by a122

bistable system,123

ẋ = f (x,ν) := −(x − 1)(x2 − ν), (1)

so that f = −V ′(x) with potential V (x) = 1
4x4 − 1

3x3 +124

ν(x − 1
2x2). We suppose that the nodes are coupled into a125

network and subjected to additive noise. For 0 < ν � 1 the126

stable states are not interchangeable by any symmetry. There is127

a quiescent attractor at x = xQ := −√
ν and an active attractor128

at x = xA := 1; there is an unstable separating equilibrium129

at x = xS := √
ν. Stationary distributions of this model are130

examined in Ref. [35]. For nodes i = 1, . . . ,N the network131

is assumed to evolve according to the stochastic differential132

equation (SDE),133

dxi =
⎡
⎣f (xi,ν) + β

∑
j∈Ni

(xj − xi)

⎤
⎦dt + α dwi, (2)

where Ni are the neighbors that provide inputs to node i, β is134

the coupling strength, α the strength of the additive noise, and135

wi are independent Wiener processes.136

In the case N = 2 with bidirectional coupling [36], we have137

dx1 = [f (x1,ν) + β(x2 − x1)]dt + α dw1,

dx2 = [f (x2,ν) + β(x1 − x2)]dt + α dw2, (3)

where in the noise-free case α = 0 there are equilibria at138

xQQ := (xQ,xQ), xSS := (xS,xS), and xAA := (xA,xA) for any139

β. Up to six more equilibria depend on 0 � β and 0 < ν < 1.140

The regimes noted in Ref. [36] can be precisely characterized.141

One can verify that the number of solutions changes at a142

saddle-node bifurcation when143

−27β3 + (27ν + 9)β2 − 9
(
ν + 1

3

)2
β + ν(ν − 1) = 0.

ββ1 β2

x1

1

−√
ν

√
ν

xAA

xSS

xQQ

xAQ

xQA

saddle

source

sink

FIG. 1. Bifurcation diagram for the system of two bidirectionally
coupled nodes (3) with α = 0 and ν = 0.01 projected into the (β,x1)
plane, where β is the coupling strength (cf. Fig. 2 in Ref. [36]). We
are interested in how the system escapes from the quiescent attracting
state xQQ to the active attracting state xAA under the influence of low-
amplitude noise, 0 < α � 1. The three regimes that exist in terms of
the structures that must be overcome for the transition have parallels
in more general cases. In this case they are divided by a saddle-
node (fold) bifurcation at β1 = 0.0101 and a pitchfork bifurcation
of the separating saddles at β2 = 0.09. In the weak coupling regime
β < β1, the escape will be via an additional attractor, xQA or xAQ,
while in the strong coupling (“fast domino” regime) β > β2, the
escapes are approximately synchronized and pass near xSS . Escapes
in the intermediate coupling (“slow domino” regime) β1 < β < β2

are associated with escape over a symmetry broken saddle.

For small ν this implies there is a saddle node for β = 144

β1 > 0. A pitchfork bifurcation occurs at intermediate β2 = 145

(
√

ν − 4ν + 3ν3/2)/(1 − 3
√

ν). Let xQS denote the branch of 146

equilibria that continues from (xQ,xS) at β = 0. We note 147

xSA (saddle) and xQA (stable) meet while simultaneously xAS 148

(saddle) and xAQ (stable) meet at the saddle node at β1. The 149

branches xQS and xSQ meet xSS at the pitchfork bifurcation 150

at β2. Observe that there are three qualitatively different 151

regimes of coupling depending on whether there are nine 152

(β < β1), five (β1 < β < β2), or three (β > β2) equilibria. 153

The bifurcation diagram for ν = 0.01 is shown in Fig. 1: in 154

this case, β1 = 0.0101 and β2 = 0.09. 155

We give an initial condition xi(0) = xQ for (2) and pick a 156

threshold xS < ξ < xA. The first escape time of node i is the 157

random variable τ (i) = inf{t > 0 : xi(t) > ξ} that depends on 158

the network, the parameters, and the particular noise path: It 159

has a distribution implied by that of the noise. Independence 160

of the wi means that (with probability one) no two escapes 161

will occur at the same time and so we can assume there is a 162

permutation s(i) of {1, . . . ,N} such that τ s(i) < τs(j ) for any 163

i < j . We denote by P(s) the probability of a sequence s being 164

realized and define the time of the ith escape by τ i = τ s(i). We 165

use the convention τ 0 = 0. The time between escapes j and 166

k > j is denoted τ k|j = τ k − τ j , with means T (i) = E[τ (i)] 167

and T k|j = E[τ k|j ]. Note that for β = 0 all sequences are 168

equally likely, meaning P(s) = 1/N !. 169

In networks of the form (3), as long as 0 < ν < 1 so 170

that xQ is linearly stable, the τ (i) are independent random 171

variables with exponential tails for β = 0 whose mean can be 172
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approximated using the one-dimensional Kramers’ formula173

