
A Case Study for a New Invasive Extension of Intel’s Threading
Building Blocks ∗

Martin Schreiber
Department of Computer Science / Mathematics,

University of Exeter
EX4 4QF Exeter, Great Britain
M.Schreiber@exeter.ac.uk

Tobias Weinzierl†
Department of Computer Science, Durham University

DH1 3LE Durham, Great Britain
tobias.weinzierl@durham.ac.uk

ABSTRACT
We study codes deploying multiple MPI ranks to one node where
each rank is parallelised with TBB. A static assignment of cores to
ranks here is disadvantageous if the load is not perfectly balanced,
the runtime is subject to fluctuations or one MPI rank runs through
phases with low concurrency. We propose an extension to TBB
where developers manually annotate which code parts could ex-
ploit further cores. The cores are then dynamically associated with
ranks. Our approach is decentralised, lightweight and minimally
invasive w.r.t. code modifications. Some brief performance studies
suggest that a flexible, permanently changing assignment of cores
to compute ranks can outperform a static distribution, while greed-
ily haggling over cores throughout a simulation might perform
even better.
ACM Reference Format:
Martin Schreiber and Tobias Weinzierl. 2018. A Case Study for a New
Invasive Extension of Intel’s Threading Building Blocks . In Proceedings of
HiPEAC 2018—3rd COSH Workshop on Co-Scheduling of HPC Applications
(HIPEAC’97). ACM, New York, NY, USA, 6 pages. https://doi.org/arXiv:xxxx

1 INTRODUCTION
With clock rates in supercomputers plateauing, future generations
of high-end computers will obtain their unprecedented capabilities
from an increase of the number of cores that are integrated into
every single node. Their nodes are small systems on chips. Though
some roadmaps and funding calls demand for radical re-writes of
our simulation software such that the codes exhibit omnipresent
concurrency, we do believe that many supercomputer users will
“simply” decompose machines with many cores per node logically
into machines with many nodes and fewer cores. They will de-
ploy multiple MPI ranks per node and assign each rank a subset
of the available cores per node, as they want to continue to use
∗This work received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 671698 (ExaHyPE). It made use of
the facilities of the Hamilton HPC Service of Durham University.
†Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
HIPEAC’97, January 2018, Manchester, UK
© 2018 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/arXiv:xxxx

their multi-decade legacy codes which cannot be rewritten from
scratch. At the same time, supercomputing codes will retain code
fragments with nested fork-join (NFJ) patterns as well as MPI syn-
chronisation points. They will continue to run through phases with
limited concurrency. Without novel node usage paradigms, many
scientists will thus struggle to exploit the full potential of new su-
percomputers with their existing codes. A novel paradigm however
has to come along with marginal code modifications. Otherwise, it
will struggle to become accepted. We propose such a paradigm for
Intel’s Threading Building Blocks (TBB).

Classic load balancing uses cost models and runtime measure-
ments to determine homogeneous workload distributions. It min-
imises runtime differences between ranks. This mitigates but does
not eliminate inefficient node usage patterns which arise inevitably
from thread-based NFJ and MPI synchronisation, i.e. once we as-
sign each rank a fixed (and usually the same) number of cores to
be exploited via multithreading. If sequential or low-concurrency
phases per rank remain, even load-balanced codes continue to run
into phases where few cores of a node are utilised. Temporal ill-
balancing is amplified by algorithmic fragments with unpredictable
workload (localised Newton-solves, e.g.), IO scattered among the
nodes, or performance fluctuations caused by vector instructions,
e.g. We focus on the classic time stepping from the ExaHyPE code
[3] in this manuscript. ExaHyPE uses adaptive mesh refinement
(AMR) with multipe MPI ranks, each parallelised with TBB, per
compute node. Here, cores inevitably run into waits for other ranks
per time step, while some internal program parts fork threads and
join them again: Large fragments of each time step exhibit an enor-
mous concurrency while the remainder scales only up to few cores.
No matter how sophisticated the load balancing, a fixed association
of cores to ranks is inappropriate at certain program phases.

