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Abstract This article explores the application of a wind farm layout optimization1

framework using a particle swarm optimizer to three benchmark test cases. The de-2

veloped framework introduces an increased level of detail characterizing the impact3

that the wind farm layout can have on the levelized cost of energy by modelling the4

wind farm’s electrical infrastructure, annual energy production, and cost as functions5

of the wind farm layout. Using this framework, this paper explores the application of6

a particle swarm optimizer to the wind farm layout optimization problem considering7

three different levels of wind farm constraint faced by modern wind farm developers.8
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The particle swarm optimizer is found to yield improvements in the layout with respect9

to the levelized cost of energy for the three benchmark cases when compared to two10

past studies. This highlights both applicability of the particle swarm optimizer to the11

problem and the ways in which a wind farm developer could make use of the present12

framework in the development and design of future wind farms.13

Keywords offshore wind · layout optimization · particle swarm optimization · wind14

farm design15

1 Introduction16

As the world transitions to a more sustainable energy sector, wind energy and in17

particular offshore wind farms represent a significant means for reducing the greenhouse18

gas emissions of electricity generation. As the offshore wind energy industry has grown,19

both the size of wind farms and the size of individual turbines have grown significantly.20

Wind farms now represent much larger projects both in terms of the area they cover21

and their generational capacity than the early projects of last decade. With many22

projects currently in development, it has become increasingly important to ensure that23

these wind farms are designed in a sophisticated manner making use of the available24

area as efficiently as possible.25

To meet this need, tools have been developed exploring the optimal placement of26

wind turbines, offshore substations, and intra-array cables within an offshore wind farm.27

The original work in wind farm layout optimization done by Mosetti et al (1994) laid28

the ground work for this field introducing a general approach that following work has29

continued to utilize. This approach includes the assessment of both the energy produced30

by a wind farm and the cost of the wind farm over the lifetime of the project. More31

recent work in the field of offshore wind farm layout optimization has explored the32

applicability of different optimization algorithms as well as the inclusion of additional33

constraints and more detailed cost functions that a developer may face. The most34

frequent optimization algorithm applied to the wind farm layout optimization problem35

has been the genetic algorithm with several studies exploring its applicability to the36
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problem as posed by Mosetti et al (1994) and to more complex extensions (Chen et al,37

2013; Couto et al, 2013; Elkinton, 2007; Elkinton et al, 2008; Geem and Hong, 2013;38

Grady et al, 2005; Huang, 2009; Mittal, 2010; Shakoor et al, 2016; Zhang et al, 2014). In39

a similar vein, recent studies have also explored optimization algorithms such as viral40

based optimization (Ituarte-Villarreal and Espiritu, 2011), pattern search (DuPont41

and Cagan, 2012), mixed-integer linear programming (Fagerfjäll, 2010), Monte Carlo42

method (Marmidis et al, 2008), and random search (Feng and Shen, 2015) applied to43

the wind farm layout optimization problem.44

An optimization algorithm that has emerged as relevant to this problem and has45

frequently been deployed for variations on this problem is the particle swarm optimizer46

(PSO) (Chowdhury et al, 2012, 2013; Hou et al, 2017; Pookpunt and Ongsakul, 2013;47

Wan et al, 2010a,b). These existing studies have included various considerations be-48

yond the problem originally defined in the seminal work in the field by Mosetti et al49

(1994) such as hub height variations, turbine capacity variations, and intra-array cable50

routing (Chowdhury et al, 2013; Feng et al, 2016; Hou et al, 2017). However, these51

have still not considered several elements that would be important to a real wind farm52

developer.53

The present work, therefore, builds on the standard paradigm in wind farm layout54

optimization by considering not only the impact the wind farm layout has on the55

energy produced by the wind farm, but also the impact of layout design and turbine56

placement on the electrical infrastructure and the wind farm’s lifetime costs. Extending57

the previous work in this field as well as that of the authors (Pillai et al, 2016b), the58

present work presents this optimization problem with the inclusion of three constraint59

sets of interest to wind farm developers and applies these to a series of benchmark60

cases in which the levelized cost of energy (LCOE), a single metric that considers the61

wind farm energy output and costs over the wind farm’s lifetime, is used to compare62

layouts.63

This paper introduces increased detail in the evaluation a wind farm layout as well64

as additional constraint levels that a developer will face in the design of a real offshore65
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wind farm, thereby striving to capture the impacts the wind farm layout can have66

on the LCOE and explores the optimization of wind farm layouts using a cooperative67

population based metaheuristic optimization approach1, particle swarm optimization.68

This therefore involves returning to the key reference work by Mosetti et al (1994)69

and Grady et al (2005) and demonstrating that with the increased level of detail in the70

evaluation function and the three different constraint sets, a particle swarm optimizer is71

not only a relevant optimization algorithm, but is capable of identifying improvements72

to the layouts regardless of the size of wind farm.73

Section 2 introduces the approach of the wind farm layout optimization framework74

describing the components and the optimization algorithm deployed. Section 3 intro-75

duces the specific cases explored in this paper with the results presented in Section 4.76

Section 5 analyses these results before the conclusions of this study are summarized in77

Section 6.78

2 Approach79

In general, wind farm layout optimization requires two principal components, one for80

assessing the quality of a given wind farm layout and a second for altering the layouts81

in an effort to improve them. The standard paradigm for the optimization of wind farm82

layouts makes use of the LCOE for assessing the quality of the layout, integrating wind83

farm wake models and cost models in order to ascertain the LCOE for a given layout.84