(e.g., Ref. [31]) which states in the limit α → 0,174

T (i) ≈ 2π√
V ′′(xQ)|V ′′(xS)|e

2
α2 [V (xS )−V (xQ)]

. (4)

We show that the distributions τ and P(s) change in subtle175

ways on increasing β.176

The persistence of the hyperbolic fixed points and the177

robustness of connections means there is a weak coupling178

regime. For small enough β > 0, the quiescent states are179

perturbed but not destroyed, and the escape of one node180

modifies the rate of escape of the other nodes. However, the181

means (4) should vary continuously with the parameter. For182

the strong coupling (synchronized) regime [26,28], for large183

β, the nodes synchronize and there is a strong dependence,184

meaning they escape en masse, hence “fast domino.” For the185

intermediate coupling regime, the escape of one node leads186

to a delayed (but essentially deterministic) response from the187

other units, hence “slow domino.”188

We illustrate these differences for (3) in Fig. 2, which189

shows the behavior of escapes from xQQ in the weak noise190

limit with ν = 0.01 fixed and depending on β, where the191

SDE is solved using a fixed time-step Heun method. The192

symmetry in the coupling of the system can be seen as a193

reflection about the line x1 = x2. The coupled system (3) can194

be seen as a noise perturbed potential flow for Ṽ (x1,x2) =195

V (x1) + V (x2) + 1
2β(x1 − x2)2 (we suppress the ν and β196

dependence). The mean escape time between two minima197

of the potential can be estimated using a multidimensional198

Kramers’ formula: the mean time from x∗ to y∗ over the199

minimum height pass saddle (“gate”) at z∗ is200

T (x∗,z∗,y∗) ≈ P (x∗,z∗)e
2

α2 [Ṽ (z∗)−Ṽ (x∗)]

for α → 0, where the prefactor P depends on the Hessian201

∇2Ṽ (z∗) (see, e.g., Ref. [31]). Note that to this leading order202

T is independent of y∗.203

We estimate the dependence of mean time T 2|0 = T 2|1 +204

T 1|0 of escape for (3) on coupling, where there may be multiple205

paths of escape. If T̃ (x∗,z̃∗,y∗) is the mean time of escape206

assuming it takes path z̃∗ out of G possible symmetrically207

equivalent gates, then T̃ (x∗,z̃∗,y∗) = 1
G

T (x∗,z∗,y∗), where z∗
208

is associated with multiple paths of escape.209

In the weak coupling regime 0 < β < β1, each symmetric210

path is equally probable and so 2T 1|0 ≈ T̃ (xQQ,xQS,xQA) +211

T̃ (xQQ,xSQ,xAQ), while 2T 2|1 ≈ T (xQA,xSA,xAA) + T (xAQ,212

xAS,xAA). Hence213

T 2|0 ≈ 1
2T (xQQ,xQS,xQA) + T (xQA,xSA,xAA). (5)

In the intermediate coupling regime (“slow domino”214

regime) β1 < β < β2, there is a one-step escape process, but215

there are two possible gates that can be traversed,216

T 2|0 ≈ 1
2 [T (xQQ,xSQ,xAA) + T (xQQ,xQS,xAA)]. (6)

Note that this asymptotic expression will be nonuniform in β:217

near β = β1 there will be a long deterministic delay associated218

with passage past the region of the saddle node, as is evident219

in Fig. 2(c).220
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FIG. 2. Level sets of Ṽ (where red corresponds to the most
negative) for N = 2 bidirectionally coupled nodes (3) with fixed
ν = 0.05 and four values of β. The equilibria for α = 0 are marked
as • sinks, � sources, and � saddles. Typical noise paths starting at
xQQ are shown in each panel computed for (3) and for α = 0.1. The
panels show typical escapes of (a) uncoupled, (b) weakly coupled,
(c) intermediate coupled (“slow domino”), and (d) strongly coupled
(“fast domino”) regimes.

