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Abstract. In this paper, we prove the asymptotic growth rate of the summatory function
of the pairwise maxima of the generalised divisor function dk(n), for a fixed positive
integer k ≥ 2. This result generalises previous results of Kátai, Erdős and Hall on the
local behaviour of divisor function on short intervals.

1. Introduction

Let n be a natural number and let d(n) denote the number of divisors of n. Kátai, in
his paper [4], studied the local behaviour of the function d(n). In his paper he proved that

(1.1)
∑
n≤x

max {d(n), d(n+ 1)} = 2x log x+O(x(log x)1−δ),

where δ is a suitable positive constant.
In their paper [2], Erdős and Hall determined the following asymptotic for the local

maxima of d(n):

Theorem 1.1 (Erdős-Hall). If h = o((log x)3−2
√

2), then∑
n≤x

max{d(n), d(n+ 1), ..., d(n+ h− 1)} = hx log x+O(h2x(log x)2(
√

2−1)).

(1.2)

In the case h = 2, equation (1.2) reduces to∑
n≤x

max{d(n), d(n+ 1)} = 2x log x+O(x(log x)2(
√

2−1)).(1.3)

Although the authors do not state this explicitly, with slight modifications their proof of
Theorem 1.1 also provides us with∑

n≤x
max{d(n), d(n+ h)} = 2x log x+O(x(log x)2(

√
2−1))(1.4)
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for fixed values of h.
In this paper we generalise (1.4) for fixed values of h and k by considering the relation∑
n≤x

max{dk(n), dk(n+ h)} =
∑
n≤x

dk(n) +
∑
n≤x

dk(n+ h)−
∑
n≤x

min{dk(n), dk(n+ h)}

= 2
∑
n≤x

dk(n)−
∑
n≤x

min{dk(n), dk(n+ h)}

+
∑

x<n≤x+h

dk(n)−
∑
n<h

dk(n)

= 2
∑
n≤x

dk(n) + Ek(x, h).(1.5)

Our main result is Theorem 1.2 below, which is proved in Section 3.

Theorem 1.2. If h and k are fixed, then

Ek(x, h)�h,k x(log x)2(
√
k−1)(1.6)

as x→∞.

By using the well-known asymptotic formula for the summatory function of dk(n) [8, p.
263], Theorem 1.2 states that if k > 4 and h a fixed number, then

(1.7)
∑
n≤x

max{dk(n), dk(n+ h)} =
2

(k − 1)!
x(log x)k−1 +O(x(log x)k−2)

and for k ≤ 4 we have that

(1.8)
∑
n≤x

max{dk(n), dk(n+ h)} =
2

(k − 1)!
x(log x)k−1 +O(x(log x)2(

√
k−1))

as x→∞.

The main difficulty is that the approach of Erdős and Hall [2] breaks down for dk(n)
if k ≥ 4. Therefore new ideas are necessary to generalise their results. To overcome
such intricacies we use a theorem by Nair and Tenenbaum [5] to obtain a bound on certain
averages involving dk(n) which turns out to be sufficient to establish the asymptotic formula
above. In Section 2 of the paper we discuss the method of Erdős and Hall and why it breaks
down when we try to generalise to dk(n). In Section 3 we prove Theorem 1.2, which is the
main result of this paper.

2. The method of Erdős and Hall

In this section we briefly describe the method of proof of (1.4) used in their paper [2],
and how it must be modified to establish Theorem 1.2. Note that d(pα) ≥ d(pα−1) for

α ≥ 1. Since
√
d(n) is multiplicative, we have
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√
d(n) =

∑
d|n

f(d)(2.1)

where

f(pα) =
√
g(pα)−

√
g(pα−1) ≥ 0(2.2)

for α ≥ 1 and f(1) = 1.
The method of Erdős and Hall begins by using the simple facts that

min{d(n), d(n+ 1)} ≤
√
d(n)d(n+ 1)(2.3)

and

∑
n≤x

√
d(n)d(n+ 1) =

∑
n≤x

∑
d|n

f(d)
∑
e|n+1

f(e),(2.4)

and a crucial step of their proof establishes that there exists a constant C such that

√
d(n) =

∑
d|n

f(d) ≤ C
∑
d|n

d<
√
n

f(d).(2.5)

To establish (2.5), the authors observe that

∑
d|n

d≥
√
n

f(d) ≤ 2

log n

∑
d|n

d≥
√
n

f(d) log d ≤ 2

log n

∑
d|n

f(d) log d(2.6)

for any multiplicative function f satisfying f(1) = 1, so to prove (2.5) it is sufficient to
establish the existence of a C ′ < 1/2 such that

∑
d|n

f(d) log d ≤ C ′ log n
∑
d|n

f(d)(2.7)

because by (2.6) we then have

∑
d|n

f(d) ≤ 1

1− 2C ′

∑
d|n

d<
√
n

f(d).(2.8)

However, we can prove that
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Lemma 2.1. For a multiplicative function f satisfying f(1) = 1, let

√
g(n) =

∑
d|n

f(d),(2.9)

then there exists a constant C ′ < 1/2 such that

∑
d|n

f(d) log d ≤ C ′ log n
∑
d|n

f(d)(2.10)

if and only if there exists a constant C ′′ > 1/2 such that

√
g(pα) ≤ 1

C ′′α

α−1∑
j=0

√
g(pj)(2.11)

for every p and every α ≥ 1.

