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Abstract

Selecting between competing statistical models is a challenging problem especially when the com-
peting models are non-nested. An effective algorithm is developed in a Bayesian framework for
selecting between a parameter-driven autoregressive Poisson regression model and an observation-
driven integer valued autoregressive model when modeling time series count data. In order to achieve
this a particle MCMC algorithm for the autoregressive Poisson regression model is introduced. The
particle filter underpinning the particle MCMC algorithm plays a key role in estimating the marginal
likelihood of the autoregressive Poisson regression model via importance sampling and is also utilised
to estimate the DIC. The performance of the model selection algorithms are assessed via a simula-
tion study. Two real-life data sets, monthly US polio cases (1970-1983) and monthly benefit claims
from the logging industry to the British Columbia Workers Compensation Board (1985-1994) are
successfully analysed.
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1 Introduction

There are a plethora of integer valued time series models for modelling low count time series data.

There are two broad class of approaches for constructing integer valued time series models, observation-

driven (e.g. McKenzie (2003); Neal and Subba Rao (2007); Enciso-Mora et al. (2009a)) and parameter-

driven (e.g. Davis et al. (2003)) models, see Davis et al. (2015) for an overview. The INAR(p), the pth
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order integer autoregressive model is a prime example of an observation driven model. These models

are motivated by real-valued time series models, primarily ARMA(p, q) (autoregressive-moving average)

models and the desire to adapt such models to an integer-valued scenario. A time-series {Xt; t ∈ Z} is

said to follow an INAR(p) model if, for t ∈ Z,

Xt =

p∑
i=1

αi ◦Xt−i + Zt, (1.1)

where α = (α1, α2, . . . , αp) are the autoregressive parameters, ◦ denotes a thinning operator and {Zt}

are independent (typically identically distributed), integer-valued random variables. Note that if in (1.1)

◦ represented multiplication and the {Zt} were Gaussian, then we would recover a standard real-valued

AR(p) process. The thinning operator, a generalised Steutel and van Harn operator (Steutel and van

Harn (1979)) ensures αi ◦ Xt−i is an integer valued random variable. A binomial thinning operator is

the most common choice such that αi ◦ Xt−i ≡ Bin(Xt−i, αi). The most common choice of Zt is a

Poisson distribution with mean λ, which combined with the binomial thinning operator and the condi-

tion
∑p
i=1 αi < 1 leads to the stationary distribution of Xt being Poisson with mean λ/(1 −

∑p
i=1 αi).

Parameter-driven models are based on the observed counts {Xt} being driven by some underlying, unob-

served latent process, {Yt}, Durbin and Koopman (2000); Davis et al. (2003), for example a real-valued

ARMA(p, q) process, see Dunsmuir (2015). With Poisson distributed counts, a log-link function is used

to link the latent process, Yt, and the observed count process, Xt. This results in a generalised linear

model with

Xt|Yt ∼ Po (µ exp(Yt)) . (1.2)

The observation and parameter driven models described above can be extended in many ways, for ex-

ample the inclusion of time dependent covariates zt into the INAR(p) parameters (Enciso-Mora et al.

(2009b)) or into (1.2) to give µ = exp(zTt β), Davis et al. (2003). Other examples are the development

of INARMA(p, q) extensions of (1.1), see Neal and Subba Rao (2007) and INGARCH models Fokianos

(2011), where for t ≥ 1,

Xt|FX,λt−1 ∼ Po (λt) , (1.3)
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with λt = µ+ aλt−1 + bXt−1 and FX,λt−1 is the σ-field generated by {X0, X1, . . . , Xt, λ0}. The INGARCH

model seeks to mimic the behaviour of GARCH models with alternative forms of λt considered in Fokianos

(2011). It should be noted that for a = 0, the INGARCH model reduces to an INAR(1) model with

b ◦Xt−1 ∼ Po(bXt−1) and Zt ∼ Po(µ). For parameter driven models there are alternative latent process

formulations such as replacing exp(Yt) by θt where θt is a Markovian process satisfying

θt =
θt−1
γ

Beta(γαt−1, (1− γ)αt−1), (1.4)

see Aktekin et al. (2013) and Aktekin et al. (2017). Negative binomially distributed counts as opposed

to Poisson distributed counts can also be included in (1.2), see for example Windle et al. (2013).

Given the wide range of models for integer valued time series a key question is, what is the most appro-

priate model for a given data set? This leads onto a secondary question of the appropriate order p for

an INAR(p) model or an AR(p) autoregressive latent process. For INAR(p) models, efficient reversible

jump MCMC algorithms (Green (1995)) have been developed in Enciso-Mora et al. (2009a) and Enciso-

Mora et al. (2009b) for determining the order p of the model and the inclusion/exlusion of covariates.

Reversible jump MCMC could also be employed for determining the most appropriate order of an AR(p)

autoregressive latent process. However it is far more difficult to employ reversible jump MCMC for com-

paring between different classes of models due to the need to develop an efficient trans-dimensional moves

between different models, see Brooks et al. (2003). Therefore in this work we focus primarily on choosing

between different classes of integer valued time series models although we illustrate our approach for

determining the model order p.