In the strong coupling regime (“fast domino” regime) 221

β > β2, there is a one-step escape process with a unique gate, 222

T 2|0 ≈ T (xQQ,xSS,xAA). (7)

Each of these regimes will give a different scaling in the limit 223

α → 0, while the scalings at crossovers between regimes are 224

accessible to generalizations of Kramers’ formula for passage 225

over nonhyperbolic saddles [31]. This is explored in more 226

detail in Ref. [37], including computing the timing of the 227

escape once the gate has been traversed in the intermediate 228

and strong coupling regimes. 229

III. SEQUENTIAL ESCAPES FOR A THREE NODE CHAIN 230

For a more general network, the sequence of escapes of 231

the network depends not only on the number of nodes that 232

have already escaped but also the sequence in which they 233

escape. We consider a unidirectionally coupled chain of N = 3 234

bistable systems (2) where the input sets Ni for node i are given 235

by (N1,N2,N3) = ({2},{3},{}), 236

dx1 = [f (x1,ν) + β(x2 − x1)]dt + α dw1,

dx2 = [f (x2,ν) + β(x3 − x2)]dt + α dw2,

dx3 = [f (x3,ν)]dt + α dw3. (8)

Figure 3 illustrates the three coupling regimes: the weak cou- 237

pling regime (β < β1), intermediate coupling (slow domino) 238

(β1 < β < β3), and strong coupling (fast domino) (β > β3) 239
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β=0.4

1

P

0

FIG. 3. (a) Bifurcation diagram showing x1 vs β (log axis) for (8) with ν = 0.01 and no noise α = 0: Dashed branches are unstable. In the
weak coupling regime (β < β1 = 0.0101, blue) all branches continue from β = 0. There are two intermediate (slow domino) coupling regimes:
For the lower one (β1 < β < β2 ≈ 0.2025, purple) there are still stable and unstable partially escaped states while for (β2 < β < β3 ≈ 0.3035,
red) there are only partially escaped saddles. For the strong (fast domino) coupling regime β > β3, all equilibria are synchronized in the absence
of noise. For (b)–(d) we computed 105 samples using α = 0.03 for β = 0 (blue), 0.1 (purple), and 0.4 (black). (b) shows violin plots of the
distribution of escape times τ (i) of node i: Observe that these change little with coupling. The red cross indicates mean (vertical) and +/− one
standard deviation (horizontal). (c) shows the distribution of sequential escape times τ k|k−1 for k = 1,2,3, for sequences (3,2,1) and (1,2,3).
The number of samples n (out of 105) that undergo this sequence of escapes is shown. (d) shows the probability of a given sequence being
realized. In the strongly coupled case β = 0.4, the escapes are almost always synchronized, and the most frequent sequence is (3,2,1). The
case β = 0.1 and sequence (1,2,3) is an example of a nonsynchronous escape in the intermediate coupling regime; the third escape typically
occurs some time after the first two: see Table I.