Proof. By logarithmic differentiation of

∑
d|n

f(d)

ds
(2.12)

one finds that

∑
d|n f(d) log d∑

d|n f(d)
=
∑
pα‖n

(
f(p) + 2f(p2) + · · ·+ αf(pα)

1 + f(p) + f(p2) + · · ·+ f(pα)

)
log p.(2.13)

From (2.13) it follows that the existence of C ′ in (2.10) is equivalent to

α∑
j=0

jf(pj) ≤ C ′α
α∑
j=0

f(pj)(2.14)

for every p and every α ≥ 1. By (2.2) and some elementary analysis, (2.14) reduces to
(2.11). �

Erdős and Hall prove that (2.11) holds when g(n) = d(n) so Lemma 2.1 applies. This
gives a non-trivial estimate of (2.4) which implies Theorem 1.1. However, the following
dilemma arises.

Corollary 2.2. The growth constraint (2.11) does not hold for g(n) = dk(n) when k > 3.

Proof. Since dk(p
j) =

(
j+k−1
j

)
, we observe that
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√(
7

4

)
>

1

2

3∑
j=0

√(
3 + j

3

)
,(2.15)

so (2.11) fails for g(n) = d4(n). Similar arguments show that (2.11) fails to hold for any
k ≥ 4. �

It follows from the previous corollary that Erdős and Hall approach does not apply for
dk(n) for k ≥ 4. We will remedy this in the next section.

3. A proof via the theorems of Nair-Tenenbaum and Selberg-Delange

In this section Theorem 1.2 is proved by establishing a suitable bound for the l.h.s of
(2.4) via Theorem 3.1 below, which is special case of a very general theorem of Nair and
Tenenbaum [5] (Theorem 1 therein).

Let Ω(n) denote the number of prime factors of n counted with multiplicity and let A
and B be positive constants. Also let α > 0 and ε > 0 be quantities which may be taken
to be arbitrarily small.

Theorem 3.1 (Nair-Tenenbaum). If F1, F2 are non-negative arithmetic functions satis-
fying

F1(m)F2(n) ≤ min{AΩ(mn), B(ε)(mn)ε}(3.1)

whenever (m,n) = 1, then

∑
x≤n≤x+y

F1(n)F2(n+ h)�A,B,h,ε
y

(log x)2

∑
mn≤x

F1(m)F2(n)

mn
(3.2)

uniformly for xα ≤ y ≤ x.

From (2.3) and the fact that for fixed h the sum∑
x<n≤x+h

dk(n) �h,k max
n≤x+h

dk(n)

�h,k kC log(x+h)/ log log(x+h)

�h,k xo(log k),(3.3)

it follows from (1.5) that to prove Theorem 1.2 it will be sufficient to prove the following
proposition.

Proposition 3.2. For fixed h and k we have

∑
n≤x

√
dk(n)dk(n+ h) = O

(
x(log x)2(

√
k−1)

)
(3.4)
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as x→∞.

Proof. Take F1(n) = F2(n) =
√
dk(n) in Theorem 3.1, so that F1(m)F2(n) =

√
dk(mn)

when (m,n) = 1. To begin, we must verify that (3.1) holds in this case, i.e. that

√
dk(n) ≤ min{AΩ(n), B(ε)nε}(3.5)

when n is squarefree. Since dk(p) = k it follows that dk(n) = kΩ(n), so we have A =
√
k.

Since Ω(n) = O(log n/ log logn) as n → ∞ it follows that kΩ(n) ≤ B(ε)nε for every ε > 0,
so (3.5) holds in this case.

For σ > 1 let

Dk(s) =

∞∑
1

d
1/2
k (n)

ns
.(3.6)

By the quantitative version of Perron’s formula—a general proof of which is given in Titch-
marsh [8] (Lemma 3.12)—one now observes that for δ > 0, k ≥ 2, T > 0 and x not an
integer we have

∑
mn≤x

F1(m)F2(n)

mn
=
∑
mn≤x

d
1/2
k (m)d

1/2
k (n)

mn
=

1

2πi

∫ δ+iT

δ−iT
D2
k(s+ 1)

xsds

s

+ O

(
xδ

T
D2
k(δ + 1)

)

+ O

 log x

T
max
n≤2x

1

n

∑
d|n

d
1/2
k (d)

 .

(3.7)

The remaining steps of the proof essentially follow the methods of Selberg [6] and Delange
[1], which enable the integral on the r.h.s of (3.7) to be estimated. This proceeds by
evaluating the integral along segments marginally above and below the potential branch
cut (−∞, 0] and using Hankel’s integral representation of Γ(s).

