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Abstract 

The range of application of diverse graphene-based devices could be limited by insufficient surface 

reactivity, unsatisfied shaping, or null energy gap of graphene. Engineering the graphene structure by laser 

techniques can adjust transport properties and surface area of graphene, providing devices of different nature 

with a higher capacitance. Additionally, the created periodic potential and appearance of the active 

external/inner/edge surface centers determine the multifunctionality of the graphene surface and 

corresponding devices. Here, we report on the first implementation of nonlinear laser lithography (NLL) for 

multilayer graphene (MLG) structuring, which offers a low-cost, single-step, and high-speed 

nanofabrication process. The NLL relies on the employment of a high repetition rate femtosecond Yb fiber 

laser that provides generation of highly reproducible, robust, uniform and periodic nanostructures over a 

large surface area (1 cm2/15 sec). NLL allows one to obtain clearly pre-designed patterned graphene 

structures without fabrication tolerances, caused by contacting mask contamination, polymer residuals and 

direct laser exposure of the graphene layers. We represent regularly-patterned multilayer graphene (p-MLG) 

obtained by the CVD-method on NLL-structured Ni foil. We also demonstrate tuning of chemical 

(wettability) and electro-optical (transmittance and sheet resistance) properties of p-MLG due to laser power 

adjustment. In conclusion, we show the great promise of fabricated devices, namely supercapacitors, and 

Li-ion batteries by using NLL-assisted graphene patterning. Our approach demonstrates a new avenue to 

pattern graphene for multifunctional device engineering in optics, photonics, and bioelectronics. 

 

Introduction 

The patterning and microstructuring of graphene films can selectively enhance certain (opto)electronics 

capabilities of graphene-based devices and can offer not only new applications, but most importantly 

multifunctionality of the next generation graphene-based devices for energy storage, photonics, and 

bioelectronics1-4. Engineering graphene structure restricts the motion of electrons in specific directions, for 
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example by forming a junction-like structure that changes from zero-gap conductor to semiconductor. 

Hence, when graphene is patterned into narrow ribbons5 or ordered in accordance with substrate geometry6 

we expect the opening of an energy gap and, consequently, tuning of the transport properties of graphene-

based devices. Besides, patterning increases specific surface area of graphene resulted in a higher capacity 

of corresponding devices. Multifunctionality of graphene surface driven by imposing a super periodic 

potential7 and forming active centers (by defects, oxygen-based functional groups, self-assembly 

monolayers) controls graphene electronic properties consistently. Therefore, patterning of graphene could 

be a good approach for tuning the transport properties of graphene-based devices as well as the reactivity 

by increasing the surface area and artificial ordering of graphene. 

Several methods which require execution of different steps for patterning procedure have been 

demonstrated. For example mechanical cleavage8, scanning probe lithography9, photocatalytic etching10, 

plasma etching11, chemical etching11,12, assembling13, combination soft-lithography with oxygen plasma 

etching14,15 etc. Although these methods are suitable for large-scale fabrication of a variety of patterns, they 

involve multiple processes, and, therefore, are time-consuming and costly. Alternatively, so-called in-situ 

techniques enable to grow already patterned structure based on, for example, patterning of catalytic metal 

films before growth16, laser-induced chemical vapor deposition (CVD)17 etc. However, most of the grown 

materials require transfer on a desired substrate that will lead to a generation of surface and edge defects. In 

order to prevent disordered carbon-carbon bonds from film defects and to avoid the formation of 

contaminations (for example, graphene release with catalyst) the direct-writing18,19 or cutting of already 

grown graphene20,21 have been employed. Among all manufacturing techniques, only Nonlinear Laser 

Lithography (NLL)22 – a new laser-based technique – is a single-step, high-speed (1 cm2/15 sec), high-

productive (does not require specified environmental conditions) and, hence, the most efficient method to 

fabricate small/large-scale and mask-free micro/nanopatterns of various nature and symmetry. Since 1965 

the fabrication of regular nanostructures23 on various surfaces (metals24, semiconductors25, and glasses26) 

was realized by laser-induced periodic surface structuring – LIPSS27. The main challenge is still precise 

quality control26. We propose the NLL (improved LIPSS) as a novel solution, which offers highly accurate 

control of the formation of nanostructures induced by ultrashort pulses. NLL initiates and regulates the 

metal-oxide nanostructures with unprecedented uniformity due to positive nonlocal and negative local 

feedback mechanisms, respectively22. Most importantly, a significant advantage of the method is an ability 

to use non-planar/3D and rough substrate surfaces that are in demand in device engineering. In this study, 

we report a new approach for multilayer graphene patterning with NLL technique for developing high-

resolution graphene-based microstructured devices on various substrates. 