In this paper we consider model selection in a Bayesian framework, via direct computation of the marginal

likelihood, also known as the model evidence, and alternatively using the DIC, deviance information

criterion, Spiegelhalter et al. (2002). We focus for illustration purposes on three models; the INAR(p)

model (1.1), the AR(p) Poisson regression model given by (1.2) with {Yt} being an AR(p) process, and

the INGARCH model (1.3). To estimate the marginal likelihood, we extend the two stage algorithm given

in Touloupou et al. (2017), which first estimates the posterior distribution using MCMC and then uses a

parametric approximation of the posterior distribution to estimate the marginal likelihood via importance
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sampling. This leads to the two key novel contributions of this paper. Firstly, we introduce a particle

MCMC algorithm (Andrieu et al. (2010)) for estimating the parameters of the AR(p) Poisson regression

model. This involves using a particle filter (Gordon et al. (1993)) to estimate the likelihood, π(x|θ),

where θ denotes the parameters of the model. The use of the particle filter to estimate π(x|θ) is then

exploited both in the effective estimation of the marginal likelihood using the algorithm of Touloupou

et al. (2017) and also in giving a mechanism for estimating the DIC without the need to resort to data

augmentation and the problems that this potentially entails, Celeux et al. (2006).

The remainder of this paper is structured as follows. In Section 2 we introduce the particle MCMC

algorithm for the AR(p) Poisson regression model. Given that Neal and Subba Rao (2007) provides

an effective data augmentation MCMC algorithm for INAR(p) models we utilise the algorithm provided

there in our analysis, whilst in Section 3 we give brief details of an MCMC algorithm for INGARCH model

which is particularly straightforward to implement as no data augmentation is required. In Section 4

we present the generic approach to model selection which is employed for all three integer valued time

series models under consideration. In Section 5, we conduct a simulation study which demonstrates the

ability of the approaches described in Section 4 for determining the true model. The simulation study

also provides insights into the AR(p) Poisson regression model and issues associated with identifying the

autoregressive parameters in the latent process. In Section 6 we apply the AR(p) Poisson regression,

INAR(p) and INGARCH models to two real-life data sets, monthly US polio cases (1970-1983) and

monthly benefit claims from the logging industry to the British Columbia Workers Compensation Board

(1985-1994). We show that an AR(1) Poisson regression model is preferred for the Polio data, and the

inclusion of covariates proposed by Zeger (1988) for the data lead to only a small increase in the marginal

likelihood. By contrast the INGARCH model is preferred for benefit claims data with significant evidence

for the inclusion of a summer effect. All the data sets analysed in Sections 5 and 6 along with the R

code used for the analysis are provided as supplementary material. Finally in Section 7 we make some

concluding observations.
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2 AR(p) Poisson regression model

In this Section we introduce an adaptive, particle MCMC algorithm for obtaining samples from the pos-

terior distribution of AR(p) Poisson regression models (Zeger (1988), Davis et al. (2003)). The AR(p)

Poisson regression model assumes that we observe a (Poisson) count process X1, X2, . . . , Xn which de-

pends upon a (typically unobserved) latent AR(p) process Y1, Y2, . . . , Yn. Specifically, we assume that

Xt|Yt ∼ Po(µt exp(Yt)) (2.1)

Yt =

p∑
i=1

aiYt−i + et, (2.2)

where µt = exp(zTt β) depends upon k explanatory variables zt = (1, z1t , . . . , z
k
t ) and unknown regression

coefficients β = (β0, β1, . . . , βk) and the {et}s are independent and identically distributed according to

N(0, τ2). The parameters of interest are θ = (β,a, τ), where a = (a1, a2, . . . , ap). In the absence of

explanatory variables (k = 0), we will set µt = exp(β0) = φ and replace β by φ.

Let x = (x1, x2, . . . , xn) denote a realisation of n observations from X = (X1, X2, . . . , Xn), then we

are interested in π(θ|x) = π(x|θ)π(θ)/π(x). Direct computation of π(x|θ) for an MCMC algorithm

is not possible as it involves integrating over the unobserved latent process y. A data augmentation

MCMC algorithm could be constructed to obtain samples from π(θ,y|x) by alternately updating θ given

y and x, and then updating y given θ and x. This raises the question of how to efficiently update y?

For state-space models block updating of y, via the forward filtering-backward sampling algorithm, was

found to be effective, Carter and Kohn (1994) and Frühwirth-Schnatter (1994). For Gaussian state-space

models this leads to a Gibbs sampling algorithm. A similar approach could be applied for the AR(p)

Poisson regression model but the strong dependence between θ and y can lead to poor mixing of the

sampler. Therefore instead we use a particle MCMC algorithm (Andrieu et al. (2010)) to obtain samples

from π(θ|x). The particle MCMC algorithm uses forward filtering of y to estimate π(x|θ) without the

backward sampling step to choose a representative latent process y. This speeds up the process by

removing the backward sampling step and removes any problems caused by dependence between θ and

y.
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We proceed by outlining the particle filter for estimating π(x|θ) before outlining how this is utilised

within the particle MCMC algorithm.

For M ≥ 1, a particle filter for estimating π(x|θ) with M particles works as follows. Let yIN =

(y−(p−1), y−(p−2), . . . , y0) and generate M copies of yIN , denoted s10, s
2
0, . . . , s

M
0 from π(yIN |θ). This

is particularly straightforward if p = 1 as y0|θ ∼ N(0, τ2(1 − a2)−1) but otherwise we can utilise the

innovation algorithm (Brockwell and Davis (1996), pages 172, 175) to sample yIN from the stationary

distribution of the AR(p) process. For j = 1, 2, . . . ,M , set wj0 = 1/M . Then for t = 1, 2, . . . , n, we

perform the following particle filter steps, for j = 1, 2, . . . ,M :

1. Sample K from {1, 2, . . . ,M} with P (K = k) = wkt−1/
∑M
l=1 w

l
t−1.