The present paper follows a paradigm shift. Instead of assigning
work to fixed rank-core assemblies, we make cores dynamically
join the ranks that most need additional compute power. The core-
rank association follows the workload, i.e. data distribution, and the
core per rank ratio changes over time. From a programming model
point of view, such a paradigm makes ranks invade cores when
compute resources are needed and they retreat from these cores
afterwards to free resources for other ranks. It falls into the class of
invasive programming [9]. While we focus solely on one MPI code,
all techniques also work if different applications run concurrently.

Our approach is minimalist: We disable features such as masking
and make each rank running on one node occupy all hardware
threads. If hyperthreading is disabled, physical threads correspond
to cores. We thus use the terms as synonyms. For R ranks per node

https://doi.org/arXiv:xxxx
https://doi.org/arXiv:xxxx

HIPEAC’97, January 2018, Manchester, UK M. Schreiber and T.Weinzierl

with C cores, each core is overbooked as we launch in total R ·C
(logical) threads. All the ranks on one node agree through a shared
memory region, a scratchpad, which cores may be used by which
rank for their work. This establishes a lightweight communica-
tion channel between ranks. Once a rank has obtained c cores for
work, it spawns C − c lock tasks. Lock tasks make their designated
threads sleep. This effectively releases the core for other ranks to
perform their work. Invasion of cores in this model corresponds to
a termination of the corresponding lock tasks.

Invasive programming and invasive code ingredients have been
proposed before (see e.g. [2, 6, 8]). The present integration of a
straightforward, lightweight, scratchpad-based, decentralised, and
easy to use invasive extension of TBB into existing C++ codes
is, to the best of our knowledge, however new. We believe that
the proposed approach can help scientists to exploit manycore ar-
chitectures more efficiently. For the very first time, standard load
balancing is given a powerful and lightweight assistant: Our pro-
gramming concept allows for an easy-to-use and fine granular
adaption of computing resources throughout all phases. Communi-
cation overheads of a centralised resource manager are eliminated
by the utilisation of a inter-program shared scratchpad.

The remainder is organised as follows: We start from a descrip-
tion of our minimalist application programming interface (Sec. 2)
before we highlight the technical realisation. Both ingredients allow
us to compare the proposed solution to existing approaches (Sec. 4).
We quickly sketch the integration of our new techniques into an
existing solver (Sec. 5) hereafter before some preliminary perfor-
mance studies uncover the techniques’ potential. A brief wrap up
and outlook in Sec. 7 close the discussion.

2 APPLICATION PROGRAMMING
INTERFACE

Our application programming interface (API) picks up idioms of
TBB. The proposed API itself is implemented on top of TBB as an
additional layer. An existing TBB parallelisation acts as starting
point. We require the user to instantiate a class SHMInvade when-
ever additional cores would be of use, i.e. a user has to insert further
code statements.

The construction of SHMInvade checks the scratchpad content
for additional cores to “help out” on the computation. Here, the
number of additionally requested cores is used as an upper bound
for the new cores to be invaded. These additional cores are released
automatically by the destructor of the SHMInvade object. Alter-
natively, users may manually free the cores before. The concept
mirrors the realisation of TBB’s scoped_lock.

foo(); // ran on default number of cores
/// try to get up to three additional cores
SHMInvade invade(3);
tbb::parallel_for . . .{
if (i==0) {
// try to book up to two more cores
SHMInvade invade(2);
bar();

} // release two more cores
. . .

}

Our approach
(1) neither requires the user to alter the original TBB code,
(2) nor does it require the user to keep track of how many cores

actually have been grabbed (invaded)—this information is
stored internally within the SHMInvade object,

(3) nor does it put any constraints on the invasion cardinality.
For expensive interior operations (bar() in the example above), it
might be advantageous to book cores on short note and then to
release them immediately, as other ranks running in SPMD mode
might benefit from released compute resources. Overall, it however
also is possible to work with very few SHMInvade objects held
on an outer loop level: our demonstrator code for example can
invade cores prior to the time stepping loop, and it releases those
cores once this loop has terminated and the rank enters an MPI
communication phase. The invasive infrastructure supports both
granularity paradigms and any hybrid combination of them.

