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ABSTRACT 24 

 25 

We investigated the utility of foraminifera, testate amoebae and bulk-sediment δ13C measurements for 26 

reconstructing Holocene relative sea level from sequences of salt-marsh sediment in Newfoundland, 27 

Canada. Modern, surface sediment was collected along transects from low to supra-tidal elevations in 28 

eastern (at Placentia) and western (at Hynes Brook and Big River) Newfoundland. Consistent with 29 

previous work, low-diversity assemblages of foraminifera display an almost binary division into a higher 30 

salt-marsh assemblage dominated by Jadammina macrescens and Balticammina pseudomacrescens and a 31 

lower salt-marsh assemblage comprised of Miliammina fusca. This pattern and composition resembles 32 

those identified at other high latitude sites with cool climates and confirms that foraminifera are sea-level 33 

indicators. The lowest occurrence of testate amoebae was at approximately mean higher high water. The 34 

composition of high salt-marsh testate amoebae assemblages (Centropyxis cassis type, Trinema spp., 35 

Tracheleuglypha dentata type, and Euglypha spp.) in Newfoundland was similar to elsewhere in the 36 

North Atlantic, but preservation bias favors removal of species with idiosomic tests over those with 37 

xenosomic tests. The mixed high salt-marsh plant community in Newfoundland results in bulk 38 

surface-sediment δ13C values that are typical of C3 plants, making them indistinguishable from freshwater 39 

sediment.  Therefore we propose that the utility of this proxy for reconstructing RSL in eastern North 40 

America is restricted to the coastline between Chesapeake Bay and southern Nova Scotia. Using a simple, 41 

multi-proxy approach to establish that samples in three radiocarbon-dated sediment cores formed between 42 

the lowest occurrence of testate amoebae and the highest occurrence of foraminifera, we generated three 43 

example late Holocene sea-level index points at Hynes Brook.  44 
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1. INTRODUCTION 45 

In eastern North America, quiet-water coastal environments are occupied by salt marshes that have a 46 

robust and predictable relationship to tidal datums (e.g., Redfield, 1972). These ecosystems respond to 47 

relative sea-level (RSL) rise by accumulating sediment to ensure that the active salt-marsh surface 48 

maintains its tidal elevation, while increasing in absolute elevation relative to a fixed point of reference on 49 

land. Consequently, buried units or sequences of salt-marsh sediment preserve a history of Holocene RSL 50 

changes (e.g., Bloom and Stuiver, 1963, Stuiver and Daddario, 1963). Interrogating this sedimentary 51 

archive to reconstruct RSL relies on the use of sea-level indicators to accurately establish the elevation of 52 

dated paleomarsh surfaces with respect to contemporary and modern tidal datums (e.g., Woodroffe and 53 

Barlow, 2015). 54 

 55 

Sea-level indicators are biological assemblages, chemical signatures or physical features with a known 56 

relationship to tides. In salt-marshes, the most commonly used sea-level indicators are plants, 57 

assemblages of microfossils such as foraminifera (e.g., Edwards and Wright, 2015, Scott and Medioli, 58 

1978), diatoms (e.g., Zong and Horton, 1999, Zong and Sawai, 2015), or testate amoebae (e.g., Barnett et 59 

al., 2016, Charman, 2015) and bulk-sediment geochemistry (e.g., Kemp et al., 2012b, Lamb et al., 2006). 60 

The analogy between modern sea-level indicators and their paleo counterparts is the basis for estimating 61 

the paleo tidal elevation at which a fossil sample formed and subsequently for reconstructing RSL. This 62 

approach is reliant upon the availability of an empirical modern training set comprised of paired 63 

observations that establish and quantify the relationship between a sea-level indicator and tidal datums. 64 

Due to the influence of secondary environmental variables such as the prevailing climate, oceanographic 65 

and salinity regimes, it is usually necessary to develop a modern training set in the region that will be 66 

targeted for reconstructing RSL. 67 

 68 

Since deglaciation of the Laurentide Ice Sheet (by ~7000 years before present; BP, 1950 CE), the 69 

principal cause of RSL change along the Atlantic coast of North America was ongoing and 70 

spatially-variable glacio-isostatic adjustment (GIA). Earth-ice models predict that the hinge line between 71 

regions experiencing recent RSL rise/fall from GIA occurs close to the Gulf of St. Lawrence (Figure 1; 72 

e.g., Peltier, 2004). Newfoundland is therefore one of the most northerly regions to preserve a salt-marsh 73 

record of RSL rise since the mid-Holocene, which makes it an important location for investigating drivers 74 

of paleo-RSL change that vary with latitude such as ocean dynamics (Ezer et al., 2013, Levermann et al., 75 

2005, Yin and Goddard, 2013) and the fingerprint of Greenland Ice-Sheet melt (Mitrovica et al., 2011). 76 

We build on previous investigations of foraminifera (Daly, 2002, Daly et al., 2007) to explore the utility 77 

of foraminifera, testate amoebae and bulk-sediment δ13C values as independent sea-level indicators in 78 
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Newfoundland and to evaluate their use as part of a multi-proxy approach.  This work will support future 79 

efforts to reconstruct RSL using salt-marsh sediment. At three sites (Placentia on the Avalon Peninsula 80 

and Hynes Brook and Big River on the Port-au-Port Peninsula; Figure 1) we collected surface sediment at 81 

regular vertical increments to establish the relationship between each type of potential sea-level indicator 82 

and local tidal datums. We demonstrate that foraminifera and testate amoebae are viable sea-level 83 

indicators (with some limitations), while bulk-sediment δ13C values have little utility in this region. An 84 

example RSL reconstruction is produced by application of these sea-level indicators to three 85 

radiocarbon-dated basal salt-marsh peats from Hynes Brook spanning the last ~2000 years. These 86 

reconstructions demonstrate the utility of using a simple, multi-proxy approach to identify material that 87 

formed between the lowest occurrence of testate amoebae and the highest occurrence of foraminifera. 88 

 89 

2. REGIONAL SETTING 90 

We studied three sites in Newfoundland (Placentia, Hynes Brook and Big River; Figure 1) that were 91 

identified from existing literature as having well-developed modern salt marshes and being underlain by 92 

sediment (high salt-marsh peat) that was likely to yield a viable RSL reconstruction (e.g., Bell et al., 93 

2005, Brookes et al., 1985, Daly, 2002, Daly et al., 2007, Wright et al., 2011, Wright and van de Plassche, 94 

2001).  In some cases, these earlier studies also included analysis of surface foraminiferal assemblages. 95 

These sites experience a maritime climate characterized by short, cool summers (maximum average 96 

monthly warm temperature of ~20 °C in July) and winters in which the average high temperature for 97 

January is approximately –2 °C (Figure 1). The prevailing oceanographic regime brings cold water (the 98 

Labrador Current) to the sites resulting in an average annual sea-surface temperature of ~1 °C in the open 99 

ocean.  100 

 101 

Placentia is located on the Avalon Peninsula in eastern Newfoundland (Figure 1), where salt marshes are 102 

rare. The study site lies on the protected side of a progradational barrier system comprised of vegetated 103 

ridges and swales. It is indirectly connected to the ocean because the ‘south arm’ is closed off by a gravel 104 

barrier and marine water reaches the site having first entered the back-barrier lagoon and fluvial system 105 

through the open ‘north arm’. This geomorphology results in a great diurnal tidal range (mean lower low 106 

water, MLLW to mean higher high water, MHHW) of 0.91 m. The low gravel barrier directly in front of 107 

the salt marsh is overwashed by high tides. Low salt-marsh environments are absent at the site, although 108 

isolated stands of Spartina alterniflora are present and rooted in gravel rather than fine-grained sediment. 109 

The high salt-marsh is a diverse, peat-forming community comprised of Distichlis spicata, Spartina 110 

patens, Juncus geradi, Potentilla sp., Plantago maritima, Glaux maritima, and Carex glareosa. Within 111 

the high salt-marsh zone these plants form a mosaic pattern and are frequently intermixed, although some 112 
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mono-specific stands are present. At the upland edge of the salt marsh is a near-vertical slope of 113 

weathered bedrock that is sparsely vegetated by fir trees, pine trees and brambles.  At this site, Daly 114 

(2002) described foraminifera in six surface sediment samples spanning an elevational range of ~0.25 m. 115 

 116 

On the Port-au-Port Peninsula salt marshes occupy three small incised valleys on the sheltered coast of 117 

West Bay that are protected by a beach barrier/spit formation at their entrance (Figure 1). We recovered 118 

samples from Hynes Brook and Big River, which both display a characteristic division of floral 119 

communities into a low salt-marsh zone dominated by Spartina alterniflora (tall form) and a mixed high 120 

salt-marsh mosaic comprised of variable combinations of Iris versicolor, Schoeneplectus spp., Spartina 121 

patens, Distichlis spicata, Plantago maritima, Triglochin maritima, Glyceria borealis, Glaux maritima, 122 

