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Abstract  

The Latest Cretaceous period was characterised by global cooling, superimposed on 

this pattern of climate change were perturbations in global climate. In high 

palaeolatitude settings in the Southern Hemisphere short term glacial episodes may 

have occurred through the latest Cretaceous. The extensive sedimentary succession 

within the James Ross Basin, Antarctica, provided an opportunity to test the possibility 

of late Cretaceous glaciation in particular through the succession exposed on Seymour 

Island. A high resolution oxygen and carbon stable isotope record through the Late 

Maastrichtian – Early Danian was generated by analysing diagenetically unaltered 

aragonite nacre shell material from a molluscan fauna collected from the López de 

Bertodano Fm., part of the Marambio Group present on Seymour Island, Antarctica. 

The Marambio Group forms an extensive 1100 m thick Late Maastrichtian section that 

crops out over ~70 km2 of the southernmost part of the island. Coverage of stable 

isotope data for the measured stratigraphy was good with 213 screened analyses that 

included data from within 1 m of the K-Pg boundary located at 1029 m above datum, 

determined from the first occurrence of the dinoflagellate cyst Senegalinium obscurum.  

Stable isotope data (‰ VPDB) for primary aragonite from bivalves, cephalopods and 

gastropods exhibited screened stable isotope data ranges of -0.06 to +2.05‰ for δ18O 

and -7.54 to +3.7‰ for δ13C. Data showed that at individual stratigraphic levels the 

range in measured δ18O exhibited significant variability. Benthic specimens provided 

the majority of the stable isotope data, bivalves exhibited the widest range of δ18O and 

δ13C values. Data show that individual specimens from the same genus can exhibit 

significant variability for δ18O and δ13C and that analysis of single samples at discrete 

stratigraphic levels may provide an erroneous interpretation of climate change. Higher 

oxygen isotope values were seen mid-section and complement previous records of 

periods of cooler climate identified from palynology, clumped isotopes and sea level. 

Palaeotemperatures were calculated for δ18O values for a seawater composition of 

SMOW = -1.0‰, representing an ice free ocean, 6 to 14°C for bivalves, 9 to 12°C for 

gastropods and 9 to 15°C for cephalopods. Temperatures indicated relatively stable 

benthic temperatures (~10°C) with a cooling phase that commenced at ~450 m (~69.5 

Ma) with the coolest temperatures developed at ~630 m (~69 Ma). Cooling trends 

showed a good correlation with the position of seawater lowstands. Thereafter 

temperatures recovered towards the K-Pg boundary before a cooling trend developed 

that closely correlated with the PaDa1 lowstand. Acceptance of Deccan Traps 

volcanism as a causal mechanism for the limited degree of observed warming close to 

the K-Pg event was limited by a lack of suitable specimens. 
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profile data by permission of RRUFF Project (Lafuente et al., 2015). Refer to 
Table 3-4 for details of equipment operating parameters. 
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taken from specimens D5.219.1185.2/C and D5.212.865.3/E and superimposed 
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taken from specimens D5.222.1257.2/A and D5.215.216.5/A and superimposed 
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1 Introduction 

Study of palaeoclimate change provides a valuable tool towards an understanding of 

current and potential future climate change, highly topical given the overwhelming 

evidence that the Earth is currently experiencing climate change due to anthropogenic 

factors (Hay, 2011). The Cretaceous experienced what has been described as a 

‘greenhouse’ climate (Hallam 1985; Brentnall et al., 2005), a term also used to describe 

a possible future climate scenario for the Earth (Hay, 2011). The importance of the 

polar regions for climate sensitivity have been well documented (Goody, 1980; Manabe 

and Stouffer, 1980; Florindo et al., 2003). The analysis of carbon and oxygen stable 

isotopes and the interpretation of marine palaeotemperatures from the Latest 

Maastrichtian of the James Ross Basin within this study provides a data set that is of 

value to present day climate scientists working on the modelling of both late 

Cretaceous palaeoclimates and predicted future climate change during the remainder 

of the 21st and subsequent centuries. In addition the news in 2013 that atmospheric 

CO2 levels had reached a mean concentration of 400 ppm at the monitoring station 

situated on Mauna Lau, Hawaii (Tans and Keeling, 2015) makes data sets as 

presented in this thesis of wider significance. This atmospheric CO2 value represents 

an increase of 1.43 x pre-industrial CO2 levels (Ethridge et al., 1996; Hunter et al., 

2013). 

The Cretaceous period was characterised by extreme warmth during the mid 

Cretaceous followed by global climatic cooling during the late Cretaceous (Hallam, 

1985; Brentnall et al., 2005; Gallagher et al., 2008). Superimposed on this overall 

pattern of climate change were shorter-term perturbations in global climate, particularly 

in the latest Cretaceous (see Miller et al., 1999, 2003, 2004, 2005a,b; Gallagher et al., 

2008; Kominz et al., 2008; Flogel et al., 2011). In high palaeolatitude settings in the 

Southern Hemisphere palaeoclimate modelling (Sellwood and Valdes, 2005; Flogel et 

al., 2011) and data derived from palynology (Thorn et al., 2007, 2008; Bowman et al., 

2013) and palaeoenvironmental data (Tobin et al., 2012; Tobin and Ward, 2015; Little 

et al., 2015; Petersen et al., 2016) suggested that short term glacial episodes may 

have occurred through the latest Cretaceous; these episodes appear to be reflected 

within the record of short term changes in global sea level (see Miller et al., 1999, 

2003, 2005a,b). The presence of glauconite within the succession may either represent 

the presence of deeper water or reflect a reduction in the sediment supply (McRae, 

1972) for the James Ross Basin sourced from the Trinity Peninsula (Macellari, 1984, 

1988). The extensive sedimentary succession within the James Ross Basin, Antarctica 

provides an opportunity to test the possibility of late Cretaceous glaciation in particular 
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through the succession exposed on Seymour Island (Crame et al., 2004; Thorn et al., 

2007, 2008; Tobin et al., 2012; Bowman et al., 2013; Tobin and Ward, 2015; Petersen 

et al., 2016). The succession is locally richly fossiliferous with good preservation of 

primary skeletal carbonates, in particular aragonite nacre from a molluscan fauna. 

Previously published research from this area provide a broad picture of climate change 

based upon the stable isotope geochemistry of skeletal carbonates, but these data only 

provide a broad framework. Advances in the understanding of the regional stratigraphy 

(Crame et al., 2004; Witts et al., 2015) and updated age models (Tobin et al., 2012, 

Petersen et al., 2016), along with new analytical facilities, provide the opportunity to 

develop a more robust and high-resolution geochemical record of climate change.  

In particular this project: 

1. Provides a high resolution carbon and oxygen stable isotope record for the late 

Cretaceous and early Paleogene of the James Ross Basin. 

2. Provides a high resolution Strontium Isotope Stratigraphy record for the latest 

Maastrichtian and earliest Danian of the James Ross Basin.  

The Earth's climate is in a real sense defined by conditions at the poles (Goody, 

1980; Manabe and Stouffer, 1980). Changes in the equator to pole thermal gradient 

that represent an important control on atmospheric and oceanic circulation are 

expressed principally as variations in polar temperatures (Spicer and Parrish, 1990a,b). 

Significant ice forms most easily in polar regions and thus climate at the poles is a 

major determinant of global sea level; a number of authors have reviewed the impact of 

Antarctic ice sheets on global eustacy (see Miller et al., 1999, 2003, 2005a,b; Haq, 

2014). A polar continental ice sheet cannot form unless there is land near the pole and 

such a landmass reduces the efficiency of oceanic heat transport and provides a site 

for the accumulation of snow, both of which lead to cooling (Spicer and Parrish, 

1990a). Seasonality of temperature is expressed most strongly at the poles and must 

have maintained a powerful effect on the distribution and productivity of global biota 

(Goody, 1980; Manabe and Stouffer, 1980; Florindo et al., 2003). The Antarctic region 

has both in the past and at the present day exerted a significant effect on global 

climates. These effects influenced sea level, atmospheric composition and dynamics 

and patterns of ocean circulation (Goody, 1980; Manabe and Stouffer, 1980; Miller et 

al., 1999; Florindo et al., 2003; Miller et al., 2003, 2005a,b). A greater understanding of 

the palaeoclimate of this region and the Antarctic cryosphere is crucial to a broader 

understanding of the global climates and palaeoceanography at all scales (Florindo et 

al., 2003). Particular attention has been paid to climate processes in polar regions, in 

recognition of their importance to global climate and understanding the boundary 

conditions for the formation of ice. Many of the processes involved are inadequately 
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understood, partly because the models and data are poorly constrained (Spicer and 

Parrish, 1990a,b and references therein). 

A high resolution oxygen and carbon stable isotope record through the latest 

Maastrichtian – earliest Danian was generated using diagenetically unaltered aragonite 

nacre shell material from a molluscan fauna collected from the López de Bertodano 

Formation, an extensive 1100 m thick late Maastrichtian section from Seymour Island, 

Antarctica. The exceptionally well exposed K-Pg boundary sequence on Seymour 

Island offers the opportunity to further investigate the palaeoenvironmental and biotic 

change at this critical period of Earth history (Crame et al., 2004). The macrofossils 

exhibit a good state of preservation, specimens selected for stable isotope analysis all 

retained primary shell material comprised of aragonite nacre. For the purposes of this 

study no planned stable isotope analyses were carried out for specimens exhibiting a 

calcite shell mineralogy. This decision was taken because the studied section is 

dominated by macrofossils with preserved aragonite nacre; calcitic macrofossils are 

relatively rare, and those taxa which are present (e.g. the serpulid Rotularia) have 

shells which are sensitive to diagenetic over-prints (see Chapter 3). In addition, if 

isotopic data from calcitic shells with potentially differing levels of diagenetic alteration 

(see Chapter 3) were analysed then this would introduce uncertainty into the stable 

isotope data set.  

Overall coverage of data for the measured stratigraphic section was good, with 247 

specimens screened for diagenetic alteration and subsequent stable isotope analyses 

that included data from within 1 m of the K-Pg boundary, which was at a position of 

1029 m above datum as determined by palynology, namely the first appearance of the 

dinoflagellate cyst Senegalinium obscurum (Bowman et al., 2012). Multiple analyses at 

discrete stratigraphic levels enabled the comparison of stable isotope data from both 

benthic and pelagic macrofossils at corresponding stratigraphic levels to be 

investigated, to test for the potential for water stratification in the James Ross Basin. In 

addition the δ18O data for nektonic cephalopods might reflect ontogenetic change 

related to the stage of life (see Chapter 4; Lukeneder et al., 2010). 

Following a successful application for NERC funding a limited number of specimens 

were also sampled in preparation for 87Sr/86Sr isotopic analysis to enable the 

incorporation of absolute ages into the measured stratigraphy through the application 

of strontium isotope stratigraphy using the LOWESS version 3 age look up tables 

(McArthur et al., 2001). A number of previous studies have generated spot 87Sr/86Sr 

ages within the López de Bertodano Fm. (McArthur et al., 1998, 2000, 2001; Crame et 

al., 2004; Petersen et al., 2016) but these were insufficient to provide a regular dating 

of the sediments within the Cretaceous sequence on Seymour Island. Available age 
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data were incorporated into the age model employed in this study, which included the 

addition of magnetostratigraphy, biostratigraphy and limited strontium isotope 

stratigraphy (see Figure 1-5; McArthur et al., 1998, 2000, 2001; Crame et al., 2004; 

Tobin et al., 2012; Witts et al., 2015). Note that whilst Petersen et al. (2016) reported 

on the analysis of spot 87Sr/86Sr ages none of these data were incorporated into their 

age model. 

Analysis of 87Sr/86Sr ratios were carried out at the NERC Isotope Geosciences 

Laboratory, Kingsley Dunham Centre and involved individual, duplicate and in certain 

cases triplicate analyses of shell material from selected specimens, (see Chapter 5 for 

a discussion of the strontium isotope stratigraphy methodology and data interpretation). 

Petersen et al. (2016) included 87Sr/86Sr data which are compared with corresponding 

data from this study and further discussed in Chapter 5.  

1.1 History of exploration and previous research 

The Antarctic Peninsula is the most northerly part of the continent and reaches above 

the Antarctic Circle experiences the mildest climate and on the north side is the least 

icebound during the summer and therefore the most accessible. When Norwegian 

Captain, Carl Anton Larsen landed from his ship, the Jason, on Seymour Island, he 

returned with maps of the territory and fossils of long-extinct species. Interestingly, 

Larsen's trip aboard the Jason was significantly more successful than his Swedish 

Antarctic Expedition between 1901 and 1903. During that trip, his ship, the Antarctic, 

was crushed and sunk by icebergs and he and his crew were forced to weather 

fourteen months on Snow Hill Island, surviving on penguins and seals.  

Since Larsen’s voyage on the Jason, Seymour Island has been the subject of 

continuing research in a number of fields including palaeontology (for example Hall, 

1977; Jerzmańska, 1991; Aguirre-Urreta, 1995; Aronson and Blake, 2001; Feldmann et 

al., 2003; Jeffrey and William, 2003; Stilwell and Zinsmeister, 2003; Cantrill and Poole, 

2005; Carrie et al., 2005; Emig and Bitner, 2005; Schweitzer et al., 2005; Beu, 2009; 

Acosta Hospitaleche et al., 2012; Acosta Hospitaleche and Reguero, 2014; Acosta 

Hospitaleche and Gelf, 2015; Witts et al., 2015; Petersen et al., 2016; Witts et al., 

2016), palaeoenvironmental (for example Gaździcki et al., 1992; McArthur et al., 

1998; Pirrie et al., 1998; Dingle and Lavelle, 2000; Javier et al., 2001; Dutton et al., 

2002, 2007; Ivany et al., 2008; Svojtka et al., 2009; Tobin et al., 2012; de Souza et al., 

2014; Little et al., 2015; Tobin and Ward, 2015; Petersen et al., 2016), palaeoclimate 

(Pirrie et al., 1998; Dutton et al., 2002, 2007; Gaździcki et al., 1992; Ivany et al., 2008; 

Tobin et al., 2012; Bowman et al., 2013, 2014; Tobin and Ward, 2015; Petersen et al., 

2016), sedimentological and structural studies (for example Valle et al., 1992; 
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Marenssi et al., 2002; Borzotta and Trombotto, 2004; Eduardo et al., 2008; Maestro et 

al., 2008; Olivero et al., 2008; Pirrie et al., 2009; Svojtka et al., 2009; Johnson et al., 

2011; de Souza et al., 2014). 

1.2 Geographical and geological setting 

Seymour Island, referred to as ‘Isla Vicecomodoro Marambio’ in Argentine literature, 

is located towards the north eastern end of the Antarctic Peninsula at a latitude of 

64°15’ S and longitude 56°45’ W (Figure 1-1). The location of Seymour Island in 

relation to the north-eastern section of the Antarctic Peninsula and in particular the 

Trinity Peninsula is shown in Figure 1-2(a).  

 

Figure 1-1. Geographic location of Seymour Island in the Antarctic Peninsula region. After 
http://www.eoearth.org/article/Antarctic_Peninsula, 2013. 

The Larsen Basin forms a distinct sub-basin of the larger Weddell Basin (MacDonald 

et al., 1988; Pirrie et al., 1991) with an approximate area of 2 x 105 km2, a mean depth 

of fill of 5 km and an approximate volume of 1 x 106 km3. The Maastrichtian section on 

Seymour Island has a stratigraphic thickness of ~1100 m and a number of authors 

have reported estimated basin infill rates of ~270, 175 and 100 to 200 m/Ma-1 

(McArthur et al., 1988; Dutton et al., 2007; Tobin et al., 2012).  

The James Ross Basin, a smaller sub-basin of the Larsen Basin, comprises the most 

continuous and complete Cretaceous – Paleogene (K-Pg) sequence in the Austral 

Realm (Macellari, 1986; Crame et al., 2004; Tobin et al., 2012; Witts et al., 2015). 

During the Late Cretaceous the James Ross Basin was located to the east of an active 

Seymour 
Island 
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volcanic island arc now represented by the Trinity Peninsula (Figure 1-2; MacDonald et 

al., 1988; Pirrie et al., 1991). A coastal plain and shoreline trended approximately NNE 

- SSW and major rivers transported siliciclastic sediments offshore with material 

sourced from the peninsula (Zinsmeister, 1982; Macellari, 1988; Pirrie, 1989; Hathway, 

2000; Crame et al., 2004; Olivero et al., 2008). Seymour Island exhibits the youngest 

part of the stratigraphic sequence forming the Seymour Island Group and represents 

marine deposits sourced from the back arc. The basin deposits span the Early 

Cretaceous to the Early Paleogene in age and comprise three principal 

lithostratigraphic groups, the Gustav Group (Aptian – Coniacian), Marambio Group 

(Santonian – Danian) and Seymour Island Group (Paleocene – Eocene) (Crame et al., 

1991; Pirrie et al., 1997; Hathway, 2000; Crame et al., 2004; Crame et al., 2006; 

Olivero, 2012).  

A view of the López de Bertadano Fm. on Seymour Island facing the Weddel Sea is 

presented in Figure 1-2(b). The locations of stratigraphic sections that were sampled 

during the fieldwork programme are presented in Figure 1-2(c). Macellari (1988) 

defined the location of informal geological boundaries identified as units 1 to 10. Note 

that a number of the boundaries were later re-classified as undifferentiated (units 4-9), 

see also the stratigraphy detailed in Figure 1-3 (Crame et al., 2004). 

Samples analysed in this study were collected from the López de Bertodano Fm.. 

This forms the upper part of the ~3000 m thick Marambio Group (Olivero, 2012) and 

crops out over ~70 km2 of southern Seymour Island, neighbouring Snow Hill Island and 

southern and northern James Ross Island, Vega Island and Humps Island (Figure 1-

2(a); Pirrie et al., 1997; Crame et al., 2004; Olivero et al., 2008; Bowman et al., 2012).  

The James Ross Basin has been tectonically stable over the last 80 Ma with a gentle 

regional dip of 8 to 10° to the southeast (MacDonald et al., 1988; Pirrie et al., 1991; 

Crame et al., 2004; Tobin et al., 2012). Crame et al. (1991) noted the occurrence of 

major NE – SW trending faults of an unknown age that result in repetition of the 

stratigraphy on northern and southern James Ross Island. No other major faults cut the 

upper Cretaceous, the only possible exception being the similar trending Quebrada 

Largo valley on Seymour Island (Crame et al., 1991). The presence of well preserved 

macrofossils with abundant aragonite nacre indicated only shallow burial (1 to 2 km) 

and associated low temperature diagenesis (~30 to <60°C) (Svojtka et al., 2009; Tobin 

et al., 2012). 
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Figure 1-2. Locality maps of the area studied and location of measured sections. a) Location of 
Seymour Island, James Ross Basin, Antarctic Peninsula. b) Field photograph of the landscape 
of the López de Bertodano Fm. exposed on Seymour Island, looking south-eastwards towards 
the Weddell Sea, field camp provides scale. The inset map shows Seymour Island and adjacent 
islands; SP — Spath Peninsula. c) Enlarged map of the southern end of Seymour Island to 
illustrate the geology and location of identified measured sections, the K-Pg boundary occurs 
within a distinctive glauconite-rich interval traceable along strike. Diagrams (a and c) and field 
photograph (b) after Bowman et al., 2012). 

The data presented in Table 1-1 are derived from GSSP (Gradstein et al., 2012) and 

define the key magnetochron tie points and ages together with the K-Pg position within 

the measured stratigraphy. The upper Maastrichtian - lower Danian interval as 

determined by biostratigraphy (Thorn et al., 2009; Bowman et al., 2012, 2014) and 

magnetostratigraphy (Tobin et al., 2012) forms part of the Marambio Group and is 

represented by the López de Bertodano Fm. which is uncomformably overlain by the 

Sobral Fm. of Paleocene age, see Figure 1-3. Seymour Island is the highest 

palaeolatitude K–Pg boundary section in the southern hemisphere with a similar 

palaeolatitude (62°S) to the current latitude (64°17′S) based upon plate tectonic 

reconstruction (Torsvik et al., 2008). This location makes it ideal for examining climate 

change associated with the K–Pg boundary because polar amplification produces 

larger and more detectable temperature changes at higher latitudes (Goody, 1980; 

Manabe and Stouffer, 1980; Pirrie et al., 1995; Holland and Bitz, 2003). 
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Table 1-1. Magnetochron tie points, key ages derived from GSSP (Gradstein et al., 2012) and 
positions within the measured stratigraphy of the López de Bertodano Fm.. 

Magnetochron 
Tie Points 

Age (Ma) 
Stratigraphic 

Height (m) 
29R - 29N 65.688 1088 
K-Pg boundary 66.043 1029 
30N - 29R 66.398 953 
30R - 30N 68.196 771 
31N - 30R 68.369 753 
31R - 31N 69.269 565 
31N - 32R 71.449 140 

 

The expanded stratigraphic section generally shows continuous sedimentation, the 

presence of glauconite rich horizons suggests periods of episodic sedimentation (see 

Figure 1-3; McRae, 1972; Tobin et al., 2012). The section also exhibits an abundance 

of well preserved macrofossils. Many with outstanding preservational characteristics 

that include rare primary aragonite nacre and low magnesium calcite shell mineralogy 

together with an undeformed three-dimensional shape (Tobin et al., 2012). The 

preservation in the fossil record of primary biogenic aragonite from a molluscan fauna 

is rare (Wendt, 1977; Jordan et al., 2015) because metastable aragonite is readily 

recrystallised to LMC by low temperature alteration (~30°C to >60°C) (Svojtka et al., 

2009) and through the development of diagenetic cements resulting from fluid flow; 

with alteration indicated by changes in the trace element geochemistry. The presence 

of primary aragonite nacre provided an initial guide for the selection of geochemical 

samples with minimal levels of mineralogical or diagenetic alteration (Tobin et al., 

2012).  

The K–Pg boundary has been located between units 9 and 10 of the upper López de 

Bertodano Fm. through various means in the past and is currently defined by the first 

occurrence of Paleogene dinoflagellate cysts that are associated with an iridium 

enhancement (Elliot et al., 1994; Bowman et al., 2009, 2012). Global correlation of the 

late Cretaceous on Seymour Island has been hampered by the increasing endemism of 

macrofossils and microfossils in the Maastrichtian and an absence of any absolute age 

control from ash layers (Macellari, 1988; Olivero and Medina, 2000; Bowman et al., 

2012; Tobin et al., 2012; Tobin and Ward, 2015).  

Whilst some age constraints from Sr isotope ratios on molluscan carbonate have 

been reported from the lower units of the López de Bertodano Fm. no such age 

constraints were reported from the upper units that approach and cross the K–Pg 

boundary until limited strontium isotope stratigraphy provided further age data for the 

succession (McArthur et al., 1998, 2000; Petersen et al., 2016). 
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K-Pg

87Sr/86Sr ratios (McArthur et al., 1998)
A - 0.707833, B - 0.707831 & C - 0.707787

K-PgK-Pg

87Sr/86Sr ratios (McArthur et al., 1998)
A - 0.707833, B - 0.707831 & C - 0.707787

 

Figure 1-3. Lithostratigraphy and sedimentology of the measured section from the Latest 
Maastrichtian – Earliest Danian, Seymour Island, Antarctica correlated with magnetostratigraphy 
(Tobin et al., 2012). K-Pg and Maastrichtian ages defined from GSSP (Gradstein et al., 2012), 
87

Sr/
86

Sr dates (McArthur et al., 1998; Crame et al., 2004). Diagram modified from Witts et al. 
(2015). Sedimentology log measured by Francis and Thorn, pers. comm. (2008). Based upon 
GSSP and 

87
Sr/

86
Sr data the lower 310 m of the section has a sedimentation rate of ~113 m/Ma

-1
, 

whilst the section from 310 m – 1029 m (K-Pg) has a corresponding rate of ~200 m/Ma
-1

. An 
estimated average rate of basin infill based upon these two rates is ~160 m/Ma

-1
. The base of the 

Maastrichtian is defined by an age of 72.05 Ma (Gradstein et al., 2012). 

 Note that Petersen et al. (2016) did not include any age correlation with the LOWESS 

Smoothed Global Strontium Isotope Curve (McArthur et al., 1998, 2001). 

Magnetostratigraphy was introduced by Tobin et al. (2012) and included into the age 

model, see Figure 1-3.  

In an attempt to constrain the absolute age of the youngest units from the succession 

a number of specimens were selected for 87Sr/86Sr isotopic measurements. Discussion 
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of the methodology employed, the significance of the data generated and correlation of 

those data with the Latest Maastrichtian section of the Late Cretaceous Strontium 

Isotope Stratigraphy (SIS) curve will be covered in Chapter 5 (see also McArthur et al., 

1998, 2001). Previous Sr isotope analyses were carried out on macrofossil specimens, 

principally molluscan, collected from Seymour Island some of which data were 

subsequently incorporated into the LOWESS Smoothed Global Strontium Isotope 

Curve (McArthur et al., 1998, 2001).  

1.3 Sedimentology 

An 1100 m thick section through the Latest Maastrichtian, López de Bertodano Fm., 

which comprises the southern and central areas of Seymour Island, was measured, 

logged and sampled (Francis and Thorn, pers. comm., 2008) at stratigraphic intervals 

between 0.25 and 2 m (see Figures 1-2 and 1-3). The deposition of 1100 m of 

sediment in approximately 6 million years indicates a rapid sedimentation rate (~183 

m/Ma-1), at times perhaps reaching a figure of ~270 m/Ma-1 a fourfold increase over the 

rate of the equivalent Stevns Klint section from Denmark (McArthur et al., 1998; Thorn 

et al., 2008). Based upon the measured thickness and with a stated sampling 

separation of 0.25 to 2 m between identified stations suggested an idealised temporal 

resolution of ~20 ka for the section. Alternative estimated basin infill rates of 175 and 

100 to 200 m/Ma-1 have also been reported (Dutton et al., 2007; Tobin et al., 2012). 

Based upon GSSP and 87
Sr/

86
Sr data the lower 310 m of the section has a 

sedimentation rate of ~113 m/Ma-1 whilst the section from 310 m – 1029 m (K-Pg) has 

a corresponding rate of ~200 m/Ma-1. An estimated average rate of basin infill based 

upon these two rates is ~160 m/Ma-1. 

The sedimentary sequence, sourced from calc-alkaline arc volcanic and plutonic 

rocks from the Trinity Peninsula (Pirrie et al., 1991) has a gentle dip of ~09° SE and 

principally consists of heavily bioturbated muddy silts and silty muds containing varying 

amounts of both detrital and authigenic glauconite, see Figure 1-4 which shows a field 

photograph of the López de Bertodano Fm., Seymour Island, Antarctica looking south-

eastwards towards the Weddell Sea. The presence of glauconite at specific levels 

within the succession suggests that sedimentation was episodic and may reflect a 

reduction in the supply of sediment into the basin or alternatively the presence of 

highstands (McRae, 1972). Both possible causes are compatible with the presence of 

minor ice sheets on the Antarctic continent as discussed by a number of authors, 

subjects included a eustatic reduction in sea level of 30 to 40 m in the early 

Maastrichtian with a more pronounced reduction in sea level of 60 m in the late 

Maastrichtian to Eocene (Miller et al., 1999). The development of restricted ephemeral 
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ice sheets in Antarctica paced by Milankovitch forcing (Miller et al., 2003). A 

comparison of the timing and duration of lowstands indicated the presence of rapid 

high amplitude (200 m) eustatic change at a rate of 20 m/ky-1 resulting from the 

development of ice sheets and a low amplitude slower rate of 10 m/ky-1 due to 

dessication and inundation (Miller et al., 2005a; Haq, 2014). 

 

Figure 1-4. Seymour Island, Antarctica, field photograph of the López de Bertodano Fm. looking 
SE towards the Weddell Sea. (Photograph after Thorn et al., 2009). 

Previous authors have described the K-Pg boundary on Seymour Island as being 

coincident with a significant glauconite rich horizon in association with a fish mortality 

bed (Macellari, 1988; Zinsmeister et al., 1989; Zinsmeister, 1998). Several glauconite-

rich fish teeth/bone horizons have been identified throughout the succession (see 

Figure 1-3), often topped with fossiliferous ‘lags’ containing many molluscs and other 

fossils, that suggest episodic periods of sediment starvation (Crame et al., 2004). 

Previous authors have also suggested that this upper portion of the succession across 

the K–Pg boundary represents a regressive phase with a loss of accommodation space 

(Macellari, 1988; Crame et al., 2004; Olivero, 2012; Tobin et al., 2012). The 

lithostratigraphy and sedimentology of the López de Bertodano Fm. have previously 

been described by a number of authors (Macellari, 1988; Crame et al., 1991; Pirrie et 

al., 1997; Crame et al., 2004; Olivero et al., 2008; Olivero, 2012). Ten numbered 

informal lithostratigraphic units were defined (Macellari, 1986, 1988), a number of the 

units have subsequently been re-classified as being undifferentiated (units 4-9) (Crame 

et al., 2004). Note that Tobin et al. (2012) continue to refer to the upper “molluscan 

units” (units 7–10), which become increasingly fossiliferous through units 9 and 10. In 

contrast, (Crame et al., 2004) suggested that a slight decrease in grain size above the 

underlying Haslum Crag Member of the Snow Hill Island Fm. (as noted by Pirrie et al., 
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1997), together with the poorly fossiliferous nature of this portion of the succession 

represented deep water shelf conditions. Stratigraphically higher, the mid-upper portion 

of the formation represents an overall transgression with the establishment of mid to 

outer shelf facies (Macellari, 1988; Crame et al., 2004; Olivero et al., 2008; Olivero, 

2012). 

The base of a prominent series of glauconite horizons ~1000 m above the base of 

the sequence (Figure 1-3) was interpreted as being equivalent to the ‘K–T glauconite’ 

succession described by Zinsmeister (1998) and coincides with a distinct change in 

both macro and microfossil faunas and floras (Elliot et al., 1994; Zinsmeister, 1998; 

Crame et al., 2004; Stilwell et al., 2004; Bowman et al., 2012; Witts et al., 2015). The 

base of this glauconite-rich interval contains an iridium (Ir) spike and the first 

appearance of the dinoflagellate cyst Senegalinium obscurum, markers used by 

previous authors to locate the K–Pg boundary on Seymour Island (Elliot et al., 1994; 

Crame et al., 2004; Bowman et al., 2012). This horizon was also the contact between 

informal mapping units ‘Klb9’ and ‘Klb10’ (Macellari, 1988; Sadler, 1988). Above this 

the 50 to 70 m thick unit ‘Klb10’ is made up of brown/grey mudstones and siltstones 

with scattered concretions and a distinctive macrofossil fauna (Macellari, 1988; Crame 

et al., 2004; Montes et al., 2010; Tobin et al., 2012; Crame et al., 2014; Little et al., 

2015; Tobin and Ward, 2015; Witts et al., 2015; Petersen et al., 2016). 

Principally comprising siltstones with a larger percentage of sandstones and 

concretionary layers than the lower units, these upper units are interpreted as 

transgressive over the lower group, and were deposited in shelf and slope facies at 

water depths between 100 and 200 m (Macellari, 1988; Olivero, 2012). Although 

largely homogeneous the succession also contains occasional sandstone beds 

interspersed with the dominant finer-grained lithologies and discrete layers of early 

diagenetic concretions, some of which contain well preserved macrofossils (Pirrie and 

Marshall 1991; Tobin et al., 2012). No sedimentological or palaeontological evidence 

has been reported for any major hiatuses in the López de Bertodano Fm. on Seymour 

Island (McArthur et al., 1998; Crame et al., 1999; McArthur et al., 2000; Dutton et al., 

2007; Tobin et al., 2012). 

1.4 Palaeontology 

Macrofossil rich beds are common in the upper parts of the sequence that 

correspond to the informal units 6-9 (Macellari, 1988) and that were later described as 

‘undifferentiated’ (Crame et al., 2004) (Figure 1-3). Based upon the macrofossils 

available for this study there was a marked reduction in suitable specimens in the lower 

300 m section of the stratigraphy. The López de Bertodano Fm. contains a relatively 
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low diversity but abundant invertebrate and vertebrate macrofauna, a macroflora 

(calcified fossilised wood), a microfauna (including foraminifera and silicoflagellates) 

and a microflora (marine and terrestrial palynomorphs) ([Ammonoidea, Rotularia] 

Macellari, 1984, 1986; Witts et al., 2015; [Bivalvia] Askin, 1988a; Macellari, 1988; 

Zinsmeister and Macellari, 1988; Zinsmeister et al., 1989a; Little et al., 2015; 

[Nautiloidea] Cichowolski et al., 2005; [Palynomorphs] Thorn et al., 2008, 2009; 

Bowman et al., 2012). The invertebrate fauna includes ammonites, bivalves, 

gastropods, echinoids, corals, serpulid worms – Rotularia, vertebrate macrofossils 

included marine reptiles, fish and sharks. Macrofossil specimens and sediment 

samples were collected at 0.25 to 2 m intervals throughout the sequence, allowing an 

assessment of changes in marine diversity and community composition through time 

(Stillwell, 2003; Crame et al., 2004; Thorn et al., 2008, Witts et al., 2015). Many of the 

molluscan macrofossils retained original aragonite nacre shell material and in most 

cases exhibited a good state of shell preservation (Figure 1-5). The preservation state 

of the aragonite nacre indicated that individual specimens had not been subject to 

significant diagenesis (Tobin et al., 2012; Witts et al., 2015; Petersen et al., 2016). See 

Chapter 3 for further information regarding the screening and selection of specimens 

exhibiting minimal evidence of diagenetic features. Many of the best preserved 

specimens exhibited bright nacreous shell layers with colours more reminiscent of the 

‘Mother of Pearl’ from shells of extant molluscs, see Figure 1-5(b, c and d).  

Whilst an abundant fauna was recorded from the succession, for the purposes of the 

stable isotope analysis a key requirement was for a molluscan fauna, namely bivalves, 

cephalopods and gastropods. A distinct ‘recovery fauna’ (Stilwell, 2003; Crame et al., 

2004, 2014) was identified in the earliest Paleogene sediments informally identified as 

‘Klb10’ (Macellari, 1988), which indicated a domination of deposit feeders over 

suspension feeders characterised by a sharp increase in gastropod species (Crame et 

al., 2014). First indications are that taxonomic diversity levels recovered relatively 

quickly across the K-Pg boundary (Stillwell, 2003; Bowman et al., 2012) and this 

feature may stand in marked contrast to localities elsewhere in the world.  

A number of authors have published work on Cretaceous stable isotope research 

based upon the analysis of calcite and aragonite shell material from a molluscan fauna 

(Pirrie et al., 1998; Sial et al., 2001; King and Howard, 2005; Steuber and Rauch, 2005; 

Thomas et al., 2005; Steuber and Buhl, 2006; McArthur et al., 2007; Prokoph et al., 

2008; Tripati et al., 2010; Passey and Henkes, 2012; Tobin et al., 2012; Stevenson et 

al., 2014; Little et al., 2015; Tobin and Ward, 2015; Witts et al., 2015; Petersen et al., 

2016). For this study stable isotope analyses focussed on the abundant aragonite 
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nacre, the presence of which provided an indication of good diagenetic stability (see 

Chapter 3).  

 

  

Figure 1-5. Photographs of molluscan specimens from the López de Bertodano Fm., note the 
presence of well preserved nacreous aragonite shell material in the images. a) Bivalve genus - 
Solemya rossiana an infaunal thiotrophic chemosymbiont involved in the anaerobic oxidation of 
methane (Little et al., 2015). Specimen Id - D5.215.347.2/M. Scale bar 10 mm. b) Ammonite 
genus – Maorites densicostatus a nektonic carnivore, specimen Id - D5.219.1185.2/G. Scale 
bar ~20 mm. c) Ammonite genus – Pachydiscus a nektonic carnivore. Specimen Id - 
D5.222.1248.2/K. Field of view ~200 mm. d) Gastropod genus – Pleurotomaria an epifaunal 
scavenger/carnivore, specimen Id - D5.215.216.5/A. Scale bar 10 mm. 

a 

b 

c d 
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The extensive and unbroken thickness of the sequence on Seymour Island makes 

the late Maastrichtian – earliest Danian section the most important Austral location for 

palaeoenvironmental investigation of the K-Pg boundary and the associated extinction 

of marine and terrestrial taxa (Crame et al., 2004; Bowman et al., 2012; Tobin et al., 

2012; Little et al., 2015; Witts et al., 2015; Petersen et al., 2016).  

Table 1-2 lists a genus level identification of macrofossil specimens selected for 

analysis, where no genus level identification was possible aragonite nacre shell 

material was sampled as a source of ‘bulk’ samples. All selected specimens were 

analysed for δ18O and δ13C stable isotope data and a smaller subset were also 

analysed for 87Sr/86Sr isotope data. Both identified and unidentified samples of shell 

material were subject to an identical diagenetic screening process (see Chapter 3 and 

Appendices B, C and D for a detailed discussion). See Appendix G, Table G-1, for the 

distribution of identified macrofossils within the latest Maastrichtian Seymour Island 

succession. Note that the table does not represent the full range of identified individual 

specimens and that for clarity duplicate entries were removed. 

Table 1-2. Genus level identification of aragonite nacre bearing macrofossil specimens + 
aragonite nacre shell material where no genus level identification was possible that were 
analysed for δ

18
O and δ

13
C stable isotope data and for a smaller subset 

87
Sr/

86
Sr stable isotope 

data. Both identified and unidentified samples of shell material were subject to an identical 
diagenetic screening process (see Chapter 3 and Appendices B, C and D for a detailed 
discussion). See Appendix G, Table G-1 for the distribution of identified macrofossils within the 
latest Maastrichtian Seymour Island succession. Note that the table does not represent the full 
range of identified individual specimens and that for clarity duplicate entries have been 
removed.  

Genus Specimens Type 

Total specimens 213  

Diplomoceras lambi 1 Ammonite 

Grossouvrites 1 Ammonite 

Maorites 17 Ammonite 

Unidentified - Ammonite 9 Ammonite 

Eselaevitrigonia 43 Bivalve 

Lahillia 1 Bivalve 

Nucula 49 Bivalve 

Oistotrigonia 28 Bivalve 

Pinna 5 Bivalve 

Solemya rossiana 3 Bivalve 

Unidentified - Bivalve 22 Bivalve 

Amberlaya 14 Gastropod 

Unidentified - Gastropod 4 Gastropod 

Unidentified 10 Unidentified 

1.5 Project synopsis 

This project will contribute high resolution stable isotope data, interpreted 

palaeotemperatures and strontium isotope data to a NERC funded research project, 
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namely AFI 6/28 titled “Terminal Cretaceous climate change and biotic response 

in Antarctica”. The project investigated Latest Cretaceous to Earliest Palaeogene 

(~72-65.5 Ma) climates in the James Ross Basin, Antarctica. The extensive 

sedimentary sequence on Seymour Island, James Ross Basin, Antarctic Peninsula 

provided an opportunity to study the nature of high-latitude climate at the end of the 

Cretaceous period and in particular to test the hypothesis that the end-greenhouse 

climate was punctuated by conditions cold enough to allow short-term glacial 

conditions.  

Geological evidence suggested that after the peak Cretaceous greenhouse warmth 

(~90 Ma) climates cooled considerably during the Maastrichtian (~72-66 Ma) (Brentnall 

et al., 2005). Controversially, it has been argued that cooling was at times so severe 

that mountainous high latitude regions experienced short-term periods of glaciation, 

causing sea level changes worldwide (see Spicer and Parrish, 1990a,b; Miller et al., 

1999, 2003, 2005a,b; Kominz et al., 2008; Miller, 2009; Miller et al., 2011; Haq, 2014). 

Miller et al. (1999, 2005a) and Miller (2009) proposed that ice sheets in Antarctica 

during the Late Cretaceous - Eocene reached a maximum of 8 to 12 x 106 km3, a 

glacioeustatic equivalent of 20 to 30 m that was complemented by lowstand data 

reported by Haq (2014).  

 Palaeotemperature evidence for the possible presence of sea ice was reported by 

Petersen et al. (2016) where temperatures derived from clumped isotope analyses 

indicated low benthic temperatures of ~3 - 5°C and in some cases sub-zero 

temperatures. Bowman et al. (2013) proposed the development of winter sea ice 

determined from the palynomorph record of Seymour Island, Antarctica. The authors 

reported the dominance of the dinoflagellate cyst Impletosphaeridium clavus caused by 

the presence of cysts from dinoflagellate blooms associated with the decay of winter 

sea ice. They also reported that peaks and lows of Impletosphaeridium clavus 

abundance marked cold temporary stratification of polar waters, interposed with 

warmer periods when the ocean was well-mixed. Prior to the K-Pg boundary 

Impletosphaeridium clavus decreased dramatically in abundance possibly due to the 

onset of warming associated with Deccan Traps volcanism. Tobin et al. (2012) and 

Petersen et al. (2016) also proposed that there was evidence in the stable isotope 

record that suggested the presence of warming trends immediately prior to the K-Pg 

that were linked to warming associated with the onset of the Deccan Traps volcanism. 

Petersen et al. (2016) also stated that the temperature data indicated the presence of 2 

separate phases of warming prior to the K-Pg. Kemp et al. (2014) reported on MATs 

from the Late Maastrichtian – Paleocene of Seymour Island, the data demonstrate that 

MATs from the López de Bertodano and Sobral Formations averaged 12.4 ± 5 °C 
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based on MBT′/CBT analyses on terrigenous material. They authors also commented 

that paleotemperature estimates for this method may be biased toward summer month 

temperatures. 

The proposed presence of ice sheets suggested that short-term glacial climates may 

have punctuated supposedly stable warm climates (Haq, 2014). Such dramatic 

environmental change stressed the terrestrial and marine biota and made them 

particularly susceptible to extinction related to the global environmental catastrophe at 

the end of the Cretaceous. The youngest part of the sequence on Seymour Island 

includes the Cretaceous/Paleogene (K-Pg) boundary; however, previous terrestrial 

palynomorph studies suggested that there was relatively little evidence of any major 

environmental change affecting the region during this event (Askin and Jacobson, 

1996; Bowman et al., 2012). It was noted that the extensive Late Cretaceous section 

on Seymour Island that included the Cretaceous/Paleogene (K-Pg) boundary, was 

particularly suitable for the investigation of Maastrichtian palaeoenvironmental and 

climate change prior to the K-Pg event (Crame et al., 2004; Tobin et al., 2012; Tobin 

and Ward, 2015; Witts et al., 2015; Little et al., 2015; Petersen et al., 2016).  

Whilst both the base and the top of the Maastrichtian stage in Antarctica have been 

defined using strontium isotope stratigraphy (McArthur et al., 1998; Crame et al., 2004) 

the exceptional thickness of the section and the abundance of well preserved 

palaeontological material provide an opportunity for further high resolution dating within 

the Latest Maastrichtian stage. Indeed some parts of the Maastrichtian global 

Strontium Isotope Stratigraphy curve include data derived from the analysis of samples 

collected from the López de Bertodano Fm. on Seymour Island (McArthur et al., 1998 

and 2001). The determination of climate trends was enhanced by the relatively high 

latitude position of the basin (~65° palaeo-south, Lawver et al., 1992). Seasonality of 

temperature is expressed most strongly at the poles and, by extension, has a powerful 

effect on the distribution and productivity of global biota. Spicer and Parrish (1990a,b) 

stated that understanding the climate conditions at the poles was a necessary part of 

understanding the entire global climate system.  

During the 2006 Austral field season over 1100 m of the latest Cretaceous and 

earliest Palaeogene (Maastrichtian-Danian) sedimentary sequence on Seymour Island 

was measured, logged and sampled (Francis and Thorn pers. comm. 2008). The 

monotonous sequence of bioturbated muddy siltstones were sourced from the volcanic 

arc to the west that is represented by the Trinity Peninsula region and were 

subsequently deposited in a subsiding but rapidly filling marine basin, the James Ross 

Basin. 
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The Seymour Island sequence (see Figure 1-2(c) for the location of section lines) 

was exploited to obtain high resolution records of palaeontological and geochemical 

signals to:  

1. Investigate the nature of latest Cretaceous-early Palaeogene climate change 

at high Austral palaeolatitudes  

2. Test the hypothesis that ice was present at times and to test climate/ice-sheet 

model simulations  

3. Understand the environmental context in which the K-Pg extinctions occurred 

Ongoing studies of the fossil faunas, floras (palynology and wood), sediments and 

glauconite horizons indicate that environmental conditions changed on several scales 

during this period. The high latitude temperate marine fauna indicates a general 

shallowing in the depositional environment with periods of low oxygen bottom water 

conditions. At times the green iron enriched silicate mineral glauconite (McRae, 1972) 

was able to form, which indicated that sedimentation rates were periodically extremely 

low (Pirrie et al., 1994; Westermann et al., 2010), possibly due to highstands that may 

in turn indicate a glacioeustatic control on sea level with the growth and reduction of ice 

sheets (see Spicer and Parrish, 1990a,b; Miller et al., 1999, 2003, 2005a,b; Kominz et 

al., 2008; Miller, 2009; Miller et al., 2011; Haq, 2014).  

Initial palynomorph studies (Thorn et al., 2009; Bowman et al., 2012) indicated that 

the K-Pg boundary was marked by a transition in the marine dinoflagellate cyst flora 

that reflected unstable ocean palaeoecology after the K-Pg catastrophe. Conversely, 

there was little change in the terrestrial palynology across the K-Pg, with only a 

gradual increase in angiosperm pollen noted into the Danian (Thorn et al., 2009; 

Bowman et al., 2012).  

Climate simulations for the Maastrichtian using a fully coupled ocean-atmosphere 

global climate model HadCM3L were performed to understand the global context 

(Sellwood and Valdes, 2006). Results indicated that a modern Greenland size ice 

sheet may have been present on East Antarctica with atmospheric CO2 concentrations 

equivalent to 4 x pre-industrial level (Sellwood and Valdes, 2006). These results 

tentatively suggested that bipolar glaciation was possible even during the Late 

Cretaceous.  

1.5.1 Layout of chapters and appendices 

The organisation of chapters within this thesis reflects the following structure: 

• Chapter 1 provides a general introduction and overview of the research project 

including details of the primary research aims, the logistics and broad 
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methodologies employed during the various phases of investigation and 

analysis of the collected palaeontological specimens and materials.  

• Chapter 2 provides a literature review tracing the key achievements in the field 

of geochemical proxies for palaeothermometry and their application to the study 

of palaeotemperatures and palaeoenvironmental research and in particular the 

study and implementation of proxy methods utilising the stable isotopes of 

carbon and oxygen. Also including the development and application of ‘clumped 

isotope’ analysis and the continuing development of organic geochemical 

proxies such as TEX86 and U37
k’. A synthesis of the current state of knowledge 

relating to Cretaceous climates and especially of previous research relating to 

the Maastrichtian/Danian of the James Ross Basin Is also included. 

• Chapter 3 provides an introduction and overview of the diagenetic screening 

methodology employed during the selection and preparation of aragonite 

samples for analyses. The chapter also discusses the implementation of a 

screening index consisting of a score-based approach utilising textural, 

mineralogical and geochemical analysis. A number of different techniques were 

available that indicated whether shell material had been subject to diagenesis. 

Results of the diagenetic screening techniques that were specified in 

Appendices B, C and D determined whether samples were finally selected for 

inclusion in the stable isotope analyses. Techniques employed included: optical 

microscopy, carbonate staining, imaging of shell ultrastructure using scanning 

electron microscopy, cold cathodoluminescence, identification of shell 

mineralogy utilising X-ray diffraction and semi-quantitative E(nergy) D(ispersive) 

S(pectrometry) investigation of shell chemistry using scanning electron 

microscopy and ICP-OES/MS techniques. Finally the chapter presents a brief 

introduction to the diagenetic screening of the carbon and oxygen stable 

isotope data with special emphasis placed on the effectiveness of screening low 

magnesium calcite (LMC) from the overall data set. Further discussion of the 

selection process that determined whether individual δ18O and δ13C stable 

isotope pairs were considered as being diagenetically least altered and 

therefore suitable for palaeotemperature determination. 

• Chapter 4 provides an introduction and overview of the methodologies used for 

the analysis of carbon and oxygen stable isotopes from screened aragonitic 

molluscan shell material. The stable isotope processing carried out at the stable 

isotope laboratory in the School of Earth and Ocean Sciences, University of 

Liverpool is described. Plus a further discussion of the significance of the stable 

isotope and palaeoclimate data generated. Finally the chapter discusses a 
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comparison of the data from this study with that from recent studies from the 

Latest Maastrichtian of Seymour Island (Tobin et al., 2012; Tobin and Ward, 

2015; Little et al., 2015; Petersen et al., 2016) plus a comparison with published 

palaeotemperature data from the Boreal realm.  

• Chapter 5 describes previous work carried out on marine strontium isotope 

stratigraphy (SIS) in the James Ross Basin, the adopted methodology, 

selection and preparation of samples for 87Sr/86Sr analysis. Followed by a 

discussion of the data generated and the nature of the correlation with other 

published strontium isotope stratigraphy for the Latest Maastrichtian. 

• Chapter 6 discusses the findings presented in this thesis document and 

presents the primary conclusions drawn from this study. Also described is a 

plan for the writing up of the research and the scope for future research work 

associated with the project. 

• Appendix A describes the selection and identification methodologies for 

individual specimens 

• Appendix B introduces the diagenetic screening adopted to ensure that sample 

powders submitted for stable isotope analysis were not subject to any 

substantial diagenetic signature. The SEM imaging of shell microstructure is 

described and the final digenetic screening data are presented. 

• Appendix C describes the XRD data 

• Appendix D lists the trace element geochemical data. 

• Appendix E lists the stable isotope data 

• Appendix F lists the strontium isotope data 

• Appendix G lists the palaeontology data 

• Appendix H lists the primary analysis data, representing a sub-set of all data 

held in the main Excel database. 

1.5.2 Research Publications 

Since the project data set conveniently splits into a number of discrete areas actual 

results will be published as a series of manuscripts for publication. Topics to be 

covered include: 

1. An overall discussion of the oxygen and carbon stable isotope data and 

interpreted palaeotemperatures. 