3 
 

We experimentally demonstrate the feasibility of predetermined patterning of multilayer graphene                

(p-MLG) on a nickel substrate by using a high-power femtosecond (FS) Yb fiber laser. Regularly patterned 

MLG is CVD grown on a surface of preliminarily structured nickel foil, followed by transfer onto the desired 

substrate for the characterization and device testing. The fabricated p-MLG films show high quality and 

morphology in comparison to the other existing fabrication methods, which is demonstrated by scanning 

electron microscopy (SEM), water contact angle measurement (WCA), surface free energy and adhesion 

calculation, Raman spectroscopy, and Fourier transform infrared spectroscopy (FTIR). We manifest electro-

optical measurements on p-MLG as well as show performance of graphene-based devices in supercapacitor 

and battery constructions. This research provides a new approach for the first patterning of multilayer 

graphene with NLL technique for developing graphene-based devices. 

 

Results and Discussion 

Line nanostructure formation on MLG is performed through its growth on a pre-patterned nickel foil with 

precisely determined nanostructures on its surface. A schematic of the nanostructuring setup and the 

principle of the laser beam scanning over the substrate are illustrated in figure 1(a) and figure 1(b), 

correspondingly. Detailed characterization of NLL technique is described in the Methods Summary part. 

 

 

 

Figure 1. (a) Schematic image of femtosecond laser system (Yb-doped fibre laser, 1030 nm), galvanometer-

scanner (GS) and motorized 3D-translation stage (3D-S); half-wave plate (HWP) and polarization beam 

splitter (PBS). (b) Scanning direction of the laser beam over the sample. The laser beam spot is represented 

as a pink circle. The polarization direction is indicated by an E vector. (c) Digital photo and (d) SEM image 

of structured Ni foil. 
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Following the nickel foil surface nanostructuring, the growth of MLG film is performed (figure 2). In order 

to achieve desirable patterns, NLL technique with coordinated adjustment of laser power (380–310 mW), 

scanning speed 1000 mm/s, and 10 µm spot size is provided. We used 50 µm thick structured nickel foil as 

a catalyst for MLG synthesis in the chemical vapor deposition system. The growth is carried out in the 

mixture of argon (Ar) and hydrogen (H2) atmosphere. The methane (CH4) is a source of carbon which arises 

from the gas decomposition under high temperature. Graphene patterns on the nickel foil are transferred 

onto the polyvinyl chloride (PVC, Sigma, Lamination foils) using lamination technique28, afterward, nickel 

is etched in 1M iron (III) chloride hexahydrate solution (98%, Sigma-Aldrich item #207926). 

 

 

 

Figure 2. Schematic image of «step-by-step» patterning of graphene. (a) Nickel foil which (b) preliminary-

structured with NLL technique applying various laser power (380–310 mW). (c) CVD-grown patterned 

MLG on the structured nickel foil. (d) Patterning of MLG transferred onto the glass. (e) SEM image of the 

p-MLG. 

 

Figure 3 demonstrates the morphology and surface characteristics of obtained graphene patterns on the PVC 

substrate. The depth of the grooves on the MLG surface produced via laser structuring of the Ni catalyst is 

gradually reduced by decreasing the laser power for every 10 mW (figure 3(a)). We observe disordering of 

graphene surface and formation of a larger number of grain boundaries and defects. It turns out that the 

alignment of graphene nanostructures directly depends on the deepness of patterns in Ni foil, and the 

resultant graphene pattern serves as a holding lattice. 

