Geometric Semantic Grammatical Evolution

Alberto Moraglio, James McDermott and Michael O’Neill

Abstract Geometric Semantic Genetic Programming (GSGP) is a novel form of
Genetic Programming (GP), based on a geometric theory of evolutionary algo-
rithms, which directly searches the semantic space of programs. In this chapter,
we extend this framework to Grammatical Evolution (GE) and refer to the new
method as Geometric Semantic Grammatical Evolution (GSGE). We formally de-
rive new mutation and crossover operators for GE which are guaranteed to see a sim-
ple unimodal fitness landscape. This surprising result shows that the GE genotype-
phenotype mapping does not necessarily imply low genotype-fitness locality. To
complement the theory, we present extensive experimental results on three standard
domains (Boolean, Arithmetic and Classifier).

1 Introduction

Geometric Semantic Genetic Programming (GSGP) is a novel form of Genetic Pro-
gramming (GP), introduced by Moraglio et al. [1]. In GSGP, search operators act on
the syntax of the programs but can be understood as acting directly on the under-
lying semantics of programs: mutation and crossover produce offspring which are,
respectively, semantically close to and semantically intermediate between their par-
ents. Specific GSGP operators for Boolean, Regression and Classification domains
have been derived [1] and have a simple form. This is possible because the mapping
from genotypes to semantics in these GP domains is simple, not complex as was
widely believed before GSGP. Furthermore, the fitness landscape seen by GSGP is

Alberto Moraglio
University of Exeter, UK. e-mail: A.Moraglio@exeter.ac.uk

James McDermott
University College Dublin, Ireland. e-mail: james.mcdermott2 @ucd.ie

Micheal O’Neill
University College Dublin, Ireland. e-mail: m.oneill@ucd.ie

2 Alberto Moraglio, James McDermott and Michael O’Neill

always a simple unimodal landscape, and its search performance is provably good
on large classes of problems [2, 3, 4].

GE [5] is a successful form of GP that represents programs indirectly as integer
lists. Phenotypes are obtained by using the integers of the genotype to select among
alternatives in the grammatical rules. One benefit of this indirect encoding is that
it simplifies the application of search to different programming languages and con-
strained structures. A common criticism of GE is that because of the rather complex
developmental genotype-phenotype mapping, search operators can be disruptive to
both syntax and semantics, e.g. low locality of the genotype-phenotype mapping [6].

The purpose of the current chapter is to extend the ideas of GSGP to GE, giving
Geometric Semantic Grammatical Evolution (GSGE). The remainder of the chapter
is organised as follows. In Section 2, GSGP itself is reviewed. In Section 3, we de-
scribe theoretical requirements for translating GSGP concepts to GE, and in Section
4 we use these to derive new geometric semantic search operators for GE, and prove
their properties for three domains (Boolean, Arithmetic, and Classifier). We give
also a general recipe to derive GSGE operators from GSGP operators for any do-
main. In Section 5, we present an efficient implementation of GSGE (the size of the
solutions grows only linearly even when using crossover). In Section 6, we present
extensive experimental results and analysis. In Section 7, we provide a discussion,
and in Section 8 a summary of the chapter.

2 Geometric Semantic Genetic Programming

Traditional genetic programming ignores the meaning of programs, as the search
operators it employs act on their syntactic representations, regardless of their se-
mantics. E.g., subtree swap crossover is used to recombine functions represented as
parse trees, regardless of whether trees represent Boolean expressions, arithmetical
functions, or classifier programs. While this guarantees the production of syntacti-
cally well-formed expressions, why should such a blind syntactic search work well
for different problems and across domains? In the end, it is the meaning of programs
that determines how successful search is at solving the problem.

The semantics of a program can be formally defined in a number of ways. It can
be a canonical representation, so that any two programs with the same semantics or
behaviour have the same canonical representation (e.g., Binary Decision Diagrams
for Boolean expressions). It can instead be a description of program behaviour in a
logical formalism, as used in formal methods. In the context of black-box search, it
may be argued that the semantics of a program is just its fitness. Finally, semantics
can be defined as the mathematical function computed by a program, i.e., the set of
all possible input-output pairs making up the computed function. In practice, in GP,
it is calculated over a restricted set of input-output pairs, and this is the definition
we use in this paper.

In the literature, there are a number of works using the semantics of programs
to improve GP. As many GP individuals may encode the same function, some re-

Geometric Semantic Grammatical Evolution 3

searchers use canonical representations of functions to enforce semantic diversity
by discarding individuals of duplicate semantics, in initialization [7, 8], crossover,
and mutation [9, 10]. Nguyen et al. [11] measure semantic distance between indi-
viduals as distance between their outputs for the same set of inputs. This distance
is used to semantically bias the search operators: mutation rejects offspring that
are not sufficiently semantically similar to the parent, and crossover swaps only se-
mantically similar subtrees between parents. Krawiec et al. [12, 13] have also used
semantic distance to propose a crossover for GP trees that is approximately geomet-
ric [14, 15] in the semantic space. Interestingly, the fitness landscape induced by this
operator has perfect fitness-distance correlation. The operator was implemented ap-
proximately by using a traditional crossover, generating a large number of offspring,
and accepting only offspring semantically intermediate to their parents.

While the semantically aware methods above produce overall superior perfor-
mance to traditional methods, they are indirect: search operators are implemented
by acting on the syntax of the parents to produce offspring, which are accepted only
if some semantic criterion is satisfied. This has two drawbacks: (i) these implemen-
tations are very wasteful, as they are heavily reliant on trial and error; (ii) they do not
provide insights on how syntactic and semantic searches relate to each other. Would
it then be possible to directly search the semantic space of programs? More pre-
cisely, would it be possible to build search operators that, acting on the syntax of the
parent programs, produce offspring that are guaranteed by construction to respect
some semantic criterion or specification? Krawiec et al. [12, 13] argued that due to
the complexity of the genotype-phenotype mapping in GP, a direct implementation
of exact semantic operators is probably impossible.

However, GSGP [1] shows that the genotype-phenotype (syntax to semantics)
map of commonly considered GP domains is, in an important sense, easy — not
complex. GSGP gives exact geometric semantic crossovers and mutations for dif-
ferent problem domains (Boolean, Arithmetic, Classifier). By construction these
search operators see a simple unimodal fitness landscape for any problem in these
domains [1].

2.1 Geometric Semantic Operators

A search operator CX : S x § — S for a search space S is a geometric crossover [14,
15] w.r.t. the metric d if for any choice of parents 71,72 € S, each offspring
T3 =CX(T1,T2) is in the d-metric segment between parents, that is d(7'1,73) +
d(T3,T2) =d(T1,T2). A search operator M : S — S is a geometric €-mutation
w. . t. the metric d if for any choice of the parent T'1, each offspring 72 = M(T'1) is
in the d-metric ball of radius € centered in the parent, thatis d(7'1,72) < €. Suppose
(as is typical) that the fitness function can be written as a distance F (T) =d(O(T),t)
between the output vector O(T) of the program 7 € S on a fixed vector of inputs,
and a target output vector ¢ on the same inputs. Then the semantic distance SD
between two programs 71,72 € S is defined as the distance between their cor-

4 Alberto Moraglio, James McDermott and Michael O’Neill

AND
Tl = / \
OR X1 X2 OR
/ \ / \
AND AND OR AND X3
T3 = / \ / \ T2 = / A\ T3 = / \
T1 TR NOT T2 X2 X3 AND NOT
| / \ |
TR NOT X1 X2 X3
TR = |
X3

Fig. 1 Left: Semantic Crossover scheme for Boolean Functions; Centre: Example of parents (T1
and T2) and random mask (TR); Right: Offspring (T3) obtained by substituting T1, T2 and TR in
the crossover scheme and simplifying.

responding output vectors O(T'1), O(T2), measured with the metric d. That is,
SD(T1,T2) =d(O(T1),0(T2)). Geometric semantic operators are operators on
the space of functions which are geometric with respect to metric SD. E.g., geomet-
ric semantic crossover on Boolean functions returns offspring Boolean functions
such that the output vectors of the offspring are in the Hamming segment between
the output vectors of the parents.