In this application, lower LCOE values represent better layouts. The present method-85

ology expands on the standard paradigm by including the electrical infrastructure as86

the initial step in the determination of the LCOE. The location of the offshore substa-87

tions and the design of the intra-array cable network impacts both the annual energy88

production (AEP) and the costs and is therefore an important step in assessing the89

impact of changes to the turbine layout. The modular design of the approach, shown in90

fig. 1, has allowed different wake, cost, and optimization algorithms to be implemented91

1 A metaheuristic optimization approach is a general strategy that is applicable to a wide
range of optimization problems by making few or no assumptions about the problem (Burke
and Kendall, 2013).
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as part of the development of the tool. Prior to integration through the optimization92

algorithm, each of the components of the evaluation function have been independently93

validated (Pillai et al, 2016a, 2014, 2015). The optimization algorithm, the PSO in the94

present work, then makes use of the LCOE values in order to advise the next iteration95

of proposed layouts.96

Start Layout 
Optimization

Initial Turbine 
Positions

Evaluation 
FunctionAEP Module Cost Module Compute LCOE

Termination 
Criteria Met

FALSE
Optimization 

Module
New Turbine 

Positions

Electrical 
Module

Process 
Results

End Layout 
Optimization

TRUE

Fig. 1: Modular approach to wind farm layout optimization.

Existing offshore wind farms have generally been designed using simple spacing97

rules with turbines laid out along regular grids. Though this is the preferred approach98

from the perspective of search and rescue practitioners and helps to maintain naviga-99

tional routes through the wind farm, it does limit the designs that a developer could100

deploy (NOREL Group, 2014). In order to explore the different levels of constraints101

under which wind farms are currently being designed, allowing greater flexibility to the102

wind farm developer, three constraint sets are implemented each requiring a different103

optimization problem to be implemented. Under these constraints, the wind turbine104

positions are either on a fixed grid defined by the optimizer, one of a set of pre-defined105

allowable turbine positions, or anywhere within the wind farm area that satisfies the106

seabed constraints. These varying degrees of constraint on the wind farm design repre-107

sent the different approaches taken by European regulators in order to offer flexibility108

to the wind farm developers while still accounting for the interests and concerns of109

other marine stakeholders.110
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2.1 Evaluation of LCOE111

As described, the wind farm layout optimization tool compares layouts on a basis of112

LCOE as this is a single metric which represents the cost effectiveness of a layout.113

The LCOE, measured in energy generation per unit cost, takes into account both the114

lifetime energy production of the wind farm and the lifetime costs of the project and115

is a common metric used by project developers to compare designs and competing116

projects. The energy production and costs are both discounted in order to represent117

the total lifetime energy production and lifetime costs in present value terms. In this118

way, the LCOE represents the ratio of the present value of the inputs to the present119

value of the outputs of the wind farm (Tegen et al, 2012, 2013).120

LCOE =

n∑
t=1

Ct

(1 + r)t

n∑
t=1

AEP

(1 + r)t

(1)

where Ct is the total costs incurred in year t, n is the project lifetime, AEPt, is121

the annual energy production in year t, and r is the discount rate of the project.122

2.1.1 Electrical Infrastructure Design123

The first step in the evaluation of a layout as shown in fig. 1 is the design of the124

necessary electrical infrastructure to support the given layout considering any seabed125

restrictions which may be present at the site. As the electrical infrastructure impacts126

the energy produced by the wind farm due to losses through the electrical system, and127

changes to the electrical infrastructure can impact the project costs, the inclusion of128

this step helps quantify the impact on the LCOE of changes to the wind farm lay-129

out. The methodology for this is described in greater detail by the authors in Pillai130

et al (2015). The majority of existing wind farm layout optimization tools have not131

considered the impact of the turbine layout on either the intra-array cable collection132

networks or substation positions and the impact that these changes will have on the133

LCOE (Chen et al, 2013; Chowdhury et al, 2013; Couto et al, 2013; DuPont and Cagan,134
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2012; Elkinton, 2007; Elkinton et al, 2008; Geem and Hong, 2013; Grady et al, 2005;135

Huang, 2009; Ituarte-Villarreal and Espiritu, 2011; Marmidis et al, 2008; Mosetti et al,136

1994; Réthoré et al, 2011; Shakoor et al, 2016; Zhang, 2013; Zhang et al, 2014). The137

existing tools that have included this step in the optimization of a wind farm layout,138

have, however, omitted bathymetric constraints which a real-world developer would139

face (Feng et al, 2016; Hou et al, 2017). Furthermore, existing standalone tools have140

explored the optimization of the intra-array cable network for an offshore wind farm141

as an independent problem. These approaches have similarly, also not considered the142

irregular seabed exclusion areas for intra-array cables which arise from both bathymet-143

ric and regulatory constraints that the developer may face at sites. As these exclusion144

areas are often non-convex polygons in shape, their accurate inclusion in previous work145

has proven challenging (Bauer and Lysgaard, 2015; Dutta and Overbye, 2013; Lindahl146

et al, 2013; Rodrigues et al, 2016).147

The optimization of the electrical infrastructure as developed in Pillai et al (2015)148

uses of a series of heuristics and is therefore not guaranteed to identify the proven149

optimal solution, however, it has been found to identify good quality solutions in an150

acceptable runtime thereby representing a pragmatic approach to this real-world prob-151

lem. This optimization process identifies not only the substation positions, and cable152

paths given the bathymetric constraints, but also the conductor sizes for each electri-153

cal cable in the network. This methodology to optimize the electrical infrastructure is154

shown in algorithm 1.155

The first step in this process is the determination of the substation positions by156

clustering the turbine positions. By making use of a modified clustering algorithm157

based on k-means++ (Arthur and Vassilvitskii, 2007), the clustering process is capable158

of generating substation positions which adhere to the seabed constraints and their own159

capacity constraints while still minimizing the distance to the turbines. From here, a160

pathfinding algorithm is executed to generate the fully connected set of cable paths for161

the given turbine and substation positions. The pathfinding algorithm is used in order162

to consider the seabed obstacles which define where the cables cannot be placed. Using163
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Algorithm 1 Offshore Wind Farm Intra-Array Cable Optimization