Tailoring of graphene surface wettability and understanding its response to different environmental 

conditions are the major steps toward development of efficient graphene-based appliances in biosensorics29. 
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To characterize the surface capabilities of graphene patterns we place a drop of deionized water (DI) on the 

surface of pristine and patterned MLG (figure 3(b)). Obviously, the location of water drops indicates 

distinctive wettability of grapheneʼs zones at less/equal 90 degrees of contact angle (figure 3(c)). Normally 

single-layer graphene is hydrophilic that means its water contact angle (WCA) is ≤ 90° (corresponds to a 

high wettability) and graphene surface is chemically active30. When we increase the number of graphene  

 

 

 

Figure 3. (a) Morphology and surface characteristics of patterned multilayer graphene. SEM images of 

CVD- synthesized p-MLG on structured Ni foil by an FS laser power treatment from 380–310 mW. The 

5µm scaled images obtained at 30V, 11000–14000 magnification. (b) Digit photograph of placing a drop 

of deionized water on the surface of pristine and patterned MLG. (c) Water contact angle (θ) on patterned 

MLG surface, (d) adhesion (Wpw), and surface free energy (γp) versus laser power structuring; an error is 

±5 units. 
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layers, the WCA is about ≥ 90° that corresponds to a low wettability31. It implies that the surface of MLG 

is hydrophobic and consequently more inert. But in this study, we demonstrate an opposite result – the surface 

of MLG is hydrophilic. Figure 3(c) shows a variation of the contact angle as a function of laser power. It is 

observed that WCA increases from a value of 75° to 89.52° after gradual laser treatment of MLG surface 

and this value remains nearly 90° (figure S1, table ST1). Although WCA data provide valuable information 

on the wettability of the p-MLG surface, another surface features – adhesion (Wpw) and surface free energy 

(γp) are the key parameters characterizing the surface and its interaction with other materials. Besides these 

parameters are closely related not only to wettability but also many other important properties at the 

surface/interface and friction32. Therefore, we calculated the adhesion and surface free energy of graphene 

patterns based on the contact angle data by the Young-Dupre equations33:  γw(1 + cos θ0) = Wpw  and                

γp = γw/4(1 + cos θ0)
2, where θ0 is the contact angle at equilibrium, γw is the water surface energy (73 mJ/m2), 

Wpw is the adhesion energy of the water to MLG surface, and γp is the surface free energy. 

Hence we determined that surface energy of the p-MLG is mutually opposite to the water contact angle 

values and by estimating data from Tab. 1S we found the highest and lowest surface energies of the                 

p-MLG samples – 28.92 mJ/m2 (WCA = 75°) and 18.56 mJ/m2 (89.52°), respectively. Moreover, the surface 

energy caused by adhesion forces which are the reason of formation of the surface bonds. Values of surface 

energy and adhesion are always linearly proportional (figure 3(d), figure S2, S3), thus higher surface energy 

corresponds to a higher adhesion and vice versa. Our results indicate lower surface free energy of all 

patterned graphene samples than the surface free energy of water that means water partially wets out 

graphene surface. The graphene roughness formed by laser power treatment from 380 to 310 mW 

determines the increasing of the water contact angle and the surface free energy reduction, in other words, 

a degradation of the wettability and adhesion. The surface of graphene produced with 310 mW laser power 

in comparison with the rest of samples is more hydrophobic. 

To characterize the graphene patterns grown on variously structured Ni foils, Raman spectroscopic analysis 

is performed using the laser excitation of 532 nm (figure 4(a)). For single Raman measurements, 20 

objective and 20 s integration time are used. Collected Raman spectra are typical profiles of a few/multilayer 

graphene. The main G- and 2D-peaks of graphene are clearly observed at around 1578 cm-1 (similar for all 

samples) and 2695–2706 cm-1, respectively. Fixed position of G-peaks (figure 4(b)) indicates stability in the 

planar vibrational mode of sp2–hybridized carbon arrangement and consequently determines resemblance 

of graphene nature for all obtained patterns. The negligible 2D-band shape differences and its blue shift with 

decreasing of laser power during surface structuring caused by decreasing of thickness/number of graphene 

layers34 (figure 4(b)). Analyses of the peak intensity ratio of the 2D- and G-bands is performed (table ST2, 

figure S4). The I2D/G ratio of these bands for all-graphene patterns is equal or less than «1» that indicates 
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few/multilayeredness. The appearance of low-intensity D-band in each case corresponds to the defect 

formation. Defectiveness stimulated by laser beam via its contact with Ni surface is manifested as a 

fingerprint of the already imperfect structure. Nevertheless, the relatively stable I2D/G ratio in terms of laser 

power and sharp symmetric 2D-bands are the confirmation for a high quality patterned few/multilayer 

graphene. 