This is however only an abstract specification of geometric semantic search oper-
ators. We require an algorithmic characterization. Note that there is a different type
of geometric semantic crossover for each choice of space S and distance d. Con-
sequently, there are different semantic crossovers for different GP domains. In the
following, we provide algorithmic definitions of geometric semantic operators for
Boolean, Arithmetic and Classification domains. A formal treatment and explicit
derivations have been previously given [1].

Boolean crossover: Given two parent Boolean functions 71,72, the geometric se-
mantic crossover is the recombination that returns the offspring Boolean function
T3=(T1ATR)V (TRAT2) where TR is a randomly generated Boolean function
(see Fig. 1). TR is effectively a crossover mask, choosing a point in the semantic
space intermediate to T1 and T2. Boolean mutation: Given a parent function 7,
the mutation SGMB returns the offspring 7TM = T V M with probability 0.5 and
TM = T AM with probability 0.5 where M is a random minterm of all input vari-
ables. (A minterm is a term consisting of the product of all variables, each either
negated or non-negated.)

Arithmetic crossover: Given two parent functions 71,72, the geometric seman-
tic crossover is the recombination that returns the real function 73 = (T'1-TR) +
((1=TR)-T2) where TR is a random real constant in [0, 1]. Arithmetic mutation:
Given a parent function 7', the mutation SGMR with mutation step ms returns the
real function TM = T +ms - (TR1 — TR2) where TR1 and TR2 are random real
functions.

Classifier crossover: Given two parent classifiers T1,T2, with symbols as inputs
(1S) and outputs (OS), the geometric semantic crossover is the recombination that

Geometric Semantic Grammatical Evolution 5

returns the offspring classifier T3 = IF CONDR THEN Tl ELSE T2 where
CONDR is a random condition (e.g. of the form X; == s where s € IS). Classi-
fier mutation: Given a parent classifier T, the mutation SGMP returns the offspring
classifier TM = IF CONDR THEN OUTR ELSE T where CONDR is a condition
which is true only for a single random setting of all input parameters, and OUTR is a
random output symbol. The offspring can be expressed as nested IF-THEN-ELSE
statements with simple conditions of a single input parameter each.

3 Foundations for Geometric Semantic Operators for GE

In this section, we first introduce the concept of compositional semantics, then we
show that the GE mapping is compositional, and finally equipped with this we pro-
vide a formal recipe to derive geometric semantic operators for the GE encoding.

3.1 Compositional Semantics

In both linguistics — the study of natural languages — and theory of programming
languages, compositional semantics refers to a relation between syntax of the sen-
tences in a language and their semantics. The principle of compositional semantics
states that the meaning (semantics) of a sentence (syntax) can be derived by com-
bining the meanings of its sub-sentences. For example, the meaning of the sentence
S=1A and Bis [S]=[A and B] = [and]([2],[B]), where [] is a function that
maps a syntactic element to its meaning. This is a natural relation that holds for
most languages, natural or artificial.

The relation between syntax and semantics in GSGP is compositional. Syn-
tactically, geometric semantic crossovers plug parent trees T1 and T2 into a re-
combination tree XT to obtain an offspring tree T3. We are allowed to write
this operation as T3 = XT(T1l, T2) and interpret it as a functional compo-
sition because the syntactic operation of plugging the structures T1 and T2 in
the structure XT is mirrored by the semantic operation of function composition
of the function X7 on the functions 7'1 and 72 producing the function T3, i.e.,
[T3] = [xT(T1, T2)]=[XT]([T1],[T2]). That is, geometric semantic crossovers
are compositional. In contrast, traditional subtree swap crossover is not composi-
tional. Formally this crossover could be similarly written as T3 = XO(T1, T2)
denoting that the offspring structure T 3 can be obtained by some syntactic operation
XO on the structures T1 and T2. However, this time the semantics of T3 cannot be
written as [T3] = [XO] ([T1], [T2]) as the semantics of the operation XO
(swapping two subtrees) is inherently linked to the syntactic representation of T1
and T2, and cannot be defined solely on their semantics.

An immediate consequence of the semantic compositionality of GSGP is that, as
the semantics of the offspring depend solely on the semantics of their parents, and

6 Alberto Moraglio, James McDermott and Michael O’Neill

not on their syntactic representations, functions and geometric semantic operators
acting on these can also be equivalently represented in a form or language other than
trees, if it respects semantic compositionality.

We will show that the genotype-phenotype mapping in GE is compositional, i.e.,
by stringing together linear representations of parents, we get the corresponding
linear representations of the offspring.

3.2 Compositionality of the GE mapping

In Section 4, we will introduce simple GE search operators for several domains
which are semantically geometric, i.e. perfectly well-behaved in terms of semantic
effects. Given the non-trivial developmental encoding of GE, it is surprising that
these operators are at all possible, especially in a simple form. In this section, we
present a theory that explains rigorously how this is possible. The gist of the ar-
gument is as follows. We will observe that the GE developmental process map-
ping naturally preserves (compositional) modularity: phenotypic modules (deriva-
tion subtrees) correspond to genotypic modules (sublists). Together with a composi-
tional interpretation of the geometric semantic operators, this implies the existence
of a genotypic crossover/mutation scheme (on integer lists) equivalent to a pheno-
typic crossover/mutation scheme (on derivation trees), which is in turn equivalent to
the GSGP crossover/mutation scheme (on GP trees): that is, an implementation of
GSGP geometric semantic operators for GE. These considerations apply to the do-
mains for which GSGP operators were derived by Moraglio et al. [1] (Boolean,
Regression and Classification) and may extend to GSGP operators in other do-
mains [16].

Let us now briefly review the GE genotype-phenotype mapping. Figure 2 illus-
trates the mapping. The genotype encoding a solution is the vector at the top. The
corresponding derivation tree (not shown) is obtained through depth-first traversal of
the grammar, using the genotype to select among multiple alternatives in the rules.
The derivation tree is produced incrementally: at each step, the next gene (integer)
in the genome is used to select the expansion for the left-most non-terminal node
in the developing derivation tree. The value of each gene is taken modulo the num-
ber of available choices in the grammar for this non-terminal. When there are no
non-terminal nodes left to expand, the derivation tree is complete. (In early versions
of GE, a “wrapping” method was used, that is if the genotype has been exhausted
and derivation is not finished, then indexing “wraps around” to the beginning of the
genotype. Alternatively, it may be the case that derivation is completed before the
genotype is exhausted. In this case, extra genes are simply ignored. The operators
presented in the next section avoid these complications by design.) The phenotype
(a string representing a program) is then extracted from the derivation tree by read-
ing the derivation tree leaf nodes from left to right. Finally, the vector at the bottom
of Fig. 2 is the semantics of the phenotype, that is the vector of the outputs of the

Geometric Semantic Grammatical Evolution 7

Grammatical Genotype nanuan

(A) <expr> ::= (<expr> <biop> <expr>) (0)
| <uop> <expr> (1)
| <var> (2)
(B) <biop> ::= and (0) .
| or (1)| Grammatical
(C) <uop> ::= not «0y| Development
Ma
(D) <var> ::= x1 (0) p
| x2 (1)
| %3 (2)
Syntax (phenotype) x1 and x2
semantis |0 |o0o[o[1][0]0o]0o]1]

Fig. 2 Grammatical Evolution Genotype-Phenotype Mapping.

program for all possible combinations of inputs (or for some subset, depending on
the domain).