Our invasive realisation offers a robust, reliable resource man-
agement: Resources are physically allocated and freed by individ-
ual applications through instances of SHMInvade. As the owner-
ship of compute data is encapsulated within the object, we can
ensure that no core-to-rank assignment is corrupted. We also foster
that programmers release resources on time and no instance be-
haves greedily. While our invasive realisation is minimally invasive
w.r.t. programming—code is solely augmented—our work realises
two design criteria which require developers to revise and rethink
their solutions:

• Algorithm-aware programming: The application has to be
aware where its algorithms run into arithmetically challeng-
ing phases. Such an awareness drives the sophisticated inser-
tion of SHMInvade instances as it is not for free to instantiate
this object.

• Resource-aware programming: Each application is responsi-
ble to take care of the resource demands of the other ranks
running on the same node. A sophisticated application opti-
mises the overall resource utilisation locally per rank under
consideration of the performance and resource requirements
of other ranks.

3 REALISATION
Once a rank starts up on a node, it issues TBB threads on all of the
node’s cores. In a second step, it establishes access to a scratchpad,
a common memory region used by all threads. From hereon, the
SHMInvade objects take over control as they argue through the
scratchpad whether additional cores can be invaded, or they notify
the other ranks through the scratchpad if cores become available.

3.1 Lock tasks and work stealing
We invert the actual invasion procedure: Ranks do not actively
invade cores, but they actively retreat from cores. We assume that
TBB’s workstealing keeps all C threads busy by default. If a rank
has to retreat from a core—it retreats from all cores besides its
“master” one at startup—it spawns a lock task and marks, protected
by a system mutex, the thread to be freed. Lock tasks are scheduled
through TBB’s enqueue command and thus are starvation resistant.
If TBB’s work stealing issues a lock task on a misfitting hardware
thread, this lock tasks reschedules itself and yields immediately.

An Invasive Extension of TBB HIPEAC’97, January 2018, Manchester, UK

If a lock task is ran on its corresponding thread and the thread is
marked to be freed, the tasks sends the executing thread to sleep.
If a lock task is ran on its corresponding thread and the thread is
to be used, the lock task terminates. Waking up threads is thus
accomplished by unsetting the marker for a particular thread. This
eventually terminates a lock task. Oversubscription of cores on
purpose is not supported yet by our approach.

3.2 Scratchpad
We use a POSIX shared memory object as scratchpad for the ranks.
Each process allocates a shared memory mapped region using
shm_open(...), ftruncate(...) and mmap(...). Such shared
memory objects behave as in-memory shared files between the
MPI ranks. Using ftruncate to resize the memory object assures
that the object is initialised with 0-values in case that it wasn’t
initialised before. An additional field is_initialized indicates
that the data in the shared memory region was not initialised yet
and allows the first rank creating the object to set up all data ap-
propriately.

Besides a spin_lock used to lock the content of the shared
memory block, the scratchpad holds some global properties (such
as the number of known cores administered through it) plus a table
of all cores on this machine and a table of all ranks (see Table 1).

At startup, each rank acquires a unique index within the shared
memory region. The indices range from 0 to R − 1.

(1) num_active_threads = 0
(2) lock()
(3) reg_process_pids[counter_reg_processes] = PID
(4) reg_process_cores[counter_reg_processes] = 0
(5) user_data_per_process[counter_reg_processes] = {0,

..., 0}
(6) counter_reg_processes++
(7) unlock()

Each rank with process ID pid corresponds to one entry within
reg_process_cores. To invade a core, we lock the shared memory
region, and we determine how many cores are globally available
(num_free_cores). Once determining the number of cores to in-
vade, the fields num_free_cores and reg_process_cores are up-
dated. This is accomplished within the locking phase to avoid race
conditions. After this, the access to the shared memory region is
unlocked. All other TBB-related actions (see previous section) are
executed after unlock the shared memory region. Retreating from
a core works in a similar way.

Overall, the scratchpad avoids a centralised resource manager
[2, 6, 8]. No master process exists and the applications have to
bargain amongst themselves for the best resource allocation. This
removes the overheads of communicating the master process as
well as starting and scheduling the runtime of the master process.

