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Abstract—This paper proposes a stochastic model using the 

concept of Markov chains for the inter-state transitions of the 
millisecond order quasi-stable phase synchronized patterns or 
synchrostates, found in multi-channel Electroencephalogram 
(EEG) signals. First and second order transition probability 
matrices are estimated for Markov chain modelling from 100 
trials of 128-channel EEG signals during two different face 
perception tasks. Prediction accuracies with such finite Markov 
chain models for synchrostate transition are also compared, 
under a data-partitioning based cross-validation scheme.  
 

Index Terms—EEG, synchrostate, Markov chain, prediction 

I. INTRODUCTION 

HASE synchronization of multichannel EEG signals has 
been widely used as a potential measure of brain 

functional organization and connectivity [1]. Although EEG 
signals due to their high temporal resolution show highly 
stochastic temporal evolution, it has been found that the scalp 
potential topographies are not so random and follow finite sets 
of small number of quasi-stable patterns which are termed as 
microstates [2]. Recently, Jamal et al. [3] investigated the 
temporal evolution of the frequency band-specific phase 
difference topographies to find periods of phase locking in 
multichannel EEG signals. It has been found in [4] that the 
phase difference topographies do not change abruptly and 
microstate-like quasi-stable phase locked patterns are 
observed in a temporal resolution of the order of milliseconds. 
These small number of stable phase synchronized patterns are 
termed as synchrostates, which switches from one to the other 
within the time interval of a cognitive task. The existence of 
synchrostates during face perception tasks was first observed 
in the beta (β) band (13-30 Hz) with different ensembles of 
EEG signals [4]. For similar visual stimuli, the inter-state 
switching patterns only slightly change among different 
ensembles or trials [4], however it is different for different 
stimuli and also across different groups of people [3]. Hence, 
statistical modelling of the pseudo-random and abrupt 
temporal switching characteristics of synchrostates can be 
helpful in understanding the dynamic evolution of the stimulus 
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induced brain response particularly in different pathological 
population. Such a model could be effective in predicting the 
future behavior of the state transitions in a probabilistic way 
using a Bayesian like framework, once the initial state is 
known. Previously, the microstate transitions have also been 
shown to follow the Markovian property in [5]. In addition, 
the Markov Chain Monte Carlo (MCMC) approach has been 
applied to fit neural mass model with EEG signals [6] and for 
the reconstruction of cortical sources [7]. Studies have shown 
that in order to mathematically model microstate transitions a 
higher order or n-step Markov model may be needed due to 
the inherent long range temporal correlations in such 
sequences [8]. There has been also few attempts to simulate 
epileptic seizure spikes in EEG using the Markov model and 
Hidden Markov Model (HMM) [9, 10]. Automated evaluation 
of stages of sleep from EEG has been modelled using HMM in 
[11]. Recently, phase synchronization dynamics have been 
modelled using the HMM and Semi-Markov Model (SMM) in 
[12] which does not consider the presence of unique phase 
synchronized states, as done in the present work. The process 
of deriving synchrostates allows us to represent a multivariate 
stochastic process (EEG) as a collection of few univariate 
quasi-static subsystems (unique states) which randomly 
switches amongst themselves. The unique phase synchronized 
patterns or synchrostates can be considered as the discrete 
cognitive states underlying the information exchange and 
integration within the brain [3]. In contrast to the above 
mentioned literatures, we first make a probabilistic model of 
the EEG synchrostate switching sequences using the first and 
second order Markov chains in order to predict their 
occurrences and validate the predictions with multiple EEG 
trials during normal and scrambled face perception tasks. 

The present work is aimed to model the switching sequence 
of synchrostates as a stochastic process over multiple trials, 
considering that the switching time courses have the 
Markovian property and hence the source of these switching 
can be modeled as a finite Markov chain. We used 100 
independent trials of EEG signals during scrambled and 
normal face perception tasks. First order and second order 
transition probability matrix of Markov chain models were 
developed using 90% of the data (EEG trials) in order to 
predict the state transitions from the knowledge of the state at 
the first time step and the subsequent predictions were verified 
and compared using the remaining 10% data under a 10-fold 
cross validation scheme. Markovian property of first and 
second order inter-synchrostate transition essentially implies 
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that the value of each state at any time instant depends only on 
the state in the last one/two previous step(s) respectively. 