regimes for this system. Note that intermediate coupling can240

be split further into two subregimes at β2. There are qualitative241

changes in the asymptotic behavior of sequential escapes on242

changing β, with strongly synchronized escapes for strong243

coupling.244

To characterize the distribution of times of nth escape we245

consider the coefficient of variation of τ given by246

CV(τ ) = σ (τ )/E[τ ],

where σ (τ ) denotes the standard deviation For β = 0.0 (and247

for all first escapes) we have CV(τ k|k−1) ≈ 1, indicating248

an exponential distribution. In the intermediate coupling249

(slow domino) regime β = 0.1, the most likely sequence250

is (3,2,1): Considering only this sequence for the data in251

Fig. 3, we find CV(τ 1|0) = 0.9608, CV(τ 2|1) = 0.3308, and252

CV(τ 3|2) = 0.2210—after the first (approximately exponen-253

tially distributed) escape the remaining escapes are close254

to deterministic (E[τ 2|1] = 4.087, E[τ 3|2] = 4.797). On the255

other hand, for a rarer sequence (1,2,3) in the intermediate256

regime, we find CV(τ 1|0) = 0.9783, CV(τ 2|1) = 3.662, and257

CV(τ 3|2) = 1.27—after the first exponentially distributed es-258

cape there are very large variations in escape time. Finally,259

in the strongly coupling (fast domino) regime β = 0.4 and260

the most likely sequence (3,2,1), we have E[τ 2|1] = 0.6568,261

E[τ 3|2] = 0.9664. Table I gives the probability, mean, and262

coefficient of variation for sequential escape times of the263

simulations shown in Fig. 3. Note that as β increases, the 264

system remains closer to synchronization, leading to an 265

increasing randomization of the sequence of escapes caused 266

by fluctuations about the synchronized state. 267

IV. DISCUSSION 268

For general heterogeneous networks it is still possible to 269

classify the interactions between nodes xi and xj as weak, 270

intermediate, or strong depending on whether the escape of 271

node xi modifies the rate of the noise-induced escape of xj , 272

whether xj will undergo a deterministic escape in a bounded 273

time, or whether xj will be synchronized in its escape with xi , 274

respectively. This will depend on the state of the other nodes 275

that are connected to xi and xj , and so the classification of the 276

interaction is, in general, state and sequence dependent. 277

The changes in distribution of timings and sequences of 278

escapes in stochastically perturbed coupled networks can be 279

usefully thought of as an emergent behavior of the network. 280

In particular, even for intermediate or strong coupling where 281

there are no symmetry broken attractors in the noise-free 282

case, the asymptotic behavior of the sequence of escapes 283

is qualitatively different in the low noise limit. A study of 284

such sequential escapes will be of interest in a variety of 285

situations where stochastic forcing of individual sites with 286

asymmetric attractors interacts with the coupling strength to 287

change the sequence of escapes. For example, Ref. [37] uses 288
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TABLE I. Data table. For the simulations shown in Fig. 3, the columns in this table show the sequence of escape, the probability P that
a sequence will be realized, followed by the mean, standard deviation, and coefficient of variation of τ k|k−1 conditional on this sequence for
k = 1,2,3.

Sequence P τ E(τ ) σ (τ ) CV(τ ) τ E(τ ) σ (τ ) CV(τ ) τ E(τ ) σ (τ ) CV(τ )

β = 0: Uncoupled systems

(3,2,1) 0.167 τ 1|0 244.53 221.98 0.91 τ 2|1 334.87 340.60 1.02 τ 3|2 673.07 668.26 0.99
(3,1,2) 0.166 τ 1|0 245.94 222.72 0.91 τ 2|1 333.61 330.46 0.99 τ 3|2 662.49 661.12 1.00
(2,3,1) 0.167 τ 1|0 246.58 226.22 0.92 τ 2|1 332.64 329.08 0.99 τ 3|2 668.02 674.47 1.01
(2,1,3) 0.167 τ 1|0 243.26 223.67 0.92 τ 2|1 334.81 331.77 0.99 τ 3|2 671.92 665.28 0.99
(1,2,3) 0.165 τ 1|0 243.57 223.05 0.92 τ 2|1 337.94 337.15 1.00 τ 3|2 664.35 655.76 0.99
(1,3,2) 0.168 τ 1|0 246.26 224.39 0.91 τ 2|1 329.51 329.09 1.00 τ 3|2 667.31 667.83 1.00

β = 0.1: Intermediate coupling regime (“slow domino effect”)

(3,2,1) 0.922 τ 1|0 658.98 633.17 0.96 τ 2|1 4.09 1.36 0.33 τ 3|2 4.80 1.06 0.22
(3,1,2) 0.002 τ 1|0 730.13 658.49 0.90 τ 2|1 2.26 1.42 0.63 τ 3|2 1.12 1.01 0.90
(2,3,1) 0.024 τ 1|0 652.22 611.87 0.94 τ 2|1 1.50 1.27 0.85 τ 3|2 2.97 1.55 0.52
(2,1,3) 0.031 τ 1|0 666.43 647.67 0.97 τ 2|1 3.54 1.70 0.48 τ 3|2 487.84 673.65 1.38
(1,2,3) 0.007 τ 1|0 704.30 689.06 0.98 τ 2|1 82.71 302.97 3.66 τ 3|2 509.47 647.88 1.27
(1,3,2) 0.014 τ 1|0 703.84 663.34 0.94 τ 2|1 617.64 665.10 1.08 τ 3|2 3.93 1.46 0.37