Agrostis stolonifera, and Spartina alterniflora (short form). These species are frequently intermixed, 123 

although some mono-specific stands are present, for example Iris versicolor is often the only plant present 124 

at the upper limits of tidal inundation (e.g., Daly, 2002). The great diurnal tidal range at Hynes Brook and 125 

Big River is 1.06 m. At Hynes Brook, Daly (2002) described foraminifera in twelve surface sediment 126 

samples spanning an elevational range of ~0.70 m. Previous studies demonstrated that Hynes Brook is 127 

underlain by sequences of high salt-marsh peat spanning the last ~3000 years (Bell et al., 2005, Brookes 128 

et al., 1985, Daly, 2002, Daly et al., 2007). 129 

 130 

3. MATERIALS AND METHODS 131 

3.1 Modern sampling regime 132 

We described the modern distribution of foraminifera, testate amoebae and bulk-sediment δ13C values 133 

from surface (0–1 cm) sediment samples collected along transects at each of our three study sites (Table 134 

1). Sampling stations were positioned at regular (~5 cm) vertical intervals spanning the full height range 135 

occupied by salt-marsh vegetation to ensure even sampling of the environmental gradient of interest 136 

(elevation). The uppermost samples of each transect were recovered from supra-tidal environments to 137 

capture the highest occurrence of foraminifera (Wright et al., 2011) and the turnover of testate amoebae 138 

assemblages across the upper limit of marine influence (e.g., Barnett et al., 2016). 139 

 140 

Sample heights at each site were surveyed with a total station and are expressed relative to mean tide level 141 

(MTL). Local tidal datums were determined by comparing data from on-site water-loggers (corrected for 142 

the inverse barometer effect) with the closest tide gauge station operated by Fisheries and Oceans Canada. 143 

At Placentia, two water-loggers were installed to quantify the distortion of the tidal wave as it propagates 144 

into the back-barrier system. One logger measured water depths immediately adjacent to the salt-marsh 145 

site, while a second logger was deployed in the open bay beyond the gravel barrier (Figure 1c, d). High 146 
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and low tides captured by the water-logger in the bay match those measured by the neighboring tide 147 

gauge at Argentia in timing and amplitude. We used hourly water-level measurements from Argentia 148 

spanning the current tidal epoch (1983–2001) to define tidal datums following the definitions provided by 149 

the National Ocean and Atmospheric Administration (NOAA). We then used the difference in water-level 150 

measurements between the salt-marsh and open-bay water loggers to establish local tidal datums at 151 

Placentia by scaling those previously defined for Argentia. For Hynes Brook and Big River, we used the 152 

tidal datums reported in Wright et al. (2011), who employed a similar approach to the one outlined above 153 

using the long-term tide-gauge measurements from Port aux Basques (Figure 1). 154 

 155 

3.2 Processing and analysis of surface sediment samples 156 

Samples collected for foraminiferal analysis were placed into vials with buffered ethanol and stained with 157 

rose Bengal to allow identification of individuals that were living at the time of collection (e.g., Figueira 158 

et al., 2012). In the laboratory, each sample was washed over 500 µm and 63 µm sieves to isolate the 159 

foraminifera-bearing fraction, from which a minimum of 100 dead individuals were counted in water 160 

under a binocular microscope. We determined the highest occurrence of foraminifera to occur where the 161 

concentration of dead tests decreased abruptly and above which there were insufficient individuals to 162 

reasonably conclude that they represented a viable and in situ population. Species were identified through 163 

comparison to published literature (e.g., Edwards and Wright, 2015, Scott and Medioli, 1980, Scott et al., 164 

1981, Smith et al., 1984, Wright et al., 2011) and type slides from nearby regions. Different taxonomic 165 

approaches to the classification of salt-marsh foraminifera exist, reflecting the extent to which 166 

morphological variation is viewed as phylogenetic or ecophenotypic. While early work combined a range 167 

of forms within the taxon Trochammina macrescens, we differentiate between Jadammina macrescens 168 

and Balticammina pseudomacrescens following (Daly, 2002), de Rijk (1995), Gehrels and van de 169 

Plassche (1999), Wright et al. (2011), in recognition of their spatially distinctive distributions (see 170 

Edwards and Wright, 2015 for discussion). We also distinguished between Trochammina inflata and 171 

Siphotrochammina lobata. 172 

 173 

At each sampling station ~2 cm3 of surface sediment was collected and sealed in a bag for subsequent 174 

analysis of testate amoebae following the protocol developed for salt-marsh environments (Barnett et al., 175 

2013). For each sample, 1 cm3 of surface sediment was combined in 100 ml of deionized water with one 176 

tablet of Lycopodium clavatum to provide an exotic marker of known concentration during counting 177 

(Stockmarr, 1971). The material was heated at 80 ˚C for one hour on a hot plate and regularly stirred to 178 

aid disaggregation. After being left to soak for >12 hours, the material was wet sieved and the 300-63 μm 179 

fraction retained for counting. Samples were mounted onto glass microscope slides using deionized water 180 
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and observed under 400x magnification. We counted 100 individual tests per sample. Where test 181 

concentrations were <1500 tests per cm3, counting ceased after 100 Lycopodium spores were counted. 182 

This point marked the lowest extent of testate amebae occurrence where counts per Lycopodium spore 183 

decreased abruptly and below which there were insufficient individuals to reasonably conclude that they 184 

represented a viable and in situ population. Our taxonomy is based on the systematic identification keys 185 

of Charman et al. (2000) and Booth and Sullivan (2007). These keys were supplemented by published 186 

literature pertaining to salt-marsh and littoral taxa (Cash et al., 1905, 1909, 1915, Charman et al., 2002, 187 

Gehrels et al., 2006a, Golemansky, 1974, Golemansky and Todorov, 2004, 2007, Nicholls, 2007, 2009, 188 

Ooms et al., 2015, Todorov et al., 2009).  189 

 190 

Representative sub samples of the surface material were analyzed in duplicate for δ13C, δ15N, total organic 191 

carbon (%), and total nitrogen (%). Sediment samples were treated with 10% HCl to remove carbonate, 192 

rinsed to neutral pH with deionized water, and then dried at 50 ˚C and ground to a fine, homogenized 193 

powder. The samples were analyzed using a Costech 4010 Elemental Analyzer interfaced with a Thermo 194 

Delta V Plus stable ratio mass spectrometer (EA-IRMS) at the University of North Carolina Wilmington. 195 

Isotopic composition is reported in standard δ -per mil notation (‰) relative to the Vienna-Pee Dee 196 

Belemnite (V-PDB) standard. Presented results are the average of the duplicate measurements. Repeated 197 

analyses of USGS 40 and 41 glutamic acid standards indicate that the precision of these analyses is better 198 

than ± 0.5 ‰. δ15N, total organic carbon (%), and total nitrogen (%) 199 

 200 

3.3 Relative sea-level reconstruction 201 

To investigate the utility of foraminifera, testate amoebae and bulk-sediment δ13C values for 202 

reconstructing RSL in Newfoundland, we collected three cores of basal salt-marsh sediment along 203 

transect HBM-2 at Hynes Brook (Figure 1g). The sediments were recovered using a Russian-type corer to 204 

prevent compaction or contamination, and were stored in rigid plastic sleeves, wrapped in plastic and 205 

refrigerated until processing. Each core comprised a single, 50-cm long sequence that captured the 206 

transition from basal consolidated gray silty clay into an overlying dark-brown to black organic silt. One 207 

half of each core was sliced into 1-cm thick contiguous samples for analysis of foraminifera, testate 208 

amoebae and bulk-sediment δ13C. Processing of these samples followed the methods outlined for surface 209 

samples with the exception of adding rose Bengal to the foraminiferal samples. 210 

 211 

The other half of each core provided material for radiocarbon dating which was extracted from the 212 

sediment matrix and cleaned following Kemp et al. (2013c). We selected only samples that were 213 

deposited on, or close to, a paleo marsh surface such as small, horizontal twigs and the shallow rhizomes 214 
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of identifiable salt-marsh plants. The samples were analyzed at the National Ocean Sciences Accelerator 215 

Mass Spectrometry facility, where they underwent standard acid-base-acid pretreatment and δ13C was 216 

measured directly on an aliquot of CO2 collected during sample combustion. Reported radiocarbon ages 217 

were individually calibrated using the Intcal13 dataset (Reimer et al., 2013) and we used the upper and 218 

lower 2σ calibrated ages as the range of possible ages for the dated sample. 219 

 220 

The lowest depth with a viable assemblage of foraminifera and material suitable for radiocarbon dating 221 

was used to produce a sea-level index point from each core. We counted foraminifera and testate amoebae 222 

and measured bulk-sediment δ13C values in additional core samples surrounding the dated level to ensure 223 

that it was representative of the prevailing environmental conditions at the time of sediment deposition. 224 

Relative sea level was calculated by subtracting reference water level (estimated from foraminifera, 225 

testate amoebae and bulk-sediment δ13C values) from measured sample elevation (e.g., Woodroffe and 226 