We close this section with a brief discussion on the scalability lim-
its of locking the shared-memory region. The scalability limitations
for this depends on the overheads of the mutual exclusive access,
the time to read/update the shared memory region and the number
of processes which perform this in parallel. We used spinlocks for
their low overheads compared to system mutices. This keeps the se-
rial overheads low. We assure that the invasive operations are only
used to invade/retreat cores and that user-space operations are only

allowed to block-wise load and write data during a spinlock phase.
Finally, we focus on commodity multicore chips, only. Additional
hardware-related scalability limitations such as false-sharing and
NUMA effect might arise but were not further investigated in the
present work but might lead to unexpected behaviour.

3.3 User data exchange
Our approach technically relies on a greedy invasion of compute
cores. We outsource a responsible and sustainable usage of cores
to the users. As such, it is convenient to offer an additional table in
the shared memory regions, which developers can use to exchange
properties between the different ranks on one compute node. The
unique index per node from {0, . . . , r − 1} identifies which rank
is allowed to write into which row of such a table, while all ranks
may read all entries.

4 RELATEDWORK AND CONTEXT
Tailoring and optimising the assignment of computing resources
to processes is not new, dynamic, i.e. online approaches are rare
though. We notably refer to work published under the umbrella of
[9] for related work. Reacting to changing resource requirements,
i.e. to invade resources and to retreat from resources, can for exam-
ple be realised through a centralised [2, 6] or distributed [7] resource
manager. Our approach abandons the idea of any resource manager
and instead proposed a marketplace where ranks can grab cores
in a first-come first-served manner. It allows us to require users
to augment their codes but not changing them while it puts the
responsibility for sustainable resource usage on them. In practice,
we consider it to be a convenient strategy in HPC, as we (i) assume
that multiple ranks running on the same node are not perfectly
balanced anyway, (ii) have to synchronise in regular time intervals,
(iii) have NFJ source code fragments and (iv) run into close-to-serial
communication phases regularly. If one rank thus invades, at one
point, an inappropriate number of cores, it finishes earlier and frees
these resources earlier. The total balancing smooths out over given
time intervals such as time steps.

The two omnipresent HPC standards MPI and OpenMP lack
support for such lightweight dynamic resource assignment. For
recent MPI, adding new computing resources is part of the stan-
dard. Despite recent investigation of fully malleable MPI [4], it
remains unclear how “cheap” such MPI splits are, what implica-
tions for the data transfer (message passing) arise, and whether
current MPI implementations and supercomputer job schedulers
support an aggressive growth of MPI processes. In OpenMP, a dy-
namic resource management was investigated in [2, 6, 8], e.g. All
approaches however only support resource reallocation in rather
outer loops. It is not possible to invade additional cores while other
logical threads of the application run concurrently as the scheduler
has to be restarted. Finally, we note that projects alike [3] investi-
gate into work stealing in-between MPI ranks. If such a technique
is applied in-between ranks deployed to the same node, it smoothes
out load imbalances per node, too. Yet, all paradigms start from the
motivation to balance the work given a certain hardware configu-
ration. Our approach tailors the hardware configuration towards
the actual runtime behaviour.

HIPEAC’97, January 2018, Manchester, UK M. Schreiber and T.Weinzierl

Type Identifier Description
mutex spin_mutex Spin mutex to avoid race conditions
bool is_initialized True if this data structure is already initialized
int max_available_cores Maximum number of possible threads (≤ C (max cores)
int num_free_cores Current number of free cores (≤ C (max cores)
int (atomic) counter_reg_processes Number of registered processes using SHMInvade
pid_t reg_process_pids[] PIDs of registered programs
int reg_process_cores[] Number of used cores for each program
void user_data_per_process[][] User-specific data for each process

Table 1: Global data structures with data to be filled in. All variables are declared as volatile, hence are not cached in registers
but always read from memory.

Figure 1: Two screenshots of the two-dimensional Euler
equations applied to an initial energy distribution derived
from the ExaHyPE logo.

5 INTEGRATION
For our proof-of-concept, we investigate two different approaches.
In the first approach, we make each rank start per time step from
only one core and rely on an on-the-fly invasion to balance out an
appropriate distribution of cores to ranks. In the second approach,
we make all ranks running on one node to minimise their total
runtime in a joint afford. The ExaHyPE engine [3] acts as testbed.
We simulate the two-dimensional Euler equations with the ADER-
DG explicit time stepping scheme [5] on dynamically adaptive grids
(Figure 1). The software base is interesting for multiple reasons:

• The code runs on a dynamically adaptive grid where the grid
changes in each and every time step.