Require: The turbine positions, the GIS obstacles, and the number of substations

1: Given the number of substations assign each turbine to a substation and compute

the substation positions using the Capacitated kmeans++ Clustering

2: for all substations do

3: for all turbines assigned to substation do

4: Identify the 10 closest turbines

5: Identify the constrained shortest path between the turbine and substation

using Delaunay Triangulation Based Navigational Mesh Pathfinding.

6: for 10 closest turbines do

7: Identify the constrained shortest path between turbine pair using Delaunay

Triangulation Based Navigational Mesh Pathfinding.

8: end for

9: end for

10: Formulate mixed-integer linear program for substation and its assigned turbines

given the 11 possible arcs for each turbine computed above

11: repeat

12: Solve mixed-integer linear program

13: if any cables in mixed-integer linear program solution cross then

14: Add individual crossing constraints

15: end if

16: until No cables cross

17: end for

18: return substation positions, cable paths, cable flows, and cable types

the accurate lengths of cables determined by the pathfinding algorithm, a capacitated164

minimum spanning tree (CMST) problem is formulated and solved using a commercial165

MILP solver, Gurobi (Gurobi Optimization Inc., 2015). The solution to the CMST166

identifies which of the cables should be deployed in the final network. In this way, the167

pathfinding step defines all the possible cables to consider and their accurate lengths,168

while the construction of the CMST selects which of these cables should be used to169

minimize the cost of the infrastructure. Following this, the pathfinding algorithm is170

again deployed to determine the export cable path from each substation now consider-171

ing the intra-array network as constraint regions to ensure that the export cable does172

not cross any of the intra-array cables.173

Using this sub-tool, the electrical constraints of the cables and substations are not174

only taken into account, but seabed features dictating where this equipment cannot175

be placed are also considered. As intra-array cables can exceed £500,000 per kilometre176

installed, it is important that the impact the wind farm layout has on the amount177
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of cable needed is included in the assessment of the layout’s cost (Gaillard, 2015).178

Furthermore it is not uncommon for large offshore wind farms to be characterized179

by a number of constraint regions which can significantly impact the design of the180

intra-array collection network (Pillai et al, 2015).181

2.1.2 AEP Estimation182

It is well understood that any device extracting energy from a natural flux has some183

impact on that flux. Wind turbines are no different, and directly behind an operating184

wind turbine, the air flow is affected due to the extraction of energy. In this region,185

known as the wake, the wind is characterized by reduced speeds and increased levels186

of turbulence compared to the conditions upstream of the turbine (Barthelmie et al,187

2006, 2009; Makridis and Chick, 2013; Renkema, 2007). The layout of a wind farm can188

therefore have a major impact on the wind speeds that each individual wind turbine189

within the wind farm experiences and thereby the energy production of the farm as a190

whole. As a result of this, it is important for the wind turbine wakes to be accounted for191

both when estimating wind farm production figures and the LCOE of a given layout.192

The calculation of the AEP within this tool is done using an industry standard193

analytic approach in which the wake losses are accounted for using the Larsen wake194

model (Larsen, 1988). This model has been selected as validation using site data demon-195

strated that it represented a good compromise between computational intensity and196

accuracy (Gaumond et al, 2012; Pillai et al, 2014). The Jensen wake model used in pre-197

vious layout optimization work has been found in validation studies to under-estimate198

the AEP and is therefore not as well suited for this work as the Larsen model (Gaumond199

et al, 2012).200

To compute the AEP, each wind speed and direction combination are stepped201

through in turn. For each free wind speed and wind direction the analytic wake model202

is used to update each turbine’s experienced wind speed based on the performance203

of all upwind turbines. From this, the wind turbine power curve is used to convert204

the incident wind speed to the energy generated under the given conditions. For each205
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wind speed and direction combination, the energy losses through the electrical cable206

network are then computed based on each turbine’s individual contribution to the AEP207

and the total wind farm contribution to AEP under the given free-stream wind speed208

and direction is updated. This total production for each wind speed and direction209

combination is then scaled by the probability of occurrence of this combination for the210

site in question before being added to the AEP.211

AEP = 8766 ×
∑
di

∑
vi

P (di, vi) × [E(di, vi) − L(E(di, vi))] (2)

where di is the wind direction; vi is the wind speed; P (di, vi) is the joint probability212

of di and vi; E(di, vi) is the energy production for the wind farm for the combination of213

incident wind speed and direction considering the wake losses; and L(E(di, vi)) is the214

electrical losses associated with the wind speed and direction as a result of the intra-215

array cable network. These electrical losses are assessed using an IEC loss calculation216

based on IEC 60228 and IEC 60287 (IEC, 2006a,b). This methodology is similar to217

that used by commercial tools such as WindFarmer and WindPRO which include both218

the losses due to wakes and within the intra-array cable network (DNV GL - Energy,219

2014; Thøgersen, 2005).220

2.1.3 Cost Assessment221

The final step in the evaluation of the LCOE as shown in fig. 1 is the estimation of222

the costs over the lifetime of the project. Where previous tools have assumed a cost223

which scales with the number of turbines, the approach used in this tool seeks to more224

accurately capture the impact that the wind farm layout has on the lifetime costs.225