Barlow, 2015). Vertical uncertainty for the reconstruction was calculated following Engelhart and Horton 227 

(2012), where sample thickness was 0.01 m and we estimated a leveling error of ± 0.05 m, a benchmark 228 

error of ± 0.1 m and an angle of coring error that was 1% of depth. Collectively, these cores record the 229 

time-dependent transgression of the site by late Holocene RSL rise 230 

 231 

3.4 Statistical analysis 232 

To objectively distinguish and describe regional microfossil groups using Partitioning Around Medoids 233 

(PAM; e.g., Kaufman and Rousseeuw, 1990, Kemp et al., 2012a), we combined the results from all sites 234 

into a single dataset of foraminifera and a single dataset of testate amoebae. Species counts were 235 

expressed as percentages and samples that yielded zero or low counts were excluded prior to the analysis. 236 

We determined the number of distinct assemblages within each dataset using the maximum average 237 

silhouette width calculated for 2 to 20 groups. Silhouette widths close to 1 (maximum possible value) 238 

indicate that a sample was classified appropriately, while values close to -1 (minimum possible value) 239 

reflect poor classification. This metric aims to minimize within group variance, while maximizing 240 

differences among groups (Rousseeuw, 1987). To investigate the ecological plausibility of our RSL 241 

reconstructions, we measured the (Bray-Curtis) dissimilarity between each microfossil assemblage in the 242 

core samples to their closest modern analog in the modern training sets of foraminifera and testate 243 

amoebae. If the measured dissimilarity was less than the 20th percentile of dissimilarity measured among 244 

all possible pairings of modern samples then we deemed the core sample to have an acceptable modern 245 

analog (e.g., Jackson and Williams, 2004, Watcham et al., 2013). Core samples with a measured 246 

minimum dissimilarity that exceeded this threshold were deemed to lack a modern analog. 247 

 248 
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To facilitate comparison among sites with different tidal ranges, we standardized elevation using a variant 249 

of the standardized water level index (SWLI) of Horton (1999). We used MTL as the lower datum (SWLI 250 

= 100) and the highest occurrence of foraminifera as the upper datum (SWLI = 200) because Wright et al. 251 

(2011) demonstrated that this approach improved assemblage alignment in higher marsh settings where 252 

the relationship between elevation and inundation is often nonlinear. 253 

 254 

4. RESULTS 255 

4.1 Foraminifera 256 

The highest occurrence of foraminifera at Placentia was 0.75 m above MTL (PLA-B station 11) and 257 

samples above this elevation on all three transects were devoid of foraminifera (Figure 2). Each of the 258 

three sampled transects displayed a similar distribution of foraminifera. On transect PLA-A samples from 259 

0.41–0.70 m were dominated by Jadammina macrescens and Balticammina pseudomacrescens (39-98% 260 

when combined). Trochammina inflata was an important part of the assemblage (45-73%) at 0.22–0.46 m 261 

MTL and Miliammina fusca characterized samples below 0.30 m MTL (more than 25–50%). On transect 262 

PLA-B Jadammina macrescens and Balticammina pseudomacrescens were the dominant species above 263 

0.69 m MTL (up to 37% and 62% respectively and up to 96% when combined), while Trochammina 264 

inflata comprised 62-77% of individuals at 0.51–0.63 m MTL. Miliammina fusca was rare (<4%), but the 265 

lowest sample on this transect was above MHHW. On transect PLA-C a single sample at 0.68 m MTL 266 

yielded a foraminiferal assemblage that was 34% Jadammina macrescens and 64% Balticammina 267 

pseudomacrescens. Trochammina inflata comprised 32–68% of individuals from 0.34 m to 0.55 m MTL. 268 

Assemblages from 0.22 m to 0.43 m MTL included an average of 28% Miliammina fusca.  269 

Haplophragmoides spp. were absent on all three transects at Placentia. 270 

 271 

Foraminifera along two transects at Hynes Brook (HBM-0 and HBM-2; Table 1) were described by 272 

Wright et al. (2011). Results from a third transect (HBM-1) described here for the first time show a very 273 

similar distribution of foraminifera. The highest occurrence of foraminifera among all three transects was 274 

at 0.90 m MTL (HBM-1 station 9; Figure 3), which is 0.05 m higher than estimated by Wright et al. 275 

(2011) from the smaller dataset. On transect HBM-1 Jadammina macrescens (up to 63%) and 276 

Balticammina pseudomacrescens (up to 83%) made up the majority of individuals (57–100% when 277 

combined) at 0.50–0.90 m MTL, while Miliammina fusca dominated (44–86%) samples from 0.15 m to 278 

0.45 m MTL. Tiphotrocha comprimata and Haplophragmoides manilaensis were present on HBM-1.  279 

Trochammina inflata was absent or rare (maximum abundance of 7.8%) on the three transects from 280 

Hynes Brook. 281 

 282 
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The distribution of foraminifera at Big River is largely consistent among transects and there is also a high 283 

degree of similarity to those at Hynes Brook. The highest occurrence of foraminifera among all three 284 

transects was 0.88 m MTL (BRM-2 station 7; Figure 3). On transect BRM-0 elevations above MHW 285 

(0.31–0.86 m MTL) were dominated by Jadammina macrescens (up 93%) and Balticammina 286 

pseudomacrescens (up to44%; 58-100% when combined), while Miliammina fusca was the characteristic 287 

species (53-82%) in assemblages at -0.09 m to 0.26 m MTL. Tiphotrocha comprimata was present on this 288 

transect (up to 39%). On transect BRM-1, assemblages of foraminifera from 0.10 m to 0.85 m MTL were 289 

dominated by Jadammina macrescens (up to 40%) and Balticammina pseudomacrescens (up to 85%; 290 

49-100% when combined). Miliammina fusca made up 31–66% of individuals at 0.05–0.20 m MTL. On 291 

transect BRM-2 elevations from 0.33 m to 0.88 m MTL are characterized by high abundances of 292 

Jadammina macrescens (up to 62%) and Balticammina pseudomacrescens (up to 60%; 41–86% when 293 

combined). Two samples at 0.23 m and 0.28 m MTL are dominated by Miliammina fusca (81% and 66% 294 

respectively).  The abundance of Haplophragmoides manilaensis at Big River demonstrates variability 295 

among transects (maximum abundance of <5% on BRM-0, but up to 49% on BRM-1 and 37% on 296 

BRM-2) as does Trochammina inflata (maximum abundance of 29% on BRM-0, 2.5% of BRM-1 and 6% 297 

on BRM-2), which may reflect a patchy distribution (e.g., Kemp et al., 2011, Swallow, 2000) and/or 298 

within site variability of secondary environmental factors such as salinity or sediment texture that were 299 

not measured. Modern foraminifera data are presented in the supporting appendix. 300 

 301 

4.2 Testate amoebae 302 

At Placentia the lowest occurrence of testate amoebae occurred below MHHW at 0.30 m MTL (PLA-A 303 

station 23) with lower samples yielding fewer than 9 individuals after counting a sufficient volume of 304 

material to recognize 100 Lycopodium spores (Figure 4). Samples above 0.63 m MTL were dominated by 305 

Tracheleuglypha dentata (average 16%) and Euglypha rotunda type (average 26%). Because the highest 306 

sample on the transect included abundant testate amoebae, the upper limit of this assemblage cannot be 307 

estimated. At 0.30–0.55 m MTL the most abundant species was Centropyxiella type (average 33% and up 308 

to 63%). Other common species on PLA-A included Pseudocorythion type (up to 30%) and 309 

Pseudohyalosphenia type (up to 22%). 310 

 311 

At Hynes Brook testate amoebae were sparse (fewer than 10 individuals per 100 Lycopodium spores) at 312 

stations 10–15 and the lowest occurrence of testate amoebae was established at 0.70 m above MTL 313 

(Figure 4), which is slightly above MHHW. At elevations above 0.98 m above MTL, the most common 314 

species are Trinema lineare type (17–26%) and Trinema enchelys type (23–34%). The samples between 315 

0.74 m MTL and 0.93 m MTL were characterized by an increased abundance of Euglypha rotunda type 316 
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(20% in each of the three samples). The lowest viable assemblage of testate amoebae includes more than 317 

40% Centropyxis cassis type.  318 

 319 

At Big River, the lowest occurrence of testate amoebae was recorded at 0.52 m above MTL (0.01 m 320 

above MHHW) in the sample from BRM-0b station 11 (Figure 5). At elevations from 0.56 m to 1.51 m 321 

MTL, assemblage composition resembles those identified at Hynes Brook, with the most abundant 322 

species being Trinema lineare type (up to 25%), Trinema enchelys type (up to 30%), and Euglypha 323 

rotunda type (up to 27%). The samples at 0.52 m and 0.57 m MTL are characterized by increased 324 

abundance of Centropyxis cassis type (>34%) and the appearance of Arcella catinus (up to 35%) at the 325 

lower limit of testate occurrence. Modern testate amoebae data are presented in the supporting appendix. 326 