2. Sample yjt ∼ N(
∑p
i=1 ajs

k
t−1,p+1−i, 1/τ).

3. Set sjt = (skt−1,2, . . . , s
k
t−1,p, y

j
t ) and

wjt = π(xt|yjt ,β) =
exp(zTt β + yjt )

xt

xt!
exp(− exp(zTt β + yjt )). (2.3)

For each t = 1, 2, . . . , n, {skt−1} form a weighted sample of size M from π(y(t−p):(t−1)|x1:(t−1),θ) with

weight wkt−1 attached to particle skt−1. Thus the first step of the algorithm samples a realisation for

yj(t−p):(t−1) from π(y(t−p):(t−1)|x1:(t−1),θ). Since yt is independent of x1:t−1 given y(t−p):(t−1), the second

step samples yjt from π(yt|yj(t−p):(t−1),x1:(t−1),θ). For the final step of the algorithm we note that

π(y(t−p):t|x1:t,θ) =
π(xt|y(t−p):t,x1:t−1,θ)π(yt|y(t−p):(t−1),x1:t−1,θ)π(y(t−p):(t−1)|x1:t−1,θ)

π(xt|x1:t−1,θ)

= π(xt|yt,β)
π(yt|y(t−p):(t−1),θ)π(y(t−p):(t−1)|x1:t−1,θ)

π(xt|x1:t−1,θ)
. (2.4)

Therefore given that we have sampled yj(t−p):t from π(y(t−p):t|x1:t−1,θ) in steps 1 and 2, wt = π(xt|yjt ,β)

gives the relative weight for the observation to have come from π(y(t−p):t|x1:t,θ). Given that the weight

wjt does not depend upon yjt−p we can trivially integrate it out to obtain (yjt−(p−1):t, w
j
t ) to take forward

to the time point t + 1. For our purposes the key benefit of the particle filter algorithm is that we can

write

π(x|θ) =

n∏
t=1

π(xt|x1:(t−1),θ), (2.5)
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with a by-product of the algorithm being that Pt = M−1
∑M
k=1 w

k
t is an unbiased estimate of π(xt|x1:(t−1),θ)

(t = 1, 2, . . . , n). Hence we estimate π(x|θ) by
∏n
t=1 Pt. The observation that Pt is an unbiased estimate

of π(xt|x1:(t−1),θ) follows from steps 1 and 2 of the particle filter algorithm and

π(xt|x1:(t−1),θ) =

∫ {∫
π(xt|yt,β)π(yt|y(t−p):(t−1),θ) dyt

}
π(y(t−p):(t−1)|x1:t−1,θ) dy(t−p):(t−1).

(2.6)

The particle filter will over time experience particle degeneracy, see Carvalho et al. (2010), and this will

be exasperated by outlier observations. The main effect of the particle degeneracy will be to increase

the variance of the estimate of π(x|θ). This problem can be alleviated by choosing larger M , with

more particles making the particle filter more computationally intensive but reducing the variance of the

estimator. We observe that the variance of the estimator is inversely proportional to M . Given that our

focus is simply on using the particle filter to estimate π(x|θ) rather than to recover y, particle degeneracy

was not observed to present a problem throughout the analyses presented below.

The particle MCMC algorithm is constructed by embedding the particle filter within a random walk

Metropolis algorithm to update θ. We initialize with parameters θ and compute L, an estimate of the

likelihood, π(x|θ), using the particle filter. Then at each iteration we propose a new set of parameters

θ′ ∼ N(θ,Σ) with proposal variance Σ. Provided that θ′ satisfies |
∑p
i=1 a

′
i| < 1 and τ ′ > 0, we estimate

π(x|θ′) by L′, computed using the particle filter. The proposed move is then accepted with probability

min

{
1,
L′π(θ′)

Lπ(θ)

}
(2.7)

with (θ, L) set equal to (θ′, L′), if the proposed move is accepted, and (θ, L) remains unchanged otherwise.

The efficiency of the algorithm depends upon the choice of Σ and M . The larger M is, the smaller the

Monte Carlo error in estimating π(x|θ), but the longer each iteration of the MCMC takes. Thus for a

fixed computational cost there is the need to balance the choice of M and I, the number of iterations

of the MCMC algorithm. In this paper with n (the length of the data) between 100 and 200, M = 100

performs well in balancing small Monte Carlo error in the estimation of π(x|θ) with fast implementation

of the MCMC algorithm. The optimal choice of Σ is hdΣ0, where Σ0 is the covariance matrix of the

posterior distribution and hd is a scaling coefficient depending upon on the dimension of d. We initialise
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Σ = s2Id, where Id is the d-dimensional identity matrix and s is a small scalar. Then at regular intervals

(three equally spaced points in this paper) during the burn-in we re-estimate Σ0 and set Σ = hdΣ0. For

large d, the optimal choice is hd = 2.382/d if π(x|θ) is known (Roberts et al. (1997)). This changes

if π(x|θ) is replaced by an unbiased estimator, see Sherlock et al. (2014). However, provided that the

Monte Carlo error of the particle filter estimate of π(x|θ) is not large, hd = 2.382/d performs well and is

successfully implemented throughout this paper.

