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Abstract 

 

As both the major input and output of the hippocampal formation, the entorhinal 

cortex (EC) occupies a pivotal position in the medial temporal lobe. The discovery 

of grid cells in the medial entorhinal cortex (mEC) has led to this region being 

widely implicated in spatial information processing. Importantly, the EC is also the 

first area affected by dementia pathology, with neurons appearing particularly 

susceptible to degeneration. Despite this, little is known about how pathology 

affects the functional output of mEC neurons, either in their ability to coordinate 

firing to produce network oscillations, or to represent information regarding the 

external environment. This thesis will use electrophysiological techniques to 

examine how dementia pathology contributes to the breakdown of mEC neuronal 

networks using the rTg4510 mouse model of tauopathy.  

The first 2 results chapters will show how the anatomical organisation along the 

dorso-ventral axis of the mEC has profound influence on the network activity that 

can be observed both in brain slices and awake-behaving mice. It will further 

show how deficits in network activity in rTg4510 mice occur differentially across 

this axis, with dorsal mEC appearing more vulnerable to changes in oscillatory 

function than ventral. 

The third results chapter will begin to explore the relationship between global 

network activity and the external environment, showing that rTg4510 mice display 

clear deficits in the relationship between oscillation properties and locomotor 

activity. Finally, the underlying basis for these changes will be examined, through 

the recording of single-unit activity in these mice. It will show a decreased 

tendency for mEC neurons to display firing rates modulated by running speed, as 

well as an almost complete breakdown of grid cell periodicity after periods of tau 

overexpression. 

Understanding how dementia pathology produces changes to neuronal function 

and ultimately cognition is key for understanding and treating the disease. This 

thesis will therefore provide novel insights into the dysfunction of the EC during 

dementia pathology. 
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1.   Introduction 
 

The entorhinal cortex (EC) occupies a pivotal position in the medial temporal lobe 

(MTL), representing both the major input and output structure of the hippocampal 

formation (Amaral & Witter, 1989; Canto et al., 2008). For this reason, the EC is 

ideally placed to control the flow of information across brain areas and contribute 

to memory processes.  

This thesis will focus on the entorhinal cortex, specifically the medial entorhinal 

cortex (mEC) and the physiological changes that take place during dementia 

pathology. During this introduction, it would not be possible to discuss solely the 

role of the EC, without the giving due attention to rest of the hippocampal 

formation. However, where possible the emphasis will be given to the effect of, 

or influence on, the EC. 

 

  The Entorhinal cortex 

 

 Anatomy 

The entorhinal cortex (EC), corresponding in humans to Brodmann area 28, is 

located partially enclosed within the rhinal sulcus, within the medial temporal lobe 

(MTL) and surrounded by a number of important cortical regions. The EC merges 

medially with structures of the hippocampal, or parahippocampal regions such as 

the parasubiculum, laterally with perirhinal cortex and posteriorly with the 

parahippocampal cortex (Canto et al., 2008). It can be broadly divided into two 

distinct regions: the medial (mEC) and lateral (LEC) entorhinal cortices (see fig 

1.1). These are separated not only by their anatomy but also by their neuronal 

firing patterns, with mEC cells most likely to show spatially modulated activity 

(Fyhn et al., 2004) and lateral regions encoding non-spatial information such as 

objects (Deshmukh & Knierim, 2011; Wilson et al., 2013) or olfactory stimuli 

(Igarashi et al., 2014).   

The EC forms a key part of the hippocampal formation, which in addition, contains 

the dentate gyrus (DG), the hippocampus proper (containing cornu ammonis 1 

(CA1), CA2 and CA3 subregions), subiculum, presubiculum and parasubiculum 
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(Andersen, 2007).  The EC is widely considered to provide both the major input 

and output to the hippocampus, making it a key interface in the hippocampal-

cortical circuit (Canto et al., 2008).  The flow of information within the 

hippocampus is predominately unidirectional (fig 1.1) with clearly defined 

synapses between EC and DG (performant pathway); DG and CA3 (mossy fibre 

pathway); CA3 and CA1 (Schaffer collateral pathway); and CA1 and EC 

(temporoammonic pathway). This said, a large number of reciprocal connections 

exist, either intrinsically, for example within the CA3 region, or extrinsically with 

other cortical areas (Andersen, 2007). 

As with other cortical regions, the EC, can be divided into 6 anatomical layers (I-

VI). Layer I generally displays a sparsely populated neuronal population with a 

dense band of transversely orientated fibres. Layer II represents the outermost 

cell layer which predominantly project to dentate gyrus (DG) and CA3 region of 

the hippocampus (Witter, 2007). Layer III is a comparatively wide and loosely 

arranged area, consisting largely of pyramidal cells which project to the CA1 and 

subiculum (Witter et al., 1988). Layer IV consists of small, cell-sparse layer below, 

often referred to as the lamina dissecans. Since layers II and III receive the 

majority of cortical inputs from a variety of areas (fig 1.1), they are therefore in 

the ideal place to control the flow of information into the hippocampus. In contrast, 

layers V and VI receives the majority of hippocampal output, arriving primarily 

from the CA1/subicular pathway. These deeper cortical layers also in turn form 

reciprocal connections with a variety of subcortical regions such as the thalamus, 

basal forebrain and striatum (Canto et al., 2008).        

Principle EC cells mainly utilise glutamate as their excitatory neurotransmitter and 

usually come in the form of pyramidal, or modified versions called stellate cells 

(in the mEC) or fan cells (in LEC). However, a large population of GABAergic 

interneurons can be seen in layers II and III EC that provide local inhibitory 

control. While principle stellate cells in layer II form projections to distinct brain 

areas, they show little or no connectivity with each other (Dhillon & Jones, 2000; 

Pastoll et al., 2012; Couey et al., 2013). Layer II stellate cells therefore rely on 

recurrent inhibition, specifically from parvalbumin-expressing (PV+) interneurons 

to provide local connectivity (Buetfering et al., 2014). In contrast, intra-laminar 

projections between principle cells can be seen most extensively between layers 

III and V  (Canto et al., 2008). 



23 
 

 Entorhinal cortex connectivity  

All regions of the EC project, to some degree, to all regions of the hippocampal 

formation, terminating on both excitatory and inhibitory cells (Witter et al., 1989). 

Projections to the DG and CA3, forming the perforant pathway (PP) generally 

arrive from layer II EC, however some have been shown to originate in deeper 

layers (Deller et al., 1996). In the mEC, layer II contains two populations of 

principle excitatory neurons, which have recently also been shown to display 

different patterns of projection to the hippocampus. These consist of ‘oceans’ of 

Reelin-positive stellate cells that project into the dentate gyrus (DG) and CA3, 

surrounding hexagonally arranged clusters, or ‘islands’, of CalbindinD28K 

(Calbindin) positive pyramidal cells that project directly onto CA1 inhibitory 

neurons and weakly onto CA1 pyramidal cells (Kitamura et al., 2014; Ray et al., 

2014). These populations are split, with approximately 60% stellate ‘ocean’ cells 

and 40% pyramidal ‘islands’. Pyramidal islands are significantly more theta 

modulated than ocean cells, however although both are modulated by spatial 

location, islands are more tuned to locomotor activity (Sun et al., 2015). In 

contrast, layer III cells, in both mEC and LEC, form projections into the distal 

dendrites of CA1 and subicular pyramidal neurons, traditionally referred to as the 

temporoammonic (TA) pathway (Witter et al., 1988; Naber et al., 2001; Aksoy-

Aksel & Manahan-Vaughan, 2013).  The predominant output of the hippocampus 

also occurs through this pathway, projecting back from CA1/subiculum, this time 

into layer V and VI of the EC (Canto et al., 2008).  

In addition to its hippocampal connectivity, the EC displays a wide array of 

reciprocal connections with other cortical and sub-cortical regions that generally 

show fairly diffuse patterns of innervation. For example, a large number of 

projections arrive into the mEC from the medial septum diagonal band of Broca 

(MS-DBB). These include long-range GABAergic neurons that synapse directly 

onto layer II interneurons (Melzer et al., 2012; Gonzalez-Sulser et al., 2014; Unal 

et al., 2015) as well as cholinergic (Mitchell et al., 1982; Vandecasteele et al., 

2014) and glutamatergic connections (Justus et al., 2016).  Ultimately, these 

provide only a small proportion of EC extrinsic connections and an exhaustive list 
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is not possible here (for a complete review of entorhinal connectivity see Kerr et 

al., (2007)). 

Figure 1.1: Anatomical organisation of the rodent entorhinal cortex. A) 
Position of entorhinal cortex (MEC: medial entorhinal cortex, LEC: lateral 
entorhinal cortex) in the sagittal and horizontal plane (B) relative to hippocampal 
sub regions (DG: dentate gyrus, CA1, CA3, s: subiculum). C) Topographical 
organisation of EC, showing dorso-ventral extent (D), with colours representing 
reciprocal connections from dorsal (magenta) and ventral (blue) hippocampal 
areas. E) Schematic of major EC connectivity, specified by area (LEC: green, to 
MEC: blue).  Figure reproduced from (Canto et al., 2008). F) Schematic showing 
major connectivity in hippocampal formation. PP perforant pathway, TA: 
temporoammonic pathway (Obtained from Deng et al., 2010).  
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 Role of the entorhinal cortex in memory 

The hippocampus has long been implicated in the formation and storage of long-

term memories for several key reasons. The first of these relies on the seminal 

studies on patient HM, showing that lesions of the hippocampus and surrounding 

cortex produce complete impairments in the formation of declarative memory 

(Scoville & Milner, 1957). The second major finding that has broadly influenced 

the understanding of the hippocampal formation has been the discovery of spatial 

encoding by cells in these areas (O’Keefe & Dostrovsky, 1971; Hafting et al., 

2005).  

Lesions to the EC have been shown to produce memory impairments in both 

spatial and non-spatial tasks in rodents (Levisohn & Isacson, 1991; Steffenach et 

al., 2005), non-human primates (Leonard et al., 1995; Buckmaster et al., 2004) 

and humans (Scoville & Milner, 1957; Abrahams et al., 1997; Schwarcz & Witter, 

2002; Jacobs et al., 2016). The encoding of spatial information, specifically 

relating to mEC function, will be discussed at length below; however, it is likely 

that the same mechanisms involved in declarative memory are those used for the 

formation of spatial memories in the hippocampal formation (Buzsáki & Moser, 

2013). 

 

 Neuronal oscillations 

 

The process of performing complex tasks, such as memory, requires the 

coordination of large numbers of individual neurons. The integration of such 

important information streams requires activity to arrive during a precise temporal 

window. Hence, neuronal oscillations are an emergent property of neuronal 

networks (Buzsáki & Draguhn, 2004). This synchrony of neuronal firing ultimately 

allows for the temporal binding of cell assemblies, potentially allowing for the 

processing, transfer and storage of information across distributed networks of 

neurons (Varela et al., 2001; Engel et al., 2001; Buzsáki, 2006). Oscillatory 

activity in neuronal networks is therefore likely to act as a bridge between the 

firing of individual neurons and behavioural output (Engel et al., 2001; Buzsáki & 

Draguhn, 2004; Hasselmo, 2005). 
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 Oscillatory frequency bands  

Oscillatory activity can be observed using a number of recording techniques, 

most notable through either the human electroencephalogram (EEG), first 

described by Berger, (1929), or the local field potential (LFP) that can be 

observed from depth electrodes inserted directly into brain tissue (Buzsáki et al., 

2012). Neuronal oscillations can cover a wide range of potential frequencies 

which have been commonly characterised into several frequency bands 

associated with differing cognitive states, however these classifications can be 

somewhat arbitrary (Engel et al., 2001; Buzsáki & Draguhn, 2004). Generally 

however, increases across frequency bands show a linear progression on a 

logarithmic scale. Neighbouring frequencies are associated with independent 

cognitive states, whilst those further apart may interact, or at least coexist, with 

each other (Buzsáki & Draguhn, 2004; Canolty et al., 2006; Colgin et al., 2009; 

Oke et al., 2010).              

The first of such frequency bands to be described in the human was termed alpha 

activity (7.5-12.5 Hz), found predominantly above the occipital cortex during 

periods of eyes-closed, but representing the dominant frequency across the EEG 

(Klimesch, 1999). This was subsequently followed by beta (13–30 Hz), delta (1–

4 Hz), theta (4–8 Hz), and gamma (30–70 Hz) frequency bands (Niedermeyer & 

Lopes da Silva, 2005). Precise frequencies can vary according to factors such as 

age, cognitive state and importantly for this thesis, species. From here, particular 

focus will concern neuronal oscillations in the rodent, specifically hippocampal 

formation, and for this reason the majority of studies will concern the LFP, 

recorded using depth electrodes.  
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Figure 1.2: Local field potential activity in rodent hippocampus. A) Raw trace 
recorded from CA1 region of hippocampus, with associated power spectrum. B) 
Raw signal from 1 second epoch, filtered in the theta and gamma frequency 
bands below. Note relationship between gamma oscillation amplitude and theta 
phase, whereby gamma activity is largest on theta peaks. Reproduced from 
Onslow et al., (2011). 

 

 Theta oscillations in the hippocampal formation 

In rodents, theta oscillations (8-12 Hz) represent the dominant frequency in the 

LFP and signify the ‘on-line’ state of the hippocampal formation (Buzsáki, 2002). 

Theta oscillations depend heavily on the animal’s behavioural state and are 

predominately observed during periods of voluntary locomotor activity, such as 

exploration or goal-directed movement  (Vanderwolf, 1969), or during REM sleep 

(Sullivan et al., 2014).  

Theta oscillations are likely to be involved in binding anatomically distinct cell 

networks, since their slow wavelength (100-200 ms wide) can accommodate 

relatively long conduction delays (Colgin & Moser, 2010). For example, 

coherence in the theta frequency range can be observed between the 

hippocampus and medial prefrontal cortex (mPFC) during working memory tasks, 
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with the phase-locking of principle cells in the mPFC to hippocampal theta rhythm 

strongly predictive of behavioural output (Hyman et al., 2005; Jones et al., 2005).  

Principle neurons in the hippocampal formation show theta frequency resonance 

(Leung & Yu, 1998; Pastoll et al., 2012) and intrinsic subthreshold oscillations 

(Hasselmo et al., 2007; Giocomo et al., 2007), with isolated, but intact, 

hippocampi able to generate theta oscillations independently in vitro (Forsyth et 

al., 2012). However, global theta oscillations are most likely generated by 

pacemaker cells in basal forebrain areas, specifically the medial septum diagonal 

band of broca (MS-DBB). Long range glutamatergic, cholinergic and GABAergic 

projections arrive from septal areas directly into both hippocampus and entorhinal 

cortex (Melzer et al., 2012; Gonzalez-Sulser et al., 2014; Vandecasteele et al., 

2014; Fuhrmann et al., 2015; Fuchs et al., 2015; Kondo & Zaborszky, 2016; 

Justus et al., 2016). Fast spiking GABAergic projections in particular are most 

likely to entrain networks to theta frequencies (Hangya et al., 2009; Melzer et al., 

2012). Impairments to the medial septum have been shown to abolish theta 

activity across the hippocampal formation (Mitchell et al., 1982; Lee et al., 1994) 

and lead to impairments in spatial memory (Winson, 1978; Mitchell & Ranck, 

1980; Brioni et al., 1990).  

 

 Gamma oscillations in cognition  

Gamma oscillations consist of fast network activity in the range of 30-120 Hz and 

represent the second major class of synchronised activity in the hippocampal 

formation  (Colgin & Moser, 2010). Gamma activity is largest when nested within 

the theta rhythm and although generated independently, these oscillatory 

frequencies are highly concurrent (Jensen & Colgin, 2007). This activity has been 

widely linked to cognitive events, with a number of studies supporting the idea 

that gamma oscillations may facilitate effective memory encoding and retrieval. 

For example, in humans, hippocampal gamma oscillation amplitude predicts the 

encoding of new verbal memories, with only successful trials associated with 

increased gamma power and synchronisation (Fell et al., 2001; Sederberg et al., 

2006). Similar increases in gamma amplitude and coherence can be seen in the 

rodent hippocampal formation, with peak increases visible around decision points 

on T-maze tasks (Montgomery & Buzsáki, 2007; Tort et al., 2008). 
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Gamma oscillations span a relatively wide frequency range, however, they can 

be further divided into slow (30-50 Hz) and fast (60-120 Hz) components which 

can be observed independently in the CA1 hippocampus on different phases of 

the theta rhythm (Colgin et al., 2009). These differing frequency bands are likely 

to represent the routing of information across the hippocampal formation. Fast 

gamma oscillations are thought to arise from projections from the EC (Chrobak & 

Buzsaki, 1998; Colgin et al., 2009). This is consistent with the current source 

density (CSD) profiles of hippocampal gamma oscillations that resemble those 

evoked by medial perforant path stimulation (Bragin et al., 1995). In contrast, slow 

gamma frequencies are more likely generated in the CA3 region (Colgin et al., 

2009) and projected through the Schaffer collateral pathway to CA1.   

 

 Coupling of oscillatory frequency bands  

The relationship between theta oscillation phase and gamma oscillation 

amplitude is perhaps the most explored example of phase amplitude coupling 

(PAC). This inter-locking of oscillatory frequencies may allow for assemblies of 

neurons that are co-active on short timescales, such as over gamma frequencies, 

to be temporally ‘bound’ across longer timescales and anatomical distances 

(Jensen & Colgin, 2007). While theta oscillations may act to bind neuronal 

ensembles, the fast timing of gamma oscillations makes them an ideal candidate 

for encoding information. The precise firing of pre- and post-synaptic cells on 

consecutive gamma cycles is therefore likely to be sufficient for spike-timing-

dependent plasticity (Bi & Poo, 1998). 

The extent of theta-gamma coupling has been shown to be a strong correlative 

of cognitive output in both humans and rodent models (Fell et al., 2001; 

Montgomery & Buzsáki, 2007; Tort et al., 2008; Shirvalkar et al., 2010). The co-

modulation of these frequencies  may even allow for the representation of several 

cognitive events in sequential manner (fig 1.3), with ensembles of neurons 

encoding for individual memories and firing consistently on the same gamma 

cycle (Jensen & Lisman, 1998). The limited number of gamma cycles found 

locked to theta rhythms (suggested to be 7±2 oscillatory cycles) has been 

proposed to reflect that of the limited capacity of humans to retain short term 

memories (Lisman & Idiart, 1995).  
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Figure 1.3 Theta-gamma interactions for encoding information temporal 
sequences.  Reproduced from Jensen & Lisman, (1998). 

 

 Recording neuronal ensembles 

Over the previous decades, significant advances have been made in the ability 

to record neuronal ensembles in both human and animal models. Such 

extracellular recording techniques vary in their ability to distinguish sizes of 

neuronal population ranging from low impedance EEG electrodes placed directly 

onto scalp, to those designed for LFP and single-unit identification (Buzsáki, 

2004). 

Most notably, the ability of researchers to distinguish single neurons 

simultaneously has increased exponentially. Initially these recordings would have 

been achieved with single metal electrodes (Hubel, 1957). However, in regions 

with high neuronal density, there are many neurons in close enough proximity for 

extracellular ‘spikes’ to be observed at one time. In this situation, single units can 
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therefore only be isolated by moving the electrode tip extremely close to the cell 

body. The use of multi-electrode recording arrays, through the use of sterotrode 

(McNaughton et al., 1983b) or tetrode (O’Keefe & Recce, 1993; Gray et al., 1995; 

Jog et al., 2002) recording subsequently allowed for the simultaneous isolation of 

several units, based on the principle that the relative amplitude of the recorded 

spike is proportional to the relative distance between neuron and electrode. This 

allows for the triangulation of signals, since anatomically separate cells will 

produce easily distinguishable spike patterns across recording electrode arrays 

(Gray et al., 1995; Jog et al., 2002; Buzsáki, 2004).  

Recently, there have been significant innovations concerning the development of 

high density silicon probe electrode arrays that can allow for the recording of 

many hundreds of channels through commercially available acquisition systems 

(Berényi et al., 2014; Buzsáki et al., 2015). With these advances, the automated 

clustering of recorded spikes has become ever more important due to the 

difficultly in scaling-up traditional low-throughput recording and sorting methods 

(Kadir et al., 2014; Rossant et al., 2016). Silicon probe technology has also 

allowed for the precise arrangement of recording electrodes over small spatial 

scales, making it possible to record simultaneous activity across well-defined 

regions. Additionally, electrode shanks occupy a much smaller anatomical 

volume than wire electrodes, allowing for decreased tissue damage and hence 

more stable, long term recordings (Buzsáki et al., 2015; Okun et al., 2016).    

Ultimately, while recording neuronal activity in its entirety, whilst not affecting 

normal brain activity, is unreasonable expectation, recording electrophysiological 

data from a statistically representative populations in a given brain area is an 

achievable goal (Buzsáki, 2004).  
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 Encoding spatial information  

 

 Path integration  

It is clear that one of the primary roles of the hippocampal formation is to facilitate 

spatial information processing. By integrating linear and angular motion cues, it 

can encode relative spatial information, without reference to the environment, 

meaning that it is in a prime position to perform path integration (McNaughton et 

al., 2006). Path integration can be defined as the ability to keep a continuous 

updated record of an animal’s current location using only an initial reference and 

self-motion information. The idea of an inertial-based navigational system, or 

“dead reckoning”, dates back to Charles Darwin (Darwin, 1873), who noticed that 

most animals can use cues based only on their self-motion to keep track of their 

current location. This has been shown to appear in a wide variety of species 

across the animal kingdom (Etienne & Jeffery, 2004); however was not shown 

experimentally in mammals for many years (Barlow, 1964; Mittelstaedt & 

Mittelstaedt, 1980).    

In recent years, a number of spatially selective cell types have been discovered 

in the network of neuronal structures thought to be important for path integration 

in mammals.  These cells, many of which were proposed theoretically before their 

eventual discovery, are thought to provide the neuronal basis for path integration 

and spatial navigation in general, combining to form a ‘cognitive map’ of space  

(O’Keefe & Nadel, 1978; McNaughton et al., 2006).  

 

 Place cells in the hippocampus  

For many years, the hippocampus has been widely regarded as the centre for 

the encoding of memories, particularly those of a spatial nature. Since their 

discovery by O’Keefe & Dostrovsky, (1971), ‘place cells’ have generally been 

considered to be a key element for spatial information processing (O’Keefe & 

Nadel, 1978; McNaughton et al., 1996; Leutgeb et al., 2005b). Inspired by the 

work of Tolman, (1948), they were suggested to be the basic component of the 

‘cognitive map’ of space (O’Keefe & Nadel, 1978). Place cells represent a large 

fraction of principle cells in the hippocampus that are activate only when the 

animal occupies a specific location or ‘place field’, with neighbouring cells firing 
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at different locations and therefore covering the entire local environment (fig 1.4B) 

(O’Keefe, 1976; Wilson & McNaughton, 1993). All hippocampal regions display 

place field firing patterns, but field are most distinct in the CA1 region (Barnes et 

al., 1990). In novel environments, the same place cells are active, however they 

‘remap’ between setting, giving distinct firing fields for each new environment 

(Muller & Kubie, 1987).  

The precise position of place fields has been shown to be highly dependent on 

environmental cues (O’Keefe & Conway, 1978). However, hippocampal neurons 

may also be triggered by other, non-spatial, stimuli (Young et al., 1994) or related 

to behavioural or cognitive events (Wood et al., 1999). There is also evidence to 

suggest that place cells can simultaneously represent information relating to 

space and non-spatial, episodic memory-like information, by maintaining firing 

field locations, but encoding context with changes in firing rate (Leutgeb et al., 

2005a).  

Ultimately, the firing of place cells in the hippocampus allows for temporal coding, 

with cell assemblies activated in sequences across environments (Harris et al., 

2003; Huxter et al., 2003). One of the most well characterised examples of 

temporal coding can be seen through the expression of theta phase precession, 

the tendency for place cells to fire progressively earlier in the theta cycle with 

each traversal of the their place fields (O’Keefe & Recce, 1993; Harris et al., 2003; 

Huxter et al., 2003). The implication of this would be that when an animal runs 

through multiple firing fields in sequence, the firing of neighbouring place cells will 

be replicated over an accelerated time-frame (Skaggs et al., 1996; Dragoi et al., 

2006), potentially allowing for Hebbian plasticity (Hebb, 1949). The re-activation 

of place cell ensembles can also be seen in the re-play of hippocampal firing 

patterns, which presumably allow for the off-line consolidation of hippocampal 

memory during sleep (Wilson & McNaughton, 1994; Lee et al., 2002) and quiet 

wakefulness (Karlsson & Frank, 2009). Inhibiting such interactions will therefore 

have profound implications for spatial memory processes (Ego-Stengel & Wilson, 

2009; Girardeau et al., 2009; Jadhav et al., 2012). 
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Figure 1.4 Spatially selective cell types in the hippocampal formation. Schematic 
of hippocampal formation showing hippocampus (CA1, CA3, DG: dentate gyrus), 
entorhinal cortex (EC) and subiculum (S: subiculum, PrS: presubiculum, PaS: 
parasubiculum. A) Grid cells fire in hexagonal lattice pattern across environment. 
Black line represents running path and red dots action potentials of single mEC unit. 
Firing rate maps (middle), with peak firing rate and 2D spatial autocorrelation (right) 
(adapted from Hafting et al., (2005). B) Pace cells in the hippocampus across familiar 
(F) and 3 novel environments (N) showing consistent spatial remapping (adapted from 
Alme et al., (2014). C) Speed cells, whose firing is entirely dependent on animals 
running speed (adapter from Kropff et al., (2015). D) Head–direction cells, with firing 
rate dependent on animals direction (adapted from (Taube et al., 1990a). 
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 Grid cells in the mEC 

Initial recordings from parahippocampal structures, including the mEC, showed 

firing patterns that were only weakly modulated by spatial location (Barnes et al., 

1990; Quirk et al., 1992; Burwell et al., 1998; Frank et al., 2000; Burwell & 

Hafeman, 2003; Cohen et al., 2013). The disparity between weak spatial signals 

from hippocampal projections and strongly spatially modulated hippocampal 

output suggested, at the time, that the hippocampal circuitry was responsible for 

the computation of allocentric location (Barnes et al., 1990; Quirk et al., 1992). 

Importantly however, these original recordings took place in the intermediate or 

ventral portions of the mEC and when re-examined by Fyhn et al., (2004), 

neurons in the dorsal mEC showed clear spatial firing, with multiple fields across 

space. The expansion of previously small recording environments finally revealed 

a striking tessellating triangular grid extending across the entire arena, named 

‘grid cells’ (Hafting et al., 2005) (fig 1.4A). This hexagonal lattice pattern was 

shown to be tied to, but not dependent on, spatial cues and persistent during 

periods of darkness. Grid cell firing has subsequently been described in a variety 

of other species, including mice (Fyhn et al., 2008; Giocomo et al., 2011a; 

Buetfering et al., 2014), bats (Yartsev et al., 2011; Yartsev & Ulanovsky, 2013) 

and humans (Doeller et al., 2010; Jacobs et al., 2013). 

Grid cells recorded from close anatomical areas show a remarkable similarity in 

both their field spacing and orientation, however neighbouring cells are offset 

relative to each other, meaning that all aspects of the environment are covered 

by the local grid network (fig 1.5) (Hafting et al., 2005; Sargolini et al., 2006; 

Stensola et al., 2012). While local modules of grid cells display high levels of 

similarity, a clear topographical organisation of grid cell firing can be seen along 

the dorso-ventral axis of the mEC, with grid fields becoming progressively larger 

and more spaced from dorsal to ventral (Hafting et al., 2005; Brun et al., 2008b; 

Stensola et al., 2012). Grid cell patterns are expressed instantly in novel 

environments and their properties stable across multiple recordings (Hafting et 

al., 2005). Unlike hippocampal place cells, which remap upon new environmental 

exposure, grid cells remain consistent and universal, retaining their scale, 

orientation and phase relationships in all environments. This suggests that grid 

cells act as a metric for space that can be used in path-integration based 

processing (Moser et al., 2008).    
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Figure 1.5: Basic grid cell properties.  A) Example grid cell firing pattern, grey 
line: running path of animal, black dots: firing locations for individual mEC neuron. 
B) Schematic to show grid cell properties, grid scale: size of firing field, grid 
orientation: alignment of grid fields, relative to local environment, grid phase:  x-
y location of firing fields. C) Overlapping firing fields from 3 grid cells recorded 
from same location, grid scale and orientation remain constant, but all have 
different grid phase (adapted from Hafting et al., (2005). D) Schematic showing 
overlapping grid cell modules from one animal with increasing grid scale. A,B and 
D adapted from Moser et al., (2014).     

 

 Border cells  

A further spatial cell type was subsequently found to be present in the mEC, 

namely the border, or boundary vector cell (BVC) (Solstad et al., 2008), which 

was shown to fire only directly adjacent to, or a set distance from, environmental 

boundaries (fig 1.4D). These cells, also discovered in parallel in the subliculum 

(Lever et al., 2009), had previously been predicted by computational models of 

place cell formation, since stretching familiar environments produced elongation 

of firing fields along the same axis (O’Keefe & Burgess, 1996). BVCs, that give 

information regarding the relative distance from each wall, could therefore be 

sufficient to allow for specific place fields (O’Keefe & Burgess, 1996; Barry et al., 

2006; Lever et al., 2009). In the mEC, border cells form only a small population 

of spatially modulated units, with reports varying between 3-10% (Solstad et al., 
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2008; Zhang et al., 2013; Kropff et al., 2015); however, this proportion appears 

to be larger in subicular regions (~25%) (Lever et al., 2009). This suggests, along 

with some underlying anatomical evidence (Kloosterman et al., 2004; Witter, 

2006), a directionality in boundary vector signalling, from subiculum to 

hippocampus via mEC, in contrast to the more classical view of the subiculum 

providing hippocampal output.   

 

 Encoding head direction  

Head direction cells are defined as neurons that show firing rates highly 

dependent on an animal’s direction heading within the environment. First 

discovered in the rat pre- and postsubiculum (Ranck, 1984; Taube et al., 1990a), 

firing patterns are generally characterised by extremely low baseline firing rates, 

with peak firing reach as high as 100 Hz in a preferred directional range consisting 

on average of around 90° (Taube et al., 1990a). Each head direction cell is tuned 

to a single direction, with all orientations equally represented across the 

population. The preferred firing direction of head direction cells can depend on a 

variety of allothetic cues, usually consisting of prominent visual landmarks (Taube 

et al., 1990b). The rotation of such cues usually results in a corresponding 

rotation of preferred firing (Taube et al., 1990b; Taube, 1995). However, once 

established,  turning off lights or removing visual cues will not change a cells 

directional tuning, although the firing maps may drift over time (Taube et al., 

1990b; Goodridge et al., 1998). 

A wealth of electrophysiological and lesion studies have ultimately led to the 

proposal of an almost complete anatomical pathway carrying head direction 

information from vestibular centres to thalamic nuclei and into the hippocampal 

formation (fig 1.6, for comprehensive review see Taube, (2007)). Head direction 

cells have subsequently described in a number of other regions including the 

mEC (Sargolini et al., 2006; Giocomo et al., 2014), hippocampus (Leutgeb et al., 

2000) and retrosplenial cortex (Chen et al., 1994; Cho & Sharp, 2001), as well as 

several thalamic nuclei, most notably the anterodorsal thalamic nuclei (ATN) 

(Taube, 1995; Shinder & Taube, 2011; Jankowski et al., 2014). They have been 

suggested to originate from deep, subcortical structures, with dorsal tegmental 

nucleus (DTN) (Sharp et al., 2001) and lateral mammillary nuclei (LMN) 
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(Stackman & Taube, 1998; Blair et al., 2007) integrating vestibular information 

(Taube, 2007). 

A significant proportion of cells tuned to head direction can be found in the mEC, 

both as a distinct population and in cells with conjunctive grid-head direction 

properties (Sargolini et al., 2006). Conjunctive cells are more commonly found in 

deeper mEC layers, specifically layer V, where the mEC receives cortical inputs, 

rather than in the output from layer II, where grid cells are rarely conjunctive 

(Sargolini et al., 2006).  

 

 

  

  

  

  

  

  

  

  

 

 

 

 

 

 

 

 

Figure 1.6: Proposed head direction cell circuit. HD: head direction, AHV: 
angular head velocity. Reproduced from Taube, (2007)  



39 
 

 Encoding running speed  

Since some of the earliest reports of hippocampal activity, it has been known that 

the properties of theta oscillations (8-12 Hz), the dominant frequency band, are 

highly dependent on locomotor activity, with faster running speeds associated 

with faster and larger amplitude oscillations (Vanderwolf, 1969; Whishaw & 

Vanderwolf, 1973; McFarland et al., 1975; Sławińska & Kasicki, 1998). 

Subsequently, a comparable relationship was found for gamma oscillation 

properties, which similarly increase their magnitude linearly with increases in 

running speed (Chen et al., 2011) and also modulate their frequency in both slow 

(30-50 Hz) and fast (60-129 Hz) gamma frequency bands (Zheng et al., 2015). 

However, it was not until very recently that a specific population of speed-

encoding cells were found to be present in the mEC (Kropff et al., 2015). The 

existence of such cells were long since postulated, since continuous updating of 

movement is thought to be necessary for the path integration based 

representation of space (Fuhs & Touretzky, 2006; McNaughton et al., 2006; 

Burgess et al., 2007; Burak et al., 2009; Bush & Burgess, 2014). mEC speed cells 

form an independent population of neurons whose activity is entirely dependent 

on an animals current speed, rather than acceleration, and are independent of 

grid, border or head direction firing. There is still however a general tendency of 

all mEC neurons, specifically grid cells, to be modulated by running speed 

(Sargolini et al., 2006), with reports of as many as 80% of mEC cells dependant 

to some degree of locomotive activity (Hinman et al., 2016). There is further 

evidence to suggest that in layer II mEC, while grid cells occur equally in 

entorhinal islands (pyramidal cells) and oceans (stellate cells),  speed modulated 

cells are more likely to be from the pyramidal island population (Sun et al., 2015), 

therefore projecting primarily onto CA1 interneurons, rather than to the dentate 

gyrus (Kitamura et al., 2014; Ray et al., 2014). 

Speed correlated input into the mEC has been postulated to arrive from 

glutamatergic projections from the medial septum and diagonal band of Broca 

(MSDB) (Justus et al., 2016).  In the hippocampus, these VGluT2+ neurons are 

likely to mediate the transition between locomotive states, controlling the initiation 

and speed of movement as well as its entrainment to theta (Fuhrmann et al., 

2015). Long range GABAergic and cholinergic projections also enter mEC and 

hippocampus from basal forebrain areas (Colom, 2006; Gonzalez-Sulser et al., 
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2014; Vandecasteele et al., 2014), which may also be relevant for modulating 

speed-correlated outputs.  

One of the most interesting features of running speed representation is that its 

precise relationship with locomotion appears not to be fixed. Features such as 

slope and intercept can be modulated by external factors such as environmental 

novelty (Jeewajee et al., 2008b) or pharmacological manipulations (Jacobson et 

al., 2013; Wells et al., 2013; Newman et al., 2013). Cholinergic inputs in particular 

are also likely to play a modulatory role in representing locomotor information. 

Modulating cholinergic transmission alters slope of running speed-theta 

oscillation relationships in the hippocampal formation (Newman et al., 2013, 

2014). These fibres also potentially underlie context-specific changes to theta 

frequency-running speed slope, for example during periods of environmental 

novelty (Jeewajee et al., 2008a, 2008b), which may have implications on the grid 

field expansion observed under these conditions (Barry et al., 2012a, 2012b).  

 

 Theoretical models of grid cell firing patterns 

The origin of grid cell firing patterns is a topic that has been widely debated and 

explored through mathematical modelling.  Grid cell models can be broadly split 

into two classifications, those produced by oscillatory interference (O’Keefe & 

Burgess, 2005; Burgess et al., 2007; Hasselmo et al., 2007; Jeewajee et al., 

2008a), and those produced by continuous attractor networks (CANs) (Fuhs & 

Touretzky, 2006; Burak et al., 2009; Navratilova et al., 2012; Yoon et al., 2013; 

Shipston-Sharman et al., 2016), although the precise physiological mechanism 

may involve both strategies (Bush & Burgess, 2014). Oscillatory interference 

models use the interference pattern generated by several oscillators, with 

frequencies either relatively constant, or dependent on the speed and direction 

of motion. In contrast, attractor networks are produced by patterns of activity that 

are moved, also in a speed/direction dependant manner, across a network of 

neurons that are recurrently connected and periodically active (Giocomo et al., 

2011b).  

The majority of models therefore work on the basis of the mEC as a path-

integrator, combining both speed and directional inputs from specialized cells; 

however their mechanisms are significantly different (Moser et al., 2008). A 
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detailed commentary on the benefits and weakness of each grid model is beyond 

the scope of this introduction and will not be present here, for reviews see 

(McNaughton et al., 2006; Giocomo et al., 2011b; Zilli, 2012).        