II. THEORETICAL BACKGROUND 

A. Synchrostate Sequences from Multichannel EEG  

To derive the synchrostates [3], multichannel EEG signals 
xi(t) where i is the electrode, undergo complex Morlet wavelet 
transform that produces the instantaneous phase of the signal 
φi(a,t), captured at each electrode as a function of scale a 
(frequency) and time t. Using the instantaneous phases a time 
evolving phase difference matrix Δφij(a,t)=|φi(a,t)-φj(a,t)| 
corresponding to a band of frequency (or wavelet scale) can be 
constructed. These matrices when clustered using the 
unsupervised k-means clustering algorithm yield synchrostates 
in which there is little variation in their phase difference 
topography [3, 4, 13]. The optimal number of clusters 
underlying a dataset is determined by an incremental k-means 
clustering algorithm. Typically, the number of synchrostates 
are found to be three to seven and their presence are shown 
during the execution of face perceptions tasks in adults, 
typical and autistic children [3, 4]. During the quasi-static 
period of the synchrostates, the phase topographies of the EEG 
signals have no significant variation and hence can be 
considered to be in synchrony. The synchrostates exhibit 
switching patterns among themselves and the temporal 
characteristics of such switching mostly depend on the 
particular cognitive task. This dynamic inter-synchrostate 
switching process is modelled here in a probabilistic fashion 
using finite Markov chains.  

B. Markov Chain Models for Inter-synchrostate Transitions 

The probabilistic evolution of many dynamical systems has 
been modeled by Markov chains [14]. The Markov chain can 
jump from one state or condition to another, provided the 
transition is probabilistic and not deterministic. Due to the 
probabilistic nature of the model it cannot predict the future 
states from the present with certainty, however it can assign 
probabilities to the possible states that can occur. Thus in a 
Markov process the future states are assessed by a vector of 
probabilities [15]. The evolution of these vectors essentially 
describes the underlying dynamical nature of a system. In a 
first order Markov chain, the state at any time instant depends 
only on the state immediately preceding it, and hence is 
defined as a single-dependence chain. However, in Markov 
chains with higher dependency relationships like second or 
higher order chains, the subsequent state depends on two or 
more preceding ones. 

 
Fig. 1. The state transition diagram for three synchrostates. 
 

In an nth order discrete Markov chain, the process can be in 
any one of the finite number (m) of possible states 
{S1,S2,…,Sm} at any time instant. As the chain progresses, the 
states may change from one to another. This process is 
determined by transition probabilities between discrete states 
in the observed system which is estimated using the maximum 
likelihood approach [16], where ij ij ij

j

p N N  , i=1,2,..,m, 

j=1,2,…,m. Here, Nij is the number of transitions from state i 
to j. Given an initial condition (state), if the process is in Si at 
time n, then at time (n+1) it will be at state Sj with probability 
pij. In this study, we only consider stationary Markov chains 
i.e. pij does not vary with time or space [15, 16]. The transition 
probabilities, pij of Markov chain are considered as the 
elements of the m m  non-negative stochastic matrix P, 
commonly known as the state transition matrix. The sum of 
the transition probabilities along each row of the transition 
matrix P equals one. If we look at the Markov process after 
two steps given an initial state Si, the transition is governed by 
applying the underlying transition matrix, P twice. In other 

words if (2)
ijp is the transition probability of reaching state Sj 

from initial state Si in two steps, then (2) 2

1

m

ij ik kj ij
k

p p p P


     . 

Therefore, the two-step transition matrix is given by P2, the 

three step transition matrix is given by 3P and n-step transition 
matrix is Pn, such that the ijth entry of Pn is the probability of 
the system reaching state i to state j in n steps. 

The basic limit theorem [14] states that for certain types of 
Markov chains there exists a unique limiting probability 
vector pT. In other words, in n-steps for any initial state i the 

transition matrix tends toward a limit m m matrix, P , known 
as the steady state transition matrix, each of whose rows 

equals pT i.e. lim n

n
P P


 , where each row of Pn converges to 

pT, as n→∞. This types of chains are called regular Markov 
chains. A Markov chain can be considered as a linear 
dynamical system with a positive system matrix [14]. We 
show a schematic representation of the transition amongst 
three synchrostates as an example case in Fig. 1 where Si 
represents state i and pij, i,j={1,2,3} indicates the probabilities 
of switching from state i to j which needs to be estimated from 
the observed synchrostate sequence dataset. Once the 
transition probability matrix is obtained, it is possible to 
predict the future steps of the synchrostate transition given an 
initial state using the first and second order Markov chain 
models [16, 17]. Although higher order (>2) Markov chain 
models may give better results for prediction they are prone to 
over-fit the training data. Hence we restricted our study to first 
and second order Markov chain models.   