β = 0.4: Strong coupling regime (“fast domino effect”)

(3,2,1) 0.687 τ 1|0 688.02 662.25 0.96 τ 2|1 0.66 0.38 0.58 τ 3|2 0.97 0.40 0.41
(3,1,2) 0.024 τ 1|0 708.41 691.41 0.98 τ 2|1 0.36 0.27 0.75 τ 3|2 0.21 0.18 0.86
(2,3,1) 0.128 τ 1|0 690.46 682.03 0.99 τ 2|1 0.29 0.25 0.86 τ 3|2 0.62 0.39 0.63
(2,1,3) 0.053 τ 1|0 702.68 681.17 0.97 τ 2|1 0.41 0.31 0.76 τ 3|2 0.50 0.53 1.06
(1,2,3) 0.078 τ 1|0 695.96 680.09 0.98 τ 2|1 4.00 49.62 12.41 τ 3|2 0.76 0.70 0.92
(1,3,2) 0.030 τ 1|0 694.73 651.60 0.94 τ 2|1 17.54 151.01 8.61 τ 3|2 0.30 0.24 0.80

this to explain some phenomena in the networks of coupled289

oscillatory bistable units considered in Ref. [22].290

ACKNOWLEDGMENTS291

The authors gratefully acknowledge the financial sup-292

port of the EPSRC via Grant No. EP/N014391/1. We293

thank the anonymous referees for their comments, criti- 294

cisms, and suggestions. P.A. gratefully acknowledges fund- 295

ing from the European Union’s Horizon 2020 research 296

and innovation programme under the Marie Skłodowska- 297

Curie Grant Agreement No. 643073 for providing opportu- 298

nities to discuss this work with members of the CRITICS 299

network. 300

[1] P. Jung, U. Behn, E. Pantazelou, and F. Moss, Collective
response in globally coupled bistable systems, Phys. Rev. A
46, R1709 (1992).

[2] A. Pikovsky, A. Zaikin, and M. A. de La Casa, System Size
Resonance in Coupled Noisy Systems and in the Ising Model,
Phys. Rev. Lett. 88, 050601 (2002).

[3] S. Christ, B. Sonnenschein, and L. Schimansky-Geier, Tristable
and multiple bistable activity in complex random binary net-
works of two-state units, Eur. Phys. J. B 90, 14 (2017).

[4] G. Ansmann, K. Lehnertz, and U. Feudel, Self-Induced Switch-
ings Between Multiple Space-Time Patterns on Complex Net-
works of Excitable Units, Phys. Rev. X 6, 011030 (2016).

[5] J. Emenheiser, A. Chapman, M. Pósfai, J. P. Crutchfield,
M. Mesbahi, and R. M. D’Souza, Patterns of patterns of
synchronization: Noise induced attractor switching in rings of
coupled nonlinear oscillators, Chaos 26, 094816 (2016).

[6] M. Löcher, D. Cigna, and E. R. Hunt, Noise Sustained Prop-
agation of a Signal in Coupled Bistable Electronic Elements,
Phys. Rev. Lett. 80, 5212 (1998).

[7] A. A. Zaikin, J. García-Ojalvo, L. Schimansky-Geier, and
J. Kurths, Noise Induced Propagation in Monostable Media,
Phys. Rev. Lett. 88, 010601 (2001).

[8] J. F. Lindner, S. Chandramouli, A. R. Bulsara, M. Löcher, and
W. L. Ditto, Noise Enhanced Propagation, Phys. Rev. Lett. 81,
5048 (1998).

[9] K. Boukheddaden, I. Shteto, B. Hôo, and F. Varret, Dynamical
model for spin-crossover solids. II. Static and dynamic effects of
light in the mean-field approach, Phys. Rev. B 62, 14806 (2000).

[10] T. Ogawa, Domino mechanisms in photoinduced phase transi-
tions, Phase Trans. 74, 93 (2001).

[11] K. Yonemitsu and K. Nasu, Theory of photoinduced phase
transitions in itinerant electron systems, Phys. Rep. 465, 1
(2008).

[12] T. Graf and T. Enver, Forcing cells to change lineages,
Nature (London) 462, 587 (2009).

[13] J. Wang, L. Xu, E. Wang, and S. Huang, The potential landscape
of genetic circuits imposes the arrow of time in stem cell
differentiation, Biophys. J. 99, 29 (2010).