 

 Relationship between place and grid cell firing  

Since their discovery, grid cells have been suggested to have implications for the 

formation of hippocampal place fields (O’Keefe & Burgess, 2005). This 

hypothesis can be easily formed, based on the anatomical connectivity between 

the two regions (Canto et al., 2008) and the ability of CA1 place cells to maintain 

their spatial selectivity in the absence of CA3 inputs (McNaughton et al., 1989; 

Brun et al., 2002). Perhaps the most obvious explanation for producing place 

fields from grids is that of simple summation, with the idea that relatively small 

numbers of grid fields can form single place fields based on the linear summation 

of appropriately weighted synaptic inputs (Solstad et al., 2006). 

More recently however, there has been a growing body of evidence to suggest 

that this may not be the case. Firstly, place cell firing can be observed in the 

hippocampus in the absence of mEC inputs (Brun et al., 2008a; Van Cauter et 

al., 2008; Hales et al., 2014), albeit with larger and more dispersed firing fields. 

In contrast, grid cell periodicity is completely degraded after the removal of 

hippocampal projections to the mEC (Bonnevie et al., 2013). While inactivating 

the medial septum is capable of abolishing grid cell firing patterns, this has only 

minor effects on the spatial properties of place cells (Koenig et al., 2011).  

In development, place cell firing can be seen before the emergence of grid 

patterns (Langston et al., 2010; Wills et al., 2010). While place cells appear earlier 

in development and mature over time, grid cells develop abruptly, immediately 

showing adult-like firing properties (Wills et al., 2012; Muessig et al., 2015). In 

contrast, boundary vector cells (Bjerknes et al., 2014) and head direction cells 

(Langston et al., 2010; Wills et al., 2010; Bjerknes et al., 2014) are present in the 

mEC from the earliest time periods able to be recorded. Furthermore, in adult 

rats, while cells that display grid patterns have been shown to project directly to 

the hippocampus, other cell types, such as border and head direction cells also 

make these direct projections (Zhang et al., 2013). This suggests evidence for 

the BVC model of place cell generation, based on cortical inputs that signal 
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environmental boundaries (O’Keefe & Burgess, 1996; Barry et al., 2006; Hartley 

& Lever, 2014).  

Ultimately, both the mEC and hippocampus are likely to rely on reciprocal 

connections (Naber et al., 2001; Zhang et al., 2013), whether direct or indirect, to 

produce functional spatial firing. While place cells are present in the absence of 

the mEC, their spatial firing is undoubtably impaired (Brun et al., 2008a; Van 

Cauter et al., 2008; Hales et al., 2014), suggesting that the mEC is essential for 

place cell stability and fine tuning of place fields. 

  

 Dependencies for grid cell periodicity 

In support of much of the mathematical modelling of grid cell formation there are 

several studies that clearly show factors necessary for grid cell firing.  

Antagonising projections from the medial septum, the region responsible for both 

speed and theta modulation of mEC activity, produces a complete breakdown of 

grid cell periodicity (Koenig et al., 2011; Brandon et al., 2011).  The same effect 

can be seen though inhibition of the anterior thalamic nuclei, a key component of 

the head-direction pathway (Winter et al., 2015) and through blocking reciprocal 

connections from the CA1 region of the hippocampus (Hafting et al., 2008; 

Bonnevie et al., 2013). Interestingly, this is not necessarily the case for other 

forms of spatial firing. For example, the absence of septal or hippocampal inputs 

has no effect on head-direction tuning (Koenig et al., 2011; Brandon et al., 2011; 

Bonnevie et al., 2013), which in some cases may show an increased 

representation under these conditions (Bonnevie et al., 2013).    

Taken together these data suggest that grid cells are dependent on a fully 

functional spatial information system to effectively integrate information and 

produce precise hexagonal firing patterns. This further suggests that grid cells in 

particular may be especially vulnerable to degeneration, for example, during 

dementia pathology.   

 

 Non-spatial encoding in the lateral entorhinal cortex  

Unlike mEC neurons, that display spatially modulated firing patterns (Fyhn et al., 

2004), LEC cells show very little spatial selectivity (Hargreaves et al., 2005; 
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Yoganarasimha et al., 2011). LEC regions are generally regarded to be 

concerned with non-spatial information such as objects (Deshmukh & Knierim, 

2011; Wilson et al., 2013) or olfactory stimuli (Young et al., 1997; Igarashi et al., 

2014).  For example, LEC neurons have been shown to fire in the vicinity of 

discrete objects (Deshmukh & Knierim, 2011) and in locations where objects have 

been located previously (Tsao et al., 2013). This activity reflects the strong 

projections arriving from perirhinal cortex, which is strongly involved in performing 

object recognition memory (Brown & Aggleton, 2001). These data suggest that 

the mEC primarily concerns information relating to ‘where’ and the LEC to ‘what’, 

with the hippocampus able to combine these processing streams to form 

conjunctive representations of items and their spatial location.   

 

 Dorso-ventral gradients in mEC physiology  

 

 Gradients in grid cell spacing 

One of the earliest findings regarding grid cell firing was the topographical 

organisation of grid spacing (Hafting et al., 2005), with cells in the most dorsal 

mEC regions displaying tightly packed firing fields and those in ventral mEC 

showing much larger and more spaced grid patterns (Brun et al., 2008b). 

Interestingly, this relationship does not occur in a linear fashion, with mEC 

neurons clustering into a small number of discrete modules that overlap 

anatomically and are independent of cortical layers (Stensola et al., 2012). 

Individual grid modules display identical grid spacing and orientation, with each 

able to respond independently to changes in the external environment (Stensola 

et al., 2012). Variation in grid scale in the mEC are mirrored by place cell 

properties, which also show increases in field size across the dorso-ventral axis 

(Jung et al., 1994; Maurer et al., 2005). This is consistent with the anatomical 

projections between these two regions, with dorsal mEC projecting primarily to 

dorsal hippocampus and ventral mEC to ventral hippocampus (Fanselow & Dong, 

2010).  

Head direction cells also show a degree of topography in the mEC, with those in 

the dorsal regions displaying tuning curves with smaller directional firing ranges. 
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Conversely, ventral mEC cells more weakly convey head direction information 

and do so across a much large range of directions (Giocomo et al., 2014). 

 

 Gradients in cellular properties of mEC neurons 

Gradients in the spatial firing of mEC neurons are mirrored by the intrinsic 

properties of stellate cells (SCs) in this region. In vitro patch clamp studies have 

identified many gradients that may explain the differential integration of external 

information in dorsal and ventral mEC. For example, input resistance is higher 

and membrane time constant is slower in ventral compared to dorsal mEC-SCs 

(Garden et al., 2008; Boehlen et al., 2010; Pastoll et al., 2012; Yoshida et al., 

2013; Booth et al., 2016a). Spike after-hyperpolarization (mAHP) duration also 

increases along the dorso-ventral axis of the mEC (Boehlen et al., 2010; Pastoll 

et al., 2012; Navratilova et al., 2012; Yoshida et al., 2013; Booth et al., 2016a). 

A number of studies have identified dorso-ventral gradients in resonant 

properties, such as intrinsic membrane theta resonance (Giocomo et al., 2007; 

Giocomo & Hasselmo, 2008, 2009; Boehlen et al., 2010; Pastoll et al., 2012; Heys 

& Hasselmo, 2012) and subthreshold membrane oscillations (Giocomo et al., 

2007; Giocomo & Hasselmo, 2008, 2009; Boehlen et al., 2010; Dodson et al., 

2011; Pastoll et al., 2012), with higher frequencies observed in dorsal mEC 

regions. These findings suggest a mechanism for the graded transformation of 

mEC inputs to produce differing grid firing patterns across the dorso-ventral axis 

of the mEC.  

Both of these properties are dependent on the hyperpolarization-activated cation 

current (Ih), with Ih-mediated sag potentials showing decreasing relative 

amplitude along the dorso-ventral axis (Garden et al., 2008; Giocomo & 

Hasselmo, 2009), although this may be somewhat dependent on age (Boehlen 

et al., 2010; Booth et al., 2016a). Several studies have observed the effect of 

hyperpolarization-activated cyclic nucleotide-gated 1 subunit (HCN1) (which 

conducts Ih) inhibition, showing a slowing of resonance and temporal summation 

in layer II mEC-SCs (Giocomo & Hasselmo, 2008, 2009; Garden et al., 2008). 

HCN1 knockout mice show flattened dorso-ventral relationships in mEC resonant 

properties (Giocomo & Hasselmo, 2009), which corresponds to an increased grid 

scale (Giocomo et al., 2011a), suggesting that grid cells require HCN1 for spatial 
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scaling. Increases in hippocampal place field size are have also been seen in 

these mice (Hussaini et al., 2011) suggesting a common mechanism across the 

hippocampal formation.    

Finally, a gradient has also been shown in the expression of inhibitory 

interneurons along the dorso-ventral axis of the mEC (Beed et al., 2013). Dorsal 

mEC stellate cells were shown to have stronger inhibitory drive, specifically from 

parvalbumin (PV) positive interneurons. This gradient of inhibition may also have 

profound effects on the oscillatory output of the mEC (Beed et al., 2013). 

 

 Understanding dementia  

 

In the UK, over 800,000 people are thought to be suffering from dementia; 

globally this figure is estimated at 46.8 million (Prince, 2015). In the coming years, 

with an increasingly ageing population, these figures will undoubtedly rise. Across 

the globe in 2018, dementia will cost the global economy over $1 trillion and this 

is projected to double by 2030 (Prince, 2015). There are currently only a handful 

of symptomatic treatments for patients, with no success in finding disease 

modifying drugs (Doody, 2003; Ringman & Cummings, 2006; Prince et al., 2014).  

Alzheimer’s disease (AD) represents the most common form of dementia in the 

elderly population, followed by Lewy body dementias, frontotemporal dementias 

and vascular dementias (Ferri et al., 2005; Bang et al., 2015; O’Brien & Thomas, 

2015; Walker et al., 2015). However, this thesis will primarily concern the effects 

of tau pathology, which is common amongst several categories of dementia.    

 

 Alzheimer’s disease 

AD, originally described by Alois Alzheimer in 1907 (Stelzmann et al., 1995), can 

be defined by the presence of two pathological hallmarks, extracellular senile 

plaques consisting of beta-amyloid peptide (Aβ) and intracellular neurofibrillary 

tangles (NFTs) formed from hyperphyosphorylated tau protein. With these come 

neurodegeneration, neuroinflammation and ultimately cognitive decline, starting 

with declarative memory and ending with impairments in motor and autonomic 

functions (Buckner, 2004; Walsh & Selkoe, 2004). There appears to be a long 
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asymptomatic phase in AD, with significant accumulation of Aβ occurring years 

before the onset of cognitive symptoms (Ashe & Zahs, 2010). A stereotyped 

progression of degeneration can be seen in AD patients, with earliest pathology 

visible in the entorhinal cortex and hippocampus and spreading progressively 

toward frontal cortical areas  (Braak et al., 1991; Braak & Braak, 1995).  

While the majority of AD cases are sporadic in origin, there are a small proportion 

of familial cases caused by genetic mutations which primarily occur clinically at 

younger age points (Randall et al., 2010). The study of these familial AD patients 

has identified the amyloid precursor protein (APP) cleaving pathway as a key 

mediator of disease pathology. However, of these cases, only ~10% involve 

direct modifications to the APP gene, with the remainder made up of mutations 

in the presenilin (PS1 and PS2) encoding genes (O’Brien & Wong, 2011; Masters 

et al., 2015). 

 

 

Figure 1.7: Progression of Alzheimer’s disease pathology. A) Schematic of 
pathological hallmarks of AD: amyloid plaque and neurofibrillary tangle. B) 
Progression of amyloid and tau deposition across Braak stages I-VI. Reproduced 
from Masters et al., (2015). 

 

 Tauopathy  

Tau is a microtubule-associated protein, in adult neurons it can be found 

predominantly in axons and interacts with microtubules to provide stabilization, 

promote their assembly and allow the dynamic reorganisation of the cytoskeleton 

(Wang & Mandelkow, 2016). There may be as many as 85 phosphorylation sites 
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on across the unfolded tau protein, which have a physiological role in controlling 

its function; however, dementia pathology is associated with the aberrant 

hyperphosphorylation of tau, causing it to dissociate from microtubules and 

promoting aggregation (Hanger et al., 2009). 

Neurofibrillary tangles, made up of aggregated hyperphosphorylated tau, are one 

of the pathological hallmarks of AD. However, other dementias can also express 

tau pathology in the absence of Aβ. Frontotemporal dementia (FTD), for example, 

is characterised by neuronal loss, gliosis and vascular changes in frontal and 

temporal lobe, with tau protein solely accounting for this pathology (Bang et al., 

2015). FTD displays a strong genetic component, with a familial history reported 

in up to 40% of cases and mutations involving microtubule-associated protein tau 

(MAPT), chromosome 9 open reading frame 72 (C9orf72), and progranulin (GRN) 

genes accounting for autosomal dominant forms (Hutton et al., 1998; Bird et al., 

1999; Mirra et al., 1999; van Swieten & Heutink, 2008; Sha et al., 2012; Le Ber, 

2013; Devenney et al., 2014). 

The spread of tau protein across the brain has also been proposed to occur in a 

prion-like manner, moving trans-synaptically across key synapses in the 

hippocampal formation (Liu et al., 2012; de Calignon et al., 2012; Holmes & 

Diamond, 2014). The expression of hyperphosphorylated tau, and subsequent 

NFT formation, is highly associated with neurodegeneration (Spires et al., 2006); 

however, the precise role of NFTs in this is unclear. Both structural and functional 

alterations observed in mouse models of tauopathy appear relatively independent 

of neurofibrillary tangle (NFT) formation (Hoover et al., 2010; Rocher et al., 2010). 

Indeed, some neurons bearing NFTs are initially capable of integrating 

functionally into neuronal networks in cortical areas (Kuchibhotla et al., 2014), 

suggesting that individual cells may show decline across long time periods, rather 

than rapid cell loss after tau accumulation. 

 

 Disease treatments and development of therapies 

There are currently only a handful of therapies licenced for the treatment of AD 

and other forms of dementia, all of which provide only symptomatic relief with 

only moderate success (Trinh et al., 2003; Ringman & Cummings, 2006; Masters 

et al., 2015). Current pharmacological strategies for dementia treatments focus 
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almost entirely on the use acetylcholinesterase (AChE) inhibitors (Birks, 2006).  

Such drugs have consistently shown effectiveness in reducing cognitive 

symptoms associated with Alzheimer’s disease pathology; however, the marginal 

nature of these cognitive improvements is equally consistent (Trinh et al., 2003; 

Raina et al., 2008).  

The idea of the cholinergic system being an important avenue for therapy has 

been around for many years, since studies emerged showing correlations 

between the loss of cholinergic innervation and the severity of dementia (Perry et 

al., 1977). Specifically, the loss of cholinergic neurons in the basal forebrain, 

which send major projections into the cortex, was shown to be a feature of 

Alzheimer’s disease pathology (Davies & Maloney, 1976; Whitehouse et al., 

1982; Coyle et al., 1983). This cholinergic hypothesis of AD is, however, largely 

outdated, with current avenues focussing on producing disease modification 

(Terry & Buccafusco, 2003). 

The majority of these targets have focussed on the APP processing pathway to 

reduce Aβ aggregation. In recent years however, there has been a clear failure 

to produce such disease modifying interventions that can slow or halt dementia 

pathology, despite a number of promising compounds progressing into phase 3 

clinical trials (Cummings et al., 2014). Much of this failure has stemmed from the 

inability of targets to translate from in vitro preparations and animal models into 

improvements in cognitive function in the clinic (Giacobini & Gold, 2013).  They 

also show that the removal of amyloid, does not by itself, necessarily lead to the 

improvements for AD patients. For this reason, targeting tau may be a more 

suitable avenue for investigation (Götz et al., 2012; Wischik et al., 2014; Bakota 

& Brandt, 2016).   

 

 Rodent models of dementia  

Much of the current understanding regarding the effects of dementia pathology 

on neuronal activity has been discovered through the use of animal models of the 

disease. For over 20 years, mouse models of AD have been produced through 

genetic mutations associated with either amyloid or tau proteins (Ashe & Zahs, 

2010). The majority of mouse models rely on the manipulation of these 

pathological proteins individually and they therefore broadly fall into two 
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categories; those displaying amyloid and those displaying tau pathology (Elder et 

al., 2010; Randall et al., 2010; Hall & Roberson, 2012). Most rely on well 

characterised familial forms of AD and FTD to produce either plaques of NFTs, 

caused through mutations of APP, presenilin 1 (PS1) or presenilin 2 (PS2) 

(Radde et al., 2006; Ozmen et al., 2009) (AD) or MAPT (FTD) genes (Götz & 

Ittner, 2008).  

The first AD mice were produced by the overexpression of mutated human APP 

(Games et al., 1995; Hsiao et al., 1996), or PS1 genes , or combinations resulting 

in double transgenic mice showing more aggressive pathologies (Holcomb et al., 

1998). While these mouse strains show amyloid plaques similar to those seen in 

AD patients, as well as some cognitive deficits, the major limitation of these 

models is the absence of NFT development (Elder et al., 2010; Ashe & Zahs, 

2010). More recently however, long term expression amyloid mutations have 

been shown, in a transgenic rat model, to produce spontaneous tauopathy 

(Cohen et al., 2013), which may reflect the limitations of mice as a model system. 

This has led to the production of distinct tau overexpressing mouse lines, mostly 

from mutation in the MAPT genes involved in familial FTD, rather than AD 

specifically (Santacruz et al., 2005; Ramsden et al., 2005; Spires et al., 2006; de 

Calignon et al., 2012). Unlike amyloid overexpressing mice, mouse models of 

tauopathy show profound levels of cell loss, across hippocampal and cortical 

regions, reminiscent of those observed in dementia patients (Ramsden et al., 

2005; Spires et al., 2006; Rocher et al., 2010).   
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 Entorhinal cortex in dementia 

 

 Entorhinal degeneration in dementia  

The entorhinal cortex is one of, if not the, first area to be affected in AD and other 

forms of dementia (Braak et al., 1991). Neurons in layer II of the EC appear to be 

particularly susceptible to degeneration, with significant cell loss evident even in 

very mild cases of AD (Gomez-Isla et al., 1996; Stranahan & Mattson, 2010; Khan 

et al., 2014).  This is also the case in mouse models, which show structural and 

functional changes in the mEC and LEC at early stages of pathological 

progression and preceding those in the hippocampus (Baglietto-Vargas et al., 

2010; Khan et al., 2014; Duffy et al., 2015; Klein et al., 2016). 

It unclear which properties of EC neurons make them particularly vulnerable to 

degeneration. However, for the rest of the hippocampal formation, the trans-

synaptic propagation of tau may have a profound influence on the pattern of 

degeneration (Holmes & Diamond, 2014). With neurons in layer II EC giving rise 

to the perforant pathway, this ‘seeding’ of tau may be responsible for the 

progression of dementia pathology across key areas for cognition  (de Calignon 

et al., 2012).  

 

 Spatial memory deficits in dementia patients  

Patients with AD commonly present with difficulties in spatial orientation. Early in 

dementia, this may mean a failure to navigate unfamiliar environments; however, 

in later stages patients may be disorientated even in familiar settings (Monacelli 

et al., 2003). There have been several examples of studies showing spatial 

navigation or path integration impairments in AD or mild cognitive impairments 

(MCI) patients (Hort et al., 2007; Laczó et al., 2011; Lithfous et al., 2013; 

Mokrisova et al., 2016). These deficits are particularly relevant, since they can be 

readily observed in mouse models of the disease, allowing direct comparisons to 

be made with human patients.   
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 Neurophysiological alterations in dementia  

Since early time periods in AD research, the recording of EEG activity in patients 

has been used to attempt to find neurophysiological signatures of the disease 

(Dascalov, 1969; Jeong, 2004). There are several good reasons for EEG to 

provide a useful tool for assessing disease pathology. EEG is a completely non-

invasive technique, which may potentially allow for some insights into the synaptic 

dysfunction in AD patients. AD is also primarily a cortical, rather than sub-cortical, 

disorder, meaning that changes can be observed from scalp electrodes (Jeong, 

2004). Dementia patients show stereotyped changes to cortical EEG, consisting, 

in general, of a slowing of dominant rhythms, with decreases in alpha and beta 

oscillation frequency and increased power in the theta and delta bands (Coben 

et al., 1985; Brenner et al., 1986; Abásolo et al., 2006; Czigler et al., 2008). These 

are paralleled with decreases in coherence in both alpha and beta frequencies 

(Dunkin et al., 1994). Furthermore, changes to EEG are fairly well correlated to 

the degree of cognitive impairments seen in patients (Hughes et al., 1989; 

Kowalski et al., 2001). Despite these findings, only limited knowledge can be 

gained from non-invasive recordings in dementia patients. Rodent models are 

therefore needed for a more thorough understanding of the changes to neuronal 

physiology in specific brain areas, such as the mEC.  

Since the mEC degeneration occurs at the earliest stages of disease pathology, 

it is likely that the neurophysiology of this region will be substantially altered. This 

appears to be the case in the hippocampal CA1 region, with altered intrinsic 

properties of pyramidal neurons underlying aberrant network oscillations (Booth 

et al., 2016b) and a reduction in sharp-wave ripple activity (Witton et al., 2014). 

Ultimately, such changes affect the output of the hippocampus, altering the 

spatial properties of place-field firing sequences (Cheng & Ji, 2013; Booth et al., 

2016b). However, it is unclear whether these changes are comparable to those 

in the mEC, since to date, no studies have observed mEC network function in 

mouse models of dementia.  

Recent evidence has suggested that dorso-ventral gradients in certain intrinsic 

membrane properties, such as membrane capacitance and 

afterhyperpolarizations, are lost in rTg4510 mice (Booth et al., 2016a). 

Specifically, deficits in mEC properties in these mice were limited to dorsal mEC 

regions, with ventral mEC stellate cells largely unchanged by tau pathology. This 
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is also likely to have significant effects of the network activity in the mEC and the 

effective formation of grid cell patterns. 

 

 Grid patterns in dementia  

To date, there have been few examinations of grid cell firing patterns after periods 

of dementia pathology. However, recent studies have provided some evidence of 

grid cell malfunction in an entorhinal specific model of tauopathy (Fu et al., 2017), 

which correlate well with spatial memory impairments. In humans, grid-like 

representations using fMRI recordings have also been shown to be reduced in 

adults with high genetic risk of Alzheimer’s disease (APOE-ε4 carriers), years 

before the potential onset of disease symptoms (Kunz et al., 2015).  

Place cell firing has been examined in both amyloid (Cacucci et al., 2008) and 

tau (Cheng & Ji, 2013; Booth et al., 2016b) overexpression mouse models. While 

the place fields in these mice are undoubtedly degraded, showing decreased 

spatial information content and expanded field size, they are however still 

consistently present. The precise temporal nature of grid and place cell 

impairment is as yet unknown. Given the pattern of degeneration across the 

hippocampal formation, weak place fields (Cacucci et al., 2008; Cheng & Ji, 2013; 

Booth et al., 2016b) may be the result of reduced entorhinal inputs (Brun et al., 

2008a; Van Cauter et al., 2008; Hales et al., 2014). Reductions in grid and place 

field activity may therefore mirror their appearance in neuronal development, 

where place cells appear before grid cell and maturing fully only after grid cell 

development (Wills et al., 2012; Muessig et al., 2015). 
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 Aims 

 

It is clear that the entorhinal cortex has a significant role in the processing of 

spatial memory, controlling the flow of information across the hippocampal 

formation. It is also clear that understanding the EC, and its dysfunction, is a key 

to understanding the progression of dementia pathology. However, surprisingly 

little is known about the effect of this degeneration on the neurophysiological 

properties of the mEC, specifically the effect on neuronal network activity in this 

region. This thesis will aim to provide novel insights into the electrophysiological 

changes that occur to mEC physiology after periods of neurodegeneration. For 

this reason, it will focus of tau pathology, specifically in the rTg4510 mouse 

model, which produces large cell loss in hippocampal and cortical areas. The key 

aims of this thesis are outlined below: 

 
1. Assess the effect of tau pathology on neuronal network activity in the 

mEC. Little is known about how degeneration in the mEC, the area first 

affected by dementia pathology, corresponds to changes in neuronal network 

activity in this region.  

 

2. Determine the effect of dorso-ventral mEC gradients on network activity 

and their alterations in tauopathy. Since recent evidence has suggested 

that tau pathology in this mouse may show differential impairments in intrinsic 

properties of mEC stellate cells across the dorso-ventral axis (Booth et al., 

2016a), efforts will aim to examine how these changes effect network activity 

in the mEC. Initially, this will focus on the observing the presence of dorso-

ventral gradients in oscillatory activity under normal conditions.  

 

3. Observe the effect of tau pathology on key spatial information 

processing systems in the mEC. The work will aim to understand the impact 

of degeneration on the ability of the mEC to represent spatial information, 

which will have a broad relevance to cognitive processing across the 

hippocampal formation. 



54 
 

  



55 
 

2.  General Methods 
 

The chapter bellow will describe in detail the methods used in this thesis. 

However, for clarity, an overview of specific methods used will also be given at 

the beginning of each results chapter.  Where appropriate, computer code, 

developed in house, for analysing specific parameters will be included in the 

appendix.  

 

 Ethical Approval 

All procedures were carried out in accordance with the UK Animal (Scientific 

Procedures) Act 1986 and were approved by the University of Exeter Animal 

Welfare and Ethical Review Body. All steps were taken in order to minimize 

animals’ pain and suffering.  

 

 Animals 

 

 rTg4510 mouse  

The majority of the experiments described below were performed using the 

rTg4510 mouse model of tauopathy.  This mouse is one of the most commonly 

used and well characterized models for assessing the functional impacts of 

progressive tauopathy (Santacruz et al., 2005; Ramsden et al., 2005; Spires et 

al., 2006; de Calignon et al., 2010).  The model is produced through the forebrain-

restricted over-expression of human 4 repeat tau expressing the frontotemporal 

dementia-associated P301L mutation and exhibits progressive deficits in 

cognitive processing that can be prevented by suppression of transgene 

expression with dietary doxycycline. These mice display clear spatial memory 

deficits, neurofibrillary lesions, and pronounced neuronal loss in both 

hippocampus and entorhinal cortex (Santacruz et al., 2005; Booth et al., 2016a) 

but they lack the severe and ultimately lethal functional consequences that arise 

when tau is more widely expressed in the CNS.  

Specific deficits in neuronal function, both at the single cell and network levels 

have been widely studied both in our own lab (Witton et al., 2014; Booth et al., 
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2016a, 2016b) and others (Kopeikina et al., 2013; Cheng & Ji, 2013; Wells et al., 

2015) probably in more detail than any other model of tauopathy.  

Male rTg4510 mice were bred at Harlan Laboratories (Hillcrest, UK) and shipped 

to the University of Exeter before use. Animals were allowed to equilibrate for at 

least 7 days after transport and housed on a 12:12h light/dark cycle with ad 

libitum access to food and water.  

 

 C57/BL6 mice 

The remaining experiments, specifically those reported in chapter 3, were 

performed using the C57/BL6 mouse strain.  

Whilst this strain is a common experimental model, it is worth noting that these 

animals differ from the ‘Wild-type’ controls used in experiments with rTg4510 

mice, with this mouse bred from the FVB/N strain. However, it is possible to 

maintain the rTg4510 line on a C57/BL6 background strain without affecting the 

fidelity of the phenotype (Bailey et al., 2014). While there is some evidence for 

subtle differences in electrophysiological properties between experimental 

mouse strains (Ryan, 1984; Bampton et al., 1999), this is likely to have a little 

impact on the findings explained below.   

C57/BL6 were bred in-house and maintained on a 12:12h light/dark cycle with ad 

libitum access to food and water. 

 

 In vitro electrophysiology 

 

 Parasagittal slice preparation 

Mice were killed by cervical dislocation and the brain rapidly extracted and placed 

in cold (~4 °C), oxygenated sucrose-based solution, comprising (in mM): sucrose 

(189), D-glucose (10), NaHCO3 (26), KCl (3), MgSO4 (5), CaCl2 (0.1) and 

NaH2PO4 (1.25). The cerebellum was removed and the remaining brain tissue 

hemisected. Parasagittal brain slices (400 μm thick), containing the entire dorsal-

ventral extent of the mEC, were prepared whilst immersed in the sucrose-based 

cutting solution, using a vibratome (VT1200, Leica Microsystems). After cutting, 

the slices were immediately removed to a holding chamber containing 
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oxygenated (95% O2/5% CO2) artificial cerebrospinal fluid (aCSF) comprising (in 

mM): NaCl (124), KCl (3), NaHCO3 (24), MgSO4 (1), D-glucose (10), CaCl2 (1.2). 

The slices were gradually warmed to ~37 °C (for 30 minutes) and then maintained 

at room temperature (~20 °C, for at least another 30 minutes) until ready for use. 

Whole slices were then transferred to an interface-style recording chamber 

maintained at 34 ± 1 °C and allowed to equilibrate for a further 30 minutes. 

 

 Data acquisition  

Continuous extracellular recordings were made using one of two approaches: 1) 

Pairs of glass micropipettes (filled with aCSF) were positioned in the superficial 

layers of dorsal and ventral ends of the mEC; or 2) a single 16-channel silicone 

probe consisting of 16 individual shanks (55 μm wide, 100 μm apart), with a single 

electrode contact point at the end of each shank (Neuronexus, Ann Arbor, MI; 

probe catalogue number: A16x1-2mm-100-177), was positioned parallel to the 

dorso-ventral axis of the mEC (fig 2.1). 

For the glass electrode experiments, data were recorded using the two channels 

of a MultiClamp 700A (in I=0 mode; Molecular Devices, Sunnyvale, CA), band-

pass filtered at 1 Hz-1 kHz and digitized at 5 kHz, using Clampex 10.4 software 

(Molecular Devices). 

For the silicone probe recordings, data were recorded using a 32-channel 

amplifier (RHD2132; Intan, Los Angeles, CA) coupled to an open-source 

acquisition board (Open Ephys Inc, Cambridge, MA). These data were band-pass 

filtered (1-500 Hz) and digitized at 2 kHz. All data were stored on the hard drive 

of a PC for off-line analysis.  
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Figure 2.1: Recording positions for in vitro electrophysiology. A) Indicative 
recording locations from paired glass electrodes filled with aCSF positioned in 
dorsal and ventral mEC. B) 16 channel silicone probe with 16 individual 
positioned parallel to the dorso-ventral axis of the mEC. 

 

 In vitro gamma oscillations  

Pharmacologically induced gamma oscillations (30-80 Hz) were evoked using 

low concentrations of kainate and recorded simultaneously in dorsal and ventral 

portions of the mEC. After an initial baseline, network activity was elicited by 

continuous bath application of either 200 nM or 500 nM kainate ((2S,3S,4S)-3-

(Carboxymethyl)-4-prop-1-en-2-ylpyrrolidine-2-carboxylic acid, Tocris Cookson, 

Bristol, UK) for up to 1 hour. In a proportion of slices, the GABAA receptor agonist 

picrotoxin (PTX, Tocris) was subsequently applied in order to eliminate network 

activity and produce regular bursts of hyperexcitability.    

 

 Epileptiform activity  

In a subsection of experiments, after the observation of in vitro gamma 

oscillations, picrotoxin (50 μM) was bath applied in addition to kainate (500 nM). 

This application was firstly, to abolish mEC oscillatory activity and secondly, to 

induce hyperexcitable discharges, described here as interictal-like activity.  

In a further subsection of slices used for kainate/picrotoxin experiments, a scalpel 

blade was used to make a cut in the intermediate mEC immediately after slice 

preparation, thus anatomically separating dorsal and ventral portions. 
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Ictal-like epileptiform activity, defined as long periods of regular seizure-like 

waveforms,  was also induced by bath application of 4-aminopyridine (4-AP; 100 

μM, Tocris, UK).  

 

 Data analysis – gamma oscillations 

All data were analysed using MATLAB,  spectral analysis was conducted for 1 

min bins of recorded data using the Chronux toolbox (available at 

http://chronux.org/) (Mitra & Bokil, 2008; Bokil et al., 2010). Spectral power was 

calculated as the total area under the curve between the limits of relevant 

frequency band, using the mid-ordinate rule. Peak gamma frequency was defined 

as the frequency with the highest spectral power (fig 2.2B).  

 

 

 Data analysis – epileptiform activity  

Recordings of mEC hyperexcitability were analysed using built-in and custom-

written functions in Matlab (Mathworks). Interictal and ictal bursts were identified 

using a threshold detection algorithm. Data were filtered (0.5 – 10 Hz and 15-35 

Hz for interictal and ictal bursts, respectively) rectified and z-normalised (fig 2.3). 

Subsequently the envelope in these frequency bands was determined by Hilbert 

Figure 2.2. Analysis of in vitro gamma oscillations. A) Example of network 
activity recorded from mEC in vitro, filtered in increasing frequency bands. Scale 
bar: 100 ms, 20 µV. B) Power spectrum from 1 min of recorded data, showing 
measurement of peak gamma frequency and total gamma power. 

 

http://chronux.org/
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transform, and burst initiation was determined by the first time point over a 

threshold of 1.5-3 standard deviations from the mean (fig 2.3).  

For interictal activity, individual burst waveforms were extracted (window size = 

0.9 s) from each recording probe and the resulting waveforms were grouped 

using an unsupervised k-means clustering algorithm (from the Matlab 2016a 

Statistics and Machine Learning Toolbox; distance measure was the sum of 

absolute differences). The most appropriate number of clusters (k) was the 

solution (where k>1 and <10) which resulted in the highest mean silhouette value.  

Ictal burst start time for each electrode was plotted relative to the first recorded 

threshold crossing and slope of ictal propagation calculated in µm/s for each 

burst, assuming linear progression between recording sites. For analysing within-

burst properties, cross correlation analysis was performed on 1 s time bins of 

data between the most ventral recording site and each subsequent dorsal 

electrode. Dorsal – ventral cross correlations were performed, meaning that 

positive peaks in the cross correlation correspond to waveforms that occur first in 

ventral mEC. Interictal bursts were also measured by a variable threshold search 

and their frequency expressed as number of bursts in each 60 s bin. Cross-

correlation analysis was also performed on time windows containing individual 

bursts. 

Figure 2.3 Ictal-like burst detection. Top: raw trace recorded after application 
of 4-AP (scale bar: 1s, 50 µV). Middle: filtered trace between 15 and 35 Hz (scale 
bar: 1s, 50 µV). Bottom: trace rectified and then Z-normalised, threshold 1 SD 
above mean, red star: 1st threshold crossing, (scale bar: 1s, 1 z).   
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 In vivo electrophysiology 

 

 Silicon probe electrode arrays 

Silicon probe electrode arrays were used throughout the experiments described 

below.  This technology allows for highly precise arrangement of recording 

electrodes over small spatial scales, making it possible to record simultaneous 

activity across well-defined regions. The specific recording configurations used in 

the experiments described below would be impossible to achieve using individual 

wires or handmade electrode configurations. Importantly, the consequence of this 

is the relatively low numbers of animals needed for each experiment, with 

electrode arrays showing relatively small levels of variation. 

The in vivo electrophysiology experiments described in chapters 4-6 use two 

forms of recording array: 

1) Fixed 16-channel linear silicon probes with 150 µm inter-electrode spacing 

(NeuroNexus Technologies; site impedance 200-400 kΩ, catalogue number: 

A1x16-5mm-150-703, fig 2.4A). These electrodes are optimised for recording 

local field potential (LFP) activity, with the large electrode spacing meaning 

that signals can be recorded along the majority of the dorsal ventral axis of 

the mEC.  

 

2) Moveable, high density electrode arrays containing 2 shanks of 16 electrodes 

arranged in 2 parallel columns with 25 µm spacing (Cambridge NeuroTech; 

ASSY-116 DBC-2-1, shank pitch 250 µm, fig 2.4B) attached to a miniature 

Microdrive with screw moving 205 µm per turn (Cambridge NeuroTech; Nano-

Drive CN-01 V1).  This approach is highly optimised for distinguishing singe-

unit activity across smaller regions of cortex, with lower impedance measures 

of 25-40 kΩ producing an enhanced signal-to-noise ratio and long-term stable 

recordings from a large number of individual cells. This therefore gives many 

advantages over traditional tetrode recordings, which will be discussed further 

in chapter 6.  
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Figure 2.4: Silicon probe electrode configurations.  A) Schematic of fixed 16-
channel linear silicon probe used in chapter 4/5 (i) (NeuroNexus; catalogue 
number: A1x16-5mm-150-703, image from http://www.neuronexus.com/) with 
example of implanted animal. B) Schematic of high density electrode arrays used 
in chapter 6 (Cambridge NeuroTech; image from 
http://www.cambridgeneurotech.com/) and example implant (ii) containing 
miniature microdrive encased in dental cement.  

 

 Surgical implantation 

All surgical procedures were conducted using standard sterile and aseptic 

techniques. Animals were anaesthetized using isoflurane (4%) and fixed into a 

stereotaxic frame (ASI instruments). Anaesthesia was reduced and maintained 

at 1-2% during surgery. Body temperature was maintained using a 

homoeothermic blanket (Harvard instruments) and mice compensated for fluid 

loss with Hartmann’s solution given subcutaneously (SC) before and at regular 

periods throughout surgery. For the purpose of analgesia, animals were 

administered carprofen (5 mg/kg) intraperitoneally (IP) before first incision and 

again postoperatively at intervals of 12-24 hours as required.   