III. SIMULATION AND RESULTS 

The synchrostates analysis was carried out on the SPM 
multimodal face-evoked dataset [18]. The dataset consisted of 
128-channel EEG signals acquired from an adult during the 
execution of face perception tasks when presented with 
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multiple normal and scrambled face stimuli. The 100 trials of 
EEG signals were epoched and pre-processed and then 
different ensembles of the data were segmented into 10 equal 
partitions, each of them containing 10 trials of the EEG. The 
phase response of each individual 10 segments of EEG for 
both scrambled and normal face stimulus, were clustered using 
incremental k-means clustering algorithm following the 
technique proposed in [3] to obtain the synchrostates. The 
clustering results of EEG in the β band have yielded optimal 
three synchrostates for both the face stimuli for all the ten 
segments. The clustering also generated associated inter-
synchrostate switching sequence patterns which may be 
described as probabilistic switching between the three discrete 
and unique synchrostates in a configuration of Fig. 1, over the 
task completion time of 400 time steps. The temporal 
switching patterns amongst these states during normal face 
stimuli were found to be similar across different ensemble of 
trials [4], however they differ between two stimuli (normal 
and scrambled face) and thus could be considered as a unique 
signature of the visual stimuli provided. This allows us to 
generate two probabilistic models of first and second order 
Markov chain to fit the state transition dynamics for each of 
the two stimuli. 

The state transition sequences for the whole 100 trials 
without data-partitioning have been shown in Fig. 2 for both 
the normal and scrambled face stimuli. The associated optimal 
three synchrostate topographies have also been depicted in 
Fig. 2 for the whole 100 trials of EEG taken together. It is 
evident from Fig. 2 that the state topographies are almost 
similar for both the stimuli but their transition sequences differ 
significantly. For example during normal face perception the 
sequence starts from state 3 whereas for scrambled face 
perception it starts from state 2. In addition, for the normal 
face perception state 2 occurs minimum times whereas for 
scrambled face perception state 1 occurs the least times, 
indicating the cognitive task-specific nature of the 
synchrostate switching patterns. The principle diagonal 
elements of the transition probability matrix pii, i=1,2,3 can 
now easily be estimated from the sequences shown in Fig. 2 
with prevalence of the same state and so as for the rest of the 
terms pij, i≠j, by counting the number of transitions. From the 
switching sequences obtained for each of the k=10 folds of the 
partitioned EEG trials, synchrostate switching patterns are 
derived next yielding a similar characteristics like in Fig. 2. 

 
Fig. 2.  Synchrostate topographies and state transitions for normal and 
scrambled face perception for 100 EEG trials. 

 

We now aim to model and simulate the switching sequences 
of synchrostates as a finite Markov process for each of the 
k=10 folds of synchrostate switching diagrams based on the 
characteristics of 90 EEG signals. Starting from the ten group 
(or fold) of EEG synchrostate observations, a cross-validation 
scheme has been adopted to generalize the model across 
different ensembles (or group of trials) and generate the 
probabilistic model which can give best use of limited data 
with less chance of introducing bias from the validation data-
set [19]. During our experiment, each of the single folds 
containing 10 EEG trials was held out as the validation dataset 
and then the rest 9 folds containing 90 EEG signals were used 
to train the probabilistic model. 

We use the limit theorem to consider the long term 
performance of our estimated model. Fig. 3 shows that the 
synchrostate transition is a regular Markov chain process 
when estimated on the whole 100 trials of the data. This has 
been verified by obtaining the state transition matrix P and 
then raising the power as Pn as n→∞. Fig. 3 shows that all the 
9 elements of the transition matrix obtained from the three 
synchrostate switching sequences converges to the steady state 
transition probability or eigen-vectors of the state transition 
matrix as the number of time steps are increased [14, 15]. The 
steady state probabilities of the three synchrostates are found 
to be pT

normal
 = {0.6763, 0.13, 0.1937} for normal face 

stimulus and pT
scrambled

 = {0.6301, 0.2504, 0.1195} for the 
scrambled face stimulus respectively, no matter at which state 
the sequence or chain has started. 

 
Fig. 3. Steady state transition probability for normal and scrambled face 
stimuli (continuous line (red) – scrambled, dashed line (blue) – normal face). 
 