2. A discussion of the wide variability seen in the oxygen and carbon stable 

isotope data at individual stratigraphic levels in comparison with the overall 

variability seen for the full succession. 
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3. A discussion of the preservation of molluscan aragonite nacre from Seymour 

Island. 

4. A discussion of the 87Sr/86Sr data and how well they correlate with the published 

global marine Strontium Isotope Stratigraphy curve. 

 

An oral presentation of preliminary findings titled ‘Late Maastrichtian stable isotope 

data, Seymour Island, Antarctica’ was presented at the 8th International Symposium 

on the Cretaceous System (ISCS) at the University of Plymouth in September 2009. A 

further poster presentation titled ‘Latest Maastrichtian - Earliest Danian stable 

isotope data, Seymour Island, Antarctica’ describing the stable isotope data from 

this research was presented at the 11th International Symposium on Antarctic Earth 

Sciences, University of Edinburgh in July 2011. 
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2 Late Cretaceous climate of the James Ross Basin 

2.1 Introduction 

This chapter introduces the nature of the late Cretaceous climate together with a 

number of related topics that include information about climate modelling and how well 

the output from models agrees with the geological record. Also discussed are the 

various palaeoproxies that can be employed to assess the nature of a palaeoclimate 

using palaeobotany, palynology, glacioeustacy and global sea level as well as the 

distribution of temperature dependent sediments. The nature and cyclicity of changes 

to global sea level are discussed with evidence of orbital forcing (Milankovitch) and 

how some of the other proxies correlate with the presence and influence of changes to 

insolation. Other geochemical palaeoproxies including trace element and stable isotope 

data will be discussed in Chapters 3 and 4 respectively.  

A key question for the late Maastrichtian climate is whether evidence exists for the 

development of icesheets and their areal extent on Antarctica together with supporting 

evidence from other proxies. A number of authors have discussed aspects of the 

Cretaceous climate (for example Li and Keller, 1999; Craggs, 2005; Hay, 2008; Keller, 

2008; Thorn et al., 2008; Zakharov et al., 2011; Hay and Floegel, 2012; Dennis et al., 

2013). Study of past climate change provides a valuable tool towards an understanding 

of current climate change (Hay, 2011). The importance of polar regions for climate 

sensitivity are well documented (Goody, 1980; Manabe and Stouffer, 1980; Florindo et 

al., 2003). The interpretation of marine palaeotemperatures from the Latest 

Maastrichtian of the James Ross Basin may be relevant to the modelling of likely future 

climate change during the remainder of the 21st and subsequent centuries. A slight 

modification to and an expansion of the ‘Principle of Uniformitarianism’ yields the 

statement that: ‘The present is the key to the past and the past may indeed be a 

potential key to the future’.  

The Cretaceous has been described as having experienced a ‘greenhouse’ climate 

(Hallam, 1985). Whilst this may be true in general evidence exists that the Cretaceous 

climate regime was not always equable and stable with higher mean temperatures than 

at present and characterised by a low polar – equatorial latitudinal temperature 

gradient, (Pirrie and Marshall, 1990; Huber et al., 1995; Hay, 2011). A latitudinal 

temperature range of 14°C was quoted by Huber et al. (1995) for the Cretaceous, in 

contrast to the present day range of 30°C (Veizer and Prokoph, 2015). The possibility 

that polar ice sheets existed during the Cretaceous was also dismissed as being 

unlikely (Hallam, 1985). Later research (Alley and Frakes, 2003; Miller et al., 2005a; 
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Spicer and Herman, 2010; Bowman et al., 2013; Petersen et al., 2016) suggested that 

polar ice sheets might have existed during the Cretaceous and that if the James Ross 

Basin developed ice sheets during the late Cretaceous then a reassessment may be 

required regarding the overall nature of the Cretaceous climate and the extant climate 

forcing mechanisms. Assumptions concerning the geochemistry, in particular the nature 

of the δ18Owater value for the Cretaceous seawater, might also require amendment (Price 

et al. 2000; Petersen et al., 2016) along with subsequent re-interpretation of 

palaeotemperatures.  

More recent techniques including ‘Clumped Isotope’, TEX86 and U-37(K') offer the 

opportunity to derive sea water temperatures independent of the δ18Owater composition of 

the ocean waters. With values for the temperature and the δ18OCarbonate composition of 

shell material these techniques also enable the calculation of the original δ18Owater 

composition of the ocean.  

2.2 Climate proxies 

Palaeoenvironmental proxies provide a potential window into the palaeoclimatic 

conditions that existed in the past. This section will discuss the nature and usefulness 

of a number of proxies, the majority of which require calcite or aragonite but there are a 

number of proxies now in common use that work on either a molecular basis or on the 

analysis of fossil wood and leaf characteristics. Evidence for past climates comes from 

various geological proxies, amongst which the are the distribution of certain distinctive 

temperature sensitive sedimentary rock types, for example tillites, coals, evaporites, 

bauxites and laterites (Craggs et al., 2012) and the fossils of climate sensitive flora and 

fauna. Geochemical data also enable an estimation of specific aspects, such as 

temperature and seasonal patterns of rainfall and weathering. Such evidence shows 

that the Earth commenced a broadly warming trend, with notable oscillations, as with 

global sea-level through the Mesozoic. At no time during that era did polar glaciers ever 

develop on a large scale. Mean global temperatures appear to have reached a 

maximum in the earlier part of Late Cretaceous times, when it is probable that polar ice 

was entirely absent at sea level although there was some cooling towards the end of 

the Cretaceous (Skelton 2003).  

Since there is evidence for the presence of ice sheets, however limited in areal extent, 

during the Cretaceous (see Miller et al., 1999, 2003, 2005a,b; Haq, 2014) it follows that 

a re-evaluation of the δ18Owater of the Cretaceous ocean, influenced in part by the 

presence or absence of polar ice, must be made. Seawater on Earth, during periods that 

were free from major icecaps would have been isotopically lighter than at present and a 

δ18Owater of -1.2‰, (equivalent to -1.0‰, SMOW), has previously been suggested as 



High palaeolatitude record of Late Maastrichtian – Early Danian climate change, Seymour 

Island, Antarctica 

Page 35  

appropriate. If small icecaps were present during the early Cretaceous the δ18Owater of a 

Cretaceous ocean may have been slightly heavier (Price et al., 2000). Note that the 

value of δ18Owater may also reflect more localised variation, for example due to fresh 

water runoff as proposed by Petersen et al. (2016). 

Palaeotemperature evidence for the possible presence of sea ice was reported by 

Petersen et al. (2016) where temperatures derived from clumped isotope analyses 

indicated low benthic temperatures of ~3 - 5°C and in some cases sub-zero 

temperatures. Bowman et al. (2013) proposed the development of winter sea ice 

determined from the palynomorph record of Seymour Island, Antarctica. The authors 

reported the dominance of the dinoflagellate cyst Impletosphaeridium clavus caused by 

the presence of cysts from dinoflagellate blooms associated with the decay of winter 

sea ice. They also reported that peaks and lows of Impletosphaeridium clavus 

abundance marked cold temporary stratification of polar waters, interposed with 

warmer periods when the ocean was well-mixed. Prior to the K-Pg boundary 

Impletosphaeridium clavus decreased dramatically in abundance possibly due to the 

onset of warming associated with Deccan Traps volcanism. Tobin et al. (2012) and 

Petersen et al. (2016) also proposed that there was evidence in the stable isotope 

record that suggested the presence of warming trends immediately prior to the K-Pg 

that were linked to warming associated with the onset of the Deccan Traps volcanism. 

Petersen et al. (2016) also stated that the temperature data indicated the presence of 2 

separate phases of warming prior to the K-Pg. Kemp et al. (2014) reported on MATs 

from the Late Maastrichtian – Paleocene of Seymour Island, the data demonstrate that 

MATs from the López de Bertodano and Sobral Formations averaged 12.4 ± 5 °C 

based on MBT′/CBT analyses on terrigenous material. The authors also commented 

that paleotemperature estimates for this method may be biased toward summer month 

temperatures. 

2.2.1 Palaeobotany 

Palaeobotanical and palynological evidence indicated that deciduous trees were 

present at higher latitudes than at the present day (Francis, 1986; Frakes and Francis, 

1990; Francis and Poole, 2002; Francis et al., 2006, 2008; Thorn et al., 2008, 2009; 

Bowman et al., 2012, 2013). Work based on the analysis of tree growth rings clearly 

showed that climate conditions during the Campanian-Maastrichtian included periods 

of either intense aridity or freezing. Palaeobotany has furnished substantial evidence 

that glacial or at least freezing conditions existed at the poles during the late 

Cretaceous (Bowman et al., 2013).  
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The presence of plant remnants in southern high palaeolatitude environments gave 

rise to the ‘Antarctic climate paradox’ in that despite the present day continent having a 

freezing climate and a substantial ice cap, some of the most common fossils preserved 

in its rock record are those of ancient plants (Francis et al., 2008). These plant fossils 

indicate a world with globally warm (Hallam, 1985; Francis et al., 2008; Hay, 2011) and 

generally ice-free climates, with dense vegetation flourishing close to the poles (see 

Francis, 1986; Frakes and Francis, 1990; Francis and Poole, 2002; Francis et al., 

2006, 2008; Thorn et al., 2008, 2009; Bowman et al., 2012, 2013). However, evidence 

from research into sea level perturbations indicates that the globally warm climate in 

the southern high palaeolatitudes was punctuated by the development of significant ice 

sheets (see Miller et al., 1999, 2003, 2005a,b). What mechanisms were driving these 

cool spells during the Late Cretaceous greenhouse climate?  

Palaeobotany helps to furnish data about terrestrial climates in high latitudes, the 

regions on Earth most sensitive to climate change (Goody, 1980; Manabe and Stouffer, 

1980; Florindo et al., 2003). Although plants of Permian and Triassic age provide a 

signal of terrestrial climates for the Transantarctic region (Taylor and Taylor, 1990; 

Francis et al., 2008), it was during the Cretaceous that the Antarctic continent reached 

a position over the South Pole (Lawver et al., 1992; Torsvik et al., 2008). With 

intermittent ice cover Cretaceous vegetation flourished at high latitudes, the nature of 

the terrestrial Antarctic climate during the Cretaceous greenhouse has been illustrated 

by the substantial record of plant remains including wood, fossil leaves, flowers and 

pollen (Francis et al., 2008). Different patterns of growth rings in fossil wood from the 

Eromanga Basin, Southern Australia were interpreted as indicating two populations 

reflecting different climate regimes, the growth rings were well defined in both 

indicating distinct seasonal climate conditions (Marshall et al., 1993). But the ring 

widths and therefore growth rates were markedly different, these wood data were 

interpreted as representing seasonal climates with the two populations representing 

growth in cool upland and warmer lowland climates respectively (Marshall et al., 1993).  

Spicer and Parrish (1990a,b) described analyses of plant community structure, 

vegetational and leaf physiognomy and growth rings and vascular systems in wood 

from the North Slope, Alaska. They showed that qualitative and quantitative data could 

be combined to define non-marine palaeoclimate parameters with better resolution 

than those available from sedimentological methods (see Herman and Spicer, 1997; 

Kennedy et al., 2002; Craggs, 2005; Spicer et al., 2009; Spicer and Herman, 2010; 

Tomsich et al., 2010). 

Application of these techniques to Cretaceous floras from high palaeolatitudes (75º - 

85º N) imply a polar light regime similar to that of the present day, plant data suggested 
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Mean Annual air Temperatures (MATS) ranging from 13ºC to 5ºC in the Coniacian and 

Maastrichtian (see Spicer and Parrish, 1990a,b; Herman and Spicer, 1997; Craggs, 

2005; Spicer and Herman, 2010; Tomsich et al., 2010; Craggs et al., 2012). 

Evapotranspirational stresses at sea level were low and precipitation was in most part 

uniform throughout the growing season in the Cenomanian, with possible seasonal 

drying occurring by the Maastrichtian. Maastrichtian winter freezing was likely, but 

periglacial conditions did not exist at sea level (see Spicer and Parrish, 1990a,b). 

Permanent ice was likely above 1000 m at 85º N in the Maastrichtian. These near-polar 

data provided critical constraints on global models of Late Cretaceous climates (Spicer 

and Parrish, 1990a,b). Studies of polar vegetation in Alaska whilst not directly 

supporting evidence for the development of ice sheets indicated that seasonal climate 

conditions exhibited MATs well below freezing (see Spicer and Parrish, 1990a,b; 

Herman and Spicer, 1997; Craggs, 2005; Spicer and Herman, 2010; Tomsich et al., 

2010). Applying an adiabatic lapse rate of ~6ºC km-1 (Strahler and Archibold, 2011) to 

Antarctica indicated that localised ice sheets may have been present during the Late 

Maastrichtian, the presence of which were also indicated by evidence of sea level 

changes (Miller et al., 1999, 2003, 2005a; Haq, 2014), proposed development of winter 

sea ice derived from analysis of palynological data (Bowman et al., 2013) and clumped 

stable isotope data based upon the analysis of of bivalve shell material (Petersen et al., 

2016). 

The presence of montane ice has important consequences for climate modelling. 

Significant year-round montane ice and seasonal ice at sea level would greatly raise 

the albedo at these critical high latitudes (Spicer and Parrish, 1990a,b). However, 

analysis of fossil wood (Francis, 1986; Frakes and Francis, 1990; Francis and Poole, 

2002; Francis et al., 2006, 2008) and palynology (Thorn et al., 2007, 2008; Bowman et 

al., 2012, 2013) from Antarctica indicated that the climate was sufficiently warm for 

trees to flourish at palaeolatitudes of 59° - 62°S.  

2.2.2 Stable isotopes as palaeoclimate proxies 

For an overall introduction to the rationale behind the investigation of palaeoclimate 

proxies and palaeothermometry then perhaps no better description exists than that as 

stated by Urey (1947) - ’It would be interesting indeed to know not only the mean 

temperature but also the variations of temperature on an ancient beach… However, too 

much optimism is not justified, for all the thermometers may be destroyed’.  

Analysis of carbon and oxygen stable isotopes from biogenic carbonate sources has 

generally been carried out using calcite as the source shell material. However, the 

paucity of calcite bearing macrofossils from the BAS collection together with a strong 
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correlation between calcite shell material and excessive diagenetic trace element levels 

(see Chapter 3 and Appendix D) indicated that there were good reasons in this study 

for the rejection of calcite for stable isotope analysis. The good preservation of the 

aragonitic macrofossil specimens collected from Seymour Island, Antarctica have 

made it possible to carry out a high resolution analysis of carbon and oxygen stable 

isotopes from aragonite alone. Benefits of this approach included a more 

straightforward sample selection and screening process and more direct diagenetic 

checks of the material selected, for a discussion of the diagenetic screening see 

Chapter 3 and Appendix B for details of the actual diagenetic methodology and 

analysis together with the data recorded.  

Pirrie et al. (1993) and Ditchfield et al. (1994) presented results of oxygen isotope 

studies of diagenetically unaltered macrofossils from James Ross Island, Antarctica. 

Their data suggested that the Late Cretaceous climate was cooler and more variable 

than previously thought, also that during both the Early and Late Cretaceous polar 

glaciation may have occurred during a period of 'greenhouse' climate. For example, 

well constrained stable isotope data from the Albian of Australia suggested relatively 

cool palaeotemperatures at mid to high palaeolatitudes and supported published 

Cretaceous marine latitudinal temperature gradients of ~2ºC per 10º of latitude (Pirrie 

and Marshall 1990). The data provided the first direct evidence using reliable oxygen 

isotope data for cool climates in the Albian of Australia (Pirrie et al., 1993; Ditchfield et 

al., 1994). Li and Keller (1999) quoted two separate latitudinal temperature ranges, 

determined by whether the temperatures related to warm or cold intervals, with each 

range divided in two depending upon latitudinal position: 

Warm intervals 0.01 – 0.06ºC/1º latitude (low/middle)  

0.15 – 0.29ºC/1º latitude (middle/high) 

Cool intervals 0.03ºC/1º latitude (low/middle) 

0.17 – 0.18ºC/1º latitude (middle/high) 

Jenkyns et al. (2004) reported a latitudinal gradient of ~15ºC for low to high latitudes 

during the Late Maastrichtian from the Arctic. 

A primary requirement for evaluation of palaeotemperature using oxygen isotope 

ratios is that the biogenic carbonate was precipitated in isotopic equilibrium (Weiner 

and Dove 2003) with respect to the seawater (Tripati et al., 2010). A number of authors 

have published research which indicated that precipitation of biogenic carbonates in 

isotopic equilibrium may not always be the norm and that in certain cases temperature 

proxies may show evidence for biological isotopic fractionation (‘vital effects’) 

(Shackleton and Opdyke, 1973; Marshall et al., 1996; Bemis et al., 1998; Tripati et al., 

2010; Lécuyer et al., 2012). The data described in Marshall et al. (1996) are particularly 
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relevant since they deal with an extant fauna from Antarctica. The precipitation of the 

biogenic carbonate should, ideally, have taken place all year round and over a number 

of years. If these conditions were met then it was likely that isotopic variations did 

indeed reflect long-term temperature variability or variability in the isotopic 

concentration of seawater. However, consider the contrary requirements for 

ontogenetic sampling, where the intention is to measure the isotopic signals that reflect 

intra-annual variability that were either seasonal or growth related (see Lukeneder et 

al., 2010).  

The estimation of seawater δ18Owater values for the Cretaceous can be problematic 

because of uncertainties relating to the presence or absence of polar ice and the 

possibility of an equator-to-pole change in the isotopic composition of seawater. 

Superimposed upon this potential variability is the possibility of local isotopically light 

precipitation or freshwater runoff entering the marine system, which may account for 

some of the fluctuations of isotopic values (Price et al., 2000; Petersen et al., 2016). A 

description of proxy techniques that offer an opportunity to dispense with this 

requirement are discussed in subsequent sections that describe the use of ‘Clumped’ 

Stable Isotopes and the TEX86 proxy.  

2.2.3 Aragonite palaeothermometry 

Palaeotemperatures may be calculated using the following aragonite 

palaeothermometry equation (Grossman and Ku, 1986) modified by Lukeneder et al. 

(2010). 

T°(C) = 20.6 – 4.34 (δ18Oaragonite− [δ18Owater−0.2]), Eqn (1)  

Where the δ18Oaragonite term represents the oxygen isotopic composition of aragonite 

with respect to the international VPDB standard and the δ18Owater term represents the 

oxygen isotopic composition of the seawater from which the aragonite was precipitated 

with respect to the Surface Mean Ocean Water (SMOW) standard. In order to calculate 

palaeotemperatures a δ18Owater value for the Cretaceous ocean must be quantified with 

the assigned value influenced by the presence or absence of polar ice. Price et al. 

(2000) suggested the following values for δ18Owater: 

• δ18Owater = -1.2‰, (equivalent to -1.0‰ SMOW) - No major icecaps and 

seawater that was isotopically lighter than at present  

• δ18Owater = -0.9‰, (equivalent to -0.7‰ SMOW)  -  Small polar ice sheets were 

present at altitude and the seawater may have been slightly heavier. 

• δ18Owater = -1.5‰, (equivalent to -1.3‰ SMOW)  - Freshwater run off.  

The ability to calculate a seawater temperature without requiring a value for the 

δ18Owater also offers the possibility of directly deriving a value for δ18Owater through a 
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rearrangement of terms in Eqn 1. Thus for a measured ‘Clumped Isotope’ temperature 

and corresponding δ18Oaragonite value  the derivation of δ18Owater may be calculated from 

Equation 2.  

δ
18Owater = 1 / 4.34 (T°‘Clumped Isotope’ - 20.6) + δ18Oaragonite + 0.2 Eqn (2) 

Petersen et al. (2016) discussed the selection of a suitable Late Maastrichtian value 

for δ18Owater for Seymour Island, Antarctica; the authors suggested that the choice of 

any single fixed value for δ18Owater might be erroneous especially given the wide 

variability in their δ18O data. They suggested that a δ18Owater value of -1.2‰ was 

restrictive since it failed to represent the true nature of the modified δ18Owater isotopic 

signature that resulted from surface run off, see Table E-6 for the δ18Owater values 

derived from their clumped isotope analyses. The adoption of a single fixed δ18Owater 

value had the effect of significantly reducing the overall range of temperatures at any 

particular stratigraphic horizon (Petersen et al., 2016). 

In the absence of temperature data derived from the analysis of either clumped 

isotope or suitable molecular proxies the value of δ18Owater used will always be an 

estimate. Thus for a new marine, fluvial or lacustrine temperature proxy a key goal was 

to dispense with the requirement for a δ18Owater term in the temperature calculation.  

2.2.4 Clumped Stable Isotopes 

Clumped isotope geochemistry (Ghosh et al., 2006; Schauble et al., 2006 and Eiler 

2007) is concerned with the state of ordering of rare isotopes in natural materials. The 

technique examined the extent to which rare isotopes (e.g. D, 13C, 15N, 18O) bond with 

or near each other rather than with the sea of light isotopes in which they swim 

(Schauble et al., 2006). Abundances of isotopic ‘clumps’ in natural materials are 

influenced by a wide variety of factors. In most cases, with concentrations that 

approached (within ca. 1%, relative) the amount expected for a random distribution of 

isotopes. Deviations from this stochastic distribution resulted from factors that included 

enhanced thermodynamic stability of heavy-isotope ‘clumps’ and slower kinetics of 

reactions requiring the breakage of bonds between heavy isotopes. In carbonates rare 

heavy isotopes (13C and 18O) occurred in a pool of abundant light isotopes, the 

proportion of 13C and 18O that were bound to each other within the carbonate mineral 

lattice was predicted to be temperature dependent based upon principles of statistical 

thermodynamics (Schauble et al., 2006). The equilibrium constant for the following 

reaction  formed the theoretical basis for the carbonate ‘clumped isotope’ thermometer 

(Schauble et al., 2006): 

Ca12C18O16O2 + Ca13C16O3 ←→ Ca13C18O16O2 + Ca12C16O3, (Reaction 1) 
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The temperature-dependent ‘clumping’ of heavy isotopes into bonds with each other 

is driven by subtle vibrational energy differences between isotopologues. Although 

clumped isotope geochemistry is a relatively young field, it appears that proportions of 

13C–18O bonds in carbonate minerals are sensitive to their growth temperatures, 

independent of bulk isotopic composition. Thus, ‘clumped isotope’ analysis of ancient 

carbonates can be used as a quantitative palaeothermometer that requires no 

assumptions about the δ18O of waters from which carbonates were precipitated. 

Current analytical methods limit precision of this palaeothermometer to ca. ± 2°C, 1σ 

(Ghosh et al., 2006). This technique has been used to reconstruct marine temperatures 

across the Phanerozoic, terrestrial ground temperatures across the Cenozoic, thermal 

histories of aqueously altered meteorites, diagenesis of carbonatites and the 

development of new 'clumped' isotope techniques, for example the analysis of siderite 

as a proxy for humid continental environments amongst many other applications (see 

[Methodology] Eiler 2006, 2007; Ghosh et al., 2007; Affek et al., 2008; Eiler et al., 

2008, 2010; Bernasconi et al., 2011; Eiler 2011; Grauel et al., 2013; Eiler et al., 2014; 

Fernandez et al., 2014; [Diagenesis] Dennis and Schrag 2010; [Geochemistry] Ferry 

et al., 2011; [Palaeoclimate] Came et al., 2007; Snell et al., 2007; Affek et al., 2008; 

Huntington et al., 2008, 2010; Tripati et al., 2010; Csank et al., 2011; Dennis et al., 

2013; Grauel et al., 2013; Henkes et al., 2013; Fernandez et al., 2014; Gothmann et 

al., 2015; Petersen et al., 2016; [Mass extinction] Brand et al., 2012; Petersen et al., 

2016).  

The data presented by Petersen et al. (2016) were particularly relevant since they 

were derived from the analysis of Maastrichtian bivalve specimens from Seymour 

Island. Petersen et al. (2016) also reported on calculated values for δ18Owater (see Table 

E-6) for their measured stratigraphy that terminated at ~600 m (BAS D5 stratigraphy).  

Unfortunately this was approximately 300 m above the position of the lowest specimen 

selected for stable isotope analysis in this study. They concluded that the wide 

variability in their data was attributable to alteration of the δ18Owater by freshwater run-off 

with temperatures reflecting changes to the δ18O ratio of the seawater.  

2.2.5 Molecular Proxies 

A number of current molecular palaeotemperature proxies do not require the oxygen 

isotope ratio of the seawater and provide a direct determination of the water 

temperature.The fundamentals of these methods are the establishment of molecular 

parameters, compound abundances and carbon, hydrogen, nitrogen and oxygen 

isotopic contents derived by the analysis of sediment extracts (Schouten et al., 2007; 

Eglinton and Eglinton, 2008). These parameters may then be interpreted as proxy 
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measures that in turn define the climate conditions operating at the time (Schouten et 

al., 2007; Eglinton and Eglinton, 2008). Environmentally persistent organic molecules 

derived from either plant remains that provide a measure of terrestrial climatic 

conditions, e.g. long chain (circa C30) hydrocarbons, alcohols and acids remnants of 

leaf wax compounds, or marine proxies based upon membrane lipids derived from 

marine plankton, in particular Crenarchaeota (Schouten et al., 2007; Eglinton and 

Eglinton, 2008) that are measures of sea surface temperatures (SST). Marine proxies 

include UK37, based on the relative abundances of C37 alkenones photosynthesised by 

unicellular algae, members of the Haptophyta and TEX86, based on C86 glycerol 

tetraethers (GDGTs) synthesised by some of the archaeal microbiota, the 

Crenarchaeota and the methylation index of branched tetraethers/cyclization ratio of 

branched tetraethers (MBT/CBT) (Hopmans et al., 2004; Schouten et al., 2007; 

Eglinton and Eglinton, 2008; Kemp et al., 2014). The TEX86 parameter has also been 

shown to be insensitive to salinity or depositional redox conditions (Wuchter et al., 

2004).  

The application of terrestrial (lacustrine, ice cores and terriginous materials) and 

marine molecular records have proven to be of value as palaeoclimate proxies 

(Jenkyns et al., 2004; Herfort et al., 2006; Schouten et al., 2007; Kim et al., 2008; 

Mutterlose et al., 2010). Although not directly relevant to this study, one major 

advantage of these molecular proxies is that they are not dependent upon the 

presence of carbonate fossil material and thus offer an opportunity to provide 

palaeotemperatures from anoxic mud rich sediments (Jenkyns et al., 2004; Schouten 

et al., 2007). The relationship between the TEX86 value and temperature (Wuchter et 

al., 2005) is described by the following equation: 

TEX86 = 0.0015 * T + 0.28  

Where T (°C) = annual mean Sea Surface Temperature (SST). 

Jenkyns et al. (2004) reported on the close correlation between a low to high latitude 

range of ~15°C for the late Maastrichtian from the Arctic, as measured by TEX86, with a 

similar figure of ~14°C between low and high latitude from the Southern Hemisphere  

based on δ18O data derived from planktonic foraminifera (Huber et al., 1995). Kemp et 

al. (2014) also report on the record of terrestrial palaeotemperatures from the Late 

Maastrichtian to Early Palaeogene of Seymour Island derived from sediment samples 

using the MBT/CBT proxy. 

2.2.6 Glacioeustasy 

Palaeokarst features from Jamaican Upper Cretaceous limestones in the Guinea 

Corn Fm. were reported by Miller and Mitchell, (2003), they proposed that the 
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development of these features represented uplift as opposed to progradation of the 

shoreline. Two such events were proposed, suggesting that the fall and subsequent 

rise in sea level represented the waxing and waning of small, but significant, ice caps 

during the globally warm climate in the southern high palaeolatitudes (see Miller et al., 

1999, 2003, 2005a). It was proposed that ice sheets in Antarctica during the Late 

Cretaceous - Eocene reached a maximum of 8-12 x 106 km3, a glacioeustatic 

equivalent of 20-30 m (Miller et al., 2005b; Miller, 2009). Miller et al. (2005b) also 

suggested that ice sheets did not reach the coast and that coastal Antarctica deep 

waters were relatively warm even whilst there were significant glacioeustatic changes. 

The authors suggested that ice sheets existed due to peak Milankovitch insolation and 

were only present for short intervals of time with Antarctica ice free during the Late 

Cretaceous to middle Eocene. Evidence for the development of lowstands was 

reported by Haq (2014), 4 events occurred during the Late Maastrichtian and 1 event 

occurred during the Early Danian. Further evidence for seasonal ice sheets was 

reported by Bowman et al. (2013) based upon palynological studies and by the 

determination of low to sub-zero benthic seawater temperatures (Petersen et al., 

2016). There is a need to reconsider whether polar ice sheets did exist on Antarctica 

during times of a warm climate (Miller et al., 2005b). 

2.3 Modelling Palaeoclimates 

Numerical models that simulate the elements of modern and ancient climates are 

employed at several institutions worldwide. Each model is different in design and 

function and thus the results of the same experiment will differ from model to model. 

The principal tools for modelling palaeoclimate change are climate models, of which 

the most sophisticated versions are General Circulation Models (GCM) based on the 

HadCM3 GCM developed at the Hadley Centre for Climate Prediction and Research at 

the UK Meteorological Office, see Gordon et al. (2000), Randall et al. (2007) and 

Hunter et al. (2008) for a description of the models, required initial constraints and any 

design limitations.  

2.3.1 General circulation model - HadCM3L  

HadCM3L is a version of the HadCM3 model modified to incorporate a lower 

resolution ocean descriptions of the models can be found in Gordon et al. (2000) and 

Hunter et al. (2008), and are summarised below. HadCM3 is a coupled atmosphere–

ocean general circulation model (AOGCM) comprising the HadAM3 atmospheric model 

linked to a fully dynamic ocean model and a sea-ice model. The horizontal resolution of 

the atmosphere is 2.5° latitude×3.75° longitude, equivalent to a grid spacing of 278 km 

north–south and 417 km east–west at the equator, reducing to 278 km×295 km at 45° 
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of latitude. It has 19 vertical layers and a 30 minute time step. A detailed description of 

HadAM3 can be found in Pope et al. (2000). Within the oceanic component, ocean 

bathymetry may be prescribed, but sea surface temperatures (SSTs) and oceanic heat 

transport are predicted by the model. In its standard version, the ocean has a 

horizontal resolution of 1.25°×1.25°. However, to meet the demands of spinning up a 

deep ocean in the Maastrichtian, a resolution of 2.5°×3.75°, with 20 vertical layers was 

used. This version of the model is called HadCM3L and it allows longer integrations. A 

full description of HadCM3 underlining its improvements over earlier versions is given 

by Gordon et al. (2000).  

To model the ocean requires knowledge of the heat and fresh water flux at the 

surface as well as the surface wind stress. For the Cretaceous, these can only be 

specified from knowledge of the atmosphere based on climate models. An atmospheric 

model requires the sea surface temperature and thus the only way to completely model 

the oceans is to couple an atmospheric GCM to an oceanic GCM. An alternative 

approach is to use a highly simplified ocean model and to specify the horizontal heat 

transport within the ocean, so called ‘slab’ models. As an alternative sea surface 

temperatures (SST) may be specified, based on oxygen isotope estimates, since the 

atmospheric model only requires the sea surface temperature. If the sea surface 

temperatures are reasonable, then the amount of net incoming solar radiation should 

balance the net outgoing long wave radiation. Climate proxy data can be used to 

simulate the Cretaceous climate but boundary conditions are needed for the models, 

these are either external processes, or those processes, which act on very long time 

scales.  

The value of GCM modelling depends on quantitative data obtained from the 

geological record in order to either establish realistic boundary conditions or provide 

tests equal in resolution to the model results. Results from palaeoclimate modelling 

indicate that the Cretaceous may have experienced glaciation in the southern 

hemisphere (Sellwood and Valdes, 2006). Spicer and Parrish (1990a) suggest that an 

increase in grid resolution plus the inclusion of better defined vegetation and ice related 

albedo together with better constrained temperature parameters would yield more 

realistic model results. A comprehensive overview of climate modelling is provided by 

Randall et al. (2007). No doubt the quality and accuracy of GCM simulations will 

increase as more powerful computing facilities become available (e.g. massive parallel 

architecture systems) and with the growth of model complexity.  

The role of palaeogeography (palaeotopography and palaeobathymetry) in defining 

palaeodrainage conditions for models of surface processes is described by Marwick 

and Valdes (2004) with reference to the development of a Maastrichtian digital 
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elevation model (DEM) (see Figure 2-1). Definition of palaeodrainage is a necessary 

requirement for the HadCM3 climate model. 

 

Figure 2-1. Maastrichtian palaeo digital elevation model (DEM). Mollweide projection. After 
Marwick and Valdes (2004) 

2.4 The Austral Cretaceous world 

During the Mid-Late Cretaceous the layout and general continental outlines were 

dissimilar to present day landmasses but by the Early Palaeogene certain continental 

landmasses had started to form recognisable outlines e.g. Africa, Antarctica, Australia 

and South America, see Figure 2-2 for a comparison of landmass distribution between 

the Mid Cretaceous and the Early Palaeogene.  

At mid-higher southern palaeolatitudes Gondwana began to break up in the Early 

Cretaceous with the opening of the South Atlantic suture between South America and 

Southern Africa. Later in the period, the nascent ocean joined the Central Atlantic, 

whilst to the north the North Atlantic also began to open up between North America and 

Western Europe. Hence by the start of the Late Cretaceous, there existed a 

continuous, although locally constricted, Atlantic Ocean. Likewise, the drift of India and 

Madagascar from an original position nestled between Africa and Antarctica gave rise 

to the Indian Ocean during the Cretaceous. In the Southern Hemisphere large parts of 

southern Gondwana were situated at or near the pole whilst in the Arctic there was a 

small almost totally enclosed Arctic Ocean. The connections between this northern 

polar sea and the rest of the world's oceans were shallow and narrow. From time to 

time these connections widened and shrank, as the sea-level rose and fell, but at all 

times deep-water connections were absent. This had profound implications for ocean 

circulation and the poleward transport of heat and global climate (Skelton, 2003). 
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Figure 2-2. Early to Late Cretaceous landmass distribution. After ODSN Plate Tectonic 
Reconstruction Service (2012) 

2.4.1 Global Sea-Level 

Sea-level underwent both long and short term oscillations, according to changes in 

the capacity of and hence displacement of water from, the ocean basins and as a result 

of glacioeustatic changes (see Miller et al., 1999, 2003, 2005b; Kominz et al., 2008; 

Miller, 2009; Miller et al., 2011; Haq, 2014). The main variable controlling basin 

capacity was the total volume of mid-ocean ridges. As oceans opened and closed, the 

cumulative length of mid-ocean ridges increased or decreased. Moreover, given the 

constant proportional rate of subsidence of cooling oceanic crust as it moves away 

from a ridge, changes in the rate of seafloor spreading affected the relative widths of 

mid-ocean ridges, such that more rapid spreading created relatively wider profiles 

(Skelton, 2003).  

Continental break-up thereafter gave birth to new oceans, each with their own mid-

ocean ridge systems. These mid-ocean ridges cumulatively displaced more and more 

water, thus leading to higher sea levels. Despite several pronounced oscillations of 

global sea-level (probably largely related to changes in sea-floor spreading rates 

together with the sub/duction of the Palaeotethys ridge system), an overall long-term 

rise ensued during the Mesozoic, reaching a peak in the Late Cretaceous. 
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The Late Cretaceous eustatic maximum was associated with the expansion of seas 

across large areas of the continents (Skelton 2003), it has been well established that 

global sea levels throughout much of the Mesozoic were generally higher than at 

present (Haq, 2014). The apparent absence of major ice caps accounts for some of 

this eustatic rise (by comparison with the present), but absence of ice and the thermal 

expansion of water can only contribute around 100 m or so to the rise. In addition, high 

rates of sea floor spreading (on average 75% greater than at present) will have led, it is 

assumed, to the elevation of oceanic ridges and the displacement of ocean waters over 

what were, for most of the time interval, relatively subdued or subsident continental 

masses (Skelton et al., 2003; Sellwod et al., 2006). However, Haq (2014) also 

highlighted the presence of a number of Late Maastrichtian and Early Danian 

lowstands that exhibited characteristics of medium amplitude events with a 25 – 75 m 

reduction in sea level. 

2.5 Maastrichtian climate of the James Ross Basin 

Study of palaeoenvironmental proxies for the latest Cretaceous to the early Danian 

have described data derived from analysis of flora and fauna together with associated 

geochemical data. The use of data derived from flora has special importance since it 

offers an indication of the terrestrial environment, of particular importance in attempting 

to predict or model the likelihood of ice sheets. Palaeobotanical and palynological 

evidence from Antarctica indicated that deciduous trees were present at higher 

latitudes than at the present day (Francis, 1986; Frakes and Francis, 1990; Francis and 

Poole, 2002; Francis et al., 2006, 2008; Thorn et al., 2008, 2009; Bowman et al., 2012, 

2013). Palaeobotany has furnished substantial evidence that glacial or at least freezing 

conditions existed at the poles during the late Cretaceous (Spicer et al., 2010; Bowman 

et al., 2013). Some of the most common fossils preserved in the Antarctic rock record 

are those of ancient plants (Francis et al., 2008). These plant fossils indicate a world 

with a globally warm (Francis et al., 2008; Hay, 2011) and generally ice-free climate, 

with dense vegetation flourishing close to the poles (see Francis, 1986; Frakes and 

Francis, 1990; Francis and Poole, 2002; Francis et al., 2006, 2008; Thorn et al., 2008, 

2009; Bowman et al., 2012, 2013).  

Evidence from research into sea level perturbations indicated that the globally warm 

climate in the Austral high palaeolatitudes was punctuated by the development of 

significant ice sheets (10 x 106 km3, equivalent to a glacioeustatic rise and fall of 20-30 

m) (Miller et al., 1999, 2005a; Haq, 2014) and other research utilising stable isotope 

studies, palynology, palaeobotany and climate modelling also indicated that whilst the 
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overall climate was warm there were distinct cooling trends present prior to the K-Pg 

boundary.  

Climate patterns from a number of global locations indicated an Antarctic record of 

cooling during the Late Cretaceous and across the K-Pg boundary (Frakes et al., 1992; 

Dennis et al., 2013). Late Cretaceous warmth was also determined from analysis of 

floras from the Arctic. Mean Annual air Temperatures (MAT) from fossil angiosperm 

leaf assemblages from Cretaceous high latitude sites in Alaska (~75°N) (Spicer et al., 

2010) provides MAT estimates for a cooling phase in the Maastrichtian. The palynology 

and floral record in the Gippsland Basin, SE Australia at palaeolatitude 60°S, a 

comparable position to that of the James Ross Basin, shows evidence of variable 

climate conditions during the Late Maastrichtian based upon variations in the taxa 

forming the tree canopy (Gallagher et al., 2008). Oxygen isotope data were sparse and 

relatively light during the latest Cretaceous suggesting Southern Hemisphere bottom 

water temperatures of around 8°C (Gallagher et al., 2008). Floral data from this interval 

confirm that cool to temperate conditions prevailed in the southern high latitudes, 

oxygen isotope data also show a similar variability to the floral data in this interval 

reflecting a temperature control (Gallagher et al., 2008). This wet/temperate to 

drier/temperate climate variability in the Late Cretaceous succession matches 

Milankovitch frequencies and correlates to global oxygen isotope events and sea level 

estimates (Gallagher et al., 2008). Data suggest that regional climate variability in 

Gippsland in the latest Cretaceous was controlled by Milankovitch forcing (Gallagher et 

al., 2008). Key elements of their estimate include a strong 400 ky eccentricity 

frequency that according to Laskar et al. (2004) was one of the most stable frequencies 

in the orbital solution for the last 100 Ma.  

The 71.5 Ma oxygen isotope excursion and sea level minima of Miller et al. (2004) 

correlated with an interval of longer term insolation stability in the Laskar et al. (2004) 

orbital solution. A correlation exists for 67 to 66 Ma, suggesting an association between 

orbital insolation stability/minima and temperature or ice volume (Gallagher et al., 

2008). The correlation of minima prediction with sequence boundaries on the New 

Jersey margin suggests that ephemeral ice sheets with 100 ky durations may have 

existed in Antarctica during times of orbital insolation minima in the Late Cretaceous or 

were caused by another unknown mechanism (Miller et al., 1999, 2005a). To account 

for apparent relatively high marine temperatures and an Antarctic temperate flora, 

Miller et al. (1999, 2005a) suggested that these small ice caps did not reach the sea 

and that these drier and wetter periods were related to the waxing and waning of ice 

sheets. The Late Cretaceous climate variability (Gallagher et al., 2008) fits within the 

global picture as the climate evolved from an equable Cretaceous greenhouse world to 
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the Late Cretaceous– Eocene greenhouse world in which significant, but ephemeral, 

ice sheets occurred (Miller et al., 2005a,b; Kominz et al., 2008; Miller, 2009; Miller et 

al., 2011; Haq, 2014). This pattern follows the oxygen isotope data indicating 

widespread global cooling near the end of the Cretaceous.  

Ocean temperature records from outside the Antarctic Peninsula region also reflect 

Late Cretaceous warmth. Climate cooling across the K-Pg boundary and into the Early 

Palaeocene is also now apparent globally (e.g. Barrera and Savin, 1999). Although 

there are no records of glacial sediments of this age, the presence of ice sheets has 

been proposed to account for large and rapid sea level drops during the Maastrichtian 

in the USA (Miller et al., 2005b, 2011; Haq, 2014). Oxygen isotope records from 

foraminifera from Site 690 at 65°S indicated that deep water temperatures would have 

been about 5°C, with implications that ice sheets may have been present at higher 

latitudes (Miller et al., 2005b).  

Climate data determined from palynology (Bowman et al., 2013), sediments and 

geochemical indicators (Tobin et al., 2012,  Kemp et al., 2014; Tobin and Ward, 2015; 

Little et al., 2015; Petersen et al., 2016) for the Antarctic Peninsula region show a 

distinct pattern of warming and cooling through the Late Cretaceous into the early 

Palaeogene (Francis and Poole, 2002; Poole et al., 2005). The climate cooled during 

the Maastrichtian and cold wet and possibly seasonal environments prevailed with low 

MATs estimated from angiosperm wood (7°C). At higher latitudes, as a result of the 

adiabatic lapse rate MATs below freezing may have allowed the formation of ice 

sheets, especially at higher elevations (Francis and Poole, 2002; Poole et al., 2005). 

2.5.1 Antarctic Maastrichtian climate modelling 

Results from an Antarctic Maastrichtian simulation using an atmosphere model with 

prescribed sea surface temperatures based upon provisional results from a fully 

coupled atmosphere–ocean (HadCM3L) were presented in Sellwood and Valdes 

(2006). See Figure 2-3 for an indication of temperature and precipitation data 

generated by the simulation. The model predicted that Antarctica was cool (≤ 0°C) over 

much of the continent throughout the Austral winter with warming commencing in the 

Austral spring with temperatures that may have exceeded 24°C. The Antarctic 

Peninsula exhibited a similar overall pattern but with a more moderate temperature 

range, maximum temperatures may have exceeded 16°C. The model predicted that 

Antarctica was a dry continent but in balance with respect to evaporation and 

precipitation, with much of the winter precipitation as snow (Sellwood and Valdes, 

2006). 
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A further evaluation of the results from a HadCM3L modelling of the latest 

Cretaceous was reported by Craggs et al. (2012), the study was based upon the 

presence of sediments sensitive to climatic conditions (e.g. Peat/coal, bauxites and 

laterites). The authors reported that whilst there was a good correlation between mid to 

low latitudes with the geological record there was a serious cold bias at high latitudes 

and in continental interiors; They concluded that even newer climate models still 

produced results which were incompatible with the geological data (Craggs et al., 

2012). 

 

Figure 2-3. (A, B) Model simulated, mean seasonal temperatures for the Late Cretaceous for (A) 
December–January–February season and (B) June–July–August season. Units are in°C and 
the contour interval is every 4°C. (C and D) Model simulated, mean seasonal precipitation for 
the Late Cretaceous (C) December–January–February season and (D) June–July–August 
season. Units are in mm/day and contour interval is irregular. Diagram after Sellwood and 
Valdes, 2006. 
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3 Cretaceous aragonite preservation in Antarctica 

3.1 Synopsis/Summary 

This chapter presents an overview of biogenic aragonite preservation through 

geological time and in particular during the late Cretaceous of Antarctica. It provides a 

summary of previous studies in which primary aragonite was recorded and analysed 

from skeletal carbonates and the corresponding importance for palaeoclimate studies 

offered by primary aragonite. Details of the taxa selected for analysis are presented 

together with the analytical methods adopted for the diagenetic screening employed 

during the selection and preparation of samples prior to running stable isotope 

analyses. The suitability of the individual diagenetic screening methodologies are 

described and an overall assessment and scoring made of the quality of the selected 

specimens. Whilst all carbonates are suitable for stable isotope analysis the intended 

outcome of the screening process was to identify the least altered specimens that 

retained an original palaeoclimate signal. It was anticipated that a further phase of the 

selection and screening process would take place after the measurement and 

correlation of oxygen and carbon stable isotopes from the diagenetically unaltered 

aragonite nacre shell material selected. The final stage of the selection procedure will 

be further expanded in Appendix D, section D.5. 

3.2 Aragonite preservation through geological time 

Aragonite is the metastable polymorph of calcium carbonate and is less commonly 

preserved in the macrofossil record than calcite. Where preserved it represents a 

crucial link to the original biogenic shell material. Where present in the fossil record and 

depending on the vagaries of diagenesis it may offer an opportunity to observe the 

preserved geochemical characteristics, including carbon and oxygen stable isotope 

data, of the original shell material as secreted by the organism. For the molluscan 

specimens collected from Seymour Island these geochemical data also provide an 

indication of the marine conditions prevailing at the time the organism was growing. 

Wendt (1977) stated that aragonite preservation in macrofossils decreased with 

increasing age in the geological record; the presence of any biogenic aragonite in fossil 

specimens must be considered both important and fortunate (Jordan et al., 2015). 

A number of authors have published studies concerning the occurrence of 

Palaeozoic molluscan macrofossils with intact preserved aragonite from the middle 

Pennsylvanian (Late Carboniferous) Buckhorn Asphalt Quarry (Wendt, 1977; Brand, 

1989; Seuß et al., 2009; Seuss et al., 2012). Brand (1989) describes the geochemical 

characteristics of the diagenetic aragonite to calcite alteration of molluscs whilst 
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(Wendt, 1977; Seuß et al., 2009; Seuss et al., 2012) describe the nature of the fauna 

and review the Palaeozoic fossil Lagerstätte with aragonite preserved by the presence 

of a bituminous coating around the macrofossils. Shell material exhibited good 

preservation of ultrastructures and also included evidence of microboring (Seuss et al., 

2012). Unusually for a Palaeozoic invertebrate fauna there were approximately 160 

species dominated by molluscs, perhaps suggesting that dissolution of aragonite shell 

material may generate a major bias towards calcite in the fossil record (Seuss et al., 

2012). Rogala et al. (2010) discussed the diagenesis of macrofossil shell material, 

including aragonite, from the early Permian Darlington (Sakmarian) and Berriedale 

(Artinskian) Limestones (Lower Parmeener Supergroup) from high latitude 

environments now exposed in Tasmania.  

Many authors have published research describing the diagenesis, geochemistry and 

stable isotope record in molluscan aragonite shell material (e.g. Morrison and Brand, 

1988; Brand, 1989, 1991; Marshall et al., 1996; Rexfort and Mutterlose, 2006; Foster et 

al., 2008; Sayani et al., 2011; Collins, 2012; Griffiths et al., 2013; Petersen et al., 2016; 

Witts et al., 2016). Morrison and Brand (1988) described the diagenesis and 

chemostratigraphy of upper Cretaceous molluscs from the Canadian interior seaway 

whilst Brand (1991) described the impact of diagenesis on biogenic aragonite and low 

Mg calcite (LMC) with regard to strontium isotopes. Marshall et al. (1996) discussed the 

carbon and oxygen stable isotope composition of skeletal carbonates, including both 

aragonite and calcite, from extant Antarctic marine invertebrates; oxygen isotopic 

values exhibited a considerable overall range from +0.8 to +3.8‰ and within individual 

specimens of the same species by +0.3 to +2.0‰. These data indicated that the shell 

material might reflect inequilibrium precipitation and the authors suggested that the 

variability of the isotopic data might reflect some ‘vital effect’ of a particular taxon or 

indeed that from an individual specimen (Marshall et al., 1996). Rexfort and Mutterlose 

(2006) discussed a high resolution record of stable isotope data (δ18O and δ13C) from 

cuttlebones of extant specimens of Sepia officinalis; the study investigated whether 

ontogenetic variations of the isotope signature were discernible and their data 

suggested that the oxygen isotope composition was in isotopic equilibrium with the 

surrounding seawater and reflects ambient temperature. Migration and seasonal 

temperature changes were visible in the acquired data set. The carbon isotope 

signature showed signs of biofractionation and no direct correlation to the oxygen 

signature as far as ontogeny and ecology were concerned. Foster et al. (2008) 

assessed the potential of Mg/Ca ratios in an extant bivalve (Arctica islandica) for use 

as a climate proxy. LA-ICPMS analysis of the shell material indicated that there was no 

correlation between seasonal Mg/Ca variability and seawater temperature. They also 
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reported that X-ray Absorption Near Edge Spectroscopy (XANES) indicated that the 

Mg did not substitute into aragonite but was possibly hosted by an inorganic phase. 

Sayani et al. (2011) described the geochemical effects of post-depositional diagenesis 

on skeletal carbonates from modern and young fossil corals. Whilst Griffiths et al. 

(2013) evaluated the effect of diagenetic cements on element/Ca ratios, used in 

palaeoenvironmental reconstruction, in aragonitic Early Miocene (~16 Ma) Caribbean 

corals. LA–ICPMS analyses indicated significant differences in Sr/Ca, Mg/Ca, B/Ca, 

Ba/Ca and U/Ca in aragonite and calcite cements compared to primary skeletal 

aragonite and increased Sr/Ca and decreased Mg/Ca ratios were found in aragonite 

cements compared to skeletal aragonite, these trends were reversed for calcite 

cements. Ullmann et al. (2013) discussed the significance of covariance between Sr 

and Mn as a tool for assessing the scale of diagenesis that had affected the skeletal 

carbonate. The authors reported that as diagenesis progresses the level of Mn 

increases whilst Sr level decreases. A laboratory study of trace elements in an extant 

aragonite bivalves suggested that incorporation of Mg and Sr into the aragonite were 

subject to control by the organism (a ‘vital effect’) and did not fully reflect any 

environmental control (Poulain et al., 2014).  