To show that the GE mapping is semantically compositional, we will look more
closely at several derivation trees. Figures 3, 4 and 5 show the derivation trees and
the genotypes (bottom) for the expressions x1 and x2,x2 or x3andnot x3
respectively, obtained using the grammar in Figure 2. The number annotating each
non-terminal node of the derivation tree identifies the grammatical production that
was used to generate its child nodes out of the available applicable productions. For
example, the number (0) annotating the root node (expr) of the derivation tree in
Figure 3 signifies that its child nodes (expr, biop and expr) were obtained by
selecting production rule O in the grammar in Figure 2, out of those whose LHS is
expr. The choice of production rule 0 for the root node is dictated by the O as first
entry of the genotype. The phenotype x1 and x2 is just the terminal nodes of the
derivation tree, read from left to right.

Let us now make three observations that together will show the semantic compo-
sitionality of the GE mapping, and provide a formal recipe to derive search operators
for the grammatical genotype equivalent to the geometric semantic operators.

Observation 1: The derivation tree is effectively the parse tree of the given expres-
sion w.r.t. the given grammar. The parsing of a sentence w.r.t. a given grammar is the

8 Alberto Moraglio, James McDermott and Michael O’Neill

DFV(T1) =[0,2,0,0, 2, 1]

Fig. 3 Derivation tree for the expression x1 and x2.

DFV(T2)=[0,2,1, 1, 2, 2]

Fig. 4 Derivation tree for the expression x2 or x3.

inverse operation of generating (or deriving) a valid sentence of the grammar. This
observation leads to an algorithmic recipe to invert the GE genotype-to-phenotype
mapping, i.e., a mechanical way to compute the GE representation of any grammat-
ically valid phenotypic expression: (i) using a standard parsing algorithm, parse the
given phenotypic expression (sentence) w.r.t. the grammar; the obtained parse tree
is the derivation tree of the phenotypic expression; (ii) use the numbering of the
production rules in the grammar to annotate each non-terminal node of the deriva-
tion tree with the choice of production rule consistent with its child nodes (similar
to GE Sensible Initialisation “unmodding” [17]); (iii) visit the derivation tree using
depth-first traversal and collect the sequence of choices on the nodes. The resulting
sequence is a genotype (one among many) of the given expression. For example,
looking again at Figure 3 but from the bottom to the top this time, given the phe-
notypic expression x1 and x2 and the grammar in Figure 2, a standard parsing
algorithm can be used to obtain its (unannotated) parse tree, which is the same as the

Geometric Semantic Grammatical Evolution 9

DFV(TR) =[1, “0”, 2, 2]

Fig. 5 Derivation tree for the expression not x3. The quotation marks (“0”) indicate that a codon
is not strictly required, since only one production for the uop non-terminal exists; in some GE
systems the codon is consumed regardless, and we follow this practice.

derivation tree. This can then be annotated by looking at the numbering of the gram-
matical productions in Figure 2, obtaining the same annotations. Then the genotype
can be obtained by traversing depth-first the annotated tree obtaining the sequence
[0,2,0,0,2,1], which is the same as the original genotype.

Observation 2: The use of depth-first expansion of the parse tree makes the
genotype-to-phenotype mapping modular in the following sense. As noted in the
previous point, we can obtain the genotype associated with a parse tree by traversing
depth-first the annotated tree (7") and collecting the numbers in sequential order ob-
taining the sequence S, i.e., S = DFV(T). If we ‘hide’ any subtree of the derivation
tree by replacing the subtree with a node X encapsulating the subtree and compute
the genotype by depth-first traversal, we obtain that DFV(T) = S1,DFV (X),S2,
which means that the depth-first visit of T is a sequence of the form: uninterrupted
sequence S1, followed by the (unknown) uninterrupted sequence obtained by depth-
first visit of the hidden tree X, followed by a second uninterrupted sequence S2. This
holds for depth-first traversal because of its prioritisation of visit of the nodes in a
tree, which has the property that when the traversal enters a subtree, it will then visit
all its nodes before leaving it, and then it will not return to it anymore. This property
does not hold for other tree traversal strategies. For example, it does not hold for
breadth-first traversal of the tree. This is because breadth-first traversal could enter
and leave any given subtree several times (more precisely, a number of times equal
to the depth of the subtree) with the effect of interleaving the nodes of the subtree
with the nodes of the rest of the tree in the output sequence. The modularity of the
genotype-phenotype mapping is illustrated in Figure 6. The nodes with red labels
are nodes encapsulating subtrees. The dash-line is the order of visit of the nodes of
the depth-first traversal strategy. The genotype sequence contains the number asso-
ciated to the non-terminal nodes, and when a hidden subtree is encountered (a red
node), its genotype sequence is included as a self-contained subsequence. A similar

10 Alberto Moraglio, James McDermott and Michael O’Neill

---® g
,/’ expr
(4 . -
. -
7 7o~ ‘ TN
0 ’ ‘ 1 N T~ 0
, N
' \
’ | expr | A | biop ’ expr
,/ \ | .
’ \\ 1 L7
4 l |\ 1 ’
! Vi 1 Oy
1
|
,’ T1 | | biop |“| TR I | H expr | biop | |T2 |
/ /)
,’ ,’ \ \ - "// I \\ v

\ ' \"'/ Y 1_

i
| :

]

1 i \—-’
. 1

\ 1

\ I

I
I
1
\ ’ 1 e
1
\

\ -7

-

So i

DFV(M) = [0, 0, DFV(T1), 0, DPV(TR), 1, 0, 1, “0”, DPV(TR), 0, DPV(T2)]

Fig. 6 Derivation tree of crossover mask. The dash-line is the order of visit of the nodes of the
depth-first traversal strategy.

concept of modularity in the genotype-phenotype mapping is implicit in the work
of Hemberg [18] (p. 176) on the classification of operator behaviours in GE.

Observation 3: A geometric semantic operator is a function (i.e., recombination
scheme) that when applied to input functions (parents) returns an output function
(offspring). We observe that when viewed as a ‘sentence’ generated by a grammar,
a geometric semantic operator is a syntactical expression representing the recombi-
nation scheme with ‘holes’ in which to plug the syntactical expressions representing
the input functions. For example, geometric semantic crossover for Boolean func-
tions, T3 = (T1ATR)V (TRAT2), can be seen syntactically as a sentence of the
grammar for Boolean expressions in Figure 2 where the unspecified input functions
T1,T2 and TR (i.e., formal parameters of the recombination scheme) can be seen
syntactically as ‘holes’ or ‘hidden sub-sentences’. The corresponding syntax of the
output function 7'3 can then be obtained by plugging in the syntactic expressions of
T1, T2 and TR in the ‘holes’ of the syntactic representation of the recombination
scheme.

From these observations it follows that we can obtain the GE genotypic repre-
sentation corresponding to the recombination scheme, by applying the procedure
outlined in observation 1 to invert the genotype-to-phenotype mapping to the syn-
tactic representation of the recombination scheme (interpreted as in observation 3)
i.e., parsing it, annotating the parse tree, and visiting the annotations depth-first. The
‘holes’ in the sentence correspond to ‘hidden subtrees’ in the parse tree of the sen-
tence, which as argued in observation 2 correspond to self-contained subsequences
in the genotype sequence. Figure 6 shows the parse tree of the syntactic represen-
tation of the recombination scheme 73 = (T1 ATR)V (TRAT2) and the corre-

Geometric Semantic Grammatical Evolution 11

AND OR
= / \ / \
X1 X2 AND AND
[0[2]o0[o[2]1] i
I
[ofo[m1]o[mR[1]o[1]o[R[0] |
TR = |
X3 @
1]2]2]
OR
/ \
0R 3= AND X3
2=/ /A
X2 X3 AND NOT

/N
X2 X3

oo elo sl 2 [zl To[s 2o T T T T

Fig. 7 Example of Geometric Semantic Search Operators on Grammatical Evolution Genotype.

sponding GE genotype. Given the GE genotypes of the functions 71, 72 and TR in
Figures 3, 4 and 5 respectively, the GE genotype of the function 7'3 is then obtained
by simply placing them in their places in the GE genotype of the recombination
scheme (see Figure 7). This by construction is equivalent to the functional compo-
sition of the recombination scheme to generic functions 7'1, T2 and TR, hence it
is the geometric semantic crossover for Boolean functions expressed using the GE
representation.