 327 

4.3 Regional-scale microfossil distributions 328 

We combined the modern foraminifera results from Placentia, Hynes Brook and Big River into a single 329 

dataset comprised of 134 samples (Figure 5). Analysis of this dataset using PAM indicates two plausible 330 

ways to partition the samples. A maximum average silhouette width is returned by dividing the dataset 331 

into two groups based on the relative abundance of Miliammina fusca versus Jadammina macrescens and 332 

Balticammina pseudomacrescens. This pattern describes the universal distinction between low and high 333 

salt-marsh samples. A more nuanced classification is possible by partitioning the regional-scale dataset 334 

into five groups. Group 1 is dominated by Jadammina macrescens with correspondingly low occurrences 335 

of Balticammina pseudomacrescens. This group is present at Hynes Brook and Big River, but is absent 336 

from Placentia. Group 2 is dominated by Jadammina macrescens and Balticammina pseudomacrescens 337 

and was present at all sites. Group 3 is a diverse high salt-marsh assemblage in which Tiphotrocha 338 

comprimata and Haplophragmoides manilaensis occur alongside Jadammina macrescens and 339 

Balticammina pseudomacrescens. This group was present at each of the three study sites. Group 4 is 340 

comprised of low salt-marsh assemblages characterized by high abundances of Miliammina fusca and is 341 

absent from Placentia due to the lack of a well-developed low salt-marsh environment at the site today. 342 

Group 5 is dominated by samples from Placentia and captures the uniquely high relative abundances of 343 

Trochammina inflata in these transects. 344 

 345 

We combined the samples from Placentia, Hynes Brook and Big River to create a regional-scale dataset 346 

of testate amoebae from 43 modern samples (Figure 5). Partitioning around medoids showed that the 347 

maximum average silhouette width (0.38) occurred when the dataset was divided into two groups and no 348 

finer-scale sub-division is warranted. Group 1 (30 samples) was represented by Trinema lineare type 349 

(13%), Trinema enchelys type (18%) and Euglypha rotunda type (20%). This group was present at all 350 
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three sites. In contrast, Group 2 (13 samples) only occurred at Placentia and in a single sample from 351 

Hynes Brook (HBM-0b station 11). It is characterized by Arecella catinus (discoides group), 352 

Centropyxiella type (25%) and Pseudohyalosphenia type (Ooms; 22%).  353 

 354 

4.4 Bulk-sediment δ13C values 355 

Despite differences in floral communities and microfossil assemblages, measured bulk-sediment δ13C 356 

values from each of the three study sites exhibit no consistent trend with station elevation (Figures 2 & 5) 357 

and largely fall in the range of –24‰ to –29‰ (data are provided in the supporting appendix). The 358 

exceptions to this pattern are three stations from the middle of transect PLA-A at Placentia, which 359 

returned values of –21‰ (the maximum typically associated with C3 vegetation) and –15‰ to –17‰, 360 

which is characteristic of C4 terrestrial plants and also some marine algae (e.g., Lamb et al., 2006). At the 361 

time of sampling these stations were vegetated predominantly by Spartina patens (a C4 plant) and Juncus 362 

geradii (a C3 plant). Despite the presence of C4 plant species on the salt marshes at each of our study sites 363 

(e.g. Spartina patens and Distichlis spicata) the pervasive bulk-sedimentary signatures are those 364 

reflecting C3 plant material (Lamb et al., 2006).  365 

 366 

4.5 Radiocarbon dates and microfossil assemblages  367 

We collected three cores from Hynes Brook that were positioned to capture the transition from 368 

coarse-grained clastic sediment to basal organic sediment at different elevations marking the 369 

time-dependent transgression of RSL during the late Holocene (Figure 6). In core HBM-C102 (48.60133 370 

°N; 58.94578 °W) a radiocarbon date from 2.11 m yielded a calibrated age of 2718–2489 years BP (2σ 371 

range; Table 2). Foraminifera from the dated interval are comprised almost exclusively of Jadammina 372 

macrescens and Balticammina pseudomacrescens. The most abundant testate amoebae in these samples 373 

were Centropyxis cassis type (63–78%) and Difflugla lucida type (10–12%). In core HBM-C103 374 

(48.60135 °N; 58.94575 °W) a radiocarbon date from 0.99 m yielded a calibrated age of 1825–1713 years 375 

BP (2σ range; Table 2). Foraminifera from the dated interval are comprised almost exclusively of 376 

Jadammina macrescens and Balticammina pseudomacrescens. The most abundant testate amoebae in 377 

these samples were Centropyxis cassis type (64–62%) and Centropyxis platystoma type (14–34%). In 378 

core HBM-C104 (48.60133 °N; 58.94584 °W) a radiocarbon date from 1.28 m yielded a calibrated age of 379 

1736–1612 years BP (2σ range; Table 2). Foraminifera from the dated interval are 100% Jadammina 380 

macrescens and Balticammina pseudomacrescens. The most abundant testate amoebae in these samples 381 

were Centropyxis cassis (54–70%), Centropyxis platystoma (6–14%) and Centropyxis delicatula-ecornis 382 

(up to 16%). In each core the consistency of microfossil assemblages indicates that no significant 383 

environmental change took place over the period of time represented by the counted samples. 384 
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Bulk-sediment δ13C measurements from all of the samples in each core yielded values of approximately –385 

26 ‰.  All assemblages of foraminifera had good modern analogs, while all assemblages of testate 386 

amoebae lacked modern analogs due to the high abundance of Centropyxis cassis in core samples (54–387 

78%) compared to the modern dataset (maximum of 43%). 388 

 389 

5. DISCUSSION 390 

5.1 Distribution of salt-marsh foraminifera 391 

Some of the earliest investigations into the use of salt-marsh foraminifera as sea-level indicators were 392 

conducted in Nova Scotia (Scott and Medioli, 1978, 1980), where intertidal transects revealed a 393 

characteristic vertical zonation of distinct assemblages. Shallow sub-tidal environments included large 394 

numbers of calcareous species that became scarce in low salt-marsh assemblages dominated by the 395 

agglutinated species Miliammina fusca. High salt-marsh environments were dominated by Jadammina 396 

macrescens with Trochammina inflata and Tiphotrocha comprimata. A monospecific zone of Jadammina 397 

macrescens at the transition from salt marsh to upland occupied the narrowest range of elevation and was 398 

consequently deemed to be the assemblage that could produce the most precise RSL reconstruction. Since 399 

this work, the utility of salt-marsh (and mangrove) foraminifera as sea-level indicators has been 400 

reinforced by recognition of vertically-zoned assemblages at sites around the world under a wide range of 401 

climate, salinity and tidal conditions (e.g., Barbosa et al., 2005, Hayward et al., 1999, Horton and 402 

Edwards, 2006, Horton et al., 2005, Leorri et al., 2008, Patterson et al., 2005, Scott et al., 1996, Spencer, 403 

2000). However, the composition of high salt-marsh assemblages in particular varies among (and within) 404 

regions, as do the specific elevation of boundaries between zones (e.g., Edwards and Wright, 2015, Kemp 405 

et al., 2009, Wright et al., 2011). This pattern necessitates using an appropriate training set to provide 406 

adequate modern analogs for interpreting assemblages preserved in the sedimentary record (e.g., Edwards 407 

et al., 2004). Since surface and sub-surface assemblages at a site may differ due to environmental change 408 

through time, the search for appropriate modern analogs commonly requires compilation of data from 409 

multiple locations (e.g., Horton and Edwards, 2005). As part of this process, new insights into the ecology 410 

of salt-marsh foraminifera can be gained that may, in turn, improve the quality of foraminifera-based RSL 411 

reconstructions. 412 

 413 

To establish the regional-scale relationship between assemblages of salt-marsh foraminifera and tidal 414 

elevation in Newfoundland we identified five distinctive groups of foraminifera using PAM and by 415 

standardizing sample elevations to account for differences in tidal range among sites (Figures 5 and 7). 416 

The major faunal turnover occurs at ~140 SWLI and is characterized by a transition from a low 417 

salt-marsh assemblage dominated by Miliammina fusca (Group 4; 86–140 SWLI) to spatially-variable 418 
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high salt-marsh assemblages in which Jadammina macrescens (Group 1; 134–200 SWLI), Balticammina 419 

pseudomacrescens (Group 2; 133–200 SWLI), or Trochammina inflata (Group 5; 129–184 SWLI) is the 420 

dominant species. Group 3 (111–187 SWLI) straddles the boundary between low and high salt-marsh 421 

assemblages and is characterized by greater species diversity including the presence of Tiphotrocha 422 

comprimata (all three sites) and Haplophragmoides manilaensis (absent at Placentia and rare in parts of 423 

Big River).  424 

 425 

Significantly, Groups 1 and 2 extend over the same vertical range and either may characterize the 426 

uppermost salt-marsh samples. Consequently, when considered as tools for RSL reconstruction, the 427 

distinction between Jadammina macrescens and Balticammina pseudomacrescens provides little or no 428 

improvement of precision or accuracy over the ‘lumping’ of both species into a single taxon. In 429 