Based on the above review of previous research it is apparent that the presence of 

aragonite which is subject to calcitisation as a result of pore fluid diagenesis or thermal 

alteration is extremely important for geochemical and palaeoenvironmental research. 

This is due in part to the rarity of well preserved molluscan macrofossil aragonite 

specimens in the geological record. The good preservation of the molluscan shell 

material from the James Ross Basin and in particular from the López de Bertadano 

Fm. of Seymour Island illustrates the value of aragonite as the shell mineralogy of 

choice for this study. In the remainder of this chapter the diagenetic screening process 

will be described and discussed. The nature of the molluscan shell material 

encountered will be assessed and the final selected specimens that will form the 

nucleus of the carbon and oxygen stable isotope and strontium isotope analyses will be 

further discussed in Chapters 4 and 5. 

3.2.1 Diagenesis of skeletal carbonates 

The two diagenetic realms in which porosity modifications (e.g., dissolution and  

cementation) take place are the marine and meteoric environments. Modern shallow-

marine environments are particularly susceptible to porosity destruction by cementation 

due to high levels of supersaturation of marine waters relative to metastable carbonate 

minerals. Under normal marine conditions the aragonite compensation depth lies at 

~1.75 km but below this level a decreasing saturation with depth can lead to 
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development of secondary porosity by dissolution of aragonite (Boggs 2009). Given the 

extensive range of aragonite preservation within the James Ross Basin it it is apparent 

that the basin was shallower than the aragonite compensation depth.  

3.2.2 X-ray Diffraction (XRD) analysis 

It has been shown that shell material identified as pure aragonite can exhibit 

evidence for diagenetic alteration of molluscan shell material (e.g. Cochran et al., 2003; 

Wierzbowski and Joachimski, 2007; Cochran et al., 2010; Wierzbowski and Rogov, 

2011). A further indication of other diagenetic characteristics that might have affected 

an individual specimen was determined by analysing the powdered shell material by X-

ray diffraction (XRD) for a semi-quantitative indication of the primary shell mineralogy. 

There were 28 specimens for which no XRD profiles were generated and in the 

absence of other diagenetic data these specimens were deemed unsuitable for 

palaeotemperature determination. See Appendix B, Table B-3 for full details of the 

overall results from the comparative diagenetic screening. 

Prior to stable isotope analysis each powder sample was analysed for major 

mineralogical phases using a Siemens D5000 X-ray Diffractometer. In semi-

quantitative mode the equipment provided a detection limit of ~5%, mineral phases 

present below that level could not be reported with confidence. Principal minerals of 

interest were aragonite, calcite (including both HMC and LMC), dolomite and gypsum – 

a common Antarctic surface weathering product (Bain, 1990; de Souza et al., 2014). 

Samples were also investigated for the presence of other mineral phases, e.g. pyrite – 

present at a microscopic level as framboids, (see Figure B-5(c), and oxyhydroxides of 

Fe and Mn.  

Initially the X-ray Diffractometer was run with a 2θ range of 2-70 but it was noted that 

for aragonite significant peaks did not appear until 2θ reached a value of ~25. As a 

result the 2θ range was reduced to 20-70 with a corresponding reduction in run time. 

Data shown in Table 3-1 give the operational parameters used for the XRD analyses. 

The standard profiles (Figures 3-1 and 3-2) illustrate the primary mineral phases 

expected within the samples (refer to Table B-3 for details of the XRD screening results 

and scoring applied). Restricting the operating 2θ range to 20 – 70 did not add a 

significant uncertainty to the XRD screening of the specimens, the only possible 

exception was for gypsum where the primary peak appears at 2θ = 11.67 and thus 

would not be apparent within the restricted 2θ range. However, there was also a strong 

secondary peak for gypsum present at 2θ = 20.78 and which more significantly was not 

subject to overlaps from other observed mineral phases. 
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Table 3-1. Operational parameters for the Siemens D5000 X-ray Diffractometer adopted during 
analysis of carbonate shell material. 

Estimated scan time  41 mins 

Scan mode  Continous scan 

Start position (2θ) 20 

Increment  0.02 

No of steps  2500 

Time per step (s) 1 
Synchronous rotation  On 

Generator voltage  40 kV 

Generator current  30 mA 

Radiation Cu(kα) 

Sample powders prepared for stable isotope analysis were sub-sampled for XRD 

analysis, although in certain cases where the volume of sample was small the entire 

sample was used. Sample powders rarely exceeded 1 g and in the majority of cases 

the mass of available powder was between 35 - 300 mg.As a result the sample 

powders were analysed, recovered and subsequently reanalysed for major and trace 

element geochemistry, stable isotope and in selected cases strontium isotope 

analyses. Steps were taken to ensure that any cross-contamination was reduced to a 

minimum whilst handling the specimen powders. Semi-quantitative XRD analysis was 

completed for each powder sample prior to the assessment of the suitability of the 

material for stable isotope analysis. This methodology had the benefit of speed and 

provided a reliable indication of the mineral phases present subject to the concentration 

of a mineral phase exceeding the instrument detection limit (5% in semi-quantitative 

mode). For selected macrofossil specimens the anticipated primary mineral phase was 

aragonite with potentially diagenetic calcite and gypsum. XRD analysis identified 2 

specimens with a dominant calcitic shell material. XRD profile data were extracted from 

the Bruker RAW powder diffraction data files using PowDLL Converter (Version 2.33) 

(Kourkoumelis, 2013) before being plotted using Excel. Individual XRD profiles for 

analysed specimens are provided in Appendix C.  

The XRD profiles (Figures 3-1(a and b) and 3-2(a) represent the standard aragonite, 

calcite and gypsum profiles against which all specimen profiles were compared, Figure 

B-6(b) illustrates the likely peak overlaps for a composite profile for aragonite, calcite 

and gypsum. Specimen data were extracted from the Bruker RAW powder diffraction 

data files with PowDLL Converter (Version 2.33) (see Kourkoumelis, 2013). Raw XRD 

profile data by permission of RRUFF Project (Lafuente et al., 2015). 
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Calcite Reference Profile
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Figure 3-1 Standard XRD diffraction peak profiles for aragonite and calcite. Raw XRD profile 
data by permission of RRUFF Project (Lafuente et al., 2015). Refer to Table 3-4 for details of 
equipment operating parameters. 
(http://rruff.info/repository/sample_child_record_powder/by_minerals/Aragonite__R040078-
1__Powder__Xray_Data_XY_RAW__211.txt, 
http://rruff.info/repository/sample_child_record_powder/by_minerals/Calcite__R040070-
1__Powder__Xray_Data_XY_RAW__190.txt,  

a 

b 
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Gypsum Reference Profile
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XRD Peak Overlaps (Aragonite, Calcite & Gypsum)
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Figure 3-2. Standard XRD diffraction peak profiles for gypsum and composite profile of 
aragonite + calcite + gypsum. Raw XRD profile data by permission of RRUFF Project (Lafuente 
et al., 2015). Refer to Table 3-4 for details of equipment operating parameters. 
http://rruff.info/repository/sample_child_record_powder/by_minerals/Gypsum__R040029-
1__Powder__Xray_Data_XY_RAW__67.txt 

In the case of specimens with small quantities of sample powder the XRD profile was 

generally noisy but the profile typically retained the relative peak spacing seen from 

specimens with ample powders. Figures 3-3 and 3-4 show the XRD profiles recorded 

for four specimens, namely D5.219.1185.2/C, D5.212.865.3/E, D5.222.1257.2/A and 

D5.215.216.5/A with actual sample peaks superimposed upon peaks exhibited from an 

aragonite standard1, where the raw standard reference data was downloaded and used 

by permission of the RRUFF Project (Lafuente et al., 2015). The four profiles illustrate 

                                                
1
 http://rruff.info/repository/sample_child_record_powder/by_minerals/Aragonite__R040078-

1__Powder__Xray_Data_XY_RAW__211.txt 

a 

b 
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quality for the XRD scoring with a range of 5 to 2, where 5 represents the highest 

score, note that like the SEM preservation index this mineral scoring is subjective and 

is based upon an assessment of the mineralogy as determined by semi-quantitative 

XRD. No aragonite specimens with XRD screening scored lower than 3 in the XRD 

diagenetic assessment, see Appendix B, Table B-3 for the full diagenetic scoring data.  

The XRD profile coloured grey (Figures 3-3 and 3-4) represents the standard 

aragonite profile against which all specimen profiles were compared, Table 3-2 lists the 

XRD scoring characteristics. Specimen data were extracted from the Bruker RAW 

powder diffraction data files with PowDLL Converter (Version 2.33) (see Kourkoumelis 

2013). Raw XRD profile data used by permission of RRUFF Project (Lafuente et al., 

2015). Figure B-3(a) illustrates a noisy XRD profile for specimen D5.219.1185.2/C 

(ammonite genus – Maorites a nektonic carnivore) matching aragonite and possible 

gypsum, typical style of profile associated with specimens that yielded small quantities 

of sample powders. Figure B-3(b) illustrates a better quality XRD profile, but with low 

counts, for specimen D5.212.865.3/E (bivalve genus – unidentified) matching standard 

aragonite profile peaks. Figure B-4(a and b) illustrate examples of good to excellent 

XRD profiles with high count levels and clear matching of the standard aragonite profile 

peaks for specimens D5.222.1257.2/A (nautiloid genus – unidentified carnivore) and 

D5.215.216.5/A (gastropod genus – Pleurotomaria an epifaunal carnivore/scavenger). 

In all four specimens the profiles clearly match the aragonite peaks from the standard 

profile. 

Table 3-2 Definition of XRD Mineralogy Index scale. See Figures 3-3 and 3-4 for images of shell 
material which match the criteria listed. See Appendix C, Figure C-34 for an example of a 
specimen that was classified as exhibiting a MI = 0.    

MI Descriptor Characteristic features of shell surface 

5  Excellent 
Good clear profile with regular peak positions, high count rate and 
no contaminant mineral phases present 

4  Good 
Good clear profile with regular peak positions, medium count rate 
and no contaminant mineral phases present 

3  Moderate 
Reduced count rate with a moderate s/n ratio or with gypsum as a 
contaminant mineral phase 

2  Fair 
Reduced count rate, lower s/n ratio and with contaminant mineral 
phases 

1  Poor 
No aragonite present, low count rate with low s/n ratio and 
presence of contaminant mineral phases (principally calcite) 
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Aragonite screening - D5.219.1185.2/C
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Aragonite screening - D5.212.865.3/E
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Figure 3-3. XRD diffraction peak profiles for the biogenic mineral aragonite (CaCO3) taken from 
specimens D5.219.1185.2/C and D5.212.865.3/E and superimposed upon a standard aragonite 
profile

2
, in both cases the peaks are strong and well defined and clearly match the standard 

profile. (a) D5.219.1185.2/C Ammonite genus – Maorites a nektonic carnivore (XRD score = 2). 
Typical profile associated with specimens that yielded small quantities of sample powders. (b) 
D5.212.865.3/E Bivalve genus – unidentified (XRD score = 3). Profile illustrates a better quality 
XRD profile, but with low counts.Specimen data extracted from the Bruker RAW powder 
diffraction data file with PowDLL Converter (Version 2.33) (See Kourkoumelis 2013). Raw XRD 
profile data by permission of RRUFF Project (Lafuente et al., 2015). 

                                                
2
 (http://rruff.info/repository/sample_child_record_powder/by_minerals/Aragonite__R040078-

1__Powder__Xray_Data_XY_RAW__211.txt) 
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Aragonite screening - D5.222.1257.2/A
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Aragonite screening - D5.215.216.5/A
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Figure 3-4. XRD diffraction peak profile for the biogenic mineral aragonite (CaCO3) taken from 
specimens D5.222.1257.2/A and D5.215.216.5/A and superimposed upon a standard aragonite 
profile

3
, in both cases the peaks are strong and well defined and clearly match the standard 

profile. (a) D5.222.1257.2/A Nautiloid genus – Unidentified carnivore (XRD score = 5). (b) 
D5.215.216.5/A Gastropod genus – Pleurotomaria an epifaunal carnivore/scavenger (XRD 
score = 5). Specimen data extracted from the Bruker RAW powder diffraction data file with 
PowDLL Converter (Version 2.33) (See Kourkoumelis 2013). Raw XRD profile data by 
permission of RRUFF Project (Lafuente et al., 2015). 

                                                
3
 (http://rruff.info/repository/sample_child_record_powder/by_minerals/Aragonite__R040078-

1__Powder__Xray_Data_XY_RAW__211.txt) 
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3.3 ICP trace element screening 

Diagenetic screening based upon an investigation of the remaining shell 

ultrastructure remains an important tool in the determination of the degree of 

diagenesis that may have affected a macrofossil specimen. Likewise screening of shell 

mineralogy through XRD analysis had proved a significant technique for the 

determination of potentially altered specimens but with the proviso that only mineral 

phases with an abundance of >5% were accurately reported. The limitation was due to 

the detection limit of the instrument when operated in a semi-quantitative mode. 

Trace element composition further complemented the SEM and XRD diagenetic 

screening and scoring with shell preservation assessed using ICP-OES data. A small 

number of samples retained insufficient sample powder after stable isotope analysis for 

subsequent ICP-OES analyses and consequently there were 35 specimens for which 

no trace element geochemistry data were recorded. The total number of actual 

samples processed was in excess of 500. Aliquots for analysis were prepared in 

batches of 24 that included blank and replicate samples (see Appendix D for a 

description of the methodology). Measurement of the concentrations of selected 

elements in blank samples enabled the correlation of instrument detection limits which 

in turn provided a measure of confidence for the results generated by the ICP-OES 

instrument; see Appendix D, Table D-1 for the relevant data.  

One oversight in the design of the ICP-OES analysis methodology was the omission 

of an external certified standard, thus there was no check on the accuracy of the ICP-

OES instrument. Yttrium was included as an internal calibration standard at a 

concentration of 1 ppm. As a further measure of data quality standard calibration 

solutions were also included within each run of the ICP-OES instrument as unknown 

samples in order to determine the precision of the data. The operating procedure 

specified that a standard solution be included for measurement every 10th sample. 

3.3.1 Ocean Geochemistry 

Archer et al. (2004) describe variations in the mean temperature of the ocean that 

operate at a number of time scales, including millennial to millions of years that are 

large enough to impact the geochemistry of the carbon, oxygen and methane 

geochemical systems. The time scale of the temperature perturbation is key; on time 

frames of 1–100 ky atmospheric CO2 is controlled by the ocean. CO2 temperature-

dependent solubility and greenhouse forcing combine to create an amplifying feedback 

with ocean temperature; the CaCO3 cycle increases this effect somewhat on time 

scales longer than ~5–10 ky. Timing is important for oxygen, the atmosphere controls 

the ocean on short time scales, but ocean anoxia controls atmospheric pO2 on million-



High palaeolatitude record of Late Maastrichtian – Early Danian climate change, Seymour 

Island, Antarctica 

Page 62  

year time scales and longer. An ocean warmed to Cretaceous temperatures might, in 

the absence of other perturbations, increase pO2 by approximately 25% above present 

day levels. Because residence times of Sr, Mg and Ca are on the order of 106 yr and 

complete ocean mixing occurs approximately every 103 yr, only small shifts in the 

global seawater Mg/Ca ratio are expected for time scales on the order of 105 yr. 

3.3.2 Mg/Ca ratio 

Skeletal Mg/Ca ratios show little sensitivity to environmental conditions other than an 

exponential increase with temperature (Archer et al., 2004), probably thermodynamic 

but also controlled by species dependent characteristics. Covariance of Mg/Ca and 

temperature can be represented by the following expression:  

T = 2.50(±0.36) x [(Mg/Ca) x 1000] - 2.07(±2.35)  

Where T is estimated temperature (°C) with 95% confidence limits (Klein et al., 1996).  

Study of trace elements in extant aragonite bivalves suggested that incorporation of 

Mg into aragonite was subject to control by the organism (a ‘vital effect’) and did not 

fully reflect any environmental control (Poulain et al., 2014). The authors also proposed 

that a portion of the Mg was hosted by proteins present within the shell structure.  

The Mg/Ca ratio of seawater is little changed by fresh-water dilution from a salinity of 

35‰ down to 18‰; this reduction in salinity changes the Mg/Ca ratio from 5.2 to 5.0, 

based on global means for seawater (Klein et al., 1996) and corresponds to less than a 

4% change in the Mg/Ca ratio of the seawater mixture. Currently, it is not possible to 

solve uniquely for salinity by using skeletal Mg/Ca and 18O/16O ratios. Finally, for the 

case where 18O and Mg palaeotemperature estimates do not overlap, the difference in 

estimated temperatures most likely results from salinity fluctuations caused by 

freshwater input. Application of combined isotopic and chemical proxies to studies of 

molluscan macrofossils may provide powerful constraints for reconstructing 

palaeoclimate and palaeosalinity for coastal marine settings. 

3.3.3 Mn/Ca ratio 

Mn/Ca records derived from biogenic carbonate provides a proxy for dissolved Mn 

concentrations and thereby reflects those redox processes that control the 

concentration of this element in seawater (Freitas et al., 2006). Dissolved Mn is 

delivered to the oceans by riverine input and is slowly removed from solution by 

oxidation to Mn4+, whilst reducing conditions in sediments and also in certain situations 

in the water column can recycle Mn back into solution (Freitas et al., 2006). Mn 

solubility is determined by the redox state of the element, it is most soluble in its 

reduced Mn state and will precipitate oxyhydroxides from its oxidised Mn4+ state 
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(Freitas et al., 2006). The presence of elevated levels of Mn in analyses of carbonate 

geochemistry are used as a screening methodology (Morrison and Brand, 1988; Brand, 

1991) for determining the degree to which biogenic carbonates have been affected by 

diagenesis. The presence of elevated levels of Mn (> 50 ppm) actively promotes 

cathodoluminescence in biogenic carbonates. Ideally the level of Mn in a biogenic 

carbonate should not exceed 100 ppm for inclusion of the carbonate in stable isotope 

studies.  

3.3.4 Sr/Ca ratio 

The Sr concentration in biogenic carbonate reflects the Sr/Ca ratio in the water in 

which the carbonate formed as well as the physiological factors involved in 

biomineralisation (Lowenstam and Weiner, 1989), the latter are dependent upon water 

temperature, salinity and organism growth rate (Cochran et al., 2003). Factors such as 

water temperature and growth rate also may be interdependent. Study of trace 

elements in extant aragonite bivalves suggested that incorporation of Sr into the 

aragonite was subject to a ‘vital effect’ and not environmental control (Poulain et al., 

2014). With respect to the variability in the Sr/Ca ratio of the water, the present-day 

ocean shows a difference between the value in the open ocean and in world-mean 

river water, with the former being approximately three times greater than the latter. 

Variability of the Sr/Ca ratio in the water is not the first-order control on Sr/Ca in the 

carbonate shell material. Although the exact fractionation of Sr/Ca in the shell vs. water 

will vary among species, fundamental differences in biomineralisation (Lowenstam and 

Weiner, 1989) related to environmental factors such as temperature, salinity and pCO2 

are responsible for the trends. The effects of temperature and other factors on the 

Sr/Ca ratio of biogenic carbonates have been documented for both macrofossils, 

microfossils (Cochran et al., 2003) and extant bivalve species (Freitas et al., 2006; 

Poulain et al., 2014)).  

The Sr/Ca ratio can be employed in evaluating the degree to which oxygen isotope 

values may have been affected by the preservation of biogenic carbonate shell 

fragments and the significance of any diagenesis effects present. Generally, diagenetic 

processes reduce Sr concentrations in aragonite because of the similar chemistry of Sr 

and Ca (Li and Keller, 1999). Strong diagenetic effects result in a good correlation 

between Sr/Ca ratios and δ18O values due to the loss of Sr. Thus, a low correlation 

coefficient (e.g. R2 = 0.02) between the Sr/Ca ratio for screened δ18O values, would 

indicate that there was no significant evidence for diagenetic effects (Li and Keller, 

1999). Note also that Sr is generally enriched in aragonite with respect to calcite. Sr 

and Mn covary as a result of diagenesis 
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3.3.5 Sr/Na ratio 

Biogenic aragonite precipitated in normal salinity seawater contains on average 

~6,000 ppm Na (Brand, 1986). Previous studies of geochemical trace element analysis 

of molluscan fauna have indicated that a relationship exists between Na and salinity; 

Brand (1986) stated that this relationship was best shown by calculating the Sr/Na 

ratio, where the covariance was expressed as a salinity equation:  

Salinity (ppt, ± 0.5) = -5.769 Ln (A) + 28.380 (1)  

where Ln (A) is the natural log of the geometric mean of the Sr/Na ratio calculated for 

molluscan aragonite (Brand, 1984).  

3.4 Trace element analysis 

Aliquots of dissolved sample powders were analysed for major and trace element 

chemistry using a Varian 725-ES-ICP-OES at the School of Environmental Chemistry, 

University of Plymouth, Plymouth, UK. There were 35 specimens with insufficient 

sample powders following the stable isotope analyses, for which as a consequence no 

trace element chemistry data were generated. For these specimens diagenetic 

screening was completed by a subjective comparison with specimens of the same 

taxon using the stable isotope data.  

The presence of elevated or reduced levels of trace elements (Mg, Sr, Na, Fe and 

Mn) must also be considered when assessing the diagenetic history of a specimen. For 

example in Table B-4(i) (‘PI’ – 1) specimen Id D5.215.347.2/I shows extensive 

neomorphism of the aragonite nacre plates but exhibited a trace element geochemistry 

that still retained low levels of Fe and Mn (Fe = 59 ppm and Mn = 174 ppm). This 

suggested that the prevailing redox conditions were incompatible with the precipitation 

of Fe or Mn from the pore fluids and thus were unlikely to have altered the original shell 

geochemistry. Alternatively it was possible that pore fluids carried low levels of Fe and 

Mn or that conditions within the James Ross Basin may have inhibited the diagenesis 

of the aragonite nacre shell material. Petersen et al. (2016) discussed the screening by 

cathodoluminescence (CL) of bivalve specimens collected on Seymour Island and 

noted that only cracks, infilled with a carbonate cement, actively luminesced under CL. 

This indicated that whilst there may have been reducing Mn rich pore fluids there was 

no evidence for diagenesis of the shell material. 

As previously discussed only 2 specimens were identified as calcite by XRD analysis 

but a further 32 specimens were also rejected due to the presence of elevated Mg 

levels following classification from ICP-OES trace element analyses (see Appendix D; 

Brand, 1991). All 34 macrofossil specimens exhibited elevated levels of both Fe and 
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Mn except for a small number of cases (e.g. Fe < 500 ppm, n=4) and Mn < 200 ppm, 

n=1). 

The principal indicators of diagenesis used were the divalent cations of iron (Fe) and 

manganese (Mn) which typically should have low values in pristine primary skeletal 

carbonates, ideally <100 ppm (Morrison and Brand, 1988). Specimens with a 

geochemistry that exhibited concentrations of Mn < 190 ppm and Mg <900 ppm 

correspond to the expected data typical of either an extant mollusc or an unaltered 

fossil mollusc (Morrison and Brand,1988; Brand, 1991). Brand (1991) also defined the 

natural limit of magnesium (Mg) in biogenic aragonite at a concentration of < 1000 

ppm. Note that Mn < 1200 ppm and Mg < 900 ppm correspond to the range expected 

from a macrofossil with well preserved aragonite, samples with Mn > 1200 ppm 

represent specimens with a potential diagenetic signature (Brand, 1991). 

Figure 3-5 illustrates a series of covariance plots of Mg vs. Mn (for method see 

Morrison and Brand, 1988; Brand, 1991) for all specimens with ICP trace element data 

(n=169) with the data categorised as follows. 

• Unscreened data set of all aragonite specimens plus LMC specimens 

identified by red diamonds. 

• Screened aragonite data set (n=116) with all LMC specimens removed and 

with orange diamonds representing specimens with elevated Fe or Mn (n=53). 

• Screened aragonite data sets for bivalves, cephalopods, gastropods and 

specimens with an uncertain classification and with orange diamonds 

representing specimens with elevated Fe or Mn.  

Acceptable levels of Fe and Mn for well preserved aragonite nacre shell material have 

been published by a number of different authors (Morrison and Brand, 1988; Anderson 

et al., 1994; Ditchfield et al., 1994; Petersen et al., 2016). Specimens with Fe < 500 

and Mn < 200 ppm (Anderson et al., 1994; Ditchfield et al., 1994; Petersen et al., 2016) 

and Mg < 900 ppm correspond to the expected data for extant molluscan aragonite 

(Morrison and Brand, 1988).  

Removing all specimens with Mg > 1000 ppm had a marked effect on the levels 

recorded for Mn (see Figure 3-5), there was a strong covariance between elevated 

levels of Mg and Mn. In the reduced data set the mean Mn level for bivalves = 184 

ppm, ammonites = 226 ppm, gastropods = 114 ppm, nautiloids = 172 ppm and for 

specimens of uncertain affinity the level = 11 ppm. Note that based on mean 

geochemical data all ammonite specimens exceeded the Mn threshold (200 ppm) and 

should be deemed unsuitable for palaeotemperature determination. 
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Figure 3-5. Covariance plot of Mg vs. Mn for all specimens with ICP trace element data, 
categorised as follows:- 1) Unscreened data set of aragonite specimens (n=169) plus LMC 
specimens (n=34) identified by red diamonds, 2) Screened aragonite data set (n=116) with all 
LMC specimens removed and with orange diamonds representing specimens with elevated Fe 
or Mn (n=53). 3) Screened aragonite data sets for bivalves, cephalopods, gastropods and 
specimens with an uncertain classification and with orange diamonds representing specimens 
with elevated Fe or Mn. Specimens with Fe > 500 ppm or Mn > 200 ppm (Ditchfield et al., 1994; 
Petersen et al., 2016) are deemed to be potentially subject to diagenesis. Specimens with Mg < 
900 ppm, Fe and Mn < ~200 ppm correspond to the expected data for extant molluscan 
aragonite (Morrison and Brand, 1988). Note that the maximum Mg content of biogenic 
aragonite is set at 1000 ppm (Brand, 1991). Specimens with Mn < 1200 ppm and Mg < 900 
ppm correspond to the range expected from a macrofossil with well preserved aragonite. All 
points with Mn > 1200 represent specimens with a potential diagenetic signature. Methods after 
Morrison and Brand (1988) and Brand (1991) and Ditchfield et al. (1994). 
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Figure 3-6 illustrates a series of covariance plots of Sr/Ca vs Mg, Fe and Mn that 

show the relationship of Sr/Ca and the principal diagenetic indicator elements. Blue 

symbols represent specimens taken from the initial aragonite data that have been 

subject to further screening to remove specimens that exhibited elevated levels of Fe 

or Mn (Fe > 500 ppm and Mn > 200 ppm). Removal of those data points with elevated 

Fe and Mn yielded a considerably reduced spread in the overall data. During the 

course of carbonate diagenesis there is a reduction of Sr whilst dissolution takes place 

and a covarying precipitation of Mn during neomorphism or calcitisation with the 

development of diagenetic calcite cements or the wholesale recrystallisation of calcite. 

The reduction of Sr concentrations in aragonite occurs because of the similar 

chemistry of Sr and Ca (Brand and Veizer 1988; Li and Keller 1999; Ullmann et al., 

2013). Note that aragonite is enriched in Sr with respect to calcite. Significant 

diagenetic alteration will result in a good correlation between Sr/Ca ratios and Mn 

values due to the Sr and Mn covarying. A simple linear trend line was applied to the Fe 

and Mn covariance graphs (see Figure 3-6(b and c) and the resulting correlation 

coefficient (R2) values were included for each plot, note that in neither case did the 

value approximate to unity (strong correlation). In this case neither Mn (R2 = 0.1605) or 

Fe (R2 = 0.0431) covaried with the concentration of Sr in the aragonite and 

consequently there was little evidence for diagenesis having altered the specimens. 

However, diagenesis could have affected individual samples to a greater or lesser 

extent. 

Based upon previously published data on diagenetic trace element indicators a 

substantial portion of the data set would be rejected because of the high Fe and Mn 

levels (e.g. Morrison and Brand, 1988; Brand, 1991; Anderson et al., 1994; Ditchfield et 

al., 1994; Tobin et al., 2012; Petersen et al., 2016). Similar stable isotope studies (e.g. 

Anderson et al., 1994; Ditchfield et al., 1994) and recent studies from Seymour Island 

(Tobin et al., 2012; Tobin and Ward 2015; Petersen et al., 2016) discussed the 

question of screening specimens for elevated levels of either Fe or Mn and the limits 

that should be adopted. In this study it was decided to adopt previously published 

figures of 500 ppm for Fe and 200 ppm for Mn (Anderson et al., 1994; Ditchfield et al., 

1994; Petersen et al., 2016). Tobin et al. (2012) indicated that although a portion of 

their data set could be rejected under the same rationale the overall effect upon the 

variability of the stable isotope data set was insignificant. A similar approach was 

adopted for this study and where trace element and stable isotope data are presented 

in graphs those specimens with elevated Fe and Mn are plotted in a contrasting colour 

to the screened aragonite data. However, data from specimens potentially subject to 

diagenesis were also included for further screening of the stable isotope data. 
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Geochemical variables are to a certain extent independent (Marshall 1992) and low 

concentrations of trace elements do not necessarily indicate the preservation of 

primary isotopic values. Even where trace element values are high, marine isotopic 

values can be preserved where recrystallisation or cementation took place in a 

relatively closed environment (Marshall 1992). 
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Figure 3-6. Covariance plots of Sr/Ca vs Mg, Fe and Mn. Blue symbols represent specimens 
taken from the initial aragonite data that have been subject to further screening to remove 
specimens that exhibited elevated levels of Fe or Mn (Fe > 500 ppm and Mn > 200 ppm). 
Removal of those data points with elevated Fe and Mn yield a considerably reduced spread in 
the overall data. Carbonate diagenesis leads to a reduction in Sr and a corresponding increase 
in Mn. A simple linear trendline was applied to the plots (b and c) and the resulting R

2 
values 

were included in each plot, note that in neither case did the value approximate close to unity 
(strong covariance). In this case neither Mn or Fe covaried with the concentration of Sr in the 
aragonite. 

3.4.1 LMC - Trace elements 

As previously discussed a number of specimens (n=32) that exhibited Mg 

concentrations > 1000 ppm were deemed as unsuitable for palaeotemperature 

determination according to the method of Brand (1991) and were consequently 

rejected. Note that for these specimens and the small number (n=2) of specimens that 

following XRD and ICP-OES analysis were categorised as LMC there was a strong 

correlation (see Appendix D Tables D-3, 4, 5 and 6) with elevated Fe and Mn levels in 

a b 

c 
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the geochemical data; the presence of which can be indicative of diagenesis (Morrison 

and Brand, 1986). These specimens would have been rejected regardless of the 

mineralogical classification of the shell material due to the highly elevated levels 

present, for example ammonites (mean values of Fe = 3735 ppm and Mn = 2283 

ppm), bivalves (mean values of Fe = 16193 ppm and Mn = 259 ppm) and specimens 

of uncertain affinity (mean values of Fe = 4785 and Mn = 2231 ppm). Categorising the 

trace element data by genus shows a high Fe concentration for each genus except 

Pycnodonte and a high Mn concentration for each genus except Nucula.  In both 

cases the data represent a single specimen. For example unclassified ammonites 

(n=5) (mean values of Fe = 3505 ppm and Mn = 3332 ppm), Anagaudryceras (n=1) 

(mean values of Fe = 5536 ppm and Mn = 2822 ppm), unclassified bivalve (n=1) 

(mean values of Fe = 41069 ppm and Mn = 378 ppm), Kitchinites (n=1) (mean values 

of Fe = 2350 ppm and Mn = 380 ppm), Maorites (n=14) (mean values of Fe = 3788 ppm 

and Mn = 2006 ppm), Nucula (n=1) (mean values of Fe = 7261 ppm and Mn = 51 ppm), 

Pycnodonte (n=1) (mean values of Fe = 249 ppm and Mn = 349 ppm) specimens of 

uncertain affinity (n=9) (mean values of Fe = 4785 ppm and Mn = 2231 ppm). 

The corresponding trace element data for habitat show a high Fe concentration in all 

categories and the high Mn concentration in all categories except for infaunal 

specimens. In both cases the data represent a single specimen. Note the high Fe 

concentration in all categories except epifaunal and the high Mn concentration in all 

categories except infaunal. In both cases the data represent a single specimen. The 

corresponding trace element data for the measured stratigraphy show a high Fe 

concentration at all stratigraphic positions except 925 m and a high Mn concentration at 

all stratigraphic positions except 682 m and 642 m. 

It is apparent from the categorisation of the trace element data for those specimens 

classified as either low magnesium calcite or having Mg > 1000 ppm (Brand, 1991) that 

all specimens with a small number of exceptions have elevated Fe and Mn levels. All of 

these specimens were rejected for use as sources of stable isotope data suitable for 

palaeotemperature determination. 

3.4.2 Aragonite – Trace elements 

Mean trace element data categorised by stratigraphy for partially screened aragonite 

specimens with Mg < 1000 ppm are presented in Figure 3-7. Vertical dashed lines for 

Fe and Mn indicate thresholds for elevated values possibly as a result of diagenesis. 

Orange highlight represents Fe ≥ 500 ppm or Mn ≥ 200 ppm. The presence of elevated 

Fe and Mn levels may be linked to specific stratigraphic horizons but there is an 

apparent correlation with the highest populations of selected specimens. 



High palaeolatitude record of Late Maastrichtian – Early Danian climate change, Seymour 

Island, Antarctica 

Page 70  

The trace element data (mean ppm) presented in Appendix D, Table D-7 are 

categorised by fossil type for specimens determined as being aragonite based upon an 

Mg concentration < 1000 ppm (Brand, 1991). All categories with the exception of 

ammonites (Fe = 775 ppm) have diagenetic indicator elements (Fe or Mn) at levels 

below the selected threshold values. The corresponding data categorised by genus 

(mean ppm) are presented in Appendix D, Table D-8. For example, Amberlaya (n=13) 

(mean values of Fe = 390 ppm and Mn = 135 ppm), Ammonite (n=9) (mean values of 

Fe = 775 ppm and Mn = 93 ppm), Bivalve (n=21) (mean values of Fe = 142 ppm and Mn 

= 63 ppm), Diplomoceras (n=1) (mean values of Fe = 179 ppm and Mn = 61 ppm), 

Eselaevitrigonia (n=34) (mean values of Fe = 136 ppm and Mn = 155 ppm), Gastropod 

(n=1) (mean values of Fe = 0 ppm and Mn = 19 ppm), Grossouvrites (n=1) (mean values 

of Fe = 369 ppm and Mn = 15 ppm), Lahillia (n=1) (mean values of Fe = 137 ppm and 

Mn = 28 ppm), Maorites (n=14) (mean values of Fe = 534 ppm and Mn = 338 ppm), 

Nautiloid (n=4) (mean values of Fe = 439 ppm and Mn = 172 ppm), Nucula (n=29) (mean 

values of Fe = 235 ppm and Mn = 481 ppm), Oistotrigonia (n=26) (mean values of Fe = 

76 ppm and Mn = 84 ppm), Pinna (n=3) (mean values of Fe = 672 ppm and Mn = 51 

ppm), Pleurotomaria (n=2) (mean values of Fe = 70 ppm and Mn = 24 ppm), Solemya 

(n=1) (mean values of Fe = 78 ppm and Mn = 100 ppm) and Unidentified (n=9) (mean 

values of Fe = 216 ppm and Mn = 11). Note that for Fe only Maorites, unidentified 

Ammonites and Pinna exceed the threshold of 500 ppm and that for Mn both Maorites 

and Nucula exceed the 200 ppm threshold. The corresponding data categorised by 

habitat (mean ppm) are presented in Appendix D, Table D-9. Note that for Fe only 

nektonic taxa exceed the 500 ppm threshold and that for Mn both infaunal and nektonic 

taxa exceed the 200 ppm threshold. For example, Epifaunal (n=16) (mean values of Fe 

= 326 ppm and Mn = 114 ppm), Infaunal (n=104) (mean values of Fe = 163 ppm and Mn 

= 208 ppm), Nektonic (n=28) (mean values of Fe = 592 ppm and Mn = 224 ppm), 

Planktonic (n=1) (mean values of Fe = 179 ppm and Mn = 61 ppm) and Uncertain (n=30) 

(mean values of Fe = 164 ppm and Mn = 47 ppm). The corresponding trace element 

data for the measured stratigraphy are presented in Appendix D, Table D-10 and show 

a high Fe concentration at stratigraphic positions 1084 m, 1068 m, 943 m, 851 m, 632 

m, 627 m, 622 m, 443 m and 438 m, and a high Mn concentration at stratigraphic 

positions 1084 m, 1068 m,  1028 m,  943 m, 857 m,  851 m,  632 m, 627 m, 622 m,  

443 m and 438 m. 
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Figure 3-7. Mean trace element data categorised by stratigraphy for partially screened aragonite specimens with Mg < 1000 ppm. Vertical dashed line for Fe and Mn 
indicate thresholds for elevated values possibly as a result of diagenesis. Orange highlight represents Fe ≥ 500 ppm or Mn ≥ 200 ppm. The presence of elevated Fe 
and Mn levels may be linked to specific stratigraphic horizons but there is an apparent correlation with the highest populations of selected specimens. 
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Figure 3-8. Covariance plots of screened trace element geochemical data for Ca (%) vs 
selected elements. (n=179). The inclusion of specimens with elevated levels of either Fe or Mn 
shows no apparent covariance with the Ca %. There is also no obvious covariance between Sr 
and Ca. 

3.5 Criteria for the recognition of primary carbonates 

Ideally in a palaeoclimate study the shell material for analysis must be as near 

pristine as possible, although within the geological record all shell material comprising 

carbonate whether calcite or aragonite, will exhibit some evidence of diagenetic 

alteration of the original primary carbonate. This alteration may result from endolithic 

microbial activity that occurred prior to burial during life or post-mortem, in addition post 

burial diagenesis may be due to marine or meteoric fluid flow or thermal alteration. 

Little previous evidence for temperature related thermal alteration of carbonate shell 

material present in the Late Maastrichtian section of the James Ross Basin has been 

reported (Macdonald et al., 1988; Pirrie et al., 1994;Tobin et al., 2012, Little et al., 

2015; Petersen et al., 2016). The majority of the selected molluscan macrofossils 

retained original aragonite shell material, indicated by the presence of iridescent nacre 
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resulting from a diffraction grating effect controlled by the presence of protein layers 

within the nacre (Lowenstam and Weiner 1989).  

The presence of aragonite nacre indicated that specimens were subject to a relatively 

shallow burial history and low temperature diagenesis (Pirrie et al., 1994; Tobin et al., 

2012). A limited number of specimens (n=34) exhibited evidence of either unsuitable 

mineralogy or significant diagenetic overprinting of the trace element geochemistry and 

were rejected for further analyses. The remainder of the specimens were deemed 

suitable for stable isotope analysis even though some also showed a range of 

insignificant diagenetic effects, most notably elevated levels of Fe and Mn. 

3.6 Cathodoluminescence, carbonate staining and QEMSCAN 

Cathodoluminescence (CL) petrography, in particular cold cathodoluminescence, has 

been widely used as an essential tool for characterising and highlighting discreet 

geochemical events both during carbonate cement development and during diagenesis 

of biogenic carbonates. CL can highlight characteristic zoning present within a 

carbonate material that is invisible to standard optical microscopy. It can detect 

elevated levels of activator cations incorporated in diagenetic carbonate due to post 

depositional water rock interaction (Marshall 1998; Budd et al., 2000; Fouke et al., 

2002; Gaft et al., 2005; Rausch et al., 2013). The main activator elements of 

luminescence in carbonates are Mn, Pb, Sb, Cr, Sm, important quencher elements are 

Fe and Ni. Luminescence in natural carbonates is mainly controlled by the 

concentration of ferrous iron and manganese. The minimum concentration of Mn for 

luminescence in calcite and dolomite is 20-40 ppm (Richter and Zinkernagel 1980). 

Luminescence caused by transition elements, such as Mn or Cr is due to electron 

transitions of the outer, partially filled 3d shell. Energy levels are influenced by the 

crystal field and the CL emission is a property of the material (Marshall 1988).  

For a small subset of the research samples it was decided that thin section analysis 

using both a Cambridge Image Technology CL MK3A system linked to a JVC digital 

camera and standard carbonate staining techniques after the method of Dickson 

(1966) would complement the other analytical screening methodologies. 

Cathodoluminescence analysis of preserved biogenic carbonate samples has generally 

been associated with calcite shell material (Marshall 1988, Tobin et al., 2012) rather 

than aragonite (although in contrast see Petersen et al., 2016) and routine carbonate 

staining after the method of Dickson (1966) fails to distinguish between calcite and 

aragonite. Since aragonite was the primary constituent of the shell material present for 

specimens selected for this study the use of CL and staining seems inappropriate. 

However, for a number of reasons it was decided to employ this technique:  
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1. Specimens of Rotularia spp were ubiquitous within the López de Bertodano Fm. 

and have previously formed the basis of biostratigraphic zonation (Macellari, 

1984) and as a possible source of carbonate for the analysis of oxygen and 

carbon stable isotopes plus strontium isotope analyses (McArthur et al., 1998, 

2000; Tobin et al., 2012; Tobin and Ward 2015). With a vertical sampling 

resolution of ~5 m Rotularia potentially offered a source of carbonate powders for 

both high resolution stable isotope analysis and subsequent 87Sr/86Sr isotope 

analysis. Selection of Rotularia carbonate material from Seymour Island for 

87Sr/86Sr isotope analysis was described by McArthur et al., 1988). CL analysis 

and carbonate staining techniques enabled an assessment of the level of 

diagenesis affecting the worm tubes. Note that if Rotularia were found to be 

suitable for analysis the decision to analyse only aragonitic material would have 

required further justification. 

2. A large Pachydiscid ammonite was selected for sequential ontogenetic sampling 

from both external shell material and from discrete septal walls, as described by 

Lukeneder et al. (2010). The specimen was sectioned longitudinally and the 

carbonate cemented infill of the camerae and individual septal walls were 

investigated using CL analysis and carbonate staining techniques to enable an 

assessment of the level of diagenesis affecting the internal structure of the 

specimen. 

Once the thin sections were prepared for optical examination both techniques were 

quick to implement but qualitative in nature. They provided an initial assessment of the 

potential suitability of the specific specimens for further analysis. 

3.6.1 Rotularia diagenetic screening 

Within the measured stratigraphic section specimens of Rotularia were ubiquitous 

and potentially presented an ideal source of biogenic carbonate for stable isotope 

analysis subject to satisfactory diagenetic screening. A number of polished thin 

sections were prepared from specimens of Rotularia selected from specific positions 

within the succession. Figure 3-9 shows wide field photomicrographs of a transverse 

section through a Rotularia worm tube, (a) under PPL and (b) after carbonate staining 

following the method of Dickson (1966). The presence of a pink colouration and the 

corresponding absence of a characteristic indigo blue colouration in the stained section 

indicated that a ferroan calcite cement was not present in the carbonate infill (Dickson, 

1966). Photomicrographs of a thin section under PPL and CL are shown, see Figure 3-

10. Note the extensive orange luminescence present in the carbonate that forms the 

worm tube, typical of Mn activation following diagenetic alteration of the original LMC 
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by pore fluids (Marshall 1988). The carbonate cemented infill of the worm tube and the 

prominent fracture cutting across the tube wall were non luminescent.  

 

 

Figure 3-9. PPL and stained wide field photomicrographs of a transverse section through 
Rotularia worm tube to illustrate internal structure. (a) PPL and (b) Standard carbonate staining 
after the method of Dickson (1966). The presence of a pink colouration and the corresponding 
absence of an indigo blue colouration indicated that the infill did not comprise ferroan carbonate 
(Dickson, 1966). Specimen Id D5.218.1028.2/A. Fields of view ~13 mm. 

 

Figure 3-10. PPL and CL images of a transverse section through a Rotularia worm tube. Note 
that the carbonate wall of the worm tube exhibits a typical Mn activated luminescence, whereas 
the carbonate cemented infill of the worm tube and the prominent fracture exhibit no 
luminescence. Standard carbonate staining exhibited no blue colouration indicating that the infill 
did not comprise ferroan carbonate. Specimen Id D5.218.1028.2/A. Fields of view ~2.5 mm. 

All specimens of Rotularia imaged under CL, see Figure 3-10(b), gave a similar orange 

luminescence, the colour was consistent with the Mn activation of diagenetically altered 

carbonate (Marshall 1988). As a consequence no specimens of Rotularia were 

selected for either further diagenetic screening or stable isotope analysis. Note that 

Tobin et al. (2012) used Rotularia worm tubes as a source of carbonate powders for 

stable isotope analyses. McArthur et al. (1998) also considered Rotularia suitable for 

inclusion in determining the 87Sr/86Sr ratio of Late Maastrichtian macrofossils from 

Seymour Island, analyses that subsequently provided data for inclusion in the Late 

Maastrichtian section of the global marine Strontium Isotope Stratigraphy SIS curve 

(McArthur et al., 1998, 2001). 

a b 

a b 
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3.6.2 Ammonite ontogenetic analysis 

An additional research aim was to test whether inter/intra-annual variability was 

detectable in the stable isotope data recorded from a single macrofossil specimen; 

such data might reflect variation of the δ18O and δ13C during the ontogeny of the 

organism. For an ammonite this variability might represent changes in the water depth 

during the life of the organism; a similar ammonite study was described by Lukeneder 

et al. (2010). Cephalopod shells are generally precipitated in oxygen isotope 

equilibrium with ambient seawater, do not exhibit any ‘vital effects’ and represent good 

palaeoenvironmental proxies. Similar studies have been carried out on both extant 

species (Barrera et al., 1994; Dettman et al., 1999; Goodwin et al., 2003; Ivany et al., 

2003) and fossil species (Jones and Quitmyer 1996; Dutton et al., 2007; Lukeneder et 

al., 2010). 

A large (200 mm) specimen of a pachydiscid ammonite (Specimen Id 

D5.222.1248.2/K) was selected as the initial specimen for sequential ontogenetic 

sampling from both external shell material and discrete septal walls. The specimen was 

sectioned and thin sections were prepared from the carbonate cemented infill of the 

camerae and from individual septal walls, see Figure 3-11.  

 

Figure 3-11 (a) Internal view showing the nature of infilled camerae and septal walls and (b) 
external view of pachydiscid ammonite after making a median cut prior to carrying out multiple 
sampling on individual septa. Ammonite genus – Pachydiscus a nektonic carnivore. Specimen 
Id - D5.222.1248.2/K. Field of view ~200 mm. 

The thin sections were investigated using CL and carbonate staining (Dickson, 1966) to 

enable an assessment of the level of diagenesis affecting the internal structure of the 

ammonite.Figure 3-12 shows photomicrographs of an internal septal wall in Plain 

Polarised Light (PPL) and CL. The septal wall contained small areas that luminesced 

orange, the typical colour (Marshall 1988) for Mn hosted luminescence. The overall 

lack of Mn hosted luminescence within the septal wall and the pervasive luminescence 

of the infill indicated that whilst the Late Maastrichtian pore fluids were enriched with 

Mn there was minimal diagenesis of the shell material. The majority of the septal wall 

was non- luminescent and was deemed suitable for stable isotope analysis. However, 

a b 



High palaeolatitude record of Late Maastrichtian – Early Danian climate change, Seymour 

Island, Antarctica 

Page 77  

the pervasive luminescence of the infill from the camerae indicated that basin pore 

fluids were enriched with Mn. 

 

Figure 3-12. Corresponding photomicrographs in (a) PPL and (b) CL from a thin section of a 
septal wall from a Pachydiscus ammonite. The orange luminescence response of the carbonate 
cements suggests that alteration by Mn-rich pore fluids was confined to fractures and small 
discrete areas within the septal material. Note also the strong zoned luminescence of the area 
of sparry calcite and the blue colouration of the quartz grains present within the clastic infilling 
sediment. The overall lack of Mn hosted luminescence within the septal wall and the pervasive 
luminescence of the infill indicated that whilst the pore fluids were reducing enriched with Mn 
there was minimal diagenesis of the shell material. Specimen Id D5.222.1248.2/K-14. Fields of 
view ~2.5 mm.  

Whilst the accumulation of possible ontogenetic stable isotope data was deemed 

valuable for correlation with similar data from other studies (E.g. Lukeneder et al., 

2010; Petersen et al., 2016) the execution of this technique was subject to delay in 

sampling and was dropped due to a lack of data. 

3.6.3 QEMSCAN diagenetic screening 

To complement the existing diagenetic analyses in particular as a potential 

replacement for carbonate staining of calcite macrofossils a single specimen of 

Rotularia was analysed using QEMSCAN. The specimen was prepared as a stained 

polished thin section (Dickson, 1966), examined optically under both plain polarised 

light and cold CL and finally carbon coated. The mineralogy and textures present within 

the specimen were quantified using automated SEM-EDS  and back scattered electron 

(BSE) analysis using QEMSCAN technology (Pirrie et al., 2004; Haberlah et al., 2011; 

Pirrie et al., 2014). The thin section was scanned using a 5 µm beam stepping interval. 

The actual area analysed was optimised by defining a ‘best fit’ rectangle that 

maximised the coverage of the Rotularia specimen but also sought to minimise the 

overall area of glass that would be measured. The instrument was operated in 

fieldscan mode with the measurement area divided into a pre-defined number of 

square fields as determined by the operator. Each field was then further broken down 

into a pre-defined grid of pixel squares with each pixel having an X-ray analysis point 

and a pixel spacing, in this case of 5 µm with identical vertical and horizontal spacing. 

a b 
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The resin mount of the thin section was ignored due to being below a pre-set BSE 

threshold. After processing, the resultant fields were recombined to give an overall 

image. Fieldscan mode measured the entire area of the sample and generated 

5,796,572 X-ray analysis points. Once collected the data were processed and the 

interpreted mineralogy reported (see Figure 3-13).  