3 INGARCH model

In this Section we briefly discuss an MCMC algorithm for the INGARCH model. Given that for the

INGARCH,

Xt|FX,λt−1 ∼ Po (λt) , (3.1)

with λt = µ+ aλt−1 + bXt−1, for observations x = (x1, x2, . . . , xn) from {Xt}, the likelihood satisfies

π(x|µ, a, b, λ0, x0) =

n∏
t=1

π(xt|µ, a, b, λt−1, xt−1)

=
λxt
t

xt!
exp (−λt) . (3.2)

Consequently, no data augmentation is required for analysing this model using MCMC, and given priors

on the parameters θ = (µ, a, b, λ0) we can construct a random walk Metropolis algorithm to explore

π(θ|x). We choose independent gamma priors for µ and λ0 and a uniform prior on the simplex a, b > 0

and a+ b < 1 for (a, b). The priors on (a, b) are chosen to ensure that the INGARCH model is stationary,

see Fokianos (2011). For tuning the proposal variance Σ for the random walk Metropolis algorithm to

obtain sample from the posterior distribution, we take the same approach as in Section 2, of tuning Σ

automatically during the burn-in period.

4 Model selection

In this Section we consider model selection tools for choosing between competing integer valued time

series models. We highlight a range of model selection tools in the Bayesian paradigm.
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Reversible jump MCMC Green (1995) which extends MCMC to allow trans-dimensional moves enabling

the comparison of different models within a single MCMC algorithm. Reversible jump MCMC is par-

ticularly well suited for moving between nested models where effective trans-dimensional moves can be

identified and has successfully been applied to INARMA(p, q) models Enciso-Mora et al. (2009a) and

INAR(p) models with covariates Enciso-Mora et al. (2009b) to determine both model order and whether

or not to include covariates in the model. Reversible jump MCMC is more challenging to implement

when comparing non-nested models as it is much harder to identify effective trans-dimensional moves

between the competing models, see Brooks et al. (2003).

There are a number of methods for estimating the marginal likelihood, π(x), also known as the model

evidence using MCMC output. These include the harmonic mean estimator Newton and Raftery (1994),

Chib’s method Chib (1995); Chib and Jeliazkov (2001), bridge sampling Meng and Wong (1996), power

posteriors Friel and Pettitt (2008) and importance sampling Touloupou et al. (2017). Using a longitudinal

epidemic example, Touloupou et al. (2017) showed that bridge sampling and the importance sampling

based algorithm significantly outperformed the other methods in estimation of the marginal likelihood

for a given cost. In this paper we show that the importance sampling based approach of Touloupou et

al. (2017) is particularly well suited to the estimation of the marginal likelihood of time series models,

utilising the particle filter for the AR(p) Poisson regression model introduced in Section 2 and similar

particle filters for INAR(p) models for estimating the likelihood. For INAR(1) and INGARCH models

the likelihood can easily be computed exactly.

The marginal likelihood is given by

π(x) =

∫
π(x|θ)π(θ) dθ, (4.1)

and is thus sensitive to the choice of prior distribution. In Spiegelhalter et al. (2002) the deviance

information criterion DIC was introduced as a Bayesian information criteria for comparing models. The

DIC is given, see Celeux et al. (2006) (2), by

DIC = −4Eθ|x[log π(x|θ)] + 2 log π(x|θ̃), (4.2)

where θ̃ is an estimate of θ depending on x. The posterior mean θ̄ = E[θ|x] is often a natural choice for
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θ̃ especially when the posterior distribution is unimodal. Whilst the DIC has its critics, it has proved to

be a popular tool for comparing competing models and, provided that π(x|θ) can be calculated, the DIC

can be computed as a straightforward appendage to an MCMC algorithm. Moreover, the DIC is far less

sensitive to the choice of prior than the marginal likelihood. The direct estimation of π(x|θ) given by

the particle filter allows us to circumvent the DIC’s sensitivity to missing data, Celeux et al. (2006).

In the following we focus on the importance sampling based estimation of the marginal likelihood

Touloupou et al. (2017) and the DIC Spiegelhalter et al. (2002) for selecting between the competing

models.

The algorithm of Touloupou et al. (2017) is a two-stage algorithm, where in stage one an estimate of

the posterior distribution is obtained, typically using an MCMC sampler which will be the case in this

paper. The posterior distribution is then approximated by a tractable probability density q(θ). Samples

θ1,θ2, . . . ,θN from q(·) and for each i, we estimate π(x|θi) by π̂(x|θi) using a particle filter. Then

π̂(x) =
1

N

N∑
i=1

π̂(x|θi)
π(θi)

q(θi)
, (4.3)

is an unbiased estimate of π(x). For the INAR(1) model it is possible to compute π(x|θi) exactly but

for the AR(p) Poisson regression model, INAR(p) model (p > 1) and INGARCH model estimation of

π(x|θi) is required. In Touloupou et al. (2017), Gaussian approximations of the posterior distributions

were exploited through using multivariate Gaussian or t-distributions for q(·) along with the “defense

mixture” proposal based upon Hesterberg (1995), where

q(θ) = (1− p)φ(θ;µ,Σ) + pπ(θ), (4.4)

with µ and Σ denoting the posterior mean vector and variance matrix, respectively, estimated from the