4 Derivation of Geometric Semantic Operators for GE

The theory developed in the previous section is applied here to derive a complete set
of geometric semantic operators for the GE genotype for Boolean, Arithmetic and
Classifier domains. In particular, we aim at deriving crossover, mutation and initial-
isation operators acting solely on GE genotypes and being guaranteed by construc-
tion to be equivalent to geometric semantic operators acting on the corresponding
expressed phenotypes. This allows an evolutionary process on GE genotypes exactly
equivalent to an evolutionary process on the corresponding phenotypes. Note that
the design of the search operators is inextricably dependent on the specific grammar
used for each domain. The grammar however is used only in the design phase of

12 Alberto Moraglio, James McDermott and Michael O’Neill

(A) <expr> ::= (<expr> <biop> <expr>) (0)
| <uop> <expr> (1)
| <var> (2)
(B) <biop> ::= and (0)
| or (1)
(C) <uop> = not (0)
(D) <var> = x1 (0)
| x2 (L)
| x3 (2)

Fig. 8 Grammar for Boolean expressions.

the search operators. We do not allow it to be used during the search to e.g., re-
pair the offspring generated by the operators. All the operators by design must be
guaranteed to produce genotypes corresponding to grammatically valid phenotypic
expressions. Furthermore, the offspring genotypes will be guaranteed to be perfectly
formed without requiring genome “wrapping” or ignoring surplus genes.

4.1 Operators for Boolean Domains

In the following, we first introduce the grammar we use for Boolean expressions.
We then derive crossover, mutation and initialisation operators on GE genotypes for
Boolean expressions based on this grammar.

GRAMMAR: the grammar for Boolean expressions considered is in Figure 8. For
simplicity of illustration, this grammar has only three variables (x1, x2 and x3).
This grammar can express any Boolean function of three variables. However, the
grammar and the corresponding geometric semantic search operators on GE geno-
types can be generalised to any number of variables and to expanded function sets.

CROSSOVER: The geometric semantic crossover for Boolean expressions is
T3=(TIATR)V(TRAT2)

where T'1 and T2 are the parent Boolean expressions, TR is a random Boolean
expression, and 7'3 is the offspring Boolean expression.

The geometric semantic crossover for GE is an operation on the genotype of
parents that generates the genotype of the offspring such that the developmental
process via the grammar produces the offspring whose expression is given above.

The corresponding geometric semantic crossover for this grammar is

Geometric Semantic Grammatical Evolution 13

(<expr> <biop> <expr>)
(<expr> <biop> <expr>)
Tl

and

TR

or

(<expr> <biop> <expr>)
<uop> <expr>

not

TR

and

T2

5
=

5
z

Q O OrorQu onvu oo
3
z

=)
N

Fig. 9 Derivation of phenotype for geometric semantic crossover for Boolean expressions.

g(T3)=10,0,g(71),0,¢(TR),1,0,1,0,¢(TR),0,g(T2)]

where g(.) returns the genotype of its argument. The genotype g(7T'3) of the off-
spring T3 is the sequence obtained by inserting the sequences g(7'1), g(TR), and
g(T2) in the specified positions. Note that the genotypes of the parents (g(7'1) and
g(T2)) are readily available from the previous stage of the evolutionary process.
The genotype of the random expression (g(TR)) is generated using the initialisation
procedure described below.

Figure 9 shows that expanding the expression g(7'3) using the grammar while
considering T'1, TR, and T2 as parameter expressions we obtain the geometric se-
mantic crossover scheme on phenotypes.

MUTATION: The geometric semantic mutation for Boolean expressions returns the
offspring Boolean expression TM = T \V M with probability 0.5 and TM =T AM
with probability 0.5 where T is the Boolean expression undergoing mutation, M is a
random minterm of all input variables, and 7'M is the mutated Boolean expression.

The corresponding geometric semantic mutation for this grammar is g(TM) =
[0,g(T),1,g(M)] with probability 0.5 and g(TM) = [0,g(T),0, 1, g(M)] with prob-
ability 0.5. The genotype of the parent (g(7')) is readily available from the previous
stage of the evolutionary process. The genotype of the random minterm (g(M)) is
generated using the procedure in Figure 10, which illustrates it for three variables.

Figure 11 shows that expanding the expression g(TM) using the grammar while
considering 7 and M as parameter expressions we obtain the geometric semantic
mutation scheme on phenotypes.

INITTALISATION: We aim at creating a random genotype that corresponds to
a valid grammatical expression, i.e. a valid phenotype, without using wrapping or
leaving unused codons or using modulus of the gene values. This would be easy to
do by traversing the grammar to generate the genotypes. We however do not allow

14 Alberto Moraglio, James McDermott and Michael O’Neill

def generate_mintermgeno (3 variables):

result = [0] # <expr> <biop> <expr>

result += random.choice([[], [1]]) # do-nothing, or negate
result += [2, 0] # <var>, x1

result += [0, 0] # and, <expr> <biop> <expr>

result += random.choice([[], [1]]) # do-nothing, or negate
result += [2, 1] # <var>, x2

result += [0] # and

result += random.choice([[], [1]]) # do-nothing, or negate
result += [2, 2] # <var>, x3
return result

Fig. 10 Procedure to build the genotype of a random minterm of three variables.

T or M

0: (<expr> <biop> <expr>)
g(T) T

1: or

g (M) : M

T and not M

0: (<expr> <biop> <expr>)
g(T): T

0: and

1: (<uop> <expr>)

70’ not

g (M) : M

Fig. 11 Derivation of phenotype for geometric semantic mutation for Boolean expressions.

explicit use of the grammar at runtime (apart from during fitness evaluation of geno-
types, for which it is unavoidable), as we want the complete evolutionary process to
happen on the genotypes only, i.e., all search operators, including initialisation, must
not ‘peep’ through the genotype-phenotype mapping at runtime. We want the search
operators, including initialisation, to work solely at genotype level, and induce via
the genotype-phenotype map their intended effect at phenotype level, entirely by de-
sign. The design of these search operators naturally is inextricably grounded in the
used grammar.

For Boolean expressions, the initialisation procedure used in GSGP is in Al-
gorithm 1. We can design an initialisation operator acting entirely on genotypes
inducing at the phenotype level the same behaviour by simply mapping each phe-

Geometric Semantic Grammatical Evolution 15

notypic sub-component to the corresponding genotypic sub-sequence, as illustrated
in Algorithm 2.