• TheADER-DG scheme is a predictor-corrector schemewhere
a computationally expensive predictor phase is followed by
a reasonably cheap non-linear Riemann solve for the discon-
tinuities plus a correction step.

• The predictor solves the underlying equations with Picard
iterations per cell: the cost per cell thus depends heavily on

the iteration steps for the nonlinear problem. It varies in
each and every time step.

ExaHyPE is built upon the Peano sources which is an open-source
spacetree code. We add all SHMInvade invocations there, i.e. our
invasion approach is agnostic of the actual application domain.

5.1 Invade throughout computation
This approach does not hold any SHMInvade permanent over ex-
tensive time. Instead, we focus on the code’s underlying nested
parallel fors and tasks. Prior to its task spawning and the loops, we
insert SHMInvade commands.

We note that the code uses the same computational infrastruc-
ture for all different algorithmic phases, i.e. if we augment one loop
by invasion commands, this augmentation applies to both predic-
tor, Riemann solve and correction. The invasion does not take the
computational intensity into account. Furthermore, no rank does
directly interact with any other rank to decide whether it should
try to invade cores: We may assume that only the coarser levels of
the nested parallelisation succeed in invading cores. Yet, once one
rank frees cores on a rather coarse level, other, very fine-granular,
invasion attempts might pass through. No fairness policy is in place.

5.2 High-level integration
For our fair alternative approach, we start from the assumption
that each rank faces its own strong scaling challenge w.r.t. the cores
available to it. A modified Amdahl’s law [1]

tr (cr) = fr · tr (1) + (1 − fr)
tr (1)
cr
+ sr · cr (1)

yields a reasonable description of the scaling behaviour (Fig. 2)
global behaviour of one rank. Yet, the values fr (serial code frac-
tion), tr (1) (serial runtime) and sr (startup cost of the cores/threads)
differ per rank r ∈ {0, . . . ,R−1}. Here, 1 ≤ cr ≤ C is the number of
cores/threads available to the rank. Each rank runs the same code
(SPMD) but we run dynamic AMR and thus obtain different perfor-
mance characteristics per node. Our invasive strategy consists of
two steps per iteration of the underlying solver:

(1) Runtime analysis: Each rank tracks its own compute time rel-
ative to the cores that are available to it. This allows the rank
to calibrate its (fr , tr (1), sr) quantities to its own behaviour.
It runs its own online machine learning algorithm.

An Invasive Extension of TBB HIPEAC’97, January 2018, Manchester, UK

0 5 10 15 20
threads c

0

5

10

15

20

25

ti
m

e
 t

(c
)

[t
]=

s

Figure 2: Scaling studies with varying core counts. The blue
dots are the measurements, the black lines result from our
non-linear weighted regression. The darker the stroke, the
more data has been available to the regression.

(2) Each rank notifies all other ranks about its (fr , tr (1), sr). A
global optimisation to reduce the overall compute time then
instructs the rank whether it should release some cores or
try to grab more cores.

(3) Each rank tries to invade its optimal number of ranks prior
to the time step kick off and retreats from the cores as soon
as the traversal terminates and the rank continues with tidy-
ing up all MPI messages and waiting for the next time step
instruction.

Runtime analysis. With N measurements
(
(c
(1)
r , t

(1)
r), . . . ,

(c
(N)
r , t

(N)
r)

)
of runtimes of a rank r for various (invaded) core

numbers, we obtain an overdetermined non-linear data fitting prob-
lem to determine fk , tr (1) and sr . Let the first entry in this series,
i.e. (c(1)r , t

(1)
r) is the most recent measurement. We formalise the

calibration per node as

∀r : min
fr ,tr (1),sr

1
2

N∑
n=1

qn ∥ fr · tr (1) + (1 − fr)
tr (1)

c
(n)
r

+ sr · c
(n)
r − t

(n)
r ∥2

with a temporal weighting q ∈ (0, 1) which makes more recent
measurements more significant. q = 0.9 is used in the experiments.