After careful cleaning of the skull surface, small screws (antrin miniature 

specialities, ref: PN M.08 x 0.60 SL FLAT FILL MS SS) were inserted into each 

http://www.neuronexus.com/
http://www.cambridgeneurotech.com/
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bone plate in order to anchor the electrode array. Silver wire (World Precision 

Instruments) was soldered to a screw overlying the cerebellum to be used as a 

ground.   

Probes were implanted at 0.2-0.3 mm anterior to the transverse sinus and 3-3.25 

mm from midline. Linear probes were implanted and fixed 3 mm below the dura 

mater and angled at 10 degrees in the posterior to anterior direction in the sagittal 

plane in order to record consistently from layer II/III along the dorsal-ventral axis 

of the mEC.  

High density silicon probes were implanted 0.3-0.5 mm below dura at an angle of 

5 degrees, also in the posterior direction and subsequently moved slowly into the 

cortex using their attached microdrive (Cambridge NeuroTech). The shallower 

angle used in these experiments was chosen to allow for a greater penetration of 

mEC cortical layers, whist leaving maximal space in the dorso-ventral direction 

to advance the electrode array.  

Gentamycin impregnated bone cement (DePuy International Ltd) or RelyX 

Unicem 2 dental cement with blue curing light (Henry Schein) were used to 

anchor the probe to the skull and anchor screws. After surgery mice were 

maintained on a heat mat until fully conscious and transferred to a heated 

recovery tank for ~4 hours before being returned to their home cage. Animals 

were singly housed and monitored carefully throughout experimental 

proceedings.  

 

 Data acquisition 

Animals were given at least 1 week of post-operative recovery before initial 

recording sessions. Local field potential (LFP) signals were recorded using a 

Digital lynx 10S recording system (Neuralynx, Bozeman, MT, USA) tethered to a 

HS-18 or HS-36 unity gain headstage and Cheetah 5 data acquisition software 

(Neuralynx). The headstage and tether were counterbalanced using a moveable, 

weighted arm to allow for the maximum flexibility of movement. 

Two light-emitting diodes (LEDs) on the headstage and an overhead video 

camera (sample rate 25 Hz) were used to continuously track the animals’ location 

using Cheetah’s built in video tracking software (VTS), allowing estimation of 
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position and therefore running speed. Once recorded, invalid tracking points, i.e. 

time-points where no light threshold was reached, were excluded and the 

animal’s position interpolated from the two nearest points. Estimation of running 

speed was performed on binned position data, with erroneous bins, above 50 

cm/s, also removed.  

LFP data were recorded while animals explored either a linear track (1.5 m) or 

square open field (1.25 m x 1.25 m)(fig 2.5). Total recording time for each animal 

was limited to 1 hour per day. 

 

 

 

 

 

 

 Analysis of local field potential (LFP) signal 

Data recorded using 16-channel linear silicon probe electrodes were continuously 

sampled at 2 kHz, band-pass filtered (1 – 500 Hz) and stored on a PC for offline 

analysis. All LFP signals were analysed in MATLAB, using open-source 

toolboxes or custom routines utilising built-in functions. Multi-tapered spectral 

analysis was performed using the Chronux toolbox (available at 

http://chronux.org/) (Mitra & Bokil, 2008; Bokil et al., 2010) and phase-amplitude 

coupling (PAC) measured using a toolbox available at 

 

A        B           C 

Figure 2.5: Recording environments for in vivo electrophysiology. A) 
Implant and Neuralynx HS-36 headstage on mouse implanted with 32 channel 
electrode array (Cambridge Neurotech). B) Linear track (1.2m), with reward 
points at ends to deliver diluted condensed milk. C) Mouse in open field 
environment (1.25m x 1.25m).  

 

http://chronux.org/
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http://www.cs.bris.ac.uk/Research/MachineLearning/pac/ (Onslow et al., 2011). 

A linear regression analysis between probe position and modulation index (MI) 

was performed and the slope of this line was determined. Furthermore, the 

Pearson’s R value for each correlation was transformed to a normally distributed 

Z score for comparison between the two groups.   

LFP frequency bands were defined as follows; delta: 1-5 Hz, theta: 6-12 Hz, low 

gamma: 30-50 Hz, high gamma: 60-120 Hz.  

Due to the significant effect of running speed on LFP activity in the hippocampal 

formation, analysis of oscillatory properties (seen primarily in chapter 4) was 

performed on ‘speed-controlled’ data. All sections of data recorded while animals 

were running between 10-12 cm/s were concatenated and used for subsequent 

analysis.  

Power and peak frequency of LFP frequency bands were also compared to 

running speed (chapter 5) in a similar manner. In this case however, spectral 

analysis was conducted on 0.5 s bins of LFP data and compared to running speed 

calculated from the same time frame. For running speed curves, locomotor 

activity was divided into 1 cm/s bins (between 1-30 cm/s) and oscillatory power 

and peak frequency averaged across all relevant sections of data. Theta and 

gamma oscillation power was normalised to the power in these frequency bands 

during non-movement, defined as speeds under 1 cm/s.  

 

 Single-unit spike detection  

For single unit data, recordings referenced to the ground electrode, were 

continuously sampled at 40 kHz, bandpass filtered between 1-30 kHz and saved 

unprocessed on a PC for offline analysis.  

Individual data files were converted from Neuralynx ‘.ncs’ format to a single flat 

binary file (‘.dat’) for each recording session organised by timestamp, in the 

format: 

[Time1Channel1, Time1Channel2 ... Time1ChannelN, Time2Channel1, 

Time2Channel2… Time2ChannelN...] 

http://www.cs.bris.ac.uk/Research/MachineLearning/pac/
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Each channel was referenced offline to a common-average of the opposite 16-

channel shank (250 µm away) in order to eliminate signals common across the 

electrode array such as noise and movement artefacts.  

Extracellular spike activity was detected and sorted using the klusta open source 

software package found at: http://klusta.readthedocs.io/en/latest/ (Rossant et al., 

2016). Spike detection was performed using the SpikeDetekt program. Data was 

first high-pass filtered and spikes detected using a double-threshold flood filled 

algorithm, whereby all points must exceed a ‘weak threshold’ (2 standard 

deviations away from the filtered mean) and a least one exceed a ‘strong 

threshold’ (above 4 standard deviations).   

Automated clustering of detected spikes was then conducted using the program 

KlustaKwik. Clusters were determined using a ‘masked EM’ (expectation–

maximization) algorithm (Kadir et al., 2014). Detected waveforms were defined 

by both a ‘feature vector’ containing principle component analysis of each 

channel on the recording electrode and a ‘mask vector’ using the peak amplitude 

of channels, but clipped so as to only contain those in spatially adjacent recording 

sites. This approach allows for temporally overlapping spikes to be clustered 

easily into separate units, a phenomenon that is increasingly common as channel 

count increases.     

A final manual correction stage using the user interface KlustaViewa was then 

conducted by using auto- and cross-correlograms, and cluster shapes produced 

from principle components analysis. This typically involved the merging of 

clusters split by the algorithm (due to electrode drift or bursting activity) or the 

removal of clusters with irregular waveforms deemed to be noise artefacts (fig 

2.6).  

 

 Cell classification 

Clusters were classified as either putative interneurons or putative excitatory cells 

(pyramidal or stellate cells) by their spike half-width, taken from the peak to the 

subsequent trough of the average extracellular waveform. While the majority of 

cells recorded in the mEC are excitatory, a significant population can be classified 

as inhibitory interneurons (Miettinen et al., 1996; Beed et al., 2013; Buetfering et 

al., 2014). Using the average spike waveform, putative interneurons were 

http://klusta.readthedocs.io/en/latest/
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classified as displaying spike-width less than 0.4 ms, based on the extracellular 

properties of PV+ interneurons isolated optogenetically (Buetfering et al., 2014). 

This approach was taken alone, rather than in combination with average firing 

rare of neurons, since contra to traditional classifications, since mEC 

interneurons have been shown to vary widely in their spike frequency (Buetfering 

et al., 2014). 

Figure 2.6. Clustering of single unit activity using KlustaKwik. A) 
KlustaViewa graphical user interface showing clustered mEC single units 
(middle) with comparison of principle components in 2 electrode channels (top 
right) and cross- and auto-correlations of clustered units (bottom right). Bi) 
Schematic showing 2 shanks of 16 channel recording electrode array. ii) 
Continuously sampled data showing clustered units in different colours, with 
zoomed trace and average waveforms bellow (iii). 
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 Theta modulation 

Neurons were described by a theta modulation index (TMI), based on the fast 

Fourier transform (FFT) of spike-train autocorrelations, using methods described 

previously (Langston et al., 2010; Wills et al., 2010; Booth et al., 2016b). 

Autocorrelations were produced with ± 500 ms lags and 2 ms bin size. The peak 

at 0 lag was reduced to the next maximal value and the entire function mean-

normalised by subtracting the mean from all values. The autocorrelation was 

tapered using a Hamming window to reduce spectral leakage and FFT calculated. 

The power spectrum was calculated by dividing the square of the FFT by the 

transform length (216, scaled to the length of the autocorrelation). TMI was defined 

as the mean power in the within 1 Hz of each side of the peak in the theta 

frequency range (5-12 Hz) dived by the mean power between 0 and 125 Hz. Cells 

were defined as ‘theta modulated’ if their TMI was greater than 5. 

 

 Analysis of speed modulated firing  

Speed modulation of single unit activity was calculated based on analysis 

described in Kropff et al., (2015). Running speed and firing rate of individual 

clusters were calculated for 40 ms bins of data and smoothed across 500 ms 

using a Gaussian window function. Running speeds from 2-30 cm/s and 

containing more than 0.5% of recording duration were used for further analysis. 

Speed modulation of cells was then defined by the correlation (p) between all 

running speed and firing rate bins and expressed using the Fisher-z 

transformation for variance stabilization.  

Observed speed correlations were compared to a distribution of randomly 

sampled correlations of shuffled data.  For shuffling, time stamps were forward-

shifted by a pseudorandom period between 20 s and the total trial length minus 

20 s, with the end of the trial wrapped to the beginning and reanalysed using the 

method above. Cells were defined as ‘speed modulated’ if their speed score (z) 

was greater than the 95th percentile, or less than the 5th percentile, of the global 

distribution of scores produced from at least 250 shuffled data sets for each unit 

(fig 2.7).  
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Figure 2.7 Calculation of speed modulated firing. A) Example cell firing rate 
of single speed modulated cell (orange) and running speed (grey) on linear track, 
with correlation between both for each 40 ms time bin (ii). B) Shuffled distribution 
of speed scores (z) produced from 250 shuffled time-stamps for each isolated 
cell (grey), with observed distribution (orange) from a single shank in mEC. C) 
Average firing rate of example unit above, across 1 cm/s bins (i), with speed score 
(star) in relation to shuffled distribution (ii, dotted line = threshold).    

 

 Analysis of head direction properties  

Head direction was determined by calculating the angle between two LEDs 

attached to the animal’s headstage. Time periods where neither, or only one, of 

the LEDs were observed above threshold were discarded. Firing rate was 

calculated for 3º bins of head direction and smoothed, using a Gaussian window 

over 14º.  A ‘head direction score’ was defined as the resultant mean vector 

length, calculated from the smoothed firing rate maps. Observed mean vector 

length was also compared to the 95th percentile of a distribution of shuffled data 

produced as above.  
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 Analysis of spatial firing properties  

Spike locations for each cell were obtained with a 2D histogram count, using the 

MATLAB function histcounts2. Firing rate was calculated for 3 cm2 bins across 

recording environments and smoothed using a 2D Gaussian function across 1.5 

standard deviations.    

‘Gridness’ was calculated using a 2D autocorrelation of smoothed firing rate maps 

(Sargolini et al., 2006). Spatial periodicity was determined by rotating 

autocorrelations in steps of 30°, between the central peak and the 6 closest 

peaks, and correlating the rotated versions with the original. Grid score was 

expressed as the difference between rotations at 30°, 90° and 150°, where if firing 

maps show a hexagonal pattern give low correlations and 60° and 120° where 

correlations will be high (fig 1.8D).  

Grid scale was determined by measuring grid score for multiple circular samples 

around the central peak, with increasing radius (Langston et al., 2010). Grid scale 

was identified as the radius producing the highest grid score, corresponding the 

edge of the first peak (fig 2.8Cii).   

The spatial information content (SI) of each cell was defined using the measure 

described by Skaggs et al., (1993) and expressed in terms of bits/spike. This 

approach measures the extent to which a cells firing rate can be used to predict 

the animal’s location. By definition, this does not assume spatial periodicity and 

has been used for quantifying place cell activity (Brun et al., 2008a; Cacucci et 

al., 2008; Hussaini et al., 2011; Booth et al., 2016b) as well as spatially selective 

firing in the lateral EC (Deshmukh & Knierim, 2011).  
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Figure 2.8: Calculation of grid-score and grid-spacing. A) Running path of 
animal in open field arena (black line) with individual spike locations (red dots). 
B) Rate maps for raw (i) and smoothed (ii) firing in 3 cm2 bins across environment. 
C) 2D autocorrelation of Bii with masked versions with the middle field removed 
and increasing distances from centre, grid score for each displayed above. D) 
Correlation between original autocorrelation and rotated versions, showing peaks 
at 60° and 120°, as expected for hexagonal firing pattern. Also shown for 
increasing radius from central peak, showing highest grid score with distance 
equalling the edge of first 6 firing fields.  For analysis only correlations for  30°, 
60°, 90°, 120° and 150° were used, however for illustrative purposes smaller bins 
were used here. 

     

 

 Histology 

 

 Electrode placement 

At the end of in vivo electrophysiological experiments, mice received an overdose 

of sodium pentobarbital (Euthetal) and electrolytic lesions were made at several 

electrode locations across the recording array. 

Mice were then transcardially perfused with 4% v/v formaldehyde in 0.1 M 

phosphate buffered saline (PBS). Brains were extracted from the skull and stored 
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in 4% formaldehyde before being cut in sagittal sections (50 µm) using a 

vibratome (Leica VT1000) and stained with cresyl violet. The position of electrode 

sites was determined from digital pictures taken with a 2.5X objective on a light 

microscope using QCapture pro 7 software (Qimaging). Probe electrode location 

was expressed as distance from the most dorsal electrode site in layer II/III mEC. 

 

 Assessment of gross anatomical properties  

To assess the gross anatomy of the mEC, additional 6 µm sections were stained 

with cresyl violet solution (Thermo Scientific, Cheshire, UK). Male rTg4510 mice 

were bred at Harlan Laboratories (Hillcrest, UK) and sections prepared at Eli Lilly 

UK, before being shipped to the University of Exeter. After de-paraffinization and 

rehydration slides were treated with 1% cresyl violet for 8 minutes, followed by 

differentiation in ethanol and acetic acid and dehydration with increasing 

concentrations of ethanol. Sections were then treated with xylene and 

immediately cover-slipped with DPX (Sigma-Aldrich, UK). Images were obtained 

using a light microscope and quantification of cortical thickness and cell density 

performed with  ImageJ software (Schindelin et al., 2012) using the measure and 

analyse particles tools respectively. Location of the mEC was determined with 

reference to the Allen Developing Mouse Brain Atlas (© 2015 Allen Institute for 

Brain Science. Allen Developing Mouse Brain Atlas. Available 

from: http://developingmouse.brain-map.org). 

 

 Statistical analysis  

All pooled data was tested for normal distribution and the appropriate parametric 

or nonparametric test used for comparisons. Details of statistical tests will be 

provided in the main text of each results chapter. However, comparisons between 

groups were typically implemented with student’s t-test (parametric) or Mann-

Whitney U test (nonparametric). 2 way analysis of variance (ANOVA) test were 

used to compare more than two groups, with individual differences between 

means compared using Bonferroni corrected t-test where appropriate. Unless 

otherwise stated, data were presented as mean ± standard error of the mean 

(SEM) in text/figures. Where box plots were used, they consisted of the following: 

dotted line: median, diamond: mean ± SEM (box), whiskers: 25th/75th centile.

http://developingmouse.brain-map.org/
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3. Consequences of dorso-ventral gradients for 
mEC network activity  

 

 

 Introduction 

While many have described dorso-ventral relationships in mEC physiology 

(Giocomo et al., 2007; Garden et al., 2008; Boehlen et al., 2010; Dodson et al., 

2011; Pastoll et al., 2012; Navratilova et al., 2012; Yoshida et al., 2013; Booth et 

al., 2016a), the precise impact of these on neuronal network function is less well 

understood. Before examining the effects of neurodegeneration, the initial aim of 

this project was therefore to assess the role of these gradients on oscillatory 

activity in the mEC.  

 

 In vitro gamma oscillations 

In vitro gamma oscillations have been widely described, both in the hippocampus  

(Fisahn et al., 1998; Traub et al., 2000; Brown et al., 2006; Butler et al., 2016) 

and entorhinal cortex (Cunningham et al., 2003, 2004, 2006; Beed et al., 2013; 

Klein et al., 2016), as well as several other brain areas (Hájos et al., 2004; Oke 

et al., 2010; McNally et al., 2011). This activity has been shown to be dependent 

on GABAA receptor-mediated synaptic transmission (Cunningham et al., 2003). 

Since there appears to be a dorso-ventral gradient in inhibitory inputs  in the mEC 

(Beed et al., 2013), it is therefore likely that this will have profound implications 

on the emergence of synchronous network activity.  

 

 mEC hyperexcitability  

This chapter will also examine the role that anatomical gradients may play in 

hyperexcitable states across the mEC. While not the primary objective of this 

thesis, the experiments described below will have implications for temporal lobe 

epilepsy (TLE). Through this additional pathological condition, there is much to 

gain in understanding the organisation of the mEC. There are also strong links 

between dementia and epilepsy, with hyperexcitibility a common phenotype in 
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mouse models of Alzheimer’s disease (Palop et al., 2007; Minkeviciene et al., 

2009; Brown et al., 2011; Verret et al., 2012; García-Cabrero et al., 2013).  

Temporal lobe epilepsy (TLE) is one of the most common forms of epilepsy in 

adulthood (French et al., 1993; Spencer & Spencer, 1994; Bartolomei et al., 

2005). While studies of TLE have typically concentrated on the hippocampus as 

an epileptic focus, the EC is of particular importance due to its pivotal role as a 

gateway between hippocampus and other cortical regions (Amaral & Witter, 

1989; Canto et al., 2008). In this regard, a number of clinical  (Du et al., 1993; 

Spencer & Spencer, 1994; Bartolomei et al., 2005) and preclinical (Du et al., 

1995; Kohling et al., 2000; Kobayashi et al., 2003; Berretta et al., 2012) studies 

point to the EC as an important epileptogenic zone. A variety of epileptogenic 

pharmacological agents promote seizure-like activity in EC brain slices prepared 

from rats, mice and guinea-pigs. For example, GABAA receptor antagonists (e.g. 

picrotoxin), potassium channel blockers (e.g. 4-aminopyridine, 4-AP) and low 

Mg2+ recording solutions all produce differing patterns of epileptiform activity, 

either on their own, or as part of combined applications (Collins et al., 1983; Jones 

& Heinemann, 1988; Nagao et al., 1996; Gulyás-Kovács et al., 2002; Avoli et al., 

2002, 2013; Gnatkovsky et al., 2008; Losi et al., 2010; Gonzalez-Sulser et al., 

2011).  The neurophysiological processes underpinning each of these models 

vary widely; however, each in some way disrupts the balance between excitation 

and inhibition.  

 

 Methods 

 

Male C57/BL6 mice (aged 6-12 weeks) were bred at the University of Exeter and 

housed on a 12:12 h light cycle with ad libitum access to food and water. 

Parasagittal slices containing mEC were cut using the methods described in 

section 2.3.  Gamma oscillations, recorded from dorsal and ventral portions of 

mEC, were elicited by bath application of either 200 or 500 nM kainate and 

spectral power and frequency analysed for each 1 min section of data after 

kainate application. Maximum power and frequency were defined as the highest 

values irrespective of time.  
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Hyperexcitable, interictal-like bursts were subsequently initiated by the addition 

of picrotoxin (PTX, 50 μM) to the bath containing kainate (500 nM). A distinct 

section of slices were also used, with a scalpel cut performed in the intermediate 

mEC, in order to anatomically separate the dorsal and ventral poles. Prolonged 

ictal-like activity was elicited using 4-AP (100 μM) and recorded at 100 μm 

intervals across the dorso-ventral axis of the mEC using a 16-shank silicon probe 

array (NeuroNexus). In additional slices, 4-AP was followed by co-application of 

GABAA receptor modulators acting at the benzodiazepine binding site, either 

diazepam (positive) or Ro19-4603 (negative) (Wong & Skolnick, 1992). 

 

 Results 

 

 Dorso-ventral gradients mEC network activity 

In vitro gamma oscillations were elicited using two concentrations of kainate and 

recording simultaneously in dorsal and ventral portions of the mEC. Previous 

reports have shown that concentrations above 200 nM kainate are capable of 

reliably inducing network activity in the mEC (Cunningham et al., 2003, 2004, 

2006; Beed et al., 2013; Klein et al., 2016). However, since the majority of studies 

were conducted using horizontal brain sections, the implications for a parasagittal 

preparation were unclear. Therefore, a higher concentration (500 nM) was also 

used for comparison.  

In this slice preparation, application of 200 nM kainate was capable of producing 

gamma oscillation activity within mEC (fig 3.1). As reported previously (Beed et 

al., 2013; Klein et al., 2016), this activity was also shown to be of larger amplitude 

in dorsally located recording electrodes than those in ventral aspects of mEC (fig 

3.2A), with little variation in gamma oscillation frequency (fig 3.2B). Network 

activity was shown to be abolished by addition of picrotoxin (50 μM) into the 

extracellular solution, consistent with the critical dependence of GABAA receptor 

activity for the occurrence of in vitro gamma oscillations (Cunningham et al., 

2003).     

While these recordings produced synchronous activity, gamma oscillation power 

was found to be low in both recording sites. In order to further push the system 

into oscillatory activity a higher concentration of kainate was used. Application of 
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500 nM kainate produced significantly larger oscillations in both dorsal and 

ventral mEC (2-way ANOVA, main effect – concentration: F = 13.8, p = 0.006, 

location: F = 4.4, P = 0.04, fig 3.2C). Under these conditions of more robust 

oscillatory activity, it was also evident that the frequency of stimulated gamma 

oscillations was dependent on dorso-ventral mEC location (2-way ANOVA, main 

effect -location: F = 5.0, P = 0.03, fig 3.2D). During treatment with 500 nM kainate, 

the maximum observed oscillatory frequency was greater in dorsal recording sites 

when compared to ventral (dorsal: 81.8 ± 2.3 Hz, ventral: 53.0 ± 2.6 Hz, p = 0.008, 

n=13; post-hoc Bonferroni corrected comparison). Interestingly, the time-course 

of gamma oscillation frequency appeared to vary across the mEC (fig 3.3), with 

activity in the dorsal regions producing peak frequency earlier in the recording 

session (dorsal: 21.8 ± 1.8 min, ventral: 34.5 ± 4.7 min; Paired T-test; p = 0.008, 

n=13) and decreasing over time to become coherent with ventral mEC recording 

electrodes.  
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Figure 3.1: Kainate application produces gamma oscillations (30-100 Hz) at 

both dorsal and ventral ends of mEC. A) Relative position of dorsal (top) and 

ventral (bottom) recording electrodes with example traces (scale bar: 50 uV, 20 

ms). Example traces shown of gamma oscillations recorded after 500 nM (B) and 

200 nM (C) kainate application with corresponding power spectrum (ii) and 

autocorrelation (iii). D) Gamma oscillations induced by 500 nM kainate were 

abolished after addition of picrotoxin (PTX) (50 uM). Scale bars 50 uV, 40 ms. 
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Figure 3.2: Gradient in gamma oscillations along the dorsal-ventral axis of 

the mEC. A) Pooled time-course data showing development of gamma oscillation 

amplitude (i) and frequency (ii) in dorsal (black) and ventral (grey) recording sites 

following bath application of kainate (200 nM). Solid line represents mean (±SEM 

in shaded areas) in 60s bins, n = 7. B) Time-course after 500 nM application of 

kainate, n = 13. C) Summary data showing mean (±SEM) maximum gamma 

power (and frequency (D) in dorsal and ventral mEC. 2-way ANOVA shows 

significant main effect of recording location (F = 4.33, P= 0.044) and 

Concentration (F = 14.07, p<0.001) on maximum gamma power. D) Significant 

main effect of recording location (F= 6.53, p=0.015) but not concentration 

(F=0.0019, p = 0.97) (2-way ANOVA). 
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Figure 3.3: Time-course of gamma oscillation onset. A) Example 
spectrograms for dorsal (i) and ventral (ii) mEC recording electrodes, showing 
emergence of gamma oscillation activity after application of 500 nM kainate at 
time 0 s. B) Corresponding plots showing peak frequency (i) and total power (ii) 
in the gamma frequency band for 1 min bins across recordings. C) Pooled data 
showing peak frequency (i) and peak power (ii) recorded across sessions and the 
mean time at which they were recorded.   

 

 

 Disinhibition of mEC produces hyperexcitatory bursting activity 

originating the ventral mEC regions  

As described above, application of pictroxin (50 uM) was sufficient to eliminate 

gamma oscillation activity in mEC slices (fig 3.4). However by completely 

eliminating GABAergic transmission, whilst maintaining enhanced levels of 

excitation it is likely that the network will produce periods of hyperexcitability.  
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Indeed, co-application of kainate and picrotoxin resulted in interictal-like events 

at both dorsal and ventral recording sites (fig 3.4A,B). Interestingly, under these 

conditions, bursting activity was led by ventral mEC, such that individual bursts 

were almost always initiated at the ventral end of the mEC (fig 3.4B,E). 

Furthermore, the onset of bursting activity was also seen to appear first at ventral 

recording sites (434 ± 56 s after kainate/picrotoxin application) compared to those 

in the dorsal aspect of mEC (635 ± 98 s) (fig 3.4D, Paired T-test, P = 0.01, n= 8 

slices from 5 animals), though upon reaching equilibrium bursting occurred 

uniformly across the mEC (fig 3.4C). 

To further test the hypothesis that the ventral mEC is more excitable than the 

dorsal, the two ends of the mEC were anatomically separated with a scalpel cut 

(fig 3.5A). This allowed examination of whether the dorsal mEC would produce 

interictal-like bursting independently, rather than as a result of ventral mEC hyper-

excitability. Slices cut in this manner produced interictal bursting in both ventral 

and dorsal recording sites. Similar to control (uncut) slices, the initiation of 

bursting activity was first recorded in the ventral mEC after kainate/picrotoxin 

application (fig 3.5D, Paired T-test, P = 0.025, n= 4, from 4 animals).  However, 

in contrast to observations in intact control mEC slices, it was evident that events 

in cut dorsal mEC slices occurred at a slower rate when compared to ventral (fig 

3.5B, C). At ventral mEC recording sites, burst frequency was similar between 

cut and control slices (fig 3.5D). Conversely, bursts in the cut dorsal mEC 

occurred at a slower frequency than those in intact mEC slices (fig 3.5E; 

frequency at 30 mins: cut- dorsal: 8.1 ± 4.2, ventral: 20.3 ± 3.3; control - dorsal: 

16.1 ± 2.9, ventral: 19.25 ± 3.0, main effect: dorso-ventral: p = 0.006 F = 4.1; 

interaction: p = 0.06, F = 4.2; 2-way repeated measures ANOVA). As expected, 

the cross-correlation between dorsal and ventral electrodes was largely absent 

following anatomical separation of the dorsal and ventral mEC, illustrating that 

the two regions had become desynchronised (fig 3.5G,H; max correlation: 

control: 0.6 ± 0.1, cut: 0.22 ± 0.1; Unpaired T-test, p = 0.03, n = 4/8 slices from 

4/5 animals). Taken together these findings suggest that the dorsal mEC is less 

likely to produce epileptiform activity in the absence of the ventral mEC.  
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Figure 3.4: Application of 500 nM kainate and 50 µM picrotoxin produces 
interictal-like events which originate in ventral mEC. A) Relative position of 
glass recording electrodes in dorsal (top) and ventral (bottom) mEC. B) Example 
trace after application of picrotoxin (50 µM), box represents one interictal event 
(ii) with cross correlation (iii) showing peak occurring in ventral mEC before dorsal 
(scale bar: 0.1 mV). C) Average time-pooled data showing the development of 
burst frequency (/min) in dorsal (black) and ventral (blue) mEC (n=8 slices from 
5 animals). Solid line represents mean (± SEM in shaded areas) D) Mean (±SEM)  
time in seconds until first recorded epileptic event is shorter in ventral than dorsal 
mEC (Paired T-test p = 0.013) (n=8 slices from 5 animals). D) Average cross 
correlation between dorsal and ventral events (n=8 slices from 5 animals) 
showing peak lag time >0 s.   
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Figure 3.5. Separation of dorsal and ventral mEC produces preferential 
decrease in epileptic events in the dorsal mEC. A) Relative position of dorsal 
(top) and ventral (bottom) recording electrodes with scalpel cut (dotted line) 
between electrodes and example trace (B) (scale bar 0.2 mV, 30 s). C) Averaged 
time-pooled data showing the development of burst frequency in dorsal (i) and 
ventral (ii) cut slices compared to control (n=4). D) zoomed plot of data shown in 
box (dotted line) showing incoherent burst activity (scale bar 0.2 mV, 2 s).  E) 
Average cross correlation of cut slices (n=4 slices from 4 animals) compared to 
controls (n=8 slices from 5 animals), shows significant decrease in correlation of 
epileptic bursts (ii) (unpaired T-test P = 0.031). F) Decreased average burst 
frequency in dorsal mEC in cut slices compared to control.  G) Bar graph showing 
mean (±SEM) time in seconds until first recording epileptic event is also shorter 
in ventral than dorsal mEC when ends are separated (Paired T-test p = 0.026) 
(n=4 slices from 4 animals).  
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 Role of dorso-ventral gradients in mEC hyperexcitability  

By removing inhibitory drive in the mEC, these data suggest that the intrinsic 

properties of ventral mEC excitatory cells play a key role stereotyped patterns of 

hyperexcitability in this region. To further understand the emergence of 

epileptiform activity in this region, compounds were used to elicit activity that 

more closely resembles generalized, ictal-like seizures.  

While several studies have observed the effect of convulsant compounds on the 

mEC (Barbarosie & Avoli, 1997; Gnatkovsky et al., 2008; Berretta et al., 2012; 

Lévesque et al., 2016), differences in hyperexcitability across the anatomical 

extent of this cortical  area are less well understood.   Electrical activity was 

therefore recorded from 16 sites across the dorso-ventral axis of the mEC, 

perfusing compounds commonly used to induce epileptiform activity. 

 As reported previously (Nagao et al., 1996; Gulyás-Kovács et al., 2002; 

Gonzalez-Sulser et al., 2011), bath application of 4-AP (100 µM) was shown to 

reliably induce both ictal- and interictal-like bursting activity in mEC (fig 3.6). A 

wavelet transform-based time-frequency analysis of individual bursts revealed 

that interictal-like discharges consisted of waveforms which were readily 

apparent in the 1- 10 Hz range. In contrast, ictal-like activity comprised repetitive, 

large amplitude events which were apparent in the 1-10 Hz range on the wavelet 

scaleogram, but in addition these longer discharges were also associated with 

higher frequency activity (10-30 Hz) (fig 3.7). 

Interictal-like activity comprised brief (<1 s) paroxysmal discharges which 

appeared to be relatively synchronous along the dorso-ventral axis of the mEC. 

Individual interictal-like event traces were detected using a threshold detection 

approach. Using an unsupervised k-means clustering approach (see Methods) 

waveforms were grouped based on the time of the peak of the waveforms. This 

approach usually resulted in 2-3 clusters of waveforms, which corresponded to 

bursts which were initiated at different sites. In the example in Figure 3.8B, there 

was an approximately even split between interictal waveforms travelling in a 

ventral-to-dorsal and a dorsal-to-ventral direction, suggesting that these bursts 

were initiated at multiple sites along the dorso-ventral axis of the mEC. The 

maximum time between interictal peaks across the 16 recording sites averaged 

356 ± 30 ms (n=10 slices from 8 animals). 
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Ictal-like discharges occurred in all the slices tested, appearing first after 1166 ± 

148 s and continuing with an average interval of (259 ± 14 s). Interestingly, ictal 

activity was substantially more likely to be first detected in the most ventral mEC 

recording sites than those located in more dorsal aspects of mEC. In total (37/43) 

ictal bursts were first detected in ventral mEC compared to (6/43) in dorsal (fig 

3.6D). The propagation of activity from ventral to dorsal recording sites was 

shown to occur over a prolonged time frame (linear regression: R2 = 0.98, p 

<0.001, slope = 128.2 ± 4 µm/s), meaning that ictal activity in the most dorsal 

electrode occurred 15.5 ± 3.4 s (n=10 slices from 8 animals) after the initiation of 

the event in the most ventral electrode (fig 3.6E).  

 

 

Figure 3.6: 4-AP induced ictal-like activity in mEC is initiated in ventral 
recording sites.  A) Recording position of 16-shank electrode array on 
parasagittal mEC slice, with scale depicting dorsal (D), ventral (V), rostral (R) and 
caudal (C) directions. B)  Example ictal-like bursting activity from dorsal (top) to 
ventral (bottom) mEC showing bursting recorded first in most ventral electrode 

site, (scale bar: 200 V, 10 s).  C) Zoomed examples of (i) interictal- and (ii) ictal-
like events (scale bars: 100 µV, 0.5 s and 200 µV, 2 s respectively). D) Proportion 
of bursts starting at dorsal and ventral recording sites (n = 123 bursts from 10 
slices slices from 8 animals). E) Average start time of burst relative to first channel 
to meet threshold for ictal activity increases linearly with distance from ventral 
pole, linear regression: R2 = 0.98, p <0.001, slope = 128.2 ± 4 µm/s In dorsal 
mEC recording sites, bursts start 15.5 ± 3.4 s after initiation of event. 
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Figure 3.7: Time-frequency analysis of ictal- and inter-ictal like bursts. Top 
panel is an example recording from a ventrally positioned electrode, illustrating 2 
interictal like waveforms (first two vertical deflections) followed by an ictal-like 
burst (scale bar: 0.2 mV, 10 s). The bottom graph is a continuous wavelet 
transform scalogram, illustrating the frequency components of the above 
recording. Note that the interictal-like bursts consist mainly of lower frequency (1-
10 Hz) components, whilst the ictal burst is associated with both lower frequency 
and higher frequency (10-30 Hz) events. 

 

Closer examination of the burst waveforms within an ictal event indicated that the 

individual spike-wave discharges were initiated in the ventral regions of the mEC. 

To quantify this, cross-correlations were performed on data binned across time 

between the most ventral recording site and each of the subsequent dorsal 

electrodes. Figure 3.9A/B shows recordings taken from dorsal and ventral poles 

of the electrode array, with dorsal-ventral cross-correlation values for each time 

bin displayed in the colour “heatmap” axis (fig 3.9Aii). During the ictal bursting, 

activity across the dorsal and ventral electrodes became highly synchronous with 

largely positive lag time values, indicating that activity was largely led by the 

ventral mEC.  The proportion of 1s time bins with correlation peaks in the positive 

(ventral leading) was shown to be significantly greater during ictal events when 

compared to non-ictal bins (fig 3.9D, paired T-test, P= 0.002, n = 10 slices from 

8 animals). The lag time associated with the maximum correlation values were 

also observed to linearly increase with distance from the most ventral recording 

site. This indicates within-burst activity is spreading in the ventral to dorsal 

direction (fig 3.9C, linear regression: R2 = 0.93, p <0.001, slope =55.9 x103 ± 5 

x103 µm/s). 