Layouts with the same number of turbines may therefore have different costs using226

this model as opposed to the cost model frequently deployed in layout optimization227

which represents the cost as a function of only the number of turbines.228

The project costs are divided into eight principal cost centres with varying degrees229

of dependency to the wind farm layout as shown in table 1. The capital expenditure230

(CAPEX) elements are incurred either in the construction stage of the project or in231
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the case of decommissioning at the end of the project life and discounted appropriately232

while the operational expenditure (OPEX) elements are incurred in each year of oper-233

ation following the construction period and prior to the decommissioning period. The234

decommissioning costs are categorized as decommissioning expenditure (DECEX) and235

are incurred at the end of life during the decommissioning period during which there236

is no OPEX incurred.237

Each of these cost elements considers not only the turbine positions relative to238

one another, but also the turbine positions relative to the construction and O&M239

ports, as well as the depth at each individual turbine’s position. Relevant cost centres240

also consider the vessel parameters, cable parameters, and design parameters of the241

substations. The specific cost relationships have been developed in discussions with242

wind farm developers and suppliers in order to ensure that the costs are representative243

of the costs to be incurred by future projects in European waters and accurately capture244

the impact that the turbine layout can have on these costs.245

Turbine Supply The cost associated with the supply of the turbines is based entirely on246

a price per turbine supplied by turbine manufactures. This cost is therefore independent247

of the layout of the wind farm and factor only of the number of turbines or installed248

capacity of the wind farm.249

Turbine installation Using market values for vessel costs and their capacities, the tur-250

bine installation costs are modelled by assessing the total amount of time required251

to install the turbines at their specific locations within the wind farm. This therefore252

includes the calculation of the time required for each installation operation, the travel253

time between turbines, and the travel time to and from the construction port. In order254

to determine the optimal vessel installation route, the turbines are clustered based on255

the capacity of the installation vessel, and for each cluster a shortest path is computed256

between the port, each turbine in the cluster, and the port again. This approach there-257

fore accurately computes the distance that the vessel must travel over the installation258

process. From this, the total time is computed based on assumed weather availability259
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and the costs computed based on the vessel and equipment day rates. The turbine260

layout, therefore, has a direct impact on the time needed to travel between turbine261

positions as well as to and from the port.262

Foundation supply Foundation costs are found to be highly dependent on the site263

conditions where the foundation is to be installed. To account for this dependence,264

previous cost models have attempted a bottom up approach based on the soil char-265

acteristics at the installation site to model the costs. Unfortunately this approach has266

proven difficult to validate for all foundation types (Elkinton, 2007). For the present267

tool therefore, a depth dependency has been developed from discussions with manufac-268

turers and the specific soil conditions are not included. Detailed bathymetry of a site is269

therefore necessary in order to accurately estimate the variation in foundation supply270

costs as a function of the turbine layout. As the original cases defined by Mosetti et al271

(1994) did not include bathymetric data, a constant depth has been assumed across272

the site.273

Foundation installation The foundation installation process like the turbine installa-274

tion module is based on estimating the time needed to complete the operations and275

converting this time to a cost. Unlike the turbine installation though, this is modelled276

as three distinct phases which each uses a different vessel to complete.277

Regardless of the foundation type (gravity-based, monopile, or jacket), some seabed278

preparation is necessary. For a gravity-based foundation this might be the necessary279

dredging and levelling of the seabed, while for monopiles and jackets this would more280

likely be pre-pilling works including surveying and drilling. After this step, the foun-281

dations will be installed as a separate operation following which some kind of scour282

protection will often be added. The installation of scour protection is again modelled as283

a separate step involving a different vessel from either the site preparation or foundation284

installation processes. In some conditions, the scour protection will not be necessary,285

however, for the time being the present model assumes that all turbines will require286

scour protection.287
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Intra-array cable costs The total horizontal length of intra-array cables required is288

computed from the intra-array cable optimization tool described earlier. This tool is289

described in detail in previous work by the authors (Pillai et al. 2015). This tool has the290

support for optimizing the layout for different cable cross-section sizes and therefore can291

output not only the total length of cable, but the horizontal lengths required for each292

segment and the required cross-section. From this, the intra-array cable cost module293

computes the necessary vertical cable and the necessary spare cable before computing294

the costs.295

Following the calculation of the supply cost, the installation cost is computed in a296

similar manner to the turbine and foundation installation modules. This is done based297

on data available for cable trenching vessels and therefore assumes that all cables are298

trenched and buried.299

Operations and Maintenance The operations and maintenance costs are based on a300

tool developed by EDF Energy R&D UK Centre which models the anticipated oper-301

ations and maintenance cost of a project to vary with the projects distance from the302

operations and maintenance port and the capacity of the project. As this term is af-303

fected by distance of the wind farm to the operations and maintenance port, this too is304

affected by the layout. The operations and maintenance costs are classed as operational305

expenditure (OPEX) as these are incurred each year of operation as opposed to the306

preceding cost elements which are only incurred during the construction period and307

are therefore classed as CAPEX elements.308

Decommissioning The decommissioning costs include the removal of the turbines and309

foundations. At the moment, it is unclear what will happen to the transmission and310

export cables at the end of a wind farm’s life. The model therefore assumes that311

these cables are not removed at the time of decommissioning, but simply cut at the312

turbines and substation, leaving the buried lengths as they are. The decommissioning313

costs are therefore modelled similar to the installation processes with the time each314