MCMC output, φ(·;µ,Σ) denoting the multivariate Gaussian density with parameters µ and Σ and p is a

mixture proportion between the multivariate Gaussian and the prior. The “defense mixture” proposal is

simple to implement, robust with π(θ)/q(θ) bounded above by p−1 and captures the key characteristics

of the posterior distribution through the multivariate Gaussian approximation. Given the effectiveness

of the “defense mixture” proposal with p = 0.05 demonstrated in Sections 5 and 6 for all the time series

models we do not consider alternatives here.
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In the case that π(x|θ) can be computed, an unbiased estimate of the DIC can be obtained using MCMC

samples θ1,θ2, . . . ,θÑ from π(θ|x) by

D̂IC = − 4

Ñ

Ñ∑
i=1

log π(x|θi) + 2 log π
(
x
∣∣θ̄ ) (4.5)

with θ̄ = Ñ−1
∑Ñ
i=1 θi and the last term on the right hand side of (4.5) is the only additional computation

required to those computed as part of the MCMC algorithm. This becomes more complicated in situations

where π(x|θ) cannot be computed with Celeux et al. (2006) providing a number of candidates for DIC

using data augmentation. By using a particle filter or alternative method to estimate π(x|θ) directly, we

can estimate the DIC by

D̂IC = − 4

Ñ

Ñ∑
i=1

log π̂(x|θi) + 2 log ̂π
(
x
∣∣θ̄ ). (4.6)

This will lead to a biased estimator of the DIC as E[log π̂(x|θ)] 6= log π(x|θ). However provided that

π̂(x|θ) has a small variance, the bias will be small. Let εθ = π̂(x|θ)− π(x|θ), then E[εθ] = 0 and simple

algebraic manipulation yields

E[log π̂(x|θ)] ≈ log π(x|θ) +
1

2π(x|θ)
E[ε2θ], (4.7)

provided εθ is small relative to π(x|θ). Moreover, we cannot simply use { ̂π(x|θ1), ̂π(x|θ2), . . . , ̂π(x|θÑ )}

generated by the MCMC algorithm to estimate the DIC using (4.6) as the sample generated will be biased,

see Andrieu and Roberts (2009). Whilst this does not bias the estimation of the posterior distribution

using the MCMC algorithm, it would effect the estimation of the DIC. Therefore as with computation of

the marginal likelihood, we compute unbiased estimates of π(x|θk) (k = 1, 2, . . . , Ñ) using the particle

filter.

We have that the computation of the DIC is also a two stage process and has similar computational cost

to computing the marginal likelihood. Moreover, for the MCMC and the computation of the marginal

likelihood and DIC the key cost is computing the likelihood using the particle filter and one iteration of

the MCMC algorithms takes a similar length of time to perform as one of the computations in (4.3) and

(4.5). Therefore given that in this paper 11,000-110,000 iterations are used per MCMC algorithm and

throughout N = Ñ = 1000, the additional computation cost of the marginal likelihood and DIC is small.
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Figure 1: Left: Simulated data x from AR(3) Poisson regression model with a = (0.4, 0.25, 0.15), τ = 2
and φ = 1. Right: Acf plot of x.

5 Simulation study

In this Section we present a simulation study which investigates the effectiveness of the model selection

techniques on selecting the order p of an AR(p) Poisson regression model and of identifying the true

model for three data sets with one data set each simulated from an AR(1) Poisson regression model, an

INAR(1) model and an INGARCH model.

A time series of length 200 was generated from an AR(3) Poisson regression model with a = (0.4, 0.25, 0.15),

τ2 = 0.5 and φ = 1 (no covariate data). The data x along with an Acf (autocorrelation function) plot

of x are shown in Figure 1. The data are over-dispersed with a mean and variance of 1.74 and 5.82,

respectively. However, as noted in Davis et al. (2003) the correlation observed in the Poisson counts is

less and often considerably less than the correlation observed in the underlying autoregressive process.

We ran the particle MCMC algorithm for the data with p = 1, 2, 3 and 4. We choose N(0, 1) priors

truncated to (−1, 1) for the ai’s and Gamma(1, 1) priors for τ and φ. In all cases the particle MCMC

algorithm was run for 110,000 iterations. The final 50,000 iterations were retained to estimate the

posterior distribution. The first 60,000 iterations were split into three blocks of 20,000 iterations with the

posterior variance Σ estimated after each block and used within the random walk Metropolis algorithm
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as outlined in Section 2. The initial choice of Σ was 0.22Id, where Id is the d × d identity matrix. The

marginal likelihood and DIC were then estimated using 1,000 samples from the defense mixture proposal

distribution and posterior distribution (MCMC output), respectively, with M = 100 particles used. The

exception being that M = 1000 particles were used to estimate log π(x|θ̄), the latter term on the right

hand side of (4.6) in the computation of the DIC to reduce the variance. For computing the DIC,

every 50th observation from the posterior sample is used. The parameter estimates (posterior means and

standard deviations) and DIC values are recorded in Table 1.

From Table 1 we observe that the preferred order is p = 2 using the marginal likelihood and p = 3 using

the DIC. However, the log marginal likelihood and DIC for p = 2 and p = 3 are close and hence we

repeated the analysis 20 times to assess the robustness of the findings. In Figure 2, boxplots for the log

marginal likelihood and DIC are given over the 20 replications. These show considerably less variability

in the estimates of the log marginal likelihood than for the DIC with the standard error between 4 and 8

times smaller. Moreover, the marginal likelihood clearly identifies p = 2 as the preferred model, whereas

the DIC demonstrates uncertainty between p = 2 and p = 3. We note that the estimation of φ and τ

are fairly consistent across all orders of p with a similar value for
∑p
i=1 ai, the sum of the autoregressive

terms for all p. The posterior means of φ, τ and
∑p
i=1 ai are all close to the true values. We also observe

that the estimates (posterior means and standard deviations) of all autoregressive terms included in the

model are very similar with interestingly the AR(3) Poisson regression model having larger standard

deviations for the autoregressive parameters than the other models. Similar behaviour was observed for

other simulated data sets where the autoregressive parameters were decreasing with lag, in that, whilst

φ, τ and
∑p
i=1 ai are estimated well, the individual ai parameters are not estimated well with similar

values for all autoregressive parameters. This highlights potential identifiability issues associated with

the AR(p) Poisson regression model.