The problem is a constrained, non-linear, weighted regression
problem from machine learning. We solve it iteratively via Gauss-
Newton shifts that we manually constrain after each Newton itera-
tion such that 0 < fr < 1 and tr , sr > 0. Furthermore, updates to
the three quantities are made sliding averages. Simpler schemes
such as Picard experimentally did fail in our setups, so we assume
that there is a lack of contraction properties. Given the temporal
weighting, we may assume that the triple fr , tr , sr yields a reason-
able accurate description of a ranks runtime behaviour after few
grid sweeps.

0 10 20 30 40 50 60 70
Runtime [t]=s

0

5

10

15

20

25

C
o

re
s

u
se

d
/r

e
q

u
e

st
e

d

Figure 3: Example core per rank distribution incl. zoom-in
for our global approach where the core-to-rank distribution
is subject to a global optimisation, i.e. it is changed per sim-
ulation time step according to (2).

Global optimisation of core distribution. The global workload
distribution now reads

min
cr ≥1

max
r

t(cr) with
∑
r

cr ≤ C,

which we smoothly approximate by the penalised

min
cr

1
2m

∑
k

t(cr)
2m +

α

2

(
C −

∑
r

cr

)2
(2)

withα > 0,m ∈ N+. Setting the derivative zero yields the optimality
condition.

Our code uses the scratchpad to exchange the (fr , tr , sr) values
determined from themeasurements. As part of themachine learning
process, each rank dumps its regression results and as each rank
can read all entries from the scratchpad, each rank can determine
the solution to the overall core optimisation problem locally. As
(fr , tr , sr) for most of our setups change only smoothly, these solves
are not synchronised at all, i.e. some ranks might reuse calibration
data from previous time steps, while other ranks already rely on
updated data.

6 RESULTS
We ran experiments on 24 core Intel E5-2650V4 (Broadwell) nodes.
The Broadwells run at 2.4 GHz and are connected by Omnipath.
Intel’s 2017.2 C++ compiler is used with the accompanying Intel
MPI library. We deploy six MPI ranks on each single node, and pick
out particularly interesting or characteristic results. All timings are
real-time measurements sampled every time a time step terminates.

The global optimisation (Figure 3) starts with one core per ranks
and remains quasi-stationary for the program’s start-up phase
where many system calls (memory allocations) are required. Not
much concurrency is observed here. Once the actual computation

HIPEAC’97, January 2018, Manchester, UK M. Schreiber and T.Weinzierl

no invasion between time steps
throughout computation

0

200

400

600

800

1000

1200

T
o
ta

l
ru

n
ti

m
e
 [

t]
=

s

Figure 4: Global runtimes for a static core-to-rank associa-
tion (TBB only) and the two different invasion approaches.
The darker bars in the background track the total time-to-
solution. The lighter bars in the foreground track only arith-
metically intense solver steps.

starts, it yields a seismogram-like pattern. Each rank releases its
cores after the traversal immediately but other ranks struggle to
benefit from it as they are, for reasonably balancedMPI applications,
already close to the time step completion, too. An amortised slack
of 3–4 cores is observable which remain unused. A more aggressive
invasion throughout the solve which does not try to fix the core
count once per time step promises to fill in these slacks.

While our measurements (Fig. 2) suggest that the regression
requires a few hundred steps to converge, the invasion seems not to
suffer from this fact—if all rank estimates are off by the same ratio,
the haggling for cores still seems to come up with reasonable core
distributions. An exact study of this behaviour however is subject
of future research.

We next compare invasion throughout the actual computation
with the previous invasion in-between time steps and a non-invasive
baseline with a homogeneous core distribution. Hereby, we track
either the total runtime or the computationally intense code parts
only. We see the global optimisation paying off if we focus only
on the arithmetically intense code parts. If the computational in-
tensity however is small, one invasion per time step yields worse
performance even than a non-invasive approach. Our results sug-
gest (not shown) that our simple Amdahl model in (1) does not
hold anymore. The totally dynamic approach outperforms a per
time step invasion robustly. If the computational intensity is high,
the overhead induced by frequent invasion tries is negligible. If the
computational intensity is low, any approach without fine-grain
invasion is doomed to fail right from the start.