vessel is required first computed before this is converted to a cost. Like the installation315
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processes it is assumed that the vessels have some finite capacity and must return to316

the decommissioning port during the overall operation. The turbines and foundations317

are assumed to be decommissioned in separate steps requiring separate vessels. Like318

the installation phases, this term is therefore dependent on the turbine positions and319

is affected by the proposed layout.320

Offshore Transmission Assets The final cost element of this cost model is the inclu-321

sion of the offshore transmission asset transfer fees. In the UK, the offshore substation,322

export cables, and onshore substation must be owned and operated by a separate com-323

pany from the wind farm operator. Practically, therefore, most wind farm developers324

build these assets, and then transfer them to a transmission operator before commis-325

sioning the wind farm. As a result, only some of the CAPEX is incurred by the project,326

and the rest is incurred as a component of the transmission fee along with regionally327

based costs set by the network operator, in the UK this is National Grid. Both the328

CAPEX and OPEX components of the Offshore Transmission Owners assets have been329

computed in discussion with National Grid and equipment manufacturers based on the330

capacity of the assets.331

Table 1: Cost Contribution to CAPEX and OPEX

Cost Element CAPEX OPEX DECEX Inclusion of

Layout

Turbine Supply X - - Low

Turbine Installation X - - Medium

Foundation Supply X - - Medium

Foundation Installation X - - Medium

Intra-Array Cables X - - High

Operations and Maintenance (O&M) - X - Medium

Decommissioning - - X Medium

Offshore Transmission Assets X X - Low
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2.2 Particle Swarm Optimization332

The particle swarm optimization algorithm is a population based metaheuristic based333

on the behaviour of flocking birds or shoaling fish (Eberhart and Kennedy, 1995;334

Kennedy and Eberhart, 1995). In this respect, the algorithm treats the candidate so-335

lutions as particles within a swarm which are exploring the search space cooperatively.336

Each particle (solution) changes its position in the search space between iterations337

based on a velocity vector defined by the knowledge of both the swarm’s past position338

and the individual particle’s historical positions within the search space. For iteration339

i of the process, this velocity, v, for a given particle is given by:340

vi = C1 × vi−1 + C2 × r1 (p− xi) + C3 × r2 (g − xi) (3)

where C1, C2, and C3 are coefficients representing the weighting of each of the341

contributors determined by tuning the PSO; p is the best position that the particle has342

historically occupied within the search space; g is the best position that any individual343

within the swarm as a whole has ever occupied; x is the solution under consideration;344

and r1 and r2 are two random numbers between 0 and 1 selected using a uniform345

distribution. With this velocity the particle’s position the next iteration is given by:346

xi+1 = xi + vi (4)

Once each particle’s position is updated, the evaluation function is used to de-347

termine the corresponding LCOE for each of the proposed layouts. Each particle’s348

historical best position p is then updated if needed, and the best p value is used to349

define g. These updated p and g values are needed in the determination of the updated350

particle velocities for the next iteration of the process.351

Compared to the genetic algorithm or alternate metaheuristics which have been352

applied to the wind farm layout optimization problem, the PSO is of interest as in op-353

timization benchmarking studies it has been found to find high quality solutions in less354

time than a similar genetic algorithm (Eberhart et al, 2001; Hassan et al, 2005). Given355



16

the complexity of future wind farms, this is of interest to wind farm developers as the356

PSO could therefore identify better solutions than the industry standard approaches357

using commercial software tools thereby leading to more efficient wind farm layouts.358

Furthermore, where the genetic algorithm is seen as a competitive metaheuristic in359

which individual solutions compete for survival, the PSO fosters a cooperative envi-360

ronment where the individual solutions directly impact one another. In this way, all361

members of the swarm are made aware of the improvements found by each individual362

particle, using this information to inform their future movements within the search363

space.364

The parameters of the present PSO are given in table 2. Due to the available com-365

putational power, this study used a constant swarm size of 100 particles. In order to366

ensure that the velocity vector does not take a particle outside of the search space, a367

dynamic velocity clamping approach was used in which velocity limits are imposed in368

each direction based on the location of the particle. This is similar to the trajectory369

constriction approach described by Clerc and Kennedy (2002); Van Den Bergh and370

Engelbrecht (2006). For the binary constraints described below, a binary implementa-371

tion of the PSO in which all decision variables are binary variables is necessary. As the372

velocity in the binary implementation must correspond to a specific decision variable373

being either a 1 or a 0, a velocity transfer function is required to convert the velocity374

for each decision variable into a probability that the decision variable should be a 1.375

Table 2: Particle Swarm Parameters

Parameter Description

Swarm Size 100

Velocity Clamping Dynamic

Velocity Transfer Function (Binary Encoding) T (x) =
∣∣ 2
π × arctan

(
x · π2

)∣∣
Neighbourhood Topology Global (gBest)

Stop Criteria Diversity <10%

Maximum generations reached

No improvement over 50 generations
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In the original study by Mosetti et al (1994), the wind farm area was discretized376

into 100 allowable turbine positions. The optimizer is therefore tasked with the selec-377

tion of which of these positions to use for the deployed wind turbines. This therefore378

represents a constraint on the turbine placement and it would be expected that better379

layouts could be achieved if this constraint was relaxed. To explore this, three different380

constraints on the turbine placement are used in the present study:381

1. Array constraints - The turbine positions are constrained to being on a regular382

grid with constant downwind and crosswind spacings. The decision variables of383

the optimization problem define the spacing and orientation of the regular grid of384

turbine positions with constant downwind and crosswind spacing throughout the385

site.386

2. Binary constraints - The turbine positions are limited to being one of a predefined387

set of allowable turbine positions. For the present study, the wind farm area is388

discretized into 100 allowable turbine positions as defined Mosetti et al (1994) and389

the decision variables of the optimization problem are binary variables representing390

the presence of a turbine in a particular cell. This represents the case in which the391

wind farm developer, regulator, and stakeholders define a set of acceptable turbine392

positions and the wind farm is designed by selecting turbine positions form this393

set.394

3. Continuous constraints - The turbine positions can be anywhere within the wind395

farm boundary that is technically feasible. The decision variables directly define the396

turbine coordinates and may therefore occupy any value within the wind farm area.397