Algorithm 1: Initialisation: Generate a random Boolean phenotype

1
2
3
4
5
6

Function RandomBoolean (depth)

else

if depth = 1 or probability < 24P then

return random.choice(x1, x2, ...)

with probability 1/3: return (not RandomBoolean(depth-1))
with probability 1/3: return (RandomBoolean(depth-1) and
RandomBoolean(depth-1))

with probability 1/3: return (RandomBoolean(depth-1) or
RandomBoolean(depth-1))

Algorithm 2: Initialisation: Generate a valid random Boolean genotype

1
2
3
4
5
6
7
8

10

11

Function RandomBoolean (depth)

else

if depth = 1 or probability < 24P then

return /2] + [RndInt (numvar)]
(phenotype = x1 /x2 / etc)

with probability 1/3: return [1] + RandomBoolean (depth-1)

(phenotype = not < expr >)

with probability 1/3: return [0] + RandomBoolean (depth-1) + [0] +
RandomBoolean (depth-1)

(phenotype = < expr > and < expr >)

with probability 1/3: return [0] + RandomBoolean (depth-1) + [1] +
RandomBoolean (depth-1)

(phenotype = < expr > or < expr >)

4.2 Operators for Arithmetic Domains

In the following, we first introduce the grammar we use for arithmetic expressions.
We then derive crossover, mutation and initialisation operators on GE genotypes for
arithmetic expressions based on this grammar.

GRAMMAR: the grammar for arithmetic expressions considered is in Figure 12.
This grammar can express any polynomial of three variables. However, the grammar

16 Alberto Moraglio, James McDermott and Michael O’Neill

(A) <expr> = (<expr> <biop> <expr>) (0)
| <var> (1)
| <const> (2)
(B) <biop> = (0)
\ (1)
| * (2)
(C) <var> = x1 (0)
| x2 (1)
| X3 (2)
(D) <const> ::= 0.0 (0)
| 0.1 (1)
| 1.0 (10)

Fig. 12 Grammar for Arithmetic expressions.

and the corresponding geometric semantic search operators on GE genotypes can be
readily generalised to any number of variables and other function sets.

CROSSOVER: The geometric semantic crossover for arithmetic expressions is
T3=(T1-TR)+((1-TR)-T2)

where T'1 and T2 are the parent arithmetic expressions, TR is a random real constant
in [0,1], and T3 is the offspring arithmetic expression.
The corresponding geometric semantic crossover for this grammar is

g(T3)=10,0,2,¢(TR),2,¢(T1),0,0,0,2,10,1,2,¢(TR),2,8(T2)]

where g(.) returns the genotype of its argument. The offspring T'3 has the genotype
formed by substituting the genotypes of 71, T2 and TR (g(T'1), g(T2) and g(TR))
in the above pattern. For simplicity of illustration, we assume 7R takes only values
0.0, 0.1, ..., 1.0, so that g(TR) is a random integer between 0 and 10, producing
floating-point values through use of the <const> non-terminal in Fig. 12.

MUTATION: The geometric semantic mutation for arithmetic expressions returns
the offspring TM = T 4+ ms- (TR1 — TR2) where T is the Boolean expression un-
dergoing mutation, 7R1 and TR2 are random arithmetic expressions, and ms is the
mutation step, which is a constant real value.

The corresponding geometric semantic mutation for this grammar is g(TM) =
[0,(T),0,0,g(ms),2,0,g(TR1),1,g(TR2)]. The genotypes of the random arith-
metic expressions (g(TR1) and g(TR2)) are generated using the initialisation pro-
cedure for arithmetic expressions presented below. The genotype of the parameter

Geometric Semantic Grammatical Evolution 17

ms can be obtained by factoring the parameter appropriately as a valid sentence of
the grammar, and then deriving its genotype by parsing this sentence. For example,
ms = 0.001 can be factored into ms = 0.1 % 0.1 % 0.1 which is a valid expression
in the given grammar, and so its genotype can be derived, in this case obtaining
g(ms) =1[0,0,2,1,2,2,1,2,2,1].

INITIALISATION: We can design an initialisation operator acting entirely on
genotypes inducing at the phenotype level the same behaviour as the initialisation
procedure used in GSGP. It works by mapping each phenotypic sub-component to
the corresponding genotypic sub-sequence, as illustrated in Algorithm 3.

Algorithm 3: Initialisation: Generate a valid random Arithmetic genotype

1 Function RandomArithmetic (depth)

2 if depth = 1 or probability < 2~ then

3 with probability 1/2: return [1] + [RndInt (numvar)]

4 (phenotype = < var >, x1/x2/ etc)

5 with probability 1/2: return [2] + [RndInt (numconst)]

6 (phenotype = < const >, 0.0/ 0.1/ etc)

7 else

8 return [0] + RandomArithmetic (depth-1) + [RndInt (numop)]
+ RandomArithmetic (depth-1)

9 (phenotype = < expr >, (+/-1%), < expr >)

4.3 Operators for Classifier Domains

In the following, we first introduce the grammar we use for classifiers i.e., nested
if-expressions. We then derive crossover, mutation and initialisation operators on
GE genotypes for classifiers based on this grammar.

GRAMMAR: the grammar for classifiers considered is in Figure 13. For simplicity
of illustration, this grammar has only three variables (x1, x2 and x3), three input
symbols (1s1, is2 and is3), and two output symbols (os1 and 0s2). This gram-
mar can express any classifier of three variables with three input classes and two
output classes. However, the grammar and the corresponding geometric semantic
search operators can be generalised to any number of variables, input symbols, and
output symbols.

CROSSOVER: The geometric semantic crossover for classifiers is

T3=TI1IF CONDRELSET2

18 Alberto Moraglio, James McDermott and Michael O’Neill

(A) <cf> ::= (<cf> if <cond> else <cf>) (0)
| <os> (1)

(B) <cond> ::= <var> == <is> (0)
| <cond> and <var> == <is> (1)

(C) <is> ::= isl (0)
| is2 (1)

| is3 (2)

(D) <os> ::= osl (0)
| os2 (1)

(E) <var> = x1 (0)
| x2 (1)

I %3 (2)

Fig. 13 Grammar for Classifiers.

where T'1 and T2 are the parent classifiers, CONDR is a random condition depend-
ing on one or more input variables, and 7'3 is the offspring classifier !.
The corresponding geometric semantic crossover for this grammar is

g(T3) = [07g(T1)707g(Rvar)ag(Ris)>g(T2)]

where g(.) returns the genotype of its argument. For simplicity of illustration, the
random condition CONDR is of the form Rvar == Ris, where Rvar is a random vari-
able and Ris is a random input symbol. The offspring 7'3 has the genotype formed
by substituting the genotypes of T'1, T2, Rvar and Ris, (g(T'1), g(T2), g(Rvar) and
g(Ris)) in the above pattern. The genotype of the random variable and the random
input symbol (g(Rvar) and g(Ris)) are both integers randomly chosen from {0, 1,
2}, since in the grammar there are three input variables and three input symbols.

MUTATION: The geometric semantic mutation for classifiers returns the offspring
classifier TM = IF CONDR THEN OUTR ELSE T where T is the parent clas-
sifier undergoing mutation, CONDR is a condition which is true only for a single
random setting of all input parameters, and OUTR is a random output symbol. The
offspring can be expressed as nested IF-THEN-ELSE statements with simple con-
ditions of a single input parameter each.

The corresponding geometric semantic mutation for this grammar is g(TM) =
[0,1,¢(OUTR),g(CONDR),g(T)]. The genotype of the parent (g(7)) is readily
available from the previous stage of the evolutionary process. The genotype of the

! Implementation note: The unusual IF-ELSE syntax here means that (in Python) the code is a
single expression — which can be evaluated using Python’s eval () — rather than a statement,
which cannot.

Geometric Semantic Grammatical Evolution 19

def generate_conjunction (3 variables):
result = []

result += [1, 1, O]
<cond> —>

<cond> and <var> == <is> —>

<cond> and <var> == <is> and <var> == <is> ->

<var> == <is> and <var> == <is> and <var> == 1is
result += [0, random.rangrange (n)]

<var> == <is> -> x1 == i3 (eq)

result += [1l, random.rangrange (n)]

<var> == <is> -> x2 == i2 (eq)

result += [2, random.rangrange (n)]

<var> == <is> -> x3 == i2 (eq)

return result

Fig. 14 Procedure to build the genotype of a random condition of three variables.

random output symbol (g(OUTR)) is an integer randomly chosen from {0, 1}, since
in the grammar there are two output symbols. The genotype of the random condition
(¢(CONDR)) is generated using the procedure in Figure 14, which illustrates it for
three variables where each can take on n possible values.