86 
 

The relatively slow spread of ictal-like waveforms from ventral to dorsal recording 

sites, suggests that some process regulates and dampens spike-wave 

propagation from the ventral to dorsal poles of the mEC. Since there is a gradient 

in GABAerigc inhibition along the dorso-ventral axis of the mEC (Beed et al., 

2013; Booth et al., 2016a), it is reasonable to suggest that a greater inhibitory 

drive onto principal cells in the dorsal mEC may be responsible for the slow 

spread of ictal-like discharge activity (fig 3.6). To examine this hypothesis, we 

pharmacologically modulated postsynaptic GABAergic receptors during pre-

established 4-AP-induced ictal-like activity. Application of diazepam, a positive 

allosteric modulator of GABAA receptors, significantly decreased the speed of 

ictal propagation by ~2 fold (fig. 3.10Ai, B), from 147.5 ± 23 µm/s to 64 ± 14 µm/s 

(fig 3.10Cii, Paired T-test, P<0.001, n= 6 slices from 6 animals). Conversely, the 

application of GABAA receptor inverse agonist, Ro19-4603, significantly 

increased propagation speed by ~7.5 fold (170.3 ± 45 µm/s to 1272.7 ± 117 µm/s) 

when compared to paired baseline, such that burst initiation was almost 

instantaneous along from ventral to dorsal mEC (fig 3.10Dii, Paired T-test, 

P<0.001, n= 6 slices from 6 animals).   
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Figure 3.8: Interictal-like bursts are generated in both dorsal and ventral 
portions of the mEC. A) An example recording of interictal-like bursts recorded 
using a 16-shank electrode array on parasagittal mEC slice. This 4.5 minute 
segment of data was recorded between 2 ictal like bursts (not shown). Numerous 
interictal-like bursts were observed, visible on this time scale as brief vertical 
deflections on the recording. B) Individual bursts were detected and clustered into 
groups according to the time of the waveform peak. In this recording, two groups 
were identified, the average waveforms of which are depicted in (i).  (ii) Silhouette 
plot of the resulting k-means clustering algorithm. The time of the average 
waveform peak (plotted relative to the time on the most ventral probe) for the two 
clusters in shown in (iii). These data illustrate that interictal bursts are initiated at 
different points along the dorso-ventral axis of the mEC. C) Probability histograms 
showing the maximum difference in interictal peak times across all 16 probes for 
10 different slices. The mean (μ) maximum difference in peak times is shown for 
each distribution. These data illustrate that, on average, interictal bursts take 0.2-
0.5 s to spread along the dorso-ventral axis of the mEC. 
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Figure 3.9: Intra-ictal burst waveforms initiated in ventral mEC regions.  Ai) 

Example traces from most dorsal (top) and ventral (bottom) recording sites of 

electrode array (scale bar: 100 µV, 10 s): with (ii) binned cross correlations for 

every 1 second of data. Correlation values are shown in the colour axis, with 

positive peaks indicating ventral-leading activity and negative peaks dorsal-

leading (iii). B) Example of intra-burst activity across 16-shank electrode array 

initiating in ventral mEC during red bar in A (scale bar: 200 µV, 250 ms). C) Lag 

time associated with peak cross correlation between most ventral site and each 

dorsal recording electrode, shows linear increase with distance from ventral pole 

(linear regression: R2 = 0.93, p <0.001, slope =55.9 ± 5 mm/s). D) Proportion of 

1s time bins with correlation peaks in the positive (ventral leading) greater during 

ictal events when compared to non-ictal bins (paired T-test, P= 0.002, n = 10 

slices from 8 animals). 
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Figure 3.10: Modulation of GABAergic transmission changes slope of ictal-
like propagation in mEC slices. A) Example traces of ictal-like events (top) with 
normalised power (bottom) on 16-shank recording array after application of 4-AP 
(scale bar: 500 µV, 5 s) (Ai/Bi) and subsequent application of diazepam (DZP) (30 
µM) (Aii) or Ro19-4603 (RO) (10 nM)(Bii). Aiii/Biii show time-course of ictal burst 
slope before and after manipulation of GABAergic transmission C) Decreased ictal 
slope in example slice after diazepam application (white) compared to 4-AP alone 
(grey), 3 ictal bursts shown pre- (1800-2400 s) and post (3000-3600 s) –drug, with 
mean slope decreasing ~2 fold (ii) (Paired T-test, P<0.001, n= 6 slices from 6 
animals). D) Ictal propagation is faster after application of Ro19-4603 (i) (Paired 
T-test, P<0.001, n= 6 slices from 6 animals), (ii).  Data was collected in 
collaboration with P. Mathews.  
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 Discussion 

 

 Summary 

The data presented above clearly show that the dorso-ventral organisation of the 

mEC can have pronounced effects on neuronal network activity in vitro, both in 

the production of gamma frequency oscillations and in network activity associated 

with periods of hyperexitability.  

By pharmacologically inducing gamma oscillation activity using low 

concentrations of kainate and recording simultaneously from dorsal and ventral 

mEC, these data show that dorsal regions are capable of producing both larger 

and faster network activity.  Additionally, after removing inhibition in mEC slices, 

it was also evident that ventral regions were more prone to the onset of 

hyperexcitable discharges, which propagated to the dorsal end within several 

milliseconds. When inhibition remains intact, ictal-like epileptiform activity was 

also initiated in ventral mEC. However, the propagation of this large-scale seizure 

activity along the dorso-ventral axis occurred in a surprisingly slow time-frame, 

taking ~15 s to reach the most dorsal regions of the recording array 

(approximately 1.5 mm). Furthermore, by pharmacologically modulated 

GABAergic tone, it was shown the speed of ictal propagation depends heavily on 

dorso-ventral organisation of inhibition in the mEC. 

 

  Dorso-ventral gradient in mEC gamma oscillation properties in vivo  

The data presented in this chapter support the findings of Beed et al., (2013), that 

kainate-induced gamma oscillations are larger in dorsal mEC than ventral (fig 

3.2). However, they are the first to show differences gamma oscillation frequency 

across these regions. These discrepancies are likely due to the concentrations of 

kainate used in each experiment, with only higher concentrations capable of 

producing increased gamma oscillation frequency (fig 3.2D). Furthermore, 

maximal gamma frequencies were reserved for early time periods after kainate 

application, returning to those more similar to ventral over the course of the 

experiment. This shows, at least in principle, that dorsal mEC networks are 

capable of maintaining oscillations that are not coherent with ventral oscillations. 
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Whether these results are a result of multiple gamma generators in the mEC is 

unclear. However, since gamma oscillations are suggested to provide a rigid 

temporal framework for communication, in which only coherent neuronal 

ensembles can interact successfully (Fries, 2005), independent frequencies 

across the mEC may represent independent information flow to downstream 

areas. For example, dorsal mEC neurons project more prominently to the dorsal 

hippocampus, and ventral mEC neurons project mainly to ventral hippocampus, 

with these areas potentially having differing role in cognitive processing 

(Fanselow & Dong, 2010). 

Parvalbumin (PV) positive interneurons are critical for the generation of gamma 

oscillations, both in vivo and in vitro (Cunningham et al., 2003; Cardin et al., 2009; 

Sohal et al., 2009). The increased inhibitory drive in dorsal mEC (Beed et al., 

2013) is most likely to contribute to the larger gamma oscillations observed. 

However, the gradients seen in intrinsic properties of mEC stellate cells (Giocomo 

et al., 2007; Garden et al., 2008; Boehlen et al., 2010; Dodson et al., 2011; Pastoll 

et al., 2012; Navratilova et al., 2012; Yoshida et al., 2013; Booth et al., 2016a) 

may also have implications for network properties, since excitatory cells are also 

necessary for gamma generation (Cunningham et al., 2003).    

  

 Ventral mEC regions drive network activity during periods of 

hyperexcitability  

This study is the first to highlight the differential role of dorsal and ventral mEC in 

the generation of hyperexcitable events in vitro. In essence, it is likely that 

previously reported gradients in inhibitory networks (Beed et al., 2013) and 

intrinsic membrane properties (Garden et al., 2008; Giocomo & Hasselmo, 2009; 

Boehlen et al., 2010; Booth et al., 2016a) combine to make the ventral mEC more 

prone than the dorsal mEC to the generation of epileptiform discharges. 

Bath application of 4-AP resulted in complex neuronal network behaviours in 

parasagittal slices of the mEC, consisting of both ictal- and interictal-like spike-

wave discharges (fig 3.6). This combination of brief and prolonged epileptiform 

activity has been extensively studied previously, both in the entorhinal cortex 

(D’Antuono et al., 2010; Avoli et al., 2013; Lévesque et al., 2016) and other brain 

regions such as the hippocampus (Nagao et al., 1996; Gonzalez-Sulser et al., 
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2011; Berretta et al., 2012). Nevertheless, the propagation of this activity within 

the entorhinal cortex has not previously been observed. Indeed, many of these 

previous studies have often considered the entorhinal cortex as a homogenous 

structure. Using multi-site extracellular recording techniques interictal-like events 

were observed which generally propagated along the full extent of the dorso-

ventral axis of the mEC. By detecting individual bursts and statistically grouping 

them on the basis of the relative time of the waveform peak, it was established 

that interictal-like discharges could be generated at multiple points along the 

dorso-ventral axis (fig 3.8). Furthermore, bursts propagated from the site of origin 

to the furthest extent of recording probes (maximum distance 1.5 mm) within a 

few tenths of a second. 

In contrast, the slow time-frame of the spread of the ictal-like activity was 

surprising. On average ictal-like events initiated in the ventral mEC spread 

dorsally with a  velocity of ~ 130 μm/s, taking ~15 s to propagate to the most 

dorsal aspects of mEC. However, once ictal-like behaviour was apparent in both 

dorsal and ventral poles of the mEC, the spike-wave discharges became tightly 

synchronised, albeit with the ventral burst generally preceding the dorsal bursts 

by a few milliseconds. Given that axonal action potential conduction velocity and 

synaptic transmission is several orders of magnitude faster than the ictal 

propagation speed, it is likely that ictal propagation is constrained by differential 

levels of GABAergic control along the dorso-ventral axis of the mEC (Beed et al., 

2013; Booth et al., 2016a). In support of this, application of pharmacological 

agents that increased (diazepam) or decreased (Ro19-4603) postsynaptic 

GABAA receptor activation respectively reduced or increase the slope of ictal 

initiation (fig 1.10).   

In this context, it is pertinent to note that mEC stellate cells are unlikely to form 

large numbers of recurrent excitatory connections, with less than 1 in 500 pairs 

of stellate cells being synaptically coupled (Pastoll et al., 2013b; Couey et al., 

2013). Fast spiking GABAergic interneurons, in contrast,  form a powerful 

recurrent inhibition circuit, with stellate cells connecting primarily to interneurons 

which in turn project back predominantly onto other stellate cells (Couey et al., 

2013; Buetfering et al., 2014). In this situation, the anatomical arrangement of 

such inhibitory connections will have strong implications for the generation of 

epileptiform events. Dorsal mEC stellate cells receive a greater number of 
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inhibitory inputs than those in ventral mEC, however, perhaps more significantly, 

they receive a greater proportion of their inputs from more distal inhibitory 

neurons (Beed et al., 2013).  This would therefore suggest that ictal events would 

need to overcome an increasing level of feed-forward inhibition as they travel 

from ventral to dorsal mEC.  

Several reports suggest the activity of GABAergic interneurons regulates seizure 

initiation. The  period immediately before ictal events can be characterized by an 

increased interneuron firing that reaches its peak at ictal onset, while the activity 

of principal cells does not change until after initiation (Ziburkus et al., 2006; 

Lévesque et al., 2016). Additionally, optogenetic activation of GABAergic 

interneurons was shown to be capable of suppressing ictal seizure activity in 

mEC in vivo (Lu et al., 2016). Taken together, one interpretation of these findings 

is that GABAergic systems act to control the initiation of seizure-like events. 

Coupled with the high density of PV-positive staining in the dorsal mEC, this 

would suggest that the dorsal mEC would be less likely to initiate an ictal bursts 

than the ventral mEC. 

The intrinsic properties of mEC stellate cells are also likely to play a role in the 

organisation of epileptiform activity. In this regard, it has been widely reported 

that ventral mEC stellate cells exhibit a higher input resistance, a slower 

membrane time constant and a lower action potential threshold compared to 

dorsal mEC stellate cells (Garden et al., 2008; Giocomo & Hasselmo, 2009; 

Boehlen et al., 2010; Booth et al., 2016a). Combined, these cell intrinsic 

properties will produce higher levels of excitability in the ventral mEC, with less 

current required to produce action potential firing and greater levels of synaptic 

integration (Garden et al., 2008). Consequently, even in the absence of 

GABAergic inhibition, one might expect to observe an increased propensity for 

epileptiform bursting in the ventral mEC when compared to the dorsal mEC. This 

hypothesis was tested by incubating mEC slices in a blocker of GABAA receptors 

(picrotoxin) along with a glutamate receptor agonist (kainate) (fig 3.4). The 

treatment resulted in interictal-like, but not ictal-like, epileptiform discharges. We 

found that, not only did the disinhibition-mediated interictal-like discharges 

develop first in the ventral mEC, but that once bursts were established in both 

dorsal and ventral ends of the mEC, a cross-correlation analysis of individual 

bursts revealed that the ventral bursts almost always preceded the dorsal bursts. 
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Furthermore, when the dorsal and ventral poles of the mEC were physically 

separated with a scalpel cut, bursts recorded from the ventral mEC were of a 

similar frequency to those in uncut slices, whilst bursts in the dorsal mEC were 

significantly less frequent than those in the uncut dorsal mEC (fig 3.5). 

Presumably, in the uncut slices, the dorsal mEC is entrained to the more frequent 

disinhibition-mediated epileptiform bursts in the ventral mEC. Taken together, 

these data suggest that the intrinsic properties and/or excitatory synaptic 

transmission properties (which are intimately linked;(Garden et al., 2008) of 

ventral mEC neurons predispose this region to seizure like activity, when 

compared to the dorsal mEC. 

In any case, blocking or slowing the propagation of ictal activity is likely an 

essential characteristic for pharmacological agents designed to treat TLE 

(Marson et al., 1997; Takeda et al., 1998). It remains to be seen whether results 

seen here in parasagittal slices are also relevant in the temporal lobe in vivo, 

either in rodent models or human patients. At the very least, this preparation 

presents a reliable model for testing antiepileptic compounds and their ability to 

slow down the propagation of ictal events in vitro. However, this study suggests 

that the ventral portion of the mEC is a major site of seizure initiation within the 

entorhinal cortex, and consequently therapies that target this region may be a 

more effective strategy in TLE treatment. This is pertinent when differences in 

gene expression of potential targets along the dorsal ventral axis are factored in 

and may also be important with approaches that may not readily be able to 

access all areas of mEC, such as in vivo optogenetics. Furthermore, investigating 

means to perturb communication between ventral and dorsal regions might 

disrupt seizure propagation in vivo, although this may also generate 

consequences for spatial navigation. 

 

 Relevance of pharmacologically induced network activity 

While pharmacologically induced gamma oscillations are undoubtedly a useful 

tool to study interactions within neuronal networks, it is also clear that they do not 

necessarily represent physiologically relevant brain activity. The same can be 

said for the pathological relevance of pharmacologically-induced 

hyperexcitability. This is particularly evident when assuming similar responses 

from diseased tissue and tissue that is otherwise healthy, but pharmacologically 
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challenged. It is therefore important to be wary of drawing conclusions relating to 

the hyperexcitability presented here and pathological patterns of activity in 

epileptic patients.  

In any case, the experiments in this chapter can be thought of as pharmacological 

challenges to the system and are able to show how the mEC can respond to 

acute changes to excitatory or inhibitory tone. It is clear that the specific 

anatomical and physiological organisation of the mEC infers tight control over its 

output. This will likely have implications for the function of the mEC as a whole, 

for example, in spatial navigation and the variety of grid cell activity across the 

dorso-ventral axis.   

 

 Conclusions  

The data in this chapter clearly show that previously described dorso-ventral 

gradients in mEC physiology have pronounced implications for local neuronal 

networks. Both gradients in the intrinsic properties of mEC stellate cells (Booth et 

al., 2016a) and inhibitory function (Beed et al., 2013) give rise to stereotyped 

network behaviours which may have implications for both cognitive processing 

(and therefore its breakdown in dementia) and epileptiform activity. 

These data pave the way for further experiments described below, both to confirm 

these findings in vivo and to understand the implications that disease pathology 

may have on this system. 
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4. Deficits in mEC network activity in rTg4510 mice 
 

The results shown in the previous chapter establish a clear effect of dorso-ventral 

location on neuronal network activity in the mEC. The chapters below will discuss 

how this network activity is influenced by tau pathology. Work presented in this 

chapter has been published in Booth, Ridler, et al. (2016).  

 

 Introduction  

The medial entorhinal cortex (mEC) occupies a pivotal position in the temporal 

lobe, controlling the flow of information across the hippocampal formation 

(Amaral & Witter, 1989; Canto et al., 2008). However, the mEC is highly 

vulnerable to degeneration in Alzheimer’s disease (AD) and other forms of 

dementia (Braak et al., 1991) where tau pathology is a defining feature.  This area 

is most likely to be the first to suffer degeneration, with profound loss of layer II 

neurons seen in very mild cases of AD (Gomez-Isla et al., 1996). Despite this, 

relatively little is known about the consequences of tau pathology on mEC 

function.    

 

 rTg4510 model of tauopathy 

The rTg4510 mouse is one of the most commonly used models of tauopathy. It 

was produced by overexpression of the human mutant (P301L) form of tau 

protein and develops age-dependant neurodegeneration, neurofibrillary tangles 

and cognitive deficits (Santacruz et al., 2005; Spires et al., 2006; Crimins et al., 

2012; Kopeikina et al., 2013; Ramsden et al., 2015). Several studies have now 

described intrinsic and morphological changes to neurons in these mice, both in 

the hippocampus (Booth et al., 2016b) and cortex (Rocher et al., 2010; Crimins 

et al., 2012; Kopeikina et al., 2013; Jackson et al., 2017).  Many of these point to 

a dissociation between structural and functional changes, with 

electrophysiological deficits preceding morphological ones (Crimins et al., 2012) 

and both alterations being relatively independent of neurofibrillary tangle (NFT) 

formation (Hoover et al., 2010; Rocher et al., 2010). Indeed, some neurons 

bearing NFTs are initially capable of integrating functionally into neuronal 
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networks in cortical areas (Kuchibhotla et al., 2014), suggesting that there may 

be periods of decline for individual cells across large time frames, rather than 

rapid cell loss after tau accumulation.  

In any case, even small changes of function at the level of the individual neuron 

can have pronounced effects on the ability of neuronal networks to function 

effectively. This appears to be the case in the hippocampal CA1 region, with 

altered intrinsic properties of pyramidal neurons underlying aberrant network 

oscillations (Booth et al., 2016b) and a reduction in sharp-wave ripple activity 

(Witton et al., 2014). Ultimately, such changes affect the output of the 

hippocampus, altering the spatial properties of place-field firing sequences 

(Cheng & Ji, 2013; Booth et al., 2016b). It is unclear whether these changes are 

comparable to those in the mEC, since to date, no studies have observed mEC 

network function in mouse models of dementia.  

 

 Dorso-ventral mEC gradients in rTg4510 mice 

The existence of dorso-ventral gradients, ranging from the spacing of grid cells 

to the intrinsic properties of stellate cells, have already been discussed at length 

in the previous chapters. However, recent evidence has suggested that dorso-

ventral gradients in certain intrinsic membrane properties, such as membrane 

capacitance and afterhyperpolarizations, are lost in rTg4510 mice (Booth et al., 

2016a). Specifically, deficits in mEC properties in these mice were limited to 

dorsal mEC regions, with ventral mEC stellate cells largely unchanged by tau 

pathology.  

Given that, as shown in the previous chapter, mEC network activity is also defined 

by anatomical location, it was therefore important to determine if such tauopathy-

associated deficits occur in the oscillatory activity of dorsal mEC regions. The 

results shown below aim to answer this question, using a combination of both in 

vitro and in vivo electrophysiology.     
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 Methods  

 

 In vitro electrophysiology  

Male rTg4510 mice (aged 7-8 months) and wild-type (WT) litter mate controls 

were bred at Harlan Laboratories (Hillcrest, UK) and shipped to the University of 

Exeter before use. Animals were allowed to equilibrate for at least 7 days after 

transport and housed on a 12:12h light/dark cycle with ad libitum access to food 

and water. Parasagittal slices containing mEC were cut using the methods 

described in section 2.3.  Gamma oscillations, recorded from dorsal and ventral 

portions of mEC, were elicited by bath application of 500 nM kainate and spectral 

power and frequency analysed for each 1 min section of data after kainate 

application. Maximum power and frequency were defined as the highest values 

irrespective of time.  

 

 In vivo electrophysiology 

Mice were implanted with 16-channel linear silicon probes with 150 µm inter-

electrode spacing (fig 2.4A) (NeuroNexus). After at least 1 week post-operative 

recovery, mice were placed on a novel linear track (1.5 m long) and allowed to 

explore for 15-20 min. Local field potential (LFP) signals were band-pass filtered 

(1-500 Hz) and continuously sampled at 2 kHz. Two light-emitting diodes on the 

headstage and an overhead video camera (sample rate 25 Hz) were used to 

continuously track the animals’ location, allowing estimation of position and 

running speed. 

All data analysis was performed in Matlab (Mathworks). Epochs of LFP were 

selected where the animal’s speed was constant (10-15 cm/s). Spectral analysis 

of the resulting epochs of LFP was performed using the Chronux toolbox 

(http://chronux.org/). Modulation index (MI) (Canolty et al., 2006) was calculated 

to measure phase-amplitude coupling between theta and gamma frequency 

oscillations using a toolbox available at: 

http://www.cs.bris.ac.uk/Research/MachineLearning/pac/ (Onslow et al., 2011). 

A linear regression analysis between probe position and MI was performed and 

the slope of this line was determined. Furthermore, the Pearson’s R value for 

http://chronux.org/
http://www.cs.bris.ac.uk/Research/MachineLearning/pac/
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each correlation was transformed to a normally distributed Z score for comparison 

between the two groups.  

 

 Results 

 

 In vitro gamma oscillation are preferentially impaired in dorsal mEC 

Gamma frequency oscillations (induced by continuous bath application of 500 nM 

kainate) were simultaneously recorded in dorsal and ventral ends of mEC slices 

as described in the previous chapter (fig 4.1). In WT slices, the maximum spectral 

frequency (peak after approximately 15 minutes of kainate application) of gamma 

oscillations was significantly faster in the dorsal (59.0 ± 1.4 Hz) than ventral (55.6 

± 1.5 Hz, n=12; P<0.05, paired t-test) regions of the mEC (fig 4.1D). Furthermore, 

as described previously (Beed et al., 2013), the maximal power of gamma 

oscillations was significantly higher in the dorsal (-20.7 ± 1.6 dB) versus ventral 

(-25.8±1.4 dB, n=12; P<0.05, paired t-test) mEC (fig 4.1D). In contrast, in rTg4510 

slices, there was no difference in maximal gamma frequency in the dorsal (53.0 

± 1.4 Hz) and ventral (53.2 ± 1.1 Hz, n=18; P=0.7, paired t-test) mEC. With regard 

to gamma power, a dorso-ventral gradient was detected in rTg4510 slices, but 

the direction was reversed such that gamma oscillations in the dorsal mEC were 

smaller in magnitude that those in the ventral mEC: dorsal power, -32.4 ± 1.0 dB; 

ventral power, -29.0 ± 0.8 dB (n=18; P<0.05, paired t-test; fig 4.1D) 

 

 Broad-band oscillatory activity is impaired in mEC of rTg4510 mice 

Brain slice pharmacological models are useful approaches to explore the cellular 

and pharmacological basis of neuronal network oscillations, however, they do not 

entirely recapitulate oscillatory activity observed in vivo. For instance, 

pharmacologically induced gamma oscillations, such as those presented above 

are often observed continuously, whereas in vivo, gamma frequency oscillation 

power in the hippocampus and entorhinal cortex is coupled to a specific phase of 

an ongoing theta oscillation (Chrobak & Buzsaki, 1998; Colgin et al., 2009). To 

examine whether the alterations in gamma frequency network oscillations 

observed in mEC slices translate to equivalent network disruptions in vivo, 
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multielectrode linear arrays were implanted into layer II/III of the mEC of WT and 

rTg4510 mice. These probes contained 16 recording sites (150 µm apart, linearly 

arranged on a single shank) which were implanted such that at least 10 recording 

sites ventral to the postrhinal border were positioned along the dorsal-ventral axis 

of the mEC (as determined by post-hoc histological analysis; fig 4.2A). Following 

post-surgery recovery, mice were tethered to a multichannel recording system 

and allowed to explore a novel linear track and local field potential (LFP) data 

were analysed from epochs where mice were running at speeds between 10 and 

15 cm/s.  

Broadband spectral power was significantly reduced in rTg4510 mice along the 

entire dorsal-ventral axis of the mEC compared to WT (WT, total power 45.9 ± 

1.8 dB, n=3; rTg4510 total power 34.0 ± 1.5 dB, n=5; P<0.01, unpaired t-test; fig 

4.2A,B), similar to previous observations in the CA1 region of the hippocampus 

(Cheng & Ji, 2013; Booth et al., 2016b). Absolute power was decreased in both 

the theta (4-12 Hz) and gamma (30-120 Hz) frequency bands (theta: WT, 43.9 ± 

1.9 dB, rTg4510, 29.4 ± 1.8 dB, P<0.01 unpaired t-test; gamma: WT, 37.6 ± 1.4 

dB, rTg4510, 28.0 ± 2.0 dB, P<0.05 unpaired t-test; fig 4.2C). However, as a 

proportion of total power, decreases in oscillatory activity appeared to be specific 

to theta frequency bands (WT: 62.3 ± 1.5 %, rTg4510, 37.4 ± 4.1 %, P<0.01 

unpaired t-test; fig 4.2D), with gamma oscillations comprising a larger proportion 

of total power (WT: 14.7 ± 1.4 %, rTg4510, 23.8 ± 0.8 %, P<0.05 unpaired t-test; 

fig 4.2D). 
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Figure 4.1: In vitro gamma (30-80 Hz) oscillations in layer II of dorsal, but 
not ventral, entorhinal cortex are preferentially disrupted in rTg4510 mice. 
A) Simultaneously recorded extracellular gamma oscillations evoked by bath 
application of 500 nM kainate in WT (i) and rTg4510 (ii) slices made 
approximately 15 minutes after the start of drug application. Grey traces are raw 
data; black (dorsal) and red (ventral) traces are bandpass filtered (30-80 Hz). 
Scale bar: 50 μV, 50 ms. B) Power spectra and autocorrelograms of recordings 
shown in A. In WT slices (i), gamma oscillations were faster in dorsal (black) 
versus ventral (red) regions, both in terms of peak spectral frequency and the 
primary non-zero peak in the autocorrelogram. In rTg4510 slices (ii) gamma 
oscillations in the dorsal mEC had significantly reduced power compared to WT 
slices. C) Pooled time-course data showing development of gamma oscillations 
following bath application of kainate (start point indicated by arrow). Solid lines 
show the mean (±SEM; shaded areas) gamma power (dB) and frequency of 
oscillations in 60 s bins. D) Summary data showing the maximum gamma power 
(i) and frequency (ii) in WT and rTg4510 slices. Note the selective effects of 
transgene expression on dorsal gamma oscillations. 
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Figure 4.2:  Broad-band impairment of oscillatory activity in rTg4510 mice 
in vivo. A) Light microscopy images of parasagittal sections through the mEC of 
a WT and rTg4510 mouse which were implanted with 16 channel linear silicone 
probes. The position of the probe, as determined by post-hoc analysis of lesion 
marks (red dots), is shown on each image (scale bar: 1 mm). Three example local 
field potential (LFP) recordings are shown to the right of each image with the 
location of the recording site illustrated by the arrows. Note the prominent theta 
oscillation with superimposed gamma frequency oscillations occurring towards 
the peak of each theta cycle (scale bar: 250 ms, 500 µV). B) Pooled power 
spectra (mean across all sites within the mEC and then averaged across animals) 
from epochs of LFP recorded whilst mice were running at 10-15 cm/s. C) Pooled 
data showing the significant reduction in broadband power (Total) in rTg4510 
mice (n=5) compared to WT (n=3), as well as specific reductions in the theta and 
gamma bands (*P<0.05, **P<0.01). D) Relative percentages of oscillatory activity 
comprising of theta and gamma frequency bands. Showing relative reduction of 
theta oscillations and increased gamma oscillation expression in rTg4510 mice 
compared to WT. 
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 Absence of dorso-ventral gradients in oscillatory activity in mEC of 

rTg4510 mice in vivo. 

Since gamma oscillation power has been shown to decrease along the dorso-

ventral axis both in vitro and in an acute anaesthetised in vivo preparation (Beed 

et al., 2013), it was therefore important to determine whether the was also the 

case in an awake-behaving animal, where connectivity remains fully intact. Since 

this experimental paradigm allowed for simultaneous recordings across a large 

portion of the mEC (~1.5 mm) in the same cortical layer, it was possible to 

accurately determine this relationship across precise anatomical areas.  In WT 

mice, a gradient in both gamma (fig 4.3) and theta (fig 4.4) oscillation amplitude 

was detected across the linear electrode array, whereby oscillatory activity was 

larger in dorsal mEC areas. This relationship was not present for either frequency 

bands in rTg4510 mice (fig 4.3/4/B). However, as described above, the broad-

band spectral activity across the entire mEC was significantly reduced.  

In order directly compare anatomical relationships in network activity between 

genotypes, data were Z-normalised and expressed as standard deviations from 

the mean for each experimental subject. Normalised theta and gamma oscillation 

power showed a clear relationship across the mEC in WT animals (linear 

regression, theta: R2= 0.8, Slope: -1.7 z/mm; gamma: R2= 0.8, Slope: -1.7 z/mm, 

n=3) but not in rTg4510 (linear regression, theta: R2=0.06, Slope: 0.29 z/mm, 

gamma: R2=0.06, Slope: 0.29 z/mm, n=5). The average slope for each animal 

was closer to zero in rTg450 mice when comparing both theta (WT: -1.73 ± 0.3 

z/mm, rTg4510: 0.03 ± 0.79, Unpaired T-test: p=0.04, n=3/5) and gamma (WT: -

1.82 ± 0.34 z/mm, rTg4510: 0.017 ± 0.048, Unpaired T-test: p=0.03, n=3/5) and 

significantly less correlated (Unpaired T-test: p = 0.04, n=3/5). For gamma 

oscillations, the quality of fit was significantly less in rTg4510 mice (WT: R2=0.7 

± 0.2, rTg4510: R2=0.2 ± 0.08, Unpaired T-test: p = 0.03, n = 3/5), but not for 

theta oscillations (WT: R2=0.6 ± 0.2, rTg4510: R2=0.5 ± 0.2, Unpaired T-test: p = 

0.5, n = 3/5).  
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 Gradient in theta-gamma phase-amplitude coupling is impaired in 

mEC of rTg4510 mice 

In WT mEC in vivo, theta and gamma frequency oscillations do not work 

independently of each other.  As has been previously reported (Chrobak & 

Buzsaki, 1998), gamma frequency oscillations were nested within the theta 

rhythm (fig 4.5). This process is proposed to be important for memory processes, 

since it allows for the coordination of neuronal ensembles over accelerated 

timescales (Lisman & Idiart, 1995; Lisman, 2005; Belluscio et al., 2012). 

Interestingly, in oscillatory activity observed from WT mice, this interaction was 

also dependant on mEC recording location, with dorsal mEC showing greater 

modulation of gamma amplitude across theta phase (linear regression: R2=0.98, 

Slope: - 2.1 z/mm, n=3; fig 4.5D). Since large scale deficits are seen in the 

magnitude of oscillatory activity in rTg4510 mice, it is difficult to directly compare 

between experimental groups. The extent of cross frequency coupling for 

rTg4510 mice was therefore calculated and the resulting comodulograms plotted.  

In WT mice, analysis of these data revealed a peak in the theta modulation of 

gamma power that was evident in the pooled comodulograms (peak modulating 

frequency, 9.1 ± 0.2 Hz; peak modulated frequency, 66.3 ± 0.2 Hz, mean across 

all recording locations in the mEC; fig 4.6D). There was also a clear gradient in 

the magnitude of theta-gamma cross-frequency coupling along the dorsal-ventral 

axis of the mEC, such that higher levels of theta-gamma coupling were observed 

at dorsal compared to ventral electrodes (fig 4.6A). Regression analysis revealed 

a linear correlation between probe location (relative to the most dorsal probe) and 

modulation index (MI) in WT mice (slope, -68.3 ± 16.3 M/µm; Z’= 2.2 ± 0.2; n=3; 

fig 4.6E).  

In rTg4510 mice, the absolute magnitude of theta-gamma coupling was 

significantly reduced across all electrodes when compared to WT (fig 6A; WT 

mean MI, 25 ± 0.1x104; rTg4510 mean MI, 2.0 ± 0.3x104; P<0.001, unpaired t-

test), which likely reflects the overall reduction in broadband LFP power. rTg4510 

mice also showed reduced frequencies in both peak modulating frequency (8.0 ± 

0.2 Hz) and peak modulated frequency (48.1 ± 1.9 Hz), (Main effect – genotype:  

p = 0.004, F = 50.8; interaction:  p = 0.02, F = 2.26; 2 way repeated measured 

ANOVA; fig 4.6D). Furthermore, the gradient in cross-frequency coupling was 
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significantly reduced in rTg4510 mice (slope, 18.2 ± 11.6 M/µm; Z=0.9 ± 0.2; n=5, 

P<0.05, unpaired t-test) compared to WT (fig 4.6C,E), suggesting that theta-

coupled gamma oscillations in rTg4510 mice were similar across different 

locations along the dorso-ventral axis of the mEC. 

 

Figure 4.3 Impaired dorso-ventral gradients in gamma oscillations in mEC 
of rTg4510 mice in vivo. A) Average power spectra from 10 electrodes across 
layer II/III mEC, with colour axis oscillatory representing oscillatory power (dB) at 
each anatomical level. In WT mice (i) gamma power is greater in dorsal mEC 
recording sites, whereas there is no relationship in rTg4510 mice. Bi) Z-
normalised gamma oscillation power across mEC, showing clear relationship in 
WT (linear regression: R2=0.8, Slope: -1.7 z/mm, n=3) and not in rTg4510 (linear 
regression: R2=0.06, Slope: 0.29 z/mm, n=5). Average slope (ii) for each animal 
was greater (closer to zero) for rTg450 mice (Unpaired T-test: p = 0.03, n = 3/5) 
and significantly less correlated (iii,Unpaired T-test: p = 0.04, n = 3/5) Box plots: 
dotted line: median, diamond: mean ± SEM, whiskers: 25th/75th centile). 

 

 

 

 



107 
 

 

  

Figure 4.4: Dorso-ventral gradients in theta oscillations in mEC of rTg4510 
mice in vivo. A) Average power spectra from 10 electrodes across layer II/III 
mEC, with colour axis oscillatory representing oscillatory power (dB) at each 
anatomical level. In WT mice (i) theta power is greater in dorsal mEC recording 
sites, whereas there is no relationship in rTg4510 mice. Bi) Z-normalised theta 
oscillation power across mEC, showing relationship in WT (linear regression: 
R2=0.42, Slope: -1.15 z/mm, n=3) and not in rTg4510 (linear regression: R2=0.22, 
Slope: 0.35 z/mm, n=5). Average slope (ii) for each animal was greater (closer 
to zero) for rTg450 mice (Unpaired T-test: p = 0.05, n = 3/5) but not significantly 
less correlated (iii, Unpaired T-test: p = 0.48, n = 3/5) Box plots: dotted line: 
median, diamond: mean ± SEM, whiskers: 25th/75th centile). 
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Figure 4.5: Dorso-ventral gradient in phase-amplitude coupling (PAC) 
interactions in WT mice. A) Example traces showing simultaneous recordings 
of most dorsal and ventral recording electrodes with theta (8-12Hz) and gamma 
(30-120Hz) filtered traces underneath (scale bar: 200µV, 250 ms). B) Averaged 
comodulograms showing theta-gamma cross-frequency coupling along the 
dorsal (top) to ventral (bottom) axis. C) MI index plotted against dorso-ventral 
location for 3 individual WT mice. D) Pooled data showing tight linear correlation 
of Z-normalised MI across mEC (linear regression: R2=0.98, Slope: - 2.1 z/mm, 
n=3). 
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Figure 4.6: Flattened dorso-ventral gradient in PAC in rTg4510 mice. Ai: 
Averaged comodulograms showing theta-gamma cross-frequency coupling 
along the dorsal (top) to ventral (bottom) axis, right column shows rTg4510 with 
scale increased by 10 fold so coupling is discernible. Shown below (ii) is 
modulation index (MI) plotted as a function of distance from the most dorsal 
electrode from an example WT (left) and rTg4510 (right) mouse. Pooled 
regression analysis reveals a significantly (P<0.01) lower Z-normalized 
correlation coefficient (B) and slope (C) in rTg4510 mice compared to WT. Filled 
circles represent data from each individual animal, the horizontal line is the mean 
± SEM. D: Reduction in peak frequency phase-ampltude coupling in both theta 
(amplitude) and gamma (phase) oscillations. E: Pooled Z-normalized MI as a 
function of dorso-ventral location shows loss of gradient in rTg4510 mice. Box 
plots: dotted line: median, diamond: mean ± SEM, whiskers: 25th/75th centile). 
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Figure 4.7: Cortical degeneration occurs evenly along the dorso-ventral 
axis of the mEC. A) Example photomicrographs of cresyl violet-stained sections 
from a WT (left) and rTg4510 (right) mouse. Lines representing the measurement 
locations (0-2 mm in 0.5 mm increments) are shown in red. Scale bar: 0.5 mm. 
B&C: Box plots illustrating cortical thickness (B) and cell density in layer II (C) in 
WT (n=5) and rTg4510 (n=5) at the points/regions marked in A. The open 
symbols represent the data from sections from individual animals, the filled 
diamond is the mean, the central line is the median, the box is the SEM and the 
whiskers are the interquartile range. 
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 mEC degeneration is not dependant on dorso-ventral location in 

rTg4510 mice 

Changes to the power and phase amplitude coupling of gamma frequency 

oscillations may be the result of the substantial levels of gross neurodegeneration 

that are known to occur in these mice (Santacruz et al., 2005; Ramsden et al., 

2005; Spires et al., 2006). Indeed, this is the likely explanation for the overall 

decrease in broadband power along the dorso-ventral axis (fig 4.6B). This raises 

the possibility that dorsal mEC regions degenerate in a preferential manner, 

leading to a flattening of the dorso-ventral gradient in network oscillations. To 

address this, a quantitative assessment of cortical thickness and cell density was 

performed in cresyl violet-stained parasagittal sections (6 µm thick; fig 4.7A). The 

dorsal-ventral extent of the mEC in WT sections was 2.8 ± 0.03 mm in length 

(range: 2.68-2.86 mm) whereas in rTg4510 sections the mEC was significantly 

shorter (2.5 ± 0.04 mm, range: 2.40-2.65 mm; P<0.01, unpaired t-test). Therefore, 

mEC thickness was measured in 0.5 mm increments between 0 and 2 mm ventral 

to the postrhinal cortex border (see fig 4.7A for illustration). In WT sections, the 

mEC became progressively thinner down the dorso-ventral axis, such that at the 

most dorsal point it was 693±15 µm from the edge of layer I to the edge of the 

white matter separating the mEC from the hippocampus, whilst at the most 

ventral aspect (2 mm from dorsal edge) it was 575±28 µm thick (fig 4.7B). In 

rTg4510 sections, the mEC also decreased in thickness along the dorso-ventral 

axis; at the dorsal end it was 617 ± 16 µm thick, whilst at the most ventral end (2 

mm from dorsal edge) it was 540±36 µm thick. The rTg4510 mEC was 

significantly thinner than in WT littermates; thus, there was a significant main 

effect of genotype on cortical thickness (F=6.2, P<0.05, repeated measures 

ANOVA; n=5 for both genotypes). There was also a significant main effect of 

dorso-ventral position on cortical thickness (F=13.8, P<0.001). Importantly, there 

was no significant interaction between genotype and position (F=0.8, P=0.9), 

suggesting that, whilst there were significant levels of cortical degeneration at this 

age point in rTg4510 mice, this occurred evenly along the dorso-ventral axis of 

the mEC (fig 4.7B). Consistent with this, when we plotted the thickness of the 

rTg4510 mEC as a percentage of the mean WT thickness at different positions 

along the dorso-ventral axis, no significant relationship was observed (fig 4.7B).  
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Equivalent findings were observed when cell density was examined along the 

dorso-ventral axis of layer II of the mEC (fig 4.7C)  with lower overall cell density 

in rTg4510 sections compared to WT sections (F=8.5, P<0.05, repeated 

measures ANOVA, main effect of genotype; n=5 both groups). There was a non-

significant trend of dorso-ventral position on cell density in layer II (F=2.6, P=0.08) 

and, importantly, there was no significant interaction between genotype and 

position (F=0.6, P=0.6). Finally, in layer III, there was no significant main effect of 

genotype (F=1.6, P=0.2; repeated measures ANOVA, main effect of genotype; 

n=5 both groups) although in this layer there was a main effect of dorso-ventral 

position (F=3.9, P<0.05) on cell density. However, once again there was no 

significant interaction between these two factors (F=1.1, P=0.4; data not shown). 