Newfoundland, since no other groups extend to the upper limit of marine influence, relative abundances 430 

of Jadammina macrescens and/or Balticammina pseudomacrescens greater than ~80% are indicative of 431 

accumulation in the highest salt-marsh environment. 432 

 433 

Group 5 is dominated by Trochammina inflata and (with the exception of a single sample at Big River) is 434 

only present at Placentia, suggesting particular suitability to environmental conditions at that site. High 435 

abundances of Trochammina inflata coincide with an absence or relative scarcity of Balticammina 436 

pseudomacrescens, which may reflect differing environmental preferences or competitive exclusion. 437 

Since all of our study sites share a similar atmospheric and oceanographic climate (Figure 1), it is 438 

tempting to ascribe the observed distribution of Group 5 to a prevailing regime of lower salinity at 439 

Placentia. The geomorphology at Placentia restricts direct exchange of water with the ocean and the site’s 440 

position in the south arm likely produces a water mass with lower salinity than at Hynes Brook and Big 441 

River where there is direct access to ocean water and little fluvial input. Furthermore, the steep slopes at 442 

the rear of the Placentia salt marsh cause freshwater to drain directly onto the marsh and at the time of 443 

sample collection we observed several springs at the rear of the marsh that serve to further dilute the 444 

salinity at higher tidal elevations. However, Trochammina inflata was not noted elsewhere as a 445 

low-salinity indicator. In fact, Balticammina pseudomacrescens and Haplophragmoides spp. are more 446 

typically linked to low-salinity conditions (de Rijk and Troelstra, 1997, Edwards and Wright, 2015).  447 

Therefore further work is necessary to distinguish the relative importance of secondary environmental 448 

variables as a cause of among-site and among-transect variability in foraminiferal assemblages. 449 

 450 

The pattern of zonation that we observed at Hynes Brook and Placentia is similar to that described by 451 

Daly (2002), who recognized three groups of foraminifera from a total of 29 surface sediment samples 452 
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collected at four Newfoundland salt marshes (Hynes Brook, St. Paul’s Inlet, Village Cove and Placentia; 453 

Figure 1).  The three groups of Daly (2002) are all from high salt-marsh environments because sampling 454 

did not extend below mean high water (MHW).  The dominant species in these groups were Jadammina 455 

macrescens with Balticammina pseudomacrescens, Jadammina macrescens and Balticammina 456 

pseudomacrescens.  Assemblages of salt-marsh foraminifera in Newfoundland closely resemble those 457 

described at sites in the Canadian Maritimes including, Prince Edward Island (Scott et al., 1981), Nova 458 

Scotia (Scott and Medioli, 1978, 1980, Smith et al., 1984), New Brunswick (Patterson et al., 2004) and 459 

the Magdalen Islands (Barnett et al., 2016). A similar distribution is present in Maine, USA (Gehrels, 460 

1994). We conclude that salt-marsh foraminifera from our three study sites (and others; e.g., Daly, 2002, 461 

Daly et al., 2007) in Newfoundland conform to the pattern of vertical zonation observed in surrounding 462 

regions and confirm that they are viable sea-level indicators in this region. A notable characteristic of the 463 

foraminiferal assemblages from Newfoundland is their low species diversity (e.g., Daly, 2002; Figure 7), 464 

which results in bipartite division of the salt marshes into near-monospecific high and low salt-marsh 465 

assemblages. This pattern is also typical at other high latitude sites in the northern hemisphere that 466 

experience a cold maritime climate such as arctic Norway, (Barnett et al., 2015), Iceland (Gehrels et al., 467 

2006b), the Aleutian Islands of Alaska (Kemp et al., 2013a), Denmark (Gehrels and Newman, 2004) and 468 

the White Sea (Russia; Kemp et al., Submitted). These low-diversity assemblages stand in contrast to 469 

those from warmer climates along the U.S. Atlantic coast where several studies reported a larger diversity 470 

of species at single sites, but also marked variability in the composition of high salt-marsh assemblages 471 

among sites (e.g., Goldstein and Frey, 1986, Kemp et al., 2009, Kemp et al., 2013d, Wright et al., 2011). 472 

We contend that these differences among regions arise from the climate regime, where cold air and ocean 473 

temperatures limit the diversity of high salt-marsh foraminiferal assemblages to a handful of species, 474 

namely Jadammina macrescens and Balticammina pseudomacrescens. Additional systematic work is 475 

needed to identify the specific ecological conditions (e.g. water temperature, seasonal air temperature, 476 

frequency and duration of freezing) that drive this geographic gradient in species distributions. If it can be 477 

adequately understood then temporal changes in salt-marsh foraminiferal assemblages may yield insight 478 

into past climates as well as RSL change. 479 

 480 

5.2 Distribution of testate amoebae 481 

Intertidal testate amoebae were initially identified in Atlantic Canada (Medioli and Scott, 1983), often in 482 

samples of salt-marsh sediment being analyzed for foraminifera (Scott et al., 1983, Scott, 1977, Scott and 483 

Martini, 1982), but it was not until the late 1990s that intertidal environments were systematically 484 

sampled for testate amoebae in order to establish their utility as sea-level indicators (Charman et al., 485 

1998). Subsequent studies demonstrated that the lowest occurrence of testate amoebae in salt marshes 486 
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typically occurs at, or slightly below, high tidal datums such as mean high water spring tide or MHHW at 487 

mid-latitude sites in the northern hemisphere (Barnett et al., 2013, Gehrels et al., 2006a, Gehrels et al., 488 

2001). Similarly, the concentration of testate amoebae in surface sediment samples from Newfoundland 489 

decreased abruptly near MHHW. Typical test concentrations above MHHW were ~2000 to ~5000 tests 490 

per cm3, but below MHHW counting statistically significant numbers of testate amoebae became 491 

unviable. This pattern occurs because few taxa are tolerant of the increasingly brackish conditions 492 

experienced below MHHW (Patterson and Kumar, 2002). Therefore the presence/absence of viable 493 

testate amoebae populations is a useful paleo-ecological constraint for establishing if sediment samples 494 

from a core accumulated above/below the lowest occurrence of testate amoebae that occurs close to 495 

MHHW, but whose specific elevation must be established from an appropriate modern training set. 496 

 497 

Using PAM, we identified two distinct groups of testate amoebae in Newfoundland (Figure 5, 7). Group 1 498 

is characterized by high abundances of Trinema enchelys type, Trinema lineare type, Euglypha rotunda 499 

type and Centropyxis cassis type (Figure 5). This group occurred at all sampled elevations at Hynes 500 

Brook and Big River and in the uppermost samples at Placentia. Consequently, it spans a minimum 501 

elevational range of 126–269 SWLI because its lower limit is constrained, but its upper limit is not. These 502 

taxa also dominated similar environments from the nearby Magdalen Islands in the Gulf of St Lawrence 503 

(Barnett et al., 2016) and are widespread in salt marshes throughout the North Atlantic (Barnett et al., 504 

2013, Charman et al., 2002, Gehrels et al., 2006a, Gehrels et al., 2001, Ooms et al., 2015), suggesting that 505 

certain intertidal taxa may be cosmopolitan in and around salt marshes, although a synthesis of existing 506 

studies, datasets and taxonomies would benefit the development of this proxy for future sea-level 507 

research. Group 2 occurs at Placentia, but not Hynes Brook or Big River. It is comprised of 508 

Centropyxiella type, Pseudocorythion type, Pseudohyalosphenia spp. and Corythionella type (Figure 5) 509 

and exists at elevations from 140-187 SWLI (its upper and lower limits are constrained by the modern 510 

dataset).  Centropyxiella type was also common at comparable elevations in the Magdalen Islands 511 

(Barnett et al., 2016), the UK (Charman et al., 2002) and Norway (Barnett et al., 2013), but sometimes 512 

under different names because the nomenclature for salt-marsh testate amoebae is based on a wide 513 

diversity of literature and has evolved over recent decades. Differences in the lowest occurrence of testate 514 

amoebae and assemblage composition between sites in Newfoundland probably occurs in response to 515 

secondary environmental variables such as salinity, pH and sediment composition (Barnett et al., 2016, 516 

Charman et al., 2002). The geomorphological setting and freshwater input to the marsh at Placentia is the 517 

most likely cause of the differences between sites. Lower salinity as a result of runoff and reduced 518 

penetration of ocean waters at Placentia would provide favorable conditions for testate amoebae at lower 519 
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elevations than at the other sites. Increased runoff can also be an influence on pH and sediment substrate 520 

that may be additional factors influencing the testate amoebae assemblages (e.g., Charman et al., 2002). 521 

 522 

5.3 Bulk-sediment δ13C values as a sea-level indicator 523 

Salt-marsh plants are sea-level indicators because the varied tolerance of species to the frequency and 524 

duration of tidal inundation results in a systematic pattern of zonation, where low and high salt-marsh 525 

communities at the same site are vegetated by different species (e.g., Eleuterius and Eleuterius, 1979, 526 