We now turn to the question of choosing between different classes of time series models. We simulated

three data sets of length n = 120, presented in Figure 3 and provided as supplementary material:

• Data Set 1 INAR(1) model with parameters α = 0.6 and λ = 1.2.

13



p φ a τ log π(x) DIC
1 Mean 1.145 0.801 0.597 -341.49 681.98

SD 0.299 0.071 0.098 0.120 0.961
2 Mean 1.107 (0.422,0.415) 0.653 -338.57 675.61

SD 0.345 (0.092,0.093) 0.096 0.134 1.026
3 Mean 1.066 (0.248,0.276,0.312) 0.572 -339.96 675.57

SD 0.378 (0.414,0.388,0.386) 0.132 0.342 1.215
4 Mean 1.175 (0.211,0.223,0.227,0.216) 0.668 -343.24 682.77

SD 0.505 (0.102,0.109,0.105,0.108)) 0.100 0.186 1.327

Table 1: Parameter estimates, (log) marginal likelihood and DIC for simulated data set from AR(3)
Poisson regression model fitting AR(p) Poisson regression model with p = 1, 2, 3, 4. Parameter estimates
are based on a single MCMC run whilst (log) marginal likelihood and DIC estimates are based on means
over 20 runs.
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Figure 2: Log marginal likelihood (left) and DIC (right) for p = 1, 2, 3, 4 for AR(p) Poisson regression
model fitted to x.
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Figure 3: Simulated data sets: INAR(1) (left), AR(1) Poisson regression (centre) and INGARCH (right)
models.

• Data Set 2 AR(1) Poisson regression model with parameters a = 0.6, σ = 1.0 and µ = 1.0.

• Data Set 3 INGARCH model with parameters µ = 1, a = 0.4, b = 0.4 and λ0 = 1.

The simulation parameters were chosen to generate typical counts in the range 0 to 10 as observed in

the real-life data sets with the length of the simulated data sets similar to the real-life data sets. We

observe that the INAR(1) and INGARCH models generates data with few 0s whereas the AR(1) Poisson

regression model tends to produce more 0s with a few spikes in the data where the count jumps up. A

similar pattern is observed in the simulated data above from the AR(3) Poisson regression model. For

the INAR(1) model we choose U(0, 1) and Exp(1) priors for α and λ, respectively. For the AR(1) Poisson

regression model we choose Exp(1) for the priors on φ and τ and a N(0, 1) prior truncated to (−1, 1) for

a. Finally for the INGARCH model, we choose Exp(1) priors for µ and λ0 and U(0, 1) priors for a and b.

For all three data sets we ran the MCMC algorithms for 10,000 iterations after the burn-in periods of

15,000 iterations (3 blocks of 5,000 iterations to tune the random walk Metropolis proposal variance) for

the particle MCMC algorithm for the AR(1) Poisson regression model and the INGARCH model MCMC

and 1,000 iterations for the data augmented MCMC algorithm for the INAR(1) model. The marginal

likelihood and DIC are again computed using 1,000 samples (for the DIC every 10th observation from the

posterior sample is used) with M = 100 for the particle filter for the AR(1) Poisson regression model.

Note that for the INAR(1) model and INGARCH model, the likelihood π(x|θ) can be computed exactly.
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Data Set INAR(1) AR(1) Pois Reg INGARCH
1 -214.39 (0.005) -239.77 (0.040) -218.07 (0.044)
2 -257.02 (0.008) -193.88 (0.125) -247.05 (0.035)
3 -293.01 (0.006) -287.73 (0.056) -280.37 (0.031)

Data Set INAR(1) AR(1) Pois Reg INGARCH
1 423.82 (0.129) 472.24 (0.564) 428.26 (1.834)
2 508.43 (0.185) 393.29 (1.604) 484.66 (3.565)
3 577.72 (0.181) 564.60 (0.638) 551.90 (3.600)

Table 2: Mean (standard error) of log marginal likelihood (top) and DIC (bottom) for the INAR(1),
AR(1) Poisson regression and INGARCH models applied to data sets 1, 2 and 3. The mean log marginal
likelihood and DIC of the selected model are in bold type.

We repeated the estimation procedure 20 times for each data set and algorithm to test the robustness of

the marginal likelihood and DIC estimates. The mean and standard errors of the log marginal likelihood

and DIC are given in Table 2. In all cases the marginal likelihood and DIC identify the true model with

the log marginal likelihood having considerably smaller standard errors than the DIC, up to 100 times

smaller.

6 Analysis of data sets

6.1 Introduction

We illustrate the methodology with two examples; the monthly total number of polio cases in the USA

from January 1970 to December 1983, Zeger (1988), Davis et al. (2000) and the monthly total number

of injured logging workers claiming benefit from January 1985 to December 1994, Zhu and Joe (2006),

Enciso-Mora et al. (2009b). The two data sets are chosen as they have previously been analysed by an

AR(1) Poisson regression model (Polio data) and INAR(p) model (cut injury data) with the possible

inclusion of covariates.