INITIALISATION: We design an initialisation operator acting entirely on geno-
types inducing at the phenotype level the same behaviour as the initialisation pro-
cedure used in GSGP by simply mapping each phenotypic sub-component to the
corresponding genotypic sub-sequence, as illustrated in Algorithm 4.

Algorithm 4: Initialisation: Generate a valid random classifier genotype

1 Function RandomClassifier (depth)

2 if depth = 1 or probability < 24P then

3 return [1] + [RndInt (numos)]

4 (phenotype = < 0s >, 0ol / 02 / 03 etc (output symbols))

5 else

6 return [0] + RandomClassifier (depth-1) + [0,

RndInt (numvar), RndInt (numis)] +

RandomClassifier (depth-1)

7 (phenotype = (< cf > if < cond > else < cf >), <expr >, <var > == <is >,
(x1/x2/x3etc), (il /12 /13 etc), < expr >)

20 Alberto Moraglio, James McDermott and Michael O’Neill

5 An Efficient Implementation of GSGE

A drawback of GSGP with crossover is the exponential growth of individuals due to
the fact that the offspring tree contains both parent trees, hence individuals double
their size at each generation. This problem applies to GSGE also. One solution,
proposed in [1], is to keep program size manageable using automated simplification
during the run.

Castelli et al. [19] proposed an implementation of GSGP that avoids exponential
growth by referring via pointers to a trace of the ancestry of individuals, rather than
storing them directly. We propose a new implementation of GSGP and GSGE also
based on tracing the ancestry of individuals, that however does not explicitly build
and maintain a new data structure, but uses higher-order functions and memoiza-
tion to achieve the same effect, leaving the burden of book-keeping to the compiler.
The resulting implementation is fast, elegant and concise. A Python implementa-
tion of GSGP with this feature (under 100 lines without comments) is on GitHub
at https://github.com/amoraglio/GSGP, while the GSGE code used in this paper is
available at https://github.com/jmmcd/GSGE.

SOLUTION REPRESENTATION: We represent solutions directly using func-
tions of the programming language used to program the GSGP system. E.g., in
a GSGP to evolve Boolean expressions written in Python, the representation of a
Boolean expression is a Python (anonymous) function computing that Boolean ex-
pression, and not a data structure (e.g., a tree) representing the Boolean expression.

SEARCH OPERATORS: Geometric semantic crossover and mutation can be in-
terpreted as higher-order functions. We implement them directly as such: they do
not manipulate data structures representing solutions, but take directly as inputs the
(anonymous) parent functions and return (anonymous) offspring functions. The re-
turned offspring function calls the parent functions in its definition. In particular,
the parent function definitions are not substituted in the offspring definition, hence
there is no growth of the offspring function. The function calls to the parents in the
offspring implicitly build the data structure that relates offspring to parents all the
way up the ancestry without the need to use pointers, manage memory and maintain
an archive of past solutions.

FITNESS EVALUATION: Even if individuals do not grow, evaluating them takes
exponential time, as querying a function for some input requires calling both its par-
ents on that input, which in turn need to call their parents on it and so forth, doubling
the number of calls at each generation. The complexity of queries on training data
can be reduced from exponential to constant time by memoization (i.e., caching the
output values of a function of previously encountered inputs rather than recomput-
ing them) of all individuals generated in the course of evolution. This works because
each individual caches its outputs on the training examples the first time its fitness
is computed, and later re-uses them when its descendents call it. This reduces the
number of calls needed to compute the fitness of an individual from exponential to

Geometric Semantic Grammatical Evolution 21

the number of parents, i.e. two, constant. Memoization is easily implemented as a
higher-order wrapping function (it is a standard library function in Python 3.2+).

DISPLAY OF BEST INDIVIDUAL: As solutions are represented directly as com-
piled Python functions, displaying them (in particular the best-of-run individual)
would require decompilation, which is not very practical. The technique we have
used to display functions that avoids both decompilation and direct representations
of functions during evolution consists of adding an extra implicit call structure in in-
dividuals, where the extra structure implicitly keeps track of how to reconstruct the
final genotype of the individual (its source code) mirroring the first call structure (its
semantics) interpreting subroutine calls as function body substitutions (i.e. asking
the parents to return their source code to embed in the offspring source code). Then
individuals can be asked to display themselves by calling their associated ‘source
code’ function. This can be implemented with minor additions to the code. Naturally
displaying the best individual after evolution takes exponential time as its geno-
type is exponentially long. However, querying the final solution on unseen values
(i.e. making predictions) takes only time linear in the number of distinct ancestors
thanks to the memoization of individuals. The number of distinct ancestors grows
linearly with the number of generations (not exponentially, in the long term, because
the population size is fixed).

6 Computational Experiments

We next present extensive experimental results. Our goal is to compare GE and
GSGE representations. For comparison with previous work, we will include the
GSGP representation also. As the fitness landscape is unimodal, we expect a se-
mantic stochastic hill-climber to find the optimal solution efficiently. Therefore, we
will test both hill-climbing and evolutionary search algorithms. Finally, our choice
of test problems mimics that of [1]. Thus, we will compare:

e GE, GSGE, and GSGP representations;
e stochastic hill-climbing and evolutionary search algorithms;
e symbolic regression, Boolean, and classifier problems.

Based on theory, we expect that GSGE will obtain the same very good perfor-
mance as GSGP in these experiments, as the two systems perform an equivalent
search: the search done by GSGE on genotypes projected through the genotype-
phenotype mapping coincides with the search done by GSGP on phenotypes.

The training data in the symbolic regression problems is synthesized from poly-
nomials with coefficients uniformly sampled in [—1, 1]. The degree of the polyno-
mials is varied from 3 to 10, in order to scale problem difficulty. The test data is
resampled independently in the same way.

The Boolean problems are True, n-Parity, Comparator, Multiplexer, and Random.
True is the Boolean function which returns True for any input. Random is a Boolean

22 Alberto Moraglio, James McDermott and Michael O’Neill

function whose truth table is randomly generated. Again, each problem is tested in
several sizes in order to scale problem difficulty. The training data consists of all
possible cases, and the test data is the same.

The classifier problems are synthetic. Each problem is characterised by its num-
ber of input variables n,, number of possible values of these variables n;, and number
of possible output values n,. Each input variable may take integer values in the range
[0,n; — 1]. The output is an integer in the range [0,n, — 1]. It is a simple synthetic
function of the input variables, (xo+x;) mod n,. For example, with n, =n; = n, =2,
the classifier is equivalent to Boolean addition.

To facilitate easy comparison, we will report the percentage of hits and the stan-
dard deviation in this figure, for each problem, each representation, and each search
algorithm. A hit is a test case correctly solved by the best individual of the run.
On Boolean and classifier problems, a hit means the correct answer. On symbolic
regression problems, a hit means an output value within 0.01 of the correct value.

Table 1 shows results. The GSGP results effectively replicate those reported by
Moraglio et al. [1], with very strong performance using both search algorithms,
often slightly better using hill-climbing versus evolutionary search. As expected, the
GSGE results are effectively identical to the GSGP results, confirming that GSGE
operators “see” the cone landscape characteristic of GSGP.

In contrast, GE itself does poorly, especially on the symbolic regression and
n-Parity problems. With GE, evolutionary search tends to work better than hill-
climbing. Note that the comparison to GE may be called unfair for two reasons.
Our implementations of both GE and GSGE do not use a feature which has come to
be common in GE implementations, sensible initialisation [17]; and in our imple-
mentations of both GE and GSGE, non-coding tails have been cut. Recent work has
suggested that non-coding tails can improve performance in GE [20].