The application of QEMSCAN technology to the indication of the presence or 

otherwise of diagenetic alteration of biogenic carbonates intended for stable isotope 

analysis is an unusual application of an instrument that may now be considered a 

mature technology (Pirrie et al., 2004; Haberlah et al., 2011; Pirrie et al., 2014; Little et 

al., 2015). With reference to Figure 3-13(b) it can be seen that the majority of the 

Rotularia specimen consists of non-ferroan calcium carbonate, note also that the 

QEMSCAN is unable to distinguish polymorphs and that for the purposes of analysis 

and reporting all calcium carbonate is reported as calcite (Pirrie et al., 2004). There are 

certain areas of the specimen that have been identified as ferroan carbonate, for 

comparison see Figure 3-10(b) where no obvious blue colouration developed in the 

stained thin section, indicating that no optically detectable ferroan carbonate was 

present in the Rotularia specimen. The QEMSCAN colour classification indicated that 

calcite was the predominant phase, but the quantitative modal data confirmed that 

ferroan calcite had a larger modal percentage (calcite (vol %) = 33.51, ferroan calcite 

(vol %) = 61.20, Mg calcite (vol %) = 2.50). A separate modified colour classification 

(see Figure 3-13(c) provides contrasting colours for calcite and ferroan calcite.  

No specimens of Rotularia were selected for further diagenetic characterisation or for 

subsequent stable isotope analysis following the CL and QEMSCAN analyses. 

However, stable isotope data based on analysis of sample powders from specimens of 

Rotularia have been included in strontium isotope and palaeotemperature studies 

(McArthur et al., 1998; Tobin et al., 2012).
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Figure 3-13. QEMSCAN BSE and false colour mineral classifications of a transverse section through a 
specimen of Rotularia, specimen id D5.212.855.2/A. Pixel spacing 5 µm, total number of X-Ray 
analysis points = 5,796,572. BSE mode (a) illustrates structure present within the calcareous worm 
tube. Colour classification (b) suggested that calcite was the predominant phase, but quantitative 
modal data showed that ferroan calcite had a larger modal percentage (calcite (vol %) = 33.51, ferroan 
calcite (vol %) = 61.20, Mg calcite (vol %) = 2.50). Modified colour classification (c) illustrates relative 
proportions of calcite and ferroan calcite. Note that with QEMSCAN data it is not possible to 
distinguish polymorphs and that for the purposes of analysis and reporting all calcium carbonate is 
treated as calcite. Scale bar 1 mm.  

a b 

c 
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3.7 Conclusions 

This chapter has presented the diagenetic screening methods that enabled an 

assessment of the overall suitability of individual specimens for inclusion in stable 

isotope analysis. Subsequent palaeotemperature determination was completed for 

those specimens deemed to be least altered after the completion of diagenetic 

evaluation. A key decision in the research planning for this study was that only 

specimens with aragonite skeletal carbonate would be selected for stable isotope 

analyses. As previously mentioned all of the macrofossil specimens selected for this 

study from the British Antarctic Survey (BAS) collection have been subject to a certain 

degree of diagenetic alteration (Marshall 1992). Diagenetic screening was intended to 

identify those specimens that show the least altered characteristics.  

Three principal methods were used for the diagenetic screening of skeletal carbonate 

shell material namely; image analysis (SEM), mineralogical analysis by X-ray diffraction 

(XRD) and determination of trace element concentration by ICP-OES. Additional minor  

techniques included cold cathodoluminescence (CL), carbonate staining and 

automated SEM-EDS analysis using QEMSCAN technology. No single method can 

confidently identify those least altered specimens that were deemed suitable for stable 

isotope analyses. It is apparent that an over reliance on any single one of the three 

methods may lead to either the rejection of specimens that would have been suitable 

for further analysis or perhaps worse still the introduction of flawed analyses. Thus 

imaging of skeletal carbonate ultrastructure can identify the presence of neomorphic 

features in a specimen but cannot indicate the presence of diagenetic trace element 

indicators at below threshold concentrations. Likewise mineralogical analysis by XRD 

can identify the primary mineral phases present but will be unable to confirm the 

presence diagenetic features affecting the physical structure of the skeletal carbonate. 

The best and most reliable overall diagenetic screening methodology comprised the 

adoption of a combination of these three principal methods, each of which was scored 

or assessed before arriving at an overall suitability score for each individual specimen. 

However, within this study not all of the techniques were employed for each of the 

specimens; for example there were specimens with insufficient sample powders 

available for trace element analysis and others without SEM imaging. Consequently 

there are 117 specimens with no SEM images, 27 specimens with no XRD analysis 

and 44 specimens with no ICP-OES trace element screening. With these gaps in the 

diagenetic screening it was unfeasible to apply a single approach to diagenetic scoring 

of the specimens. Given the outstanding quality of the macrofossils from Seymour 
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Island and the good preservation state of the aragonitic specimens it seemed 

inappropriate to reject those specimens where the scoring process was incomplete.  

Reviewing the diagenetic scoring data (see Appendix B, Table B-3) it was apparent 

that without ICP-OES trace element data it would be impossible to confirm whether 

diagenetic indicator elements (Fe and Mn) had elevated concentrations and whether 

Mg was present at a concentration in excess of the threshold of 1000 ppm for biogenic 

aragonite (Brand, 1991). Thus, where there was no XRD scoring it was possible to 

screen for aragonite by inspection of trace element data. Finally the lack of SEM 

imaging meant that it would be impossible to determine the presence of diagenetic 

features unless trace element analyses indicated elevated Fe or Mn levels. 

For a fully effective and reliable diagenetic screening of skeletal material comprised 

of aragonite nacre all three principal techniques are required. Note that there was a 

fourth screening technique employed in this study through a comparison between the 

stable isotope data from screened specimens and partially screened specimens that 

lacked ICP-OES trace element data. This option was available due to the completion of 

the majority of stable isotope analyses prior to the commencement of trace element 

analyses. The primary outcome of this approach was that the majority of specimens 

were sampled, partially screened for diagenesis (SEM and XRD), analysed for stable 

isotopes and following subsequent ICP-OES trace element analysis were then found to 

be unsuitable for inclusion in both the stable isotope measurement data and the 

determination of palaeotemperatures.  

The diagenetic screening indicates that 34 specimens were found to have a wholly 

unsuitable shell mineralogy for inclusion in further analyses. The remaining 213 

specimens were all deemed to be suitable for stable isotope analysis but only 116 fully 

satisfied all of the screening requirements. From the remainder, 53 specimens showed 

Fe or Mn concentrations above the selected threshold levels (e.g. Fe ≥ 500 ppm and 

Mn ≥ 200 ppm) and the final 44 specimens recorded no trace element data. Further 

comparative screening of stable isotope data from screened and partially screened 

specimens will be further discussed in Appendix E.  

3.7.1 Aragonite skeletal preservation 

One obvious question that remains is why the preservation of the skeletal 

carbonates, in particular aragonite, is so good in the James Ross Basin. It is apparent 

that the basin underwent rapid infilling with a range of infill rates (for example ~270, 

175 and 100 to 200 m/Ma-1 (MacDonald et al., 1988; McArthur et al., 1988; Dutton et 

al., 2007; Tobin et al., 2012). Based upon the section stratigraphy and GSSP ages an 

average rate of ~160 m/Ma-1 was calculated for this study (Gradstein et al., 2012). 
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Although the basin infill rate was rapid the presence of well preserved macrofossils with 

abundant aragonite nacre indicated a shallow burial depth (1 to 2 km) and an 

associated low temperature (~30 to <60°C) limited diagenesis (Svojtka et al., 2009; 

Tobin et al., 2012). The low burial temperature must have had a significant influence on 

restricting the diagenetic alteration of the skeletal carbonates. The lack of persistent 

diagenesis in aragonite nacre specimens suggests that conditions within the basin 

limited both the dissolution of primary aragonite and the subsequent precipitation of 

diagenetic cements (see Boggs, 2009; Petersen et al., 2016). The evidence of 

luminescence under CL for fractures infills in bivalves as reported by Petersen et al. 

(2016) but with no corresponding luminescence of the skeletal carbonate also indicated 

that limited diagenesis had occurred. Jordan et al. (2015) discussed the nature of 

aragonite preservation and reported that approximately 50% of carbonate sediments 

are preserved but this drops to 10% for aragonite. Dissolution of aragonite is inhibited 

where the sediment water interface is depleted in O2, aragonite also undergoes 

dissolution at a higher pH (7.8) than calcite. The preservation of aragonite may be 

linked to buffering by sediment which inhibited dissolution by limiting change of pH. 

This scenario may reflect what occurred with the rapid infilling of the James Ross Basin 

limiting the rate of aragonite dissolution. Schoepfer et al. (2017) discussed the 

development of cyclic anoxic to euxinic conditions in the Late Maastrichtian to Early 

Danian James Ross Basin based upon the analysis of major and minor trace elements. 

As previously described the presence of primary skeletal aragonite is rare in the 

Phanerozoic fossil record due to the metastable nature of the mineral, when present it 

provides a direct geochemical link to the palaeoenvironment in which the macrofauna 

flourished. The López de Bertodano Fm. contains a relatively low diversity but 

abundant invertebrate and vertebrate macrofauna and appears to be dominated by 

taxa with aragonite skeletal carbonate. Other studies have reported stable isotope and 

trace element data from taxa utilising just calcite skeletal carbonate, notably 

foraminifera, oysters and belemnites. But as this study has shown there appeared to be 

a strong basis for a correlation between calcitic shell material and evidence of 

extensive diagenesis, most notably within the trace element data.  

However, due consideration must be be given for the style of shell material selected 

for stable isotope analysis. Whilst Tobin et al. (2012) and Tobin and Ward (2015) 

analysed both calcitic and aragonitic macrofossils the decision in this study to carry out 

stable isotope analyses on only aragonitic specimens will, in all certainty,  have 

introduced a preservational bias.  
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4 Oxygen and carbon stable isotope analysis 

4.1 Synopsis/Summary 

In this chapter the nature and usage of the aragonite palaeothermometer is 

discussed and comparisons are made of palaeotemperatures calculated for differing 

levels of δ18Owater in the Cretaceous ocean. Together with a further discussion of the 

significance of the stable isotope and palaeotemperature data generated. A 

comparison of these stable isotope and palaeotemperature data with that from recently 

published studies of macrofossil specimens from Seymour Island is also discussed. 

The nature and significance of the δ13C record is also discussed and a comparison 

made with other recently published studies of late Cretaceous δ13C.  

Details of the taxa selected for analysis are presented together with the analytical 

methods adopted for the stable isotope analyses. The suitability of the individual 

diagenetic screening methodologies are further described and discussed with 

reference to the stable isotope data. Whilst all carbonates are suitable for stable 

isotope analysis the intended outcome of the screening process (see Chapter 3) was to 

identify those specimens that were the least altered and retained a reliable 

palaeoclimate signal. It was anticipated that a further phase of the selection and 

screening process would take place after the measurement and correlation of oxygen 

and carbon stable isotopes from the diagenetically unaltered aragonite nacre shell 

material selected.  

4.2 Palaeotemperature determination 

Calcite and aragonite derived palaeotemperatures may be determined from fossil 

skeletal material provided no significant diagenetic changes have occurred. A 

comparison of the relative concentrations of Fe and Mn from fossil shell material with 

values from extant organisms where Mn (< 100 ppm) and Fe (< 250 ppm) provides an 

indication of whether samples have been subject to diagenesis (Morrison and Brand, 

1988; Marshall 1992; Crame et al., 1999; Tobin et al., 2012). The possibility of Fe and 

Mn surface contamination of the carbonate shell material must also be considered. The 

Fe and Mn may only be loosely bound to the carbonate and may not be 

accommodated within the aragonite lattice. Thus high Fe or Mn concentrations may not 

necessarily indicate the presence of excessive diagenetic change to the skeletal 

carbonate shell material (see Chapter 3). The  presence of elevated Fe and Mn levels 

in trace element analyses from Seymour Island as well as the selection of threshold 

levels for Fe and Mn was discussed in Tobin et al. (2012) and Petersen et al. (2016). 
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There was also an assumption that the organisms secreted their shell material in 

isotopic and chemical equilibrium with the seawater in which they lived. In which case 

there was no ‘vital effect’ in place whilst the shell was being grown and the oxygen 

stable isotope record derived from the bicarbonate taken up by the organism 

represented an accurate record of the δ13C and δ18O in the seawater. However, it was 

also noted in studies of extant species of bivalves and cephalopods that there was 

evidence which indicated that the carbonate shell material was subject, in certain 

cases, to a ‘vital effect’ during the formation of the shell material (Marshall et al., 1996; 

Tripati et al., 2010; Schöne et al., 2011; Lécuyer et al., 2012, 2013). For example, 

Lécuyer et al. (2012) reported that the oxygen isotope composition of biogenic 

aragonite might not reflect the mean annual seawater temperature but rather a mean 

temperature from the warm season. The authors also suggested that δ18O values from 

molluscs were only reliable palaeotemperature proxies for low-mid latitudes, although 

this view was at odds with the significant body of high palaeolatitude studies (for 

example Tobin et al., 2012; Petersen et al., 2016). Indeed for high palaeolatitude sites 

this may be more difficult to reconcile due to the marked seasonality of specimen 

growth, Petersen et al. (2016) described the wide variability of the stable isotope range 

of Maastrichtian bivalves which they considered a combination of ontogenetic growth 

linked to distinct seasonality and modification of δ18Owater by seasonal run off from the 

proximal landmass. 

Lécuyer et al. (2012) also reported an isotopic enrichment for biogenic aragonite that 

affected both carbon and oxygen relative to biogenic calcite; δ13C was enriched by 

+0.95±0.81‰ and δ18O was enriched by +0.37±0.65‰. These results suggested 

precipitation of aragonite close to, but not in oxygen isotope equilibrium. Carbon 

isotope composition may be affected by non-equilibrium fractionation with higher δ13C 

values expected from aragonitic shell material due to the enrichment of δ13C by +1.7‰ 

in comparison with LMC (Romanek et al., 1992).  

4.3 Macrofossil Types 

See Table 4-1 for a summary of suitable macrofossil types selected for inclusion in 

the stable isotope analysis. Note that specimens identified as ‘Ammonite’, ‘Bivalve’, 

‘Gastropod’ or ‘Nautiloid’ were not identifiable to genus level. There were 213 

specimens selected after the completion of the initial diagenetic screening. Summary 

screened data for the macrofossil types selected for stable isotope analysis are 

presented in Appendix E, Tables E-2, 3, 4, 5 and 6. The corresponding trace element 

geochemical data are presented in Appendix d and Table D-7, 8, 9 and 10. A series of 

covariance plots of screened δ13C and δ18O data from aragonite macrofossils are 
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displayed with categorised data points, see Appendix E, Figures E-1, 2, 3, 4, 5, 6 and 

7. A further series of plots that show the covariance between screened aragonite stable 

isotope date versus trace element data concentrations (ppm) are presented in 

Appendix E, Figures E-8, 9 and 10. 

Table 4-1. Summary identification of specimens with genus selected for stable isotope analysis. 
A = ammonites, B = bivalves, G = gastropods, N = nautiloids and U = unclassified specimens. 

Genus No. Type Genus No. Type 
Amberlaya 14 G Maorites 17 A 
Ammonite 9 A Nautiloid 4 N 
Bivalve 22 B Nucula  49 B 
Diplomoceras 1 A Oistotrigonia 28 B 
Eselaevitrigonia 43 B Pinna 5 B 
Gastropod 4 G Pleurotomaria 2 G 
Grossouvrites 1 A Solemya 3 B 
Lahillia 1 B Unidentified 10 U 

4.3.1 Habitat and fossil type 

The data summarised in Table 4-2 illustrate the range of stable isotope values for 

identified molluscs categorised by habitat, the entries titled ‘Uncertain’ reflect those 

specimens where it was not possible to reliably identified the actual fossil type. 

Following the removal of specimens that were identified as having suffered from 

diagenesis the number of epifaunal and infaunal specimens was subject to a minimal 

change but nektonic specimens were significantly reduced in number. As a result the 

stratigraphic distribution of epifaunal and infaunal specimens was extensive and 

correspondingly of significant overall importance. Figures E-1 and 2 present a 

comparison of the stable isotope data for specimens classified by habitat and fossil 

type respectively. With a large number of specimens and a wide stratigraphic 

distribution the epifaunal and infaunal specimens (bivalves and gastropods) form the 

most important and influential part of the stable isotope dataset. Unfortunately there 

was found to be a paucity of suitable specimens in the stratigraphy from 900 m to 1084 

m, this section also included the position of the K-Pg boundary. 

4.3.2 Bivalves 

The data summarised in Table 4-3 illustrate the range of stable isotope values for 

identified bivalve molluscs, the entries titled ‘Bivalve’ reflect those specimens that were 

correctly identified as bivalves but for which no genus was identified. Following the 

removal of specimens that were identified as having suffered from diagenesis the 

number of bivalves was subject to minimal change. As a result their stratigraphic 

distribution was extensive and correspondingly of significant overall importance. 

Figures E-3 and 4 present a comparison of the stable isotope data for bivalves. The 
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δ13C data for Solemya indicates that the specimens were either subject to post-mortem 

early stage diagenesis or that the bicarbonate was depleted in 13C. 

Table 4-2. Summary screened stable isotope trace element geochemical data classified by 
habitat selected for analysis. Stable isotope data reported as standard per mil (‰ VPDB) and 
trace element analyses (ppm) below detection limits = b/d. 

Epifaunal δ
13

C δ
18

O Mg Sr Na Fe Mn T (°C) 
Mean 1.99 1.12 154 3037 6119 325 114 11.4 
Minima -0.19 0.72       
Maxima 3.33 1.42       
Std Err 0.96 0.17       
Std Dev 0.94 0.17       
Count 20 20       
Conf Level (95%) 1.89 0.34       
Infaunal δ

13
C δ

18
O Mg Sr Na Fe Mn T (°C) 

Mean 1.43 1.24 153 2788 5778 167 230 10.9 
Minima -10.49 0.26       
Maxima 4.34 2.11       
Std Err 2.26 0.40       
Std Dev 2.26 0.41       
Count 128 128       
Conf Level (95%) 4.43 0.79       
Nektonic δ

13
C δ

18
O Mg Sr Na Fe Mn T (°C) 

Mean -1.62 0.99 396 4766 4530 592 224 12.0 
Minima -5.18 0.13       
Maxima 1.56 1.53       
Std Err 1.58 0.32       
Std Dev 1.67 0.32       
Count 31 31       
Conf Level (95%) 3.10 0.63       
Uncertain δ

13
C δ

18
O Mg Sr Na Fe Mn T (°C) 

Mean 1.61 1.20 101 2273 5357 164 47 11.1 
Minima -1.51 -0.06       
Maxima 2.91 1.92       
Std Err 1.00 0.42       
Std Dev 1.09 0.43       
Count 33 33       
Conf Level (95%) 1.95 0.83       

Little et al. (2015) reported on the occurrence of methane seeps in the James Ross 

Basin. The authors identified Solemyids as a bivalve group that were actively involved 

in colonising methane seep environments and which had thiotrophic chemosymbionts 

involved in the anaerobic oxidation of methane. What was unexpected was that the 

range of δ13C data for Solemya specimens was more positive than might be expected 

(Little et al., 2015). Actual δ13C data (minima -10.49, maxima -5.99 and mean -8.01‰) 

have more in common with δ13C data from Snow Hill Island although still more positive 

than the range reported (minima -20.4 and maxima -10.7‰) (Little et al., 2015). 

Bivalve specimens represent ~74% of the stable isotope data and with a wide 

stratigraphic distribution they form the most important and influential part of the stable 

isotope dataset. However, there was a noticeable lack of specimens in the section 

between 900 m to 1084 m and this caused some difficulties in correlation of data from 

this study with that from other recent Seymour Island studies.  
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Table 4-3. Summary screened stable isotope trace element geochemical data for bivalve taxa 
selected for analysis. Stable isotope data reported as standard per mil (‰ VPDB) and trace 
element analyses (ppm) below detection limits = b/d. 

Eselaevitrigonia δ
13

C δ
18

O Mg Sr Na Fe Mn T (°C) 
Mean 1.71 1.28 93 2838 6062 101 42 9.8 
Minima -5.06 0.70       
Maxima 3.70 2.02       
Std Err 1.68 0.40       
Std Dev 1.69 0.39       
Count 25 25       
Lahillia δ

13
C δ

18
O Mg Sr Na Fe Mn T (°C) 

D5.215.696.2/AV 3.29 1.47 42 3252 3977 137 28 9.0 
Nucula δ

13
C δ

18
O Mg Sr Na Fe Mn T (°C) 

Mean 2.11 1.52 116 3837 5899 95 47 8.8 
Minima -0.51 0.49       
Maxima 3.65 2.05       
Std Err 1.10 0.46       
Std Dev 1.09 0.49       
Count 13 13       
Oistotrigonia δ

13
C δ

18
O Mg Sr Na Fe Mn T (°C) 

Mean 2.13 0.95 68 1565 5930 86 32 11.3 
Minima 0.81 0.59       
Maxima 3.26 1.49       
Std Err 0.64 0.22       
Std Dev 0.64 0.22       
Count 23 23       
Pinna δ

13
C δ

18
O Mg Sr Na Fe Mn T (°C) 

D5.215.216.2/A 2.44 0.92 b/d 2541 3417 181 b/d 11.4 
Solemya δ

13
C δ

18
O Mg Sr Na Fe Mn T (°C) 

Mean -8.01 1.05 684 6768 2776 78 100 10.8 
Minima -10.49 0.99       
Maxima -5.99 1.11       
Std Err 2.09 0.09       
Std Dev 2.29 0.06       
Count 3 3       
Bivalve δ

13
C δ

18
O Mg Sr Na Fe Mn T (°C) 

Mean 2.09 1.32 63 2102 5460 121 15 9.7 
Minima -0.04 0.86       
Maxima 2.91 1.92       
Std Err 0.67 0.35       
Std Dev 0.69 0.34       
Count 18 18       

4.3.3 Cephalopods 

The data summarised in Table 4-4 illustrate the range of stable isotope values for 

identified cephalopod molluscs, the entries titled ‘Ammonite’ and ‘Nautiloid’ reflect 

those specimens that were correctly identified as ammonites or nautiloids but for which 

no genus was identified. Following the removal of specimens that were identified as 

having suffered from diagenesis the number of cephalopods was significantly reduced. 

As a result their stratigraphic distribution was limited and correspondingly of less 

overall importance. Figures E-5 and 6 present a comparison of the stable isotope data 

for cephalopods. The δ13C data for Maorites indicates that the specimens were either 



High palaeolatitude record of Late Maastrichtian – Early Danian climate change, Seymour 

Island, Antarctica 

Page 88  

subject to post-mortem early stage diagenesis or that the bicarbonate was depleted in 

13C.  

Table 4-4. Summary geochemical data for stable isotopes, major element and trace elements 
from selected cephalopod molluscs. 

Diplomoceras δ
13

C δ
18

O Mg Sr Na Fe Mn T (°C) 
D5.215.955.3/A -1.63 1.44 426 4327 6719 179 61 9.1 
Grossouvrites δ

13
C δ

18
O Mg Sr Na Fe Mn T (°C) 

D5.215.691.2/B -1.32 0.53 178 3195 7506 369 15 13.1 
Maorites δ

13
C δ

18
O Mg Sr Na Fe Mn T (°C) 

Mean -2.09 1.03 362 5283 4783 159 90 10.9 
Minima -5.18 0.76       
Maxima 1.18 1.33       
Std Err 2.69 0.23       
Std Dev 2.38 0.26       
Count 5 5       
Ammonite δ

13
C δ

18
O Mg Sr Na Fe Mn T (°C) 

Mean -1.48 1.04 165 4107 4106 240 22 10.9 
Minima -3.96 0.88       
Maxima 0.54 1.27       
Std Err 0.15 0.20       
Std Dev 2.22 0.17       
Count 4 4       
Nautiloid δ

13
C δ

18
O Mg Sr Na Fe Mn T (°C) 

Mean -2.09 0.69 229 3572 4332 144 49 12.4 
Minima -3.47 0.56       
Maxima 0.06 0.77       
Std Err 0.43 0.13       
Std Dev 1.89 0.12       
Count 3 3       

4.3.4 Gastropods 

The data summarised in Table 4-5 illustrate the range of stable isotope values for 

identified gastropod molluscs, the entries titled ‘Gastropod’ reflect those specimens that 

were correctly identified as gastropods but for which no genus was identified. Following 

the removal of specimens that were identified as having suffered from diagenesis the 

number of gastropods was subject to a minimal change. With few specimens their 

stratigraphic distribution was restricted. Figure E-7presents a comparison of the stable 

isotope data for gastropods which form an important part of the stable isotope dataset. 

Table 4-5. Summary geochemical data for stable isotopes and trace elements from selected 
gastropod molluscs. 

Amberlaya δ
13

C δ
18

O Mg Sr Na Fe Mn T (°C) 
Mean 2.38 1.15 111 3154 6403 64 67 10.4 
Minima 0.51 0.72       
Maxima 3.28 1.42       
Std Err 0.85 0.23       
Std Dev 0.81 0.22       
Count 9 9       
Pleurotomaria δ

13
C δ

18
O Mg Sr Na Fe Mn T (°C) 

Mean 0.92 1.00 89 3692 6467 70 24 11.1 
Minima -0.19 0.97       
Maxima 2.02 1.03       
Count 2 2       
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Gastropod δ
13

C δ
18

O Mg Sr Na Fe Mn T (°C) 
D5.215.361.2/A 2.40 1.04 87 2001 4491 b/d 19 10.9 

4.3.5 Unidentified molluscs 

The data summarised in Table 4-6 illustrate the range of stable isotope values for 

unidentified molluscs and reflects those specimens for which no genus was identified. 

Following the removal of specimens that were identified as having suffered from 

diagenesis the number of unidentified specimens was subject to a minimal change. 

With few specimens their stratigraphic distribution was restricted. Figure E-8 presents a 

comparison of the stable isotope data for unidentified specimens which form part of the 

stable isotope dataset. 

Table 4-6. Summary geochemical data for stable isotopes and trace elements from unidentified 
molluscs. 

Unidentified δ
13

C δ
18

O Mg Sr Na Fe Mn T (°C) 
Mean 1.15 0.94 61 2374 4509 102 5 11.3 
Minima -1.51 -0.06       
Maxima 2.64 1.55       
Std Err 1.28 0.40       
Std Dev 1.35 0.49       
Count 8 8       

4.4 Stable isotope variability 

The stable isotope data presented in Tables 4-2, 3, 4, 5 and 6 showed that at 

individual stratigraphic levels, the ranges of measured δ18O exhibited significant 

variability i.e. +0.9 to +1.1‰ at 343 m, +0.8 to +2.1‰ at 613 m, +0.8 to +1.7‰ at 712 

m and +1.3 to +1.7‰ at 1084 m ( K-Pg boundary located at 1029 m above datum) 

(Thorn et al., 2009). It seemed improbable that all of this variability was ascribed to the 

operation of environmental change. It has been shown in previous studies that stable 

isotope variability within stratigraphy may result from the operation of inequilibrium 

growth of shell material with respect to the δ18Owater, and that species specific ‘vital 

effects’ may be more common than expected (Morrison and Brand, 1988; Marshall et 

al., 1996; Voigt et al., 2003; Weiner and Dove 2003; Eiler 2011; Schöne et al., 2011; 

Lecuyer et al. (2012); Tobin et al., 2012; Grauel et al., 2013; Petersen et al., 2016).  

Marshall et al. (1996) discussed the carbon and oxygen stable isotope composition of 

skeletal aragonite from extant Antarctic marine invertebrates; the oxygen isotopic 

values exhibited a considerable overall range from +0.8 to +3.8‰ and by 2‰ parts 

within individual specimens. The authors reported that the most positive values were 

compatible with equilibrium precipitation from ambient seawater but the range of 

measured values was difficult to reconcile with equilibrium precipitation given the 

narrow annual range of environmental temperatures and measured water 

compositions, even assuming a bias toward shell precipitation during the austral 
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summer. Vital effects cannot therefore be ruled out. Carbon isotopic values range from 

-0.2‰ to +2.2‰ VPDB and show an overall pattern of covariance with the oxygen data. 

They concluded that most of the variation was from seasonal changes in food supply 

and dissolved bicarbonate composition, although vital effects might also be involved. 

The range and variability of isotopic composition in samples collected from an 

environmentally stable site demonstrates the potential for inherent inhomogeneity in 

the isotopic record and provides a cautionary tale for those attempting to interpret 

similar data sets from the fossil record (Marshall et al., 1996).  

Petersen et al. (2016) reported on the possible effects of localised continental run-off  

and sampling from seasonal growth when considering the range of δ18O values in their 

dataset. If ’vital effects’ were in operation then this has a potentially significant impact 

on the selection of macrofossil specimens and sample data for palaeoenvironmental 

purposes.  

Despite screening the δ18O data there still remains the question of the isotopically 

lighter δ13C values in some samples suggesting that significant diagenetic alteration 

may have occurred (Marshall 1992). Low carbon values associated with ‘marine’ 

oxygen probably indicated contamination by early diagenetic carbonate related to 

organic degradation (Marshall 1992). Data have also been published that described 

Late Cretaceous (Maastrichtian) shallow water hydrocarbon seeps from Snow Hill and 

Seymour Islands (for example Little et al., 2015). The carbon isotopic composition of 

marine carbonates reflects the isotopic composition of dissolved inorganic carbon; 

carbon isotopic fractionation between CaCO3 and the dissolved carbon is generally 

independent of temperature in sedimentary environments (Grossman and Ku 1986; 

Romanek et al., 1992). For a stratified seawater column the 13C/12C ratio of the 

dissolved inorganic carbon in surface waters will be higher than that in deep waters 

due to oxidation of 13C depleted particulate organic matter by microorganisms in deep 

waters and in sediments (Kroopnick 1985). The vertical profile of 13C/12C should thus 

reflect the extent of biological cycling of carbon in the water column. Significant 

differences in stable isotope compositions may exist between organisms that lived at 

differing depths in a stratified seawater column. For a well mixed water column, these 

differences would be obliterated. However, the extensive variability observed in this 

study for δ13C at specific stratigraphic positions and for a benthic fauna suggests that 

other mechanisms were responsible. Possibly through the development of early stage 

diagenetic carbonate contamination (Boggs, 2009). 

Previous studies of the Latest Maastrichtian – Early Palaeocene section from 

Seymour Island had also considered the covariance between levels of Fe and Mn and 

the degree of diagenesis (Tobin et al., 2012; Petersen et al., 2016) and addressed the 
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issue in the following manner. Filtering the stable isotope data set at differing levels of 

the two primary diagenetic markers, Fe and Mn, and comparing the overall impact 

upon the remainder of the stable isotope data. In the case of this study screening of the 

data reduced the overall data set  but made little overall difference to the variability 

exhibited by the stable isotope data. Care must be taken when reviewing the 

significance of trace element diagenetic indicators since the presence of medium-high 

trace element concentrations does not necessarily indicate that the cations of interest 

were present in the carbonate lattice. It seemed probable that a proportion of the 

apparent Fe and Mn diagenetic signature may only represent surface contamination by 

oxyhydroxide minerals together with the presence of microscopic grains of framboidal 

pyrite (Schoepfer et al., 2017). 

Based upon previous work (Morrison and Brand, 1988; Brand, 1991) a substantial 

portion of the data set would be rejected because of the high Fe and Mn levels, 

however the range of δ18O values were well constrained and indicated that the data 

were acceptable for inclusion in the final data set. Recent published works relating to 

Late Maastrichtian stable isotope studies (Tobin et al., 2012; Petersen et al., 2016) also 

discussed the nature of the potential impact of trace element geochemistry with 

concentrations above recommended guidelines (Morrison and Brand, 1988; Brand, 

1991; Anderson et al., 1994; Ditchfield et al., 1994; Petersen et al., 2016). 

Discriminating within their data set such that only specimens with trace element levels 

below guidelines were included, their conclusion was that ‘culling the data by removing 

shells outside the limits for each trace element did not alter the overall δ18O pattern’ 

(Tobin et al., 2012).  

Large variations in δ13C were also observed for ammonites (this study; Tobin et al., 

2012; Tobin and Ward 2015), removal of specimens with isotopically light δ13C values 

had little overall effect on the oxygen isotope data set but obviously had a larger impact 

on the observed range of δ13C. However, comparison of the δ13C ranges observed in 

the rejected specimens (see Figure D-1(a) - LMC and high Mg data set) exhibited a 

δ13C range ~25‰, the majority of these specimens were ammonites with the remainder 

representing bivalves. The corresponding δ13C range for the screened aragonite 

specimens (see Figure D -1(b)) was ~12‰, where the lightest value was from a 

specimen of Solemya rossiana. The corresponding δ13C range for the expanded 

grouping of aragonite specimens (see Figure D -1(c)) was ~16‰, where the lightest 

values were from a specimens of Solemya rossiana. If the data associated with 

specimens of Solemya rossiana in Figure D -1(b and c) are ignored then no discernible 

difference existed in the δ13C range. 
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A further comparison of screened δ13C and δ18O data versus key diagenetic trace 

elements (Mg, Fe, Mn, Sr and Na) are presented in Figures E-8 and 9. In each 

covariance plot blue symbols represent specimens exhibiting Mg < 1000 ppm, Fe < 

500 ppm and Mn < 200 ppm and orange symbols represent specimens with Fe or Mn 

concentrations that exceeded the diagenetic threshold (Fe > 500 ppm and Mn > 200 

ppm). It can be seen that in no case does the inclusion of specimens that exhibited 

elevated levels of either Fe or Mn result in an expansion of the overall range of the 

stable isotope data. This further confirmed the view put forward by Tobin et al. (2012) 

with regard to the inclusion of specimens that exhibited elevated Fe and Mn levels. 

Covariance plots of Ca vs. δ13C and Ca vs. δ18O are also presented, see Figure E-10. 

There is a close clustering of the δ18O (-0.06 – +2.2‰) data with respect to the Ca (37 

– 42%) where the Ca values reflect a normal range for biogenic aragonite. A similar, 

but tighter, cluster exists for the δ13C data. Figure E-11 presents an initial correlation of 

the partially screened stable isotope versus the stratigraphy of the Latest Maastrichtian 

López de Bertodano Fm. section on Seymour Island, Antarctica showing the position of 

unscreened δ18O data categorised by habitat. Data coverage is generally good but 

there are gaps in the data for sections D5.201, D5.212 and D5.229 which reflect a lack 

of suitable macrofossil specimens. The position of the K-Pg boundary at 1029 m above 

section base was defined by palynological analysis (Thorn et al., 2009). (Ivany et al., 

2008) quote a similar variability for stable isotope data in the Eocene La Meseta Fm. 

from Seymour Island. Whilst (Latal et al., 2006) quote a similar δ18O variability for 

gastropods from the Central Paratethys (Europe) around the Lower/Middle Miocene 

transition.  

A comparison of stratigraphy vs partially screened aragonite δ13C and δ18O data 

categorised by habitat is presented (see Figure E-12) with the K-Pg boundary inferred 

from palynology (Thorn et al., 2009). Note the wide variability in data exhibited by the 

infaunal samples. The ‘Uncertain’ category represents specimens where it was not 

possible to identify a specific fossil type and habitat but where the fragmentary shell 

material was of sufficient quality to pass diagenetic screening. Note that with the 

exception of a single value in the ‘Uncertain’ category (-0.06‰) all δ18O data were > 

0.0‰. The 3 lightest infaunal δ13C values represent specimens of the bivalve Solemya 

rossiana that have thiotrophic chemosymbionts involved in the anaerobic oxidation of 

methane (Little et al., 2015). A similar plot compares the stratigraphy vs fossil type (see 

Figure E-13) note the wide variability in δ13C exhibited by the bivalve category. 

4.5 James Ross Basin - Water stratification 

An intended objective for this research was to compare the oxygen stable isotope 

data derived from stratigraphically paired benthic – pelagic taxa in order to determine 



High palaeolatitude record of Late Maastrichtian – Early Danian climate change, Seymour 

Island, Antarctica 

Page 93  

whether any evidence of water stratification existed. With an extensive data set there 

should have been no problem with this approach with the pelagic data provided from 

the analysis of shell material from cephalopod molluscs, namely ammonites and 

nautiloids. However, the viability of this particular analytical approach was questioned 

in Lukeneder et al. (2010), they stated that stable isotope analyses (δ18O, δ13C) on 

ammonoids are numerous but typically data were obtained as single-point 

measurements and combined with other taxa of coeval stratigraphic positions. These 

studies were typically designed to reveal ocean water temperatures at distinct time 

slices, neglecting the enormous effect on the isotope composition due to migration and 

habitat change (Lukeneder et al., 2010). As δ18O data from single cephalopod shells 

can range around 2.00‰, spanning a temperature range of almost 8–10°C, these “one-

measurement per shell-data” are inappropriate for palaeotemperature estimations 

(Lukeneder et al., 2010). The ranges are ontogenetically induced and single point 

measurements will snap-shot ocean water temperatures at a very specific point of 

development only (Lukeneder et al., 2010). Note that (Lukeneder et al., 2010) are 

commenting with reference to reconstructing the ontogenetic development of a suitable 

taxon based upon stable isotope analyses but the criticism also remains true, perhaps 

with more significance, for the comparison of data derived from paired benthic – 

pelagic taxa.  

Previous authors have published data indicating that present day cephalopods 

occupy differing depths during life as determined by stable isotope analysis (Cochran 

et al., 1981; Auclair et al., 2004; Lukeneder et al., 2010) these studies related to the 

ontogenetic stable isotope record of Nautilus pompilius (Cochran et al., 1981) and 

Nautilus macromphalus (Auclair et al., 2004). The extant cephalopod mollusc Nautilus 

has an overall mode of life that differs from that of nektonic Mesozoic cephalopoda but 

it does provide an analogous proxy with some similarities. Thus it is reasonable to 

consider that specific stages of the ammonite life cycle took place at differing depths 

within the water column. Without a rigorous control over the specific stage of the 

ammonite life cycle from which the sample powder was collected it would be difficult to 

draw conclusions about water stratification based purely upon spot stable isotope data. 

In which case determining any correlation between a sessile benthic taxon and an 

active nektonic taxon would only be successful if the nektonic taxon was either 

confined at a specific waterdepth or the shell material being analysed was sampled 

from a portion of the shell at a known point during the ontogenetic development of an 

individual specimen. 

A comparison of δ18O data from a limited set of stratigraphically paired benthic – 

nektonic taxa is presented in Figure 4-1, the plot illustrates the only suitable 
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stratigraphic positions at which there were benthic and nektonic taxa following 

diagenetic screening. Nektonic taxa show the lightest (warmer temperatures) δ18O 

values (~0.5 to ~1.3‰) and benthic taxa show either heavier (cooler temperatures) 

δ18O values (~0.5 to ~2.15‰) or a wider overall spread of δ18O values. Conversely the 

benthic taxa at 636 m and 642 m also show a range of lighter (warmer temperatures) 

δ18O values. Whilst some indication of possible temperature stratification exists the 

available data are stratigraphically limited in extent. 

  

Figure 4-1. Comparison of screened δ
18

O data from stratigraphically paired benthic – nektonic 
taxa, Note that following diagenetic screening the only available candidate pairs were at the 
stratigraphic positions plotted. Nektonic taxa show the lightest δ

18
O values (~0.5 to 1.3‰) which 

correlate with warmer temperatures and benthic taxa show either heavier (cooler temperatures) 
δ

18
O values (~0.5 to 2.15‰) or a wider spread of δ

18
O values. Conversely the benthic taxa at 

636 m and 642 m also show a range of lighter δ
18

O values. Whilst some indication of possible 
temperature stratification exists the available data are stratigraphically limited in extent.  

4.6 Stable isotope record - Discussion 

Screened stable isotope data for primary aragonite from bivalves, cephalopods and 

gastropods exhibited a range of -0.06 to +2.1‰ for δ18O and -10.49 to +4.34‰ for 

δ13C. Note that the range of δ13C is considerably expanded by the presence of 3 

specimens of Solemya rossiana, which have thiotrophic chemosymbionts involved in 

the anaerobic oxidation of methane (Little et al., 2015). Screened stable isotope data 

show that at individual stratigraphic levels the range in screened δ18O exhibits 

significant variability i.e. +0.9 to +1.1‰ at 343 m, +0.8 to +2.1‰ at 613 m, +0.8 to 

+1.7‰ at 712 m and +1.3 to +1.7‰ at 1084 m all with respect to the K-Pg boundary 

(1029 m above datum, as defined by palynology (Thorn et al., 2009). Organisms 
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generally deposit biogenic carbonates (e.g. calcite and aragonite) under equilibrium 

conditions with respect to seawater (Weiner and Dove 2003). Bivalve molluscs with a 

benthic mode of life exhibited the widest range of δ18O and δ13C values, in the latter 

case it should be noted that the δ13C range  was enhanced by the presence of 3 

isotopically light specimens of Solemya rossiana. 

The variability seen in the δ18O stable isotope data in this study was similar to that 

exhibited by a high latitude present day shallow marine molluscan assemblage from 

Antarctica (Marshall et al., 1996). Comparison of the stable isotope data from this study 

with recently published results (Tobin et al., 2012; Tobin and Ward, 2015; Petersen et 

al., 2016) from Seymour Island, Antarctica showed that a similar level of stable isotope 

variability was also present. A similar δ18O variability was noted for Eocene 

macrofossils from the La Meseta Fm. on Seymour Island (Gaździcki et al., 1992; Ivany 

et al., 2003) and a similar δ18O variability was also recorded for gastropods (Latal et al., 

2006) from the Central Paratethys (Europe) around the Lower/Middle Miocene 

transition.  

Relative palaeotemperatures (°C) were calculated for screened δ18O values for a 

constant seawater composition of -1.0‰ (SMOW), representing ice free ocean water 

(Shackleton and Kennett 1975). The value of SMOW may require modification for parts 

of the succession since there is evidence that a lowering of sea level, as a result of 

glacioeustasy, occurred during the Latest Maastrichtian (Miller et al., 2005; Haq, 2014). 

In which case a value of -0.9‰ (SMOW) may better reflect the δ18O state of the 

seawater (Price, 1999). Alternatively, if there was substantial mixing with freshwater 

run-off then a value of -1.5‰ (SMOW) may be more appropriate (Price, 1999). Stable 

isotope data show that individual stratigraphic levels can exhibit significant variability 

for δ18O and δ13C and that as a result analysis of single samples at discrete 

stratigraphic levels may provide an erroneous interpretation of climate change. 

Previous studies using single results at discrete stratigraphic levels, a common 

approach may suggest climate was much more variable. This high resolution data set 

with multiple analyses at discrete stratigraphic levels was intended to provide an 

opportunity to compare stable isotope data from both benthic and pelagic macrofossils 

at corresponding levels. The data set also enables an investigation of water 

stratification within the Latest Maastrichtian James Ross Basin. Key events recognised 

from palynology (Thorn et al., 2009; Bowman et al., 2012; Bowman et al., 2013) appear 

to be associated with low oxygen isotope values and may reflect periods of warmer 

climate; higher oxygen isotope values were seen mid-section and may reflect periods 

of cooler climate. 
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The extensive ~1100 m thick Latest Maastrichtian – Earliest Danian section on 

Seymour Island generated a high resolution oxygen and carbon stable isotope record. 

The data set enabled the comparison of the stable isotope data from benthic and 

pelagic macrofossils at corresponding levels within the measured succession. There 

was good overall coverage of stable isotope data in the succession within the 

measured stratigraphy that included measurements to within 1 m of the K-PG 

boundary. There were fewer macrofossils deemed suitable for isotopic analysis at the 

top of the section and this was most noticeable in the upper 280 m of the section. 

Unusually for this data set the majority of the specimens selected from this section of 

the stratigraphy were ammonites. This paucity of of suitable specimens in the upper 

portion of the section was in marked contrast to the number of specimens selected by 

Tobin et al. (2012) and Petersen et al. (2016).  

The study has provided a high resolution stable isotope data set for the interval 

studied, with a range of -0.06 to +2.1‰ for δ18O derived from screened data. Data 

indicated that individual stratigraphic levels exhibited significant variability for δ18O and 

δ13C and that as a consequence analysis of single samples at discrete stratigraphic 

levels might provide an erroneous interpretation of climate change. Samples with Mg, 

Fe and Mn trace element concentrations above published guidelines (Morrison and 

Brand, 1988; Brand, 1991) were excluded from the data set but the presence of 

surface contamination of the aragonite nacre shell material may have caused the trace 

element data to highlight potential diagenetic issues without actually representing the 

true cation levels present within the aragonite lattice, see Chapter 3 and Appendix D for 

a more detailed explanation. Screened oxygen isotope values range from -0.06 to 

+2.1‰ δ18O and corresponding carbon isotope values range from -10.8 to +4.3‰ δ13C. 

Isotope data were not recorded below 311 m above datum, due to a lack of suitably 

preserved macrofossil specimens. Highest oxygen isotope values are in mid section 

and may be associated with periods of cooler climate. However, the wide variability of 

the stable isotope values, in particular that for δ18O, suggests that the interpretation of 

warmer or cooler climatic conditions may be problematic. 

4.6.1 Oxygen isotope variability 

The wide variability in the δ18O data within the measured stratigraphy and at specific 

stratigraphic levels cannot be entirely dependent upon diagenetic alteration. 

Diagenesis of the skeletal aragonite has been discussed in this chapter as well as in 

Chapter 3 and it was shown that even specimens with elevated levels of Fe and Mn 

had a minimal effect on the overall variability of the stable isotope data. It seems 

unlikely that diagenesis was wholly responsible for the variability of the stable isotope 
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data. Similar variability was quoted for stable isotope data from extant shallow marine 

invertebrates from Antarctica (Marshall et al., 1996) and in the Eocene La Meseta Fm. 

from Seymour Island, Antarctica (Ivany et al., 2008). Whilst Latal et al. (2006) quote a 

similar δ18O variability for gastropods from the Central Paratethys (Europe) around the 

Lower/Middle Miocene transition. Further recent stable isotope data from Seymour 

Island also show a similar variability (Tobin et al., 2012; Tobin and Ward, 2015; 

Petersen et al., 2016). Isotopic mixing caused by the runoff of fresh water was 

proposed as a mechanism for the observed variability by Petersen et al. (2016). Whilst 

it is plausible that the variability resulted from isotopic mixing at discrete positions 

within the stratigraphy it seems less likely that the overall variability at stratigraphic 

levels reflect mixing. 

4.7 Palaeotemperature determination 

Temperatures were calculated using a range of values for the δ18O seawater 

composition with respect to the SMOW standard, values adopted were -0.8, -1.0, -1.2 

and -1.5‰, with the range of calculated palaeotemperatures presented in Table 4-7. 

The range of palaeotemperatures for gastropods are 9.2 to 12.3 (°C), for cephalopods 

8.8 to 14.8 (°C), for bivalves 6.2 to 14.3 (°C) and for specimens of an uncertain 

classification 8.7 to 15.7 (°C). The gastropods exhibit a smaller temperature range than 

the bivalves but both are benthic, it is probable that the difference reflects a difference 

between epifaunal and infaunal modes of life. The relatively cool temperatures are 

generally consistent but with a reduced overall range of temperatures in comparison 

with data from previous studies (Tobin et al., 2012; Petersen et al., 2016). 

Temperatures indicated that at altitude ice may have been present at the pole.  

4.7.1 Seymour Island palaeotemperatures 

The stable isotope data indicated cool and relatively stable benthic temperatures of 

~10°C for the measured section, see Table 4-7. A significant variability also exists 

within the δ13C isotope data. The overall variability in the isotope data complicated any 

attempt to generate an accurate stable isotope or temperature trend from the data. A 

correlation of palaeotemperature versus the López De Bertodano Fm. stratigraphy is 

presented in Figure 4-2 that illustrates the range of calculated palaeotemperatures 

derived from the δ18O data. Note that the entire screened stable isotope data set is 

presented in Figure 4-2. 
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Table 4-7. Range of palaeotemperatures calculated from the δ
18

O stable isotope data for a 
range of constant seawater compositions with respect to the SMOW standard.  