Johnson and York, 1915, Redfield, 1972). However, the composition of these zones can vary among sites 527 

as a result of secondary environmental factors such as climate and salinity. On the U.S. Atlantic coast for 528 

example, high salt-marsh environments are typically vegetated by Spartina patens and Distichlis spicata 529 

at locations north of Chesapeake Bay, while Juncus roemerianus occupies this ecological position at 530 

locations to the south (Eleuterius, 1976), until mangroves replace salt marshes in southern Florida (Figure 531 

1).  532 

 533 

As an adaptation to regular submergence, some salt-marsh plants (e.g., Spartina spp., Distichlis spicata) 534 

utilize the C4 (Hatch-Slack) photosynthetic pathway in which fractionation against atmospheric 13CO2 in 535 

favor of 12CO2 is less pronounced than in C3 (Calvin-Benson) plants such as Juncus spp. and the majority 536 

of terrestrial species that live above the highest reach of tides. As a result, δ13C values measured in C4 537 

plants are usually less depleted/negative than –17‰ compared to the VPDB standard, while C3 plants 538 

return more depleted/negative values between –21‰ and –32‰ (e.g., Lamb et al., 2006). In the organic 539 

salt-marshes of eastern North America, the primary source of sediment is the in situ accumulation of 540 

above and below ground biomass from the surface plant community and bulk sediment δ13C values reflect 541 

the dominant plant community at the time of deposition (e.g., Chmura and Aharon, 1995). 542 

Post-depositional processes (principally preferential biodegradation of cellulose over lignin) cause 543 

bulk-sediment δ13C values to differ slightly, but systematically, from the parent plant material (e.g., 544 

Benner et al., 1991, Benner et al., 1987, Ember et al., 1987, Haines, 1976), although this change is not 545 

large enough to prevent distinction between C3 and C4 plants. The use of bulk-sediment δ13C values as a 546 

sea-level indicator is reliant upon salt-marsh environments being dominated by C4 plants such as Spartina 547 

patens and Spartina alterniflora, which enables them to be readily and objectively distinguished from the 548 

surrounding C3-dominated freshwater upland environments. For example, peat-forming communities 549 

between MTL and MHHW in New Jersey are vegetated almost exclusively by Spartina spp. and 550 

Distichlis spicata resulting in bulk-sediment δ13C values that are less depleted than –18.9‰, while 551 

elevations above MHHW (including those without marine influence) had bulk-sediment δ13C values more 552 

depleted than –22‰ (Kemp et al., 2012b). However, sediment more depleted than –22‰ in which 553 
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foraminifera are present formed between MHHW and the highest occurrence of foraminifera. This pattern 554 

enabled Kemp et al. (2013b) to reconstruct RSL using bulk-sediment δ13C values, in which the precision 555 

of a multi-proxy approach employing foraminifera and δ13C values was up to 60% better than using 556 

foraminifera alone (Cahill et al., 2016). In contrast, a similar study in North Carolina concluded that 557 

bulk-sediment δ13C values could not be objectively used as a sea-level indicator because the monospecific 558 

high salt-marsh zone is vegetated by the C3 species Juncus roemerianus, making it indistinguishable from 559 

a freshwater upland (Kemp et al., 2010). 560 

 561 

In Newfoundland bulk-sediment δ13C values cannot objectively distinguish between material deposited in 562 

a salt-marsh environment and material from the surrounding freshwater uplands that does not have a 563 

systematic relationship to tidal datums (Figures 2 and 4). We therefore conclude that bulk-sediment δ13C 564 

values have no utility as sea-level indicators in Newfoundland. Although this is a negative finding for the 565 

potential to reconstruct RSL in our study region, it does help to refine the geographic range of locations 566 

where bulk-sediment δ13C values could be utilized. Eleuterius (1976) found that 49–77% of salt-marsh 567 

area in North Carolina was vegetated by Juncus roemerianus (C3 species) compared to <10% in Virginia 568 

and Maryland and <0.1% in Delaware, where the high salt-marsh zone is almost exclusively comprised of 569 

Spartina patens, Spartina alterniflora (short form) and Distichlis spicata (all C4 species). Therefore we 570 

propose that the southern limit for using bulk-sediment δ13C values as a sea-level indicator on the Atlantic 571 

coast of North America is close to Chesapeake Bay (Figure 1). On the U.S. Atlantic coast most high 572 

salt-marsh environments in New England are solely vegetated by C4 plants (e.g., Niering and Warren, 573 

1980, Redfield, 1972). Although Juncus geradii becomes a common occurrence in Maine (e.g., Gehrels, 574 

1994, Johnson et al., 2007) and southern Nova Scotia (e.g., Gordon Jr et al., 1985, Pielou and Routledge, 575 

1976, Scott and Medioli, 1980), large areas of high salt marsh are comprised of Spartina patens 576 

meadows, suggesting that bulk-sediment δ13C values are likely to remain useful sea-level indicators in 577 

this region. The increased floral diversity of high salt marshes in New Brunswick (e.g., Gehrels et al., 578 

2006a, Magenheimer et al., 1996), Prince Edward Island (e.g., Scott et al., 1981) and Newfoundland (e.g., 579 

Brookes et al., 1985; this study) results in a mosaic structure with increasing contributions to the surface 580 

sediment from C3 species such as Juncus spp., Triglochin maritima and Plantago maritima. Despite the 581 

observed presence of Spartina patens and Distichlis spicata, we conclude that this diversity and structure 582 

results in bulk-sediment δ13C values which are characteristic of C3 plants. Occasional samples with less 583 

depleted values (e.g., stations 16 and 17 on PLA-A) likely represent persistent, but patchy stands of C4 584 

plants. Therefore the utility of bulk-sediment δ13C values is restricted on the Atlantic coast of North 585 

America to regions from Chesapeake Bay to southern Nova Scotia (Figure 1), although it is necessary to 586 
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recognize that geographic migration of floral zones may have occurred in response to Holocene climate 587 

changes, which should be considered when choosing whether or not to measure δ13C in core material. 588 

 589 

5.4 Reconstructing late Holocene relative sea level in Newfoundland 590 

We reconstructed RSL at Hynes Brook from three cores of basal sediment by combining the 591 

radiocarbon-dated age of each sample with an estimate of paleo tidal elevation inferred from microfossil 592 

assemblages preserved in core samples (Figure 8). This approach generated one sea-level index point 593 

from each core. Paleo-tidal elevation was estimated from the combined presence of high salt-marsh 594 

foraminifera (Jadammina macrescens and Balticammina pseudomacrescens) and testate amoebae. Since 595 

the assemblages of testate amoebae lack modern analogs, we conservatively estimate that the dated 596 

samples formed between the lowest occurrence of testate amoebae (0.52 m MTL at Hynes Brook) and the 597 

highest occurrence of foraminifera (0.90 m MTL at Hynes Brook). Each dated sample came from within 5 598 

cm of the basal contact and therefore experienced no, or minimal, post-depositional lowering due to 599 

sediment compaction (Horton and Shennan, 2009). 600 

 601 

The three new sea-level index points were combined with existing and standardized data from southwest 602 

Newfoundland (Love et al., 2016; Figure 8). There is good agreement between these datasets, which 603 

indicate that RSL rose in this region from approximately –3.5 m at 2900 years BP to present. The average 604 

vertical and chronological uncertainty is smaller for the three new sea-level index points than for those in 605 

the existing database. This pattern occurs because the age of our samples was established by radiocarbon 606 

dating of single macrofossils, while some of the existing dates relied on thick sections of bulk sediment 607 

that inherently included material spanning a range of ages. The vertical uncertainty in some of the 608 

sea-level index points from the database is large because information provided in the original publication 609 

was lacking and the data were standardized in a conservative manner (e.g., Engelhart et al., 2011, 610 

Shennan and Horton, 2002).  However, our results indicate that a simple multi-proxy approach using the 611 

presence of high salt-marsh foraminifera and testate amoebae can produce precise RSL reconstructions. 612 

 613 

The ecological plausibility of any paleoenvironmental reconstruction generated through reasoning by 614 

analogy relies on their being an appropriate degree of similarity between modern and fossil assemblages 615 

(e.g., Jackson and Williams, 2004). A long-running debate surrounding the use of microfossil groups to 616 

reconstruct RSL is whether to use a local- or regional-scale modern training set to quantitatively interpret 617 

assemblages preserved core samples (e.g., Horton and Edwards, 2005, Kemp and Telford, 2015, 618 

Watcham et al., 2013). Local-scale datasets typically produce more precise reconstructions since the 619 

effect of secondary environmental variables is minimized, while regional-scale datasets provide a broader 620 
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suite of analogs for generating reconstructions from sites where environmental conditions in the past may 621 

not be the same as those today. The distribution of foraminifera in Newfoundland highlights the necessity 622 

of compiling a regional-scale training set where the goal is to capture the principal surface assemblages 623 

that are present on salt marshes in the region. For example, Placentia possess distinctive microfossil 624 

assemblages (foraminifera Group 5 and testate amoebae Group 2) that are absent from Hynes Brook and 625 