Throughout, unless otherwise stated, the following were used. For the AR(p) Poisson regression model

Exp(1) prior is used for φ (no covariates in the model) and τ , a trauncated N(0, 1) prior is used for

a and N(0, 12) priors for β (covariates included in the model). For the INAR(p) model, a uniform

prior on α on the simplex given by minαi > 0 and
∑p
i=1 αi < 1 and Exp(1) prior for λ. Priors for
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the inclusion of covariate information into the INAR(p) model are discussed as required in Section 6.3.

For the INGARCH model, Exp(1) priors for µ and λ0 and uniform priors for a and b over the simplex

a, b > 0 and a + b < 1. All MCMC algorithms were run to produce 50,000 iterations after burn-in with

30, 000 = (3 × 10, 000) iterations burn-in for the AR(p) Poisson regression and INGARCH models and

10, 000 iterations burn-in for the INAR(p) algorithms. The estimates of the marginal likelihood and DIC

were based on 1,000 samples from the defense mixture proposal distribution and every 50th observation

from the MCMC sample, respectively

6.2 Polio data

The polio data has disease case counts ranging from 0 to 14 with the majority being 0 or 1s and a mean

of 1.3333. The data are given in Figure 4 along with an Acf plot for the data. The Polio data have been

analysed with a linear trend and two sinusoidal functions corresponding to periods of 6 and 12 months,

respectively. Specifically, Zeger (1988) and Davis et al. (2000) take the covariates to be

zt =

(
1,

t′

1000
, cos

(
2πt′

12

)
, sin

(
2πt′

12

)
, cos

(
2πt′

6

)
, sin

(
2πt′

6

))
, (6.1)

where t′ = t − 73, a a linear trend with intercept January 1976. The Acf plot shows a significant lag-1

correlation in the data of 0.301 and also suggests the presence of 6 and 12 month dependence offering

some support for the choice of sinusoidal covariates. Therefore we will use the covariates given in (6.1)

when fitting models including covariates.

Our analysis of the data proceeds as follows. First we fit a selection of models without covariates,

namely, an AR(p) Poisson regression model and INAR(p) model with p = 1 given that only the lag-1

correlation appears to be significant and INGARCH model. The results are presented in Table 3 and

show overwhelming support in terms of both the log marginal likelihood and DIC for fitting an AR(1)

Poisson regression model. In addition, we also considered an AR(2) Poisson regression model but the

simpler AR(1) Poisson regression model was preferred. Observe that for the AR(2) Poisson regression

model we have similar posterior means and standard deviations for both autoregressive components as

observed in Section 5.
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Figure 4: Left: Monthly cases of Polio in the USA from January 1970 to December 1983. Right:
Autocorrelation function plot for the Polio data set.

Model θ Parameter estimates log π(x) DIC
AR(1) Poisson (φ, a, τ) Mean (0.947,0.601,0.683) -263.50 524.99

sd/se (0.164,0.125,0.110) 0.069 0.867
AR(2) Poisson (φ, a1, a2, τ) Mean (0.930,0.342,0.346,0.663) -264.62 528.23

sd/se (0.210,0.194,0.197,0.140) 0.127 0.789
INAR(1) (α, λ) Mean (0.187,1.100) -293.86 582.07

sd/se (0.046,0.095) 0.007 0.127
INGARCH (µ, a, b, λ0) Mean (0.619,0.206,0.348,0.946) -283.49 558.94

sd/se (0.152,0.119,0.068,0.920) 0.053 2.346

Table 3: Parameter estimates, (log) marginal likelihood and DIC for models without covariates fitted to
the Polio data set.
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Prior β a τ log π(x) DIC
N(0, 12) Mean (-0.097, -0.384, 0.154, -0.464, 0.403, -0.005 ) 0.634 0.585 -263.07 515.18

sd/se ( 0.173, 0.965, 0.155,0.165,0.128, 0.133) 0.141 0.116 0.087 0.523
N(0, 52) Mean (-0.058,-3.090, 0.166,-0.472, 0.411, -0.0004) 0.618 0.581 -270.81 515.16

sd/se (0.186, 2.719, 0.149, 0.168, 0.128, 0.133) 0.152 0.117 0.091 0.921

Table 4: Parameter estimates, (log) marginal likelihood and DIC for AR(1) Poisson regression model
with covariates.

Given that the AR(1) Poisson regression model is clearly the preferred model, we considered the inclusion

of covariates (6.1) into this model only. We considered both N(0, 12) and N(0, 52) priors on the regression

parameters β to test the sensitivity of the analysis to prior choice. The results are presented in Table 4.

We observe that except for the trend β2, the parameter estimates are very similar under both priors and

as we would expect the larger the variance on the prior of the β coefficient, the greater the penalisation

in the marginal likelihood calculations for the model with covariates. By comparison we note that the

DIC does not penalise the models to the same extent with the inclusion of covariates leading to a much

smaller DIC. This is as we would expect, since the DIC is largely unaffected by the prior distribution.

The sensitivity of the slope coefficient β2 to the choice of prior is due in large part to the rescaled time

t′ having a small range from (−0.072, 0.095). We observe that despite the small difference between the

marginal likelihoods for the AR(1) Poisson regression model with and without covariates (with N(0, 12)

prior on β), the standard errors of the estimates are small. As such the smallest estimate of the marginal

likelihood for the AR(1) Poisson regression model with covariates was larger than the largest estimate

of the marginal likelihood for the AR(1) Poisson regression model without covariates. Thus consistent

results were observed over all 20 replications of the analysis.