For the validation of the Markov model, the synthetic 
generation of state sequences is simple and straightforward 
once the model is built from the 9-folds of the whole dataset. 
From the estimated Markov model representing a stochastic 
dynamical system, the outcome as the synchrostate switching 
sequences will vary in different realizations of the underlying 
random process, due to the probabilistic nature of the problem. 
Therefore, during the validation phase, the synthetic data from 
the same Markov chain model will be different considering 
multiple independent realizations of the same Markov chain 
given the initial synchrostate condition at the beginning of the 
cognitive task. Also, it is mathematically incorrect to match a 
real data with a single outcome of a trained Markov process. 
To circumvent this problem, within each fold of data and at 
each time step, by referring to the estimated transition matrix 
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and given initial state, the program makes 100 independent 
realizations for the prediction of which state the system moves 
to in subsequent time steps, using a discrete random sequence 
generator [20]. Based on the estimated or trained Markov 
model using the past n number of samples, the expected value 
of 100 independent predictions of the possible state at step 
(n+1) have been validated with the real observation of the 
held out state at time step (n+1). The mis-predictions are 
tracked over all the 100 independent realizations and across 
the 400 time steps for all the k=10 folds of data segments. The 
misprediction rate or error for each fold is then averaged to 
produce the average error rate of the model for a particular 
order (first or second) of Markov chain. For building the 
second order Markov chain model the (n+2)th sample has been 
predicted in a similar way given the synchrostate knowledge at 
time steps n and (n+1). The Markov chain model training and 
validation algorithm for the synchrostate transition is 
illustrated in the following steps: 

Step1: For each fold i, i={1,…,k}, calculate the transition 
probability matrix P by taking the average of all the P’s over 
the 90% of the all training sequences. 

Step2: Given the knowledge of the initial state from the test 
sequence generate the discrete events for the next time step for 
100 independent realizations. This produces random states 
from the discrete probability values of the state transition 
matrix, using Matlab function gendist [20]. 

Step3: Compare the 100 predicted states with the observed 
state in the test sequence. If mispredicted, increase the error 
counter. 

Step4: Increment iterations for the next time step and repeat 
steps 2 to 3. 

Step5: Compute the expected error across the 100 
independent realizations of the Markov model. 

Applying the above proposed algorithm yields Fig. 4 which 
shows that the error rates for each of the first and second order 
Markov models for normal and scrambled face stimuli. The 
median percentage errors for the first and second order 
Markov chains for normal and scrambled face are 8.49, 8.37, 
10.68 and 10.7 respectively. The small median value and 
inter-quartile ranges of the error rates for the two first order 
Markov chain models indicates that the model is quite 
successful in predicting the synchrostate transitions. In the 
present study, the normal face perception related Markov 
model performs better than the scrambled face one, as evident 
from the smaller interquartile ranges as well as the medians in 
Fig. 4. 

Also, given the state transition matrix Pn, it is possible to 
compute the probability of getting state j starting from state i 
in n time steps i.e. Si(n) = Si(0)Pn. This allows us to check the 
Markovian property of the data using the estimated model for 
predicting the state at nth time-step from the knowledge of the 
initial state. We ran simulations for n=400 subsequent time 
steps and plotted the prediction errors for 100 different 
realizations over all the 10-folds as shown in Fig. 5. It is 
evident that the long-term prediction from a given initial state 
becomes poorer as the error bounds diverges and becomes 
more prone to outliers as time evolves. 

 
Fig. 4. Average prediction errors using 1st and 2nd order Markov model. 
 

 
Fig. 5. Box-plot of the error rates over all the 10-folds across the n time steps. 

IV. CONCLUSION 

In this study, a probabilistic model is developed in order to 
synthetically generate the EEG synchrostate switching 
sequences as first and second order Markov process and then 
to validate the predictions using a 10-fold cross validation 
scheme. The Markov model provides interesting information 
about the temporal evolution process of the synchrostates 
characterizing the underlying probabilistic brain dynamics. 
Our probabilistic model successfully predicts the inter-
synchrostate switching patterns with the best average accuracy 
of 91.63% (for normal face perception) and 89.32% (for 
scrambled face perception). The proposed modeling approach 
may shed new light in understanding the stochastic dynamical 
basis of cognition in humans and prediction of the semi-
deterministic switching behavior within the discrete set of 
phase-synchronized patterns or synchrostates. 
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