 δ
18

O‰ Temperature (°C) [SMOW] 

Type Avg Min Max -0.8 -1.0 -1.2 -1.5 

Bivalve 1.25 0.26 2.11 7.1 15.1 6.2 14.3 5.4 13.4 4.1 12.1 

Cephalopod 1.00 0.13 1.53 9.6 15.7 8.8 14.8 7.9 14.0 6.6 12.7 

Gastropod 1.12 0.72 1.42 10.1 13.2 9.2 12.3 8.4 11.4 7.1 10.1 

Uncertain 0.96 -0.06 1.55 9.5 16.5 8.7 15.7 7.8 14.8 6.5 13.5 

Habitat            

Epifaunal 1.12 0.72 1.42 10.1 13.2 9.2 12.3 8.4 11.4 7.1 10.1 

Infaunal 1.24 0.26 2.11 7.1 15.1 6.2 14.3 5.4 13.4 4.1 12.1 

Nektonic 0.99 0.13 1.53 9.6 15.7 8.8 14.8 7.9 14.0 6.6 12.7 

Planktonic 1.44 1.44 1.44 10.0 10.0 9.1 9.1 8.3 8.3 7.0 7.0 

Uncertain 1.20 -0.06 1.92 7.9 16.5 7.0 15.7 6.2 14.8 4.9 13.5 

Mode of life            

Browser 1.00 0.97 1.03 11.8 12.0 10.9 11.2 10.0 10.3 8.7 9.0 

Carnivore 1.00 0.13 1.53 9.6 15.7 8.8 14.8 7.9 14.0 6.6 12.7 

Scavenger 1.14 0.72 1.42 10.1 13.2 9.2 12.3 8.4 11.4 7.1 10.1 

Deposit 1.39 0.26 2.05 7.4 15.1 6.5 14.3 5.6 13.4 4.3 12.1 

Suspension 1.14 0.38 2.11 7.1 14.6 6.2 13.7 5.4 12.9 4.1 11.6 

Uncertain 1.19 -0.06 1.92 7.9 16.5 7.0 15.7 6.2 14.8 4.9 13.5 

Genus            

Amberlaya 1.13 0.72 1.42 10.1 13.2 9.2 12.3 8.4 11.4 7.1 10.1 

Ammonite 1.21 0.88 1.53 9.6 12.4 8.8 11.6 7.9 10.7 6.6 9.4 

Bivalve 1.32 0.59 1.92 7.9 13.7 7.0 12.8 6.2 12.0 4.9 10.7 

Diplomoceras 1.44 1.44 1.44 10.0 10.0 9.1 9.1 8.3 8.3 7.0 7.0 

Eselaevitrigonia 1.28 0.38 2.11 7.1 14.6 6.2 13.7 5.4 12.9 4.1 11.6 

Gastropod 1.14 1.02 1.26 10.8 11.8 9.9 11.0 9.1 10.1 7.8 8.8 

Grossouvrites 0.53 0.53 0.53 13.9 13.9 13.1 13.1 12.2 12.2 10.9 10.9 

Lahillia 1.47 1.47 1.47 9.9 9.9 9.0 9.0 8.1 8.1 6.8 6.8 

Maorites 1.00 0.58 1.33 10.5 13.8 9.6 12.9 8.7 12.0 7.4 10.7 

Nautiloid 0.55 0.13 0.77 12.9 15.7 12.1 14.8 11.2 14.0 9.9 12.7 

Nucula  1.39 0.26 2.05 7.4 15.1 6.5 14.3 5.6 13.4 4.3 12.1 

Oistotrigonia 0.92 0.59 1.49 9.8 13.7 8.9 12.9 8.1 12.0 6.8 10.7 

Pinna 1.07 0.84 1.62 9.2 12.6 8.4 11.8 7.5 10.9 6.2 9.6 

Pleurotomaria 1.00 0.97 1.03 11.8 12.0 10.9 11.2 10.0 10.3 8.7 9.0 

Solemya 1.05 0.99 1.11 11.4 12.0 10.6 11.1 9.7 10.2 8.4 8.9 

Unidentified 0.96 -0.06 1.55 9.5 16.5 8.7 15.7 7.8 14.8 6.5 13.5 

  Principal lowstands in global sea level were indicated (Haq, 2014) together with the 

position of the onset of Deccan Trap volcanism (Schoene et al., 2015). Overall 

variability of the δ18O data was an issue possibly influenced by either the effects of 

fluctuating levels of δ18Owater as a result of freshwater run-off from the proximal 

landmass or the sampling of specimen shell material that reflected growth during both 

the warm and cool seasons for particular specimens. Both possibilities are in 

agreement with views suggested by Petersen at al. (2016). The wide variability of the 

δ18O data and the corresponding calculated palaeotemperature values suggested that 

the interpretation of warmer or cooler climatic conditions may be problematic. 

Palaeotemperatures presented in Figure 4-2 were calculated using a δ18Owater value of -

1.2‰ (equivalent to -1.0‰ SMOW).  
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The trend line presented in Figure 4-2 indicates a relative stability in benthic 

temperatures but with a cooling phase that commenced at around 450 m (~69.5 Ma) 

with the coolest temperature developed mid-section at around 630 m (~69 Ma). 

Thereafter temperatures recovered towards the K-Pg boundary before a further cooling 

trend developed. The cooling trends show a generally good correlation with the 

reported position of seawater lowstands as reported by Haq (2014). In contrast the 

paucity of selected specimens in the section immediately prior to and post the K-Pg 

event resulted in a lack of confidence in accepting the development of the Deccan 

Traps volcanism as a causal mechanism for the limited degree of observed warming 

(Schoene et al., 2015; Petersen et al., 2016). This was in contrast to a more extended 

data set (Petersen et al., 2016) which in close proximity to the K-Pg boundary event 

indicated a pair of distinctive phases of warming prior to the K-Pg event. There was 

evidence for a period of cooling post K-Pg and this also correlated well with the PaDa1 

lowstand reported by Haq (2014). Sea ice was also proposed by Bowman et al. (2013) 

based upon palynological analyses and there was a good correlation with the presence 

of lowstands reported by Haq (2014). The presence of sub-zero sea water 

temperatures was reported by Petersen et al. (2016) based upon a subset of their 

clumped isotope analyses of aragonite bivalve shell material, for similar stratigraphic 

positions their data showed a  range of temperatures that exceeded the ranges 

reported in this study. The extended range of the temperatures may reflect the analysis 

of aragonite from potentially seasonal bivalve shell material or through modification of 

the δ18Owater by freshwater run off (Petersen et al., 2016).  

Data are comparable with younger populations, suggesting that a range of factors 

influence the values. Palaeotemperature results were in general agreement with 

previous macrofossil studies on Seymour Island (Ditchfield et al., 1994; Elorza et al., 

2001; Dutton et al., 2007; Tobin et al., 2012, Little et al., 2015; Tobin et al., 2015; 

Petersen et al., 2016). Warming during the last several thousand years of the 

Cretaceous has been recognized in deep ocean cores from benthic foraminiferal data 

at both mid- (Li and Keller 1998) and southern high latitudes (Barrera 1994), similar 

trends have also been recognised from palynology (Thorn et al., 2009; Bowman et al., 

2012). Mid-latitude near-shore settings (Dennis et al., 2013) indicated that temperature 

variability at high latitudes may also have reflected change at a global level. 
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Figure 4-2. Palaeotemperature correlation with López De Bertodano Fm. stratigraphy. 
A smoothed temperature curve (moving average, step size = 3) indicated a cooling phase that 
commenced at 450 m with the coolest temperatures developed mid-section at 630 m. 
Thereafter temperatures recover towards the K-Pg boundary followed by a further gentle 
cooling trend. Principal lowstands in global sea level are also indicated (Haq, 2014) together 
with the position of the onset of Deccan Trap volcanism (Schoene et al., 2015). The wide 
variability of the δ

18
O data and the corresponding calculated palaeotemperature values 

suggests that the interpretation of warmer or cooler climatic conditions may be problematic. 
Palaeotemperatures calculated using a δ

18
Owater value of -1.2‰ (equivalent to -1.0‰ SMOW). 

Note the wide variability in the temperatures. In both plots blue symbols represent specimens 
exhibiting Mg < 1000 ppm, Fe < 500 ppm and Mn < 200 ppm; green symbols represent 
specimens for which no trace element diagenetic screening was carried out and orange 
symbols represent specimens with Fe or Mn concentrations that exceeded the diagenetic 
threshold (Fe > 500 ppm and Mn > 200 ppm). 
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The data presented in Figure 4-2 comprised all of the screened δ18O data. Thus the 

temperature trend reflects data from both benthic and nektonic taxa, although only 17% 

are nektonic. The same data are presented in Figure 4-3 but with separate trend lines 

for benthic and nektonic taxa. There is an overall similarity between both trends until 

approximately 780 m (68.2 Ma) at which point the nektonic data more prominently 

display a warming trend. One distinct problem with the upper part of the section is the 

relative paucity of suitable specimens and unusually for this study there are more 

nektonic specimens present until a number of bivalve specimens appear post K-Pg. 

The data presented in Figure 4-4 were categorised by fossil type and highlight the 

importance of the bivalve data.  
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Figure 4-3. Palaeotemperature correlation with López De Bertodano Fm. stratigraphy. 
Smoothed temperature curves (moving average, step size = 3) for (a) benthic and (b) nektonic 
taxa.  There is an overall similarity between both trends with a cooling phase that commenced 
at 450 m with the coolest temperatures developed mid-section at 630 m until approximately 780 
m (68.2 Ma) at which point the nektonic data more prominently display a warming trend. See 
Figure 4-2 caption for information concerning colour coding of symbols.
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Figure 4-4. Palaeotemperature correlation with López De Bertodano Fm. stratigraphy (See Figure 4-23). The bivalve data suggest a the presence of a cooling phase 
that commenced at ~450 m with the coolest temperature developed mid-section at  ~630 m. Data from cephalopods and gastropods add little further information  
about seawater temperature. The lack of benthic data for the section from 900 m to 1080 m complicates any attempt to estimate the nature of the bottom water 
temperatures but there does appear to be a further gentle cooling trend that develops towards the K-Pg boundary. The wide variability of the δ

18
O data and the 

corresponding calculated palaeotemperature values suggest that the interpretation of warmer or cooler climatic conditions may be problematic. Calculation of 
palaeotemperature with δ

18
Owater value of -1.2‰ (-1.0‰ SMOW) adopted. 
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4.8 Stable isotope studies – Seymour Island 

In addition to this study a number of recent studies have also described stable 

isotope data (δ13C and δ18O) derived from the analysis of molluscan macrofossils from 

the López de Bertodano Fm., Seymour Island (Tobin et al., 2012; Little et al., 2015; 

Tobin and Ward, 2015; Petersen et al., 2016). All studies were based upon the analysis 

of aragonitic shell material but Tobin et al. (2012) also described stable isotope date 

derived from the analysis of calcitic shell material, where appropriate calcite derived 

data are included for comparison purposes.  Petersen et al. (2016) also selected a 

subset of their specimens for ‘clumped isotope’ analysis, unfortunately their overall 

stratigraphy did not cover the full stratigraphic range from this study. Their derived 

δ18Owater data are also included for comparison with the default value of -1.2‰ (-1.0‰ 

SMOW) adopted for the palaeotemperature calculations in this study. There was 

significant variability within their δ18Owater data and a lack of δ18Owater data for the lower 

section of the stratigraphy was unfortunate. Note that no ‘clumped isotope’ analyses 

were carried out as part of this  study and as a consequence there was no opportunity 

to compare δ18Owater values with those data published by Petersen et al. (2016). 

Palaeotemperature values vs. stratigraphy are presented in Figure 4-5, note the wide 

temperature range and especially the presence of sub-zero values. There was a good 

correlation between the calculated sub-zero temperatures and the position of the KMa4 

lowstand (see Figure 4-2; Haq, 2014). 
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Figure 4-5. Comparison of palaeotemperatures derived from clumped isotope data and as 
calculated from δ

18
O ‰ for ocean water δ

18
Owater  of SMOW = -1‰ and finally using clumped 

isotope derived values for δ
18

Owater. All stable isotope measurements from aragonitic  bivalve 
shell material. Note the considerable temperature ranges reported, especially the presence of 
sub-zero values (All data from Petersen et al., 2016). Note that the stratigraphic positions 
represent the BAS D5 sampling scheme. 
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A comparison of their data and that from from this study are presented in Figures 4-5, 

6, 7 and 8. All aragonite data are presented in Figure 4-6 in the form of a  covariance 

plot. Note the extensive variability within all of the individual datasets with the largest 

range exhibited by Tobin et al. (2012). There is a good overall correlation between the 

data with the majority indicating a typical marine isotopic signature. The nature of the 

stable isotopic variability in this study has already been discussed and it was concluded 

that experimental error and diagenesis were not responsible for the presence of the 

variability. This conclusion is given further credence by the publication of similar data 

from two separate studies from the same locality. It seems unlikely that three separate 

studies would all produce potentially flawed data from Seymour Island. It also seems 

unlikely that the geographical location of individual sampling points on a relatively small 

island with a well understood geology can significantly influence the data. This 

suggests that the stable isotope data are genuinely reflecting the isotopic signal 

present within the macrofossils which in turn reflect the marine isotopic conditions in 

the late Maastrichtian. 

A comparison of late Maastrichtian stable isotope (δ13C and δ18O) data from Seymour 

Island versus stratigraphy is presented in Figures 4-7 and 8. Data from this study were 

derived from aragonitic macrofossils (Bivalves, Ammonites, Nautiloids and 

Gastropods), Tobin et al. (2012) (Bivalves, Ammonites and Gastropods) and Petersen 

et al. (2016) (Bivalves). Note that Tobin et al. (2012) also measured δ13C and δ18O 

from calcitic macrofossils and these data have also been included for consistency. 

Ringed data points (n=3) illustrated in Figure 4-7 represent specimens of Solemya 

rossiana. As previously discussed note the wide variability of data from all four datasets 

with the widest range presented in Tobin et al. (2012) and the narrowest range from 

this study.  
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Figure 4-6. Late Maastrichtian stable isotope data from Seymour Island, Antarctica. Sources 
include this study (blue), Tobin et al. (2012) (green) and Petersen et al. (2016) (orange). Note 
the wide variability of both δ

13
C and δ

18
O data.  
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Figure 4-7. Late Maastrichtian δ
13

C data from Seymour Island, Antarctica. Sources include this 
study (Bivalves, Ammonites, Nautiloids and Gastropods), Tobin et al. (2012) (Bivalves, 
Ammonites and Gastropods) and Petersen et al. (2016) (Bivalves). Note that Tobin et al. 
(2012) also measured δ

13
C from calcite macrofossils and these data were included for 

consistency. Ringed data points (n=3) represent specimens of Solemya rossiana that have 
thiotrophic chemosymbionts involved in the anaerobic oxidation of methane (Little et al., 2015). 
Note the wide variability of data from all four datasets, with the greatest range presented in 
Tobin et al. (2012). There is no apparent shift in δ

 13
C data at the K-Pg as reported by Keller 

(2011)  
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Figure 4-8. Late Maastrichtian δ
18

O data from Seymour Island, Antarctica. Sources include this study 
(Bivalves, Ammonites, Nautiloids and Gastropods), Tobin et al. (2012) (Bivalves, Ammonites and 
Gastropods) and Petersen et al. (2016) (Bivalves). Note that Tobin et al. (2012) also measured δ

18
O 

from calcite macrofossils and these data have also been included for consistency. Petersen et al. 
(2016) also analysed a subset of their specimens for ‘clumped isotope’ analysis, the mean derived 
δ

18
Owater data are also included for comparison with the default value of -1.2‰ (-1.0‰ SMOW) 

adopted for the palaeotemperature calculations. 
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Figure 4-9. Late Maastrichtian palaeotemperature data from Seymour Island, Antarctica. 
Sources include this study (Bivalves, Ammonites, Nautiloids and Gastropods), Tobin et al. 
(2012) (Bivalves, Ammonites and Gastropods) and Petersen et al. (2016) (Bivalves). 
Palaeotemperatures were calculated with a δ

18
Owater value of -1.2‰ (-1.0‰ SMOW). 
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4.9 Stable isotope synthesis 

 A high resolution oxygen and carbon stable isotope record through the Latest 

Maastrichtian – Earliest Danian was generated using diagenetically unaltered aragonite 

nacre shell material from a molluscan fauna collected from the López de Bertodano 

Fm., an extensive 1100 m thick Late Maastrichtian section from Seymour Island, 

Antarctica. The majority of the specimens collected exhibited good preservation of 

primary shell mineralogy and approximately 650 individual macrofossils were 

catalogued prior to selection of specimens from which sample powders were collected. 

Many of the specimens furnished substantial powder samples, in certain cases > 1000 

mg. 

Coverage of stable isotope data for the measured stratigraphy was good, with ~280 

stable isotope analyses including data from specimens collected within 1 m of the K-Pg 

boundary, as determined by palynology. Multiple analyses at discrete stratigraphic 

levels enabled the comparison of stable isotope data from both benthic and pelagic 

macrofossils at corresponding levels. Stable isotopes exhibited unscreened ranges of -

0.06 to +2.11‰ for δ18O and -10.49 to +4.34‰ for δ13C, corresponding screened stable 

isotope data gave ranges of -0.06 to +2.05‰ for δ18O and -7.54 to +3.7‰ for δ13C. 

Data show that at individual stratigraphic levels, the measured range of δ18O exhibited 

significant variability e.g. +0.86 to +1.08‰ at 343 m, +0.76 to +2.11‰ at 613 m, +0.77 

to 1.67‰ at 712 m and +1.29 to +1.74‰ at 1084 m, with respect to the K-Pg boundary 

(1029 m above datum, as defined by palynology (Thorn et al., 2009). Bivalve molluscs 

and a benthic mode of life exhibited the widest range of δ18O and δ13C values. The 

variability seen in the oxygen stable isotope data has similarities with that from a 

present day shallow marine molluscan assemblage (Marshall et al., 1996) and similar 

variability was also reported for the late Maastrichtian of Seymour Island in recent 

separate studies (Tobin et al., 2012; Tobin and Ward, 2015; Petersen et al., 2016). 

Ivany et al., 2008) also record a similar variability for Eocene macrofossils from the La 

Meseta Fm. on Seymour Island. This oxygen isotope variability may reflect a record of 

annual/intra-annual growth that for an individual taxon may indicate seasonal periods of 

dominant growth or a dilution of the δ18Owater in the James Ross Basin resulting from 

localised continental run-off  or a combination of both as reported in Petersen et al. 

(2016)   The stable isotope data highlight that individual stratigraphic levels can exhibit 

significant variability for δ18O and δ13C and that analysis of single samples at discrete 

stratigraphic levels may provide an erroneous interpretation of climate change.  

The stable isotope data generated from this research project have raised a number of 

questions with regard to the interpretation of climate change from high resolution stable 

isotope studies. In particular variability within the range of δ13C and δ18O isotope data 
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measured at specific stratigraphic positions, it has been shown that the reported 

ranges were not necessarily present as a result of errors introduced either during 

specimen selection, powder preparation, diagenetic selection or analysis of the actual 

specimen powders. A similar variability was also present in the stable isotope data from 

Seymour Island (Tobin et al., 2012; Tobin and Ward, 2015; Petersen et al., 2016). 

Other studies have reported similar ranges within their stable isotope data sets and it is 

probable that the significant variability seen within this data set may indeed reflect the 

norm for stable isotope palaeoenvironmental studies (Marshall et al., 1996; Latal et al., 

2006; Ivany et al., 2008; Tobin et al., 2012; Petersen et al., 2016).  

Overall the data indicate the presence of both a cooling and a subsequent increase in 

benthic water temperatures in the Late Maastrichtian/Early Palaeocene. A tentative 

moving average curve representing temperature has been superimposed upon 

calculated palaeotemperatures, see Figures 4-2 and 3. It must be noted that the 

temperature curve presented in Figure 4-2 comprised data for bivalves, gastropods and 

cephalopods, consequently there was a minor level of mixing between the benthic and 

nektonic records. However, the benthic taxa represented 83% of the screened 

specimens and also exhibited the widest stratigraphic range.  The same data are 

presented in Figure 4-3 but with separate trend lines for benthic and nektonic taxa. 

There is an overall similarity between both trends until approximately 780 m (68.2 Ma) 

at which point the nektonic data more prominently display a warming trend. One 

distinct problem with the upper part of the section is the relative paucity of suitable 

specimens and unusually for this study there are more nektonic specimens present 

until a number of bivalve specimens post K-Pg. The data presented in Figure 4-4 were 

categorised by fossil type and highlight the importance of the bivalve data.  

The stable isotope record from this study was correlated with corresponding data 

sets that described the effects of falls in sea level, the presence of reduced seawater 

temperatures and the corresponding elevation of sea water temperature as a result of 

CO2 outgassing that resulted from Deccan Traps volcanism. Both Tobin et al. (2012) 

and Petersen et al. (2016) described and documented a rise of sea water temperatures 

that correlated well with the Deccan Traps volcanism. Indeed in the latter case 

evidence was presented for two separate episodes of warming during the period of the 

K-Pg boundary event. For this study there were data from a small number of 

specimens (n=11) grouped at three individual stratigraphic positions that spanned ~600 

kyr, which suggested tentative evidence (See Figures 4-2 and 3) for the presence of 

warming phases both immediately prior to and post the K-Pg boundary. But a lack of 

suitable specimens coeval with the commencement of the Deccan Traps volcanism, 

the primary causal mechanism proposed by Petersen et al. (2016), made it more 
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difficult to accurately correlate these events for this section of the López de Bertadano 

Fm. stratigraphy.  
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5 Strontium Isotope Analysis 

5.1 Introduction 

As discussed in Chapter 1 no published absolute dating exists for the younger 

section of the succession other than the GSSP figure of 66 ± 0.043 Ma for the K-Pg 

boundary (Gradstein et al., 2012). The base of the Maastrichtian Stage in Antarctica 

was formally defined on the basis of a mean 87Sr/86Sr value (0.7077359) for the six best 

preserved samples from a bivalve-nautiloid assemblage within the Gunnarites 

antarcticus fauna from Cape Lamb, Vega Island (Crame et al., 1999). This occurred at 

a stratigraphical level 81.5 – 96.5 m above the base of the G. antarcticus fauna and it 

was assumed that the latter datum could be taken as the Campanian-Maastrichtian 

boundary with a date of 72.1 ± 0.2 Ma (Crame et al., 1999; Gradstein et al., 2012). On 

both Vega and Snow Hill islands it was noted that the distinctive G. antarcticus 

assemblage had a very sharp base (Pirrie et al., 1991, 1997). 

The inclusion of an updated and expanded strontium isotope record for the measured 

section offered a valuable addition to the data set. Following a successful application 

for NERC funding strontium isotope analyses were carried out at the National Isotopes 

Geoscience Laboratory (NIGL), Kingsley Dunham Centre, British Geological Survey. 

The 87Sr/86Sr isotope data further enhanced the overall stable isotope (δ13C and δ18O) 

data set and provided an opportunity to confirm that the strontium isotope record 

derived from this study correlated with the existing Late Cretaceous Strontium Isotope 

Stratigraphy (SIS) curve (McArthur et al., 2001). The availability of 87Sr/86Sr isotope 

data would also help constrain the dating of palaeoenvironmental events, as indicated 

by the stable isotope record within the James Ross Basin, with those detected by other 

proxies e.g. palynology (Thorn et al., 2009; Bowman et al., 2012) and 

magnetostratigraphy (Tobin et al., 2012). An age model based upon the correlation of 

these ages together with biostratigraphical data and magnetostratigraphy has been 

published (see Figure 1-5; Tobin et al., 2012; Witts et al., 2015; Petersen et al., 2016). 

A series of spot 87Sr/86Sr isotope analyses were reported by Petersen et al. (2016) but 

none of these data were used to extend their age model. 

5.2 Strontium isotope stratigraphy 

Strontium isotope stratigraphy (SIS) is a well established chemostratigraphic  method 

(McArthur, 1994; McArthur and Howarth,  2004; McArthur et al., 2012). The use of the 

reference curve as a stratigraphic tool  is facilitated by its conversion into a look-up 

table, giving the numerical  ages and the 95% confidence limits for any value of 

87Sr/86Sr  interpolated in steps of 0.000001. The ratio of strontium isotopes (87Sr/86Sr) of 
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biogenic carbonates and phosphates provides a useful chemostratigraphic and 

chronostratigraphic tool because the ratio varies over geologic time. The original 

method suggested that the ratio would increase in a linear manner and that following 

suitable calibration of the method the ratio from any point in the Phanerozoic could 

provide an actual numeric age (Wickman, 1948). The residence time in the oceans for 

Sr (~1 Ma) exceeds the rate of ocean mixing by 3 orders of magnitude (see McArthur 

et al., 2012). The ratio of 87Sr/86Sr derived from the weathering of continental rocks was 

higher than that of marine Sr derived from mid-ocean ridge sources. Strontium isotope 

ratios for the Maastrichtian were published by Vonhof et al. (2011) based on 

belemnites from the Maastrichtian stratotype area in the Netherlands. Their data 

indicated that two plateaus existed with a lower plateau of approximately 0.707750 for 

the lower Maastrichtian and an upper plateau of approximately 0.707820 for the upper 

Maastrichtian.  

5.3 Materials and Methods 

Calcareous fossil samples selected for analysis consisted of subsamples of aragonite 

nacre shell material already screened for diagenetic alteration and for which stable 

isotope data existed. In order to test for changes in the stable isotopic, palynological or 

sedimentological record powder samples were selected for 87Sr/86Sr isotope analysis 

from 15 separate levels in the measured succession. It was intended that the data 

would enable the construction of a chronostratigraphic framework together with the 

correlation of key events in the stable isotope and palynological records. A relatively 

flat seawater 87Sr/86Sr curve in the latest Cretaceous/earliest Palaeogene (Figure 5-1) 

required high precision 87Sr/86Sr isotope data in order to provide a suitable high 

resolution chronology.  

Performance of the Triton mass spectrometer at NIGL was monitored using SRN987 

and standard seawater this ensured consistent external reproducibility of better than 5 

ppm 1 σ (i.e. ± 0.000007, 2 σ on the 87Sr/86Sr ratio) during the periods of analysis. This 

was achieved through the use of large (>10V 88Sr) ion beams, extended counting times 

and baseline measurements. In order to establish the geological variability in the 

sample material, it was decided that three individual fossils (or sub samples thereof) 

would be analysed at each horizon. In practice this was not always feasible due to 

availability of sufficient carbonate powders (see Figure 5-2 for the location of samples). 

5.4 Selected fossil types 

A total of 71 separate samples were analysed including duplicates and triplicates, 

data reproducibility was generally good and with an average internal error for the 

87Sr/86Sr data = ±0.000003. Previous Sr isotope analysis was carried out by McArthur 
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et al., 1998) on samples collected from Seymour Island and some of the data were 

incorporated into the LOWESS Smoothed Global Strontium Isotope Curve V3 

(McArthur et al., 2001). 
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Figure 5-1. The latest Maastrichtian/earliest Palaeogene shows a relatively flat seawater 
87

Sr/
86

Sr curve from the required high precision 
87

Sr/
86

Sr isotope data in order to provide a 
suitable high resolution chronology. 
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Figure 5-2. Location of specimens selected for 
87

Sr/
86

Sr isotope analysis. The 
absence of data below 300 m reflects a lack of suitably preserved macrofossils. 
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5.4.1 Analytical method 

Samples were leached in 1M acetic acid at room temperature for one hour. The 

solutions were centrifuged and the supernatant solution was pipetted off, dried down 

and converted to chloride using 6M HCl. Samples were then redissolved in 2.5M HCl 

and Sr was separated on cation exchange columns using Dowex AG50 ion exchange 

resin. Samples were loaded on single Re filaments using a TaO activator and 

analysed using a Thermo-Electron Triton thermal ionisation mass spectrometer in 

dynamic multicollection mode. During the period of measurement (~18 months) 

performance of the instrument was monitored by multiple analyses (n=149) of the 

SRN987 standard analysed with the samples gave a 87Sr/86Sr  ratio = 0.710254 ± 

0.000005 (1 σ) with a standard error of mean = 5.18x10-07. Data presented in Table F-

3 were normalised to a value of 0.710250 for this standard. Two samples of standard 

seawater run with the unknown samples gave 87Sr/86Sr data of 0.709171 ± 0.000003 

and 0.709175 ± 0.000004 (1SE).  

Details of the calculated standard error for each individual sample are presented in 

Table F-3. The calculated standard error of the measurement (SEm) for all 87Sr/86Sr 

data = ±0.000003, for Petersen et al. (2016) a calculated standard error of 

measurement = ±0.000009 and McArthur et al. (1998) quoted a precision of ±0.000015 

(2 σ) based upon replicated sample analysis, their data have a calculated standard 

error of measurement = ±0.000004. Error bars are plotted for the separate data 

sources presented, see Figure 5-3. 

5.4.2 Strontium isotope data 

Due to the presence of a number of anomalous low and high data values (see Table 

5-4) in the Sr isotope data set all specimens selected for 87Sr/86Sr analysis were 

retrospectively checked on a JEOL 5400V SEM. The instrument was operated in BSE 

mode in conjunction with EDS X-ray analysis and specimens were checked for the 

presence of any mineral phases that carried significant Sr abundances, for example 

strontianite (SrCO3). No evidence for the presence of strontianite was found in any of 

the fragments of shell material checked. Gypsum was also considered as a source of 

contaminant Sr since it has been shown to carry Sr levels of 1550 to 1900 ppm (e.g. 

Matano et al., 2005; de Souza et al., 2014). The only specimens that were included for 

87Sr/86Sr measurement that exhibited elevated (> 5%) levels of S (where S in the 

absence of elevated levels of Fe was used as an indicator of gypsum) both exhibited Sr 

levels lower than the mean for all skeletal aragonite analysed for trace element data 

(mean Sr = 3057 ppm, n=169). It was anticipated that for any gypsum hosted Sr 

contamination the concentration would exceed the mean value due to the presence of 
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Sr contributed from both gypsum and aragonite. The trace element data suggested that 

this was not the case. 

It was shown in Chapter 3 that there was a strong correlation between diagenetic 

indicators and specimens of Rotularia, interestingly specimens of Rotularia from 

Seymour Island were selected for inclusion in 87Sr/86Sr studies (McArthur et al., 1998). 

Data generated from those analyses of macrofossils from Seymour Island were also 

incorporated into the LOWESS Smoothed Global Strontium Isotope curve (McArthur et 

al., 1998, 2001). 

See Figure 5-3 for a comparison of Sr isotope data from this study with that from the 

LOWESS smoothed global Strontium Isotope Stratigraphy curve (McArthur et al., 2001) 

and data from previous Seymour Island studies (McArthur et al., 1998; Petersen et al., 

2016) . The K-Pg boundary has an age of 66 Ma (Gradstein et al., 2012) and has a 

87Sr/86Sr value of 0.707833 from the Strontium Isotope Stratigraphy curve (McArthur et 

al., 2001). Data from McArthur et al. (1998) represent a partial dataset of aragonitic 

specimens from a range of mixed aragonite and calcite macrofossils. Note the larger 

range of 87Sr/86Sr variability in the data from this study and Petersen et al. (2016) in 

comparison with that from McArthur et al. (1998). The wide variability may result from 

the diagenetic alteration of the skeletal carbonates but there still remains the fact that 

the 3rd dataset ( McArthur et al., 1998) does not exhibit a similar variability although 

there is no indication of any discarded data from their study. McArthur et al. (1998) 

noted that diagenesis of skeletal carbonates in their data appeared to decrease the 

level of Sr in contrast to the normal expected increase. Their range of specimens 

included both aragonitic and calcitic shell mineralogies there was, however, no 

indication of which shell mineralogy was referred to in their comments. The average 

value of Sr from this study was 2863 ppm in comparison with a value of 2121 ppm for 

the aragonitic specimens reported in McArthur et al, (1998).  

A further possibility for the variability might be reflected in the selected taxa but 

Petersen et al. (2016) only used bivalves and this study included bivalves, cephalopods 

and gastropods. McArthur et al. (1998) commented that aragonite from ammonites and 

bivalves was suitable for Sr isotope analysis, although no ammonite specimens were 

reported in their data. What was difficult to reconcile was the overall similarity of the 

data from this study and Petersen et al. (2016) in comparison with those from 

previously published data (McArthur et al., 1998, 2001). The similarity suggests that 

preparation or analytical procedures were not responsible for the discrepancies 

observed in the Sr data. 
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A correlation of 87Sr/86Sr data (this study) with δ18O data vs. the measured 

stratigraphy is presented in Figure 5-4. There is a possible trend in the strontium data 

that parallels a similar trend in the δ18O data, there is a generally good agreement 

between both trends until an apparent deviation that occurs at ~870 m. This position 

coincides with an increase in grain size from silt to fine sand, it is possible that this 

reflects evidence of the reworking of older fossils and sediments and the development 

of a diagenetic overprint. Thereafter any further correlation between both trends is 

limited. Inspection of the trace element data at ~870 m indicated that there was an 

increase in the measured concentration of Sr for the specimens with anomalous 

87Sr/86Sr data, see Table F-4.  
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Figure 5-3. Comparison of Sr isotope data from this study with that from the LOWESS smoothed global Strontium Isotope Stratigraphy curve (McArthur et al., 2001), 
previous data from Seymour Island (McArthur et al., 1998; Petersen et al., 2016). The K-Pg boundary with an age of 66 Ma (Gradstein et al., 2012) has a 

87
Sr/

86
Sr 

value of 0.707833 from the Strontium Isotope Stratigraphy curve. Data from this study are colour coded, Bivalves = orange, Cephalopods = green, Gastropods = red 
and specimens of uncertain affinity = blue. Data from McArthur et al. (1998) represent a partial dataset of aragonitic specimens from a range of mixed aragonite and 
calcite macrofossils. Note the larger range of 

87
Sr/

86
Sr variability in the Sr data from this study and Petersen et al. (21016) in comparison with that from McArthur et 

al. (1998). Data for this study have a calculated standard error of measurement = ±0.000003, for Petersen et al. (2016) a calculated standard error of measurement 
= ±0.000009 and McArthur et al. (1998) quoted a precision of ±0.000015 (2 σ) based upon replicated sample analysis, their data have a calculated standard error of 
measurement = ±0.000004. 
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Figure 5-4. Correlation of 
87

Sr/
86

Sr data (this study) with δ
18

O data vs. the measured stratigraphy. There is a possible trend in the strontium data that parallels a 
similar trend in the δ

18
O data, there is a generally good agreement between both trends until an apparent deviation that occurs at ~870 m. This position coincides 

with an increase in grain size from silt to fine sand, it is possible that this reflects evidence of reworking of sediments and the development of a diagenetic overprint. . 
Thereafter any further correlation between both trends is limited. 
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5.5 Synthesis 

The wide variability exhibited by the 87Sr/86Sr data may result from the diagenetic 

alteration of the skeletal carbonates but given the overall quality of the stable isotope 

data and the good correlation of the trace element chemistry with the stable isotope 

data this seems less likely. The similarities between this dataset and the published data 

from Petersen et al. (2016) suggest that the variability did not arise from faulty or 

flawed sample preparation or a flawed Sr extraction process. The standard error of 

measurement for the 87Sr/86Sr data was ±0.000003 which again suggests that the 

measurements are consistent and repeatable particularly since many of the 

measurements were performed on replicate samples. However, there still remains the 

fact that the 3rd dataset ( McArthur et al., 1998) does not exhibit a similar variability 

although there is no indication of whether any data were discarded from their study. 

Nor is there any indication of possible outliers within their original data. Their range of 

specimens included both aragonitic and calcitic shell mineralogies there was, however, 

no indication of which shell mineralogy was referred to in their comments.  

McArthur et al. (1998) noted that diagenesis of skeletal carbonates in their data 

appeared to decrease the level of Sr in contrast to the normal expected increase. 

Perhaps the increase in Sr concentrations in the section between 800 and 869 m and 

the subsequent reduction towards 900 m reflected reworking of older fossil material, 

perhaps with a diagenetic signature (see Table F-4). The converse is that the majority 

of the specimens sampled were in fact showing evidence of pervasive diagenesis. This 

seems highly unlikely given the intensive work undertaken to confirm the lack of 

diagenetic features in the selected specimens. The average value of Sr from this study 

was 2863 ppm in comparison with a value of 2121 ppm for the aragonitic specimens 

reported in McArthur et al, (1998). A further possibility for the variations might be 

reflected in the selected taxa, Petersen et al. (2016) only measured skeletal carbonates 

from bivalves but this study included bivalves, cephalopods and gastropods. McArthur 

et al. (1998) commented that aragonite from ammonites and bivalves was suitable for 

Sr isotope analysis, although no ammonite specimens were reported in their data.  

What is difficult to reconcile is the overall similarity of the data from this study and 

Petersen et al. (2016) in comparison with those from previously published data 

(McArthur et al., 1998, 2001), especially since data were derived from aragonite shell 

material in all three studies. The similarity suggests that preparation or analytical 

procedures were not responsible for the discrepancies observed in the Sr data.  
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Only a minimal number of data points provided a good fit with the SIS curve and 

these were all in close proximity to the position of the K-Pg boundary, consequently it 

has not been possible to improve the chronostratigraphy of the measured section. This 

is a disappointing and perplexing outcome to a section of the study that, as has already 

been mentioned, appeared to produce good and consistent internal data. Whether the 

discrepancy of these data and those from Petersen et al. (2016) indicate a possible 

problem with the interpretation and usage of strontium isotope data from aragonite 

skeletal material stratigraphy in high palaeolatitudes remains open to question. 

However, comparison of the 87Sr/86Sr data from this study with the Late Cretaceous SIS 

curve (McArthur et al., 2001) was inconclusive, it has not been possible to reliably date 

any palaeoenvironmental events using the 87Sr/86Sr data. Further investigation of the 

specimens from Seymour Island and these data are required. 
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6 Conclusions 

6.1 Introduction 

The primary aim for this study was the investigation of climate change during the 

latest Maastrichtian – earliest Danian, aragonite molluscan shell material was analysed 

and generated stable isotope, trace element chemistry and shell mineralogy data. A 

further phase of the study also measured strontium isotopes from a subset of the 

diagenetically screened specimens. The decision to only analyse aragonitic material 

was made at the commencement of the project - AFI 6/28 titled “Terminal Cretaceous 

climate change and biotic response in Antarctica”. This decision was vindicated by 

the apparent paucity of calcitic specimens within the measured stratigraphy and a 

strong correlation between extensive diagenetic alteration and molluscan specimens 

with a calcite shell material. 

6.2 Diagenetic screening 

Diagenetic screening methods enabled an assessment of the overall suitability of 

individual specimens for inclusion in both stable isotope analysis and for those with 

minimal diagenetic alteration subsequent palaeotemperature determination. A key 

decision in the research design for this study was that only specimens with aragonite 

skeletal carbonate would be selected for stable isotope analyses.  

As previously mentioned all of the macrofossil specimens selected for this study from 

the BAS collection were subject to a certain degree of diagenetic alteration (Marshall 

1992). Diagenetic screening was intended to identify those specimens that showed the 

least altered characteristics. Three principal methods were adopted for the diagenetic 

screening of skeletal carbonate shell material namely; image analysis (SEM), 

mineralogical analysis by X-ray diffraction (XRD) and determination of trace element 

concentration by ICP-OES. Minor techniques included cold cathodoluminescence (CL), 

carbonate staining and automated SEM-EDS analysis using QEMSCAN technology. 

No single method can confidently identify the least altered specimens suitable for 

stable isotope analyses. It was apparent that an over reliance on any single one of the 

three methods might lead to either flawed analysis or perhaps worse still the rejection 

of suitable specimens for further analysis. The diagenetic screening methodology 

comprised a combination of these three principal methods, each of which was scored 

or assessed before arriving at an overall suitability score for each individual specimen. 

 However, not all of the techniques were employed for each of the specimens; for 

example there were specimens where insufficient sample powders were available for 
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trace element analysis and others without SEM imaging. Consequently there were 117 

specimens with no SEM images, 27 specimens with no XRD analysis and 44 

specimens with no ICP-OES trace element screening. With these gaps in the 

diagenetic screening it was unfeasible to apply a single unified approach to diagenetic 

scoring of the specimens. Given the outstanding quality of the macrofossils from 

Seymour Island and the good preservation state of the aragonitic specimens it seemed 

inappropriate to reject those where the scoring process was incomplete.  

Reviewing the diagenetic scoring data (see Appendix B, Table B-3) indicated that 34 

specimens were found to have a wholly unsuitable shell mineralogy for inclusion in 

further analyses. The remaining 213 specimens were all deemed to be suitable for 

stable isotope analysis but only 116 fully satisfied all of the screening requirements. 

From the remainder, 53 specimens showed Fe or Mn concentrations above the 

selected threshold levels (e.g. Fe ≥ 500 ppm and Mn ≥ 200 ppm) and the final 44 

specimens recorded no trace element data. Further comparative screening of stable 

isotope data from screened and partially screened specimens (e.g. those without trace 

element data) was discussed in Appendix D. 

6.2.1 Aragonite skeletal preservation 

One obvious question was why the preservation of the skeletal carbonates, in 

particular aragonite, was so good in the James Ross Basin. It was apparent that the 

basin underwent rapid infilling (~270 m/Ma) but with a relatively shallow burial depth 

and an associated low temperature, (MacArthur et al., 1998; Svojtka et al., 2009; Tobin 

et al., 2012). Temperatures < 60°C have been reported based upon vitrinite and AMS 

analyses and this low burial temperature must have had a significant effect on 

restricting the diagenetic alteration of the skeletal carbonates (Svojtka et al., 2009; 

Tobin et al., 2012). The lack of persistent diagenesis in aragonite specimens suggests 

that conditions within the basin limited the dissolution of the primary aragonite and 

subsequent precipitation of diagenetic cements (see Petersen et al., 2016). The nature 

of aragonite preservation was reported by Jordan et al. (2015), they stated that 

approximately 10% of aragonite was preserved in the geological record. Dissolution of 

aragonite was inhibited where the sediment water interface was depleted in O2, 

aragonite also undergoes dissolution at a higher pH (7.8) than calcite. The preservation 

of aragonite may be linked to buffering by sediment which inhibits dissolution by limiting 

change of pH. Reducing the transport of O2 across the seawater/sediment interface 

limits the activity of sulphate oxidising bacteria and the generation of H2S, which in turn 

alters the pH and induces dissolution of the aragonite. This scenario may reflect what 

occurred with the rapid infilling of the James Ross Basin limiting the rate of aragonite 
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dissolution. Schoepfer et al. (2017) discussed the development of cyclic anoxic to 

euxinic conditions in the Late Maastrichtian to Early Danian James Ross Basin based 

upon the analysis of major and minor trace elements. 

As previously described the presence of primary skeletal aragonite is rare in the 

Phanerozoic due to the metastable nature of the mineral, when present it provides a 

direct geochemical link to the palaeoenvironment in which the macrofauna flourished. 

The López de Bertodano Fm. contains a relatively low diversity but abundant 

invertebrate and vertebrate macrofauna and appears to be dominated by taxa with 

aragonite skeletal carbonate. Other studies have reported stable isotope and trace 

element data from taxa utilising just calcite skeletal carbonate, notably foraminifera, 

oysters and belemnites. But as this study has shown there appeared to be a strong 

basis for a correlation between calcitic shell material and evidence of diagenesis. This 

was most apparent within the trace element data. 

6.3 Stable isotope analysis 

A high resolution oxygen and carbon stable isotope record through the Latest 

Maastrichtian – Earliest Danian was generated using diagenetically unaltered aragonite 

nacre shell material from a molluscan fauna collected from the López de Bertodano 

Fm., part of the Marambio Group, which forms an extensive 1100 m thick Late 

Maastrichtian section from Seymour Island, Antarctica. Coverage of stable isotope data 

for the measured stratigraphy was good, with 247 analyses including data from within 1 

m of the K-Pg boundary, although there were fewer macrofossils deemed suitable for 

isotopic analysis at the top of the section. No suitably preserved macrofossil specimens 

were found in the lower 300 m of the succession. Samples with Mg, Fe and Mn trace 

element concentrations above published guidelines (Morrison and Brand, 1988; Brand, 

1991) were excluded from the data set but the presence of surface contamination of 

the aragonite nacre shell material may have caused the trace element data to highlight 

potential diagenetic issues without actually representing the true cation levels present 

within the aragonite lattice.  

Stable isotope data (‰ VPDB) for primary aragonite from a molluscan fauna 

(bivalves, cephalopods and gastropods) exhibited unscreened ranges of -0.06 to 

+2.11‰ for δ18O and -10.49 to +4.34‰ for δ13C, corresponding screened  stable 

isotope data (n=213) gave ranges of -0.06 to +2.05‰ for δ18O and -7.54 to +3.7‰ for 

δ13C. Data show that at individual stratigraphic levels, the range in measured δ18O 

exhibits significant variability e.g. +0.86 to +1.08‰ at 343 m, +0.76 to +2.11‰ at 613 

m, +0.77 to 1.67‰ at 712 m and +1.29 to +1.74‰ at 1084 m (K-Pg boundary located 
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at 1029 m above datum) (Thorn et al., 2009). Bivalve molluscs with a benthic mode of 

life exhibited the widest range of δ18O and δ13C values.  

The variability seen in the δ18O stable isotope data has similarities with that exhibited 

by both present day shallow marine and fossil molluscan assemblages on Seymour 

Island. Significant variability in δ18O values at individual stratigraphic levels cannot be 

attributed to just diagenetic alteration, a similar variability was quoted for stable isotope 

data in the Eocene La Meseta Fm. from Seymour Island, Antarctica. It has been 

generally accepted that organisms deposit carbonate shell material under equilibrium 

conditions with respect to seawater, evidence from the stable isotope data from this 

study indicates that this may not be the case. The overall variability in the range of 

stable isotope values generated in this study suggest that there is a good case for the 

presence of species specific ‘vital effects’ operating whilst organisms precipitate 

carbonate shell material. It is probable that the implementation of ‘vital effects’ may not 

be systematic for an individual genus and that some variation in the stable isotope data 

will reflect variability generated by a specific individual organism. 

6.3.1 δ18Owater selection 

Relative palaeotemperatures (°C) were calculated for screened δ18O values for a 

constant seawater composition of -1.0‰ (SMOW), representing ice free ocean water. 

The value of SMOW may require modification for parts of the succession since there is 

evidence that a lowering of sea level, as a result of glacioeustasy, occurred during the 

Latest Maastrichtian. The adoption of a fixed value for δ18Owater was restrictive and 

significantly underestimated the range of temperatures for a single specimen in 

comparison with the temperatures generated by clumped isotope analysis, see 

Petersen et al. (2016). The ability to generate a value of δ18Owater direct from a δ18O 

value and a clumped isotope temperature is a highly valuable technique but with 

attendant issues regarding variability. The technique was unfortunately of only marginal 

use for this study for a number of reasons: 

• Stratigraphic coverage was limited to the upper 500 m of the stratigraphic 

section 

• Derived δ18Owater values exhibited extensive ranges, as reflected in the δ18O 

values, at the same stratigraphic positions (see Table F-4). For example the 

data presented in Table 6-1 illustrate the effect of differing values of δ18Owater 

for an identical δ18O value, note the variability in temperature.  

The range of calculated temperatures at any stratigraphic position will reflect both 

differences in the δ18Owater  and selection of seasonal shell material. The former may 
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reflect the waxing and waning of localised ice sheets and how much surface freshwater 

runoff was depleted in δ18O. 

Table 6-1. Comparison of temperatures determined with 
different values of δ

18
OWater  for the same δ

18
O value 

Depth(m) δ
18

OWater δ
18

O 
Temp 
(°C) 

1029 -2.6 1 5.0 

1029 -2.46 1 5.6 

1029 -0.71 1 13.2 

1029 -0.48 1 14.2 

 1028 -1.93 1 7.9 

1028 -1.9 1 8.0 

1028 -1.89 1 8.1 

1028 -0.51 1 14.0 

895 -1.49 1 9.8 

895 -0.2 1 15.4 

895 -0.09 1 15.9 

895 1.05 1 20.8 

 

Many bivalves exhibit seasonal growth patterns, for example with shell growth slowing 

or even ceasing during the winter. Petersen et al. (2016) argued that this was one 

reason for the variability in the temperatures generated from their clumped isotope 

work. Their material for analysis was prepared from specific known positions on 

individual specimens, the material sampling for this study was considerably more 

random because in many cases the fossil specimens were providing loose aragonite 

nacre. This limited the ability to determine from where fragments of nacre had 

originated for a particular specimen and may be a reason for the wide variability seen 

in the δ18O in this study, with fluctuation in the value of δ18Owater also being responsible 

for variability in calculated temperatures. 

6.3.2 Palaeotemperature synthesis 

Relative palaeotemperatures were calculated for the 3 fossil types with ranges of 6 to 

14°C for bivalves, 9 to 12°C for gastropods and 9 to 15°C for cephalopods. 

Palaeotemperatures indicate the presence of a cooling trend in the Latest 

Maastrichtian followed by a small recovery prior to the K-Pg boundary and 

subsequently followed by a further phase of cooling. These trends reflect global 

changes to the Late Maastrichtian as published by other authors. For example Linnert 

et al. (2014) reported on the Late Cretaceous climate using TEX86 analysis of 

sediments from the western North Atlantic at 35 °N, which indicated significant cooling 

(~7 °C) to <~28 °C during the Maastrichtian. They noted that the overall stratigraphic 

trend was similar to other records of high latitude SSTs and bottom water 

temperatures.  
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Stable isotope data show that individual stratigraphic levels can exhibit significant 

variability for δ18O and δ13C and that as a result analysis of single samples at discrete 

stratigraphic levels may provide an erroneous interpretation of climate change. 

Previous studies using single results at discrete stratigraphic levels may suggest 

climate was more variable. 

Highest oxygen isotope values are evident in mid section and may be associated with 

periods of cooler climate. However, the wide variability of the stable isotope values, in 

particular that for δ18O, suggests that the interpretation of warmer or cooler climatic 

conditions may be problematic. The relatively cool temperatures are consistent with 

data from previous studies and indicate that ice may have been present at the pole. 

There is evidence of both warm and cool events. The stable isotope data indicate cool 

and relatively stable benthic temperatures of ~10°C for the section.  

Overall the data indicate the presence of both a cooling and a subsequent modest 

increase in benthic water temperatures in the Late Maastrichtian/Early Palaeocene. A 

tentative moving average curve representing temperature has been superimposed 

upon calculated palaeotemperatures, see Figures 4-2 and 3. It must be noted that the 

temperature curve presented in Figure 4-2 comprised data for bivalves, gastropods and 

cephalopods, consequently there was a minor level of mixing between the benthic and 

nektonic records. However, the benthic taxa represented 83% of the screened 

specimens and also exhibited the widest stratigraphic range.  The same data are 

presented in Figure 4-3 but with separate trend lines for benthic and nektonic taxa. 

There is an overall similarity between both trends until approximately 780 m (68.2 Ma) 

at which point the nektonic data more prominently display a warming trend. One 

distinct problem with the upper part of the section is the relative paucity of suitable 

specimens and unusually for this study there are more nektonic specimens present 

until a number of bivalve specimens post K-Pg. The data presented in Figure 4-4 were 

categorised by fossil type and highlight the importance of the bivalve data. However, 

the overall variability in the data complicates any attempt to generate an accurate 

stable isotope or temperature trend. Data are comparable with younger populations, 

suggesting that a range of factors influence the values. Palaeotemperature results 

were in general agreement with previous macrofossil studies on Seymour Island. 