 

 

 

Figure 4. Optical and electrical properties of the patterned multilayer graphene. (a) General view of Raman 

spectra (G-, D-, and 2D-peaks) of MLG with different patterns. (b) Variation of Raman frequency as a 

function of laser power. (c) Variation of the sheet resistance of p-MLG as a function of laser power. The 

insertion shows the schematic representation of the four-point measurement system. (d) Optical 

transmittance of the p-MLG on the PVC substrate v.s. laser power. 
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Since the groove’s depth of the p-MLG gradually decreases and the graphene surface roughness increases 

and becomes hydrophobic under laser treatment, the electrical transport property of the graphene can be 

tuned by the surface morphology of the created patterns. Thus, the sheet resistance (figure 4(c)) and optical 

transmittance (figure 4(d)) of p-MLG transferred on PVC substrate are measured and demonstrated that 

patterning reduces sheet resistance from 16 to 10 Ω/sq, despite the fact that obtained p-MLG already possess 

low sheet resistance (about 20 Ω/sq). Besides, we identified a directly proportional correlation between laser 

power and the sheet resistance of grown graphene patterns: each reduction in laser power of pattern 

processing reduces the sheet resistance of obtained p-MLG (e.g. 380 mW corresponds to 16 Ω/sq and 

310 mW corresponds to 10 Ω/sq). 

A variation of optical transmittance of the p-MLG on the PVC substrate at around 800 nm as a function of 

laser power is shown in figure 4(d) and figure S5, S6. We observed in about 1.5 times enhancement of 

optical transmittance with increase of laser power from 310 to 380 mW. It is known, when a number of 

layers increases, the thickness becomes more uniform and results in decreasing of optical transmittance35. 

Apparently sheet thickness of wrinkle configurations changes – decreasing32 with applied lower laser power. 

It means that thinner and severe wrinkle-like ordering of graphene with deeper structuring (380 mW-

obtained p-MLG) provides enhanced optical transmittance. 

Based on the detailed morphological and electro-optical investigation of p-MLG samples, structures 

fabricated under 380 mW are selected. Such a graphene pattern possesses distinct structure alignment acting 

as a holding lattice which prevents defects appearance. It provides low sheet resistance (16 Ω/sq) and higher 

optical transmittance in comparison with other graphene patterns. Additionally, the thickest 380 mW-

obtained p-MLG is more hydrophilic regarding another proposed variety of patterns. The hydrophilicity 

provides reactivity of graphene patterns and impacts its surface area which will significantly affect the 

performance of graphene-based devices. Therefore, we employed 380 mW-obtained p-MLG for 

supercapacitor and Li-ion battery designs and compared its performance with respect to the flat graphene-

based devices. 

We demonstrate the optical features of graphene-enabled supercapacitor behaving as an optical modulator. 

Figure 5(a) shows the schematic image of a supercapacitor preparation. The process begins from a hot 

lamination of MLG/p-MLG with PVC followed by etching of nickel in 1M FeCl3  H2O solution. After the 

transfer printing process, we attached two graphene coated PVC substrates using 250 μm thick adhesive 

frames and affixed two copper wires in order to apply a voltage to the graphene electrodes covered with 

silver-based conductive ink. Created supercapacitorʼs cell was filled with 50 μL of ionic liquid electrolyte 

[DEME][TFSI] (98.5%, diethyl methyl (2-methoxyethyl)ammonium bis(trifluoromethyl sulfonyl)imide, 

Sigma-Aldrich item # 727679). 
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The change of the optical transmittance of a supercapacitor with patterned (figure 5(b)) and flat MLG 

electrodes (figure 5(c)) is measured by using a Bruker Vertex 70V FTIR spectrometer in which the spectral 

range is from 500 to 1100 nm. The optical change is performed by applying a voltage in the range of 0 to 

5V for both devices; the transmission condition is normalized at 0V that confirms a stability of 

supercapacitors. At 0V, the transmittance is only 1-2% for both devices and slightly varies with the 

wavelength. Applying 5V for MLG-enabled device, the transmittance increases sharply to 19% at 750 nm, 

while applying 3.5V for p-MLG-enabled device, the transmittance increases at first to 16% at 950 nm. At 

5V supercapacitor based on p-MLG demonstrates the second stage of the transmittance increase – 32% at 

800 nm. 