Big River. Although this diversity of modern assemblages was not necessary to accurately reconstruct 626 

RSL from the Hynes Brook cores, it is likely that investigations spanning longer periods of time (and/or 627 

from other sites) will require that a regional-scale training set be available. We conclude that a 628 

regional-scale training set is necessary to capture the range of assemblages of foraminifera and testate 629 

amoebae that are present on modern Newfoundland salt marshes.  630 

 631 

All assemblages of testate amoebae in the three cores from Hynes Brook lacked modern analogs (Figure 632 

6). The broad, biogeographical similarities between modern intertidal assemblages found in 633 

Newfoundland (this study) and elsewhere in North America (Barnett et al., 2016, Gehrels et al., 2006a) 634 

and Europe (Barnett et al., 2013, Charman et al., 2002, Ooms et al., 2015) suggests that this dissimilarity 635 

between modern and fossil assemblages did not arise from temporal changes in the testate amoebae 636 

population at the study site, unless ecological conditions differed so significantly in the past that Hynes 637 

Brook supported an assemblage that is yet to be observed in modern North Atlantic salt marshes. 638 

Alternatively, the lack of analogy between core and modern samples was caused by preferential 639 

preservation where certain taxa are more or less likely to be lost through time due to differences in test 640 

composition. This hypothesis is supported by comparison of the contemporary and fossil assemblages 641 

from Newfoundland (Figure 9). The modern data contains an abundance of idiosomic genera (tests 642 

composed of proteinaceous secretion and siliceous plates) such as Arcella, Euglypha, Pseudocorythion, 643 

Pseudohyalosphenia, Tracheleuglypha and Trinema. In contrast, these genera are rarely encountered in 644 

the fossil samples, where xenosomic genera (tests formed from agglutinated particles) represent the vast 645 

majority of taxa (e.g., Centropyxis, Cyclopyxis and Difflugia). Ratios of idiosomic : xenosomic tests are 646 

consistently two or three orders of magnitude greater in the surface assemblages than in fossil 647 

assemblages (Figure 9), suggesting that idiosomic taxa were preferentially lost over time as evidenced 648 

(for example) by the uncharacteristically extreme dominance of Centropyxsis cassis type (xenosomic test) 649 

in the core samples. Analyses of coastal sediments from the UK reported good preservation of testate 650 

amoebae in supratidal deposits (e.g., raised bogs and lakes), but poor preservation in mid-Holocene 651 

salt-marsh sediments, including a lack of idiosomic genera (Lloyd, 2000, Roe et al., 2002). In contrast, 652 

two short (~100 year) cores of salt-marsh sediment collected in Maine and Nova Scotia to reconstruct 653 

RSL contained preserved idiosomic genera such as Arcella, Euglypha, Tracheleuglypha and Trinema 654 
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(Charman et al., 2010). Conditions in organic salt marshes (e.g., dissolved oxygen concentrations and pH) 655 

are likely to promote loss of idiosomic tests (e.g. through dissolution). For example, Swindles and Roe 656 

(2007) demonstrated experimentally that idiosomic tests were preferentially removed from testate 657 

amoebae assemblages in low pH environments. While idiosomic tests may be preserved for several 658 

hundred years, they can decay over longer time periods. Systematic studies that encompass a 659 

comprehensive range of salt marsh and estuarine environments will greatly elucidate the viability of 660 

testate amoebae as sea-level indicators from a preservation potential perspective. However, the simple 661 

classification of presence or absence used in this study is unlikely to be unduly influenced by preservation 662 

bias between idisomic and xenosomic tests.  663 

 664 

6. CONCLUSIONS 665 

Newfoundland is one of the most northern sites at which cores of salt-marsh sediment can yield detailed 666 

RSL reconstructions to investigate physical processes that vary by latitude such as ocean circulation 667 

changes (e.g., Levermann et al., 2005) and the fingerprint of Greenland Ice Sheet melt (Mitrovica et al., 668 

2011). In support of this work we investigated the utility of foraminifera, testate amoebae and 669 

bulk-sediment δ13C values as sea-level indicators in Newfoundland using modern (surface) sediment 670 

samples collected along intertidal transects at Placentia (eastern Newfoundland) and Hynes Brook/Big 671 

River (western Newfoundland). 672 

 673 

Foraminifera are divided into five distinct groups which primarily discriminate low salt-marsh 674 

environments dominated by Miliammina fusca (Group 4) from more diverse high salt-marsh zones with 675 

assemblages dominated by Jadammina macrescens (Group 1), Balticammina pseudomacrescens (Group 676 

2), or Trochammina inflata (Group 5). Group 3 spans the transition between the high and low marsh 677 

groupings and comprises variable abundances of the secondary salt marsh taxa Tiphotrocha comprimata 678 

and Haplophragmoides manilaensis. Group 5 is only present at Placentia, indicating the potential need to 679 

compile regional-scale modern training sets to capture natural variability within a study region and 680 

maximize the analogy between modern and fossil assemblages. Overall, the distribution of foraminifera 681 

that we observed is similar to previous results from Newfoundland (e.g., Daly, 2002) and more generally 682 

to other sites in the Canadian Maritimes and other high-latitude regions. 683 

 684 

The lowest occurrence of testate amoebae at Hynes Brook and Big River occurs close to MHHW, but is 685 

slightly lower at Placentia reflecting local environmental or taphonomic influences. Idiosomic taxa (e.g., 686 

Trinema spp., Tracheleuglypha dentate type, and Euglypha spp.), which characterize upper salt-marsh 687 

environments along the east coast of North America were abundant in Newfoundland. However, the 688 
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difference in the ratio of idisomic and xenomic tests between modern and fossil samples suggests 689 

assemblages of testate amoebae in salt marshes experience preservation bias in which idisomic tests are 690 

preferentially removed.  This preservation bias results in a lack of analogy between modern and fossil 691 

assemblages. 692 

 693 

Bulk-sediment δ13C values cannot be used as sea-level indicators in Newfoundand because salt marsh and 694 

freshwater upland environments yield values that are characteristic of C3 plants and that cannot be 695 

objectively distinguished from one another. We propose that the utility of this proxy for reconstructing 696 

RSL in eastern North America is restricted to the coastline between Chesapeake Bay and southern Nova 697 

Scotia. 698 

 699 

We further tested the utility of these sea-level indicators by applying them to three radiocarbon-dated 700 

cores of basal sediment from Hynes Brook. A simple, multi-proxy classification approach recognized this 701 

sediment as having been deposited between the lowest occurrence of testate amoebae and the highest 702 

occurrence of foraminifera. This interpretation is not effected by possible preservation bias of testate 703 

amoebae in salt marshes. The three new sea-level index points are in agreement with those in an existing 704 

database, but have smaller vertical (± 0.22 m) and temporal uncertainties (~± 80 years). 705 

 706 
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Table 1: Details of modern transects used to characterize the distribution of foraminifera, testate and 719 

bulk-sediment δ13C values in Newfoundland. 720 

Site Transect Year Analysis No. S Range (m MTL) Reference 

Placentia PLA-A 2015 F, T, δ13C 25 0.30 to 1.22 This study 

Placentia PLA-B 2015 F, δ13C 15 0.51 to 1.26 This study 

Placentia PLA-C 2015 F, δ13C 10 0.23 to 1.21 This study 

Hynes Brook HBM-0 1999 F 25 –0.13 to 0.83 Wright et al. (2011) 

Hynes Brook HBM-0b 2015 T, δ13C 15 0.24 to 2.16 This study 

Hynes Brook HBM-1 2001 F 24 0.15 to 1.28 This study 

Hynes Brook HBM-2 2001 F 22 0.12 to 1.15 Wright et al. (2011) 

Big River BRM-0 1999 F 25 –0.14 to 1.04 This study 

Big River BRM-1 2001 F 25 0.05 to 1.23 This study 

Big River BRM-1b 2015 T, δ13C 13 0.42 to 1.51 This study 

Big River BRM-2 2001 F 20 0.23 to 1.16 This study 

 721 

F = samples analyzed for foraminifera; T = samples analyzed for testate amoebae; δ13C = samples 722 

analyzed for bulk-sediment δ13C values. No. S = total number of samples on transect (including those in 723 

which foraminifera were absent).  724 
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Table 2: Radiocarbon ages and relative sea level (RSL) reconstruction from three cores of basal organic 725 

sediment at Hynes Brook. 726 

 727 

Sample ID is the unique identifier assigned to each reported radiocarbon age by the National Ocean 728 

Sciences Accelerator Mass Spectrometry facility. Indicative meaning is the tidal elevation at which each 729 

sample was judged to have formed at based on the presence of both foraminifera (HOF = highest 730 

occurrence of foraminifera) and testate amoebae (LOT = lowest occurrence of testate amoebae) in and 731 

around the dated sample. At Hynes Brook and Big River, HOF is at 0.90 m MTL and LOT is at 0.52 m 732 