6.3.3 Winter sea ice?  

It seems likely that Seymour Island was subject to winter sea ice, temperatures from 

this study indicate cool conditions for benthic organisms. Although temperatures were 

warmer than some of the data reported by Petersen et al. (2016) where temperatures 

derived from clumped isotope analyses indicate benthic temperatures of ~3 - 5°C and 
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in some cases sub-zero temperatures. However, without the benefit of variable 

δ18Owater values provided from clumped isotope analyses all temperatures were 

determined using a fixed value of -1.0‰ (SMOW). As previously discussed and based 

on the data reported by Petersen et al. (2016) this reduces the overall range of 

temperatures at any particular stratigraphic position. Bowman et al. (2013) proposed 

the development of winter sea ice determined from the palynomorph record of 

Seymour Island, Antarctica. The authors reported the dominance of the dinoflagellate 

cyst Impletosphaeridium clavus caused by the presence of cysts from dinoflagellate 

blooms associated with the decay of winter sea ice. They also reported that peaks and 

lows of Impletosphaeridium clavus abundance marked cold temporary stratification of 

polar waters, interposed with warmer periods when the ocean was well-mixed. Prior to 

the K-Pg boundary Impletosphaeridium clavus decreased dramatically in abundance 

possibly due to the onset of warming associated with Deccan Traps volcanism.  

The stable isotope data generated from this study have raised a number of questions 

with regard to the interpretation of climate change from high resolution stable isotope 

studies. In particular variability within the range of δ13C and δ18O isotope data 

measured at specific stratigraphic positions, it has been shown that the reported 

ranges were not necessarily present as a result of errors introduced either during 

specimen selection, powder preparation, diagenetic selection or analysis of the actual 

specimen powders.  

Other studies have reported similar ranges within their stable isotope data sets and it 

is probable that the significant variability seen within this data set may indeed be more 

common than expected for stable isotope palaeoenvironmental studies. It is also 

possible that the variability seen in the stable isotope data may be attributable to the 

effects of fresh water run-off from the proximal landmass modifying the δ18Owater by 

mixing. 

6.4 Strontium isotope analysis 

A total of 71 separate samples were analysed including duplicates and triplicates. 

The wide variability exhibited by the 87Sr/86Sr data may result from the diagenetic 

alteration of the skeletal carbonates but given the overall quality of the stable isotope 

data and the good correlation of the trace element chemistry with the stable isotope 

data this seems less likely. The similarities between this dataset and the published data 

from Petersen et al. (2016) suggest that the variability did not arise from faulty or 

flawed sample preparation or a flawed Sr extraction process. The standard error of 

measurement for the 87Sr/86Sr data was ±0.000003, which suggests that the 

measurements are consistent and repeatable particularly since many of the 
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measurements were performed on replicate samples. However, there still remains the 

fact that the 3rd dataset ( McArthur et al., 1998) did not exhibit a similar variability 

although there is no indication of whether any data were discarded from their study. 

Nor is there any indication of possible outliers within their original data. Their range of 

specimens included both aragonitic and calcitic shell mineralogies there was, however, 

no indication of which shell mineralogy was referred to in their comments.  

McArthur et al. (1998) noted that diagenesis of skeletal carbonates in their data 

appeared to decrease the level of Sr in contrast to the normal expected increase. 

Perhaps the increase in Sr concentrations in the stratigraphy between 800 and 869 m 

and the subsequent reduction towards 900 m reflected reworking of older fossil 

material, perhaps with a diagenetic signature (see Table F-4). The converse is that the 

majority of the specimens sampled were in fact showing evidence of pervasive 

diagenesis. This seems highly unlikely given the intensive work undertaken to confirm 

the lack of diagenetic features in the selected specimens. The average value of Sr from 

this study was 2863 ppm in comparison with a value of 2121 ppm for the aragonitic 

specimens reported in McArthur et al, (1998). A further possibility for the variations 

might be reflected in the selected taxa, Petersen et al. (2016) only measured skeletal 

carbonates from bivalves but this study included bivalves, cephalopods and 

gastropods. McArthur et al. (1998) commented that aragonite from ammonites and 

bivalves was suitable for Sr isotope analysis, although no ammonite specimens were 

reported in their data.  

What is difficult to reconcile is the overall similarity of the data from this study and 

Petersen et al. (2016) in comparison with those from previously published data 

(McArthur et al., 1998, 2001), especially since data were derived from aragonite shell 

material in all three studies. The similarity suggests that preparation or analytical 

procedures were not responsible for the discrepancies observed in the Sr data.  

Only a minimal number of data points provided a good fit with the SIS curve and 

these were all in close proximity to the position of the K-Pg boundary, consequently it 

has not been possible to improve the chronostratigraphy of the measured section. This 

is a disappointing and perplexing outcome to a section of the study that, as has already 

been mentioned, appeared to produce good and consistent internal data. Whether the 

discrepancy of these data and those from Petersen et al. (2016) indicate a possible 

problem with the interpretation and usage of strontium isotope data from aragonite 

skeletal material stratigraphy in high palaeolatitudes remains open to question. 

However, comparison of the 87Sr/86Sr data from this study with the Late Cretaceous SIS 

curve (McArthur et al., 2001) was inconclusive, it was not possible to reliably date any 

palaeoenvironmental events using the 87Sr/86Sr data.  Only a small portion of the 
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dataset lie within the 95% confidence range for the published SIS curve and these 

values are all clustered around the position of the K-Pg boundary.  

Previous Sr isotope analysis was carried out on samples collected from Seymour 

Island and some of those data were incorporated into the LOESS Smoothed Global 

Strontium Isotope Curve. The lack of dateable ash layers in the succession and the 

endemism present within the Austral Late Cretaceous mollusca makes the provision of 

accurate absolute dates a matter of some importance. Further investigation of these 

data are required. 

6.5 Further work 

Since the project data set conveniently splits into a number of discrete areas actual 

results may be published as a series of manuscripts for publication. Topics to be 

covered will include: 

1. An overall discussion of the oxygen and carbon stable isotope data and 

interpreted palaeoclimate. 

2. A discussion of the wide variability seen in the oxygen and carbon stable 

isotope data at certain stratigraphic positions in comparison with the overall 

variability seen for the full succession. 

3. A discussion of the preservation of molluscan aragonite nacre from Seymour 

Island. 

4. A discussion of the 87Sr/86Sr data and why their correlation with the published 

global marine strontium isotope curve is poor. 

The following further work should also be planned:  

• Investigation of differences in the stable isotope data derived from specimens 

with a calcite shell mineralogy versus that derived from aragonite nacre shell 

mineralogy. 

• Investigation of differences that may exist in the 87Sr/86Sr isotope data derived 

from aragonite and calcite from Seymour Island.  

6.6 Epilogue 

As a closing statement at the end of this period of research, which for numerous 

reasons took 12 years to reach completion, I offer the following quotation: 

 ‘Far from static, Antarctica has travelled long distances, in both space and time. 

The most ancient fragments once basked beneath a tropical Precambrian sun, in 

communion with cratonic West Australia and enveloped in a loosely defined 

supercontinent, Rodinia. Playing an active role in Rodinia breakup and 

Gondwana assembly at the dawn of the Palaeozoic, Antarctica commenced a 
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long southward drift in Late Ordovician time. During the transit to its present polar 

position, Antarctica participated in the assembly of yet another supercontinent, 

Pangea. Jurassic and subsequent divorces left Antarctica surrounded by 

spreading ridges and marine circum-Antarctic gateways at the beginning of the 

Oligocene. Once the queen of the continental cotillion, Antarctica has danced 

away from the heart of it all to a splendid, ice-bound isolation at the bottom of the 

world—truly the Last Place on Earth.’ (Torsvik et al., 2008). 
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Appendices 

Appendix A. Specimen selection and screening  

A.1 Methodology 

Sample selection commenced following the collection of suitable fossil specimens 

from the AFI project material stored at the School of Earth and Environment, University 

of Leeds in January 2007. Further material was collected in Jan 2008 and June 2009. 

Selection of samples that were deemed suitable for isotopic analysis comprised a 

number of separate and discrete stages.  

All specimen bags were laid out and an initial entry was logged into the research 

database for each individual specimen bag. The information recorded on each bag 

included the Collecting Station Id, Sample Number and vertical position above datum 

for the particular Station Id. For example the following information applied to a single 

specimen bag, Collecting Station Id D5.220, Sample Number 1217.2 and Depth 48 - 

54 (m). The ‘D5’ component of the Collecting Station Id follows a convention adopted 

by the British Antarctic Survey (BAS) that specifies the year of collection. Following the 

initial completion of the logging procedure it was noted that further information would 

be necessary since many of the specimen bags contained numerous palaeontological 

specimens some of which were from different taxa. It was also noted that there were 

multiple bags each with the same identification data, so a further Sub Code was added 

to the sample number. Thus each entry in the database referred to either a single 

palaeontological specimen or bulk sample of shell material. E.g. The original 

identification of the sample bag was D5.220.1217.2 and the unique specimen 

identification became D5. 220.1217.2/C as further specimens for D5.220.1217.2 were 

logged the sub code letter was incremented and for those sample numbers that 

exceeded 26 specimens then the sub code progressed to AA …. AZ. The highest 

allocated sub code used was AV for Sample Number D5.215.696.2. See Figure A-1 for 

an example of a completed sample bag with an ammonite specimen, genus 

Anagaudryceras, allocated a Sub-code of ‘C’.  

A further level of division was also introduced for individual specimens that afforded a 

number of discrete samples, for example in the case of sequential sampling from the 

septal walls of a large ammonite. By this stage of the screening process there were a 

considerable number of individual sample bags, each with a unique specimen id and 

an entry in the database. The mineralogy of the shell material for all candidate 

specimens had been identified by visual inspection and the appropriate fields updated 

in the database.  
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Figure A-1. Example sample bag identification. Note that the ammonite specimen, genus – 
Anagaudryceras, has been allocated the sub-code 'C' 

Details of the identified macrofossils screened for possible inclusion in the stable 

isotope study may be found in Table A-1 and for those deemed suitable for stable 

isotope analysis see Table A-2. Further data relating to the palaeontology of selected 

macrofossils may be found in Appendix G. Specimens categorised as having 

‘Unidentified affinity’ or for example, ‘Unidentified gastropod’, represent shell matter 

deemed suitable for study as bulk samples and comprise loose aragonite nacre shell 

material present within a small proportion of original specimen bags. 

Table A-1. Details of individual macrofossil types included in research database. Specimens 
categorised as having ‘Unidentified affinity’ represent shell material deemed suitable for 
inclusion in the study as bulk samples and comprise loose aragonite material present in a small 
proportion of specimen bags. 

Macrofossil Types Specimens 

Ammonoidea 79 

Nautiloidea 5 

Bivalvia 337 

Gastropoda 73 

Unidentified affinity 30 

Rotularia 48 

Total specimens 572 

All bulk materials were subject to an identical suite of diagenetic tests as employed 

for identified macrofossils (See Appendix B for an in-depth explanation of the 

procedure). Identification of specimens was carried out with reference to (Macellari, 

1984,1986) [Ammonoidea, Rotularia ], (Cichowolski et al., 2005) [Nautiloidea] and 

(Zinsmeister and Macellari, 1988) [Bivalvia]. 
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Table A-2. Macrofossil taxa selected for stable isotope analysis. Note that due to diagenetic 
alteration, sediment contamination, insufficient shell material and other factors not all identified 
specimens were deemed suitable for further analysis 

Taxa Fossil type Habitat Count 
Amberlaya Gastropod Benthic 14 
Diplomoceras lambii Ammonite Planktonic 1 
Eselaevitrigonia Bivalve Benthic 43 
Eutrephoceras  Nautiloid Nektonic 4 
Grossouvrites Ammonite Nektonic 1 
Lahillia Bivalve Benthic 1 
Maorites Ammonite Nektonic 17 
Nucula  Bivalve Benthic 49 
Oistotrigonia Bivalve Benthic 28 
Pinna Bivalve Benthic 5 
Pleurotomaria Gastropod Benthic 2 
Solemya rossiana Bivalve Benthic 3 
Unidentified Uncertain Uncertain 10 
Unidentified - Ammonite Ammonite Nektonic 9 
Unidentified - Bivalve Bivalve Benthic 22 
Unidentified - Gastropod Gastropod Benthic 4 
Total specimens selected 213 

A.2 Selected taxa 

In total 618 separate macrofossil specimens were initially selected from the complete 

sample set collected from Seymour Island as potential sources of shell material for 

subsequent diagenetic screening and isotopic analysis. Following initial inspection 280 

specimens from the following taxa were selected for diagenetic screening and possible 

stable isotope analysis.  

• Bivalves: Eselaevitrigonia, Lahillia, Nucula, Oistotrigonia, Pinna, Pycnodonte 

and Solemya. 

• Cephalopods: [Ammonites] Anagaudryceras, Diplomoceras, Grossouvrites, 

Kitchinites and Maorites. 

• Cephalopods: [Nautiloids] Eutrephoceras 

• Gastropods: Amberlaya, Pleurotomaria.  

• Serpulid: Rotularia. 

In addition, shell material from unidentified ammonites and nautiloids, bivalves and 

gastropods was also selected. This shell material was fragmentary with actual 

identification of individual molluscan types unreliable but it was selected for analysis as 

‘bulk’ samples. Previous studies within the Cretaceous of the James Ross Basin have 

been based upon the use of molluscan specimens and report the use of similar groups 

of taxa for palaeoenvironmental research employing stable isotope analyses, e.g. 

[Bivalves] (See Kelly and Moncrieff, 1992; Crame et al., 1996; McArthur et al., 1998; 

Crame et al., 1999; Doyle and Pirrie, 1999; Elorza et al., 2001; Javier et al., 2001; 

Tobin et al., 2012; Little et al., 2015; Tobin and Ward, 2015; Witts et al., 2015; Petersen 

et al., 2016) [Ammonites] (See Kelly and Moncrieff, 1992; Crame et al., 1996; 
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McArthur et al., 1998; Crame et al., 1999; Doyle and Pirrie, 1999; Elorza et al., 2001; 

Javier et al., 2001; Dutton et al., 2007; Tobin et al., 2012; Tobin and Ward, 2015; Witts 

et al., 2015), [Nautiloids] (see Cichowolski et al., 2005) [Belemnites] (See McArthur et 

al., 1998); Dutton et al., 2007). The use of gastropod specimens for 

palaeoenvironmental studies within the Cretaceous of the James Ross Basin were not 

as common as studies of cephalopods and bivalves (see Gazdzicki et al., 1992; 

Marshall et al., 1996, Stilwell et al., 2003; Tobin et al., 2012). Figure A-2 illustrates a 

specimen of gastropod genus Amberlaya exhibiting a good state of preservation with 

abundant aragonite nacre. 

 

Figure A-2. Photograph of gastropod exhibiting a good state of preservation with abundant 
aragonite nacre. Gastropod genus - Amberlaya an epifaunal carnivore/scavenger. Specimen Id 
D5.215.696.2/AU. Scale bar 10 mm. 

Whilst the overall remit of this study was to incorporate stable isotope data from shell 

fragments composed of aragonite it was anticipated that taxa with shell material 

comprising low Mg calcite would also be present within the entire macrofossil 

collection. With the exception of the serpulid Rotularia, specimens of which were 

ubiquitous and comprised a calcite mineralogy, only a small number of Pycnodonte 

oysters were identified amongst the selected specimens. However, there were two 

notable exceptions with only a single specimen each of a foraminifera and a belemnite 

identified as being present within the sampled material. The paucity of suitable low Mg 

calcite but corresponding abundance of aragonite bioclasts for analysis is an unusual 

feature of the basin studied. There has been a considerable body of stable isotope 

research carried out using Cretaceous belemnites (Pirrie and Marshall, 1990; Ditchfield 

et al., 1993; Marshall et al., 1994); Doyle and Pirrie, 1999; Elorza et al., 2001a,b; 

Dutton et al., 2007) and foraminifera (Huber, 1988) and the apparent lack of either 

types of fossil raised questions about sampling and preservation of material. The lack 

of foraminifera was particularly unexpected since (Huber, 1988) described the Upper 

Aragonite 

shell 

material 
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Campanian-Palaeogene foraminiferal assemblages from the James Ross Island region 

and in particular from sites on Seymour Island. Previous research described a 

belemnite (Dimitobelus (Dimitobelus) seymouriensis) collected to the north of the D5 

section lines at 636 m below the K–Pg boundary and this specimen was dated at 67.5 

Ma using strontium isotope stratigraphy (McArthur et al., 1998).  
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Appendix B. Diagenetic screening  

B.1 Initial preparation methodology 

The initial stage of the diagenetic screening procedure involved examination and 

selection of samples using a low power binocular microscope, followed by the removal 

of suitable fragments of aragonitic shell material from individual macrofossil specimens 

using either tweezers or for those cases where the shell material was more intact a 

scalpel blade. In a small number of cases the shell material was removed using a small 

cold chisel and hammer. In some sample bags the shell material was more 

fragmentary and dissociated from particular fossil specimens, in these cases shell 

material was still sampled but with the intention of providing bulk samples for analysis. 

Whilst the actual provenance of the shell material was in the majority of these cases 

unknown the screening followed an identical procedure to that used for material 

removed from identified specimens. Shell fragments were placed in small plastic 

specimen bags with an identical specimen id to that specified on the original specimen 

bag, thus ensuring that there was a one to one relationship between the actual 

palaeontological specimens and the shell material selected for analysis. At this stage of 

the screening the database contained 558 entries of which 284 were categorised as 

specimens with primary aragonitic shell material.  

Samples of shell material for each specimen were rinsed in de-ionised water for 3 

minutes, and then air dried on filter paper in a fume cupboard overnight or until dry. The 

omission of ultrasonic cleaning during the powder preparation will have introduced a 

certain level of uncertainty, although it was anticipated that a similar level of uncertainty 

would be inherited by all powders.Once dry the sample shell material was sub-sampled 

for a suite of analytical techniques. Photomicrographs of the shell material were taken 

prior to the grinding stage so that the original physical appearance of the shell 

fragments was still available at later stages of the analytical process, see Figure B-1.  
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Figure B-1. Nacreous aragonite. Shell fragments exhibiting a characteristic colouration. Image 
(a) gastropod genus Amberlaya - Sample Id D5.215.216.4/A-1. Image (b) fragments of 
ammonite shell illustrating internal morphology of sutures. Field of view ~12 mm. 

 

1. A small (~0.5 to 1.0 mm) fragment of representative shell material was attached 

to a sticky carbon tab mounted on a 10 mm aluminium stub and carbon coated 

ready for imaging of shell ultrastructure with a scanning electron microscope 

(SEM). 

2. A portion of the shell material was ground by hand, using an agate pestle and 

mortar and the subsequent powders transferred to a weighed 1.5 ml Eppendorf 

tube, reweighed and the mass of powder recorded. The pestle and mortar were 

first rinsed with 1M HCl and then with de-ionised water and subsequently dried, 

in readiness for the next specimen. 

3. A quantity of the sample powder was transferred to an XRD sample holder in 

preparation for carrying out semi-quantitative X-ray diffraction analysis. Upon 

completion of the XRD analysis the sample powders were recovered, 

reweighed and stored for subsequent analytical procedures.  

4. A small portion (~10 mg) of the sample powder was retained for the preparation 

of aliquots suitable for trace element analysis on a Varian 725-ES-ICP-OES at 

the School of Environmental Chemistry, University of Plymouth, Plymouth, UK. 

Blank and replicate samples were also included in each batch of solutions 

prepared. 

5. A total of 85 powder samples, including replicates and triplicates were also 

selected for subsequent 87Sr/86Sr isotope analyses. 

6. The remainder of the sample powder was sent to the Jane Herdmann 

Laboratory at the University of Liverpool for analysis of δ13C and δ18O. Replicate 

samples and control samples were included in each batch submitted to the 

isotope laboratory. 

7. Additionally for certain specimens (In particular Rotularia and internal septal 

wall material taken from an ammonite - specimen D5.222.1248.2/K) thin-

sections were also prepared in readiness for cold cathodoluminescence and 

carbonate staining after the method of Dickson (1966). Thin-sections were 

produced with a thickness of ~100 µm, rather than the standard thickness of 30 

µm used for optical microscopy. This approach ensured that there was sufficient 

shell material present for any further lapping, polishing and carbonate staining, 

according to the method of (Dickson, 1966) if the cathodoluminescence 

analysis indicated that either diagenetic features were present or that carbonate 

staining was required. 

a b 
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B.2 Analytical methods 

A number of different techniques were employed in order to assess the degree of 

diagenesis affecting the skeletal carbonates. Results of the diagenetic screening 

techniques described in this chapter determined whether individual specimens were 

considered suitable for δ18O and δ13C stable isotope analysis and for those considered 

as being diagenetically least altered subsequent palaeotemperature determination. 

Carbonate staining was considered less appropriate for specimens that comprised 

original aragonite due to the inability of the standard staining methodology (Dickson, 

1966) to distinguish between calcite and aragonite. Consequently except for a small 

number of individual specimens prepared as polished thin sections staining techniques 

were not employed. Through the use of a number of different techniques the overall 

aim was to identify those specimens that were either unaltered or perhaps more 

realistically had been subject to a minimum of alteration.  

The macrofossil specimens collected from Seymour Island that were included in this 

study had all been subject to a certain level of weathering indicated by the lack of the 

outer sections of the shell due to either chemical or mechanical removal of the shell 

material. All material sampled from either individual macrofossils or ‘bulk’ shell 

fragments comprised loose, loosely attached or detached nacreous shell material and 

in many of the specimens only nacreous shell material was present. 

Sampled macrofossil specimens were from either bivalves, cephalopods or gastropods, 

all of which exhibited differing shell ultrastructures (Chateigner et al., 2000; Jacob et 

al., 2008). A number of shell ultrastructures have been described, based on SEM 

imaging, by Chateigner et al. (2000) for extant species of bivalves, cephalopods and 

gastropods; a series of general structure styles were recognised and described (e.g. 

Simple prismatic, spherulitic prismatic ultrastructure, nacreous ultrastructures, simple 

crossed lamellar ultrastructures, complex crossed lamellar ultrastructures and 

homogeneous). Ultrastructures observed included: 

ICN Inside Columnar Nacre ISN Inside Sheet Nacre 
ICL Inside Comarginal Crossed Lamellar ICCL Inner Complex Crossed Lamellar 
IICCL Inner Irregular Complex Crossed 

Lamellar 
IRCL Inner Radial Crossed Lamellar 

ISP Inner Simple Prismatic OCL Outer Comarginal Crossed Lamellar 
OFSP Outer Fibrous Simple Prismatic ORCL Outer Radial Crossed Lamellar 
OSP Outer Simple Prismatic OSpP Outer Spherulitic Prismatic 
OH Outer Homogeneous OICP Outer Intersected Crossed Platy 

Specimens in this study showed ICN, ISN and minor ISP, no evidence was observed 

of the more complex cross lamellar structures described by Chateigner et al. (2000). 
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Figure B-2 illustrates the idealised structure of a bivalve shell and the orientation of the 

aragonite crystals present within the nacre layer (Jacob et al., 2008). Note that this 

layer forms the innermost layer present in molluscan shells and for this study 

represents the source of all sampled shell material. 

 

Figure B-2. Bivalve shell illustrating structural units, diagram not to scale. Shell growth is 
achieved by the cells of the outer mantle epithelium. Growth starts with a thick organic layer, the 
periostracum. The second layer is formed by prism-shaped CaCO3 crystals followed by a layer 
of pseudo-hexagonal platelet-shaped crystals, the actual nacre or ‘mother-of-pearl’. This layer is 
the innermost layer present in molluscan shells and for this study represents the majority of the 
sampled material. (After Jacob et al., 2008). 

B.3 Diagenetic overview 

An increasing level of diagenesis will be indicated by a number of factors influenced 

by changes that occurred during life, post-mortem and post deposition (Brand and 

Veizer, 1980, 1981; Morrison and Brand, 1983; Farrow and Fyfe, 1988; Morrison and 

Brand, 1988; Young and Nelson, 1988; Brand, 1991; Pirrie et al., 1994). Changes will 

include physical/textural change, geochemical changes to the original shell material 

and increases and corresponding decreases of trace element concentrations; the scale 

of change will be dependent upon factors including the CO3
= stability of the original 

shell material, openness of the diagenetic system, the isotopic composition of the 

seawater and the degree of isotopic fractionation (see Brand and Veizer, 1980, 1981; 

Morrison and Brand, 1983, 1988; Brand, 1991; Pirrie et al., 1994; Brachert and Dullo, 

2000; [secular seawater change] Jimenez-Berrocoso et al., 2006; Reuning et al., 2006; 

Cochran et al., 2010; Joseph et al., 2013; Jamalian and Adabi, 2015). Textural 

changes will lead to the development of textural maturity (Brand and Veizer, 1981) and 

may involve damage/alteration resulting from the action of endolithic bacteria (e.g. 

Farrow and Fyfe, 1988; Young and Nelson, 1988), dissolution features, and 

neomorphism of the shell carbonate together with the development of replacement 

carbonate cements. Geochemical changes may include increases and decreases in 

the proportion of certain cations (Fe, Mn, Sr and Na) and changes to the stable isotope 

composition of the shell material (see Brand and Veizer, 1980, 1981; Morrison and 

Brand, 1983, 1988; Brand, 1991). In summary, post depositional changes tend to result 
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in an increase of Fe and Mn with a corresponding decrease in Sr, Na and δ18O, and 

possibly δ13C (Brand and Veizer, 1980, 1981; Morrison and Brand, 1983, 1988; Brand, 

1991). In the case of δ18O, factors affecting the final isotopic value include temperature 

and salinity of the seawater, latitude and seasonal variations together with secular 

changes (Cicero, 2001) to the δ18O and δ13C seawater conditions and the outcome of 

any biological isotopic fractionation (‘Vital effects’). 

B.4 Determination of diagenetic alteration 

Previous methodologies (for example McArthur et al., 1994; Cochran et al., 2010; 

Stevens et al., 2015) that described the selection of suitable skeletal carbonates for 

palaeoclimate studies adopted a number of different techniques to assess the 

preservation state of selected shell material (e.g. ICP analysis for trace elements, SEM 

imaging of shell ultrastructure and XRD analysis of shell mineralogy) either singly or in 

combination. Each technique offers benefits but with limitations thus whilst ICP-OES 

trace element analysis provides elemental proportions it fails to indicate the source of 

significant trace elements, in this case Mg, Sr, Na, Fe and Mn.  

In order to attribute the scale of diagenesis affecting individual specimens a 

preservation scheme was introduced to categorise the state of preservation exhibited 

by individual specimens. The scheme was based upon a combination of SEM imaging 

of skeletal carbonate, determination of shell mineralogy by XRD and ICP-OES trace 

element analysis The preservation index as implemented provides an extension to the 

methodology of existing schemes (for example Cochran et al., 2010; Stevens et al., 

2015) that were based upon the assessed quality of SEM images to address the 

suitability of skeletal carbonate for use in palaeoclimate and palaeotemperature 

determination. This scheme incorporates scoring from SEM images together with semi-

quantitative XRD scoring and quantitative trace element analysis of Mg, Fe and Mn 

concentrations. It offers benefits in the case of specimens where the diagenetic 

screening record is incomplete (for example the lack of an SEM image for a particular 

specimen) or where an assessed score is at odds with the other methods (for example 

where the SEM image suggests a low preservation index due to significant fusing of 

the nacre but both the XRD and trace element scoring indicate a good to excellent 

score). 

B.5 SEM Textural analysis 

SEM investigation of shell material from bivalve and gastropod specimens showed 

that they predominantly comprised an arrangement of nacre sheets and tablets in a 

‘brick wall’ structure. Individual nacre sheets were larger than the corresponding 
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lenticular tablets observed in selected ammonite taxa that exhibited individual nacre 

tablets 2-3 µm across arranged in vertical columns. In a number of specimens layers of 

prismatic aragonite were also observed, see Figure B-4 for an example of a section of 

ammonite shell which that clearly exhibited a zone of prismatic aragonite. A number of 

the photomicrographs of ammonite shell fragments clearly showed the presence of 

external morphological features, in this case ribbing. It should be noted that although 

the nacreous layers were relatively thick the abundance of potential sample material 

depended upon the sampling strategy employed for each individual specimen. 

Visually well preserved shell material with an initial state of preservation determined 

by the presence of an iridescent lustre (Cochran et al., 2010) was selected in 

preparation for imaging with a scanning electron microscope (SEM) to assess the state 

of preservation of the shell structure. Both external surfaces and internal structures of 

the shell material were examined at a range of magnifications (35 to 2,000X) and 

specimens were assigned a “Preservation Index” (PI) based on higher magnification 

images taken of cross sections of the shell structure (see Cochran et al., 2010; Stevens 

et al., 2015). Due to the operating characteristics of the SEM instrument the actual 

magnification used was generally limited to a maximum of 2,000X and although this 

upper limit was considerably lower than that described by either Cochran et al. (2010) 

or Stevens et al. (2015), the available range was found to yield satisfactory results.  

The preservation index was ranked from 5 (excellent preservation) to 1 (poor 

preservation) based on a comparison of the shell ultra-structure with that from an 

extant cephalopod (Nautilus macromphalus) using images of freshly fractured 

nacreous shell material, (see Figure B-3). The ranking of the preservation index was 

based on an assessment of the nature of the aragonite nacre plates; namely 

morphology, contact relationship with surrounding nacre and the nature of any 

dissolution textures present.  

‘Excellent’ The nacre is well defined and distinct from surrounding layers with clean 

edges and no obvious indication of any etching of the nacreous plates. 

Samples of the skeletal aragonite are indistinguishable from the 

nacreous shell structure in a modern mollusc (e.g. a control sample 

taken from a specimen of Nautilus macromphalus). 

‘Good’ The nacre is well defined and generally distinct from surrounding layers 

but surfaces of the nacreous plates are slightly irregular and boundaries 

between adjacent tablets are less distinct than in excellent preservation 

but without any obvious fusion. Nacre shows clean edges and no 

obvious indication of any etching of the nacreous plates.  
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‘Moderate’ The nacre is visible but with some etching and fusion with the 

surrounding layers. The surfaces of the nacreous plates are irregular 

and for a single macrofossil specimen the SEM images may show some 

variation in preservation depending on the shell material selected.  

‘Fair’ The nacre is visible but there is etching present; nacreous tablets are 

discernible, but show increasing fusion with adjacent layers. 

‘Poor’ There is significant etching of the nacre; nacreous tablets are indistinct 

and fused with adjacent layers. Development of carbonate 

neomorphism.  

All SEM images were examined and ranked according to the preservation index 

criteria, see preceding text for a description of the preservation indices and Table B-1 

for an illustration of the corresponding actual preservation states. Note that the 

categorisation and scoring of a preservation index is subjective and may vary from 

author to author. None of the imaged specimens from this study scored a PI lower than 

3 when compared with published preservation indices (Cochran et al., 2010; Stevens et 

al., 2015).  

 

Figure B-3. Preservation index control sample showing cross sectional view of aragonite nacre 
imaged from an extant specimen of Nautilus macromphalus. Note the well defined individual 
nacre plates (~ 0.4 µm thick). Scale bar 5 µm. 

Whilst the primary method (Preservation Index ‘PI’) for detecting the presence of 

diagenetic alteration was based upon a qualitative inspection of SEM images there 

were 137 specimens for which no SEM images were generated. Since a lack of SEM 

images negated the application of the described Preservation Index (‘PI’) further 

selection and screening methods were also employed. 
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Table B-1. Definition of preservation index scale as determined from SEM imaging of cross 
sections of specimen shell fragments. See Table B-4 for images of shell material which match 
the criteria listed. Modified from methods described in Cochran et al. (2010) and Stevens et al. 
(2015). 

PI Descriptor Characteristic features of shell surface 

5  Excellent 

Clean and unetched. Internal nacreous tablets distinct from 
adjacent layers and well-defined. Samples indistinguishable from 
nacreous shell structure in modern molluscs (e.g. Nautilus 
macromphalus). 

4  Good 
Clean and unetched; nacreous tablets well defined, but surfaces 
are slightly irregular and boundaries between adjacent tablets are 
less distinct than in excellent preservation. 

3  Moderate 

Some signs of etching; nacreous tablets are visible, but with onset 
of fusion with adjacent tablets. For a single specimen the images 
may show variation in preservation depending on the shell material 
selected. 

2  Fair 
Etching present; nacreous tablets are discernible, but show fusion 
with adjacent layers. 

1  Poor 
Significant etching; nacreous tablets are indistinct and fused with 
adjacent layers. Development of carbonate neomorphism 

 

In one case the shell material exhibited small spherical structures on the margin of 

the shell fragment (Figure B-5(a)), with an approximate size of 5-10 µm. Spherulites 

may indicate sites of aragonite dissolution and the development of neomorphic 

carbonate. Ubukata (1994) offers an alternative explanation in which the spherulites 

represent the interaction of prismatic crystals in the shell material. However, a 

comparison of Figures B-5(a and b) illustrates the development of extensive carbonate 

neomorphism. The most extreme case observed was from a bivalve of genus 

Eselaevitrigonia (Specimen Id D5.215.347.2/I) that exhibited well defined stacked 

plates of aragonite nacre but with the presence of extensive neomorphism of the 

original aragonite. A number of samples exhibited pyrite framboids, with a typical size 

of ~10 µm, (see Figure B-5(c)). Wignall and Newton (1998) describe how the size of 

pyrite framboids may be used to indicate the presence of dysoxic and anoxic 

conditions. Finally, in a number of cases the shell material exhibited small pits with a 

circular – lenticular shape and an approximate size of 0.5 - 1 µm arranged orthogonal 

to the shell margin (Figure B-5(d)). These pits may reflect the site of protein strands 

that mediated the crystallisation of aragonite nacre (Jacob et al., 2008) or may either 

indicate sites of carbonate dissolution or result from the activities of endolithic bacteria 

(Farrow and Fyfe, 1988; Young and Nelson, 1988). Examination of the images 

indicated that dissolution was less likely due to the overall uniformity of the pits. 

Figure B-6 illustrates a more complex ammonite shell structure, consisting of two well 

defined layers of nacre plates of aragonite separating a layer of prismatic aragonite 

crystals. There remains the possibility that the feature identified as a prismatic layer 
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may be a diagenetic vein but there appears to be little evidence for fusing or 

neomorphism of the surrounding nacre. The highlighted section (Figure B-6(a)) clearly 

shows the presence of external ribbing, note that Figures B-6(b and c) also retain the 

same overall morphology at a reduced scale.  
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5 

(a) Amberlaya  
(ID - D5.222.1255.2/A) 
 
 
(b) Gastropod 
(ID – D5.215.361.2/A) 

  

4 

(c) Eselaevitrigonia 
(ID - D5.215.980.2/B 
 
 
(d) Amberlaya 
(ID - D5.222.1255.2/D), 

  

3 

(e) Oistrigonia 
(ID - D5.215.368.2/B) 
 
 
(f) Nucula 
(ID - D5.229.1334.2/A) 

  

2 

(g) Nucula 
(ID - D5.215.691.2/C 
 
 
(h) Eselaevitrigonia 
(ID - D5.219.1185.2/I) 

  

1 

(i) Eselaevitrigonia 
D5.215.347.2/I 
 
(j) Unidentified specimen 
(ID - D5.219.1125.2/N 

Figure B-4. SEM images representing differing categories of the Preservation Index (PI) scale 
as defined for aragonite nacre shell material included in this study. A and B “Excellent” 
preservation (5), C and D “Very Good” preservation (4), E and F—“Good” preservation (3), G 
and H—“Fair” preservation (2), I and J—“Poor” preservation (1). See Table B-1 for a definition 
of the characteristics associated with each level of PI. 

a b 

c d 

e f 

g h 

i j 
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SEM image showing the development of 
extensive 5-10 µm ‘spherules’ on 
aragonite nacre plates. Bivalve genus - 
Nucula an infaunal deposit feeder. 
Specimen Id D5.215.396.2/A. Scale bar 
10 µm. 

 

SEM image of shell material exhibiting 
diagenetic neomorphism of aragonite 
nacre. Note the presence of stacked 
nacre plates parallel to shell margin. 
Bivalve genus - Eselaevitrigonia an 
infaunal suspension feeder. Specimen Id 
D5.215.347.2/I. Scale bar 10 µm. 

 

SEM image of aragonitic nacre shell 
material, note the presence of framboidal 
pyrite. Bivalve genus - Nucula an 
infaunal deposit feeder. Specimen Id 
D5.229.1361.2/A. Scale bar 10 µm. 

 

SEM image showing the presence of 0.5 
µm pits in aragonite nacre. Pits may 
reflect the site of protein strands that 
mediated the crystallisation of aragonite 
nacre (Jacob et al., 2008), sites of 
carbonate dissolution or sites of activity 
by endolithic bacteria (Farrow and Fyfe 
1988; Young and Nelson 1988). Bivalve 
genus - Nucula an infaunal deposit 
feeder. Specimen Id D5.215.696.2/AK. 
Scale bar 5 µm. 

Figure B-5. Examples of diagenetic alteration exhibited by aragonite nacre shell material. 

Carbonate 
neomorphism 

Framboidal 
pyrite 

a 

b 

c 

d 
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Figure B-6. Optical photomicrograph and SEM images of stacked plates of aragonite nacre shell 
material separated by a layer of prismatic aragonite. It is possible the feature identified as a 
prismatic layer is a diagenetic vein but there appears to be little evidence for neomorphism of 
the surrounding nacre. The highlighted section in image (a) clearly shows the presence of 
external ribbing, image (b) retains the same overall morphology at a reduced scale. Ammonite 
genus - Maorites a nektonic carnivore. Specimen Id D5.219.1185.2/C. Field of view ~13 mm 
and scale bars respectively 500, 50, 10 and 10 µm. 

d e 

b c 

Change in shell ultrastructure 

from stacked nacre plates to 

prismatic aragonite? 

a 
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B.3 Diagenetic scoring 

Table B-3. Diagenetic scoring based upon SEM imaging, qualitative XRD and trace element geochemistry. 
Data are presented in stratigraphic order. Highlighted cells indicate specimens that fall outside the expected range for the element concerned. Primary diagenetic 
trace element indicators used are Fe (Threshold < 500 ppm) and Mn (Threshold <200 ppm) (Morrison and Brand, 1988; Anderson et al., Petersen et al., 2016). Low 
magnesium calcite (LMC) defined by the natural limit for Mg in biogenic aragonite at > 1000 ppm (Brand, 1991). 
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1084 D5.229.1361.2/A 264 3216 4616 0 229 B Nucula  I D A 4 1500 
Minimal fusing of nacre? and 
pyrite framboids 

4 Moderate - low count 

1084 D5.229.1361.2/B 271 3705 7447 844 2295 B Nucula  I D A 0  No image 3 Gypsum present 

1084 D5.229.1361.2/C 536 2744 7423 399 421 B Nucula  I D A 0  No image 3 Gypsum present 

1084 D5.229.1361.2/D 401 2359 4713 1542 219 B Nucula  I D A 0  No image 3 Gypsum present 

1084 D5.229.1361.2/E No trace element data B Nucula  I D A 4 1500 Minimal fusing of nacre 2 Poor signal - low count 

1084 D5.229.1361.2/F 295 5871 4829 217 863 B Nucula  I D A 0  No image 2 Poor signal - low count 

1084 D5.229.1361.2/H No trace element data B Nucula  I D A 0  No image 2 Poor - low count 

1080 D5.229.1353.2/C 21 2142 3932 92 0 U Unidentified ? ? A 4 2000 Minimal fusing of nacre 5 Excellent 

1068 D5.229.1334.2/A 464 3741 3529 450 299 B Nucula  I D A 3 1500 
Dissolution pits/endolithic 
bacteria?  

5 Excellent 

1028 D5.229.1292.2/A-1 921 6179 3216 1324 538 N Nautiloid N C A 3 1500 Fused plates? 4 Good 

1028 D5.229.1292.2/A-1 207 6139 3675 419 128 N Nautiloid N C A 3 1500 Partially fused plates 4 Good 

1028 D5.229.1292.2/A-2 14 594 377 12 7 N Nautiloid N C A 3 1000 Fused plates? 5 Excellent 

995 D5.222.1257.2/A 466 3982 8943 0 14 N Nautiloid N C A 0  No image 5 Excellent 

991 D5.222.1254.1/A 60 4170 4479 83 11 U Unidentified ? ? A 0 350 Low resolution 5 Excellent 

991 D5.222.1255.2/A 34 1940 10760 0 190 G Amberlaya E S A 5 1500 Good 5 Excellent 

991 D5.222.1255.2/D 149 2108 4331 22 320 G Amberlaya E S A 4 1000 Minimal fusing of nacre 5 Excellent 

943 D5.220.1226.2/A 204 8279 3529 506 286 A Maorites N C A 0  No image 1 LMC 

925 D5.220.1217.2/A 577 4839 3801 340 410 A Maorites N C A 0  No image 3 S/N ratio 

919 D5.220.1214.2/A 529 4842 3660 52 136 A Maorites N C A 0  No image 5 Excellent 

909 D5.220.1209.3/A-1 No trace element data G Gastropod E S ? 0  No image 0 No profile 

909 D5.220.1209.3/A-2 No trace element data G Gastropod E S ? 0  No image 0 No profile 

897 D5.220.1202.2/B-4 No trace element data A Maorites N C C 2 2000 Fused plates? 1 S/N ratio 

895 D5.220.1200.2/A 223 2514 4641 1286 59 B Pinna I P A 3 1500 Dissolution pits?  2 
S/N ratio and peaks 
missing 
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869 D5.219.1185.2/C 771 11129 4740 526 1462 A Maorites N C A 4 750 Minimal fusing of nacre 1 S/N ratio 

869 D5.219.1185.2/D 524 6459 5430 226 482 A Maorites N C A 0 350 Low resolution 1 S/N ratio 

869 D5.219.1185.2/G-1 853 8381 4196 340 769 A Maorites N C A 0  No image 5 Excellent 

869 D5.219.1185.2/I 20 5783 7945 58 44 B Eselaevitrigonia I P A 2 1000 Neomorphism? 5 Excellent 

863 D5.219.1182.2/A 42 5997 8276 204 13 B Nucula  I D A 3 1500 Fused plates? 5 Excellent 

857 D5.219.1179.2/A-1 198 2884 5065 340 294 B Bivalve ? ? A 0  No image 5 Excellent 

857 D5.219.1179.2/A-2 211 4008 4155 493 882 B Eselaevitrigonia I P A 0  No image 4 Good - S/N ratio 

851 D5.219.1176.2/A 447 4680 3588 481 394 A Maorites N C A 0  No image 4 Good 

837 D5.219.1168.2/B 319 2952 6567 717 134 A Ammonite N C A 0  No image 0 No profile 

837 D5.219.1168.2/B 326 2777 3976 1366 119 A Ammonite N C A 0  No image 5 Excellent 

837 D5.219.1168.2/B 289 2800 4515 1299 102 A Ammonite N C A 0  No image 0 No profile 

800 D5.219.1149.1/A-1 No trace element data B Bivalve ? ? A 0  No image 5 Excellent 

800 D5.219.1149.1/A-2 68 2567 5215 155 0 B Bivalve ? ? A 5 1500 Fused plates? 2 
S/N ratio and peaks 
missing 

779 D5.219.1138.3/A 26 2916 4116 177 20 B Bivalve ? ? A 0  No image 5 Excellent 

779 D5.219.1138.3/B 29 3276 4251 48 25 B Oistotrigonia I P A 0  No image 5 Excellent 

779 D5.219.1138.3/C 24 3681 3712 19 61 B Eselaevitrigonia I P A 3 2000 Fused plates 5 Excellent 

755 D5.219.1125.2/C-1 179 2856 5194 450 0 B Eselaevitrigonia I P A 0  No image 4 Good - S/N ratio 

755 D5.219.1125.2/C-2 136 2353 8919 120 3 B Eselaevitrigonia I P A 0  No image 4 Good 

755 D5.219.1125.2/D 103 1900 11234 47 2 B Oistotrigonia I P A 0  No image 5 Excellent 

755 D5.219.1125.2/E 98 2088 9197 9 1 B Oistotrigonia I P A 0  No image 5 Excellent 

755 D5.219.1125.2/G-1 3 192 695 0 0 B Bivalve ? ? A 3 2000 Fused plates 5 Excellent 

755 D5.219.1125.2/G-2 33 1890 6637 25 1 B Bivalve ? ? A 3 2000 Fused plates 5 Excellent 

755 D5.219.1125.2/L 40 1662 3567 240 0 B Bivalve ? ? A 2 1500 Fused plates 4 Good - S/N ratio 

755 D5.219.1125.2/L 53 1340 8365 11 0 B Bivalve ? ? A 2 1500 Fused plates 5 Separate analysis 

755 D5.219.1125.2/M 63 2098 9489 48 2 B Bivalve ? ? A 0  No image 5 Excellent 

755 D5.219.1125.2/N 125 1428 6664 94 2 B Bivalve ? ? A 1 1500 Nacre fused + neomorphism 5 Excellent 

749 D5.219.1122.2/D 0 1270 3582 198 0 B Oistotrigonia I P A 4 1500 
Dissolution pits/endolithic 
bacteria damage. Minimal 
fusing of nacre 

4 S/N ratio 

727 D5.219.1106.2/C 96 1460 4357 58 2 B Oistotrigonia I P A 4 350 Low resolution 5 Excellent 

722 D5.219.1101.2/D 974 2987 3744 996 171 A Ammonite N C A 0  No image 4 Good - peaks shifted 
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717 D5.219.1096.3/H 105 1923 8207 101 5 B Eselaevitrigonia I P A 0  No image 0 No profile 

717 D5.219.1096.3/I 144 2030 6247 222 9 B Eselaevitrigonia I P A 0  No image 5 Excellent 

712 D5.219.1091.2/A-2 No trace element data G Gastropod E S ? 0  No image 0 No profile 

712 D5.219.1091.2/F 178 2582 9797 131 0 B Nucula  I D A 4 3500 Fusing of nacre 5 Excellent 

712 D5.219.1091.2/G 42 2024 3505 295 0 U Unidentified ? ? A 4 1500 Minimal fusing of nacre 4 Missing peaks 

712 D5.219.1091.2/H 36 2251 3680 350 0 B Bivalve ? ? A 5 1500 Good 5 Excellent 

712 D5.219.1091.2/I-2 0 1083 3715 181 0 B Oistotrigonia I P A 4 1500 Minimal fusing of nacre 4 Missing peaks 

682 D5.218.1061.2/B 608 1345 3038 389 411 B Eselaevitrigonia I P A 0  No image 4 Good + minor gypsum 

682 D5.218.1061.2/C 304 3540 10203 0 203 B Eselaevitrigonia I P A 0  No image 5 Excellent 

682 D5.218.1061.2/D 755 1842 4025 184 233 B Eselaevitrigonia I P A 3 3500 Fusing of nacre 4 Good + minor gypsum 

682 D5.218.1061.2/F 318 2946 12384 0 269 B Bivalve ? ? A 4 2000 Minimal fusing of nacre 5 Excellent 

682 D5.218.1061.2/H 509 1425 5621 476 474 B Bivalve ? ? A 0  No image 4 Good + minor gypsum 

647 D5.218.1027.2/A No trace element data B Pycnodonte E P C 0  No image 1 Calcite 

647 D5.218.1027.2/B 293 6412 3993 377 56 A Ammonite N C A 0  No image 5 Excellent 

642 D5.218.1021.2/A-1 108 3710 5440 47 91 G Amberlaya E S A 0  No image 5 Excellent 

642 D5.218.1021.2/A-2 107 3403 4622 0 84 G Amberlaya E S A 0  No image 5 Excellent 

642 D5.218.1021.2/B 107 4256 8695 140 37 G Pleurotomaria E B A 3 1500 Fusing of nacre 5 Excellent 

642 D5.218.1021.2/C 85 2543 8544 76 76 G Amberlaya E S A 0  No image 5 Excellent 

642 D5.218.1021.2/D 222 4513 6676 333 222 B Nucula  I D A 0  No image 5 Excellent 

642 D5.218.1021.2/E 129 4553 8214 18 16 B Nucula  I D A 3 2000 
Neomorphism on surface, 
nacre (score 4) 

5 Excellent 

642 D5.218.1021.2/G 402 5522 5997 368 81 B Nucula  I D A 0  No image 4 Good + minor gypsum 

642 D5.218.1021.2/H 58 1725 5114 0 222 B Oistotrigonia I P A 0  No image 5 Excellent 

642 D5.218.1021.2/I 41 1390 4657 0 294 B Nucula  I D A 0  No image 5 Excellent 

642 D5.218.1021.2/J 113 2062 5577 0 905 B Oistotrigonia I P A 0  No image 5 Excellent 

642 D5.218.1021.2/V 301 7202 3856 135 124 A Maorites N C A 0  No image 5 Excellent 

642 D5.218.1021.2/W 148 4008 4594 201 20 U Unidentified ? ? A 2 1500 Fused nacre + neomorphism 4 Missing peaks 

637 D5.218.1016.2/B 77 1790 6967 38 130 B Nucula  I D A 0  No image 5 Excellent 

637 D5.218.1016.2/C 13 2758 4538 0 5 B Nucula  I D A 0  No image 5 Excellent 

637 D5.218.1016.2/D 89 3334 4989 273 8 G Amberlaya E S A 0  No image 5 Excellent 

637 D5.218.1016.2/E No trace element data G Amberlaya E S ? 0  No image 5 Excellent 
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637 D5.218.1016.2/G 82 3157 6114 199 587 G Amberlaya E S A 0  No image 5 Excellent 