 

 

 

Figure 5. MLG-enabled supercapacitor. (a) Schematic image of a supercapacitor preparation: 1st stage – 

lamination with a PVC at 120°C, 2d stage – etching of catalyst with 1M iron chloride solution and 3d stage 

– device fabrication. Normalized change in the transmission of a supercapacitor with (b) patterned and 

(c) flat multilayer graphene electrodes using an ionic liquid as an electrolyte for bias voltage in the range of 

0 to 5V. 
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Observed «2» times transmittance value increase of the device with p-MLG regarding the MLG-based 

device indicates the double stepwise electrostatic doping effect on graphene happened during intercalation 

of electrolyte: at first in the thinner part (grooves) and then in the thicker part (wrinkles). As a result, the 

transmittance enhancement occurs due to the light beam interaction with patterns where the p-MLG 

thickness is reduced – grooves part. At this point, the light scattering decreases and light transmission 

increases accordingly. Therefore, the light throughput of the p-MLG-enabled device will be higher with 

respect to MLG-enabled device. 

We also defined high modulation depth36 of about 9 dB and 6 dB for p-MLG- and MLG-based devices 

respectively. Since the variety of optical modulators applications is determined by high modulation depth 

(>7 dB, as high-rate interconnects and high-sensitivity sensing) and limited when modulation depth is less 

than <~4 dB (as passive mode-locking and short-distance data transmission)37, it is crucial to acquire the 

modulation depth increasing. Our results indicate broader applicability for p-MLG-enabled devices and its 

capability to operate in the visible range as far as we are able to increase modulation depth index in 1.5 times. 

Figure 6 represents graphene-enabled battery structured as a typical Li-ion battery. This device posturizes 

a one cell battery, where electrodes sandwiched symmetrically (figure 6(a), 6(b)). As an anode, we placed 

MLG/p-MLG on the polymer substrate, which acted as an electrochromic layer as well. In order to make 

good contact, we set copper frame attached to graphene-electrode. A lithium nickel manganese cobalt oxide 

(known in a battery manufacturing as an NMC, LITARION) operated as a charge counter electrode – 

cathode, providing a reversible electrochemical reaction. Finally, the electrodes are separated using 20 μm 

thick porous polyethylene membrane (PE, 42% porosity, Targray) soaked with 1 M lithium 

hexafluorophosphate solution in ethylene carbonate and ethyl methyl carbonate (Sigma-Aldrich item # 

746738). 

We measured the capacitance of MLG-enabled Li-ion battery at approximately 250 times demonstrating 

negligible decreasing of its value with each next charging/discharging cycle (figure 6(c)). Inherently all 

batteries gradually discharge eventually whether they are used or not. This capacity loss is typically caused 

by slow parasitic reactions occurring within the battery. The life-cycle is the key for a good performance of 

a battery, and thus increasing the life-cycle is one of the first parameters that should be focused on when 

aiming at providing efficiency of Li-ion batteries. Usually, heteroatom doping, chemical impregnating and 

hybridization of graphene electrodes are the best approaches to improve prolongation of Li-ion batteries. 

For example, graphene hybrid based battery can yield 400 discharge/charge cycles with 0.01% capacity-

loss per cycle38; battery, where graphene electrode is impregnating with sulfur, demonstrates ultra-long 

viability (2000 cycles and 0.028% capacity-decay per cycle)39. In our case, the proposed battery with pure 
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MLG demonstrated operation for 1000 cycles (figure 6(d)), that together with assessed capacity (0.01% 

capacity loss per cycle) already demonstrate promising result. 

 

 

 

Figure 6. Graphene-enabled Li-ion battery. (a) Schematic image of the symmetrically constructed 

secondary battery based on the flat and (b) patterned MLG. MLG/p-MLG acted as an electrochromic layer 

(anode). Lithium nickel manganese cobalt oxide operated as a charge counter electrode (cathode), providing 

a reversible electrochemical reaction in devices operating in the transmissive/reflective modes. 

(c) Galvanostatic discharge/charge curves of MLG-based battery after 1st, 2nd, 25th, 50th, 250th measurements 

and (d) its life-cycle as a function of time. (e) Voltage profiles for the constant current charge and discharge 

of Li-ion batteries incorporating MLG (green curve) and p-MLG (red curve) as a negative electrode. The 

optical change results from electric current of ≈ 3 mA at low dc potentials. 