002300-5

https://doi.org/10.1103/PhysRevA.46.R1709
https://doi.org/10.1103/PhysRevA.46.R1709
https://doi.org/10.1103/PhysRevA.46.R1709
https://doi.org/10.1103/PhysRevA.46.R1709
https://doi.org/10.1103/PhysRevLett.88.050601
https://doi.org/10.1103/PhysRevLett.88.050601
https://doi.org/10.1103/PhysRevLett.88.050601
https://doi.org/10.1103/PhysRevLett.88.050601
https://doi.org/10.1140/epjb/e2016-70474-x
https://doi.org/10.1140/epjb/e2016-70474-x
https://doi.org/10.1140/epjb/e2016-70474-x
https://doi.org/10.1140/epjb/e2016-70474-x
https://doi.org/10.1103/PhysRevX.6.011030
https://doi.org/10.1103/PhysRevX.6.011030
https://doi.org/10.1103/PhysRevX.6.011030
https://doi.org/10.1103/PhysRevX.6.011030
https://doi.org/10.1063/1.4960191
https://doi.org/10.1063/1.4960191
https://doi.org/10.1063/1.4960191
https://doi.org/10.1063/1.4960191
https://doi.org/10.1103/PhysRevLett.80.5212
https://doi.org/10.1103/PhysRevLett.80.5212
https://doi.org/10.1103/PhysRevLett.80.5212
https://doi.org/10.1103/PhysRevLett.80.5212
https://doi.org/10.1103/PhysRevLett.88.010601
https://doi.org/10.1103/PhysRevLett.88.010601
https://doi.org/10.1103/PhysRevLett.88.010601
https://doi.org/10.1103/PhysRevLett.88.010601
https://doi.org/10.1103/PhysRevLett.81.5048
https://doi.org/10.1103/PhysRevLett.81.5048
https://doi.org/10.1103/PhysRevLett.81.5048
https://doi.org/10.1103/PhysRevLett.81.5048
https://doi.org/10.1103/PhysRevB.62.14806
https://doi.org/10.1103/PhysRevB.62.14806
https://doi.org/10.1103/PhysRevB.62.14806
https://doi.org/10.1103/PhysRevB.62.14806
https://doi.org/10.1080/01411590108224566
https://doi.org/10.1080/01411590108224566
https://doi.org/10.1080/01411590108224566
https://doi.org/10.1080/01411590108224566
https://doi.org/10.1016/j.physrep.2008.04.008
https://doi.org/10.1016/j.physrep.2008.04.008
https://doi.org/10.1016/j.physrep.2008.04.008
https://doi.org/10.1016/j.physrep.2008.04.008
https://doi.org/10.1038/nature08533
https://doi.org/10.1038/nature08533
https://doi.org/10.1038/nature08533
https://doi.org/10.1038/nature08533
https://doi.org/10.1016/j.bpj.2010.03.058
https://doi.org/10.1016/j.bpj.2010.03.058
https://doi.org/10.1016/j.bpj.2010.03.058
https://doi.org/10.1016/j.bpj.2010.03.058
pashwin
Cross-Out

pashwin
Cross-Out



ASHWIN, CREASER, AND TSANEVA-ATANASOVA PHYSICAL REVIEW E 00, 002300 (2017)

[14] Y. Chai, F. Chu, R. Kolter, and R. Losick, Bistability and biofilm
formation in Bacillus subtilis, Mol. Microbiol. 67, 254 (2008).

[15] M. Chinazzi and G. Fagiolo, Systemic risk, contagion, and
financial networks: A survey, SSRN, doi:10.2139/ssrn.2243504
(2013).

[16] P. Gai and S. Kapadia, Contagion in financial networks,
Proc. R. Soc. London Ser. A 466, 2401 (2010).

[17] A. G. Haldane and R. M. May, Systemic risk in banking
ecosystems, Nature (London) 469, 351 (2011).

[18] M. Summer, Financial contagion and network analysis,
Annu. Rev. Financ. Econ. 5, 277 (2013).