MTL, resulting in a reference water level of 0.71 m above mean tide level and an indicative range of ± 733 

0.19 m. The sampling error for each sea-level index point is the sum of estimated uncertainties for 734 

leveling (± 0.05 m), benchmarks (± 0.1 m), sample thickness (± 0.01 m) and core angle (1% of depth 735 

equating to ± 0.01 m for these samples). The RSL error was calculated following Engelhart and Horton 736 

(2012).   737 

Core Sample 

Elevation 

(m, MTL) 

Sample ID 14C 

Age 

14C 

Error 

Indicative 

Meaning 

Sampling 

Error (m) 

RSL (m) 

HBM C102 –1.38 OS-123524 2,490 20 LOT-HOF 0.17 –2.09 ± 0.22 

HBM C103 –0.25 OS-123656  1,840 20 LOT-HOF 0.17 –0.96 ± 0.22 

HBM C104 –0.55 OS-123525 1,770 20 LOT-HOF 0.17 –1.26 ± 0.22 
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 738 
FIGURE CAPTIONS 739 
 740 
Figure 1: Location of study sites in Newfoundland, Canada. (A) Approximate geographic boundaries 741 

between regions on the Atlantic coast of North America where high salt-marsh environments are 742 

vegetated predominately by C3 (e.g. Juncus spp.) and C4 species (e.g. Spartina patens, Distichlis spicata), 743 

where salt marshes replace mangroves and regions experiencing uplift or subsidence as a consequence of 744 

ongoing glacio-isostatic adjustment.  Number sites are locations discussed in text (Daly, 2002; 1 = St. 745 

Paul's Inlet, 2 = Village Cove) (B-D) Study site at Placentia, close to the Argentia tide gauge. The site 746 

experiences tidal inundation because the open North Arm is connected to the South Arm at the eastern 747 

edge of the Placentia peninsula. The gravel barrier in front of the salt marsh is overwashed by high tides. 748 

(E-H) Study sites at Hynes Brook and Big River. The location of the Port aux Basques tide gauge is 749 

shown. Foraminifera from transects HBM-0 and HBM-2 were originally presented by Wright et al. 750 

(2011).  Three cores of basal sediment were collected along HBM-2. (I) Monthly average high (H) and 751 

low (L) air temperature at Stephenville (1942–2014) and Argentia (1945–2007), calculated from 752 

Government of Canada historic climate data. 753 

 754 

Figure 2: Distribution of foraminifera and δ13C values measured in samples of modern salt-marsh 755 

sediment collected along three transects at Placentia, Newfoundland. HOF = highest occurrence of 756 

foraminifera, which is the single highest sample from all three modern transects at Placentia to provide a 757 

robust and in situ assemblage of foraminifera. MHHW = mean higher high water; MHW = mean high 758 

water; MTL = mean tide level. Measured, bulk-sediment δ13C values are expressed relative to the Vienna 759 

Pee Dee Belemnite (VPDB) standard. Shaded intervals represent values that are typical of salt-marsh 760 

sediment from floral zones dominated by C3 and C4 plant species. 761 

 762 

Figure 3: Distribution of foraminifera in samples of modern salt-marsh sediment collected along three 763 

transects at Big River and one transect at Hynes Brook in Newfoundland. Foraminifera along two other 764 

transects at Hynes Brook (HBM-T0 and HBM-T2) were published by Wright et al. (2011) and are used in 765 

our regional compilation of data, but are not presented in detail here. HOF = highest occurrence of 766 

foraminifera, which is the single highest sample from the six modern transects at Big River and Hynes 767 

Brook to provide a robust and in situ assemblage of foraminifera. MHHW = mean higher high water; 768 

MHW = mean high water; MTL = mean tide level. 769 

 770 

Figure 4: Distribution of testate amoebae in samples of modern salt-marsh sediment collected along 771 

transect HBM-0b at Hynes Brook, BRM-1b at Big River and PLA-A at Placentia. Panels in the top row  772 
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show the position of sampling stations along each transect; note that the elevation axes differ among sites. 773 

HOF = highest occurrence of foraminifera; LOT = lowest occurrence of testate amoebae (the sample 774 

below which test abundance was insufficient to represent a viable and in-situ assemblage); MHHW = 775 

mean higher high water; MTL = mean tide level. The concentration of testate amoebae per counted spore 776 

of the exotic pollen Lycopodium clavatum (row 2) was used to determine LOT. Typically there was an 777 

easily recognizable and abrupt decrease in test concentration at this point from ~0.2 to <0.1. Rows 3–6 778 

show the distribution of the five most abundant species of testate amoebae on each transect, note that the 779 

abundance axes are the same within each transect, but differ among them. The lowest row of panels 780 

presents measurements of bulk-sediment δ13C values. The profile for Placentia is presented in Figure 2. 781 

 782 

Figure 5: Regional-scale modern datasets of foraminifera and testate amoebae from Hynes Brook, Big 783 

River and Placentia in Newfoundland, Canada. (A) Average silhouette width calculated by partitioning 784 

around medoids of the foraminifera dataset from which we recognized five distinct groups. (B) 785 

Foraminifera dataset divided into five groups and colored by site. Hm = Haplophragmoides manilaensis; 786 

Tc = Tiphotrocha comprimata. (C) Average silhouette width calculated by partitioning around medoids 787 

of the testate amoebae dataset. These results demonstrated that two distinct groups should be recognized. 788 

(D) Testate amoebae dataset divided into two groups and colored by site. Po = Pseudohyalosphenia type 789 

(Ooms). 790 

 791 

Figure 6: Samples of basal salt-marsh sediment from Hynes Brook that were analyzed to reconstruct late 792 

Holocene relative sea-level. For each of the three cores (C102, top row; C103, middle row; C104 bottom 793 

row), a lithology column shows the position of the basal contact and radiocarbon date with its unique 794 

identifier from the National Ocean Sciences Accelerator Mass Spectrometry facility. Core top elevations 795 

with respect to modern, local mean tide level (MTL) are listed. Abundance of Jadammina macrescens 796 

(Jm) and Balticammina pesudomacrescens (Bp) are shown in the first column of panels (blue bars). 797 

Dissimilarity between each core sample and its closest modern analog based on foraminifera are shown in 798 

the second column of panels (dashed lines represent values for percentiles of dissimilarity measured in 799 

pairings of modern samples). Abundance of the two most common species of testate amoebae are shown 800 

in the third and fourth columns (red bars; DL= Difflugia lucida type; CP = Centropyxis platystoma type; 801 

CD = Centropyxis delicatula-ecornis type). Note that the second most abundant species (after Centropyxis 802 

cassis type) varies among cores. The concentration of testate amoebae is expressed relative to the 803 

frequency of Lycopodium spores in the fifth column of panels. The dashed line represents the lowest 804 

concentration in a modern sample that was considered to have a viable and in-situ assemblage. Values 805 

exceeding this threshold indicate deposition above the lowest occurrence of testate amoebae. 806 
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Dissimilarity between each core sample and its closest modern analog based on testate amoebae are 807 

shown in the fifth column of panels (dashed lines represent values for percentiles of dissimilarity 808 

measured in pairings of modern samples). Measured, bulk-sediment δ13C values with respect to the 809 

Vienna Pee Dee Belemnite (VPDB) standard are presented in the final column and the shaded regions 810 

denote the approximate range of C3 and C4 plants. 811 

 812 

Figure 7: Relationship between species of modern (A) foraminifera and (B) testate amoebae and tidal 813 

elevation in Newfoundland.  Symbol color denotes group membership established by partitioning around 814 

medoids applied separately to the regional modern datasets of each microfossil group.  Colored bars at 815 

right show the range of elevations over which each group was found.  Arrows indicate groups for which 816 

upper and/or lower limits could not be reliably established.  Note that an anomalously low sample from 817 

foraminifera group 5 was discounted in estimating the range of this group.  Elevation is expressed as a 818 

standardized water level index (SWLI), where a value of 200 is the highest occurrence of foraminifera 819 

and 100 is mean tide level. 820 

 821 

Figure 8: Late Holocene relative sea-level history of southwestern Newfoundland produced using a 822 

standardized database of sea-level index points (Love et al., 2016; open rectangles) and the three new 823 

basal sea-level index points from Hynes Brook (this study; filled rectangles labeled to denote the core 824 

from which each new index point was produced).  The study of Love et al. (2016) utilized several earlier 825 

datasets to produce standardized sea-level index points (see references therein). 826 

 827 

Figure 9: Ratio of testate amoebae with idiosomic (composed of proteinaceous secretion and siliceous 828 

plates) and xenosomic (formed from agglutinated particles) tests in modern and fossil sediment samples 829 

in Newfoundland. Bars represent modern samples (colored by site), while the blue, shaded region 830 

represents the range of values encountered in core samples from Hynes Brook. The apparent loss of 831 

idiosomic tests is interpreted as preservation bias.  832 
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