Taken together, these findings suggest that, whilst there is significant loss of 

neural tissue in the mEC (particularly in layer II) of rTg4510 mice, the dorsal 

regions of the mEC were not selectively vulnerable.  
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 Discussion 

 

 Summary 

These data are the first to describe changes to mEC dorso-ventral gradients in 

network activity in transgenic models of disease. They show clear changes to the 

network organisation in the mEC in the rTg4510 mouse model of tauopathy. 

Recordings both from mEC slices and in freely moving mice show deficits in 

gamma oscillation activity, both in terms of raw oscillatory power and in the 

phase-amplitude coupling interaction between theta and gamma oscillations. 

Importantly, this deficit is not due to selective degeneration of the dorsal mEC, 

with the cell loss and cortical shrinkage described previously (Santacruz et al., 

2005; Ramsden et al., 2005) occurring uniformly across the mEC.       

 

 Effect of neurodegeneration on mEC gamma oscillations 

In freely behaving rTg4510 mice, broadband LFP power was substantially 

reduced across all recording sites along the dorsal-ventral axis of the mEC 

compared to WT mice, in a manner consistent with reports in the CA1 region of 

the hippocampus (Cheng & Ji, 2013; Booth et al., 2016b), which may reflect the 

generalized neurodegeneration observed in this model of tauopathy (Santacruz 

et al., 2005; Ramsden et al., 2005).  

Histological analysis revealed that there were significant levels of 

neurodegeneration (both in terms of cortical thickness and cell density) in 

rTg4510 mEC, but that this degeneration was not specific to the dorsal mEC (fig 

4.7). In addition, further analysis from the same mice showed that tau expression 

was also not preferentially high in dorsal mEC regions (Booth et al., 2016a). 

Consequently, the observed alterations in oscillatory activity cannot be 

specifically attributed to selective degeneration of the dorsal mEC.  

 

 Differences between In vitro and in vivo mEC recordings  

Experiments conducted on in vitro slice preparations in this chapter clearly show 

selective reduction to dorsal mEC network activity (fig 4.1). This reflects similar 
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findings from the intrinsic properties of mEC stellate cells, which are largely 

unchanged in ventral mEC regions (Booth et al., 2016a). Interestingly, network 

activity in vivo was significantly reduced across all frequency bands (fig 4.2). 

Given the degree of degeneration in these animals, this is not particularly 

surprising, however, it does highlight differences between experimental setups. 

It is likely that gamma oscillations evoked in vitro are recruiting smaller numbers 

of neurons, since this model system does not receive coordinated activity from 

anatomically separate structures. In vivo, the mEC receives long range in 

GABAergic inputs from areas such as the hippocampus and medial septum, 

capable of influencing rhythmic activity (Jinno et al., 2007; Melzer et al., 2012; 

Gonzalez-Sulser et al., 2014; Fuchs et al., 2015).           

PV-positive interneurons provide recurrent inhibition within the mEC (Buetfering 

et al., 2014) in a manner proposed to contribute to grid cell formation (Couey et 

al., 2013). Beed et al (2013) reported graded PV expression along the dorso-

ventral axis, corresponding with the extent of inhibitory connectivity and gamma 

power. Importantly, Booth et al. (2016) also identified a prominent dorso-ventral 

gradient in PV expression in both WT and rTg4510 mice suggesting that deficits 

in dorsal mEC gamma oscillations were not caused by changes in dorsal mEC 

PV expression. Since excitatory synaptic transmission is required for gamma 

oscillations in the mEC (Cunningham et al., 2003), it is likely that disturbances to 

excitatory stellate neuron firing patterns in the dorsal mEC contribute to the 

deficits in gamma band oscillations in this cortical subregion. Nevertheless, since 

inhibitory circuits in these regions were not directly studied, it is possible that, 

whilst immunohistochemically normal, GABAergic transmission is altered in 

rTg4510 entorhinal cortex.   

 

 Phase-amplitude coupling deficits in rTg4510 mice 

While rTg4510 mice show deficits in oscillatory power in both the theta (8-12 Hz) 

and gamma (30-120 Hz) frequency bands, the interaction between these 

oscillations is perhaps more important as a marker for cognitive processing. 

During awake-behaving recordings in WT mice, this relationship was perhaps the 

most pronounced along the dorso-ventral axis of the mEC, showing a decreased 

variability compared to oscillatory amplitude alone.     
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In WT mice a dorsal-ventral gradient was identified in theta-gamma cross-

frequency modulation. Importantly, this gradient was absent in rTg4510 mice (fig 

4.7), suggesting that the circuitry responsible for coordinating theta-modulated 

gamma oscillations was differentially disrupted across the mEC. Evidence from 

optogenetically-driven gamma oscillations in mEC slices suggests that the 

disruption in theta-gamma cross-frequency coupling might arise from impairment 

in excitatory drive onto fast spiking interneurons (Pastoll et al., 2013a). Indeed, it 

has recently been hypothesised that glutamatergic drive on to CA1 hippocampal 

interneurons is defective in rTg4510 mice (Witton et al., 2014). These data 

contribute to an emerging picture of disruption of GABAergic circuits in mouse 

models of dementia (Driver et al., 2007; Palop et al., 2007; Baglietto-Vargas et 

al., 2010; Verret et al., 2012). 

 

 Consequences for spatial firing  

These findings, and those from Booth et al. (2016), suggest that the neurons in 

dorsal mEC may be preferentially impaired in rTg4510 mice. Since degeneration 

occurred evenly across the mEC, this therefore suggests that dorsal mEC stellate 

cells are more vulnerable to tau pathology than ventral. The mechanism(s) for 

such deficits is(are) as yet unclear, as is how this deficit translates into changes 

in spatial firing patterns of mEC neurons. Both the in vitro and in vivo data 

presented here give rise to the hypothesis that grid cells in rTg4510 mice will not 

display the variations in spacing across the dorso-ventral axis reported in normal 

rodents (Fyhn et al., 2008; Stensola et al., 2012).  

The data collected in vivo also suggest a loss of function across the entire mEC, 

despite deficits being greater in the dorsal areas. This has the potential to explain 

some of the changes to hippocampal place cells observed in rTg4510 mice 

(Cheng & Ji, 2013; Booth et al., 2016b). Inactivation of the entorhinal cortex is 

capable of altering spatial representation in the hippocampus, producing 

increased firing field size, reduced spatial information content (Brun et al., 2008a; 

Hales et al., 2014; Ormond & McNaughton, 2015) and reduced stability (Van 

Cauter et al., 2008) of CA1 place cells. The entorhinal cortex also receives 

reciprocal connections from the hippocampus, alternatively, this may affect grid 

cell firing regardless of specific mEC reorganisation (Bonnevie et al., 2013).  
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There are few examples of changes to dorso-ventral gradients in grid cell 

spacing. However, mice with HCN1 channels knockout show flattened mEC 

dorso-ventral gradients in some intrinsic neuronal properties, such as 

subthreshold membrane resonance and theta frequency oscillations (Giocomo & 

Hasselmo, 2009). This is turn alters the size and spacing of grid cell firing fields 

(Giocomo et al., 2011) and significantly reduces spatial information content of 

CA1 place cells (Hussaini et al., 2011). However, these changes do not ultimately 

alter the overall gradient in grid cell spacing and it therefore remains to be seen 

whether changes to dorso-ventral gradients in rTg4510 correspond directly to 

alterations in grid spacing.   

 

 Conclusions 

These data indicate preferential modulation of dorsal mEC in rTg4510 mice, 

resulting in a flattening of entorhinal dorso-ventral gradients. It is likely that this 

will contribute to disturbances in spatial learning and memory observed in this 

model of tauopathy (Ramsden et al., 2005), as indeed will the overall levels of 

neurodegeneration observed within the mEC and throughout the cortex.
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5. Dysfunctional mEC processing of speed 
information in rTg4510 mice 

 

 Introduction 

The data in the previous chapter establish the presence of a pronounced deficit 

in neuronal network activity in the mEC of rTg4510 mice. Since one of the primary 

roles of the mEC concerns spatial navigation, the subsequent chapters will aim 

to relate this activity to the external environment. Perhaps one of the simplest 

way to do this is to examine the relationship between running speed and 

theta/gamma oscillations, which have long been known to be positively correlated 

(McFarland et al., 1975; Sławińska & Kasicki, 1998; Chen et al., 2011; Ahmed & 

Mehta, 2012; Zheng et al., 2015).  

 

 Running speed representation in path integration  

Specific speed-encoding cells in the mEC have long been postulated, since 

continuous access to information regarding running speed has been proposed to 

be a theoretical requirement for a path integration-based representation of space 

(Fuhs & Touretzky, 2006; McNaughton et al., 2006; Burgess et al., 2007; Burak 

et al., 2009; Bush & Burgess, 2014). This process, by which an animal’s location 

can be maintained relative to a set point using only external cues, is widely 

thought to be dependent on mEC activity (Etienne & Jeffery, 2004; Parron & 

Save, 2004; Fuhs & Touretzky, 2006; Allen et al., 2014). Grid cells in particular 

display important characteristics for path integration systems, since their activity 

is constant across environments (Fyhn et al., 2004; Hafting et al., 2005; 

McNaughton et al., 2006) and mice without functional grid cells are unable to 

perform behavioural tasks dependent on path integration (Allen et al., 2014). 

However, the mEC also contains many other spatially selective cell types 

proposed to be important for path integration, most notably speed and head-

direction tuned cells (Sargolini et al., 2006; Valerio & Taube, 2012; Kropff et al., 

2015). Inactivation of projections to the mEC containing either of these 

information types is capable of impairing grid periodicity and presumably path 

integration (Koenig et al., 2011; Brandon et al., 2011; Winter et al., 2015).  
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These data highlight the important principle, that any changes to path integration 

mechanisms may have profound effects for an animal’s ability to effectively 

navigate its environment. Therefore changes to these systems in rTg4510 mice 

may directly correspond to those seen in the human condition. Indeed, impaired 

spatial memory and specific deficits to path integration have been shown to be 

present in dementia patients (Hort et al., 2007; Lithfous et al., 2013; Mokrisova et 

al., 2016). 

 

 Running speed - oscillatory activity interactions 

Since early descriptions of hippocampal theta activity it has been observed that 

both oscillatory power and frequency are highly dependent on an animal’s 

movement (Vanderwolf, 1969; Whishaw & Vanderwolf, 1973; McFarland et al., 

1975; Sławińska & Kasicki, 1998), with faster running speeds associated with 

larger amplitude and higher frequency theta. A similar relationship exists for 

gamma oscillation properties, which similarly increase their magnitude linearly 

with increases in running speed (Chen et al., 2011) and also modulate their 

frequency in both slow and fast gamma frequency bands (Zheng et al., 2015). 

Changes to large scale local field potential (LFP) activity in response to 

locomotion are presumably underpinned by both the general tendency of mEC 

neurons to increase their firing rate at faster running speeds (Sargolini et al., 

2006; Sun et al., 2015; Hinman et al., 2016) and an independent population of 

mEC neurons that only respond to changes in speed (Kropff et al., 2015).   

Interestingly, the precise relationship between the oscillation properties and 

running speed appears not to be fixed. Features such as slope and intercept can 

be modulated by external factors such as environmental novelty (Jeewajee et al., 

2008b) or pharmacological manipulations (Jacobson et al., 2013; Wells et al., 

2013; Newman et al., 2013). For this reason, running speed relationships, which 

can be easily observed in the LFP, have the potential to act as a sensitive 

biomarker for changes to neuronal network activity that may ultimately affect 

cognition. To test this hypothesis, we employed the implanted linear electrode 

arrays described in chapter 4 to investigate interactions between theta/gamma 

oscillations and running speed while animals ran for relatively short periods of 

time on a linear track. 
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 Methods 

 

 Data acquisition and analysis  

Data used in this chapter were obtained from the same experimental subjects as 

the previous chapter. Mice were placed on a linear track (1.5 m long) and allowed 

to explore for 15-20 min. Local field potential (LFP) signals were continuously 

sampled at 2 kHz, while two light-emitting diodes on the headstage and an 

overhead video camera (sample rate 25 Hz) were used to continuously track the 

animals’ location, allowing estimation of position and running speed. 

All data analysis was performed in Matlab (Mathworks). Spectral analysis was 

performed on 0.5 s epochs of LFP data using the Chronux toolbox 

(http://chronux.org/). Power and peak frequency of LFP frequency bands were 

compared to running speed calculated from the same time windows. Running 

speed was divided into 1 cm/s bins (between 1-30 cm/s) and spectral properties 

averaged across all time bins at each speed. Theta/gamma oscillation power was 

normalised to non-movement, defined as running speeds under 1 cm/s.  

 

 Grid cell modelling  

Simulated grid cell firing patterns were generated using a hybrid-oscillatory 

interference/continuous attractor model produced by Bush and Burgess (2014), 

whose source code is freely available in ModelDB (McDougal et al., 2017) at 

http://modeldb.yale.edu/3454.  This model contains a parameter (β) representing 

the VCO velocity/oscillation frequency gradient which was substituted for 

experimental values of theta vs theta frequency slope. 25 simulated grid cells 

were produced using the average slope of theta frequency running speed 

relationship from both WT and rTg4510. 

 

  

http://chronux.org/
http://modeldb.yale.edu/3454
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 Results 

 

 Theta oscillation – running speed relationship is impaired in rTg4510 

mice 

It has long been known that there is a positive relationship between running 

speed and theta oscillation amplitude and frequency in both the hippocampus 

and mEC (McFarland et al., 1975; Chen et al., 2011). Since rTg4510 mice display 

broad deficits in neuronal network activity (Booth et al., 2016a), and also show 

pronounced impairments in spatial information processing (Ramsden et al., 2005) 

it is possible that these are accompanied by changes to the representation of 

running speed in the mEC. The interaction between running speed and theta 

oscillations was therefore measured for rTg4510 and WT control mice shown in 

chapter 4. As expected, in WT mice, theta oscillation properties clearly follow 

changes to locomotor activity (fig 5.1A), with pooled data showing a clear 

relationship observed between running speed and theta oscillation power (linear 

regression: R2=0.75, p<0.001, n=3) and frequency (linear regression: R2=0.55, 

p<0.001, n=3) (fig 5.2Ci). In contrast, in rTg4510 mice, running speed had little 

influence on theta oscillation amplitude (fig 5.2B) which was shown to be poorly 

correlated with locomotor activity and remained at consistent levels throughout 

recording sessions (linear regression: R2=0.15, p=0.03, n=5, fig 5.2Ci). Although 

less pronounced than in WT animals, theta frequency did show correlation with 

running speed in rTg4510 mice (linear regression: R2=0.46, p<0.01, n=5, fig 

5.2Cii) which across the population was not significantly different from WT 

(Correlation (Z’); WT: 1.0 ± 0.16, rTg4510: 0.58 ± 0.26, unpaired T-test, p=0.1, 

n=3/5, fig 5.2E). 

 

 Gamma oscillation – running speed impairment is specific to fast (60-

120 Hz) rather than slow (30-50 Hz) gamma frequencies 

More recently, similar relationships have been observed with regards to gamma 

oscillation properties, both in the fast (60-120 Hz) and slow (30-50 Hz) gamma 

frequency bands (Chen et al., 2011; Zheng et al., 2015). In WT mice, both fast 

and slow gamma oscillation amplitude was positively correlated with running 
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speed (linear regression; fast gamma: R2=0.88, p<0.001, n=3, fig 5.3Ai; slow 

gamma: R2=0.36, p<0.01, n=3, fig 5.3Bi), although there was a trend for the slope 

of this association to be greater for fast gamma frequencies (slow gamma: 27.1 

± 8.4 mV2/Hz.cm-1, fast gamma: 80.6 ± 19.2 mV2/Hz.cm-1, p = 0.07, paired T-test, 

n= 3). rTg4510 mice did not show significant correlations for either gamma 

frequency band (linear regression; fast gamma: R2=0.03, p=0.52, n=5, fig 5.3Ai; 

slow gamma: R2=0.15, p=0.27, n=5, fig 5.3Bi), however, compared to the WT 

population, on average this correlation was significantly lower only in the higher 

gamma frequency range (2-way repeated measures ANOVA, main effect – 

genotype: P= 0.001 F = 32.3, interaction: p = 0.003, F = 23.7; Bonferroni multiple 

comparisons; fast gamma: p<0.001, slow gamma: p=0.2, n=3/5).  

Since gamma oscillations produce a broad peak in the mEC power spectrum, 

accurate determination of peak gamma frequencies can prove difficult. However, 

applying these techniques to small sections of data (0.5 s) allowed for more 

defined peaks in the gamma frequency range. Across running speeds, on 

average WT mice showed a positive relationship with fast gamma oscillations 

(linear regression: R2=0.58, p<0.001, n=3, fig 5.3Ai). However, rTg4510 mice 

showed a reversed relationship with running speed, with periods associated with 

low locomotion producing much faster oscillatory activity than WT controls, which 

decreased as animals ran at faster speeds (Correlation (Z’); WT: 0.6 ± 0.06, 

rTg4510: -0.43 ± 0.22 Unpaired T-test, P=0.01, n=3/5, fig 5.3C).       

Contrary to previous reports (Chen et al., 2011; Kemere et al., 2013), for slow 

gamma frequencies, WT mice showed a non-significant negative correlation with 

running speed (linear regression: R2=0.1, p=0.08, n=3, fig 5.3Bii). However, 

similar to high gamma, this relationship was also reversed in rTg4510 mice (linear 

regression: R2=0.52, p<0.001, n=5, fig 5.2Bii), with these mice displaying positive 

relationships with running speed (Correlation (Z’); WT: -0.06 ± 0.01, rTg4510:  

0.06 ± 0.03, Unpaired T-test, P=0.02, n=3/5).  

 

 Oscillation – running speed relationships are dependent mEC dorso-

ventral location 

The examination of running speed – theta/gamma interactions in the mEC has 

previously been limited to recordings in dorsal mEC regions (Chen et al., 2011; 
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Kemere et al., 2013; Newman et al., 2014; Zheng et al., 2015). In our 

experiments, LFP activity was recorded at multiple sites along the dorso-ventral 

axis of the mEC. It was therefore possible to measure whether this relationship 

changed according to anatomical location, in a similar manner to basic oscillatory 

properties determined from speed controlled data (chapter 4).  

Surprisingly, in WT mice the relationship between theta oscillation power and 

running speed was also shown to vary along the dorso-ventral axis of the mEC 

(fig 5.4Ai), such that increases in locomotion were associated with larger 

increases in amplitude in dorsal mEC regions than ventral. This was not the case 

for rTg4510 mice that showed running speed-oscillation relationships which were 

independent of anatomical location (fig 5.4Aii). Regression analysis showed that 

z-normalised theta power decreased across probe, varying from the mean by ~2 

standard deviations/mm, which was not the case in rTg4510 mice (slope; WT = -

2.0 ± 0.09 z/mm, rTg4510 = -0.046 ± 0.056 z/mm; p=0.05, Unpaired T-test, n = 

3/5, fig 5.4B/Ei). The same relationship was not observed for theta oscillation 

frequency, which did not vary across the dorso-ventral axis for either genotype 

(slope; WT = -0.002 ± 9x10-5 Hz/mm, rTg4510 = -4.6x10-4 ± 5.6x10-4 Hz/mm; 

p=0.05, Unpaired T-test, n = 3/5 fig 5.4Eii). 

Fast gamma oscillation relationships with running speed were also observed to 

be dependent on dorso-ventral mEC location, in an almost identical manner to 

theta (fig 5.4Cii). Regression analysis showed that z-normalised fast gamma 

power decreased across the electrode array, also varying from the mean by ~2 

standard deviations/mm, which was also not the case in rTg4510 mice (slope; 

WT = -2.12 ± 0.036 z/mm, rTg4510 = -0.47 ± 0.35 z/mm; p=0.01, Unpaired T-

test, n = 3/5 fig 5.4D/Fi). The same relationship was not observed for gamma 

oscillation frequency, which did not vary across the dorso-ventral axis for either 

genotype (slope; WT = -0.008 ± 0.006 Hz/mm, rTg4510 = 0.04 ± 0.02 Hz/mm; 

p=0.1, Unpaired T-test, n = 3/5, fig 5.4Fii). Slow gamma oscillation amplitude – 

running speed relationships were shown to be less prominent than fast gamma 

frequencies (fig 5.3B). Despite this, the slope of the association was also 

dependent on anatomical location (linear regression: R2=0.82, p=0.001, n=3). 

However, there was no significant difference observed between WT and rTg4510 

mice (slope; WT = -0.31 ± 0.01 Hz/mm, rTg4510 = 0.11 ± 0.14 Hz/mm; p=0.07, 

Unpaired T-test, n = 3/5) and no dorso-ventral relationship for either genotype in 
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slow gamma frequency (slope; WT = -0.002 ± 0.002 Hz/mm, rTg4510 = -0.004 ± 

0.003 Hz/mm; p=0.26, Unpaired T-test, n = 3/5). 

 

 rTg4510 mice display hyperactive phenotype  

rTg4510 mice have been shown to display a hyperactive phenotype under 

various conditions, which becomes more pronounced with developing tau 

pathology (Selenica et al., 2014; Cook et al., 2014; Jul et al., 2015). Since the 

experiments shown here display data that is heavily influenced by running speed, 

it was therefore important to observe this effect in the current experimental 

subjects. Under these recording conditions, rTg4510 mice also displayed a 

hyperactive phenotype (fig 5.5). rTg4510 mice were shown to spend more time 

at faster running speed,  with average speeds across  recording sessions greater 

than WT control mice (P = 0.04, Unpaired T-test, n=3/5, fig 5.5B).   
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Figure 5.1 Theta oscillation are positively correlated with running speed. 
Ai) Example plots showing animals running speed on linear track (black, left Y 
axis) showing high correlation with theta oscillation amplitude (grey, right Y axis) 
(top) over several minutes of recording. ii) Local field potential from periods of 
slow and fast running speed (boxes) showing faster and larger theta oscillations 
during locomotor activity. B) Power spectra for data shown in ii for slow (black) 
and fast (grey) running periods. C) Example relationship between running speed 
and average theta oscillation power across recording session. 
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Figure 5.2: Theta oscillation- running speed relationship is impaired in 
rTg4510 mice. A) Example plots showing animals running speed on linear track 
(black, left Y axis) showing high correlation with theta oscillation (grey, right Y 
axis) amplitude (i) and frequency (iii) over several minutes of recording. B) 
Corresponding example from rTg4510 mouse showing with theta oscillation 
amplitude (ii) and frequency (iv) with decreased association with running speed. 
B) Running speed – theta oscillation slopes for power (i, normalised to >1cm/s) 
and frequency (ii) WT and rTg4510 mice, line shows linear regression fit. C) 
Pooled data for each animal showing positive correlation (i) and slope (ii) 
associated with increased running speeds in WT but not transgenic mice. D) 
Pooled data showing correlation and slope of running speed - theta oscillation 
frequency relationship. (* p<0.05, ** p <0.01, ns = not significant, unpaired T-test)  
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Figure 5.3 Deficits in gamma oscillation – running speed relationships are 
specific to fast gamma (60-120 Hz) frequencies. A) Average running speed 
relationships for fast gamma amplitude (i) and power (ii) with linear regression 
lines, showing strong positive relationship in WT mice, but not rTg4510. Bi) Weak 
correlation between running speed and slow gamma (20-50 Hz) oscillation power 
in WT mice, which is unchanged in rTg4510. ii) Weak negative relationship 
between running speed and slow gamma frequency, which is reversed in 
rTg4510 mice. C) Pooled data showing correlation for oscillatory power and 
frequency for slow and fast (D) gamma oscillation relationship with running 
speed. (* p <0.05, ** p<0.01, *** p <0.001, ns = not significant, unpaired T-test). 
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Figure 5.4: Theta/gamma oscillation – running speed relationships are 
dependent on mEC dorso-ventral location.  A) Example running speed – theta 
oscillation amplitude relationships for WT (i) and rTg4510 (ii) mice, coloured from 
green (most dorsal electrode) to red (most ventral). B Pooled z-normalised data 
across dorso-ventral axis of the mEC, showing strong relationship between 
running speed slope and recording location in WT mice, which is not present in 
rTg4510 mice.  C) Examples for fast gamma power for WT (i) and rTg4510 (ii) 
mice, with pooled Z-normalised data showing same relationship as theta. E) 
Pooled slopes across dorso-ventral axis of each animal theta (E) and fast gamma 
(F), displayed as standard deviations from the mean (z)/mm for power and 
Hz/mm for frequency. Decreases in slopes were observed only for oscillatory 
power across the dorso-ventral axis, while frequencies remained largely 
unchanged with location. (* p<0.05, ** p <0.01, ns = not significant, unpaired T-
test)  
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 Computational model predicts reduced grid cell periodicity in 

rTg4510 mice 

The relevance of running speed-theta relationships to the spatial firing of grid 

cells in the mEC is yet to be established. However, velocity controlled oscillators 

(VCOs) form an integral part of many computational models of grid cell firing 

(Fuhs & Touretzky, 2006; Burgess et al., 2007; Giocomo et al., 2011b; Zilli, 2012; 

Bush & Burgess, 2014), predominantly in oscillatory interference models that 

generate grid patterns. In order to illustrate the potential effect of even small 

changes to running speed versus theta frequency relationships, grid cells were 

simulated from a hybrid oscillatory interference/continuous attractor model of grid 

cell firing (Bush and Burgess 2014), with source code obtained from ModelDB 

(McDougal et al., 2017) at http://modeldb.yale.edu/3454. 25 grid firing patterns 

were simulated for each using the experimental theta frequency relations (fig 

5.6B) as the slope of the VCO (WT: 0.035 Hz/cms-1, rTg4510: 0.014 Hz/cms-1). 

On average, model grid cells produced using WT VCOs showed grid scores 

significantly higher than those from rTg4510 mice (median WT: 0.61, rTg4510: 

0.22 , p=0.027, U= 198, Mann-Whitney U test, n =25, fig 5.6Cii).  However, using 

this model, high grid score measurements were dependent on the peak firing rate 

of modelled cells (fig 5.6Ci), with high firing rates showing low grid scores due to 

periods of hyperexcitability in modelled recordings.  

Figure 5.5: rTg4510 display hyperactive phenotype. A) Breakdown of 
animal’s time spent at each running speed, showing rTg4510 mice spend more 
time moving at higher velocities. B) Average running speed across (mean ± SEM) 
entire recording session is greater in rTg4510 mice (* P < 0.05, Unpaired T-test).   

* 

http://modeldb.yale.edu/3454
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Figure 5.6 Grid cell model predicts large scale changes to grid periodicity 
from small alterations in running speed theta frequency slope. A) Schematic 
of hybrid oscillatory interference model, containing multiple VCOs with preferred 
directional phases, obtained from (Bush & Burgess, 2014). Bi) Example 
simulated grid cells obtained using average   slope from running speed-theta 
frequency relationship in WT and rTg4510 mice with 2D spatial autocorrelations. 
C)  Distribution of 25 simulated grid cells for each genotype, showing relationship 
between grid score and peak firing rate (i) and reduced average grid score in 
rTg450 simulated grids (ii),* p<0.05, Mann-Whitney U test.   
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 Discussion 

 

 Summary 

Continuous integration of running speed information in the mEC has been 

proposed to be critically important for spatial navigation and path integration  

(Sargolini et al., 2006; McNaughton et al., 2006; Burgess et al., 2007; Kropff et 

al., 2015). The current experiments clearly show that unlike WT animals, rTg4510 

mice do not display adequate representations of locomotor activity in the mEC 

LFP, since theta and gamma oscillations properties display blunted, or absent, 

relationships with running speed. They further show, for the first time, that in WT 

mice, this relationship varies along the dorso-ventral axis of the mEC. However, 

this is also clearly not the case in rTg4510 mice, where no association is seen 

between running speed interactions and anatomical location.  

 

 Impaired running speed representations in rTg4510 mice 

Theta oscillations show increases in both amplitude and frequency depending on 

running speed (fig 5.1). Spatially modulated mEC neurons are required to 

integrate large quantities of multimodal sensory information from their 

environment. At fast running speeds, the time window for this integration is 

smaller and it may therefore be necessary to increase the sensitivity of such 

neurons during locomotion to accurately retrieve spatial associations from 

memory. In rTg4510 mice, theta oscillation power appears to be independent of 

running speed meaning that these animals are unable to integrate this information 

effectively.  

Interestingly, effects on the fast gamma power relationship with running speed 

were more pronounced than those relating to theta. This is similar to results 

displayed in the previous chapter, where dorso-ventral organisation of gamma 

oscillations is more prominent than theta. It is likely that gamma oscillations are 

a phenomenon requiring the entrainment of smaller groups of mEC neurons and 

therefore better directly represent local neuronal networks. Unlike oscillatory 

power, fast gamma frequency showed a reversed relationship with locomotor 

activity, with slow movement speeds associated with the fastest gamma activity 
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(fig 5.3Aii). Increased gamma frequency is inconsistent with the phase-amplitude 

coupling plots shown in the previous chapter, which show peaks at lower 

frequencies in rTg4510 mice (fig 4.6D). Since these are arguably not 

physiologically relevant frequencies for cognitive processing, it could be 

suggested that they are pathological and perhaps interfering with normal function 

seen in WT mice. This is reminiscent of similar aberrant changes to fast 

oscillatory activity that can be seen with NMDA receptor hypofunction and may 

have potential relevance to other neurological disorders such as schizophrenia 

(Pinault, 2008; Hakami et al., 2009; Phillips et al., 2012; Kocsis, 2012).  

In WT mice, the gamma oscillation relationship with running speed shows a 

strong predominance for fast gamma frequencies (fig 5.3). This is consistent with 

the proposed information flow across the hippocampal formation, in which the 

mEC provides the input responsible for fast gamma frequencies in CA1 region of 

the hippocampus (Colgin et al., 2009). While the CA1 area has been shown to 

display two distinct peaks in power spectra, mEC LFP predominantly contains 

faster frequencies only (Chrobak & Buzsaki, 1998; Colgin et al., 2009) and this is 

consistent with the spectral analysis from these animals and the phase-amplitude 

coupling plots shown in chapter 4. It is perhaps not surprising then that changes 

between genotypes (fig 5.3) are seen only at these faster frequencies. For this 

reason also, conclusions regarding the slow gamma oscillation frequency should 

be made with caution. While slow gamma frequency has previously be shown to 

display a negative speed relationship in the hippocampus, mEC correlations are 

generally thought to be positive (Kemere et al., 2013; Zheng et al., 2015). These 

data show a negative frequency relationship with running speed which is reversed 

in rTg451 mice (fig 5.3Bii), however this association is weak. It is possible that 

without consistent peaks in low gamma activity, these values are modulated by 

the power in the surrounding frequency bands. For example, in rTg4510 mice, 

increases in slow gamma frequencies mirror decreases in fast gamma, the peaks 

of which may bleed increasingly into the slow gamma range.   

It is also worth noting that rTg4510 mice exhibit a hyperactive phenotype (fig 5.5), 

and hence altered patterns of locomotor activity. An interpretation of this is that 

these mice are displaying compensatory mechanisms in which to increase 

network activity. It is unclear whether or not this is the case under these 

conditions and there is currently no evidence to suggest this. Potentially, this 
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could be observed using a head-fixed virtual reality preparation. However, at the 

very least it should be noted that rTg4510 mice are experiencing their 

environment at a generally higher state of arousal, at least in terms of locomotor 

activity.  

 

 Implications for grid cell firing  

The theta frequency-running speed relationship has been proposed to be critical 

for the generation in grid field firing patterns, with oscillatory interference models, 

for example, relying on the interaction between baseline and velocity-controlled 

oscillators (VCOs) (Burgess et al., 2007; Bush & Burgess, 2014). For this reason, 

it is possible that small changes to the slope of this relationship may have 

profound implications grid cell periodicity. Grid spacing is also thought to be 

dependent on this, with the slope in models such as Bush and Burgess (2014) 

consisting of the reciprocal of field size. This is based on experimental findings 

that show, for example, when theta frequency slope decreases during 

environmental novelty, grid fields expand (Jeewajee et al., 2008b; Barry et al., 

2012a). The intrinsic resonance of mEC stellate cells is also slower in ventral 

mEC areas than dorsal, suggesting that such frequency changes across the mEC 

may play a role in the gradient of grid cell spacing (Giocomo et al., 2007; Giocomo 

& Hasselmo, 2009; Pastoll et al., 2012). In these experiments, rTg4510 mice 

showed a trend towards a decreased theta frequency slope (fig 5.2Dii). However, 

if the slope of the averaged running speed relationship for each genotype were 

to be used to scale VCO slopes from models such as (Bush & Burgess, 2014), 

rTg4510 mice would show a vast expansion of grid fields compared to WT, 

leading to the reduction in grid score seen in figure 5.6.  

 

 Dorso-ventral organisation of running speed representation 

Interestingly, these data also highlight the novel finding that WT mice display a 

dorso-ventral gradient in running speed- theta/gamma oscillation interactions (fig 

5.4). Oscillatory power was observed to show greater increases in dorsal mEC 

for given increases in locomotion activity when compared to ventral, meaning that 

as WT mice run faster, the distinction between dorsal and ventral mEC becomes 

more pronounced. The functional consequences of this are as yet unclear, 
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however these data strongly suggest the hypothesis that, like grid (Brun et al., 

2008b; Stensola et al., 2012) and head direction (Giocomo et al., 2014) firing, 

speed cells may also display dorso-ventral gradients in their activity. As stated 

above, fast running speeds require an increased sensitivity to locomotive activity, 

since the time window for integration of spatial information is smaller. It is possible 

that this required compensation is uneven across the dorso-ventral axis of the 

mEC, with tightly spaced grid cells in dorsal regions, for example, needing to shift 

activity states more frequently than ventral.  

Speed correlated input into the mEC has been postulated to arrive from 

glutamatergic projections from the medial septum and diagonal band of Broca 

(MSDB) (Justus et al., 2016).  Intriguingly, this appears to arrive preferentially into 

ventral mEC areas, however, how this input is integrated and ultimately forms 

mEC output is unclear. Further modelling by Justus et al. (2016) suggested that 

while pyramidal cells may most efficiently transform speed inputs to outputs 

(backed up experimentlally by Sun et al. 2015),  theta modulated output could be 

most effectively generated by fast spiking interneurons, which as previously 

discussed display a strong preference for dorsal mEC expression (Beed et al., 

2013). This potentially suggests a dissociation between running speed-

associated changes in firing rate and theta rhythmicity. Indeed, inactivation of the 

medial septum has been shown to impair increases in the oscillatory frequency 

of theta rhythmic cells in the mEC, but not the relationship between running speed 

and firing rate (Hinman et al., 2016). It is unclear whether a second speed signal 

is projecting to the mEC, however it is possible that these signals are anatomically 

disparate within basal forebrain areas, which were not equally impaired by the 

muscimol infusion employed in these experiments.    