[19] P. Ashwin, S. Wieczorek, R. Vitolo, and P. Cox, Tipping points
in open systems: Bifurcation, noise-induced and rate-dependent
examples in the climate system, Philos. Trans. R. Soc. A 370,
1166 (2012); C. Hobbs, P. Ashwin, S. Wieczorek, R. Vitolo, and
P. Cox, ibid. 371, 0098 (2013)

[20] T. M. Lenton, H. Held, E. Kriegler, J. W. Hall, W. Lucht, S.
Rahmstorf, and H. J. Schellenhuber, Tipping elements in the
earth’s climate system, Proc. Natl. Acad. Sci. USA 105, 1786
(2008).

[21] C. A. Boulton, L. C. Allison, and T. M. Lenton, Early warning
signals of atlantic meridional overturning circulation collapse in
a fully coupled climate model, Nat. Commun. 5, 5752 (2014).

[22] O. Benjamin, T. H. B. Fitzgerald, P. Ashwin, K. Tsaneva-
Atanasova, F. Chowdhury, M. P. Richardson, and J. R. Terry, A
phenomenological model of seizure initiation suggests network
structure may explain seizure frequency in idiopathic gener-
alised epilepsy, J. Math. Neurosci. 2, 1 (2012).

[23] S. N. Kalitzin, D. N. Velis, and F. H. Lopes da Silva, Stimulation-
based anticipation and control of state transitions in the epileptic
brain, Epilepsy Behav. 17, 310 (2010).

[24] R. S. Parker and G. Clermont, Systems engineering medicine:
engineering the inflammation response to infectious and trau-
matic challenges, J. R. Soc. Interface 7, 989 (2010).

[25] I. Dobson, B. A. Carreras, V. E. Lynch, and D. E. Newman,
Complex systems analysis of series of blackouts: Cascading

failure, critical points, and self-organization, Chaos 17, 026103
(2007).

[26] N. Berglund, B. Fernandez, and B. Gentz, Metastability in inter-
acting nonlinear stochastic differential equations: I. From weak
coupling to synchronization, Nonlinearity 20, 2551 (2007).

[27] N. Berglund, B. Fernandez, and B. Gentz, Metastability in
interacting nonlinear stochastic differential equations: II. Large-
N behavior, Nonlinearity 20, 2583 (2007).

[28] A. Neiman, Synchronizationlike phenomena in coupled stochas-
tic bistable systems, Phys. Rev. E 49, 3484 (1994).

[29] J. L. Mateos and F. R. Alatriste, Phase synchronization for
two Brownian motors with bistable coupling on a ratchet,
Chem. Phys. 375, 464 (2010).

[30] Dynamics of Coupled Map Lattices and of Related Spatially
Extended Systems, edited by J.-R. Chazottes and B. Fernandez,
Lecture Notes in Physics Vol. 671 (Springer, New York, 2005).

[31] N. Berglund, Kramers’ law: Validity, derivations and gener-
alisations, Markov Processes Relat. Fields 19, 459 (2013),
arXiv:1106.5799.

[32] N. Berglund and B. Gentz, Noise-Induced Phenomena in Slow-
Fast Dynamical Systems, Springer Series on Probability and its
Applications (Springer, Berlin, 2006).

[33] H. A. Kramers, Brownian motion in a field of force and the
diffusion model of chemical reactions, Physica 7, 284 (1940).

[34] J. M. J. Van Leeuwen, The domino effect, Am. J. Phys. 78, 721
(2010).

[35] H. Malchow, W. Ebeling, R. Feistel, and L. Schimansky-Geier,
Stochastic bifurcations in a bistable reaction-diffusion system
with Neumann boundary conditions, Ann. Phys. 495, 151
(1983).

[36] M. Frankowicz and E. Gudowska-Nowak, Stochastic simulation
of a bistable chemical system: The two-box model, Physica A
116, 331 (1982).

[37] J. L. Creaser, K. Tsaneva-Atansova, and P. Ashwin, Sequen-
tial noise-induced escapes for oscillatory network dynamics,
SIAM J. Appl. Dyn. Syst. (2017), arXiv:1705.08462.