This represents a situation in which the wind farm developer is free to design the398

wind farm as they see best limited only by the technical constraints of the site.399

The three approaches represent different ways in which the problem can be defined400

all of which are used by wind farm developers to design and explore the available401

options in the design of an offshore wind farm. The array and binary constraint sets are402

of interest to a wind farm developer in regions where the regulator imposes some degree403

of symmetry as a result of navigational and search and rescue safety concerns (NOREL404
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Group, 2014). As the three constraint sets have fundamentally different degrees of405

complexity and represent different design spaces the optimizers were tuned individually406

for each of the problems in an attempt to maximize the performance though the same407

swarm size was used for all cases. Regardless of the placement constraints used, the408

technical seabed constraints such as the position of wrecks, unexploded ordnance, and409

the seabed slope are considered. For all three constraint sets, a minimum separation410

constraint is applied to ensure that turbines do not risk colliding and the wind farm411

boundary explicitly defines the limits of the wind farm.412

3 Definition of Cases413

In the development of layout optimization tools three case studies have been defined by414

Mosetti et al (1994). These three cases have been commonly used in order to evaluate415

the performance and demonstrate the capabilities of wind farm layout optimization416

tools. In order to demonstrate the capabilities of the present framework, which makes417

use of a more detailed layout evaluation function, the three cases are approached us-418

ing the original constraints as well as under two different sets of relaxed constraints.419

Through this, the capabilities of the present framework using a PSO are highlighted.420

The three cases all consider a 2 km by 2 km area in which turbines must be placed,421

however, they differ with regards to the wind resource. Case one considers a case422

of constant wind speed and constant wind direction in which the wind is constantly423

12 m s−1 and from the 10◦ sector centred on 0◦. The second case is described as the424

case of constant wind speed and variable direction in which the wind is again constantly425

12 m s−1, but now has an equal probability of blowing from any of the 36 discrete426

wind directions. Finally, the third case, the case of variable wind speed and direction,427

describes a case in which both the wind speed and wind direction are variable and428

most closely resembles a true wind farm. All three cases describe the resource using429

36 discrete wind directions which are each used in the calculation of the AEP and430

the modelling of the wakes in the evaluation function. Validation studies of analytic431

wake models have found that these models are not necessarily more accurate when432
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Fig. 2: Wind roses for the three different resource cases.

using narrower wind direction sectors, and discrete wind sectors of 10◦ to 30◦ in size433

should be used when deploying analytic wake models such as the Jensen or Larsen434

models (Gaumond et al, 2013; Pillai et al, 2014).435

The original cases do not define the water depth nor are the locations of the relevant436

ports defined. In order to allow comparison with existing results for these case studies,437

the water depth has been assumed constant across the site and the ports have been438

placed far away relative to the size of the wind farm.439

4 Results440

In order to demonstrate the capabilities of the present framework using a PSO, the441

final layouts from the original study by Mosetti et al (1994) and the final layouts from442

a subsequent study by Grady et al (2005) are evaluated using the present evaluation443

function in order to offer a fair comparison to the new layouts proposed. These two444

studies used different numbers of turbines for each resource case and therefore cannot445

be directly compared to one another. Likewise, much of the literature has also allowed446

the number of turbines to vary thereby making direct comparisons challenging. In the447

present framework, the number of turbines is fixed thereby allowing a direct comparison448

on the same number of turbines against both the reference case study and the different449

constraint sets.450

The original layouts produced in the studies by Mosetti et al (1994) and Grady451

et al (2005) for all three resource cases are shown in fig. 3. The studies performed by452
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Mosetti et al (1994) and Grady et al (2005) both allowed the number of turbines to453

vary and therefore for each of the resource cases, the two studies present different wind454

farm sizes. In the present study, each wind farm resource is executed with all three sets455

of constraints and at same the wind farm sizes as reported in the two past studies in456

order to fairly compare to the reference studies. The binary constraint set, represents457

the most similar case to the problem originally defined by Mosetti et al (1994), however,458

the present tool uses a fixed number of turbines, while the original studies allowed this459

to change. Each of the presented optimization results represents the converged results460

after a maximum of 100 generations. In general, less than 60 generations were required461

to reach the converged results presented.462
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Fig. 3: Original optimized layouts proposed by Mosetti et al (1994) on the top row and

Grady et al (2005) on the bottom row for the three resource cases.
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4.1 Case 1: Constant Wind Speed, Constant Direction463

The results presented in table 3 shows the outputs from re-evaluating the original464

layouts proposed in the previous studies (Grady et al, 2005; Mosetti et al, 1994) as465

well as the outputs from the execution of the PSO for this case. As the developed466

method uses the number of turbines as an input to the optimization process, it was467

necessary to execute the optimizer for two different wind farm sizes corresponding468

to the studies originally performed by Mosetti et al (1994) and Grady et al (2005)469

respectively, allowing the results to be directly compared to these past studies (shown470

in figs. 3a and 3d). As described above, each of the wind farm sizes was run with three471

different types of constraints corresponding to different requirements on the placement472

of the turbines.473

Table 3: Layout Optimization Results: Constant Wind Speed, Constant Direction

Study Number of

Turbines

Lifetime

Cost [£]