The first step is to observe that

D2
k(s) = Hk(s)ζ

2k1/2(s),(3.8)

where Hk(s) has an absolutely convergent Euler product on compact subsets of the half
plane σ > 1/2. As such, for fixed k, |Hk(s)| is bounded above and away from zero on
compact subsets of the half plane σ > 1/2. Moreover, due to the simple pole of ζ(s) at
s = 1, from (3.8) it is evident that (−∞, 0] is a branch cut for D2

k(s+ 1) whenever k is not
square.
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Given ε > 0, one takes the path of integration in (3.7) to consist of horizontal segments
from δ− iT to −δ− iT and −δ+ iT to δ+ iT , vertical segments from −δ− iT to −δ− iε and
−δ+ iε to −δ+ iT , and a truncated Hankel contour (a path from −δ− iε to −δ+ iε passing
around the cut along the segment [−δ, 0], but not crossing it). From (3.8), the bounds on
|Hk(s)| and the elementary fact that ζ(σ+ it) = O(t1−σ+δ) for σ ≥ 0, it is immediate that
the vertical segments of the integral are

∣∣∣∣∣ 1

2πi

∫ −δ+iT
−δ+iε

Hk(s+ 1)ζ2k1/2(s+ 1)xsds

s

∣∣∣∣∣�k,δ x
−δT 4δk1/2 ,(3.9)

and that the horizontal segments of the integral are

∣∣∣∣∣ 1

2πi

∫ δ+iT

−δ+iT

Hk(s+ 1)ζ2k1/2(s+ 1)xsds

s

∣∣∣∣∣�k,δ x
δT 4δk1/2−1.(3.10)

Taking T = x2δ and δ = k−1/2/8, the r.h.s. of (3.9) is

x−δ(x2δ)4δk1/2 = x−δ+8δ2k1/2 = x−δ+k
−1/2/8 = 1(3.11)

and the r.h.s. of (3.10) is

xδ(x2δ)4δk1/2−1 = x−δ+8δ2k1/2 = 1,(3.12)

so (3.9) and (3.10) are bounded as x→∞ for fixed k.
Moreover, with these choices for δ and T , the first error term on the r.h.s of (3.7) is

xδ

T
D2
k(δ + 1) = x−δD2

k(δ + 1)�k x
−δ(3.13)

which is bounded as x→∞ for fixed k. The second error term on the r.h.s of (3.7) is

log x

T
max
n≤2x

1

n

∑
d|n

d
1/2
k (d) �k x−2δ log x(k + 1)C log x/ log log x

�k x−2δ+C log k/ log log x,(3.14)

which is also bounded as x→∞ for fixed k.
For fixed k then, it follows that

∑
mn≤x

d
1/2
k (m)d

1/2
k (n)

mn
=

1

2πi

∫
H(k,ε)

D2
k(s+ 1)

xsds

s
+Ok(1),(3.15)
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where the path of integration H(k, ε) is from −k−1/2/8 − iε to −k−1/2/8 + iε and not
intersecting the half line (−∞, 0]. Invoking (3.8) and the fact that ζ(s) has a simple pole
at s = 1, one may expand Hk(s+ 1) in a power series about s = 0 to give

D2
k(s+ 1) =

∑
n≤2k1/2

cns
n−2k1/2 +Ok(1)(3.16)

so the r.h.s of (3.15) is

∑
n≤2k1/2

cn
2πi

∫
H(k,ε)

xssn−2k1/2−1ds+Ok(1).(3.17)

Making the change of variable s = z/ log x in (3.17) then gives

∑
n≤2k1/2

cn(log x)2k1/2−n

2πi

∫
H(k,ε,x)

ezzn−2k1/2−1dz +Ok(1),(3.18)

whereH(k, ε, x) indicates a path of integration from−k−1/2 log x/8−iε log x to−k−1/2 log x/8+
iε log x and not intersecting the half line (−∞, 0]. Taking ε = o(1/ log x), the pathH(k, ε, x)
approaches a standard Hankel contour H as x→∞ therefore, using Hankel’s identity

1

Γ(s+ 1)
=

1

2πi

∫
H
ezz−s−1dz,(3.19)

in (3.18), from (3.7) we now have

∑
mn≤x

d
1/2
k (m)d

1/2
k (n)

mn
=

∑
n≤2k1/2

cn(log x)2k1/2−n

Γ(2k1/2 − n+ 1)
+Ok(1)

= Ok

(
(log x)2k1/2

)
.(3.20)

Thus, (3.20) and (3.2) together give

∑
x≤n≤x+y

d
1/2
k (n)d

1/2
k (n+ h)�h,k y(log x)2(k1/2−1)(3.21)

uniformly for xα ≤ y ≤ x.
To complete the proof of Proposition 3.2 we take y = x = 2−m−1X successively in (3.21)

and sum over the range 0 ≤ m ≤ log2X, which gives
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∑
n≤X d

1/2
k (n)d

1/2
k (n+ h)

X(logX)2(k1/2−1)
�h,k

∑
0≤m≤log2X

2−m−1

(
1− (m− 1) log 2

logX

)2(k1/2−1)

�h,k 1(3.22)

as X →∞. �
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