7 Discussion

This work had a two-fold motivation. The first was to extend the GSGP framework
to a new representation. The second was to show how to design provably good
search operators for GE. In the following we discuss these two perspectives in the
light of the work presented in this chapter.

Why apply GSGP to GE? On one hand, GSGE has provably good performance.
On the other hand, the search on GE genotypes is exactly equivalent to the search
done by GSGP on phenotypes. If they are equivalent, why bother using GSGE in-
stead of GSGP? Expressing geometric semantic search operators in the various GP
representations (GE, Cartesian GP, PushGP, etc.) and more generally for evolution-
ary approaches to evolving functions (e.g., evolving neural networks, finite state
machines, etc.) is a good thing for three reasons: (i) it allows for unification and
direct comparison of very different representations; (ii) it unveils the specific prop-

Geometric Semantic Grammatical Evolution 23

Table 1 Results with GE, GSGE, and GSGP representations on various problems, at various sizes,
using hill-climbing (HC) and evolutionary (Evo) search. For classifier problems, problem size is
given as ny, n;, n,.

GE/HC | GE/Evo |GSGE/HC|GSGE/Evo|GSGP/HC|GSGP/Evo
problem size | avg sd| avg sd| avg sd| avg sd| avg sd| avg sd
polynomial 42 8.4| 21.0 25.5/100.0 0.0{100.0 0.0{100.0 0.0{100.0 0.0
4.5 7.0 10.8 18.5/100.0 0.0{100.0 0.0{100.0 0.0{100.0 0.0
3.0 59| 10.0 12.8{100.0 0.0{100.0 0.0|100.0 0.0{100.0 0.0
32 58| 10.0 8.0] 99.8 0.9 99.3 2.8|100.0 0.0{ 99.5 2.0
32 54| 55 4.9]100.0 0.0{ 91.5 16.0|/100.0 0.0 93.3 12.6
2.0 3.8| 102 11.6] 99.5 2.0 845 14.9| 99.5 2.0| 86.8 13.8
22 49| 75 7.8 91.2 140 69.3 25.8| 94.7 8.0 70.3 25.5
23 54| 52 64| 87.2163| 64.5 22.9| 88.8 14.8| 67.5 22.9
89.0 17.4| 983 5.1] 99.1 1.6/ 99.5 1.4| 99.7 09| 99.0 1.5
88.5 19.9|1100.0 0.0{ 99.7 0.6 99.2 1.0] 99.8 0.5 99.1 1.1
87.5 21.2|100.0 0.0{ 99.9 0.2| 99.8 0.4| 999 0.3| 999 0.2
84.2 22.8|100.0 0.0{100.0 0.1{100.0 0.1{100.0 0.1| 99.9 0.2
502 0.8 50.3 0.9 994 15| 946 32| 99.7 09| 95.1 3.3
50.0 0.0f 50.0 0.0 99.9 0.4| 969 19| 999 04| 975 1.7
50.0 0.0f 50.0 0.0|100.0 0.1| 98.9 0.7{100.0 0.0 99.0 1.0
50.0 0.0 50.0 0.0{100.0 0.1 98.6 0.9|100.0 0.1f 98.6 0.6
50.0 0.0f 50.0 0.0|100.0 0.0| 98.8 0.5/100.0 0.0 98.9 0.4
50.0 0.0f 50.0 0.0{100.0 0.0{ 98.8 0.3|100.0 0.0{ 98.7 0.3
75.6 19| 73.8 4.7 99.9 04| 98.8 12| 999 04| 984 1.8
755 1.2 789 3.9{100.0 0.1f 99.6 0.4|100.0 0.1f 99.6 0.4
753 1.0{ 79.3 3.2{100.0 0.0| 99.9 0.1{100.0 0.0| 99.9 0.1
64.5 25| 643 26| 999 04| 985 14| 998 05| 982 1.8
57.8 1.8 63.2 2.5(100.0 0.0| 99.8 0.1/100.0 0.0| 99.8 0.1
66.5 45| 642 4.6] 99.7 09| 96.8 3.4| 99.6 1.1f 96.6 2.9
615 43| 61.6 42| 999 04| 979 1.6/ 998 0.5| 979 2.0
58.0 3.1 60.5 2.6] 99.9 0.4| 99.2 0.8] 999 03| 99.2 0.7
56.7 2.3| 58.3 2.0{100.0 0.1f 99.2 0.5/100.0 0.1f 99.1 0.5
55.1 1.3| 56.7 1.3|100.0 0.0{ 99.3 0.3|100.0 0.0{ 99.3 0.4
53.6 1.2 55.0 0.9{100.0 0.0{ 99.4 0.2|100.0 0.0{ 99.3 0.2
52.6 0.8 53.8 0.8/100.0 0.0| 99.1 0.2{100.0 0.0 99.2 0.2
classifier 3,3,2|55.6 0.0 554 0.7[553 0.9| 55.6 0.0| 55.6 0.0/ 55.6 0.0

33,4342 2.8| 34.1 47| 715 09| 749 39| 774 1.1| 743 3.6

3,3,8|34.6 3.4| 358 8.1] 99.6 1.1| 849 50| 995 1.3| 851 4.6

3,42(50.0 0.0] 49.7 1.0| 499 04| 49.8 0.5| 50.0 0.0 50.0 0.0

3,4,4129.1 32| 27.3 3.0{ 749 03| 73.0 1.6| 748 0.5/ 719 1.6

3,4,8(25.7 19| 27.9 45| 999 04| 86.0 2.8| 99.9 03| 84.1 3.7

4,3,2|155.6 0.0 53.7 10.0| 55.6 0.0{ 55.6 0.0| 55.6 0.0{ 55.6 0.0

4,3,4135.8 4.2| 38.2 99| 77.7 0.2 76.7 1.0/ 77.8 0.0| 759 1.1

4,3,8|34.8 3.8| 41.7 6.8{100.0 0.2 88.0 2.6/100.0 0.0{ 87.9 2.6

4,4,2|150.0 0.0f 50.0 0.0| 50.0 0.1f 50.0 0.0| 50.0 0.0{ 50.0 0.0

4,44|28.7 3.0 352 64| 75.0 0.0{ 743 0.5| 75.0 0.1f 745 05

4,4,81253 1.2| 37.3 6.3[100.0 0.0f 94.7 0.9(100.0 0.1| 949 1.1

boolean true

nparity

comparator

multiplexer

random boolean

— [—_ — —_
OPL XA NT RS 0RNNSORXTITANNROIDNNS O 0TI N AW

—_
—

24 Alberto Moraglio, James McDermott and Michael O’Neill

erties of a representation that are ultimately linked to good performance (unimodal
landscapes); and (iii) it allows us to understand GSGP ideas in more detail.

The ideas of GSGP have transferred successfully to the GE representation. GE
search operators that see a unimodal landscape can be built for any problem, and
they can be built mechanically for any new grammar. By transferring GSGP ideas
to GE, we have learned that the GE map is modular, with compositional semantics,
and that this is a requirement for any new representation for GSGP. We have also
seen that GSGE solutions grow exponentially, but that their growth can be reduced
to linear.

Some of the specific benefits of GE are:

Constrained The grammar in GE can be used to enforce regularities and other
constraints to solutions.

Linearity The linear genotype allows for simple search operators.

Developmental In GE a small genotype can express a large phenotype (via wrap-
ping). Even without wrapping, developmental effects can come in to play, such
as a greater importance of the earliest genes in the genotype.

Neutrality Unused codons can function as a “memory” of previous solutions.