AEP [MWh] LCOE

[£/MWh]

Mosetti et al (1994) 26 4.42 × 108 9.90 × 104 522.87

Array Constraints 26 4.39 × 108 1.18 × 105 434.87

Binary Constraints 26 4.41 × 108 1.01 × 105 510.46

Continuous Constraints 26 4.42 × 108 1.16 × 105 447.18

Grady et al (2005) 30 4.77 × 108 1.13 × 105 496.29

Array Constraints 30 4.76 × 108 1.33 × 105 419.61

Binary Constraints 30 4.77 × 108 1.13 × 105 496.29

Continuous Constraints 30 4.78 × 108 1.33 × 105 421.64

From the results presented in table 3 it can be observed that for both wind farm474

sizes, the PSO either finds improvements or the same solution proposed by the refer-475

ences cases regardless of which constraint set was used. Specifically, using the binary476

constraint set for the larger wind farm size resulted in the same layout presented by477

Grady et al (2005) whereas for each of the other five cases, improvements were high-478

lighted compared to the relevant reference case. As is highlighted in table 3, for both479

wind farm sizes, the variation in costs as a result of the changes in layout are very small480

as the micrositing within the 4 km2 wind farm area results in very minimal changes481
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in the installation costs. In fact, as the port position was not defined in the original482

case, it was necessary to place the port very far away relative to the size of the wind483

farm in order to remove any bias to the port’s position. As a result of this, there are484

relatively large transit times to the wind farm included in each installation cost which485

are unaffected by the wind farm layout, but a function of the wind farm’s distance486

from the installation port.487
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Fig. 4: Optimized layouts for the case of a constant wind speed and constant direction

with 26 turbines (top row) and 30 turbines (bottom row) using both optimization

algorithms and all three constraint sets.

4.2 Case 2: Constant Wind Speed, Variable Direction488

The results for each of the constraint sets and wind farm sizes are summarized in table 4489

and the corresponding layouts are shown in fig. 5. The original layouts proposed by490

the reference studies are shown in figs. 3b and 3e. From table 4, it can be seen that491
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similar to the results for Case 1, the newly developed layout optimization framework492

for offshore wind farms is capable of identifying improvements using the PSO under493

all three constraint sets for both wind farm sizes.494

Table 4: Layout Optimization Results: Constant Wind Speed, Variable Direction

Study Number of

Turbines

Lifetime

Cost [£]

AEP [MWh] LCOE

[£/MWh]

Mosetti et al (1994) 19 3.77 × 108 8.17 × 104 540.25

Array Constraints 19 3.77 × 108 8.32 × 104 530.79

Binary Constraints 19 3.77 × 108 8.21 × 104 537.49

Continuous Constraints 19 3.77 × 108 8.19 × 104 538.29

Grady et al (2005) 39 5.62 × 108 1.57 × 105 419.13

Array Constraints 39 5.61 × 108 1.61 × 105 408.07

Binary Constraints 39 5.61 × 108 1.59 × 105 413.00

Continuous Constraints 39 5.62 × 108 1.58 × 105 417.29

4.3 Case 3: Variable Wind Speed, Variable Direction495

The results of executing the current framework with the PSO are found in table 5496

with the corresponding layouts plotted in fig. 6 and the original reference layouts in497

figs. 3c and 3f. Similar to the previous cases, the PSO using any of the constraint sets498

was capable of identifying improved layouts with regards to the LCOE. Similar to the499

previous cases, the best results were found using the array constraints.500

5 Discussion501

Using the present tool, cost variations as a result of changes to the wind farm layout502

are captured and included in the calculation of the layout’s LCOE. For a small wind503

farm such as those considered here, it is, however, the increase in AEP which drives504

the decreases in LCOE, which is why for many cases an increase in lifetime cost is505

observed, however, the corresponding increase in AEP is sufficiently large to still result506

in a net reduction of the LCOE.507
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Fig. 5: Optimized layout for the case of a constant wind speed and variable direction

with 19 and 39 turbines using both optimization algorithms and all three constraint

sets.

Table 5: Layout Optimization Results: Variable Wind Speed, Variable Direction

Study Number of

Turbines

Lifetime

Cost [£]

AEP [MWh] LCOE

[£/MWh]

Mosetti et al (1994) 15 3.40 × 108 6.89 × 104 576.94

Array Constraints 15 3.39 × 108 6.93 × 104 571.51

Binary Constraints 15 3.39 × 108 6.91 × 104 573.87

Continuous Constraints 15 3.39 × 108 6.91 × 104 574.22

Grady et al (2005) 39 5.62 × 108 1.74 × 105 377.14

Array Constraints 39 5.63 × 108 1.75 × 105 375.50

Binary Constraints 39 5.62 × 108 1.75 × 105 376.72

Continuous Constraints 39 5.62 × 108 1.75 × 105 376.72

As would be expected, relaxing the turbine positioning constraints by designing508

arrays within the boundary or by treating the wind farm area as a continuous do-509

main, results in significant improvements in the LCOE as the shape of the layout can510

be designed to best utilize the characteristics of the site. Somewhat surprisingly, the511
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Fig. 6: Optimized layout for the case of a variable wind speed and variable direction

with 15 and 39 turbines using both optimization algorithms and all three constraint

sets.