6.3 Cut injury data

The cut injury data has counts ranging from 1 to 21 with a mean of 6.1333. The data are given in Figure

5 along with an Acf plot for the data. The Acf plot shows that the first two or three lags are significant

along with an annual (12 month lag) effect. The annual effect is capturing the fact that there are more

claims in the summer (May-November) than in the winter (December-April) with all summer months
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Figure 5: Left: Monthly cases of cut injury benefit claims from January 1985 to December 1994. Right:
Autocorrelation function plot for the cut injury data set.

having a mean number of claims in excess of 7 and all winter months having having a mean number of

claims below 5 (see Zhu and Joe (2006), Table II). Therefore when considering covariates we include a

summer effect, st, which takes the value 1 in the summer and 0 in the winter.

Our analysis proceeds as in Section 6.2 by first considering fitting models without covariates. We fit

AR(p) Poisson regression and INAR(p) models with p = 1, 2, 3 as well as the INGARCH model to the

data. The results are presented in Table 5 and using the marginal likelihood show a preference for the

INGARCH model over an INAR(2) model, the preferred INAR(p) model. The results are less conclusive

than for the Polio data but show a clear preference for an INAR(p) model over an AR(p) regression

model. We extend the analysis to incorporate the summer effect covariate restricting attention to the

INGARCH model and INAR(p) models. For the INGARCH model we include the summer effect into

the λt term via

λt = µ+ aλt−1 + bXt−1 + cst. (6.2)

Since we expect c to be a positive effect we place an Exp(1) prior on c. For the INAR(p) model with the

summer effect covariate, we follow Enciso-Mora et al. (2009b) in taking

Xt =

p∑
i=1

αi,tXt−i + Zt, (6.3)
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Model Summer Mean log π(x) se log π(x) Mean DIC se DIC
AR(1) Poisson No -300.59 0.049 589.95 0.769
AR(2) Poisson No -305.46 0.082 599.50 0.590
AR(3) Poisson No -308.45 0.181 601.62 0.757
INAR(1) No -298.35 0.005 588.27 0.106
INAR(2) No -295.85 0.074 585.81 0.779
INAR(3) No -296.64 0.117 584.15 1.422
INGARCH No -290.11 0.049 570.74 1.663
INAR(1) Yes -285.97 0.045 564.60 0.522
INAR(2) Yes -285.61 0.070 561.67 0.921
INAR(3) Yes -288.20 0.080 560.10 0.769
INGARCH Yes -283.51 0.042 556.47 2.704

Table 5: (Log) marginal likelihood and DIC for models fitted to the cut injury data set.

where αi,t = exp(βi0 + βi1st)/{1 + exp(βi0 + βi1st)} and Zt ∼ Po(exp(γ0 + γ1st)). We place a N(0, 12)

prior on both the β and γ coefficients. We observe a clear improvement in the model fit by including a

summer effect term with the INGARCH model still preferred to an INAR(2) model. It should be noted

that the DIC penalises the order p in the INAR(p) model less than the prior in the marginal likelihood

but otherwise similar conclusions are drawn with both approaches giving the same ordering. Once again

we observe considerably smaller standard errors in the marginal likelihood calculations.

In Table 6, we summarise the parameter estimates for the three models with the highest marginal like-

lihoods, INAR(p) (p = 1, 2) and INGARCH models including the summer covariate. We again observed

(not reported) that for the AR(p) Poisson regression model we had consistent estimates of φ and τ irre-

spective of the order p and that the sum of the autoregressive parameters had similar mean values for all

orders.

7 Concluding remarks

In this paper we have shown how a particle filter algorithm can be successfully applied to estimate the

likelihood, π(x|θ), for an AR(p) Poisson regression model. The particle filter is then utilised both within

a particle MCMC algorithm and for computation of the marginal likelihood and the DIC for model

selection. This has enabled us to conduct model selection both within AR(p) Poisson regression models

21



Model Parameters Estimates
INAR(1) (β1

0 , β
1
1 , γ0, γ1) Mean (-0.342,-0.111,0.818,0.711)

sd (0.368,0.454,0.191,0.214)
INAR(2) (β1

0 , β
2
0 , β

1
1 , β

2
1 , γ0, γ1) Mean (-0.653,-1.771,-0.073,-0.453,0.588,0.857)

sd ( 0.386, 0.520, 0.507, 0.681, 0.256, 0.296)
INGARCH (µ, a, b, c, λ0) Mean (1.709,0.080, 0.490, 1.076,1.559)

sd (0.432, 0.063, 0.075, 1.060, 0.439)

Table 6: Parameter estimates for INAR(p) (p = 1, 2) and INGARCH models including the summer
covariate applied to the cut injury data set.

to select the appropriate order p of the model and between AR(p) Poisson regression, INAR(p) and

INGARCH models to choose the most appropriate model. In addition, the particle MCMC algorithm

uncovered identifiability issues associated with the AR(p) Poisson regression model. A key benefit of

the approaches for computing both the marginal likelihood and DIC is that it is computationally cheap

relative to running the MCMC algorithm to obtain samples from the posterior distribution as observed

at the end of Section 4 allowing model selection as a simple appendage to parameter estimation.
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