Long range GABAergic and cholinergic projections also enter mEC from basal 

forebrain areas (Colom, 2006; Gonzalez-Sulser et al., 2014; Vandecasteele et 

al., 2014), which may also be relevant under these conditions. Cholinergic inputs 

in particular are also likely to play a modulatory role in representing locomotor 

information. Modulating cholinergic transmission alters slope of running speed-

theta oscillation relationships in the hippocampal formation (Newman et al., 2013, 

2014). These fibres also potentially underlie context-specific changes to theta 

frequency-running speed slope, for example during periods of environmental 
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novelty (Jeewajee et al., 2008a, 2008b), which may have implications on grid field 

expansion (Barry et al., 2012a, 2012b).  

In contrast to WT, rTg4510 mice displayed no gradients in the relationship 

between running speed and oscillatory activity. Considering the pronounced 

deficit seen across all electrodes, this was perhaps not surprising. However, it 

further highlights the findings seen in the previous chapter, suggesting a 

reorganisation of mEC physiology. It remains to be seen whether the specific 

deficits in locomotor information processing in rTg4510 mice arise from reduced, 

or impaired, inputs from basal forebrain areas. The hypothesis of basal forebrain 

degeneration is by no means novel, and dates back to early reports of 

Alzheimer’s pathology (Davies & Maloney, 1976; Coyle et al., 1983; Francis et 

al., 1999; Terry & Buccafusco, 2003). Specifically, these focused on dysfunction 

of cholinergic projections, however, the complexity of mEC inputs from this region 

highlight further avenues for exploration.  

 

 Theta/gamma oscillation - running speed interactions as a biomarker 

for impaired network activity  

Given that the relationship between oscillatory activity and running speed can be 

observed using relatively simple electrophysiological techniques, and is a 

phenomenon that has been shown to be adaptive to environmental context, this 

interaction could be presented as a good functional biomarker with which to 

measure the effect of disease pathology in rodent models of dementia. As a 

process, this will undoubtedly require the integration of numerous information 

streams and coordination of large scale neuronal networks, which are likely to be 

influenced by tau pathology. Theta oscillation-running speed relationships have 

previously been shown to be modulated by pharmacology and environmental 

stimulus. For example, blocking muscarinic acetylcholine receptors with 

scopolamine, which is widely known to cause memory impairments, has been 

shown to reduce the slope relating movement speed to theta frequency (Newman 

et al., 2013). Anxiolytic compounds also effect this relationship, in this case 

decreasing the intercept of the slope (Wells et al., 2013), suggesting a 

dissociation of spatial and arousal based cognitive states.  
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The precise relationship between the progression of rTg4510 pathology and 

impaired locomotor encoding is yet to be determined. However, it is possible that 

this impairment could be tightly associated with, or even precede, cognitive 

deficits. In any case, these findings may prove useful for assessing the 

effectiveness of potentially cognitive enhancing compounds and may allow for a 

relatively high throughput screening of new drug targets.  

 

 Conclusions  

The data presented in this chapter clearly show changes to the representation of 

locomotor activity in the mEC of rTg4510 mice. The underlying impact of this on 

the firing of individual mEC neurons remains to be seen. However, it is likely that 

this will have direct consequences for the spatial firing patterns of grid cells in the 

mEC, which will be addressed in the next chapter, and for path integration 

mechanisms in general. 
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6. Decreased speed modulation of mEC neurons 
coincides with breakdown of grid cell 
periodicity in rTg4510 mice 

 

 

 Introduction 

It has been established in the previous chapters that rTg4510 mice display large 

scale changes to mEC neuronal networks.  However, how tau overexpression 

affects individual cell firing in the mEC is yet to be examined. The final chapter of 

this thesis will establish how the deficits described above, specifically to speed 

modulated activity, correspond to changes in spatial firing properties in the mEC.  

 

 Spatial information processing in the mEC 

Since the discovery of grid cells, the mEC has been generally recognised to have 

a critical role in spatial representation and navigation. Grid cells fire selectively in 

regular and stable fields, forming a hexagonal lattice that covers an entire 

environment (Fyhn et al., 2004; Hafting et al., 2005). Unlike hippocampal place 

cells, which readily remap in new environments, they provide an invariant spatial 

metric that can integrate idiothetic cues in order to continuously update self-

location, making them a prime candidate for performing path integration based 

representation of space (Barry & Bush, 2012). In order to provide this, grid cells 

must continuously integrate information relating to movement and direction. This 

is achieved through dedicated populations of neurons encoding for running speed 

(Kropff et al., 2015) and head direction (Ranck, 1984; Sargolini et al., 2006; 

Valerio & Taube, 2012; Giocomo et al., 2014), as well as large populations of 

conjunctive cells, found increasingly in deeper mEC layers, that display firing 

preferences for several, or all, spatial information types (Sargolini et al., 2006).  

 

 Spatial navigation in dementia  

Spatial disorientation appears as a common symptom in Alzheimer’s disease 

(AD) and it has been proposed that reduced grid cell representation in the mEC 

may underlie these changes (Kunz et al., 2015). Spatial navigation is known to 
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be affected early in dementia pathology  (Hort et al., 2007; Laczó et al., 2011; 

Lithfous et al., 2013; Allison et al., 2016), including specific deficits in path 

integration (Mokrisova et al., 2016). It is therefore important to understand 

specific changes to mEC spatial navigation systems that may occur in mouse 

models of dementia. 

A handful studies have examined the spatial firing properties of individual neurons 

in the hippocampus in models of tauopathy (Cheng & Ji, 2013; Booth et al., 

2016b). However more recently, the activity of grid cells has been observed in an 

entorhinal cortex specific overexpression model (Fu et al., 2017) showing that 

after long periods of tau expression, grid cell periodicity and firing rate are 

reduced.  Despite this, little is known about how tau overexpression may affect 

the projections into the mEC from other pathways processing spatial information. 

The activity of single units in the mEC was therefore recorded in rTg4510 mice 

that display widespread tau pathology across all forebrain areas. 

 

 Methods 

 

 Single-unit spike detection  

Extracellular recordings were carried out using 2x16 channel electrode shanks 

(section 2.4.1) in male 7-8 month old rTg4510 and WT control mice. Data were 

referenced to the ground electrode, continuously sampled at 40 kHz, bandpass 

filtered between 1-30 kHz and saved unprocessed on a PC for offline analysis. 

Each channel was referenced offline to a common-average of the opposite 16-

channel shank (250 µm away). Extracellular spike activity was detected and 

sorted using the klusta open source software package (Rossant et al., 2016). LFP 

data were recorded while animals explored either a linear track (1.2 m) or square 

open field (1.25 m x 1.25 m).  

 

 Cell classification 

Speed modulation of cells was defined by the correlation (r) between all running 

speed and firing rate bins and expressed using the Fisher-z transformation (z) for 

variance stabilization. Head direction was determined by calculating the angle 
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between two LEDs attached to the animal’s headstage. Firing rate was calculated 

for 3º bins of head direction and smoothed, using a Gaussian window over 14º.  

A ‘head direction score’ was defined as the resultant mean vector length, 

calculated from the smoothed firing rate maps.  

Spike locations for each cell were obtained using a 2D histogram count. Firing 

rate was calculated for 3 cm x 3 cm bins across recording environments and 

smoothed using a 2D Gaussian function. ‘Gridness’ was calculated using a 2D 

autocorrelation of smoothed firing rate maps (Sargolini et al., 2006). Spatial 

periodicity was determined by rotating autocorrelations in steps of 30° and 

correlating the rotated versions with the original. Grid score was defined as the 

minimum difference between rotations at 60° or 120°, where if firing maps show 

a hexagonal pattern correlations will be high, and 30°, 90° or 150°, where 

correlations will be low.  

The spatial information content of each cell was defined using the measure 

described by Skaggs et al., (1993) and expressed in terms of bits/spike. This 

approach measures the extent to which a cells firing rate can be used to predict 

the animal’s location.  

All observed speed, head direction and spatial firing scores were compared to a 

distribution of randomly sampled correlations of shuffled data. 250 shuffles were 

performed for each cell and combined for each group.  Cells were classified as 

significant if their score was greater than the 95th percentile, or for speed 

modulation less than the 5th percentile, of the shuffled distribution.  

 

 Hippocampal CA1 data 

Single unit data recorded from CA1 pyramidal cell layer were obtained by Jon 

Witton (Booth et al., (2016b)). Data were collected using microdrives containing 

independently moving tetrodes, while animals ran on a linear track. Running 

speed – firing rate relationships were re-analysed using the pathway described 

above.  
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 Results 

 

 Decreased theta modulation of mEC single units in rTg4510 mice 

In order to determine the underlying cellular basis for impaired network activity in 

rTg4510 mice, firing patterns were observed from a total of 279 single-units in 

layer II/II mEC, isolated from 10 mice (WT:145 units from 5 mice, rTg4510: 134 

units from 5 mice). Across the entire population, rTg4510 mice showed a small 

decrease in the average firing rate of mEC single units (fig 6.1A   Median: WT: 

3.1 Hz, rTg4510: 2.0 Hz, U = 4472, p = 0.01, Mann-Whitney U, n= 145/134). 

rTg4510 cells also showed a pronounced decrease in theta modulation of firing 

patterns (fig 6.2C,   Median (theta modulation index): WT: 7.4, rTg4510: 2.3, U = 

2296, p < 0.001, Mann-Whitney U, n= 145/134). Individual units with theta 

modulation index (TMI) greater than 5 were defined as ’theta modulated’. While 

the majority of WT mEC cells (63%) showed significant theta modulation, only a 

small proportion (16%) passed threshold in rTg4510 mice (χ² (1) = 64.1, p = 

<0.0001, Chi-Square test, fig 6.2D). 

A significant population of mEC neurons can be classified as inhibitory 

interneurons (Miettinen et al., 1996; Beed et al., 2013; Buetfering et al., 2014). 

Using the average spike waveform, putative interneurons were classified as 

displaying spike-width less than 0.4 ms, based on the extracellular properties of 

PV+ interneurons isolated optogenetically (Buetfering et al., 2014), (fig 6.1B). In 

WT mice, the proportion of putative interneurons was shown to be approximately 

8% which was not significantly different to units recorded from rTg4510 mice (WT: 

11/145, rTg4510: 13/134, χ² (1) =0.4, p = 0.53, Chi-Square test, fig 6.2C).  

 

 Speed modulated firing is impaired in rTg4510 mice 

Results from the previous chapter suggest that rTg4510 mice are unable to 

effectively represent running speed information within the mEC. In addition to 

representation at the LFP level, there is good evidence that running speed is 

encoded by the firing rates of individual cells (Sun et al., 2015; Kropff et al., 2015; 

Hinman et al., 2016), therefore, the modulation of mEC single units by running 

speed was computed.  A speed score (z) was produced, based on the correlation 

between instantaneous firing frequency and running speed while mice ran on an 
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L-shaped linear track. Units were described as ‘speed modulated’ if their 

correlation was higher than the 95th centile of a shuffled distribution of data 

produced from 250 shuffles for each cell. In WT mice, a large proportion of cells 

had firing rates significantly modulated by running speed (~52%). However, this 

proportion was significantly lower (~22%) in rTg4510 mice (WT: 120/145, 

rTg4510: 41/134, χ² (1) =22 p <0.0001, Chi-Square test, fig 6.3E). As an overall 

population, rTg4510 mEC units also displayed a significantly lower average 

speed score compared to WT mice (Median: WT: z=0.09, rTg4510: z=0.006, U = 

4530 p < 0.001, Mann-Whitney U, n= 145/134, fig 6.3D), with cells recorded from 

rTg4510 mice, on average displaying a running speed correlation close to zero.  

Speed modulated mEC neurons can be broadly split into those that display linear 

and saturating exponential relationships between running speed and firing rate 

(Hinman et al., 2016). To account for this, speed scores were performed for log 

transformed data and further classified as linear or exponential by the best 

regression fit. In WT animals these cells were slightly more likely to best fit linear 

running speed relationships (fig 6.4C). However, rTg4510 mEC neurons showed 

a greater tendency for saturating fits (WT: linear: 76/120, saturating: 44/120, 

rTg4510: linear: 16/41, saturating: 17/41, χ² (1) =6, p = 0.014 Chi-Square test, fig 

6.4C).  

 

 Over representation of negatively speed modulated cells in rTg410 

mice 

rTg4510 mice show almost no correlation between oscillatory power and running 

speed; however although decreased compared to WT, a significant population of 

speed modulated cells (~22%) was observed in these animals (fig 6.3E). While 

the majority of speed modulated cells in the mEC of wildtype animals have 

positive correlations with running speed, a small proportion have been shown to 

decrease firing frequency during locomotor activity (Kropff et al., 2015; Hinman 

et al., 2016). On the linear track, in WT mice, this population was observed to be 

consistent with previous reports (~17%)(Kropff et al., 2015; Hinman et al., 2016). 

In contrast, in rTg4510 mice the proportion of cells with negative speed 

relationships was substantially and significantly higher (WT: 20/120, 

rTg4510:18/36, χ² (1) =17, p <0.0001, Chi-Square test, fig 6.5C), meaning that 
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speed modulated cells were almost split evenly between positive and negative 

associations with firing rate.  

 

 

 

 Speed modulation in CA1 hippocampus shows similar changes to 

mEC in rTg4510 mice 

Speed modulated firing of single units has also been observed in the 

hippocampus (McNaughton et al., 1983a; Lu & Bilkey, 2009; Kropff et al., 2015). 

It was therefore important to ascertain whether deficits in speed tuning in rTg4510 

mice were specific to the mEC, or also represented downstream in the 

hippocampus proper. For this purpose, data was taken from previous single unit 

and local field potential recordings in the hippocampal CA1 region of rTg4510 

mice (Booth et al., 2016b) at a similar age point and reanalysed to assess the 

contribution of locomotor activity to firing rate.   

In this region, CA1 theta band activity in the local field potential is also correlated 

with running speed in WT mice (linear regression; theta power; WT: R2=0.83, 

Figure 6.1 Firing properties of mEC single units. A) Average firing frequency 
across entire recording session of mEC neurons for WT (black) and rTg4510 
(blue) mice, average inset. B) Spike-width histogram for WT (black) and rTg4510 
(blue) units. C) Proportion of cells classified as putative interneurons (spike-width 
<0.4ms, dotted line in E) and putative excitatory. Box plots: dotted line: median, 
diamond: mean ± SEM, whiskers: 25th/75th centile), * p<0.05, *** p <0.001 Mann-
Whitney U test.  
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p<0.001, n=6), but not in rTg4510 mice (linear regression: R2= -0.04, p=0.6, n= 

4, fig 6.6B). A significant proportion of CA1 neurons were shown to have firing 

rates modulated by running speed in both WT and rTg4510 mice (WT: 25 /46, 

rTg4510: 27/52). Importantly however, as seen in mEC recordings, a much larger 

proportion of CA1 cells were negatively modulated by locomotor activity than in 

WT controls (WT: 5/25 rTg4510:13/27, χ² (1) =4.5, p = 0.03, Chi-Square test, fig 

6.6E). 

 

  

Figure 6.2 Decreased theta modulation of mEC single units in rTg4510 mice 
A) Average waveforms from example cell on 16 channel shank for WT and 
rTg4510 (B) mouse, with firing autocorrelations (ii) and Fourier transform (FFT)  
of autocorrelation showing theta peak in WT but not rTg4510 example cell. Scale 
bars: 40 ms, 50 µV.  C) Theta modulation of all recorded mEC units, cumulative 
frequency plot, with average modulation for WT (black) and rTg4510 (blue) mice 
inset. D) Proportion of cells displaying theta modulation (threshold: TMI>5). 
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Figure 6.3 Decreased speed modulation of mEC single units in rTg4510 
mice. Ai) Average waveforms from 16 channel shank, for WT and rTg4510 (Bi) 
example cells, with running speed (grey) and cell firing rate for WT (orange) and 
rTg4510 (blue) cells (ii), correlation between running speed and firing rate for 
each time bin (40 ms) and average for each speed bin (1 cm/s) (iv). Red line: 
linear fit for each. Scale bars: 40 ms, 50 µV.    C) Distribution of speed scores for 
WT (i) and rTg4510 mice (ii) with shuffled distribution of scores (grey), 5th/95th 
centile threshold: dotted line.  D) Average speed score for each recorded mEC 
unit. Box plots: dotted line: median, diamond: mean ± SEM, whiskers: 25th/75th 
centile), ** p<0.01, Mann-Whitney U test. E) Proportion of cells classified as 
speed modulated (>95th or <5th centile of shuffled distribution).  
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Figure 6.4 rTg4510 mice show decrease in linear speed relationship. A) 
Example cell, with linear speed relationship. Running speed (grey) and cell firing 
rate for WT (orange) and rTg4510 (blue) cells (i), correlation between running 
speed and firing rate for each time bin (40 ms) (ii) and average for each speed 
bin (1 cm/s) (iii). B) Same for cell with saturating speed relationship. C) 
Proportion of speed modulated mEC cells that are best described by linear and 
saturating fits for WT and rTg4510 mice. 
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Figure 6.5 Increased representation of negative speed modulation in 
rTg4510 mice. Ai) Average waveforms from 16 channel shank, for WT and 
rTg4510 (Bi) example cells, with running speed (grey) and cell firing rate for WT 
(orange) and rTg4510 (blue) cells (ii), and average for each speed bin (1 cm/s) 
(iii). Red line: linear fit for each. Scale bars: 40 ms, 50 µV.  C) Proportion of speed 
modulated units that show positive (>95th centile of shuffled distribution) and 
negative (<5th centile of shuffled distribution) speed modulation.  
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Figure 6.6 Speed modulation of single units in hippocampal CA1 pyramidal 
cell layer also shows similar increase in negatively speed modulated firing. 
A) Example cells from WT (i) and rTg4510 (ii) mice, with waveform energies of 
action potentials from 2 channels of tetrode, mean waveforms and spike-train 
autocorrelation for clustered unit (circled). B) Normalised theta oscillation 
amplitude from WT and rTg4510 mice with increasing running speed, with 
average linear regression above. C) Example positive and negative (ii) speed 
modulated cells recorded form CA1 pyramidal cell layer. D)  Proportion of cells 
passed criteria for speed modulated firing is approximately even between 
genotypes. E) Increased proportion of negatively speed modulated units in CA1 
in rTg4510 mice, compared to WT controls. Data recorded by J.Witton and panel 
A reproduced from (Booth et al., 2016b).  
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 Breakdown of grid cell periodicity in rTg4510 mice 

In parallel with the LFP data (chapter 5), rTg4510 mice show a clear reduction in 

the speed modulation of mEC single units, however the direct effect of this on the 

spatial firing properties of grid cells is unclear. The firing of mEC cells was 

therefore recorded in a 2D square recording environment (1.25 m x 1.25 m), while 

mice foraged for food rewards and grid score calculated for each cell using the 

2D autocorrelation of rate-maps across recording environments (see Methods 

section). These analyses revealed a significant population of grid cells in layer 

II/III mEC in WT mice (33/145 units, 22.3%), with grid scores higher than the 95th 

percentile of the distribution produced from shuffled spike timestamps (threshold 

= 0.21). However, in rTg4510 mice there was an almost complete breakdown of 

grid cell periodicity (4/136 units, 2.9%, threshold: 0.26), with animals displaying 

irregular, non-uniform, firing fields across recording environments (χ² (1) = 18.63, 

p < 0.0001, Chi-Square test, fig 6.7A/C).  

While as a population grid score values were significantly lower in rTg4510 mice 

(fig 6.7D,   Median: WT: 0.03, rTg4510: 0.002, U = 4316, p < 0.0001, Mann-

Whitney U, n= 145/134), this was not the case for the spatial information content 

of cells, which across the population was slightly higher compared to WT controls 

(fig 6.7E,   Median (bits/spike): WT: 0.01, rTg4510: 0.12, U = 4316, p = 0.0065, 

Mann-Whitney U, n= 145/134). There was also no difference in the number of 

spatial non-grid cells observed across groups (WT: 6/145, rTg4510: 5/136), 

defined as cells that cross threshold for spatial information content (WT: 0.53, 

rTg4510: 0.58) but not grid score (χ² (1) = 0.2, p = 0.66, Chi-Square test, fig 6.5C). 

 

 Head direction tuning is not effected by tau overexpression 

Interestingly, while there were profound decreases in both the speed- and 

spatially modulated firing in rTg4510 mice, this was not the case for the head-

direction tuning of mEC cells. As a population, the head direction (HD) score 

(mean vector length) was slightly, but significantly, higher in rTg4510 mice (fig 

6.8D/E,   Median (mean vector length): WT: 0.06, rTg4510: 0.1, U = 14258, p = 

0.01, Mann-Whitney U, n= 145/134). However, there was no significant effect on 

the proportion of cells that passed 95th centile threshold set from the shuffled 

distribution of HD scores (χ² (1) = 0.04, p =0.84, Chi-Square test, fig 6.8C).   
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 Conjunctive representation of spatial firing properties in mEC 

rTg4510 mice 

In summary, the analysis of spatial information measures in the mEC revealed 

that rTg4510 mice displayed a marked reduction in the prevalence of both speed 

and grid cell activity, with little effect on the proportion of head direction cells (fig 

6.10A). In WT mice, the majority of recorded cells reached criteria for either speed 

modulation, grid periodicity or head direction tuned firing (~62%), with many of 

these being conjunctively modulated by 2 or more spatial parameters (~16%). In 

contrast, no neurons recorded from rTg4510 mice that showed conjunctive firing 

of speed, grid or head direction tuning (WT: 22/145, rTg4510:0/134, fig 6.9/ 

6.10B). In addition, compared to WT controls, rTg4510 single units were much 

more likely be not classified into one of the categories described above (Non-

classified, WT: 40/145 rTg4510: 94/134, χ² (2) = 58.5, p <0.0001, Chi-Square 

test). 

In these recordings, a large proportion of WT grid cells also showed either speed 

or directional modulation. Specifically, around half of these cells were also 

modulated by speed, which was not the case in rTg4510 mice (fig 6.10C). 

Furthermore, although the proportion of head direction cells was not significantly 

different between genotypes, the majority of recorded head direction cells (~75%) 

were also conjunctive grid cells (fig 6.10 D). However, this was also not the case 

in rTg4510 mice.  

 

 Recording location is consistent between genotypes 

Recording locations were determined by electrolytic lesions of each recording 

shank before the perfusion-fixation of tissue. While the recording location of each 

electrode shank varied along the dorso-ventral axis of the mEC, locations were 

not significantly different between WT and rTg4510 genotypes (Median (µm): WT: 

300, rTg4510: 430, U = 22, p = 0.8, Mann-Whitney U). Since the recording array 

used in these experiments contained electrodes across 200 µm of tissue, more 

precise recording locations were estimated using the largest average waveform 

for each isolated unit. Recording location was also not different between 

genotypes when using this estimated measure (Median (µm): WT: 350, rTg4510: 

385, U = 9660, p = 0.77, Mann-Whitney U test). 



150 
 

 

Figure 6.7: Breakdown of grid cell periodicity in rTg4510 mice. A) Example 
spatial firing patterns of cells from WT (i) and rTg4510 (ii) mice in a 1.25 m square 
arena, displayed with grid score (g), spatial information content (SI) and peak 
firing rate across recording environment. 5 cells with the highest grid score 
displayed for each genotype. B) Grid score plotted against spatial information 
content for each cell in WT and rTg4510 mice, for illustrative purposes dotted 
lines represent threshold (95th centile of shuffled distribution) for grid/spatial firing 
in WT mice. C) Proportions of grid and spatial non-grid cells greater than 
threshold in WT and rTg4510 mice. D) Cumulative frequency plots for grid score 
and spatial information content (E) with average values for each genotype (dotted 
line: median, diamond: mean ± SEM, whiskers: 25th/75th centile), * p<0.05, *** 
p<0.001, Mann-Whitney U test.    
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Figure 6.8 rTg4510 mice retain mEC head-direction tuning. A) Example head-
direction tuning of WT and rTg450 units, displayed with head direction score (HD) 
and peak firing rate across head direction bins. B) Distribution of HD scores for 
WT (i) and rTg4510 mice (ii) with shuffled distribution of scores (grey), threshold: 
dotted line. C) Proportions of cells with head direction scores over threshold in 
WT and rTg4510 mice. D) Cumulative frequency distribution of HD scores (mean 
vector length), dotted line: WT threshold. E) Mean vector length for all cells, 
showing increased head-direction tuning across population in rTg410 mice 
(dotted line: median, diamond: mean ± SEM, whiskers: 25th/75th centile), * p<0.05 
Mann-Whitney U test.    
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Figure 6.9 Example mEC units. Example grid (A), head direction (B) and speed 
(C) cells taken from the highest modulation scores from WT (i) and rTg4510 (ii) 
mice, showing spatial firing patterns with 2D spatial autocorrelation, head 
direction tuning and running speed-firing rate relationship and corresponding 
score (SI: spatial information, HD: mean vector length, Z: speed score). 
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Figure 6.10 Conjunctive representation of grid, head direction and running 
speed in WT and rTg4510 mice. A) Proportions of grid, head-direction and 
speed modulated cells recorded in mEC, showing reduced number of grid and 
speed, but not head-direction, cells passing threshold (95% centile of shuffled 
distribution). B) Breakdown of units from WT and rTg4510 mice that satisfied a 
single criteria (class), multiple criteria (conj) or no discernible firing pattern (other). 
C) Conjunctive proportions of grid cells, head direction cells (D) and speed 
modulated cells (E) recorded from WT and rTg4510 mice with comparison scaled 
to 100% on right (ii). Key, G: grid, HD: head direction, S: speed, Sneg: negative 
speed, G-HD: gird-head direction, G-S: grid-speed, G-S-HD: grid-speed-head 
direction. Class: classed as cell type, Conj: conjunctive representation (more than 
1 classification), other: not classified as grid, speed or HD. 
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Figure 6.11 Recording locations of mEC single units do not vary between 
WT and rTg4510 mice. A) Example sections showing electrode lesions (red dot) 
of final location in mEC of WT (i) and rTg4510 mice (i), dorsal mEC boarder 
shown in red dotted line. B) Reconstructed recording locations used for analysis 
for WT (i) and rTg4510 (ii), colours represent recordings from the same 
experimental subjects. Scale bar: 200 µm. Box (below): 1 mm. Ci) Recoding 
locations for each probe used for analysis. ii) Estimated location based on 
relative position of largest waveform for each cell on electrode shanks (line: 
median, diamond: mean ± SEM, whiskers: 25th/75th centile), ns = non-significant, 
Mann-Whitney U test.    
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 Discussion  

 

 Summary  
The data described in this chapter are the first to show alteration in mEC single 

unit activity in rTg4510 mice. The finding that mEC neurons show disrupted 

relationships with locomotor activity support the assertion from the previous 

chapter, that rTg4510 mice are unable to adequately represent running speed 

information. Similarly, the occurrence of grid cell firing fields was shown to be 

absent in rTg4510 mice, although mEC cells retained a similar, or slightly 

increased, spatial information content compared to WT. Furthermore, the 

abolition of grid cell periodicity in these mice can be predicted by small changes 

to running speed oscillation relationships seen in chapter 5.  

While, at this relatively late stage of degeneration, speed and grid cell 

representation appear to be severely influenced by tau pathology, rTg4510 mice 

do not show decreased tuning to head direction inputs. If anything, as a 

population these mice are significantly more tuned to head direction than WT 

controls. 

 

 Decreased speed modulation may underlie reduced grid cell 

periodicity in rTg4510 mice 

There has been some suggestion in the literature that dementia pathology affects 

the firing pattern of grid cells in the mEC both in mice (Fu et al., 2017) and grid-

like neural representations in humans (Kunz et al., 2015). However, to date no 

studies have examined changes to speed modulated firing of mEC single units. 

Data presented in this and the previous chapter suggest the hypothesis that 

reduced grid cell periodicity may be the result of the impaired integration of 

running speed information in the mEC. It is unclear whether the reintroduction of 

locomotor signals, for example through closed-loop optogenetic stimulation, 

could restore grid cell activity in these mice. However, unlike artificially inserting 

grid cell activity, this may be an achievable, if challenging, avenue for 

investigation.  

Given the role of the medial septum in locomotor encoding (Fuhrmann et al., 

2015; Justus et al., 2016) and grid cell formation (Koenig et al., 2011; Brandon et 
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al., 2011), this work also further highlights a role for this area in the breakdown of 

neuronal networks in dementia models.  

 

 Global vs entorhinal specific tau overexpression 

The findings seen above are largely consistent with those described in mice 

displaying an entorhinal-specific pathology (EC-tau) (Fu et al., 2017); however, 

there are several key differences between experiments. Firstly, since EC-tau 

mice (Harris et al., 2012; Liu et al., 2012; de Calignon et al., 2012) show pathology 

that is specific to the hippocampal formation, the activity of projections from key 

path integration systems, such as running speed and head direction, are 

presumably entirely functional. This suggests that the failure of grid cell formation 

is due to the inability of individual mEC neurons to integrate incoming information 

effectively. 

EC-tau mice are produced using the same P301L mutant tau gene as rTg4510 

mice, it is therefore possible to directly compare differences in global and 

entorhinal specific tau overexpression across age points. Tau-EC mice, at the 

ages used in the current experiment (7-8 months) show no cognitive deficits in 

behavioural tasks (Harris et al., 2012). Indeed, much older mice (14 months) were 

also capable of effectively processing spatial information and of normal grid cell 

function (Fu et al., 2017), with deficits not apparent until 30 months of age. Clearly 

these models will produce differences in mEC pathology, however it could be 

suggested that in the rTg4510 mice used above, mEC pathology alone would not 

be sufficient to produce grid cell dysfunction.  In this case, impaired grid cell 

activity could be the product of aberrant mEC inputs and this is consistent with 

the finding of impaired representation of running speed. It is possible that grid cell 

deficits seen in this chapter could be entirely explained by dysfunctional 

processing of locomotor activity, rather than specific changes to mEC neuronal 

function. Nevertheless, it is most likely that deficits seen in rTg4510 mice are the 

result of a combination of these factors, since there are also clear changes to 

intrinsic properties of mEC stellate cells and synaptic deficits in these animals 

(Booth et al., 2016a).   
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 Negative speed modulation of mEC neurons  

In WT animals, only a small population of mEC neurons display negative 

relationships with running speed (Kropff et al., 2015; Hinman et al., 2016). These 

data show that during recordings on the linear track, rT4510 mice have a larger 

proportion of cells that decrease their firing rate with increases in running speed. 

Interestingly, neurons in the medial septum also display a more even split 

between positive and negative speed modulation (Justus et al., 2016), suggesting 

that, under normal physiological conditions, the mEC does not simply recapitulate 

these firing patterns, but integrates this information differently. The precise 

targets of negatively speed modulated inputs into mEC are unclear; however it is 

possible that they are more likely to be conjunctive with other spatial information 

systems, such as grid or head direction. Indeed, negatively speed modulated 

cells are more likely to be tuned to head direction (Hinman et al., 2016), which is 

consistent with the increase in mean vector length observed in rTg4510 neurons 

at a population level.  

 

 Vulnerability of grid cell firing to external influences  

These results may highlight the importance of an intact path integration system 

in order to maintain grid cell periodicity. There have been several examples in the 

literature that show a breakdown of grid cell firing patterns after the inactivation 

of important spatial information streams. For example, inhibition of the medial 

septum, which controls theta rhythmicity, but also speed modulated inputs, 

produces a complete breakdown of grid cell periodicity (Koenig et al., 2011; 

Brandon et al., 2011). The same is true for disruption of head direction pathways, 

with inactivation of the anterior thalamic nuclei (ATN) also impairing the grid cell 

signal  (Winter et al., 2015), and for inactivation of reciprocal hippocampal inputs 

into the mEC (Bonnevie et al., 2013).    

The removal of theta oscillation input into the mEC in particular may represent a 

potential mechanism for the breakdown of grid cell periodicity, independent of 

speed inputs. However, speed and theta outputs from the medial septum may be 

difficult to separate in this context. In any case, it is likely that the decrease in 

theta oscillations (chapter 4) and theta rhythmicity of mEC neurons will have 

profound effects on grid cell firing, since the majority of these neurons are strongly 

modulated by theta (Sargolini et al., 2006; Jeewajee et al., 2008a; Koenig et al., 
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2011; Brandon et al., 2011; Domnisoru et al., 2013). It remains to be seen 

whether the reintroduction of theta signals could restore grid or speed cell firing 

in rTg4510 mice. 

The almost complete breakdown of grid cell firing in rTg4510 mice contrasts with 

the effect of tau overexpression on the hippocampus of these animals. While 

several studies have shown a reduction in the spatial information and stability of 

hippocampal place cells (Cheng & Ji, 2013; Booth et al., 2016b), firing fields are 

still consistently present in these mice. Given the pattern of degeneration across 

the hippocampal formation, weak place fields (Cacucci et al., 2008; Cheng & Ji, 

2013; Booth et al., 2016b) may be the result of reduced entorhinal inputs (Brun 

et al., 2008a; Van Cauter et al., 2008; Hales et al., 2014). Reductions in grid and 

place field activity may therefore mirror their appearance in neuronal 

development, where place cells appear before grid cell and mature fully only after 

grid cell development (Wills et al., 2012; Muessig et al., 2015). The precise 

temporal nature of grid and place cell impairment is as yet unknown. However, 

taken together, these data suggest further evidence of hippocampal place fields 

in the absence of effective grid cell firing.  

 

 Stability of head direction tuning  

A further feature of the inactivation studies described above is the stability of head 

direction tuning in the mEC. Blocking medial septum activity impairs grid cell 

firing, but not head direction tuning (Koenig et al., 2011; Brandon et al., 2011). 

Interestingly, the breakdown of grid periodicity after hippocampal inactivation has 

also been shown to reveal head direction tuning in grid cells that would previously 

not have been modulated by head direction (Bonnevie et al., 2013). It is possible 

that the population increase in head direction firing in rTg4510 mice may reflect 

this unmasking of head direction inputs from cells that would have previously 

displayed grid patterns. However, this is a hypothesis that would need to be 

addressed directly with long term recordings of grid cells as tau pathology 

increased to critical levels to impair spatial firing patterns. This approach is 

unlikely to be achieved with current technology. In any case, the arrival of head 

direction information into the mEC is likely the result of an anatomically distinct 

pathway (Taube, 2007) that appears to be unaffected by tau pathology in rTg4510 

mice at this stage. This is most likely due to a greater dependence on subcortical 
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structures, that integrate vestibular information (Stackman & Taube, 1998; Sharp 

et al., 2001; Blair et al., 2007). 

 

 Implications for spatial navigation and path integration 

Although not examined directly in this chapter, the breakdown of key spatial 

information streams is likely to have profound implications for the ability of 

rTg4510 mice to perform spatial navigation. Deficits in spatial memory have been 

consistently observed in these mice, at several age-points and using multiple 

behavioural tasks (Santacruz et al., 2005; Ramsden et al., 2005; Bailey et al., 

2014; Cook et al., 2014; Booth et al., 2016b). 

Grid cells are proposed to play a key role in path integration systems (Etienne & 

Jeffery, 2004; Fuhs & Touretzky, 2006; McNaughton et al., 2006; Burak et al., 

2009). For example, mice lacking GluA1-containing AMPA receptors have been 

shown to display reduced grid cell periodicity, correlating with impairments on 

path integration-based task (Allen et al., 2014). Path integration has also been 

suggested to be impaired in populations of dementia and MCI patients (Hort et 

al., 2007; Mokrisova et al., 2016; Allison et al., 2016). The direct association 

between these two factors is still unclear; however, it is likely that grid cell deficits, 

as described above, directly contribute to the deficits in spatial information 

processing in rTg4510 mice. 

 

 Dorso-ventral organisation of single unit properties in rTg4510 mice 

One of the major hypotheses constructed from the LFP studies described in 

chapter 4 was that dorso-ventral gradients in spatial firing are disrupted in 

rTg4510 mice.   In the current study however, no grid patterns were observed in 

these animals, meaning that it was not possible to adequately determine the 

effect of dorso-ventral location on spatial firing properties of mEC neurons. 

Additional experiments are required on mice earlier in disease pathology, which 

would also most likely require simultaneous single unit recordings from multiple 

dorso-ventral locations in each animal subject to achieve the required statistical 

power for comparisons. However, since recording locations in the experiments 

presented here were similar in rTg4510 and WT mice, the current data are 

compared directly, independent of dorso-ventral location. It is likely that these 
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deficits are displayed along the entire dorso-ventral axis of the mEC, however it 

is also possible that these changes are more (or less) prominent depending on 

their precise anatomical location at different stages of pathology.    