637 D5.218.1016.2/J 15 1881 4504 0 7 B Eselaevitrigonia I P A 4 1500 Minimal fusing of nacre 5 Excellent 

637 D5.218.1016.2/K 56 1793 6551 78 2 B Eselaevitrigonia I P A 0  No image 5 Excellent 

637 D5.218.1016.2/L-1 70 1956 9603 133 13 B Eselaevitrigonia I P A 4 1500 Minimal fusing of nacre 5 Excellent 

637 D5.218.1016.2/L-2 32 1530 10044 24 11 B Eselaevitrigonia I P A 0  No image 5 Excellent 

637 D5.218.1016.2/M 397 1802 8150 707 21 B Nucula  I D A 0  No image 4 Good 

637 D5.218.1016.2/N 83 2450 4058 16 21 B Eselaevitrigonia I P A 0  No image 5 Excellent 

637 D5.218.1016.2/O 100 1524 4933 63 2 A Ammonite N C A 2 1500 Fused nacre + neomorphism 5 Excellent 

632 D5.218.1011.2/A 304 2913 4094 549 94 B Pinna I P A 0  No image 5 Excellent 

627 D5.218.1006.2/A 224 4019 4076 538 83 A Maorites N C A 0  No image 5 Excellent 

627 D5.218.1006.2/B 602 3787 4926 2999 301 A Maorites N C A 0 35 Insufficient resolution 5 Excellent 

627 D5.218.1006.2/C 368 4337 3925 720 101 A Maorites N C A 0  No image 4 Good + minor gypsum 

627 D5.218.1006.2/I 157 4911 6432 115 29 A Maorites N C A 0  No image 5 Excellent 

627 D5.218.1006.2/O 134 2160 10856 165 10 B Oistotrigonia I P A 0  No image 5 Excellent 

627 D5.218.1006.2/P 366 4114 3294 1128 53 U Unidentified ? ? A 0  No image 4 Good + minor gypsum 

622 D5.215.216.2/A 0 2541 3417 181 0 B Pinna I P A 0  No image 5 Excellent 

622 D5.215.216.2/A No trace element data B Pinna I P A 0  No image 0 No profile 

622 D5.215.216.2/A No trace element data B Pinna I P A 0  No image 0 No profile 

622 D5.215.216.3/A-1 0 2609 3506 143 18 B Eselaevitrigonia I P A 0  No image 5 Excellent 

622 D5.215.216.3/A-10 No trace element data B Eselaevitrigonia I P A 0  No image 0 No profile 

622 D5.215.216.3/A-11 No trace element data B Eselaevitrigonia I P A 0  No image 0 No profile 

622 D5.215.216.3/A-2 5 2825 3873 453 119 B Eselaevitrigonia I P A 0  No image 5 Excellent 

622 D5.215.216.4/A 681 2422 4111 3494 208 G Amberlaya E S A 4 1000 
Surface debris, some fused 
nacre 

5 Excellent 

622 D5.215.216.5/A 71 3128 4238 0 10 G Pleurotomaria E B A 3 1000 Focus poor and fused nacre 5 Excellent 

622 D5.215.705.2/H 218 3011 5182 47 335 B Eselaevitrigonia I P A 0  No image 4 Good + minor gypsum 

618 D5.215.701.2/A 79 2885 4120 21 56 B Nucula  I D A 2 1000 Focus poor and fused nacre 5 Excellent 

618 D5.215.701.2/B 27 3157 3794 164 125 B Bivalve ? ? A 0  No image 5 Excellent 

613 D5.215.696.2/AA 0 2559 3834 136 34 B Nucula  I D A 0  No image 5 Excellent 

613 D5.215.696.2/AI No trace element data B Nucula  I D A 0  No image 2 Poor - low count 

613 D5.215.696.2/AK 129 4810 3576 0 15 B Nucula  I D A 5 2000 
Good nacre + some 
dissolution/endolithic boring 

5 Excellent 
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613 D5.215.696.2/AL 93 5005 3571 158 129 B Nucula  I D A 0  No image 5 Excellent 

613 D5.215.696.2/AM 156 5995 6076 67 454 B Eselaevitrigonia I P A 0 35 Low resolution image 5 Excellent 

613 D5.215.696.2/AN 80 3325 6260 0 32 B Eselaevitrigonia I P A 4 2000 
Surface debris, some fused 
nacre(?) 

5 Excellent 

613 D5.215.696.2/AN No trace element data B Eselaevitrigonia I P A 0  No image 0 No profile 

613 D5.215.696.2/AN No trace element data B Eselaevitrigonia I P A 0  No image 0 No profile 

613 D5.215.696.2/AN-2 No trace element data B Eselaevitrigonia I P A 0  No image 0 No profile 

613 D5.215.696.2/AO 824 2914 6846 132 3945 B Nucula  I D A 2 2000 Poor focus + fused nacre 5 Excellent 

613 D5.215.696.2/AQ 171 4341 8443 0 157 B Eselaevitrigonia I P A 0  No image 5 Excellent 

613 D5.215.696.2/AR 174 4110 4298 35 24 A Ammonite N C A 0 350 Low resolution 5 Excellent 

613 D5.215.696.2/AT 93 4382 3199 483 5 A Ammonite N C A 0  No image 5 Excellent 

613 D5.215.696.2/AU 190 5213 4548 0 49 G Amberlaya E S A 4 1500 
Surface debris, some fused 
nacre 

0 No profile 

613 D5.215.696.2/AV 42 3252 3977 137 28 B Lahillia I P A 0  No image 5 Excellent 

613 D5.215.696.2/N 279 3131 8298 773 34 G Amberlaya E S A 4 2000 Good nacre 5 Excellent 

613 D5.215.696.2/P 239 2949 7159 40 50 G Amberlaya E S A 0  No image 5 Excellent 

613 D5.215.696.2/Q 535 2964 3895 375 15 A Maorites N C A 0  No image 3 Noisy profile 

613 D5.215.696.2/W No trace element data B Eselaevitrigonia I P ? 0  No image 0 No profile 

608 D5.215.691.2/A 289 6496 6074 117 146 A Maorites N C A 3 2000 Minimal fusing of nacre 4 Good 

608 D5.215.691.2/B 178 3195 7506 369 15 A Grossouvrites N C A 4 2000 Good nacre 5 Excellent 

608 D5.215.691.2/C 119 3414 7290 23 16 B Nucula  I D A 3 2000 Minimal fusing of nacre 5 Excellent 

608 D5.215.691.2/D-1 101 3150 7236 0 52 B Eselaevitrigonia I P A 5 1500 
Good nacre + some 
dissolution/endolithic boring 

5 Excellent 

603 D5.215.686.2/A 112 2219 7735 29 34 G Amberlaya E S A 4 2000 Good nacre 5 Excellent 

578 D5.215.396.2/A 69 2308 4786 69 25 B Nucula  I D A 1 750 Neomorphism? 5 Excellent 

558 D5.215.378.2/A 71 2953 4732 56 14 B Bivalve ? ? A 4 1000 Good nacre 5 Excellent 

551 D5.215.371.2/A 68 3366 3786 234 1 B Bivalve ? ? A 0  No image 5 Excellent 

551 D5.215.371.2/B 56 3363 3723 135 2 B Eselaevitrigonia I P A 0  No image 5 Excellent 

548 D5.215.368.2/A 78 2550 5080 0 12 U Unidentified ? ? A 3 2000 Minimal fusing of nacre 5 Excellent 

548 D5.215.368.2/B 241 1494 4639 144 25 B Oistotrigonia I P A 3 1500 
Localised fusing of nacre, 
primary structure present 

5 Excellent 

548 D5.215.368.2/B No trace element data B Oistotrigonia I P A 0  No image 0 No profile 

548 D5.215.368.2/C 39 3074 3834 115 25 G Amberlaya E S A 0  No image 0 No profile 
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541 D5.215.361.2/A 87 2001 4491 0 19 G Gastropod E ? A 5 2000 
Good nacre + some 
dissolution/endolithic boring 

5 Excellent 

541 D5.215.361.2/B 95 3271 3970 0 56 B Bivalve ? ? A 4 1500 Minimal fusing of nacre 5 Excellent 

541 D5.215.361.2/C 105 3215 4432 0 13 B Eselaevitrigonia I P A 3 1500 
Focus poor and localised 
fusing of nacre 

5 Excellent 

541 D5.215.361.2/D 27 3049 3680 332 183 B Eselaevitrigonia I P A 0  No image 5 Excellent 

541 D5.215.361.2/E No trace element data B Nucula  I D A 4 1500 Out of focus, nacre good 4 Good 

541 D5.215.361.2/E No trace element data B Nucula  I D A 4 1500 Good nacre 4 Good 

538 D5.215.357.2/A 0 2296 4197 115 0 B Eselaevitrigonia I P A 0  No image 5 Excellent 

538 D5.215.357.2/B 131 2415 4797 12 37 B Eselaevitrigonia I P A 3 1500 
Focus poor and some fusing 
of nacre 

5 Excellent 

533 D5.215.352.2/A 88 3563 6919 0 59 B Eselaevitrigonia I P A 2 350 Low resolution 5 Excellent 

533 D5.215.352.2/B 185 2925 6597 24 48 B Bivalve ? ? A 4 1000 Minimal fusing of nacre 5 Excellent 

533 D5.215.352.2/C 105 5545 3390 281 465 B Nucula  I D A 0  No image 3 Moderate - low count 

533 D5.215.352.2/D 127 3728 7350 63 280 B Nucula  I D A 3 1000 Fusing of nacre 4 Noisy pattern 

533 D5.215.352.2/E 352 4692 3372 253 1961 B Nucula  I D A 0  No image 3 Moderate - low count 

528 D5.215.347.2/A 176 5700 5726 69 90 B Nucula  I D A 3 2000 Fusing of nacre 5 Excellent 

528 D5.215.347.2/A-2 No trace element data B Nucula  I D A 0  No image 5 Excellent 

528 D5.215.347.2/D 332 3402 6713 345 1017 B Eselaevitrigonia I P A 4 3500 Good nacre 4 Noisy pattern 

528 D5.215.347.2/E No trace element data B Nucula  I D A 0  No image 0 No profile 

528 D5.215.347.2/F No trace element data B Nucula  I D A 0  No image 0 No profile 

528 D5.215.347.2/G 414 4216 6314 175 349 B Eselaevitrigonia I P A 3 2000 Fusing of nacre 4 Good 

528 D5.215.347.2/I 418 4355 5726 59 174 B Eselaevitrigonia I P A 1 750 Poor -  4 Good - low count 

528 D5.215.347.2/J 24 3159 3795 120 254 B Nucula  I D A 0  No image 5 Excellent 

528 D5.215.347.2/K No trace element data B Nucula  I D A 0  No image 0 No profile 

528 D5.215.347.2/L 101 3060 3631 244 941 B Nucula  I D A 0  No image 4 Good 

528 D5.215.347.2/M 684 6768 2776 78 100 B Solemya I P A 0  No image 5 Excellent 

528 D5.215.347.2/N No trace element data B Solemya I P A 0  No image 0 No profile 

526 D5.215.345.2/A-1 No trace element data B Solemya I P A 0  No image 0 No profile 

508 D5.215.327.2/A No trace element data B Nucula  I D A 5 1000 
Good nacre + some 
dissolution/endolithic boring 

5 Excellent 

508 D5.215.327.2/A-1 184 2388 9111 0 624 B Nucula  I D A 4 1000 Good nacre 5 Excellent 

508 D5.215.327.2/A-2 125 1058 3995 0 135 B Oistotrigonia I P A 0  No image 4 Good + minor gypsum 
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463 D5.215.985.2/B 0 1431 6615 0 151 B Oistotrigonia I P A 0  No image 5 Excellent 

458 D5.215.980.2/A 0 1546 3662 106 94 B Oistotrigonia I P A 4 2000 Dissolution/endolithic boring 0 No profile 

458 D5.215.980.2/A No trace element data B Oistotrigonia ? ? A 3 2000 Fusing of nacre 4 Good - minor peak offset 

458 D5.215.980.2/B 122 2236 3917 57 20 B Eselaevitrigonia I P A 4 2000 Minimal fusing of nacre 5 Excellent 

453 D5.215.975.2/A 32 1646 4329 0 47 B Oistotrigonia I P A 4 2000 Minimal fusing of nacre 5 Excellent 

453 D5.215.975.2/B 0 1495 3464 86 56 B Oistotrigonia I P A 0  No image 4 Good + minor gypsum 

453 D5.215.975.2/C 0 1339 3687 112 52 B Oistotrigonia I P A 0  No image 4 Good 

443 D5.215.965.2/A 0 1316 3839 398 332 B Eselaevitrigonia I P A 0  No image 5 Excellent 

438 D5.215.960.3/B 361 3090 5780 1640 226 A Ammonite N C A 4 2000 Minimal fusing of nacre 3 Noisy profile 

435 D5.215.955.3/A 426 4327 6719 179 61 A Diplomoceras P C A 3 2000 Fusing of nacre 5 Excellent 

408 D5.215.930.2/A 56 1296 4323 0 130 B Oistotrigonia I P A 0  No image 5 Excellent 

388 D5.212.909.2/A 144 2000 4709 14 7 B Oistotrigonia I P A 0  No image 5 Excellent 

388 D5.212.909.2/B 83 1604 4436 64 0 B Bivalve ? ? A 0  No image 4 Good - low count 

388 D5.212.909.2/C 96 1609 7914 391 7 B Bivalve ? ? A 0  No image 4 Good, minor gypsum? 

388 D5.215.910.1/A 149 1969 9846 0 0 B Eselaevitrigonia I P A 3 1500 Fusing of nacre 5 Excellent 

348 D5.212.870.2/A 38 1210 9178 106 0 B Bivalve ? ? A 0  No image 5 Excellent 

343 D5.212.865.3/A-1 56 1456 5613 0 0 B Oistotrigonia I P A 2 1500 Out of focus, fused nacre 4 Good, low count 

343 D5.212.865.3/A-2 62 1345 4570 0 0 B Oistotrigonia I P A 2 1500 Poor focus + fused nacre 5 Excellent 

343 D5.212.865.3/B 127 1582 8921 213 4 B Oistotrigonia I P A 5 1500 Excellent 5 Excellent 

343 D5.212.865.3/C 160 1136 12321 117 0 B Oistotrigonia I P A 0  No image 5 Excellent 

343 D5.212.865.3/D 0 0 9854 0 307 B Oistotrigonia I P A 0  No image 4 Good 

343 D5.212.865.3/E 28 1395 5437 34 0 B Bivalve ? ? A 0  No image 3 Low count 

343 D5.212.865.3/F 55 1412 5418 248 0 B Oistotrigonia I P A 0  No image 4 Good - low count 

343 D5.212.865.3/G 49 1421 9235 71 0 B Oistotrigonia I P A 4 3500 Good nacre 5 Excellent 

338 D5.212.860.2/A 0 1099 3697 168 0 B Oistotrigonia I P A 0  No image 5 Excellent 

333 D5.212.855.2/B 45 1541 4986 20 0 U Unidentified ? ? A 3 1500 Some fusing of nacre 5 Excellent 

333 D5.212.855.2/C 97 1272 4216 123 0 U Unidentified ? ? A 4 1000 Good nacre 5 Excellent 

311 D5.212.833.2/A 0 1287 5283 0 0 U Unidentified ? ? A 0  No image 3 Peak offset + low count 

                 

1001 D5.229.1264.2/A 5843 2172 3085 3499 4699 A Ammonite N C C 3 1000 Fused plates? 1 Excellent (LMC) 

1001 D5.229.1264.2/B 5635 2247 2644 12313 4757 U Unidentified ? ? C 0  No image 1 Poor signal - low count  
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991 D5.222.1254.1/A 2451 4002 4369 3829 1580 U Unidentified ? ? C 0  No image 5 Excellent 

991 D5.222.1254.1/A-1 5490 2193 2403 9696 4662 U Unidentified ? ? C 4 1500 Minimal fusing of nacre 5 Excellent 

991 D5.222.1254.1/A-2 2469 3046 2777 3485 2139 U Unidentified ? ? C 4 1500 Well defined nacre 0 No profile 

991 D5.222.1254.1/A-2 2530 2981 6230 2051 1692 U Unidentified ? ? C 3 1500 Fused nacre? 1 
Moderate - low count + 
gypsum? 

991 D5.222.1254.1/A-2 2493 2986 7397 2012 1671 U Unidentified ? ? C 3 3500 Fused nacre? 5 Excellent 

991 D5.222.1255.2/B 6572 1846 2818 2350 380 A Kitchinites N C C 0 350 Low resolution 1 Moderate - low count  

979 D5.222.1248.2/E 9099 2395 2444 3151 2634 A Ammonite N C C 2 1500 Fused nacre? 1 S/N ratio - LMC 

979 D5.222.1248.2/G 15263 1205 2022 2996 5106 A Maorites N C C 0  No image 1 LMC 

979 D5.222.1248.2/H 6479 2245 3224 4792 5942 A Ammonite N C C 0  No image 1 LMC 

961 D5.222.1238.2/A 4365 1900 3813 5070 4110 A Maorites N C C 0  No image 1 LMC 

961 D5.222.1238.2/F 8545 2045 5001 20708 2868 A Maorites N C C 2 1500 Fused nacre? 1 LMC 

955 D5.222.1234.2/A 1696 1696 3951 4842 1296 U Unidentified ? ? C 0 350 Low resolution 1 S/N ratio- LMC 

955 D5.222.1234.2/B 2039 1751 8620 3790 2058 U Unidentified ? ? C 0  No image 1 LMC 

955 D5.222.1234.2/K 3810 1503 8007 5536 2822 A Anagaudryceras N C C 3 1500 Fused nacre? + gypsum 1 Gypsum? (LMC) 

949 D5.220.1229.2/A 4050 3249 3048 3147 614 A Maorites N C C 0  No image 1 LMC 

949 D5.220.1229.2/B 7507 3024 3527 332 740 A Maorites N C C 0  No image 1 LMC 

937 D5.220.1223.2/F 3343 2420 3059 6627 8207 A Maorites N C C 0  No image 1 LMC 

925 D5.220.1217.2/B 10277 2312 6309 143 580 A Maorites N C C 0  No image 1 LMC 

897 D5.220.1202.2/A-1 2115 2599 8329 4053 413 A Maorites N C C 0  No image 1 LMC 

897 D5.220.1202.2/A-2 14180 1644 7004 41069 378 B Bivalve ? ? C 0  No image 1 LMC 

897 D5.220.1202.2/B-3 1220 2880 3750 4604 800 A Maorites N C C 3 1500 Fused nacre? 4 Minor LMC 

869 D5.219.1185.2/F-1 3442 4498 6786 580 1341 A Maorites N C C 0  No image 1 LMC 

869 D5.219.1185.2/F-2 2824 5062 4691 803 1147 A Maorites N C C 0  No image 1 LMC 

869 D5.219.1185.2/H 1582 5175 3303 264 540 A Maorites N C C 0  No image 1 LMC 

837 D5.219.1168.2/A 1197 3400 5800 2494 2316 A Ammonite N C C 3 1500 Fused nacre? 1 S/N ratio - minor LMC 

682 D5.218.1061.2/J 1033 1406 5275 1047 229 U Unidentified ? ? C 4 1500 Minimal fusing of nacre 2 Gypsum? 

642 D5.218.1021.2/F 2734 2723 6554 7261 50 B Nucula  I D C 0  No image 5 Excellent 

642 D5.218.1021.2/Q 1074 702 3874 249 349 B Pycnodonte E P C 0  No image 1 Calcite 

637 D5.218.1016.2/A 2562 8332 6026 2529 1169 A Maorites N C C 0  No image 1 LMC 

627 D5.218.1006.2/G 1754 3680 6120 1178 449 A Maorites N C C 2 1000 
Fusing of nacre + 
neomorphism 

1 Aragonite + LMC 
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627 D5.218.1006.2/N 8039 3583 4855 3586 1067 A Ammonite N C C 0  No image 1 LMC 
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B.4 Scanning Electron Microscopy 

The Low Vacuum (JEOL JSM-5400LV) Scanning Electron Microscope (SEM) was 

used to carry out an initial investigation of the shell morphology of samples selected 

together with screening of samples for the presence of significant diagenetic features. 

Note that a certain degreee of diagenetic alteration must have occurred since the shell 

material from the specimens had already de-laminated to form fragments and thin 

sheets of aragonite nacre (Marshall, 1992). Samples were investigated at a series of 

scales that ranged from a field of view of ~3.5mm to ~35µm with a respective range of 

magnification that spanned x35 – x3500. The equipment was operated with a 25kv 

accelerating voltage and a typical filament load current of ~89 µA. In order to reduce 

the frequency of sample changeover a new design of sample holder was manufactured 

with a capacity of 9 x 10mm aluminium stubs in an orientated grid pattern that saved a 

considerable amount of time during the SEM imaging phase of the project, see Figure 

B-7. 

 

Figure B-7. SEM sample holder with 3 stubs holding shell fragments.  

The instrument was initially operated in low vacuum mode in order to avoid the 

necessity for carbon coating. However, it was found that the image quality was inferior 

to that afforded by using Secondary Electron (SEI) mode under high vacuum; 

consequently all subsequent imaging was carried out using carbon coated samples 

under high vacuum. Figure B-8 illustrates three images of the same specimen at 

different magnification that illustrate the good level of preservation of the nacreous 

aragonite plates.  
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Figure B-8. SEM photomicrographs at x35, x350 and x1500.  
Bivalve genus – Oistotrigonia an infaunal suspension feeder. Specimen Id D5.212.865.3/B. 
Scale bar respectively 500, 50 and 10 µm. 

The only exception to this methodology was that adopted for additional diagenetic 

screening of specimens selected for 87Sr/86Sr isotopic analysis, in which an additional 

check was included using Back Scatter Electron (BSE) mode under low vacuum for the 

presence of strontianite (SrCO3). No specimens analysed using BSE tested positive for 

the presence of strontianite. 

a b 

c 
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B.5 SEM images – Bivalves 

This section shows high magnification SEM photomicrographs of aragonite nacre shell material for the bivalve genus Nucula, an infaunal deposit 

feeder. 

 

  

Figure B-9. Specimen Id D5.215.327.2/A 
Bivalve genus Nucula, an infaunal deposit feeder. Nacreous aragonite shell 
material, note the presence of well defined layers of nacre with loose fragments 
of shell material on the surface. Scale bar 10 µm. 

Figure B-10. Specimen Id D5.219.1091.2/F 
Bivalve genus Nucula, an infaunal deposit feeder. Nacreous aragonite shell 
material,note the presence of well defined layers of nacre together with loose 
fragments of shell material on the surface. Scale bar 5 µm. 
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Figure B-11. Specimen Id D5.229.1361.2/A 
Bivalve genus Nucula, an infaunal deposit feeder. Nacreous aragonite shell 
material, note the presence of well defined layers of nacre with loose fragments 
of shell material on the surface. Scale bar 10 µm. 

Figure B-12. Specimen Id D5.229.1361.2/E 
Bivalve genus Nucula, an infaunal deposit feeder. Aragonite nacre, note the 
presence of well defined layers of nacre together with loose fragments of shell 
material on the surface. Scale bar 10 µm. 



High palaeolatitude record of Late Maastrichtian – Early Danian climate change, Seymour Island, Antarctica 

Page 189 

  

Figure B-13. Specimen Id D5.215.361.2/C 
Bivalve genus Nucula, an infaunal deposit feeder. Aragonite nacre, note the 
presence of well defined layers of nacre together with loose fragments of shell 
material on the surface. Scale bar 10 µm. 

Figure B-14. Specimen Id D5.215.347.2/A 
Bivalve genus Nucula, an infaunal deposit feeder. Aragonite nacre, note the 
presence of well defined layers of nacre together with loose fragments of shell 
material on the surface. Scale bar 10 µm. 
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Figure B-15. Specimen Id D5.212.865.3/A 
Aragonite nacre, Bivalve genus - Oistotrigonia an infaunal suspension feeder. 
Scale bar 10 µm. 

Figure B-16. Specimen Id D5.212.865.3/B 
Aragonite nacre, Bivalve genus - Oistotrigonia an infaunal suspension feeder. 
Scale bar 10 µm. 
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Figure B-17. Specimen Id D5.212.865.3/G 
Aragonite nacre, Bivalve genus - Oistotrigonia an infaunal suspension feeder. 
Scale bar 10 µm. 
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Figure B-18. Specimen Id D5.215.696.2/AN 
Aragonite nacre, Bivalve genus - Eselaevitrigonia an infaunal suspension feeder. 
Scale bar 10 µm. 

Figure B-19. Specimen Id D5.219.1096.3/H 
Aragonite nacre, Bivalve genus – Eselaevitrigonia an infaunal suspension 
feeder. Scale bar 10 µm. 
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Figure B-20. Specimen Id D5.215.352.2/A 
Aragonite nacre, Bivalve genus – Eselaevitrigonia an infaunal suspension 
feeder. Scale bar 10 µm. 

Figure B-21. Specimen Id D5.215.691.2/D-1 
Aragonite nacre, Bivalve genus – Eselaevitrigonia an infaunal suspension 
feeder. Scale bar 10 µm. 
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Figure B-22. Specimen Id D5.220.1200.2/A  
Aragonite nacre, Bivalve genus – Pinna an infaunal suspension feeder. Scale 
bar 10 µm. 

Figure B-23. Specimen Id D5.222.1234.2/A 
Aragonite nacre, Aragonite shell material, genus – unidentified. Scale bar 50 µm. 



High palaeolatitude record of Late Maastrichtian – Early Danian climate change, Seymour Island, Antarctica 

Page 195 

  

Figure B-24. Specimen Id D5.219.1149.1/A 
Aragonite nacre, Bivalve of unidentified genus. Scale bar 10 µm. 

Figure B-25. Specimen Id D5.215.347.2/I 
Aragonitic shell material exhibiting diagenetic neomorphism . Note the presence of 
stacked aragonite nacre plates. Bivalve genus - Eselaevitrigonia an infaunal 
suspension feeder. Scale bar 10 µm. 
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B.6 Diagenetic screening - Cephalopoda – Ammonoidea 

  

Figure B-26. Specimen Id D5.219.1185.2/D 
Aragonite nacre . Ammonite genus – Maorites a nektonic carnivore. Scale bar 
50 µm. 

Figure B-27. Specimen Id D5.219.1185.2/C 
Stacked plates of aragonite nacre shell material separated by a layer of prismatic 
aragonite. Ammonite genus - Maorites a nektonic, carnivore. Scale bar 10 µm. 
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Figure B-28. Specimen Id D5.215.960.3/B 
Aragonite nacre, Ammonite genus – Unidentified, a nektonic carnivore. Scale 
bar 10 µm. 

Figure B-29. Specimen Id D5.215.691.2/A 
Aragonite nacre, Ammonite genus – Maorites a nektonic carnivore. Scale bar 10 µm. 



High palaeolatitude record of Late Maastrichtian – Early Danian climate change, Seymour Island, Antarctica 

Page 198 

  

Figure B-30. Specimen Id D5.215.691.2/B 
Aragonite nacre, Ammonite genus – Grossouvrites a nektonic carnivore. Scale 
bar 10 µm. 

Figure B-31. Specimen Id D5.222.1234.2/K 
Aragonite nacre, Ammonite genus – Anagaudryceras a nektonic carnivore. Scale bar 
10 µm. 
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Figure B-32. Specimen Id D5.222.1238.2/F 
Aragonite nacre, Ammonite genus – Maorites a nektonic carnivore. Scale bar 10 
µm. 

Figure B-33. Specimen Id D5.222.1248.2/E 
Aragonite nacre, Ammonite genus – unidentified. Scale bar 10 µm. 
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B.7 Diagenetic screening – Gastropoda 

  

Figure B-34. Specimen Id D5.222.1255.2/A 
Aragonite nacre, Gastropod genus – Amberlaya an epifaunal 
carnivore/scavenger. Scale bar 10 µm.  

Figure B-35. Specimen Id D5.215.686.2/A 
Aragonite nacre, Gastropod genus – Amberlaya an epifaunal 
carnivore/scavenger. Scale bar 10 µm. 
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Figure B-36. Specimen Id D5.215.216.5/A 
Aragonite nacre, Gastropod genus – Pleurotomaria an epifaunal 
carnivore/scavenger. Scale bar 10 µm. 

Figure B-37. Specimen Id D5.220.1200.2/A 
Aragonite nacre, shell material from an unidentified genus. Scale bar 10 µm. 
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Appendix C. X-ray Diffraction (XRD) 
Prior to all stable isotope analyses each powder sample was analysed for major 

mineralogical phases using a Siemens D5000 X-ray Diffractometer. In the qualitative 

operational mode the equipment had a detection limit of approximately 5%, thus any 

mineral phase present below this level was not reported. Principal minerals of interest 

were aragonite, calcite (both HMC and LMC), dolomite, gypsum, pyrite and strontianite. 

Operational setup parameters for the analysis of carbonate shell material using the 

XRD instrument are specified in Table C-1. Initially the instrument was run with a 2θ 

range of 2-70 but it was noted that significant aragonite peaks did not appear until 2θ 

reached a value of 25. As a result the 2θ range was reduced to 20-70 with a 

corresponding reduction in run time. The equipment was fitted with an automated 

sample holder with a capacity for 40 specimens, for this study no more than 20 

specimens were processed in any single run and steps were taken to reduce the 

danger of cross-contamination by only using even numbered positions in the sample 

holder magazine. 

Table C-1. Finalised operational setup parameters for the X-ray Diffractometer used during 
analysis of carbonate shell material. 

Estimated scan time  41 mins 

Scan mode  Continous scan 

Start position (2θ) 20 

Increment  0.02 

No of steps  2500 

Time per step (s) 1 

Synchronous rotation  On 

Generator voltage  40 kV 

Generator current  30 mA 

Sample powders prepared for stable isotope analysis were sub-sampled for XRD 

analysis, although in certain cases where the volume of sample was small the entire 

sample was used. Under normal operating procedures powders analysed on the XRD 

instrument are treated as disposable items and are discarded at the end of the 

analysis. However, in this study sample powders rarely exceeded 1g and in most cases 

the mass of available powders was between 35 - 300 mg. Thus the sample powders 

were analysed using the XRD, recovered and subsequently re-used for the stable 

isotope and trace element analyses. 
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C.1 XRD profiles – Bivalves 
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Figure C-1. XRD profile for specimen D5.215.327.2/A. Bivalve genus – Nucula an infaunal 
deposit feeder. 
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Figure C-2. XRD profile for specimen D5.219.1091.2/F. Bivalve genus – Nucula an infaunal 
deposit feeder. 
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Figure C-3. XRD profile for specimen D5.229.1361.2/A. Bivalve genus – Nucula an infaunal 
deposit feeder. 
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D5-229-1361-2-C

00-041-1475 (*) - Aragonite - CaCO3 - Y: 65.30 % - d x by: 1. - WL: 1.5406 - Orthorhombic - a 4.96230 - b 7.96800 - c 5.74390 - alpha 90.000 - beta 90.000 - gamma 90.000 - Primitive - Pmcn (62) - 4 - 227.112 - I/Ic PDF 1. 

00-033-0311 (*) - Gypsum, syn - CaSO4·2H2O - Y: 54.26 % - d x by: 1. - WL: 1.5406 - Monoclinic - a 6.28450 - b 15.20790 - c 5.67760 - alpha 90.000 - beta 114.090 - gamma 90.000 - Base-centered - C2/c (15) - 4 - 495.37

Operations: Import

D5-229-1361-2-C - File: D5-229-1361-2-C.raw - Type: 2Th/Th locked - Start: 2.000 ° - End: 70.000 ° - Step: 0.020 ° - Step time: 1. s - Temp.: 21 °C (Room) - Time Started: 16 s - 2-Theta: 2.000 ° - Theta: 1.000 ° - Chi: 0.00 ° 
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Figure C-4. XRD profile for specimen D5.229.1361.2/C. Bivalve genus – Nucula an infaunal 
deposit feeder. The relative aragonite peak positions are well defined but there is also gypsum 
present. 
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Figure C-5. XRD profile for specimen D5.229.1361.2/C. Bivalve genus – Nucula an infaunal 
deposit feeder. 
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Figure C-6. XRD profile for specimen D5.229.1361.2/D. Profiles match aragonite and gypsum. 
Bivalve genus – Nucula an infaunal deposit feeder. 
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Aragonite screening - D5.229.1361.2/E
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Figure C-7. Noisy XRD profile for specimen D5.229.1361.2/E. Bivalve genus – Nucula an 
infaunal deposit feeder. Typical profile associated with specimens that yielded small quantities 
of sample powders. The relative aragonite peak positions are well defined but minor gypsum 
may also be present. 
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Figure C-8. Noisy XRD profile for specimen D5.229.1361.2/H. Matching aragonite peaks from 
the PDF database, minor gypsum is also present. Bivalve genus – Nucula an infaunal deposit 
feeder. Typical profile associated with specimens that yielded small quantities of sample 
powders.  
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Figure C-9. XRD profile for specimen D5.215.361.2/C. Bivalve genus – Nucula an infaunal 
deposit feeder.  
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Figure C-10. XRD profile for specimen D5.215.347.2/A. Bivalve genus – Nucula an infaunal 
deposit feeder. 
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Figure C-11. Noisy XRD profile for specimen D5.212.865.3/A. Bivalve genus – Oistotrigonia an 
infaunal suspension feeder. Typical profile associated with specimens that yielded small 
quantities of sample powders, the relative aragonite peak positions are well defined. 
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Figure C-12. XRD profile for specimen D5.212.865.3/A. Bivalve genus – Oistotrigonia an 
infaunal suspension feeder.  
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Figure C-13. XRD profile for specimen D5.212.865.3/B. Bivalve genus – Oistotrigonia an 
infaunal suspension feeder.  
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Figure C-14. XRD profile for specimen D5.212.865.3/C. Bivalve genus – Oistotrigonia an 
infaunal suspension feeder.  
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Figure C-15. XRD profile for specimen D5.212.865.3/D. Matching aragonite peaks and possibly 
minor gypsum from the PDF database. Bivalve genus – Oistotrigonia an infaunal suspension 
feeder. 
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Figure C-16. XRD profile for specimen D5.212.865.3/G. Bivalve genus – Oistotrigonia an 
infaunal suspension feeder. 
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Figure C-17. XRD profile for specimen D5.212.909.2/A. Bivalve genus – Oistotrigonia an 
infaunal suspension feeder. 
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Figure C-18. XRD profile for specimen D5.219.1125.2/E. Bivalve genus – Oistotrigonia an 
infaunal suspension feeder. 
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Figure C-19. XRD profile for specimen D5.215.985.2/B. Bivalve genus – Oistotrigonia an 
infaunal suspension feeder. 
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Figure C-20. XRD profile for specimen D5.215.696.2/AN. Bivalve genus – Eselaevitrigonia an 
infaunal suspension feeder. 
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Figure C-21. XRD profile for specimen D5.215.910.1/A. Bivalve genus – Eselaevitrigonia an 
infaunal suspension feeder. 
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Figure C-22. XRD profile for specimen D5.219.1096.3/H. Bivalve genus – Eselaevitrigonia an 
infaunal suspension feeder. 
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Figure C-23. XRD profile for specimen D5.215.352.2/A. Bivalve genus – Eselaevitrigonia an 
infaunal suspension feeder. 
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Figure C-24. XRD profile for specimen D5.215.696.2/AQ. Bivalve genus – Eselaevitrigonia an 
infaunal suspension feeder. 
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Figure C-25. XRD profile for specimen D5.215.705.2/H. Bivalve genus – Eselaevitrigonia an 
infaunal suspension feeder. 
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Figure C-26. XRD profile for specimen D5.215.691.2/D-1. Bivalve genus – Eselaevitrigonia an 
infaunal suspension feeder. 
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Figure C-27. Noisy XRD profile for specimen D5.220.1200.2/A. Bivalve genus – Pinna an 
infaunal suspension feeder. Typical profile associated with specimens that yielded small 
quantities of sample powders, the relative aragonite peak positions are well defined. 
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Figure C-28. Noisy XRD profile for specimen D5.222.1234.2/A. Matching aragonite and calcite 
peaks from the PDF database. Aragonite shell material, genus – unidentified. 
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Figure C-29. XRD profile for specimen D5.219.1149.1/A-1. Bivalve of unidentified genus. 
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Figure C-30. XRD profile for specimen D5.212.870.2/A. Bivalve of unidentified genus. 
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Figure C-31. XRD profile for specimen D5.212.909.2/B. Bivalve of unidentified genus. 
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Figure C-32. XRD profile for specimen D5.212.909.2/C. Bivalve of unidentified genus. 
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Figure C-33. XRD profile for specimen D5.215.347.2/I. Bivalve genus – Eselaevitrigonia an 
infaunal suspension feeder.  
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Figure C-34. XRD profile (calcite) for specimen D5.218.1021.2/Q. Bivalve genus – Pycnodonte 
an epifaunal suspension feeder. 
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Figure C-35. Noisy XRD profile for specimen D5.219.1185.2/D. Ammonite genus – Maorites a 
nektonic carnivore. Typical noisy profile associated with specimens that yielded small quantities 
of sample powders, the relative aragonite peak positions are well defined. 
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Figure C-36. Noisy XRD profile for specimen D5.219.1185.2/C. Matching aragonite, gypsum 
and possible calcite from the PDF database. Ammonite genus – Maorites a nektonic carnivore. 
Typical profile associated with specimens that yielded small quantities of sample powders, the 
relative aragonite peaks positions are well defined.  
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Figure C-37. Noisy XRD profile for specimen D5.220.1217.2/A. Ammonite genus – Maorites a 
nektonic carnivore. Typical profile associated with specimens that yielded small quantities of 
sample powders, the relative aragonite peak positions are well defined. 
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Figure C-38. Noisy XRD profile for specimen D5.220.1226.2/A. Ammonite genus – Maorites a 
nektonic carnivore. Typical profile associated with specimens that yielded small quantities of 
sample powders, the relative aragonite peak positions are well defined. 

 
D5-215-960-3-B

00-004-0636 (D) - Calcite - CaCO3/CaO·CO2 - Y: 31.95 % - d x by: 1. - WL: 1.5406 - Rhombo.H.axes - a 4.99500 - b 4.99500 - c 17.06000 - alpha 90.000 - beta 90.000 - gamma 120.000 - Primitive - R-3c (167) - 2 - 368.621

00-041-1475 (*) - Aragonite - CaCO3 - Y: 80.71 % - d x by: 1. - WL: 1.5406 - Orthorhombic - a 4.96230 - b 7.96800 - c 5.74390 - alpha 90.000 - beta 90.000 - gamma 90.000 - Primitive - Pmcn (62) - 4 - 227.112 - I/Ic PDF 1. 

Operations: Smooth 0.150 | Import

D5-215-960-3-B - File: D5-215-960-3-B.raw - Type: 2Th/Th locked - Start: 20.000 ° - End: 70.000 ° - Step: 0.020 ° - Step time: 1. s - Temp.: 21 °C (Room) - Time Started: 17 s - 2-Theta: 20.000 ° - Theta: 10.000 ° - Chi: 0.00 

L
in

 (
C

o
u
n
ts

)

0

10

20

30

40

50

60

70

80

90

100

110

120

2-Theta - Scale

20 30 40 50 60 70

 
Figure C-39. Noisy XRD profile for specimen D5.215.960.3/B. Ammonite genus – Unidentified, 
a nektonic carnivore. Typical profile associated with specimens that yielded small quantities of 
sample powders. The relative aragonite peak positions are well defined but calcite is also 
present. 
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Figure C-40. XRD profile for specimen D5.215.691.2/A. Ammonite genus – Maorites a nektonic 
carnivore.  
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Figure C-41. XRD profile for specimen D5.215.691.2/B. Ammonite genus – Grossouvrites a 
nektonic carnivore. 
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Figure C-42. XRD profile for specimen D5.222.1234.2/K. Matching aragonite peaks (red) and 
minor LMC calcite (blue)from the PDF database. Ammonite genus – Anagaudryceras a nektonic 
carnivore. 
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Figure C-43. Noisy XRD profile for specimen D5.220.1229.2/B. Ammonite genus – Maorites a 
nektonic carnivore. Typical profile associated with specimens that yielded small quantities of 
sample powders, the relative aragonite peak positions are well defined. 
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Figure C-44. Noisy XRD profile for specimen D5.222.1238.2/A. Matching aragonite peaks (red) 
and minor LMC calcite (blue) peaks from the PDF database. Ammonite genus – Maorites a 
nektonic carnivore. Typical profile associated with specimens that yielded small quantities of 
sample powders. The relative aragonite peak positions are well defined.  
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Figure C-45. Noisy XRD profile for specimen D5.222.1238.2/F. Matching aragonite (red) and 
LMC calcite (blue) peaks from the PDF database. Ammonite genus – Maorites a nektonic 
carnivore. Typical profile associated with specimens that yielded small quantities of sample 
powders. The relative aragonite peak positions are well defined. 
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Figure C-46. Noisy XRD profile for specimen D5.222.1248.2/G. Ammonite genus – Maorites a 
nektonic carnivore. Typical profile associated with specimens that yielded small quantities of 
sample powders. The relative aragonite peak positions are well defined but there is also calcite 
present. 
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Figure C-47. XRD profile for specimen D5.220.1217.2/B. Ammonite genus – Maorites a 
nektonic carnivore. Complex profile associated with specimens contaminated with calcite, 
relative aragonite peak positions are well defined. 
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Figure C-48. Noisy XRD profile for specimen D5.222.1248.2/H. Ammonite genus – Unidentified. 
Typical profile associated with specimens that yielded small quantities of sample powders. The 
relative aragonite peak positions are well defined but there is also calcite present. 

 
D5-220-1229-2-A

00-041-1475 (*) - Aragonite - CaCO3 - Y: 65.30 % - d x by: 1. - WL: 1.5406 - Orthorhombic - a 4.96230 - b 7.96800 - c 5.74390 - alpha 90.000 - beta 90.000 - gamma 90.000 - Primitive - Pmcn (62) - 4 - 227.112 - I/Ic PDF 1. 
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Figure C-49. Noisy XRD profile for specimen D5.220.1229.2/A. Matching calcite and aragonite 
peaks from the PDF database. Ammonite genus – Maorites a nektonic carnivore. Typical profile 
associated with specimens that yielded small quantities of sample powders. The relative 
aragonite peak positions are well defined but there is also calcite present.. 
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D5-222-1248-2-E

01-071-1663 (C) - Calcite, magnesian - Mg0.1Ca0.9CO3 - Y: 90.81 % - d x by: 1. - WL: 1.5406 - Rhombo.H.axes - a 4.94100 - b 4.94100 - c 16.86400 - alpha 90.000 - beta 90.000 - gamma 120.000 - Primitive - R-3c (167) - 

00-041-1475 (*) - Aragonite - CaCO3 - Y: 68.83 % - d x by: 1. - WL: 1.5406 - Orthorhombic - a 4.96230 - b 7.96800 - c 5.74390 - alpha 90.000 - beta 90.000 - gamma 90.000 - Primitive - Pmcn (62) - 4 - 227.112 - I/Ic PDF 1. 

Operations: Import

D5-222-1248-2-E - File: D5-222-1248-2-E.raw - Type: 2Th/Th locked - Start: 2.000 ° - End: 70.000 ° - Step: 0.020 ° - Step time: 1. s - Temp.: 21 °C (Room) - Time Started: 15 s - 2-Theta: 2.000 ° - Theta: 1.000 ° - Chi: 0.00 ° 
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Figure C-50. Noisy XRD profile for specimen D5.222.1248.2/E. Ammonite genus – unidentified. 
Typical profile associated with specimens that yielded small quantities of sample powders. The 
relative aragonite peak positions are well defined but there is also calcite present.. 
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Figure C-51. XRD profile for specimen D5.222.1257.2/A. Nautiloid genus – Unidentified 
carnivore.  

 

C.5 XRD profiles – Gastropoda 
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Figure C-52. XRD profile for specimen D5.222.1255.2/A. Gastropod genus – Amberlaya an 
epifaunal carnivore/scavenger.  
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Aragonite screening - D5.215.686.2/A
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Figure C-53. XRD profile for specimen D5.215.686.2/A. Gastropod genus – Amberlaya an 
epifaunal carnivore/scavenger. 
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Figure C-54. XRD profile for specimen D5.215.216.5/A. Gastropod genus – Pleurotomaria an 
epifaunal carnivore/scavenger. 

 

C.6 XRD profiles – Unidentified specimens 
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Figure C-55. Noisy XRD profile for specimen D5.212.833.2/A. Shell fragments from an 
unidentified genus. Typical profile associated with specimens that yielded small quantities of 
sample powders, the aragonite peaks are well defined. 
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Aragonite screening - D5.222.1234.2/B
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Figure C-56. XRD profile for specimen D5.222.1234.2/B. Shell fragments from an unidentified 
genus. 
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Figure C-57. XRD profile for specimen D5.222.1254.1/A. Shell material genus – Unidentified.  
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Appendix D. ICP-OES Trace Element Geochemistry 

D.1 Introduction 

A standard suite of elements (Ca, Mg, Sr, Fe and Mn) were checked together with 

the inclusion of a number of other elements (S, Na and initially Ba and U), blanks and 

replicates were also included within each batch of samples. All samples submitted for 

ICP analysis were ‘spiked’ with a 1 ppm concentration of yttrium, which provided an 

internal lab standard as recommended by the analytical laboratory staff in the 

Department of Environmental Chemistry, University of Plymouth. The non-standard 

elements included within the analysis were included for the following reasons: 

1. The sediments that comprise the López de Bertodano Fm. commonly contain 

gypsum (CaSO4.2H2O) (de Souza et al., 2014), which was observed in many of 

the bulk samples taken from specimen bags whilst carrying out initial sampling 

of shell material. Gypsum was also identified in a number of the XRD analyses 

and from experimentation it was also found that gypsum was readily soluble in 

both distilled water and 1M HCl. It was decided that analysis for sulphur would 

provide a simple indication of the presence of gypsum (de Souza et al., 2014) 

providing that the iron levels were low (< 1000 ppm). 

2. One of the key hypotheses to be tested was whether there was any evidence 

for stable isotope variation resulting from water stratification within the Latest 

Maastrichtian James Ross Basin. Brand (1986) indicated that Na could provide 

a useful proxy for variation in salinity by calculating Sr/Na ratios, which might 

also provide evidence of water stratification. 

3. Allison, (1996) indicated that the presence of barium and uranium within the 

aragonite lattice, into which both elements will readily partition, might also 

provide a suitable palaeotemperature proxy. (Russell et al., 2004) also 

discussed the suitability of U/Ca as a proxy for the carbonate concentration of 

the ocean. 

D.2 Preparation methodology 

1. All glassware, including glass weighing boat, was washed in warm water and 

rinsed with de-ionised water, followed by an overnight soak in a 1M HCl acid 

bath.  

2. Sample tubes were once again rinsed with de-ionised water and placed in a 

drying oven overnight at 50°C. The 10 ml measuring flasks were also rinsed 

with de-ionised water and left to dry in a fume cupboard until required.  
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3. Approximately 10 mg of sample powder was accurately weighed into a glass 

boat and transferred to a 10ml measuring flask. In the case of samples 

processed as ‘blanks’ no powders were added. 

4. 100 µl of a yttrium standard solution, Y2O3 dissolved in nitric acid, was also 

added to provide a 1 ppm ‘spike’ for internal calibration purposes. Sufficient 1M 

HCL was then added to the measuring flask to bring it up to the required 

volume (10 ml).  

5. No steps were taken to buffer the pH of the resulting solutions since the 

dissolution was rapid and with the exception of a small number of samples (< 

10) there was no obvious particulate matter visible once any effervescence had 

ceased. In the case of samples that showed an insoluble residue the resulting 

solution was vacuum filtered using a glass fibre filter and the residue retained 

for further analysis.  

6. Once each batch (n=24) was complete the solutions were transferred to 

labelled sample tubes and stored ready for analysis.  

7. All glassware was then re-washed in preparation for the next cycle. 

Following the processing of an initial batch of test samples the concentration of the 

required trace elements were finally set at the levels listed in Table D-1, also detailed 

are the selected ICP-OES detection wavelengths for each element (see Table D-2).  

Table D-1. ICP-OES Standard trace element concentrations and detection wavelengths (nm). 

Standards (µg/ml) 
Element 

1 2 3 4 Blank 
Wavelength (nm) 

Ca 50 100 200 400  317.933 and 422.673 

Mg 2 5 10 15  280.270 and 285.213 

Sr 0.5 1 2 5  407.771 and 421.552 

Fe 0.1 0.5 1 2  238.204 

Mn 0.05 0.1 0.2 0.5  257.610 

Ba 0.01 0.02 0.05 0.1  455.403 and 493.408 

S 50 100 200 500  181.972 

Na 1 2 5 10  588.995 and 589.592 

Y 1 1 1 1 1 360.074 and 371.029 

 
Table D-2. ICP-OES calibration data for trace element standards listed in Table D-1. 