7 SUMMARY AND OUTLOOK
We propose an invasive extension of TBB which require users to in-
sert only very few lines of code into their applications. It workswith-
out any centralised decision making algorithm (resource manager).

The integration into a sophisticated simulation code suggests that
a rank-global optimisation of resource usage is, counter-intuitively,
not superior to an anarchic, greedy grabbing of resources.

Future work comprises, on the one hand, detailed studies on the
invasion behaviour. Notably, we have to evaluate whether hybrids
of global optimisation and greedy resource invasion can outperform
all presented runs. On the other hand, locality- and affinity-aware
assignment of invaded cores is not yet integrated into the inva-
sion code base. Also, temporarily core overbooking might improve
the performance for scenarios where cache thrashing plays a non-
significant role, overheads induced by invasion are outperformed
through non-exclusive core assignment or the program idles/stalls
and the flow control is handed over to the operating system. Such
features might provide a further invasion boost.

ACKNOWLEDGEMENTS
The authors appreciate support received from the European Union’s
Horizon 2020 research and innovation programme under grant
agreement No 671698 (ExaHyPE). Thanks are due to all members
of the ExaHyPE consortium who made this research possible, no-
tably Dominic E. Charrier and Benjamin Hazelwood. This work
made use of the facilities of the Hamilton HPC Service of Durham
University. Both authors appreciate former funding through the
Transregional Collaborative Research Centre 89—Invasive Comput-
ing (DFG funded).

REFERENCES
[1] G. M. Amdahl. 1967. Validity of the Single Processor Approach to Achieving Large

Scale Computing Capabilities. In Proceedings of the April 18-20, 1967, Spring Joint
Computer Conference (AFIPS ’67 (Spring)). ACM, New York, NY, USA, 483–485.
https://doi.org/10.1145/1465482.1465560

[2] Michael Bader, Hans-Joachim Bungartz, and Martin Schreiber. 2013. Invasive
computing on high performance shared memory systems. In Facing the Multicore-
Challenge III. Springer, 1–12.

[3] M. Bader, M. Dumbser, A.A. Gabriel, H. Igel, L. Rezzolla, and T. Weinzierl. 2017.
ExaHyPE—An Exascale Hyperbolic PDE Engine. (2017). http://www.exahype.org

[4] Isaías Comprés, Ao Mo-Hellenbrand, Michael Gerndt, and Hans-Joachim Bungartz.
2016. Infrastructure and API Extensions for Elastic Execution of MPI Applications.
In Proceedings of the 23rd European MPI Users’ Group Meeting. ACM, 82–97.

[5] M. Dumbser, O. Zanotti, R. LoubÃĺre, and S. Diot. 2014. A posteriori subcell limiting
of the discontinuous Galerkin finite element method for hyperbolic conservation
laws. J. Comput. Phys. 278 (2014), 47–75.

[6] M. Gerndt, A. Hollmann, M. Meyer, M. Schreiber, and J. Weidendorfer. 2012. Inva-
sive computing with iOMP. In 2012 Forum on Specification and Design Languages
(FDL). IEEE, 225–231.

[7] S. Kobbe. 2015. Scalable and Distributed Resource Management for Many-Core
Systems. Ph.D. Dissertation. Chair for Embedded Systems (CES), Department of
Computer Science, Karlsruhe Institute of Technology (KIT).

[8] M. Schreiber, C. Riesinger, T. Neckel, H.-J. Bungartz, and A. Breuer. 2015. Invasive
Compute Balancing for Applications with Shared and Hybrid Parallelization.
International Journal of Parallel Programming 43, 6 (2015), 1004–1027.

[9] J. Teich et al. 2017. Transregional Collaborative Research Centre 89. (2017).

https://doi.org/10.1145/1465482.1465560
http://www.exahype.org

	Abstract
	1 Introduction
	2 Application programming interface
	3 Realisation
	3.1 Lock tasks and work stealing
	3.2 Scratchpad
	3.3 User data exchange

	4 Related work and context
	5 Integration
	5.1 Invade throughout computation
	5.2 High-level integration

	6 Results
	7 Summary and outlook
	References