 

 Thresholding spatial modulated firing scores    

While studying firing properties from transgenic animals that likely show 

impairments in spatial representation, it is important to carefully consider the 

thresholding of mEC cell categories. This research has particular challenges, 

namely, the classification of poorly performing cells that are likely to not meet 

strict criteria produced though shuffled distributions of data. For example, it is 

almost impossible to know, without ultra-long term (i.e. many weeks or months) 

recordings from rTg4510 single units, that a cell displaying a poor grid score is 

doing so because it is a dysfunctional grid cell, or because it is one of the many 

that do not show grid periodicity to begin with.  

For this reason, the data presented in this chapter have shown changes to the 

population dynamics of firing modulated by speed, head direction and spatial 

information. Wherever possible raw, or minimally processed, data have been 

displayed, as not to bias with specific thresholds. It is however, impossible not to 

set arbitrary thresholds for such firing properties and these have been set at 95% 

of shuffled distribution in order to avoid missing cells whose association is less 

pronounced. These thresholds are consistent with several reports in the literature 

(Langston et al., 2010; Sun et al., 2015; Fu et al., 2017); however it should be 

noted that others have used stricter thresholds (Koenig et al., 2011; Giocomo et 

al., 2014; Kropff et al., 2015; Hinman et al., 2016) and exact proportions of mEC 

cell types may differ accordingly.  

  



161 
 

 Conclusions  

Overall, these data show a clear breakdown in grid cell periodicity in rTg4510 

mice compared to WT controls. In addition, they suggest a role for the 

dysfunctional processing of locomotor activity in this process, since the 

representation of running speed information in mEC single units is severely 

disrupted in these mice, while head direction tuning remains constant, or slightly 

increased. The changes to mEC single unit firing are likely to have profound 

implications for the impairments in spatial memory observed in these mice and 

suggest observable parameters to assess in dementia patient populations, for 

example through speed modulated fMRI signals in virtual environments.   
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7. General discussion  
 

 

 Key findings  

The experiments detailed above have used a variety of experimental approaches 

to produce numerous novel findings that have relevance both to basic mEC 

physiology and to the breakdown of mEC neuronal networks as a result of tau 

pathology. The principle findings will be summarized here: 

 

 Novel mEC dorso-ventral gradients  

While dorso-ventral gradients have been well described at a single cell level, both 

in terms of intrinsic neuronal properties (Giocomo et al., 2007; Garden et al., 

2008; Boehlen et al., 2010; Dodson et al., 2011; Pastoll et al., 2012; Navratilova 

et al., 2012; Yoshida et al., 2013; Booth et al., 2016a) and in the firing of individual 

grid cells (Brun et al., 2008b; Giocomo et al., 2011a; Stensola et al., 2012), much 

less is known about how this precise organisation of the mEC corresponds to 

activity at the level of the neuronal network. Throughout this thesis novel dorso-

ventral gradients have been observed in various aspects of mEC network activity 

that should be highlighted in their own right and are therefore outlined below: 

 

 Gradient in gamma oscillations along the dorso-ventral axis of the mEC. 

Chapters 3 and 4 clearly show clear gradients in gamma oscillation activity in 

the mEC, both using pharmacologically induced oscillations in vitro and in vivo 

recordings from freely moving mice. Specifically, gamma oscillations in dorsal 

mEC are larger than corresponding oscillation in ventral regions. Gamma 

oscillation amplitude also shows stronger coupling to theta phase in dorsal 

mEC and under periods of high arousal local networks may be able to produce 

rhythmic activity at higher frequencies. Since gamma oscillations are heavily 

linked with cognition, this may have functional implications for the processing 

of spatial information in the mEC.   

 

 Dorso-ventral gradient in mEC running speed-oscillation relationships. 

In addition to gradients in basic network properties, chapter 5 shows that this 
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organisation of the mEC may have implications for the integration of spatial 

information. The relationship between oscillation size and running speed has 

been known for many years; however, by recording simultaneously from 

regularly spaced sites across the dorso-ventral axis of the mEC, results from 

this thesis demonstrate that oscillatory power shows greater increases in 

dorsal mEC for given increases in locomotion than ventral. This suggests that 

as mice run faster, the distinction between dorsal and ventral mEC becomes 

more pronounced. This will also likely impact the processing of incoming 

spatial information and may be relevant to the formation of grid cell patterns 

across the mEC, with increased sensitivity to locomotive activity allowing 

dorsal mEC neurons to shift activity states more frequently than ventral, 

producing smaller, tightly packed firing fields. 

 

 Gradient in hyperexcitability along the dorsal-ventral axis of the mEC. 

Results shown in chapter 3 also highlight the aberrant consequences of the 

stereotyped anatomical organisation of the mEC.  With ventral mEC stellate 

cells exhibiting a higher input resistance, a slower membrane time constant 

and a lower action potential threshold than dorsal (Garden et al., 2008; 

Giocomo & Hasselmo, 2009; Boehlen et al., 2010; Booth et al., 2016a), this 

region presents itself as a potential epileptogenic zone within the medial 

temporal lobe. The increased intrinsic excitability in ventral mEC, coupled with 

the relative decrease inhibitory connectivity (Beed et al., 2013) give rise to an 

increased likelihood for producing epileptiform-like bursting activity. After 

initiation, the inhibitory organisation of the mEC also allows for an 

unexpectedly slow spread of ictal-like activity, which may also highlight the 

complex connectivity in this area.  

 

 mEC network activity in rTg4510 mice 

To date, no other studies have examined changes to neuronal network activity in 

the mEC in rodent models of disease. This thesis describes further novel findings 

that show clear changes to oscillatory activity, both in terms of dorso-ventral 

gradients and in global network properties across the mEC during tau pathology. 

They are listed below: 
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 Broad-band reduction in mEC network activity in rTg4510 mice.  

Firstly, results in chapter 4 show wide-scale reduction of neuronal network 

oscillations in the mEC of rTg4510 mice. Decreases in oscillatory power were 

consistent across all frequency bands, however, as a proportion of the LFP, 

theta oscillations were specifically impaired.   

 

 Disruption in running speed-oscillation relationship in rTg4510 mice. 

Chapter 5 described the novel finding that rTg4510 display a blunted ability to 

modulate neuronal network activity in relation to changes in locomotion. 

Specifically, while clear running speed relationships exist in WT animals for 

both theta and gamma oscillations, changes to locomotion have almost no 

effect on the oscillatory amplitude in rTg4510 mice. This may have a profound 

influence on the formation of grid cell firing patterns which almost certainly 

rely on the effective integration of movement speed to continuously update 

the representation of an animal in space. 

 

 Flattened dorso-ventral gradients in oscillatory activity in rTg4510 mice. 

Significantly, the results described in chapter 4 show clear changes to dorso-

ventral relationships in oscillatory activity. Experiments with 

pharmacologically induced gamma oscillations in vitro clearly show 

preferential disruption of network activity in dorsal mEC regions, with ventral 

mEC activity remaining similar to WT controls. In vivo, despite broad-band 

changes to oscillatory power, the relationship between anatomical location 

and network activity was abolished in rTg4510 mice and this may have 

profound implications for the spacing of grid fields along the dorso-ventral 

axis. Perhaps the most striking example of this can be seen with some of the 

novel mEC network gradients described above, specifically the gradient in 

theta-gamma phase amplitude coupling (PAC) and running speed – 

theta/gamma relationship that are not present in rTg4510 mice. 

 

 Reorganisation of mEC spatial firing in rTg4510 mice 

The final chapter of this thesis explores how the individual firing of mEC single 

units is effected by tau overexpression. These data show the following: 
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 Reduced representation of running speeds from single unit firing rate in 

rTg4510 mice.  

The relationship between running speed and oscillatory activity was shown 

clearly in chapter 5. Data presented in chapter 6 further shows a decreased 

speed modulation of mEC single units in rTg4510 mice. In addition, this is 

accompanied by an increased likelihood of mEC neurons to have firing rates 

negatively modulated by running speed. 

 

 Breakdown of grid cell periodicity in rTg4510 mice. 

Changes in speed modulation of mEC single units are accompanied by an 

almost complete breakdown of grid cell periodicity in rTg4510 mice. However, 

mEC neurons do retain spatial information content in these mice.  

 

 No change in head-direction tuning of rTg4510 mEC single units.  

Unlike grid and speed modulated neurons, rTg4510 mice showed no changes 

in the number of head direction cells recorded in mEC. Furthermore, as a 

population, mEC units were more tuned to head direction than WT controls.  

 

 

 Relevance of rodent models of disease 

 

 Limitations of mouse models  

There are many reasons for which rodents are an excellent model system for 

studying both basic and disease physiology. The mouse and human genomes 

are widely overlapping (~99%) and combined with relatively small space 

requirements, short lifespans, fast breeding cycles and a wide array of genetic 

and molecular tools, this makes mice an ideal model organism for animal studies 

(Vandamme, 2014). However, while rodent models of dementia are one of the 

most useful tools for the discovery of new treatments for AD, it is still the case 

that many of the potentially disease modifying treatments that show preclinical 

success have failed to provide positive results in the clinic (Mangialasche et al., 

2010; Hall & Roberson, 2012).  
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One of the major limitations for mouse models of dementia is that, for an 

overwhelmingly sporadic, rather than familial, condition the majority of rodent 

models rely on the overexpression of proteins produced through genetic 

mutations. For example, the MAPT P301L mutation, that forms the basis of the 

rTg4510 mouse (Santacruz et al., 2005; Ramsden et al., 2005) has been 

observed  in only a small number of families around the world (Hutton et al., 1998; 

Dumanchin et al., 1998; Bird et al., 1999; Mirra et al., 1999). While these animals 

successfully recapitulate large amounts of disease progression, they do not 

necessarily represent the patient population as a whole. Furthermore, the 

transgenic overexpression of mutant transgenes itself is not necessarily an ideal 

model, since these animals may express unphysiological levels of aberrant 

proteins.  

Another potential factor to consider when producing mouse models of dementia 

is the speed of pathological progression. An ideal disease model to replicate the 

human condition would develop disease pathology over a prolonged timescale, 

such as the entire lifespan of a mouse, however this is not experimentally viable. 

It is important to note that, while in laboratory terms 8 month old mice could be 

regarded to be considerably ‘aged’, WT mice may comfortably have another year 

of life. The animals used in this thesis may not faithfully replicate changes seen 

through the combination of both disease pathology and normal ageing, which in 

itself produces cognitive deficits (Buckner, 2004; Jacobson et al., 2013; Lithfous 

et al., 2013; Harada et al., 2013). In any case, replicating a disease produced 

through decades of slow development is likely to prove difficult in a species with 

a lifespan of only 2 years (McGowan et al., 2006).  

 

 Technical challenges of in vivo electrophysiology in rodent models 

of degeneration 

One of the most significant experimental challenges with the in vivo 

electrophysiological recordings described in this thesis is the stereotaxic 

placement of electrode arrays in tissue that shows pronounced 

neurodegeneration. This is most notable for experiments utilizing fixed silicon 

probe arrays (chapter 4), where coordinates needed to be substantially adapted. 

At this age point, a decrease in cortical thickness of over 10% was observed in 

the mEC (fig. 4.7) and extrapolating this over the entire brain means that standard 
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stereotaxic coordinates (Paxinos & Franklin, 2001) used to reach mEC areas are 

not viable.  Fortunately, many studies implanting electrodes into the mouse mEC 

use coordinates relative to the transverse sinus (Fyhn et al., 2008; Giocomo et 

al., 2011a; Booth et al., 2016a), which at least anecdotally in this case does not 

show relative changes in position with the mEC.  

The recording of single unit activity also presents logistical challenges and 

especially so in aged, transgenic animals. These animals may need longer 

recovery times after surgical procedures, as well as larger periods for habituation 

and training to cover open field environments effectively. Electrode arrays also 

need to be lowered slowly into position over a period of weeks, meaning that 

there can be a variable amount of time before stable single units are detected in 

the mEC. These techniques are therefore relatively low throughput, with 

experimenters only able to use small batches of animals for optimal recordings 

and analysis techniques requiring many hours of computation for each recording 

session.  This presents difficulties when observations of disease models are best 

achieved across precise time-windows corresponding to specific stages of 

disease progression. For this reason, the current studies (chapter 6) show 

recordings from 7-8 month old animals where pathology is well established. 

However, further refinement may be needed to adequately describe early 

changes to mEC single unit activity relating to tau pathology.  

 

  Effective biomarkers for the assessment of disease progression 

One of the most important motives for studying network activity in rodent models 

of disease is to identify relevant and translatable biomarkers to assess disease 

pathology. Ultimately, such findings could provide assistance for the clinical 

assessment of dementia patients (Yamasaki et al., 2012). These studies show 

clear changes to network activity in the mEC; however, it remains to be seen 

whether such changes could easily or reliably be seen in human patients, 

although reductions to grid-like representations in the mEC have been observed 

APOE-ε4 carriers even before disease onset (Kunz et al., 2015). 

Once established as relevant to the human condition, changes to neuronal 

network activity could easily be used assess the neurophysiological effects of 

potential therapeutic compounds developed for the treatment of neurological 
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disorders. As discussed in chapter 5, the relationship between oscillatory activity 

and running speed could provide an ideal candidate for this, since it can be 

observed using relatively simple electrophysiological techniques, and is a 

phenomenon that has been shown to be adaptive environmental context, 

meaning that as a process, it will likely require the integration of numerous 

information streams and coordination of large scale neuronal networks. 

 

 Lessons for spatial information processing from rodent 

models of dementia  

 

 Vulnerability of grid cell periodicity to cognitive decline 

The results presented in chapter 6 add to a growing body of literature that 

highlights the vulnerability of grid cell firing to external influences. Since the 

entorhinal cortex is the first area to see degeneration in AD it is reasonable to 

suggest that the make-up of grid cells in particular is such that they are sensitive 

to degeneration. Indeed, the inhibition of inputs into the mEC that are presumed 

to provide grid cells with important spatial representations all impair grid cell 

periodicity. Antagonising projections from the medial septum (speed/theta) 

(Koenig et al., 2011; Brandon et al., 2011),  anterior thalamic nuclei (head-

direction) (Winter et al., 2015) and hippocampus (place cells) (Bonnevie et al., 

2013) all produce a complete breakdown of grid cell periodicity. This is not 

necessarily the case for other spatial information streams, for example, the 

absence of septal or hippocampal inputs has no effect on head-direction tuning 

(Koenig et al., 2011; Brandon et al., 2011; Bonnevie et al., 2013), which in some 

cases may show an increased representation under these conditions (Bonnevie 

et al., 2013).    

It is therefore important to highlight that this work not only has relevance to 

tauopathy, but also that by understanding the reorganisation of information 

processing systems during disease there is much to learnt about underlying 

physiology.  
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 Relevance of spatial information processing to other forms of 

memory 

Using rodents to assess episodic or declarative memory is a difficult task, the 

majority of animal studies therefore primarily rely on a well-established battery of 

spatial memory task, such as the Morris water maze or T-maze to assess memory 

function (Dudchenko, 2004). This is predominantly the result of necessity and 

while areas such as the mEC are undoubtedly important for spatial memory, 

‘cognitive map’ theory does not solely be applied to spatial planes. Perhaps the 

most notable examples of this can be seen through human hippocampal cells 

that have the capacity to code for not just individual location, as would be 

expected from rodent place cells, but also individuals, landmarks or objects (Fried 

et al., 1997; Quiroga et al., 2005).  

Grid cells can also be found in the human memory network, using both direct 

recordings from neurosurgical patients (Jacobs et al., 2013) and grid-like 

representations in fMRI signals (Doeller et al., 2010; Kunz et al., 2015; Horner et 

al., 2016). Importantly, these signals are present when participants navigate 

virtual environments (Doeller et al., 2010), but also imagined ones (Horner et al., 

2016), highlighting further the role for the entorhinal cortex in  goal-directed 

behaviour (Chadwick et al., 2015). There is also evidence to suggest that, in 

humans, grid-like signals are not unique to the mEC, but can be measured during 

spatial navigation in parts of the medial frontal and parietal cortices (Doeller et 

al., 2010; Jacobs et al., 2013). Importantly, they are also not confined to spatial 

‘cognitive maps’, with several of these regions displaying grid-like neural 

representation of conceptual space (Constantinescu et al., 2016). These studies 

suggests grid patterns as a common neural coding mechanism for storing both 

spatial and conceptual information.     

 

   Future directions 

 

The work presented in this thesis highlights a number of questions for providing 

greater understanding the neurophysiological changes to the mEC in mouse 

models of dementia. Although not exhaustive, some of the potential future 

directions are listed below: 
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 Key experiments  

 Ascertain the time-course of tauopathy induced impairment of neuronal 

network activity in the mEC, specifically in order to observe whether such 

changes can be seen prior to the onset of behavioural deficits.  

 

 Provide detailed analysis of dorso-ventral organisation of the spatially 

modulated firing of mEC neurons in younger rTg4510 mice to understand 

precisely how preferential impairment of dorsal mEC corresponds to the 

individual firing across the dorso-ventral axis.  

 

 Establish specific relationship between deficits in speed modulated firing and 

breakdown of grid cell periodicity in rTg4510 mice. If, as hypothesised, a 

causal relationship is shown to exist between the breakdown of speed 

information processing and grid cell firing, then a secondary aim would be to 

determine whether artificially reproducing the speed signal, for example 

through optogenetic stimulation, could restore function in the mEC and/or 

behavioural deficits seen in these mice.  

 

 Provide evidence for relationship between grid or speed cell degeneration and 

spatial memory impairments in rTg4510 mice, with associated behavioural or 

path integration based tasks.  

 

 Final conclusions  

 

The work presented in this thesis has provided novel insights into changes to 

mEC physiology that can occur during tau pathology. It shows clear changes to 

network activity in rTg4510 mice that is likely to correspond with the deficits in the 

representation of spatial information in the mEC. Understanding how dementia 

pathology produces changes to neuronal network function and ultimately 

cognition is key for understanding and testing viable treatment pathways which 

could slow or halt the disease. Furthermore, understanding the behaviour of 

aberrant neuronal activity may potentially shed new light on the mechanisms of 

memory processes in normal conditions.  
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8. Appendix – MATLAB code  
 

The following relevant MATLAB functions are included that were used for the 

processing and analysis of single unit mEC recordings from 32 channel silicon 

probes (see section 2.4): 

 

 Pre-processing of LFP data  

 

function [data_array,TS,Fs,ref_array] = 
rewrite_csc_nlx(p,save_loc,ref_av,ref_chan,ref_layout,downSampleFreq,bandPassLims,template_path) 

% rewrite_csc_nlx(p,sav_loc) 
 
% Writes CSC directory into .dat file 

Outputs: 

     data_array:   array with all CSCs(uVolts) in the order [Time1Channel1, Time1Channel2, .. 
Time1ChannelN, Time2Channel1, ...] 
     TSs:    row vector of timestamps (sec) 
     Fs:     sampling Frequency (Hz) ** assumes TSs abd Fs are the same for all channels in folder 
     ref_array: cell array of shank averages used as reference channels 

     Saves data array as .dat binary data file 
     Saves template .prm, .prb and . bat files to run klustaKwik 

Inputs: 

     p: file path of directory containing the CSC that you wish to import eg C:\Offline 
data\KlustaKwik\2015-06-19_15-54-24_314_open_field 
     save_loc: path of folder to save data into eg 'C:\Offline data\KlustaKwik' Note: output creates 
folder within this path containing data and files for running klusta 
     ref_av:  1 = reference to common average (below), 0 = no reference (ie to ground) 
     ref_chan: vector of channels to be used as average reference (0 = none/exclude, 1 = shank1 
, 2 = shank2 etc) 
               eg ref_chan = [0;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2] produces 
average of shank1 from chan2-16 and average of shank2 from 17-32. 
               leave empty for all channels on each shank of cambridge probe. 
     ref_layout: vector of reference shank for each electrode, eg. 
ref_layout=[2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] 
                 references electrodes 1:16 from ref_chan(2)(i.e. average of shank 2) and electrodes 
17:32 from ref_chan(1). 
                 leave empty for oposite channels on cambridge probe. 
     downSampleFreq: down sample frequency (in Hz), leave empty if no downsample 
     bandPassLims: bandpass limits (in Hz), leave empty if no filter 
     template_path: Folder containing template .prb, .prm and .bat files for running klusta 

Defaults 

if nargin < 2 
    save_loc = p; 
end 
 
if nargin < 3 



173 
 

    ref_av = 1; 
end 
 
if nargin < 4 
    ref_chan(1:16) = 1; 
    ref_chan(17:32) = 2; 
end 
 
if isempty(ref_chan) 
    ref_chan(1:16) = 1; 
    ref_chan(17:32) = 2; 
end 
 
if nargin < 5 
    ref_layout(1:16) = 2; 
    ref_layout(17:32) = 1; 
end 
 
if isempty(ref_layout) 
    ref_layout(1:16) = 2; 
    ref_layout(17:32) = 1; 
end 
 
if nargin < 6 
    downSampleFreq = []; 
end 
 
if nargin < 7 
   bandPassLims = []; 
end 
 
if nargin < 8 
   template_path = 'Z:\Methods\TomR\klusta template files\cambridge probe new'; 
end 

File params 

path_parts = strsplit(p,'\'); 
folder_name = path_parts{end}; 
 
mkdir(save_loc,folder_name) 
save_loc = strcat(save_loc,'\',folder_name); 
 
save_name = 'WideBandData'; 

Params 

number_shank = max(ref_chan); 
mode ='all'; 

Make an array with all the filenames in it 

switch p(end) 
    case '\' 
    otherwise 
        p(end+1) = '\'; 
end 
 
data_dir = dir([p '*.ncs']); 
 
 
filename = cell(length(data_dir),1); 
for i = 1:length(data_dir) 
    filename{i} = [p data_dir(i).name]; 
end 
 
% use sort_nat to arrange filenames in appropriate order 
filename = sort_nat(filename); 

For channel mapping data 
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%sort_ind = 
[12,21,6,27,11,22,4,29,9,24,2,31,7,26,1,32,5,28,3,30,8,25,10,23,15,18,16,17,13
,20,14,19]; for i = 1:length(filename)     s = sort_ind(i); fname{i} = filename{s}; end 
filename = fname; 

Fet TS and Fs info from 1st file 

[CSCs,TS,Fs,~]  = load_csc_local(filename{1},mode); 
 
if ~isempty(downSampleFreq) 
        [~,TS,Fs]    = resample_eeg(CSCs,TS,Fs,downSampleFreq); 
end 
 
% preallocate 
data_array   = zeros((length(TS))*length(data_dir),1,'int16'); 
ref_array = cell((number_shank +1),1); % number of shanks + 0 (for excluding channels) 
for i = 1:length(ref_array) 
ref_array{i} = zeros (length(TS),1,'int16'); 
end 
 
h_wait = waitbar(0,'Loading/filtering/downsampling CSCs - please wait...'); 
info = cell(length(data_dir),1); 

Load in data 

for i=1:length(data_dir) 
    waitbar(i/size(data_dir,1)) 
    [CSCs,TS,Fs,info{i}]  = load_csc_local(filename{i},mode); 
    if ~isempty(bandPassLims) 
        [b,a]   = butter(2,[bandPassLims(1)/(Fs/2) bandPassLims(2)/(Fs/2)]); % make butterworth filter 
        CSCs = filtfilt(b,a,CSCs); % filter the data 
    end 
    if ~isempty(downSampleFreq) 
        [CSCs,TS,Fs]    = resample_eeg(CSCs,TS,Fs,downSampleFreq); 
    end 
 
    %put csc into data array in correct place 
    data_array(i:length(data_dir):end,1) = int16(CSCs); 
 
    %put csc into correct ref array if required 
    for j  = 0:number_shank 
    if ref_chan(i) == j; 
    ref_array{j+1} = ref_array{j+1}+int16(CSCs); 
    else 
    end 
    end 
 
 end 
close(h_wait) 
 
%divide ref array by number of channels to get average 
for i = 0:number_shank 
ref_array{i+1} = ref_array{i+1}./(sum(ref_chan == i )); 
end 
% get rid of unwanted channels (marked 0) 
ref_array = ref_array(2:end,1); 

Reference individual channels 

if ref_av == 1; 
 
for i=1:length(data_dir); 
 
    data_array(i:length(data_dir):end,1) = data_array(i:length(data_dir):end,1)- ref_array{ref_layout(i)}; 
 
end 
end 

Write data file 
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fname = strcat(save_loc,'\',save_name,'.dat'); 
fid = fopen(fname, 'w'); 
fwrite(fid, data_array, 'int16'); 
fclose(fid); 

Write info file 

[tracking.tsV,tracking.X, tracking.Y, tracking.A] = Nlx2MatVT(strcat(p,'\VT1.nvt'), [1 1 1 1 0 0], 0, 1); 
tracking.tsV=tracking.tsV/1e6; 
tracking.screen_x = 138; 
tracking.camera_resolution_x = 720; 
tracking.camera_resolution_y = 576; 
 
Ts_start = TS(1); 
save(strcat(save_loc,'\info.mat'),'info','Ts_start','Fs','tracking','p'); 

Write klusta related files from templates 

copyfile(template_path,save_loc); 
 
% copyfile(strcat(template_path,'\probe.prb'),save_loc); 
% copyfile(strcat(template_path,'\params.prm'),save_loc); 
% copyfile(strcat(template_path,'\cluster.bat'),save_loc); 

end 
function [samples,ts0,Fs,info] = load_csc_local(filename,mode) 

% load_csc imports Neuralynx *.ncs files into Matlab 

examples: 

[csc,ts,Fs] = load_csc('csc4.Ncs','all'); 
[csc,ts,Fs,info] = load_csc('E:\LA04-03\CSC4.Ncs','ts',[4500e6 6500e6]); 

outputs: 

     samples: row vector of samples (uVolts) 
     ts0:     row vector of timestamps (sec) 
     Fs:      sampling Frequency (Hz) 
     info:    cell array with header information 

inputs: 

     filename: string of input file name, may include path 
     mode : string argument indicating mode of csc to use 
              'all' : load all 
              'ts'  : load timestamp range (ts in par) 
              'ind' : load index range  (indices in par) 
              'info': load only header info 
     par (only for modes 'ts', and 'ind'): 
              with ts: pair of timestamps [start_ts end_ts] 
              with end: pair of indices [start_ind end_ind] 

%%%(c) U Bartsch, Bristol, 2009 
 
% Set the field selection for reading CSC files. 
fieldSelection(1) = 1; % Timestamps 
fieldSelection(2) = 1; % Channel number 
fieldSelection(3) = 1; % Sample Frequency 
fieldSelection(4) = 1; % Number of valid samples 
fieldSelection(5) = 1; % Samples (EEG data) 
%return header 
extractHeader = 1; 
 
switch mode 
    case 'all' 
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        extractMode = 1; % Extract all data 
        [ts,channumber,sampFreq,numvalsamp,samp,Header] =... 
                      Nlx2MatCSC(filename,fieldSelection,extractHeader,extractMode); 
    case 'ind' 
        if ~exist('par','var') 
            error ('Please add index range as input variable, eg: load_eeg(filename,mode,[index_start index_stop])!') 
        end 
        extractMode = 2; %index range 
        [ts,channumber,sampFreq,numvalsamp,samp,Header] =... 
                      Nlx2MatCSC(filename,fieldSelection,extractHeader,extractMode,par./512); 
    case 'ts' 
        if ~exist('par','var') 
            error ('Please add timestamp range as input variable, eg: load_eeg(filename,mode,[ts_start ts_stop])!') 
        end 
        extractMode = 4; % ts range 
        [ts,channumber,sampFreq,numvalsamp,samp,Header] =... 
                      Nlx2MatCSC(filename,fieldSelection,extractHeader,extractMode,par); 
    case 'info' 
        extractMode = 1; 
        fieldSelection(1) = 0; % Timestamps 
        fieldSelection(2) = 1; % Channel number 
        fieldSelection(3) = 1; % Sample Frequency 
        fieldSelection(4) = 1; % Number of valid samples 
        fieldSelection(5) = 0; % Samples (EEG data) 
        extractHeader = 1; 
        [channumber,sampFreq,numvalsamp,Header] =... 
                      Nlx2MatCSC(filename,fieldSelection,extractHeader,extractMode,par); 
        ts0=[]; samples=[]; 
        Fs = sampFreq(1,1); 
        info.reclen=length(numvalsamp)*512 /Fs/60; 
        info.header=Header; 
 
 
        return 
    otherwise 
        error('Unknown option to load_csc!') 
 
 
end 
 
 info.numvalsamp=numvalsamp; 
 info.header=Header; 
 info.chno=channumber; 
 
% Transform the 2-D samples array to an 1-D array 
samples=reshape(samp,512*size(samp,2),1); 
 
%Get sampling frequency 
Fs = sampFreq(1,1); 
 
% create timestamps for every 512 sample buffer 
ts00=[0:1/Fs:511*1/Fs]*1e6; 
ts0=zeros(length(ts),512); 
for i=1:length(ts00) 
    ts0(1:length(ts),i)=ts+ts00(i); 
end 
ts0=reshape(ts0',512*size(samp,2),1)./1e6; 
 
k = strfind(Header,'-ADBitVolts'); 
for i=1:length(k); 
    if ~isempty(k{i}) 
        k0(i)=k{i}; 
    end 
end 
scale=  eval(Header{find(k0)}(13:end)); 
samples = samples*scale*1e6; 

end 
 
function [re_csc,re_cts,reFs]=resample_eeg(csc,cts,cFs,reFs) 
% resample_eeg changes the the sampling rate of a csc trace and generates 
% new timestamps 
% Example [re_csc,re_cts,reFs]=resample_eeg(csc,cts,cFs,reFs) 
% inputs: csc = csc samples vector as loaded with load_eeg 
%         cts = originals timestamps vector 
%         cFs = origianl sampling frequency 
%         reFs = desired sampling frequency (> 1 Hz!) 
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%re_csc= [resample(csc,reFs,cFs)]'; 
 
n=round(cFs/reFs); 
reFs=(cFs/n); 
 
re_cts=downsample(cts,n); 
re_csc=downsample(csc,n); 
end 

Published with MATLAB® R2016a 

  

http://www.mathworks.com/products/matlab
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 Analysis of basic unit properties  

 

function clus = unit_properties_tr(clus) 

% describe the basic properties of the single units contained within a 
% structure clus, derived from Klustakwik and import_cluster_data.m 
% 
% INPUTS: 
%   clus    = struct containg time stamp info 
% 
% OUTPUTS: 
%   clus    = input structure with cell_props field added 
% 
 

Some parameters 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%% 

Fast or slow 

pause on 

Min and max ISI for ISI histogram plot 

maxLogISI = 3; 
nBins = 60; 
minLogISI = -3; 

Figure parameters 

close all 
fsize = 12;                          % font size 
scrsz = get(0,'ScreenSize'); 
h_cell_prop_fig = figure('OuterPosition', [scrsz(3)*0.5, scrsz(4)*0.05, scrsz(3)*0.5, scrsz(4)*0.95]); 
set(0,'DefaulttextInterpreter','none') 
prec = '%.2f'; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%% 
 
% number of cells in clus 
numCells = length(clus); 

Loop through each cell and calculate basic properties 

for i = 1:numCells 

    clf(h_cell_prop_fig) 
 
    ind = clus(i).max_chan;                         % find index for max amplitude channel from clus 
    Fs = clus(i).Fs;                                % sample frequency 

Extract the average waveform 

    %bigWV = mean(clus(i).waveforms_raw(ind,:,:),3); % mean waveform 
    bigWV = clus(i).waveforms_raw_mean(ind,:); 
 
    % make a time axis (in samples) 
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    t = 1:length(bigWV); 
    tt = 1:0.1:length(bigWV); 
 
    % upsample bigWV 
    bigWV = spline(t,bigWV,tt); 
 
    % set baseline to zero 
    bigWV = bigWV-bigWV(1); 

Calculate peak to trough width 

    [peak,peak_ind] = max(bigWV); 
    [trough,trough_ind] = min(bigWV); 
 
    peakTroughWidth = abs(tt(peak_ind)-tt(trough_ind));             % peak-to-trough width in samples 
    peakTroughTs = (([tt(peak_ind),tt(trough_ind)])/Fs)*1e3;        % time stamps for the peak and trough (for plotting) 
    clus(i).cell_props.peakTroughWidth = (peakTroughWidth/Fs)*1e3;  % peak-to-trough width in ms (put into 
clus.cell_props 
 
    tt = (tt/Fs)*1e3;                                               % upsampled time axis in ms 

Determine mean spike frequency for cell mean spike freq 

    clus(i).cell_props.spikeFreq = length(clus(i).tstamp{1})/(clus(i).tstamp{1}(end)-clus(i).tstamp{1}(1)); 

ISI histogram 

    [clus(i).cell_props.HistISI.H, clus(i).cell_props.HistISI.bins] = HistISI_JB(clus(i).tstamp{1},'nBins',nBins); 

Plotting 

    figure(h_cell_prop_fig) 
    h(1) = subplot('Position',[0.1,0.75,0.8,0.2]); 
    h(2) = subplot('Position',[0.1,0.1,0.8,0.55]); 

Plot the spike waveform 

    plot(h(1),tt,bigWV,'k','LineWidth',3);                                          % waveform 
    hold(h(1)); 
    plot(h(1),[peakTroughTs(2),peakTroughTs(2)],[peak,trough],'r--','LineWidth',2); % ref line for peak to trough 
    plot(h(1),peakTroughTs,[peak,peak],'g--','LineWidth',2); 
    ylabel(h(1),'\muV','FontSize',fsize,'Interpreter','tex'); 
    xlabel(h(1),'Time (ms)','FontSize',fsize); 

Plot the ISI histogram 

    plot(h(2),clus(i).cell_props.HistISI.bins,clus(i).cell_props.HistISI.H,'LineWidth',2); 
    set(gca, 'XScale', 'log', 'XLim', [10^minLogISI 10^maxLogISI],'FontSize',fsize); 
    % labels 
    xlabel('ISI (s)','FontSize',fsize); 
    ylabel('count','FontSize',fsize); 
    set(gca, 'YTick', max(clus(i).cell_props.HistISI.H)); 
    % add some text 
    text(3,max(clus(i).cell_props.HistISI.H)*.8,... 
        {['cell ID: ' clus(i).name],... 
        ['Mean Freq = ' num2str(clus(i).cell_props.spikeFreq,prec) ' Hz'],... 
        ['Peak-to-trough width = ' num2str(clus(i).cell_props.peakTroughWidth,prec) ' ms']},... 
        'FontSize',fsize); 
    pause 

end 

Published with MATLAB® R2016a 

http://www.mathworks.com/products/matlab
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 Analysis of theta modulation 

 

function [clus,tmi,mod_freq,theta_z] = thetaModulation_tr(clus) 

%  Function to calculate the theta modulation index for each cell based on the fast fourier transform of the spike time 
autocorrellogram. 
 
% If the theta index is >= 5 then the cell is consisdered to be theta modulated. 

t_win = 1; 
tmi = nan(length(clus),2); 
mod_freq = nan(length(clus),2); 
 
    % Cycle through individual cells 
for c = 1:numel(clus) 
for s = 1:length(clus(c).tstamp) 
 multiWaitbar( 'session' , 'Value', s/length(clus(c).tstamp)); 
 multiWaitbar( 'cell', 'Value', c/length(clus)); 
 
  if ~isempty(clus(c).tstamp{s}) 
 
      clus(c).info{s}.average_firing_rate = length(clus(c).tstamp{s})./(clus(c).tstamp{s}(end)-clus(c).tstamp{s}(1)); 
 
      spikes = clus(c).tstamp{s} *1000 ; 
 
      [tmi(c,s),mod_freq(c,s), hist,bin] = tmi_tr(spikes); 
 
clus(c).theta{s}.tmi = tmi(c,s); 
% clus(c).theta{s}.bin = bin; 
% clus(c).theta{s}.hist = hist; 
% clus(c).theta{s}.pow = pow; 
% clus(c).theta{s}.f = f; 
clus(c).theta{s}.mod_freq = mod_freq(c,s); 
clus(c).theta{s}.hist = hist; 
clus(c).theta{s}.bin = bin; 
 
if ~isnan(mod_freq(c,s)); 

Extract running speed info and get theta modulation index for each time bin 

[pos] = runningspeed_TR(clus(c).info{s}.tracking,t_win); 
 
pos.ts = pos.ts*1000; 
speed_mod_freq = nan(length(pos.ts)-1,1); 
 
 for t = 1:length(pos.ts)-1 
     spike_ind =  spikes < pos.ts(t+1) & spikes> pos.ts(t); 
     if sum(spike_ind) > 5; 
    [~,speed_mod_freq(t)] = tmi_tr(spikes(spike_ind)); %tmi>5 = nan 
     else 
     end 
 end 
 % get rid of nans and only carry on if enough values 
nan_ind = ~isnan(speed_mod_freq); 
if sum(nan_ind)>3; 
speed_mod_freq = speed_mod_freq(nan_ind); 
speed = pos.speed(2:end); 
speed = speed(nan_ind); 
 
 [r,p] = corr(speed',speed_mod_freq,'rows','pairwise','type','Pearson'); 
 theta_z(c,s) = fisherz(r); 
clus(c).theta{s}.speed_mod_freq = speed_mod_freq; 
clus(c).theta{s}.speed = speed; 
clus(c).theta{s}.speed_r = r; 
clus(c).theta{s}.speed_z = theta_z(c,s); 
clus(c).theta{s}.speed_p = p; 
 
speedBins = [1:30]; 
for i = 2:length(speedBins) 
    % find all time bins where speed is within range of this speed bin 
    ind = speed>speedBins(i-1) & speed<=speedBins(i); 
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    clus(c).theta{s}.av_speed_mod_freq(i) = sum(speed_mod_freq(ind)/(sum(ind)*t_win)); 
 end 
clus(c).theta{s}.av_speed_mod_freq(clus(c).theta{s}.av_speed_mod_freq == 0) = nan; 
else 
clus(c).theta{s}.speed_mod_freq = []; 
clus(c).theta{s}.speed = []; 
clus(c).theta{s}.speed_r = []; 
clus(c).theta{s}.speed_z = []; 
clus(c).theta{s}.speed_p = []; 
clus(c).theta{s}.av_speed_mod_freq = []; 
end 

end 
    else 
        clus(c).theta{s} = []; 
  end 
end 
end 
multiWaitbar( 'CloseAll' ); 

 

end 
 
%%%% subfunctions 
function [tmi,mod_freq, hist,bin] = tmi_tr(spikes) 

% Adapted from  thetaModulation.m by Jon Witton, May 2013 
% Function to calculate the theta modulation index for each cell based on the fast fourier transform of the spike time 
autocorrellogram. 
% If the theta index is >= 5 then the cell is consisdered to be theta modulated. 