continuous optimizer which represents the most unconstrained case was unable to con-512

sistently find improvements over the array optimizer. However, both were consistently513

able to find improvements compared to the binary optimizer which made use of the514

discretized wind farm area. Interestingly, the array optimizer appears more capable515

than the others to adjust the shape of the wind farm layout to take advantage of the516

wind resource.517

As the array optimizer and continuous optimizer did not identify similar solutions518

it suggests that further tuning of the PSO is necessary in order to ensure that the519

optimizers are not prematurely converging to a local solution. Furthermore, given the520

results it indicates that moving from the binary or array optimizers to the continuous521

optimizer increases the size of the problem quite significantly. In the present case,522

all three constraint sets were solved using the same size of swarm, however, it might523

be more prudent for the swarm size to change depending on which constraint set is524
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used thereby allowing the more complex problem to be solved with a larger swarm525

in order to avoid premature convergence. With a sufficiently large swarm, it should526

be possible for the PSO to converge to a higher quality solution closer to that of527

the global optimum. It should be noted, however, that metaheuristic algorithms like528

the PSO cannot guarantee, especially for a complex objective function such as the529

LCOE, that the optimization process will converge to the global optimum. Given the530

computational power allocated for this study, however, it was not possible to execute531

the optimizers with larger swarms. With swarms of 100 individuals as used in this532

study, each optimization took between one and three days to execute depending on the533

wind farm size and the selected constraints when executed on a desktop computer with534

an Intel Xeon 8-CPU processor rated at 3.3 GHz. As the three different constraint sets535

lead to three different instances of the problem with different decision variables, the536

design spaces are not directly comparable and each of the three optimizers should be537

tuned independently in order to ensure the best performance.538

Looking at Case 1, it can be seen that both the binary and continuous optimizers use539

the majority of the available space, while the array optimizer is capable of identifying540

that it should sacrifice a close spacing in the direction perpendicular to the single541

wind direction. The binary optimizer is unable to find a similar solution due to the542

resolution of the discrete grid used in the binary optimization. This suggests that the543

discretization of the wind farm area should be done at a higher resolution to afford544

the optimizer a greater degree of flexibility. The present study used the 100 allowable545

turbine positions as this is what had been used in past studies. Increasing the number546

of allowable turbine positions through a higher resolution would, however, increase547

the size of the problem and potentially slow the rate of convergence. The continuous548

optimizer should, however, be capable of identifying a similar solution, and the fact549

that it does not highlights that further work remains to be done with this optimizer in550

order to ensure that high quality solutions are reached.551

The results from Case 2, however, indicate that the binary optimizer is placing more552

turbines on the edge of the wind farm in order to take advantage of the symmetrical553
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wind resource, especially in the larger wind farm case. For this resource case and the554

larger wind farm, compared to the full continuous optimizer the binary optimizer results555

in better AEP values, demonstrating that additional constraints on the problem can556

reduce the search space without sacrificing the quality of the ultimate layouts.557

Limiting the turbine positions to 100 possible positions significantly constrained558

the search space such that the solutions had inferior fitness values compared to the559

more relaxed constraint sets. This indicates that moving to the binary constraints with560

a discretized set of turbine positions over-constrains the problem, eliminating high561

quality valid solutions. Considering the Mosetti cases, the impact of this on the LCOE562

varied from £1 per MWh to £70 per MWh increases, corresponding to 0-16% potential563

improvements in LCOE from relaxing the constraints. Given some of the assumptions,564

the percentage difference is smaller than it would be if this were a real site, as there565

are some fixed costs which are intentionally overestimated. As described earlier, the566

port location was defined as far away relative to the size of the wind farm in order to567

avoid the optimizer clustering turbines close to the installation port. The installation568

costs are therefore larger than they would be for a real case thereby increasing the569

LCOE. For these cases, it is therefore more valuable to analyse the absolute difference570

in LCOE rather than the percentage reduction.571

Interestingly, Case 3 which represents the most realistic wind resource case finds572

very small variations in AEP across the three different constraint sets demonstrating573

that for a more varied wind speed and wind direction combinations all three constraint574

sets have merit and are capable of finding good solutions. The choice of which constraint575

set to use therefore becomes a function of what constraints are imposed on the site576

developer by consenting agencies or other stakeholders. The results from this case577

also demonstrate that there are several different layouts with similar AEP, cost and578

LCOE values showing the complexity of the search space. Given that there are different579

layouts which can result in similar solutions the tuning of the optimizer becomes more580

important and further work will need to further explore this in order to ensure that the581
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optimization process is not overlooking significant improvements and that the optimizer582

is operating in appropriate time scales.583

6 Conclusion584

This paper has presented the first results of an extended wind farm layout optimiza-585

tion framework making use of a more detailed LCOE evaluation function than existing586

layout optimization tools. This framework which makes use of a previously validated587

LCOE evaluation function has been applied to three different case studies using three588

different sets of placement constraints and two different wind farm sizes for each re-589

source case in order to highlight both the applicability of a PSO given the increased590

detail and the improvements that can be made relative to the reference studies. The591

PSO applied to these three benchmark case studies have presented layouts with im-592

proved LCOE compared to past studies using a genetic algorithm. Furthermore, the593

results shown here indicate that the PSO is of interest to this area of research as the594

results can be obtained at a lower computational cost compared to a genetic algorithm.595

By using multiple constraint sets it is also shown that by limiting the optimizer to596

create gridded layouts does not result in poor solutions, though the observed trends597

highlight the need for further tuning of the PSO in order to insure that the optimizer598

does not prematurely converge. Further work should explore both using multiple runs599

rather than single runs in order to avoid any seeding bias as well as using additional600

computational power thereby allowing larger swarms to be tested.601
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