 

On the other hand, the internal charge/discharge efficiency plays a key role as well, since slow discharging 

and fast charging designed in a way to reduce the impact of self-heating is required. In order to analyze 

batteries performance, the voltage dependence of charging/discharging processes applying constant current 

(3 mA) for both devices are provided (figure 6(e)). We observed productivity reducing of p-MLG-based 

battery in relation to MLG-based battery due to a decreasing of charge/discharge time by approximately «2» 
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times. This allows us to predetermine viability of p-MLG-enabled Li-ion battery during 500 cycles. The 

reduction in the number of life-cycle is due to the change in the graphene surface area after patterning 

procedure. In fact, the patterns are artificially ordered defects that make graphene structure more loosened 

and promote faster intercalation/deintercalation of Li-ions. Therefore, presented approach could lead to new 

bi-functional applications combining properties of energy storage and electrically switchable devices. 

 

Conclusions 

In conclusion, we demonstrate a novel NLL technique for the patterning of MLG via Ni catalyst substrate 

pre-structuring. NLL provides contamination-free pattern replications into varying geometrical shapes and 

sizes with a possibility to transfer p-MLG on the diverse substrates. The regulation of 

hydrophobic/hydrophilic properties of graphene by various laser power aligning are shown. Controlling of 

hydrophobic/hydrophilic properties defines multifunctionality of graphene-enabled devices due to the 

graphene surface (dis)ordering, and consequently, a formation of reactive oxygen-based functional groups. 

Distinct graphene structure alignment (which prevents defects appearance) assisting by strongest laser 

power (380 mW) contributes to certain p-MLG electro-optical changes (sheet resistance decreasing and 

optical transmittance enhancement). The p-MLG ability to operate as an electrically reconfigurable medium 

for supercapacitor and Li-ion battery designs are represented. The p-MLG-based supercapacitor testing 

results reveal two times transmittance value increase (in comparison with MLG-based supercapacitor) 

caused by light interaction with patterned structures where its thickness is reduced. The p-MLG-based 

battery indicates long-life viability (500 charging/discharging cycles) with 0.01% capacity-loss per cycle; 

negative feedback leading toward twice device productivity reducing occurred due to the graphene structure 

loosening after patterning and, consequently, (de)intercalation processes accelerating. We anticipate the 

NLL-based p-MLG to be a new approach to overcome limitations imposed by existing post-synthesis 

processes which will open wide applicability gateway for advanced graphene-based devices in energy 

storage, wearable electronics, and biosensorics. 

 

Methods Summary 

Nonlinear laser lithography 

The nanostructuring setup consists of femtosecond laser system, galvanometer-scanner, and motorized 3D-

translation stage (Figure 1). The femtosecond system is home-made Yb-doped fiber laser (1030 nm) which 

was reported before40. It involves dispersion managed type oscillator, fiber stretcher, several amplification 

stages and grating compressor. The stretcher fiber was distributed between amplifier stages to provide the 

optimal pulse peak power during amplification in order to balance between gain narrowing and self-phase 

modulation. The laser can produce up to 1 μJ of pulse energy at a repetition rate of 1 MHz which corresponds 
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to 1 W of average power. The minimal pulse duration which can be obtained from the system is 100 fs. 

Since the output light of the laser is linearly polarized, the half-wave plate placed between the laser and 

polarization beam splitter provides control of the laser power on the sample. The second half-wave plate 

allows control of polarization on a sample. The sample was placed on motorized 3D-stage in the focal plane 

of galvanometer-scanner’s f-theta lens. 

The laser beam was scanned over the nickel surface in the way, that during every line scan it was partially 

overlapped with already created structure. In this way we preserved the concept of Nonlinear Laser 

Lithography22, which allows coherent extension of the created structure over a large area surface, thus, 

improving the quality of the structure. The maximum scanning area for our model of galvanometer-scanner 

is 11 cm2. In order to extend the area, XY translation stage was used. With given pulse energy and 

repetition rate, the processing speed in our work was as fast as 15 s for 11 cm2 area. It can be increased in 

the future by scaling repetition rate of the laser by keeping pulse energy constant i. e., simultaneously scaling 

average power. 