Generate spike time autocorrelation (with 2 ms bins, truncated at 500 ms)  

        [hist, bin] = CrossCorr(spikes,spikes,2,500); 
 
        % Autocorrelation value in zero lag bin will be massive, as corresponds to perfect correlation (i.e. 1) iterated X 
times. 
        % Rescale autocorrelation function relative to zero lag bin, and reset zero lag to equal with next highest value in 
autocorr. 
        zero = find(bin == 0);                                              % Find index of zero lag bin 
        %hist = hist/hist(zero);                                             % Divide autocorrelation by zero lag bin to rescale for R 
        %hist(zero) =  mean([hist(zero-1) hist(zero+1)]); 
        hist(zero) = 0;                                                     % Clear value at zero lag and replace with next highest value 
        peak = max(hist);                                                   % in autocorrelation 
        hist(zero) = peak; 
 
        % Mean normalise autocorrelation by subtracting meant tm 
        histMean = mean(hist); 
        histNorm = hist - histMean; 

Perform fast Fourier transform on autocorrelation  

Taper normalised autocorrelation using a Hamming window. 

        ham = hamming(length(histNorm),'periodic'); 
        histT = ham .* histNorm; 
 
        % Perform fast fourier transform 
        fs = 1000 / ( bin(2) - bin(1) );                                    % Data sampling frequency 
        %winLength = length(histT);                                          % Window length 
        tLength = 2^16;%pow2(nextpow2(winLength));                              % Transform length 
        dft = fft(histT,tLength);                                           % DFT 
        f = (0:tLength-1)*(fs/tLength);                                     % Frequency range 
        pow = dft.*conj(dft)/tLength;                                       % Power of the DFT 
 
        % Remove frequency and power values for frequencies above the Nyquist frequency 
        f = f(1:floor(tLength/2)); 
        pow = pow(1:floor(tLength/2)); 

Caculate theta modulation index for cell  
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Find index of peak power in theta (5-12 Hz) band 

        thetaIdx = f > 5  &  f <= 12;                                       % Index theta band 
        theta = pow(thetaIdx);                                              % Isolate theta band power values 
        [~,tPeakIdx_theta] = max(theta);                                    % Find index of peak theta band power within isoalted theta 
band 
        tPeakIdx = find(thetaIdx == 1, 1, 'first') - 1 + tPeakIdx_theta;    % Find index of peak theta band power within 
broadband spectrum 
        mod_freq = f(tPeakIdx); 
        % Find mean power for +/- 1 Hz of peak theta power 
        oneHz = find(f <= 1,1,'last');                                      % Find number of frequency vector indices corresponding to 1 
Hz 
        thetaMean = mean(pow(tPeakIdx - oneHz:tPeakIdx + oneHz)); 
 
        %Find mean broadband (0 - 125 Hz) power 
        bbIdx = f >= 0  &  f <= 125;                                        % Index 'broadband' 
        bb = pow(bbIdx);                                                    % Isolate theta band power values 
        bbMean = mean(bb);                                                  % Find mean 'broadband' power 
 
        % Calculate theta modulation index 
        tmi= thetaMean/bbMean; 
 
        if tmi < 5 
            %tmi = nan; 
            mod_freq = nan; 
            %mod_freq_sig = nan; 
        end 

 end 
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 Speed modulation 

 

function [speed_rate,rate_per_tbin,speed_per_tbin,z,z_shf,z_sig,r,r_shf,mod_depth,mod_depth_shf,lz,exp_z_sig,clus] = 
speed_firing_final(clus,t_win) 

% speed_firing.m 
% 
% performs speed cell analysis on time stamps derived from 
% import_cluster_data.m 
% 
% inputs: 
%   clus    = struct containg time stamp info 
%   headers = struct containing header info 
%   t_win   = (optional) time window for speed binning (in seconds) 
% 
% DEPENDENCIES: 
%   runningspeed_TR.m 
%   mkShuffledTstamp.m 
%   cbrewer.m 
%   fisherz.m 

set up some parameters 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%% 

Paused or automatic? 

pause off 

Speed bin info 

speedBinSize            = 1;    % in cm/s 
minSpeed                = 2;    % in cm/s 
maxSpeed                = 30;   % in cm/s 
minBinDurPercent        = 0.5; %0.05;  % percent of total recording duration 
 
% default values for time window 
if nargin < 2, t_win = 0.04; end % in sec 

Gaussian smoothing function 

%-------- CHECK THIS; particularly derivation of alpha--------- 
% Gaussian for speed and rate histograms 
stdevGaus = 0.15;                   % stdev of the gaussian function in s 
sigma = stdevGaus/t_win;            % stdev in samples 
n = 4*(floor(3*sigma)); 
alpha = (n-1)/(2*sigma); 
w = gausswin(n,alpha);              % construct the gaussian 
w = w/sum(w);                       % normalize the gaussian 
 
% Gaussian for speed tuning curves 
stdevGaus = 0.5;                    % stdev of the gaussian function in cm/s 
sigma = stdevGaus/speedBinSize;     % stdev in samples 
n = 1+(2*(floor(3*sigma))); 
alpha = (n-1)/(2*sigma); 
wS = gausswin(n,alpha);             % construct the gaussian 
wS = wS/sum(wS);                    % normalize the gaussian 
%------------------------------------------------------------- 

shuffling parameters 
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numShf              = 250;     % number of suffles 
minTShf             = 30;       % minimum duration of shuffle 
binHistSize         = 0.02;                 % bins for histogram of shuffled r/z 
binsHist            = -.2:binHistSize:.2;   % bins for histogram of shuffled r/z 
binHistSizeD        = 0.2;                  % bins for histogram of shuffled r/z 
binsHistD           = 0:binHistSizeD:4;     % bins for histogram of shuffled r/z 
centile             = 95;                   % percentile to determine significance 

Output directory for figures 

output_dir = '\\isad.isadroot.ex.ac.uk\UOE\User\data\mEC unit speed\'; 
delete([output_dir '*.*']) 

Plotting info 

close all scrsz = get(groot,'ScreenSize'); hFig = figure('OuterPosition', [0, 
scrsz(4)*0.2, scrsz(3)*0.5, scrsz(4)*0.8]); fontSize = 12; prec = '%.3f'; grey = 
[0.7,0.7,0.7]; set(0,'DefaulttextInterpreter','none') 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%% 
z = zeros(length(clus),length(clus(1).info)); 
r = zeros(length(clus),length(clus(1).info)); 
z_sig = nan(length(clus),length(clus(1).info)); 
exp_z_sig = nan(length(clus),length(clus(1).info)); 
speed_rate = cell(length(clus(1).info),1); 
 
% wait bar 
hwait = waitbar(0,'Calculating speed relationships'); 
 
 
for j = 1:length(clus) 
 
for s = 1:length(clus(j).info) 
 if length(clus(j).tstamp{s})<100; 
       clus(j).speed_rate{s} = []; 
 else 

Extract running speed info 

[pos] = runningspeed_TR(clus(j).info{s}.tracking,t_win); 
% smooth the speed data with the gaussian function - comment out if not required 
pos.speed = conv(pos.speed,w,'same'); 
 
% create a series of time bins based on pos.ts with the Ts_start 
[~,timeBins] = histcounts(pos.ts,length(pos.ts)); 
 
% numTimeBins = length(timeBins); 
 
% define speed bins 
speedBins = minSpeed:speedBinSize:maxSpeed; 
speedBins = speedBins'; 
numSpeedBins = length(speedBins); 

Loop through each cell and define run speed 

% preallocated matrix for speed rates 
%speed_rate{s}              = zeros(numSpeedBins,length(clus)); 
rate_per_tbin           = zeros(length(pos.ts),length(clus)); 
speed_per_tbin          = zeros(length(pos.ts),length(clus)); 
% z = zeros(length(clus),1); 
% r = zeros(length(clus),1); 
%z_sig = zeros(length(clus),1); 
z_shf = zeros(length(clus),numShf); 
r_shf = zeros(length(clus),numShf); 
%speed modulation depth 
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mod_depth       = zeros(length(clus),1); 
mod_depth_shf   = zeros(length(clus),numShf); 
 
 
 
 
%     clf(hFig) 

Determine speed firing rate relationship - calls speedRateRelationship 

    [speed_rate{s}(:,j),rate_per_tbin(:,j)] = ... 
        speedRateRelationship(clus(j).tstamp{s},numSpeedBins,timeBins,speedBins,t_win,pos,minBinDurPercent,wS); 
    % smooth the rate_per_tbin data with the gaussian function 
    rate_per_tbin(:,j) = conv(rate_per_tbin(:,j),w,'same'); 

Behavioural filtering of data - remove bins where animal isn't moving  

    [rate_per_tbin(:,j),speed_per_tbin] = behavFiltering(rate_per_tbin(:,j),pos.speed,minSpeed); 

Calculate the correlation coefficients for this relationship -calls speedCorr 

    [clus(j).speed_rate{s}.r,... 
        clus(j).speed_rate{s}.z,... 
        clus(j).speed_rate{s}.p,... 
        clus(j).speed_rate{s}.lr,... 
        clus(j).speed_rate{s}.lz,... 
        clus(j).speed_rate{s}.lp] = ... 
        speedCorr(speed_per_tbin',rate_per_tbin(:,j)); 
 
    z(j,s) = clus(j).speed_rate{s}.z; 
    r(j,s) = clus(j).speed_rate{s}.r; 
    lz(j,s) = clus(j).speed_rate{s}.lz; 
    lr(j,s) = clus(j).speed_rate{s}.lr; 

Put the speed-firing rate curves into clus 

Speed tuning curve 

    clus(j).speed_rate{s}.speedBins    = speedBins; 
    clus(j).speed_rate{s}.firing_rate  = speed_rate{s}(:,j); 
    % rates per bin 
    clus(j).speed_rate{s}.speed_per_tbin = speed_per_tbin; 
    clus(j).speed_rate{s}.rate_per_tbin  = rate_per_tbin(:,j); 
    clus(j).speed_rate{s}.timeBins       = timeBins; 
    % modulation depth 
    mod_depth(j,s) = max(speed_rate{s}(:,j)) - min(speed_rate{s}(:,j)); 
    clus(j).speed_rate{s}.mod_depth = mod_depth(j,s); 

Shuffle the data and perform the same calculations on each 

    shf_tstamp = mkShuffledTstamp(clus(j).tstamp{s},numShf,minTShf); 

Determine speed firing rate relationship for shuffled data 

preallocate 

    shf_speed_rate = zeros(numSpeedBins,numShf); 
    rate_per_tbin_shf = zeros(length(pos.speed),numShf); 
    for n = 1:numShf 
        [shf_speed_rate(:,n),rate_per_tbin_shf(:,n)] = ... 
            speedRateRelationship(shf_tstamp(:,n),numSpeedBins,timeBins,speedBins,t_win,pos,minBinDurPercent,wS); 
        % smooth the rate_per_tbin data with the gaussian function 
        rate_per_tbin_shf(:,n) = conv(rate_per_tbin_shf(:,n),w,'same'); 
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    end 
    mod_depth_shf(j,:) = max(shf_speed_rate) - min(shf_speed_rate); 
    clus(j).speed_rate{s}.mod_depth_shf = mod_depth_shf(j,:); 

Behavioural filtering of data - remove bins where animal isn't moving much 

    [rate_per_tbin_shf,~] = behavFiltering(rate_per_tbin_shf,pos.speed,minSpeed); 

Calculate the correlation coefficients for shuffled data 

    [clus(j).speed_rate{s}.shf_r,... 
        clus(j).speed_rate{s}.shf_z,... 
        clus(j).speed_rate{s}.shf_p,... 
        clus(j).speed_rate{s}.shf_lr,... 
        clus(j).speed_rate{s}.shf_lz,... 
        clus(j).speed_rate{s}.shf_lp] = ... 
        speedCorr(pos.speed',rate_per_tbin_shf); 
    z_shf(j,:) = clus(j).speed_rate{s}.shf_z; 
    r_shf(j,:) = clus(j).speed_rate{s}.shf_r; 

Centiles of speed score shuffled data set 

    clus(j).speed_rate{s}.centileHi = prctile(clus(j).speed_rate{s}.shf_z,centile); 
    clus(j).speed_rate{s}.centileLo = prctile(clus(j).speed_rate{s}.shf_z,100-centile); 
    clus(j).speed_rate{s}.exp_centileHi = prctile(clus(j).speed_rate{s}.shf_lz,centile); 
    clus(j).speed_rate{s}.exp_centileLo = prctile(clus(j).speed_rate{s}.shf_lz,100-centile); 
 
    if z(j)> clus(j).speed_rate{s}.centileHi || z(j)< clus(j).speed_rate{s}.centileLo 
        z_sig(j,s) = z(j,s); 
    else 
    end 
 
    if lz(j)> clus(j).speed_rate{s}.exp_centileHi || lz(j)< clus(j).speed_rate{s}.exp_centileLo 
        exp_z_sig(j,s) = lz(j,s); 
    else 
    end 
 
if exp_z_sig(j,s)> z_sig(j,s); 
     z_sig(j,s) = nan; 
else 
    exp_z_sig(j,s) = nan; 
end 

Centiles of speed modulation depth shuffled data set 

    clus(j).speed_rate{s}.modDcentileHi = prctile(clus(j).speed_rate{s}.mod_depth_shf,centile); 
    clus(j).speed_rate{s}.modDcentileLo = prctile(clus(j).speed_rate{s}.mod_depth_shf,100-centile); 

Put all the analysis parameters into clus speed bin params 

    clus(j).speed_rate{s}.params{s}.speedBinSize        = speedBinSize;      % in cm/s 
    clus(j).speed_rate{s}.params{s}.minSpeed            = minSpeed;          % in cm/s 
    clus(j).speed_rate{s}.params{s}.maxSpeed            = maxSpeed;          % in cm/s 
    clus(j).speed_rate{s}.params{s}.minBinDurPercent    = minBinDurPercent;  % percent of total recording duration 

shuffling parameters 

    clus(j).speed_rate{s}.params{s}.numShf              = numShf;            % number of suffles 
    clus(j).speed_rate{s}.params{s}.minTShf             = minTShf;           % minimum duration of shuffle 
    clus(j).speed_rate{s}.params{s}.binsHist            = binsHist;          % bins for histogram of shuffled r 
    clus(j).speed_rate{s}.params{s}.centile             = centile;           % percentile to determine significance 
    clus(j).speed_rate{s}.params{s}.t_win               = t_win; 
    waitbar(j/length(clus),hwait) 
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    end 
 end 
 
end 
close(hwait) 

SUBFUNCTIONS 

Speed_rate 

function [speed_rate,rate_per_tbin] = 
speedRateRelationship(time_stamps,numSpeedBins,timeBins,speedBins,t_win,pos,minBinDurPercent,wS) 

Create spike histogram for time bins 

[no_spikes,~] = histcounts(time_stamps,timeBins); 
 
rate_per_tbin = no_spikes./t_win; 
% smooth this in the main script... 

Loop through all the speed bins and calculate the average firing rate 

speed_rate = zeros(numSpeedBins-1,1); 
total_dur = time_stamps(end)-time_stamps(1); 
for i = 2:numSpeedBins 
 
    % find all time bins where speed is within range of this speed bin 
    ind = pos.speed>speedBins(i-1) & pos.speed<=speedBins(i); 
 
    if sum(ind)*t_win < total_dur * (minBinDurPercent/100); 
        speed_rate(i) = NaN; 
    else 
        % calculate the average firing rate for that speed bin (in Hz) 
        speed_rate(i) = sum(no_spikes(ind)/(sum(ind)*t_win)); 
    end 
 
end 
 
% tidy up speed_rate by replacing zeros with NaN 
speed_rate(speed_rate == 0) = NaN; 
 
% apply a gaussian filter to the speed curve 
y=conv(speed_rate(~isnan(speed_rate)),wS,'same');    % convolve the valid samples with the filer 
speed_rate(~isnan(speed_rate)) = y; 
 
end 

BehavFiltering 

function [rate_per_tbin,speed_per_tbin] = behavFiltering(rate_per_tbin,speed,minSpeed) 
 
% determine original shape of inputs, for reshaping later 
[m,n] = size(rate_per_tbin); 
 
% replace all non-relevant bins with NaN 
indS = speed <= minSpeed; 
if n>1 
    indR = repmat(indS,1,n); 
else 
    indR = indS; 
end 
rate_per_tbin(indR) = NaN; 
speed_per_tbin = speed; 
speed_per_tbin(indS) = NaN; 
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end 

SpeedCorr 

function [r,z,p,lr,lz,lp] = speedCorr(speedBins,speed_rate) 
[r,p] = corr(speedBins,speed_rate,... 
    'rows','pairwise',... 
    'type','Pearson'); 
[lr,lp] = corr(log(speedBins),speed_rate,... 
    'rows','pairwise',... 
    'type','Pearson'); 
z = fisherz(r); 
lz = fisherz(lr); 
end 

end 
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 Firing maps and grid score 

 

function [clus,GridScore,GridScore_sig,spatial_info] = maps_working_final(clus) 
 
t_win = 0.4; 
bins = 50; 
speed_min = 3; 
arena_size = 120; %cm 

Shuffling parameters 

numShf              = 250;     % number of suffles 
minTShf             = 20;       % minimum duration of shuffle 
binHistSize         = 0.02;                 % bins for histogram of shuffled data 
centile             = 95;                   % percentile to determine significance 
 
%smoothing 
F = fspecial('gaussian', bins, 1.5); 
 
 multiWaitbar( 'cell', 'Value', 0); 
 for j =1:length(clus) 
    multiWaitbar( 'cell', 'Value', j/length(clus)); 
 
 
for s = 1:length(clus(j).info) 
 
      if length(clus(j).tstamp{s})>300; 

    multiWaitbar( 'session' , 'Value', s/length(clus(1).info)); 
 
   [pos] = runningspeed_TR(clus(j).info{s}.tracking, t_win); 
 
   pos.speed = interp1(pos.ts,pos.speed,clus(j).info{s}.tracking.tsV); 
   pos.X = interp1(pos.ts,pos.X(2:end),clus(j).info{s}.tracking.tsV); 
   pos.Y = interp1(pos.ts,pos.Y(2:end),clus(j).info{s}.tracking.tsV); 
   pos.ts = clus(j).info{s}.tracking.tsV; 
 
  Fs  = 1/(pos.ts(2)-pos.ts(1)) ; 

Find bins with spikes 

[~,timeBins] = histcounts(pos.ts,length(pos.ts)); 
[no_spikes,~] = histcounts(clus(j).tstamp{s},timeBins); 

Get rid of spikes when animal not moving 

ind = pos.speed < speed_min; 
spikes(ind) = 0 ; 
pos.X(ind) = nan; 
pos.Y(ind) = nan; 
 
clus(j).map{s}.x_loc = []; 
clus(j).map{s}.y_loc = []; 
 
for i = 1: max(no_spikes) 
  spikes = no_spikes == i ; 
for l = 1:i 
clus(j).map{s}.x_loc = [clus(j).map{s}.x_loc,pos.X(spikes)]; 
clus(j).map{s}.y_loc = [clus(j).map{s}.y_loc,pos.Y(spikes)]; 
end 
end 
 
clus(j).map{s}.pos = pos; 

2d histcount to find spikes/time spent in each spatial bin 
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screen_size = clus(j).info{s}.tracking.screen_x; 
maX = max(clus(j).map{s}.pos.X); maY = max(clus(j).map{s}.pos.Y); 
miX = min(clus(j).map{s}.pos.X); miY = min(clus(j).map{s}.pos.Y); 
Xedges = linspace(miX,maX,bins); 
Yedges =  linspace(miY,maY,bins); 
 
[clus(j).map{s}.time,Xedges,Yedges] = histcounts2(pos.X,pos.Y,Xedges,Yedges); 
clus(j).map{s}.OcProb = clus(j).map{s}.time/sum(sum(clus(j).map{s}.time)); %time in sec 
clus(j).map{s}.time = clus(j).map{s}.time*(1/Fs); %time in sec 
 
[clus(j).map{s}.count,clus(j).map{s}.Xedges,clus(j).map{s}.Yedges] = 
histcounts2(clus(j).map{s}.x_loc,clus(j).map{s}.y_loc,Xedges,Yedges); 
 
clus(j).map{s}.rate_map =  clus(j).map{s}.count./clus(j).map{s}.time; 
clus(j).map{s}.rate_map(isnan(clus(j).map{s}.rate_map)) = 0; 
 
clus(j).map{s}.rate_map_smooth = conv2(clus(j).map{s}.rate_map,F,'same'); 
 
 
meanRate = sum(sum(clus(j).map{s}.count))/sum(sum(clus(j).map{s}.time)); 
 
scBin = conv2(clus(j).map{s}.OcProb,F,'same').* (clus(j).map{s}.rate_map_smooth/meanRate) .* 
log2(clus(j).map{s}.rate_map_smooth/meanRate); 
 
scBin = scBin(~isnan(scBin)); 
clus(j).map{s}.spatial_info = sum(scBin); 
spatial_info(j,s) = clus(j).map{s}.spatial_info; 
 

xcorr 

ang = [0,30,60,90,120,150]; %should be peak at 60 and 120 
mask_size = [0.1:0.01:0.5]; %proportion of total field 
 
[clus(j).map{s}.xcorr,clus(j).map{s}.r, clus(j).map{s}.grid_score,clus(j).map{s}.grid_spacing,clus(j).map{s}.g_scores]... 
                                                        = grid_score(clus(j).map{s}.rate_map_smooth, ang, mask_size, bins,arena_size); 
 
GridScore(j,s) = max(clus(j).map{s}.grid_score); 

Shuffle the data and perform the same calculations on each 

shf_tstamp = mkShuffledTstamp(clus(j).tstamp{s},numShf,minTShf); 
 
for sh = 1:numShf 

[shuf_no_spikes,~] = histcounts(shf_tstamp(:,sh),timeBins); 
 
shuf_x_loc = []; 
shuf_y_loc = []; 
for i = 1: max(shuf_no_spikes) 
  shuf_spikes = shuf_no_spikes == i ; 
for l = 1:i 
shuf_x_loc = [shuf_x_loc,pos.X(shuf_spikes)]; 
shuf_y_loc = [shuf_y_loc,pos.Y(shuf_spikes)]; 
end 
end 

2d histcount to find spikes/time spent in each spatial bin 

[count,clus(j).map{s}.Xedges,clus(j).map{s}.Yedges] = histcounts2(shuf_x_loc,shuf_y_loc,Xedges,Yedges); 
shuf_rate_map =  count./clus(j).map{s}.time; 
shuf_rate_map(isnan(shuf_rate_map)) = 0; 
shuf_rate_map_smooth = conv2(shuf_rate_map,F,'same'); 
shuf_meanRate = sum(sum(count))/sum(sum(clus(j).map{s}.time)); 
scBin = conv2(clus(j).map{s}.OcProb,F,'same').* (shuf_rate_map_smooth/shuf_meanRate) .* 
log2(shuf_rate_map_smooth/shuf_meanRate); 
scBin = scBin(~isnan(scBin)); 
clus(j).map{s}.shuf.spatial_info(sh) = sum(scBin); 
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Grid score 

[~,~, clus(j).map{s}.shuf.grid_score(sh),~] = grid_score(shuf_rate_map_smooth, ang, mask_size, bins,arena_size); 

Percentile 

clus(j).map{s}.shuf.grid_centile = prctile(clus(j).map{s}.shuf.grid_score,centile); 
clus(j).map{s}.shuf.spatial_info_centile = prctile(clus(j).map{s}.shuf.spatial_info,centile); 
 
if clus(j).map{s}.shuf.grid_centile > clus(j).map{s}.grid_score 
    GridScore_sig(j,s) = nan; 
end 

end 

      else 
       clus(j).map{s} = []; 
      end 
 
 end 
end 
multiWaitbar( 'CloseAll' ); 
end 
 
function [x,varargout] = ZeroToOne(x,varargin) 
 
if nargin < 1, 
 error('Incorrect number of parameters (type ''help <a href="matlab:help ZeroToOne">ZeroToOne</a>'' for 
details).'); 
end 
 
if nargin ~= nargout, 
 error('Different numbers of input and output parameters (type ''help <a href="matlab:help 
ZeroToOne">ZeroToOne</a>'' for details).'); 
end 
 
m = min(x); 
M = max(x); 
x = (x-m)/(M-m); 
 
for i = 1:nargin-1, 
 varargout{i} = (varargin{i}-m)/(M-m); 
end 
end 
 
function [xcorr,r,grid_score,grid_spacing,g_scores] = grid_score(rate_map, ang, mask_size, bins,arena_size) 

xcorr = cell(length(ang),length(mask_size)); 
r = zeros(length(ang),length(mask_size)); 
 
% 1st xcorr 
%xcorr{1} = xcorr2(rate_map); 
xcorr{1} = normxcorr2(rate_map,rate_map); 
x_size = size(xcorr{1}); 

work out grid score and spacing  

for g = 1:length(mask_size) 

% crop xcorr to take out centre and increase autocorr by factor mask_size 
  c_large = [bins, bins,x_size(1)*mask_size(g)];  % center and radius of circle ([c_row, c_col, r]) 
  [xx,yy] = ndgrid((1:x_size(1))-c_large(1),(1:x_size(2))-c_large(2)); 
  mask_large = (xx.^2 + yy.^2)<c_large(3)^2; 
 
  x_crop= zeros(x_size); 
  x_crop(mask_large) = xcorr{1}(mask_large); 
 
  c_centre = [bins, bins, x_size(1)*0.06];     % center and radius of circle ([c_row, c_col, r])0.075 
 [xx,yy] = ndgrid((1:x_size(1))-c_centre(1),(1:x_size(2))-c_centre(2)); 
  mask_centre = (xx.^2 + yy.^2)<c_centre(3)^2; 
 
 x_crop(mask_centre) = 0; 



192 
 

 
 x = x_crop; 

Rotate and correlate with original xcorr 

  for i = 2:length(ang) 
  xcorr{i,g} = imrotate(x,ang(i),'crop'); 
  x_crop= zeros(x_size); 
  x_crop(mask_large) = xcorr{i,g}(mask_large); 
  x_crop(mask_centre) = 0; 
  xcorr{i,g} = x_crop; 
  r(i,g) = corr2(xcorr{i,g},x); 
  end 
 
% diff between 60/120 deg and 30/90/150 deg gives 'gridness' 
g_diff = diff(r(:,g)); 
g_diff(1:2:end) = g(1:2:end)*-1; 
g_scores(g) = max(g_diff(2:end)); 

end 
% size of xcorr with best gridscore gives grid spacing 
[grid_score,size_ind] = max(g_scores); 
grid_spacing = mask_size(size_ind)*arena_size; 

end 
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 Head direction analysis 

 

function [clus,meanVecLength,meanVec_sig] = head_direction_firing_final(clus,t_win) 

% % 
% performs head direction cell analysis on time stamps derived from 
% import_cluster_data.m 
% 
% inputs: 
%   clus    = struct containg time stamp info 
%   headers = struct containing header info 
%   t_win   = (optional) time window for speed binning (in seconds) 
% 
% DEPENDENCIES: 
%   runningspeed_TR.m 
% 
% TR 15/03/17 

Set up some parameters 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%% 

Bin info 

minSpeed                = 1;    % in cm/s 
 
bin_size = 3; % in degrees 
 
% default values for time window 
if nargin < 3, t_win = 0.04; end % in sec 

Gaussian smoothing function 

%-------- CHECK THIS; particularly derivation of alpha--------- 
% Gaussian for speed and rate histograms 
stdevGaus = 0.15;                   % stdev of the gaussian function in s 
sigma = stdevGaus/t_win;            % stdev in samples 
n = 4*(floor(3*sigma)); 
alpha = (n-1)/(2*sigma); 
w = gausswin(n,alpha);              % construct the gaussian 
w = w/sum(w);                       % normalize the gaussian 
 
% Gaussian for head tuning curves 
stdevGaus = 14;                    % stdev of the gaussian function in deg 
sigma = stdevGaus/bin_size;     % stdev in samples 
n = 1+(2*(floor(3*sigma))); 
alpha = (n-1)/(2*sigma); 
wS = gausswin(n,alpha);             % construct the gaussian 
wS = wS/sum(wS);                    % normalize the gaussian 
%------------------------------------------------------------- 

Shuffling parameters 

numShf              = 1;     % number of suffles 
minTShf             = 30;       % minimum duration of shuffle 
binHistSize         = 0.02;                 % bins for histogram of shuffled 
binsHist            = -.2:binHistSize:.2;   % bins for histogram of shuffled 
binHistSizeD        = 0.2;                  % bins for histogram of shuffled 
binsHistD           = 0:binHistSizeD:4;     % bins for histogram of shuffled 
centile             = 95;                   % percentile to determine significance 
 
meanVecLength = nan(length(clus),length(clus(1).info)); 
meanVec_sig= nan(length(clus),length(clus(1).info)); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%% 
 
  multiWaitbar( 'cell', 'Value', 0); 
for j = 1:length(clus) % loop for cells 
 
for s = 1: length(clus(j).info) % loop for recording sessions 

% multiWaitbar( 'session' , 'Value', s/length(clus(j).info)); 
  multiWaitbar( 'cell', 'Value', j/length(clus)); 

Extract running speed info 

[pos] = runningspeed_TR(clus(j).info{s}.tracking,t_win); 
% smooth the data with the gaussian function - comment out if not required 
pos.speed = conv(pos.speed,w,'same'); 
pos.A = conv(pos.A(2:end),w,'same'); 
 
% create a series of time bins based on pos.ts with the Ts_start 
[~,timeBins] = histcounts(pos.ts,length(pos.ts)); 

Loop through each cell and define run speed 

% preallocated matrix 
 
rate_per_tbin = zeros(length(pos.ts),length(clus)); 
 
    if ~isempty(clus(j).tstamp{s}) 

Create spike histogram for time bins 

[no_spikes,~] = histcounts(clus(j).tstamp{s},timeBins); 
 
rate_per_tbin(:,j) = no_spikes./t_win; 
rate_per_tbin(:,j) = conv(rate_per_tbin(:,j),w,'same'); 

Behavioural filtering of data - remove bins where animal isn't moving much 

[rate_per_tbin(:,j),~] = behavFiltering(rate_per_tbin(:,j),pos.speed,minSpeed); 

Rate and position maps 

[clus(j).head_direction{s}.rate_map,clus(j).head_direction{s}.rate_map_smooth,clus(j).head_direction{s}.angle_bin] = 
head_map(pos.A,rate_per_tbin(:,j),bin_size,wS); 
clus(j).head_direction{s}.angle_bin = deg2rad(clus(j).head_direction{s}.angle_bin); 
clus(j).head_direction{s}.spike_angles = interp1(pos.ts,pos.A,clus(j).tstamp{s}); 
clus(j).head_direction{s}.pos_angles = pos.A; 
 
clus(j).head_direction{s}.spike_angles = clus(j).head_direction{s}.spike_angles .* pi./180;%convert to radians 
[clus(j).head_direction{s}.mean_vec_length] = 
circ_r(clus(j).head_direction{s}.angle_bin,clus(j).head_direction{s}.rate_map_smooth); 
[clus(j).head_direction{s}.mean_direction,~,~] = circ_mean(clus(j).head_direction{s}.spike_angles); 
[clus(j).head_direction{s}.rayleigh_pval, clus(j).head_direction{s}.rayleigh_z] = 
circ_rtest(clus(j).head_direction{s}.angle_bin,clus(j).head_direction{s}.rate_map_smooth); 
 
meanVecLength(j,s) = clus(j).head_direction{s}.mean_vec_length; 

Shuffle the data and perform the same calculations on each 

shf_tstamp = mkShuffledTstamp(clus(j).tstamp{s},numShf,minTShf); 
% preallocate 
rate_per_tbin_shf = zeros(length(pos.ts),numShf); 
clus(j).head_direction{s}.shuffle.rate_map = zeros(length(clus(j).head_direction{s}.angle_bin),numShf); 
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clus(j).head_direction{s}.shuffle.mean_vec_length = zeros(numShf,1); 
clus(j).head_direction{s}.shuffle.rayleigh_pval= zeros(numShf,1); 
clus(j).head_direction{s}.shuffle.rayleigh_z= zeros(numShf,1); 
 
    for sh = 1:numShf 
[no_spikes,~] = histcounts(shf_tstamp(:,sh),timeBins); 
rate_per_tbin_shf(:,sh) = no_spikes./t_win; 
rate_per_tbin_shf(:,sh) = conv(rate_per_tbin_shf(:,sh),w,'same'); 
[rate_per_tbin_shf(:,sh),~] = behavFiltering(rate_per_tbin_shf(:,sh),pos.speed,minSpeed); 
[clus(j).head_direction{s}.shuffle.rate_map(:,sh),clus(j).head_direction{s}.shuffle.rate_map_smooth(:,sh),clus(j).head_dir
ection{s}.shuffle.angle_bin] = head_map(pos.A,rate_per_tbin_shf(:,sh),bin_size,wS); 
clus(j).head_direction{s}.shuffle.angle_bin = deg2rad(clus(j).head_direction{s}.shuffle.angle_bin); 
%test 
[clus(j).head_direction{s}.shuffle.mean_vec_length(sh)] = 
circ_r(clus(j).head_direction{s}.shuffle.angle_bin,clus(j).head_direction{s}.shuffle.rate_map_smooth(:,sh)); 
[clus(j).head_direction{s}.shuffle.rayleigh_pval(sh), clus(j).head_direction{s}.shuffle.rayleigh_z(sh)] = 
circ_rtest(clus(j).head_direction{s}.angle_bin,clus(j).head_direction{s}.shuffle.rate_map_smooth(:,sh)); 
    end 
%99th centiles of shuffled data set 
clus(j).head_direction{s}.RayZCent = prctile(clus(j).head_direction{s}.shuffle.rayleigh_z,100-centile); 
clus(j).head_direction{s}.MeanVecCent = prctile(clus(j).head_direction{s}.shuffle.mean_vec_length,centile); 
 
 if clus(j).head_direction{s}.mean_vec_length>clus(j).head_direction{s}.MeanVecCent 
     meanVec_sig(j,s) = clus(j).head_direction{s}.mean_vec_length; 
 end 

    else 
     clus(j).head_direction{s} = []; 
    end 

end 
 
end 
multiWaitbar( 'CloseAll' ); 

end 

Subfunctions 

function [rate_per_tbin,speed_per_tbin] = behavFiltering(rate_per_tbin,speed,minSpeed) 
 
% determine original shape of inputs, for reshaping later 
[m,n] = size(rate_per_tbin); 
 
% replace all non-relevant bins with NaN 
indS = speed <= minSpeed; 
if n>1 
    indR = repmat(indS,1,n); 
else 
    indR = indS; 
end 
rate_per_tbin(indR) = NaN; 
speed_per_tbin = speed; 
speed_per_tbin(indS) = NaN; 
 
 
end 
 
function [rate_map,rate_map_smooth,angle_bin] = head_map(A,rate_per_tbin,bin_size,wS) 
 
 
angle_bin = 1:bin_size:360; 
angle_bin = angle_bin'; 
 
rate_map = NaN(length(angle_bin),1); 
 
 
for a = 2:length(angle_bin) 
 
    ind = A < angle_bin(a) & A > angle_bin(a-1); 
 
    rate_map(a) = mean(rate_per_tbin(ind)); 
end 
 
rate_map2 = [rate_map; rate_map;rate_map]; %make copies and interp/smooth - for betwen 360 and 0. 
rate_map2 = fillmiss(rate_map2); 
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rate_map_smooth = conv(rate_map2,wS,'same');    % convolve the valid samples with the filer 
 
rate_map2 = reshape(rate_map2,length(angle_bin),3); 
rate_map_smooth= reshape(rate_map_smooth,length(angle_bin),3); 
 
rate_map = rate_map2(:,2); 
 
rate_map_smooth = rate_map_smooth(:,2); 
 
end 
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