How do these beneficial aspects of GE transfer to GSGE?

Constrained This property is linked to using grammars to enforce constraints,
and has been used at a phenotypic level with GSGE, i.e., grammars can be used
directly in GSGP, see e.g. [16].

Linearity The GSGE operators are not as simple as those in GE.

Developmental In GSGE, the developmental mapping is of less importance. The
size of the phenotype is directly proportional to the size of the genotype.

Neutrality Unused codons do not occur in GSGE. However, because GSGE in-
dividuals functionally incorporate all ancestors, there is a type of “memory”.

From this analysis, it seems that GSGE uses the GE language to express a funda-
mentally different search than that done by GE itself. When two different perspec-
tives are presented in a common language, it is often the case that their features can
be fruitfully combined to produce unexpected novel ideas and results. This is where
we are at the moment! In a broader sense, GSGE “completes” GE as it makes a
link with semantics and the unimodal landscape. All of these seem to be ingredients
necessary for evolving programs, the holy grail of GE. It would be interesting to in-
vestigate how different ways of including semantics in GE (e.g. attribute grammars)
can be linked to GSGE.

Geometric Semantic Grammatical Evolution 25

8 Summary

In this chapter, we have recalled that GSGP sees a unimodal fitness landscapes for
any problem. Geometric semantic search operators are purely functional operators
that do not depend on the underlying representation. In principle, any representation
could be used if sufficiently expressive to describe these operators algorithmically.

In practice, geometric semantic search operators are naturally expressed in func-
tional languages as higher order functions. Even if in principle possible, it could
be practically impossible to express these operators in a language or representation
which does not naturally express functional relations and operations.

The GE encoding is rather complex, especially when using wrapping. It has been
shown to have low locality [21]: small changes of the genotype may correspond to
large changes on the phenotype, leading to highly disruptive operators (i.e., ripple
effect) and highly discontinuous fitness landscapes. We have thus asked the ques-
tion: can we express geometric semantic search operators using the GE encoding?

Expressing geometric semantic search operators on GE genotypes that act equiv-
alently to geometric semantic operators on expressions (phenotypes) requires an un-
derstanding of how to invert the GE genotype-phenotype map, and project through
this mapping search operators on the phenotype space to corresponding search oper-
ators on the genotype space. Given the complexity of the GE mapping, determining
such operators rigorously may seem hopeless. Surprisingly, in this chapter this goal
has been achieved.

The key property of the GE mapping that allows this is its modularity: a subex-
pression in the phenotype corresponds to an uninterrupted subsequence in the geno-
type. This allows functional composition (at the phenotypic level) to be expressed
as plugging a subsequence into a sequence schema (at the genotypic level). Geomet-
ric semantic operators are then expressed at a genotypic level as specific sequence
schema.

The genotypic definitions of geometric semantic search operators depend inex-
tricably on the specific grammar used, as they are designed around the genotype-
phenotype mapping. However, these operators can be derived mechanically by pars-
ing their phenotypic expression using the grammar, and then linearizing the parse
tree by depth-first traversal. We have put this methodology into practice, deriving
geometric semantic crossover, mutation and initialisation for GE, equivalent to ex-
isting GSGP operators for Boolean, Arithmetic and Classifier domains.

The new GSGE operators produce exponentially large solutions, similar to
GSGP. However, we have provided an elegant implementation of these operators
based on interpreting the operators as higher-order functions and making use of
memoization, which reduces the growth from exponential to linear (in the number
of ancestors).

Finally, we have reflected that GSGE, even if phrased using the same representa-
tion, is fundamentally quite different from standard GE.

26

Alberto Moraglio, James McDermott and Michael O’Neill

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

. Moraglio, A., Krawiec, K., Johnson, C.: Geometric semantic genetic programming. In:

Proc. PPSN XII, Springer (2012) 21-31

. Moraglio, A., Mambrini, A., Manzoni, L.: Runtime analysis of mutation-based geometric

semantic genetic programming on boolean functions. In: Proceedings of the Twelfth Work-
shop on Foundations of Genetic Algorithms XII. FOGA XII *13, New York, NY, USA, ACM
(2013) 119-132

. Moraglio, A., Mambrini, A.: Runtime analysis of mutation-based geometric semantic genetic

programming for basis functions regression. In: Proceedings of the 15th Annual Conference
on Genetic and Evolutionary Computation. GECCO 13, New York, NY, USA, ACM (2013)
989-996

. Mambrini, A., Manzoni, L., Moraglio, A.: Theory-laden design of mutation-based geometric

semantic genetic programming for learning classification trees. In: 2013 IEEE Congress on
Evolutionary Computation. (June 2013) 416-423

. O’Neill, M., Ryan, C.: Grammatical Evolution: Evolutionary Automatic Programming in a

Arbitrary Language. Genetic programming. Kluwer Academic Publishers (2003)

. Rothlauf, F.,, Oetzel, M.: On the locality of grammatical evolution. In Collet, P, et al., eds.:

EuroGP. Volume 3905 of LNCS., Budapest, Hungary, Springer (10 - 12 April 2006) 320-330

. Beadle, L., Johnson, C.G.: Semantic analysis of program initialisation in genetic program-

ming. Genetic Programming and Evolvable Machines 10(3) (2009) 307-337

. Jackson, D.: Phenotypic diversity in initial genetic programming populations. In: Proc. of

EuroGP 2010. (2010) 98-109

. Beadle, L., Johnson, C.G.: Semantically driven mutation in genetic programming. In: Proc.

of IEEE CEC ’09. (2009) 1336-1342

Beadle, L., Johnson, C.G.: Sematically driven crossover in genetic programming. In: Proc. of
IEEE WCCI 08. (2008) 111-116

Uy, N.Q., Hoai, N.X., O’Neill, M., McKay, R., Galvan-Lopez, E.: Semantically-based
crossover in genetic programming: Application to real-valued symbolic regression. Genetic
Programming and Evolvable Machines 12(2) (2011) 91-119

Krawiec, K., Lichocki, P.: Approximating geometric crossover in semantic space. In: Proc. of
GECCO ’09. (2009) 987-994

Krawiec, K., Wieloch, B.: Analysis of semantic modularity for genetic programming. Foun-
dations of Computing and Decision Sciences 34(4) (2009) 265-285

Moraglio, A., Poli, R.: Topological interpretation of crossover. In: Proc. of GECCO ’04.
(2004) 1377-1388

Moraglio, A.: Towards a Geometric Unification of Evolutionary Algorithms. PhD thesis,
University of Essex (2007)

Moraglio, A., Krawiec, K.: Geometric semantic genetic programming for recursive boolean
programs. In: Proceedings of the Genetic and Evolutionary Computation Conference, ACM
(2017) 993-1000

Ryan, C., Azad, A.: Sensible initialisation in grammatical evolution. In Barry, A.M., ed.:
GECCO Bird of a Feather Workshops, Chicago, IL, USA (2003) 142-145

Hemberg, E.A.P.: An exploration of grammars in grammatical evolution. PhD thesis, Univer-
sity College Dublin (2010)

Castelli, M., Silva, S., Vanneschi, L.: A C++ framework for geometric semantic genetic pro-
gramming. Genetic Programming and Evolvable Machines 16(1) (2015) 73-81

Nicolau, M., O’Neill, M., Brabazon, A.: Termination in grammatical evolution: Grammar
design, wrapping, and tails. In: Evolutionary Computation (CEC), 2012 IEEE Congress on,
IEEE (2012) 1-8

Rothlauf, F., Oetzel, M.: On the locality of grammatical evolution. In Collet, P., Tomassini, M.,
Ebner, M., Gustafson, S., Ekart, A., eds.: EuroGP. Volume 3905 of LNCS., Springer (2006)
320-330