 

CVD growth of multilayer graphene 

Chemical vapor deposition system was used for growing of multilayer graphene. The growth process was 

carried out under ambient pressure in a 3" quartz tube furnace, using 50 μm thick Ni foil. Argon gas was 

flushed into quartz tube for at least 5 min in order to remove oxygen. Afterward, hydrogen was supplied 

while argon continued to run (ratio of Ar/H2 is about 100/100 sccm). Gas-filled CVD system was left for 

heating till temperature is raised to 1000°C. Once 1000°C temperature was reached a methane flow is 

established at 30 sccm together with the Ar/H2 flow at 100/100 sccm, followed by a waiting time of 5min. 

In the end, the CH4 flow is turned off and the system is cooled down to room temperature in ~ 1 hrs while 

keeping the Ar/H2 flow environment at 100/100 sccm. 

 

Transfer-printing of multilayer graphene 

The following steps are needed for the analysis of MLG/p-MLG surface and fabrication of graphene-enabled 

devices after the CVD growth on Ni foil. Firstly, one side of the graphene-covered Ni foil was protected by 

paper while other side was touched with PVC. Secondly, the patch of paper/graphene/Ni/graphene/PVC 

was sent through lamination machine with a temperature of about 120°C. The obtained PVC/graphene/Ni 

samples were then dipped in a 1M FeCl2 aqueous etching solution for a few hrs. After the nickel was etched, 

the PVC/graphene membranes were placed in deionized water for a few hrs of rinsing as well. Then the 

samples were blow dried with N2 gas and were ready to use. 

 

Characterization methods 

Water contact angle of MLG/p-MLG on PVC substrate was obtained using home build contact angle 

measurement setup. The setup consists of the following elements: white LED, XYZ translation stage with 

standard micrometers (Thorlabs), video camera (Thorlabs, DCC1645C – USB 2.0 CMOS Camera, 1280 x 

1024, Color Sensor) and usual medical syringe with 200 um diameter needle. We put DI water droplet of 

4 µL on the investigated graphene surface and took digital photos. We measured contact angles using 

program Screen Protractor which allows us to easily and quickly measure any angle on the screen to the 

nearest degree. The morphological analyses of investigated graphene samples were performed using 

Scanning Electron Microscopy (NOVA NANOSEM 600). To determine a graphitization fingerprint and 

compare defectiveness of MLG and p-MLG surfaces Jobin Yvon Horiba Raman Microscope System with 

20× microscope objectives and 20 s integration time were used. The excitation wavelength was 532 nm. 

The transmittance measurements in the wavelength range between 450–1100 nm were performed by using 

Bruker Vertex 70 V Fourier Transform Infrared Spectrometer integrated with Si photodiode. The sheet 

https://www.google.com.tr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiSkuukmY3UAhVDjCwKHUzeAMoQFggnMAA&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FFourier_transform_infrared_spectroscopy&usg=AFQjCNEkGKrQDSUqBI8YwA1tBD3C6DnsUQ&sig2=h-96vQDlYFO0XRUALMSiYQ
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resistance measurements were carried out at Four Probe Station Platforms with a support of Keithley-2600 

multimeter. MLG was attached on the patterned area to make ohmic contact with four electrodes. Then, 

sheet resistance was calculated using the standard formula (Rs = πR/ln 2 ≈ 4.53R). 

 

Deviceʼs performance characterization 

Graphene-Enabled Supercapacitors: Optical measurements were performed in the 450–1100 nm 

wavelength range by Bruker Vertex 70 V Fourier Transform Infrared Spectrometer equipped with Si 

photodiode. Transmittance, Tp(λ), spectra were recorded while graphene-based supercapacitors biased using 

Keithley 2400 Source measure unit. 

Graphene-Enabled Li-ion Battery: The voltage and time readings of charging/discharging processes were 

generated using the Keithley 2600 Source Meter instrument. The data were collected under a constant 

current at 3 mA and processed with a LabView software. 

 

Supplementary Information 

Surface characteristics of patterned MLG: water contact angle measurement, surface free energy and 

adhesion estimations (Fig. S1, S2 and S3, Tab. ST1). Raman characterization (Tab. ST2, Fig, S4). Optical 

characterization (Fig. S5 and S6). 
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