002300-6

https://doi.org/10.1111/j.1365-2958.2007.06040.x
https://doi.org/10.1111/j.1365-2958.2007.06040.x
https://doi.org/10.1111/j.1365-2958.2007.06040.x
https://doi.org/10.1111/j.1365-2958.2007.06040.x
https://doi.org/10.2139/ssrn.2243504
https://doi.org/10.1098/rspa.2009.0410
https://doi.org/10.1098/rspa.2009.0410
https://doi.org/10.1098/rspa.2009.0410
https://doi.org/10.1098/rspa.2009.0410
https://doi.org/10.1038/nature09659
https://doi.org/10.1038/nature09659
https://doi.org/10.1038/nature09659
https://doi.org/10.1038/nature09659
https://doi.org/10.1146/annurev-financial-110112-120948
https://doi.org/10.1146/annurev-financial-110112-120948
https://doi.org/10.1146/annurev-financial-110112-120948
https://doi.org/10.1146/annurev-financial-110112-120948
https://doi.org/10.1098/rsta.2011.0306
https://doi.org/10.1098/rsta.2011.0306
https://doi.org/10.1098/rsta.2011.0306
https://doi.org/10.1098/rsta.2011.0306
https://doi.org/10.1098/rsta.2013.0098
https://doi.org/10.1098/rsta.2013.0098
https://doi.org/10.1098/rsta.2013.0098
https://doi.org/10.1098/rsta.2013.0098
https://doi.org/10.1073/pnas.0705414105
https://doi.org/10.1073/pnas.0705414105
https://doi.org/10.1073/pnas.0705414105
https://doi.org/10.1073/pnas.0705414105
https://doi.org/10.1038/ncomms6752
https://doi.org/10.1038/ncomms6752
https://doi.org/10.1038/ncomms6752
https://doi.org/10.1038/ncomms6752
https://doi.org/10.1186/2190-8567-2-1
https://doi.org/10.1186/2190-8567-2-1
https://doi.org/10.1186/2190-8567-2-1
https://doi.org/10.1186/2190-8567-2-1
https://doi.org/10.1016/j.yebeh.2009.12.023
https://doi.org/10.1016/j.yebeh.2009.12.023
https://doi.org/10.1016/j.yebeh.2009.12.023
https://doi.org/10.1016/j.yebeh.2009.12.023
https://doi.org/10.1098/rsif.2009.0517
https://doi.org/10.1098/rsif.2009.0517
https://doi.org/10.1098/rsif.2009.0517
https://doi.org/10.1098/rsif.2009.0517
https://doi.org/10.1063/1.2737822
https://doi.org/10.1063/1.2737822
https://doi.org/10.1063/1.2737822
https://doi.org/10.1063/1.2737822
https://doi.org/10.1088/0951-7715/20/11/006
https://doi.org/10.1088/0951-7715/20/11/006
https://doi.org/10.1088/0951-7715/20/11/006
https://doi.org/10.1088/0951-7715/20/11/006
https://doi.org/10.1088/0951-7715/20/11/007
https://doi.org/10.1088/0951-7715/20/11/007
https://doi.org/10.1088/0951-7715/20/11/007
https://doi.org/10.1088/0951-7715/20/11/007
https://doi.org/10.1103/PhysRevE.49.3484
https://doi.org/10.1103/PhysRevE.49.3484
https://doi.org/10.1103/PhysRevE.49.3484
https://doi.org/10.1103/PhysRevE.49.3484
https://doi.org/10.1016/j.chemphys.2010.04.022
https://doi.org/10.1016/j.chemphys.2010.04.022
https://doi.org/10.1016/j.chemphys.2010.04.022
https://doi.org/10.1016/j.chemphys.2010.04.022
http://arxiv.org/abs/arXiv:1106.5799
https://doi.org/10.1016/S0031-8914(40)90098-2
https://doi.org/10.1016/S0031-8914(40)90098-2
https://doi.org/10.1016/S0031-8914(40)90098-2
https://doi.org/10.1016/S0031-8914(40)90098-2
https://doi.org/10.1119/1.3406154
https://doi.org/10.1119/1.3406154
https://doi.org/10.1119/1.3406154
https://doi.org/10.1119/1.3406154
https://doi.org/10.1002/andp.19834950206
https://doi.org/10.1002/andp.19834950206
https://doi.org/10.1002/andp.19834950206
https://doi.org/10.1002/andp.19834950206
https://doi.org/10.1016/0378-4371(82)90249-7
https://doi.org/10.1016/0378-4371(82)90249-7
https://doi.org/10.1016/0378-4371(82)90249-7
https://doi.org/10.1016/0378-4371(82)90249-7
http://arxiv.org/abs/arXiv:1705.08462