Correlation Coefficient: 0.999954  

Label  Int. (c/s)  Std Conc.  Calc Conc.  Error  %Error  

Blank  235.001 0 0 -  -  

Std. 1  95625.2 50 50.0374 0.037399 0.1 

Std. 2  192549 100 100.879 0.879303 0.9 

Std. 3  386789 200 202.769 2.76894 1.4 

Std. 4  759719 400 398.391 -1.60901 -0.4 

Ca 
317.933  

  Equation: y = 1906.4 x + 235.0  

Correlation Coefficient: 0.999968  

Label  Int. (c/s)  Std Conc.  Calc Conc.  Error  %Error  

Blank  168.94 0 0 -  -  

Std. 1  98727 50 49.5448 -0.455215 -0.9 

Std. 2  199710 100 100.309 0.308502 0.3 

Ca 
422.673  

Std. 3  402507 200 202.254 2.25394 1.1 
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Std. 4  793596 400 398.853 -1.14722 -0.3 

  Equation: y = 1989.3 x + 168.9  

Correlation Coefficient: 0.997614  

Label  Int. (c/s)  Std Conc.  Calc Conc.  Error  %Error  

Blank  496.855 0 0 -  -  

Std. 1  0 0.1 -0.089733 -0.189733 -189.7 

Std. 2  3524.64 0.5 0.546823 0.046823 9.4 

Std. 3  5904.28 1 0.976589 -0.023411 -2.3 

Std. 4  0 2 0 -2 -100 

Fe 
238.204  

  Equation: y = 5537.1 x + 496.9  

Correlation Coefficient: 0.999903  

Label  Int. (c/s)  Std Conc.  Calc Conc.  Error  %Error  

Blank  374.512 0 0 -  -  

Std. 1  38593.7 2 2.20847 0.20847 10.4 

Std. 2  87263.7 5 5.02083 0.020825 0.4 

Std. 3  172998 10 9.9749 -0.025098 -0.3 

Std. 4  259649 15 14.982 -0.018006 -0.1 

Mg 
280.270  

  Equation: y = 17305.8 x + 374.5  

Correlation Coefficient: 0.999886  

Label  Int. (c/s)  Std Conc.  Calc Conc.  Error  %Error  

Blank  76.7693 0 0 -  -  

Std. 1  6852.4 2 2.15668 0.156675 7.8 

Std. 2  15627.8 5 4.94986 -0.050138 -1 

Std. 3  31235.7 10 9.91786 -0.082139 -0.8 

Std. 4  47361.2 15 15.0506 0.05058 0.3 

Mg 
285.213  

  Equation: y = 3141.7 x + 76.8  

Correlation Coefficient: 0.999700  

Label  Int. (c/s)  Std Conc.  Calc Conc.  Error  %Error  

Blank  197.864 0 0 -  -  

Std. 1  1075.44 0.05 0.05396 0.00396 7.9 

Std. 2  1691.29 0.1 0.091827 -0.008173 -8.2 

Std. 3  3384.61 0.2 0.195944 -0.004056 -2 

Std. 4  8376.16 0.5 0.502861 0.002861 0.6 

Mn 
257.610  

  Equation: y = 16263.5 x + 197.9  

Correlation Coefficient: 0.999986  

Label  Int. (c/s)  Std Conc.  Calc Conc.  Error  %Error  

Blank  7.59512 0 0 -  -  

Std. 1  2557.78 50 50.0531 0.053101 0.1 

Std. 2  5054.54 100 99.0577 -0.942291 -0.9 

Std. 3  10181.9 200 199.694 -0.306458 -0.2 

Std. 4  12776.1 250 250.611 0.61145 0.2 

S 
181.972  

  Equation: y = 50.9 x + 7.6  

Correlation Coefficient: 0.998044  

Label  Int. (c/s)  Std Conc.  Calc Conc.  Error  %Error  

Blank  216.409 0 0 -  -  

Std. 1  198477 0.5 0.743856 0.243856 48.8 

Std. 2  284529 1 1.06672 0.066716 6.7 

Std. 3  504313 2 1.89133 -0.108674 -5.4 

Sr 
407.771  

Std. 4  1334401 5 5.00574 0.005741 0.1 

    Equation: y = 266530.9 x + 216.4  
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D.3 Trace element data – LMC 

In Tables D-3, 4, 5 and 6 grey highlighting represents mean values exceeding the Fe 

500 ppm and Mn 200 ppm diagenetic thresholds. Specimens determined as low 

magnesium calcite or having Mg ≥ 1000 ppm (Brand, 1991). 

Table D-3. Trace element data categorised by fossil type (mean ppm) for LMC specimens.  
Note the high Fe and Mn concentrations in all categories.  

Type Mg Sr Na Fe Mn 

Ammonite (n=21) 5233 3120 4572 3735 2283 

Bivalve (n=4) 5996 1690 5810 16193 259 

Uncertain (n=9) 2871 2479 4852 4785 2231 

Table D-4. Trace element data categorised by genus (mean ppm) for LMC specimens. Note the 
high Fe concentration in all categories except Pycnodonte and the high Mn concentration in all 
categories except Nucula.  

Genus Mg Sr Na Fe Mn 

Ammonite (n=5) 6131 2759 3882 3505 3332 

Anagaudryceras (n=1) 3810 1504 8007 5536 2822 

Bivalve (n=1) 14180 1644 7004 41069 378 

Kitchinites (n=1) 6572 1846 2818 2350 380 

Maorites (n=14) 4918 3456 4699 3788 2006 

Nucula (n=1) 2734 2723 6554 7261 51 

Pycnodonte (n=1) 1074 702 3874 249 349 

Unidentified (n=9) 2871 2479 4852 4785 2231 

Table D-5. Mean trace element data categorised by habitat for LMC specimens. Note the high 
Fe concentration in all habitats and the high Mn concentration in all habitats except the infaunal 
category. In both cases the data represent a single specimen.  

Habitat Mg Sr Na Fe Mn 

Epifaunal (n=1) 1074 702 3874 249 349 

Infaunal (n=1) 2734 2723 6554 7261 51 

Nektonic (n=21) 5233 3120 4572 3735 2283 

Uncertain (n=10) 4002 2395 5067 8413 2046 

Table D-6. Mean trace element data categorised by stratigraphy for LMC specimens. Note the 
high Fe concentration at all stratigraphic positions except 925 m and the high Mn concentration 
at all stratigraphic positions except 682 m and 642 m.  

Depth Mg Sr Na Fe Mn 

1001 (n=2) 5739 2209 2865 7906 4728 

991 (n=6) 3668 2842 4332 3904 2021 

979 (n=3) 10280 1948 2564 3646 4561 

961 (n=2) 6455 1973 4407 12889 3489 

955 (n=3) 2515 1650 6859 4723 2059 

949 (n=2) 5779 3137 3288 1739 677 

937 (n=1) 3343 2420 3060 6627 8207 

925 (n=1) 10277 2312 6309 143 580 

897 (n=3) 5838 2374 6361 16575 531 

869 (n=3) 2616 4912 4927 549 1009 

837 (n=1) 1197 3400 5800 2494 2316 

682 (n=1) 1033 1406 5275 1047 229 

642 (n=2) 1904 1713 5214 3755 200 

637 (n=1) 2562 8332 6026 2529 1169 

627 (n=2) 4896 3632 5487 2382 758 
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D.4 Trace element data - Aragonite 
In Tables D-7, 8, 9 and 10 grey highlighting represents mean values exceeding the Fe 

500 ppm and Mn 200 ppm diagenetic thresholds. Specimens determined as aragonite 

based upon an Mg concentration < 1000 ppm (Brand, 1991). 

Table D-7. Trace element data categorised by fossil type (Mean ppm) for aragonite specimens.  
Type Mg Sr Na Fe Mn 

Ammonite (n=25) 397 4835 4694 600 226 

Bivalve (n=125) 147 2664 6100 160 184 

Gastropod (n=16) 154 3037 6119 326 114 

Nautiloid (n=4) 402 4224 4053 439 172 

Uncertain (n=9) 95 2568 4375 216 11 

 
Table D-8. Trace element data categorised by genus (Mean ppm) for aragonite specimens. 
Note that for Fe only Maorites, unidentified Ammonites and Pinna exceed the threshold of 500 
ppm and that for Mn both Maorites and Nucula exceed the 200 ppm threshold. 
Genus Mg Sr Na Fe Mn 

Amberlaya (n=13) 169 3016 6191 390 135 

Ammonite (n=9) 326 3448 4556 775 93 

Bivalve (n=21) 103 2147 5778 142 63 

Diplomoceras (n=1) 426 4327 6719 179 61 

Eselaevitrigonia (n=34) 156 2930 5914 136 155 

Gastropod (n=1) 87 2001 4491 0 19 

Grossouvrites (n=1) 178 3195 7506 369 15 

Lahillia (n=1) 42 3252 3977 137 28 

Maorites (n=14) 456 5880 4438 534 338 

Nautiloid (n=4) 402 4224 4053 439 172 

Nucula (n=29) 211 3611 5732 235 481 

Oistotrigonia (n=26) 67 1530 6036 76 84 

Pinna (n=3) 176 2656 4051 672 51 

Pleurotomaria (n=2) 89 3692 6467 70 24 

Solemya (n=1) 684 6768 2776 78 100 

Unidentified (n=9) 95 2568 4375 216 11 

 
Table D-9. Trace element data categorised by habitat/mode of life (Mean ppm) for aragonite 
specimens. Note that for Fe only nektonic taxa exceed the 500 ppm threshold and that for Mn 
both infaunal and nektonic taxa exceed the 200 ppm threshold.  

Habitat Mg Sr Na Fe Mn 

Epifaunal (n=16) 154 3037 6119 326 114 

Infaunal (n=104) 156 2769 6165 163 208 

Nektonic (n=28) 396 4766 4530 592 224 

Planktonic (n=1) 426 4327 6719 179 61 

Uncertain (n=30) 101 2273 5357 164 47 
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Table D-10. Trace element data categorised by stratigraphy (Mean ppm) for aragonite 
specimens. No Fe or Mn screening. 

Depth Mg Sr Na Fe Mn 

1084 (n=5) 353 3579 5806 600 806 

1080 (n=1) 21 2142 3932 92 0 

1068 (n=1) 464 3741 3529 451 299 

1028 (n=3) 380 4304 2423 585 224 

995 (n=1) 467 3982 8943 0 14 

991 (n=3) 81 2739 6524 35 174 

943 (n=1) 204 8280 3529 506 286 

925 (n=1) 577 4840 3801 340 410 

919 (n=1) 529 4842 3660 52 136 

895 (n=1) 223 2514 4641 1286 59 

869 (n=4) 542 7938 5578 288 689 

863 (n=1) 42 5997 8276 204 13 

857 (n=2) 204 3446 4610 417 588 

851 (n=1) 447 4680 3588 481 394 

837 (n=3) 311 2843 5020 1127 119 

800 (n=1) 68 2567 5215 155 0 

779 (n=3) 26 3291 4027 81 35 

755 (n=10) 83 1781 6996 104 1 

749 (n=1) 0 1270 3583 198 0 

727 (n=1) 97 1460 4357 58 2 

722 (n=1) 974 2988 3744 996 171 

717 (n=2) 125 1977 7227 162 7 

712 (n=14) 146 2411 8476 162 0 

682 (n=5) 499 2220 7054 210 318 

647 (n=1) 293 6412 3993 378 56 

642 (n=12) 152 3741 5999 110 181 

637 (n=11) 92 2180 6405 139 73 

632 (n=1) 304 2913 4094 549 94 

627 (n=6) 309 3888 5585 944 96 

622 (n=6) 163 2756 4055 720 115 

618 (n=2) 53 3021 3957 93 91 

613 (n=14) 215 3925 5284 167 355 

608 (n=4) 172 4064 7027 127 57 

603 (n=1) 112 2219 7735 29 34 

578 (n=1) 69 2308 4786 69 25 

558 (n=1) 71 2953 4732 56 14 

551 (n=2) 62 3365 3755 184 1 

548 (n=3) 119 2373 4518 87 21 

541 (n=4) 79 2884 4143 83 68 

538 (n=2) 66 2356 4497 63 19 

533 (n=5) 172 4091 5526 124 563 

528 (n=7) 307 4380 4954 156 418 

508 (n=2) 155 1723 6553 0 380 

463 (n=1) 0 1431 6615 0 151 

458 (n=2) 61 1891 3789 82 57 

453 (n=3) 11 1493 3827 66 52 

443 (n=1) 0 1316 3839 398 332 

438 (n=1) 361 3090 5781 1640 226 

435 (n=1) 426 4327 6719 179 61 

408 (n=1) 56 1296 4323 0 131 

388 (n=4) 118 1796 6726 117 3 

348 (n=1) 38 1210 9178 106 0 

343 (n=8) 67 1218 7671 86 39 

338 (n=1) 0 1099 3697 168 0 

333 (n=2) 71 1407 4601 72 0 

311 (n=1) 0 1287 5283 0 0 
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D.5 Diagenetic evaluation of stable isotope data 

This section describes the additional diagenetic screening of stable isotope data 

measured from screened aragonite macrofossils, the methodology and analysis carried 

out at the stable isotope laboratory at the Jane Herdman Laboratory, School of Earth 

and Ocean Sciences, University of Liverpool. A further discussion of the initial selection 

process that determined whether individual δ18O and δ13C pairs from the stable isotope 

data set were considered as diagenetically least altered and therefore suitable for 

palaeotemperature determination. Chapter 3 assessed the diagenetic suitability of 

specimens for stable isotope analysis and subsequent palaeotemperature 

determination. The ICP-OES trace element diagenetic screening of selected shell 

material did not commence until after the majority of the stable isotope analyses were 

completed. As a result the stable isotope data set contained data for specimens 

subsequently determined as being diagenetically unsuitable for further 

palaeotemperature determination either due to the presence of either LMC or where 

Mg concentrations were in excess of screening guidelines (Brand, 1991). The 

availability of the extended stable isotope data set provided an opportunity to test 

whether a combination of trace element and stable isotope data could also be 

employed as a method for evaluating diagenesis of skeletal aragonite. An assessment 

was made as to whether the outcome of the diagenetic screening of samples that were 

deemed to be altered, based on criteria discussed in Chapter 3, was matched by the 

quality of the stable isotope data. The question of applying a specific threshold value 

for an individual trace element raised certain concerns, the adoption of a ‘tapered’ filter 

was also considered to reject specimens as altered if the trace element data was within 

a specified range (for example +5%) of the threshold level. After inspection of 

diagenetic scoring it was decided that ’tapered’ thresholds were not required.  

Removal of specimens that exhibited the presence of LMC or those with Mg above 

the adopted threshold level reduced the entire data set by 34 measurements, the 

majority of which were from ammonites or unidentified aragonite nacre shell material 

most probably derived from ammonites. The majority of these rejected specimens also 

exhibited high levels of either Fe or Mn indicating a strong likelihood of diagenesis. The 

full variability of the stable isotope data are presented in Table D-11. 

Stable isotope and trace element geochemical data were assessed using covariance 

plots that combined stable isotope and ICP-OES data for evidence of diagenesis. Initial 

analysis (see Figure D-1) plotted δ18O versus δ13C and provides a comparison of the 

stable isotope data from LMC and aragonite nacre shell material (n=247).  
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Table D-11. Comparison of stable isotope data sets following diagenetic screening. The 
aragonite category includes all specimens with mineralogy confirmed by XRD, SEM 
preservation index and trace elements below defined thresholds (Mg < 1000 ppm, Fe < 500 
ppm and Mn < 200 ppm (Brand, 1991; Morrison and Brand, 1988; Anderson et al., 1994; 
Ditchfield et al., 1994; Petersen et al., 2016) 

 Aragonite High Fe/Mn 
No trace 
element 

LMC and high 
Mg 

 δ
13

C δ
18

O δ
13

C δ
18

O δ
13

C δ
18

O δ
13

C δ
18

O 

Minima (‰) -7.54 -0.06 -6.31 0.13 -10.49 0.26 -20.71 -2.94 

Maxima (‰) 3.70 2.05 4.34 2.11 3.73 1.95 9.60 1.70 

Range (‰) 11.24 2.11 10.65 1.98 14.22 1.69 30.31 4.64 

The LMC and high Mg data, Figure D-1(a), exhibited a much wider spread of isotopic 

values than those presented in Figure D-1(b and c). With the elevated levels of Fe and 

Mn within this subset of the data there was good cause to remove those specimens 

from the final stable isotope data set. All specimens classified as LMC or high Mg were 

removed from the final stable isotope data set. Removal of these specimens left the 

remaining stable isotope data set with a considerably reduced variability for the δ13C 

and δ18O data. Note that only a small subset of the data was deemed to represent 

specimens that exhibited either LMC or elevated Mg levels. 

One key issue with the filtering of the stable isotope data was to ensure that the 

diagenetic selection had correctly removed unsuitable specimens and data from the 

analysed data set. Particularly any specimens showing elevated levels of Fe and Mn, 

recognised indicators of diagenesis (Morrison and Brand, 1988; Brand, 1991; Marshall 

1992) were not included in the final data set. As previously discussed in Chapter 3 the 

question of whether fossil specimens had been subject to diagenetic change was partly 

based upon the presence of intact original shell ultrastructure, reliably identified 

mineralogy and the presence of low levels of the diagenetic trace element indicators Fe 

and Mn. Also commented upon was specimen Id D5.215.347.2/I, which despite 

exhibiting extensive neomorphism of the aragonite nacre had concentrations of Fe (59 

ppm) and Mn (174 ppm) that were below the threshold values (Morrison and Brand, 

1988; Brand, 1991) with the trace element geochemistry indicating that it was unlikely 

that diagenesis had altered the original shell geochemistry. This suggested that the 

prevailing redox conditions were incompatible with the precipitation of Fe or Mn from 

pore fluids. It was also possible that pore fluids either carried low levels of Fe and Mn, 

or that conditions within the James Ross Basin may have inhibited the diagenesis of 

the aragonite nacre shell material (see Petersen et al., 2016). 

A comparison of the stable isotope data from LMC and aragonite nacre shell material 

(n=247) is presented in Figure 4-1. The widest variability within the stable isotope data 

can be seen in Figure D-1 (a) which illustrates the rejected LMC data set (n=2) and 

specimens (n=32) with Mg > 1000 ppm (see Brand, 1991). The removal of these data 

produced a significantly more compact stable isotope data set which can be seen in 
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Figure D-1(b) that represents screened aragonite specimens (n=116). Finally Figure D-

1(c) represents an expanded screened aragonite data set where green symbols 

represent specimens for which no trace element diagenetic screening (n=44) was 

carried out and the orange symbols represent specimens (n=53) with Fe or Mn 

concentrations that exceeded the diagenetic threshold (Fe > 500 ppm and Mn > 200 

ppm). Note that the most negative δ18O value for the screened data = -0.06‰ and that 

the 3 most negative δ13C values represent specimens of the bivalve Solemya rossiana 

which have thiotrophic chemosymbionts involved in the anaerobic oxidation of methane 

(Little et al., 2015).  

The inclusion of data for specimens with elevated Fe or Mn and specimens with no 

trace element screening had a minimal effect on the overall stable isotope population. 

Whilst it would be normal practice to reject specimens from these categories it can be 

seen from the stable isotope data summarised in Table D-1 that no increase in the 

range of δ18O resulted from inclusion of these data. For the δ13C data there was an 

increase in the overall range with the inclusion of specimens without trace element 

screening but the increase results from the inclusion of data from a single isotopically 

light specimen of the bivalve Solemya rossiana. 

There were also specimens that had no trace element screening and as a 

consequence the diagenetic screening was incomplete, especially regarding LMC. For 

specimens with no trace element data it was decided that screening would be carried 

out by a comparison of the screened and unscreened stable isotope data. Whilst this 

approach carried certain limitations it was deemed suitable because the unscreened 

specimens had been identified and the stable isotope data could thus be compared 

with other stable isotope data from screened specimens from the same taxa. 

The methodology for assessing aragonitic shell material is straightforward, for details 

of the diagenetic screening methodology see Chapter 3. The initial diagenetic 

screening will normally be completed prior to runnng the stable isotope analyses. 

However, in this study the majority of the stable isotope measurements were 

completed before any any ICP-OES analyses of major and trace elements (Ca and Mg, 

Sr, Na, Fe and Mn) had been carried out. This sequence of analysis occurred because 

of a combination of organisational and financial factors. Tables 4-4 and 4-5 illustrate 

the effect of trace element screening on the stable isotope data which were categorised 

by fossil type, habitat, genus and stratigraphy. 
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Figure D-1. Comparison of stable isotope data (n=247) from LMC and aragonite nacre shell material. Plot (a) illustrates the rejected LMC data set (n=2) and 
specimens (n=32) with Mg ≥ 1000 ppm (see Brand, 1991), plot (b) represents screened aragonite specimens (n=116) and plot c) represents an expanded screened 
aragonite data set where green symbols represent specimens for which no trace element diagenetic screening (n=44) was carried out and the orange symbols 
represent specimens (n=53) with Fe or Mn concentrations that exceeded the diagenetic threshold (Fe > 500 ppm and Mn > 200 ppm). Note that the most negative 
δ

18
O value for the screened data = -0.06‰ and for δ

13
C the 3 lightest values represent specimens of the bivalve Solemya rossiana which have thiotrophic 

chemosymbionts involved in the anaerobic oxidation of methane (Little et al., 2015) 

a b c 
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Table D-12. Screened aragonite stable isotope data (mean) categorised by genus, mode of life and stratigraphy. 

Genus δ
13

C‰ δ
18

O‰  Depth (m) δ
13

C‰ δ
18

O‰  Depth (m) δ
13

C‰ δ
18

O‰  Depth (m) δ
13

C‰ δ
18

O‰ 

Amberlaya (n=13) 2.39 1.14  1084 (n=5) 0.12 1.49  712 (n=14) 2.58 1.26  458 (n=2) 2.41 1.01 

Ammonite (n=9) -1.07 1.21  1080 (n=1) 2.12 0.64  682 (n=5) 1.06 1.82  453 (n=3) 1.78 0.78 

Bivalve (n=21) 1.93 1.33  1068 (n=1) 0.58 1.55  647 (n=1) -3.96 0.99  443 (n=1) 2.82 0.73 

Diplomoceras (n=1) -1.63 1.44  1028 (n=3) -3.56 0.48  642 (n=12) 1.49 1.20  438 (n=1) 1.56 1.01 

Eselaevitrigonia (n=34) 1.38 1.31  995 (n=1) 0.06 0.77  637 (n=11) 1.67 0.88  435 (n=1) -1.63 1.44 

Gastropod (n=1) 2.40 1.04  991 (n=3) 1.59 0.57  632 (n=1) 0.32 1.05  408 (n=1) 2.74 1.08 

Grossouvrites (n=1) -1.32 0.53  943 (n=1) -3.56 0.78  627 (n=6) -0.25 0.98  388 (n=4) 1.92 1.04 

Lahillia (n=1) 3.29 1.47  925 (n=1) -2.58 1.31  622 (n=6) 1.92 1.11  348 (n=1) 2.52 1.11 

Maorites (n=14) -1.84 0.99  919 (n=1) -2.71 1.33  618 (n=2) 2.63 1.66  343 (n=8) 1.65 0.95 

Nautiloid (n=4) -2.66 0.55  895 (n=1) 1.45 1.62  613 (n=14) 2.19 1.44  338 (n=1) 2.60 0.72 

Nucula (n=39) 1.53 1.41  869 (n=4) -0.86 0.98  608 (n=4) 0.44 1.33  333 (n=2) 1.82 1.07 

Oistotrigonia (n=26) 2.13 0.93  863 (n=1) 2.01 0.86  603 (n=1) 3.28 1.20  311 (n=1) 2.22 1.08 

Pinna (n=3) 1.40 1.19  857 (n=2) 0.37 0.49  578 (n=1) 2.31 1.77  333 (n=2) 1.82 1.07 

Pleurotomaria (n=2) 0.92 1.00  851 (n=1) -0.29 0.98  558 (n=1) 2.18 1.91  311 (n=1) 2.22 1.08 

Solemya (n=1) -7.54 1.11  837 (n=3) -1.04 1.53  551 (n=2) 2.19 1.29 

Unidentified (n=9) 1.01 0.92  800 (n=1) 2.40 1.42  548 (n=3) 2.33 1.07 

Mode of life δ
13

C‰ δ
18

O‰  779 (n=3) 1.58 1.41  541 (n=4) 2.27 1.51 

Epifaunal (n=16) 2.20 1.11  755 (n=10) 1.80 1.14  538 (n=2) 0.98 1.49 

Infaunal (n=104) 1.56 1.25  749 (n=1) 1.47 0.72  533 (n=5) 0.06 1.63 

Nektonic (n=28) -1.69 0.98  727 (n=1) 2.77 1.13  528 (n=7) -3.68 1.29 

Planktonic (n=1) -1.63 1.44  722 (n=1) -2.18 1.13  508 (n=2) 2.06 1.12 

Uncertain (n=30) 1.65 1.21  717 (n=2) 1.54 1.39  463 (n=1) 3.26 1.26 
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Table D-13. Aragonite stable isotope data categorised by stratigraphy, fossil type, mode of life 
and genus. Ranges marked ‘n/a’ represent categories containing a single specimen. 

Depth (m) No. 
δ

13
C 

Mean 
δ

13
C 

Min 
δ

13
C 

Max 
δ

13
C 

Range 
δ

18
O 

Mean 
δ

18
O 

Min 
δ

18
O 

Max 
δ

18
O 

Range 

1084 7 0.42 -0.95 1.99 2.94 1.52 1.29 1.74 0.46 

1080 1 2.12 2.12 2.12 n/a 0.64 0.64 0.64 n/a 

1068 1 0.58 0.58 0.58 n/a 1.55 1.55 1.55 n/a 

1028 3 -3.56 -4.35 -2.86 1.49 0.48 0.13 0.74 0.61 

995 1 0.06 0.06 0.06 n/a 0.77 0.77 0.77 n/a 

991 4 0.97 -1.51 3.33 4.83 0.75 -0.06 1.27 1.34 

943 1 -3.56 -3.56 -3.56 n/a 0.78 0.78 0.78 n/a 

925 1 -2.58 -2.58 -2.58 n/a 1.31 1.31 1.31 n/a 

919 1 -2.71 -2.71 -2.71 n/a 1.33 1.33 1.33 n/a 

909 2 1.41 1.30 1.51 0.21 1.14 1.02 1.26 0.24 

897 1 0.08 0.08 0.08 n/a 1.05 1.05 1.05 n/a 

895 1 1.45 1.45 1.45 n/a 1.62 1.62 1.62 n/a 

869 4 -0.86 -2.99 2.66 5.65 0.98 0.58 1.28 0.71 

863 1 2.01 2.01 2.01 n/a 0.86 0.86 0.86 n/a 

857 2 0.37 -0.38 1.12 1.50 0.49 0.38 0.59 0.21 

851 1 -0.29 -0.29 -0.29 n/a 0.98 0.98 0.98 n/a 

837 3 -1.04 -1.04 -1.04 n/a 1.53 1.53 1.53 n/a 

800 2 2.20 1.99 2.40 0.41 1.31 1.20 1.42 0.21 

779 3 1.58 1.41 1.92 0.51 1.41 1.25 1.49 0.24 

755 10 1.80 -0.04 2.79 2.83 1.14 0.86 1.39 0.52 

749 1 1.47 1.47 1.47 n/a 0.72 0.72 0.72 n/a 

727 1 2.77 2.77 2.77 n/a 1.13 1.13 1.13 n/a 

722 1 -2.18 -2.18 -2.18 n/a 1.13 1.13 1.13 n/a 

717 2 1.54 0.28 2.80 2.53 1.39 1.10 1.69 0.59 

712 15 2.46 0.80 2.97 2.18 1.26 0.77 1.67 0.89 

682 5 1.06 0.49 1.34 0.86 1.82 1.66 2.00 0.34 

647 1 -3.96 -3.96 -3.96 n/a 0.99 0.99 0.99 n/a 

642 12 1.49 -5.18 3.65 8.82 1.20 0.64 1.90 1.26 

637 12 1.60 -2.72 2.81 5.53 0.90 0.49 1.09 0.60 

632 1 0.32 0.32 0.32 n/a 1.05 1.05 1.05 n/a 

627 7 -0.27 -1.62 2.39 4.00 1.01 0.74 1.24 0.50 

622 11 2.12 1.00 3.31 2.31 0.98 0.40 1.85 1.45 

618 2 2.63 2.37 2.88 0.50 1.66 1.53 1.80 0.27 

613 19 2.26 0.24 4.34 4.09 1.42 0.76 2.11 1.35 

608 7 0.91 -2.86 3.73 6.59 1.24 0.52 1.95 1.43 

603 1 3.28 3.28 3.28 n/a 1.20 1.20 1.20 n/a 

578 1 2.31 2.31 2.31 n/a 1.77 1.77 1.77 n/a 

558 1 2.18 2.18 2.18 n/a 1.91 1.91 1.91 n/a 

551 2 2.19 2.06 2.33 0.27 1.29 1.05 1.54 0.49 

548 4 2.32 1.73 2.78 1.05 1.01 0.72 1.55 0.84 

541 6 2.28 1.96 2.45 0.49 1.45 1.04 1.80 0.76 

538 2 0.98 0.26 1.71 1.46 1.49 1.37 1.60 0.23 

533 5 0.06 -2.42 2.91 5.33 1.63 1.40 1.92 0.52 

528 12 -3.41 -10.49 1.36 11.85 1.21 0.26 2.00 1.74 

526 1 -5.99 -5.99 -5.99 n/a 1.05 1.05 1.05 n/a 

508 3 2.17 2.04 2.38 0.34 1.29 0.84 1.62 0.78 

463 1 3.26 3.26 3.26 n/a 1.26 1.26 1.26 n/a 

458 3 2.41 1.85 2.98 1.14 0.96 0.64 1.39 0.76 

453 3 1.78 0.81 2.27 1.47 0.78 0.59 1.12 0.53 

443 1 2.82 2.82 2.82 n/a 0.73 0.73 0.73 n/a 

438 1 1.56 1.56 1.56 n/a 1.01 1.01 1.01 n/a 

435 1 -1.63 -1.63 -1.63 n/a 1.44 1.44 1.44 n/a 

408 1 2.74 2.74 2.74 n/a 1.08 1.08 1.08 n/a 

388 4 1.92 1.53 2.19 0.67 1.04 0.99 1.13 0.14 

348 1 2.52 2.52 2.52 n/a 1.11 1.11 1.11 n/a 

343 8 1.65 1.13 2.15 1.02 0.95 0.86 1.08 0.22 

338 1 2.60 2.60 2.60 n/a 0.72 0.72 0.72 n/a 

333 2 1.82 1.00 2.64 1.64 1.07 0.97 1.17 0.20 
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Depth (m) No. 
δ

13
C 

Mean 
δ

13
C 

Min 
δ

13
C 

Max 
δ

13
C 

Range 
δ

18
O 

Mean 
δ

18
O 

Min 
δ

18
O 

Max 
δ

18
O 

Range 

311 1 2.22 2.22 2.22 n/a 1.08 1.08 1.08 n/a 

 

Type No. 
δ

13
C 

Mean 
δ

13
C 

Min 
δ

13
C 

Max 
δ

13
C 

Range 
δ

18
O 

Mean 
δ

18
O 

Min 
δ

18
O 

Max 
δ

18
O 

Range 

Bivalve 151 1.51 -10.49 4.34 14.83 1.25 0.26 2.11 1.85 

Cephalopod 32 -1.62 -5.18 1.56 6.74 1.00 0.13 1.53 1.40 

Gastropod 20 1.99 -0.19 3.33 3.51 1.12 0.72 1.42 0.70 

Uncertain 10 0.82 -1.51 2.64 4.15 0.96 -0.06 1.55 1.61 

 

Habitat No. 
δ

13
C 

Mean 
δ

13
C 

Min 
δ

13
C 

Max 
δ

13
C 

Range 
δ

18
O 

Mean 
δ

18
O 

Min 
δ

18
O 

Max 
δ

18
O 

Range 

Epifaunal 20 1.99 -0.19 3.33 3.51 1.12 0.72 1.42 0.70 

Infaunal 128 1.43 -10.49 4.34 14.83 1.24 0.26 2.11 1.85 

Nektonic 31 -1.62 -5.18 1.56 6.74 0.99 0.13 1.53 1.40 

Planktonic 1 -1.63 -1.63 -1.63 n/a 1.44 1.44 1.44 n/a 

Uncertain 33 1.61 -1.51 2.91 4.41 1.20 -0.06 1.92 1.99 

 

Mode of life No. 
δ

13
C 

Mean 
δ

13
C 

Min 
δ

13
C 

Max 
δ

13
C 

Range 
δ

18
O 

Mean 
δ

18
O 

Min 
δ

18
O 

Max 
δ

18
O 

Range 

Browser 2 0.92 -0.19 2.02 2.20 1.00 0.97 1.03 0.06 

Carnivore 32 -1.62 -5.18 1.56 6.74 1.00 0.13 1.53 1.40 

Scavenger 17 2.09 0.51 3.33 2.82 1.14 0.72 1.42 0.70 

Deposit feeder 49 1.34 -3.01 3.65 6.65 1.39 0.26 2.05 1.78 

Suspension feeder 79 1.49 -10.49 4.34 14.83 1.14 0.38 2.11 1.73 

Uncertain 34 1.63 -1.51 2.91 4.41 1.19 -0.06 1.92 1.99 

 

Genus No. 
δ

13
C 

Mean 
δ

13
C 

Min 
δ

13
C 

Max 
δ

13
C 

Range 
δ

18
O 

Mean 
δ

18
O 

Min 
δ

18
O 

Max 
δ

18
O 

Range 

Amberlaya 14 2.28 0.51 3.33 2.82 1.13 0.72 1.42 0.70 

Ammonite 9 -1.07 -3.96 1.56 5.52 1.21 0.88 1.53 0.65 

Bivalve 22 1.93 -0.04 2.91 2.95 1.32 0.59 1.92 1.33 

Diplomoceras 1 -1.63 -1.63 -1.63 n/a 1.44 1.44 1.44 n/a 

Eselaevitrigonia 43 1.66 -6.31 4.34 10.65 1.28 0.38 2.11 1.73 

Gastropod 4 1.50 0.80 2.40 1.60 1.14 1.02 1.26 0.24 

Grossouvrites 1 -1.32 -1.32 -1.32 n/a 0.53 0.53 0.53 n/a 

Lahillia 1 3.29 3.29 3.29 n/a 1.47 1.47 1.47 n/a 

Maorites 17 -1.68 -5.18 1.18 6.36 1.00 0.58 1.33 0.75 

Nautiloid 4 -2.66 -4.35 0.06 4.42 0.55 0.13 0.77 0.64 

Nucula  49 1.34 -3.01 3.65 6.65 1.39 0.26 2.05 1.78 

Oistotrigonia 28 2.14 0.81 3.26 2.45 0.92 0.59 1.49 0.91 

Pinna 5 1.88 0.32 2.62 2.30 1.07 0.84 1.62 0.78 

Pleurotomaria 2 0.92 -0.19 2.02 2.20 1.00 0.97 1.03 0.06 

Solemya 3 -8.01 -10.49 -5.99 4.51 1.05 0.99 1.11 0.12 

Unidentified 10 0.82 -1.51 2.64 4.15 0.96 -0.06 1.55 1.61 
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Table D-14. Comparison of stable isotope data vs diagenetic scoring categories. Note that not all specimen categories are present for the three 
diagenetic scoring categories. 

Type No. Mean Min Max Mean Min Max No. Mean Min Max Mean Min Max No. Mean Min Max Mean Min Max

Bivalve 82 1.89 -7.54 3.70 1.23 0.49 2.05 33 0.60 -6.31 4.34 1.34 0.38 2.11 36 1.48 -10.49 3.73 1.19 0.26 1.95

Cephalopod 14 -1.83 -5.18 1.18 0.95 0.53 1.44 15 -1.56 -4.35 1.56 1.04 0.13 1.53 3 -0.89 -2.38 0.08 1.04 0.87 1.21

Gastropod 12 2.13 -0.19 3.28 1.11 0.72 1.42 4 2.41 1.96 3.33 1.11 0.89 1.31 4 1.12 0.80 1.51 1.15 1.02 1.26

Uncertain 8 1.15 -1.51 2.64 0.94 -0.06 1.55 1 -0.16 -0.16 -0.16 0.75 0.75 0.75 1 -0.90 -0.90 -0.90 1.27 1.27 1.27

Habitat

Epifaunal 12 2.13 -0.19 3.28 1.11 0.72 1.42 4 2.41 1.96 3.33 1.11 0.89 1.31 4 1.12 0.80 1.51 1.15 1.02 1.26

Infaunal 64 1.83 -7.54 3.70 1.21 0.49 2.05 30 0.56 -6.31 4.34 1.33 0.38 2.11 34 1.44 -10.49 3.73 1.20 0.26 1.95

Nektonic 13 -1.84 -5.18 1.18 0.92 0.53 1.33 15 -1.56 -4.35 1.56 1.04 0.13 1.53 3 -0.89 -2.38 0.08 1.04 0.87 1.21

Planktonic 1 -1.63 -1.63 -1.63 1.44 1.44 1.44

Uncertain 26 1.80 -1.51 2.91 1.20 -0.06 1.92 4 0.70 -0.16 1.34 1.25 0.59 1.91 3 1.17 -0.90 2.41 1.11 0.85 1.27

Genus

Amberlaya 9 2.38 0.51 3.28 1.15 0.72 1.42 4 2.41 1.96 3.33 1.11 0.89 1.31 1 0.86 0.86 0.86 1.09 1.09 1.09

Ammonite 4 -1.48 -3.96 0.54 1.04 0.88 1.27 5 -0.75 -2.18 1.56 1.35 1.01 1.53 1 1.99 1.99 1.99 1.20 1.20 1.20

Bivalve 18 2.09 -0.04 2.91 1.32 0.86 1.92 3 0.98 0.49 1.34 1.41 0.59 1.91

Diplomoceras 1 -1.63 -1.63 -1.63 1.44 1.44 1.44

Eselaevitrigonia 25 1.71 -5.06 3.70 1.28 0.70 2.02 9 0.43 -6.31 4.34 1.38 0.38 2.11 9 2.71 1.27 3.73 1.19 0.40 1.95

Gastropod 1 2.40 2.40 2.40 1.04 1.04 1.04 3 1.20 0.80 1.51 1.17 1.02 1.26

Grossouvrites 1 -1.32 -1.32 -1.32 0.53 0.53 0.53

Lahillia 1 3.29 3.29 3.29 1.47 1.47 1.47

Maorites 5 -2.09 -5.18 1.18 1.03 0.76 1.33 9 -1.71 -3.56 0.25 0.97 0.58 1.31 3 -0.89 -2.38 0.08 1.04 0.87 1.21

Nautiloid 3 -2.09 -3.47 0.06 0.69 0.56 0.77 1 -4.35 -4.35 -4.35 0.13 0.13 0.13

Nucula 13 2.11 -0.51 3.65 1.52 0.49 2.05 16 0.31 -2.77 3.00 1.41 0.81 1.83 20 1.68 -3.01 2.97 1.28 0.26 1.74

Oistotrigonia 23 2.13 0.81 3.26 0.95 0.59 1.49 3 2.12 1.40 2.54 0.76 0.64 0.90 2 2.36 2.30 2.41 0.84 0.84 0.85

Pinna 1 2.44 2.44 2.44 0.92 0.92 0.92 2 0.88 0.32 1.45 1.33 1.05 1.62 2 2.60 2.59 2.62 0.87 0.84 0.91

Pleurotomaria 2 0.92 -0.19 2.02 1.00 0.97 1.03

Solemya 1 -7.54 -7.54 -7.54 1.11 1.11 1.11 2 -8.24 -10.49 -5.99 1.02 0.99 1.05

Unidentified 8 1.15 -1.51 2.64 0.94 -0.06 1.55 1 -0.16 -0.16 -0.16 0.75 0.75 0.75 1 -0.90 -0.90 -0.90 1.27 1.27 1.27

Screened - Aragonite data Screened - High Fe and/or Mn data Screened - No trace element data

δ
13

C‰ δ
18

O‰ δ
13

C‰ δ
18

O‰ δ
13

C‰ δ
18
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No data

No data

No data

No data

No data

No data

No data

No data
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No data No data

No data
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Table D-15. Comparison of stable isotope data vs diagenetic scoring categories (Aragonite, high Fe or Mn and a lack of trace element data). Note that as indicated 
(No data) not all specimens are present for each of the three diagenetic scoring categories. 

Depth (m) No. Mean Min Max Mean Min Max No. Mean Min Max Mean Min Max No. Mean Min Max Mean Min Max

1084 5 0.12 -0.95 1.99 1.49 1.29 1.74 2 1.17 1.12 1.23 1.59 1.44 1.74

1080 1 2.12 2.12 2.12 0.64 0.64 0.64

1068 1 0.58 0.58 0.58 1.55 1.55 1.55

1029

1028 2 -3.17 -3.47 -2.86 0.65 0.56 0.74 1 -4.35 -4.35 -4.35 0.13 0.13 0.13

995 1 0.06 0.06 0.06 0.77 0.77 0.77

991 2 0.73 -1.51 2.96 0.42 -0.06 0.90 1 3.33 3.33 3.33 0.89 0.89 0.89 1 -0.90 -0.90 -0.90 1.27 1.27 1.27

943 1 -3.56 -3.56 -3.56 0.78 0.78 0.78

925 1 -2.58 -2.58 -2.58 1.31 1.31 1.31

895 1 1.45 1.45 1.45 1.62 1.62 1.62

919 1 -2.71 -2.71 -2.71 1.33 1.33 1.33

909 2 1.41 1.30 1.51 1.14 1.02 1.26

897 1 0.08 0.08 0.08 1.05 1.05 1.05

869 1 2.66 2.66 2.66 1.09 1.09 1.09 3 -2.03 -2.99 -0.76 0.94 0.58 1.28

863 1 2.01 2.01 2.01 0.86 0.86 0.86

857 2 0.37 -0.38 1.12 0.49 0.38 0.59

851 1 -0.29 -0.29 -0.29 0.98 0.98 0.98

837 3 -1.04 -1.04 -1.04 1.53 1.53 1.53

800 1 2.40 2.40 2.40 1.42 1.42 1.42 1 1.99 1.99 1.99 1.20 1.20 1.20

779 3 1.58 1.41 1.92 1.41 1.25 1.49

755 10 1.80 -0.04 2.79 1.14 0.86 1.39

749 1 1.47 1.47 1.47 0.72 0.72 0.72

727 1 2.77 2.77 2.77 1.13 1.13 1.13

722 1 -2.18 -2.18 -2.18 1.13 1.13 1.13

717 2 1.54 0.28 2.80 1.39 1.10 1.69

712 4 2.14 0.81 2.82 1.28 0.77 1.67 11 2.58 0.80 2.97 1.25 1.21 1.34

682 5 1.06 0.49 1.34 1.82 1.66 2.00

647 1 -3.96 -3.96 -3.96 0.99 0.99 0.99

642 8 0.91 -5.18 3.65 1.30 0.78 1.90 4 2.64 2.42 3.00 1.00 0.64 1.83

637 9 1.60 -2.72 2.81 0.85 0.49 1.08 2 2.00 1.62 2.37 0.99 0.94 1.04 1 0.86 0.86 0.86 1.09 1.09 1.09

632 1 0.32 0.32 0.32 1.05 1.05 1.05

627 2 0.75 -0.89 2.39 1.16 1.08 1.24 4 -0.75 -1.62 0.25 0.90 0.74 1.12 1 -0.37 -0.37 -0.37 1.21 1.21 1.21

622 4 1.65 1.00 2.44 0.88 0.75 0.97 2 2.47 1.96 2.98 1.58 1.31 1.85 5 2.35 1.27 3.31 0.83 0.40 1.04

618 2 2.63 2.37 2.88 1.66 1.53 1.80

613 11 2.06 0.24 3.70 1.38 0.76 2.05 3 2.69 1.76 4.34 1.64 1.20 2.11 5 2.45 1.39 3.27 1.38 1.08 1.66

608 4 0.44 -2.86 3.68 1.33 0.53 1.94 3 1.55 -2.38 3.73 1.11 0.52 1.95

603 1 3.28 3.28 3.28 1.20 1.20 1.20

578 1 2.31 2.31 2.31 1.77 1.77 1.77

558 1 2.18 2.18 2.18 1.91 1.91 1.91

551 2 2.19 2.06 2.33 1.29 1.05 1.54

548 3 2.33 1.73 2.78 1.07 0.72 1.55 1 2.30 2.30 2.30 0.84 0.84 0.84

K-Pg Boundary

No data

Screened - No trace element data

δ
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No data
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No data
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No data
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No data

No data

No data

No data

No data

No data

No data

No data

No data

No data

No data

No data

No data

No data
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No data
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No data

No data  
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Table D-15 (cont.) 

Depth (m) No. Mean Min Max Mean Min Max No. Mean Min Max Mean Min Max No. Mean Min Max Mean Min Max

541 4 2.27 1.96 2.45 1.51 1.04 1.80 2 2.30 2.20 2.41 1.33 1.13 1.53

538 2 0.98 0.26 1.71 1.49 1.37 1.60

533 2 2.11 1.31 2.91 1.92 1.91 1.92 3 -1.31 -2.42 0.61 1.43 1.40 1.48

528 3 -4.37 -7.54 -0.51 1.46 1.11 2.00 4 -3.16 -6.31 -0.58 1.17 0.93 1.47 5 -3.04 -10.49 1.36 1.10 0.26 1.74

526 1 -5.99 -5.99 -5.99 1.05 1.05 1.05

508 1 2.09 2.09 2.09 0.84 0.84 0.84 1 2.04 2.04 2.04 1.41 1.41 1.41 1 2.38 2.38 2.38 1.62 1.62 1.62

463 1 3.26 3.26 3.26 1.26 1.26 1.26

458 2 2.41 1.85 2.98 1.01 0.64 1.39 1 2.41 2.41 2.41 0.85 0.85 0.85

453 3 1.78 0.81 2.27 0.78 0.59 1.12

443 1 2.82 2.82 2.82 0.73 0.73 0.73

438 1 1.56 1.56 1.56 1.01 1.01 1.01

435 1 -1.63 -1.63 -1.63 1.44 1.44 1.44

408 1 2.74 2.74 2.74 1.08 1.08 1.08

388 4 1.92 1.53 2.19 1.04 0.99 1.13

348 1 2.52 2.52 2.52 1.11 1.11 1.11

343 7 1.69 1.13 2.15 0.96 0.86 1.08 1 1.40 1.40 1.40 0.90 0.90 0.90

338 1 2.60 2.60 2.60 0.72 0.72 0.72

333 2 1.82 1.00 2.64 1.07 0.97 1.17

311 1 2.22 2.22 2.22 1.08 1.08 1.08

No data

No data

Screened - Aragonite data Screened - High Fe and/or Mn data

No data

No data

No data

No data

No data

No data

No data

No data

No data

No data

No data

No data

No data

No data
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No data

No data

No data

No data

No data

No data

No data

No data
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18
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No data
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D.6 Screened Stable Isotope Data 

A number of key requirements exist for an accurate interpretation of extant 

palaeoenvironmental and palaeoclimate conditions using stable isotopes of carbon and 

oxygen from the fossil record. The degree to which oxygen isotope values may have been 

affected by the preservation of the original aragonite nacre shell fragments and any 

associated diagenetic alteration must be evaluated. A number of analytical tests can be 

carried out to determine whether recrystallisation had occurred including SEM 

investigation of shell fragments and covariance plots of δ18O vs. Sr/Ca ratios. In the latter 

case diagenetic processes generally reduce Sr concentrations in aragonite because of the 

similar chemistry of Sr and Ca (Brand and Veizer 1981; Li and Keller 1999; Ullmann et al., 

2013). Strong diagenetic effects result in a good correlation between Sr/Ca ratios and 

δ18O values due to the loss of Sr.  

These oxygen isotope data show a low correlation coefficient (R2 = 0.01) between the 

Sr/Ca ratio for all screened δ18O values, which indicated that there were no major 

diagenetic effects, see Figure D-2. However, the overall variability in the δ18O data was 

large and diagenesis could have affected individual samples to a greater or lesser extent. 

δ
18

O vs Sr/Ca

R
2
 = 0. 05 55

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

0.000 0.005 0.010 0.015 0.020 0.025 0.030

Sr/Ca

δ
1

8
O

δ
1 8

O vs Sr/Ca

R 2 = 0.01 76

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

0.000 0.005 0.010 0.015 0.020 0.025 0.030

Sr/Ca

δ
1

8 O

δ
18

O vs Sr/Ca

R
2
 = 0. 05 55

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

0.000 0.005 0.010 0.015 0.020 0.025 0.030

Sr/Ca

δ
1

8
O

δ
1 8

O vs Sr/Ca

R 2 = 0.01 76

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

0.000 0.005 0.010 0.015 0.020 0.025 0.030

Sr/Ca

δ
1

8 O

 

Figure D-2. Oxygen isotope data show a low correlation coefficients (R
2
 = 0.0555 and 0.0176) with 

the Sr/Ca ratio for all screened δ
18

O values, which indicated that there were no major diagenetic 
effects. Orange symbols represent specimens (n=53) with Fe or Mn concentrations that exceeded 
the diagenetic threshold (Fe > 500 ppm and Mn > 200 ppm). Note that overall variability in the δ

18
O 

data was large and diagenesis may have affected samples to a greater or lesser extent. 
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Appendix E. Stable isotope methods and data 

E.1 Isotope measurement 

Sample carbonate powders were ground by hand using an agate pestle and mortar to < 

53 µm prior to diagentic screening. For each sample a small quantity (~10 mg) of the 

powder was placed in a low temperature oxygen plasma for a minimum of 2 hours to 

ensure the oxidation of any organic carbon present. Stable isotope data for carbon and 

oxygen were determined using a SIRA Series II mass spectrometer located at the Jane 

Herdman Laboratory, Department of Earth and Ocean Sciences, University of Liverpool 

by the analysis of CO2 generated from the reaction of the carbonate powder with 100% 

H3PO4 at a temperature of 25°C in a common bath setup. All values were reported in the 

standard (δ) notation in per mil (‰) relative to the Vienna Peedee belemnite (VPDB) 

standard, where:  

δ
18O = [(l8O/16O)sample/(

18O/16O)standard - 1] x 103 per mil (‰).  Eqn (3) 

Fractionation factors were applied for calcite (1.01025) and aragonite (1.01034), a 

correction for 17O was also applied (Craig, 1957). Quoted laboratory reproducibility for 

δ13C and δ18O was better than ±0.1‰ determined by repeated analyses of aragonite 

standards (Marshall pers. comm., 2007). Replicate samples were analysed to check for 

measurement consistency, Table E-1 shows replicate stable isotope data analysed for a 

single macrofossil specimen. 

Table E-1. Stable isotope replicate analyses for sample powders from specimen Id 
D5.219.1091.2/F. All aragonite stable isotope compositions are reported as standard per mil  
relative to the Vienna Peedee Belemnite (‰ VPDB). 

 δ
13

C‰ δ
18

O‰ 

2.94 1.31 

2.73 1.25 

2.62 1.24 

2.67 1.24 

2.84 1.21 

2.72 1.25 

2.67 1.67 

2.66 1.24 

2.70 1.29 

2.70 1.21 

2.97 1.34 

Replicate Samples 

2.94 1.31 

Mean 2.748 1.295 

Standard Error 0.035 0.039 

Standard Deviation 0.117 0.130 

Sample Variance 0.014 0.017 

Count 11 11 

Confidence Level (95.0%) 0.079 0.087 
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Figure E-1. Comparison of aragonite stable isotope data categorised by mode of life. The 
‘Uncertain’ category represents specimens where it was not possible to identify to either a specific 
fossil type or taxon but where the fragmentary shell material was of sufficient quality to pass 
diagenetic screening. Note that with the exception of a single datapoint in the ‘Uncertain’ category 
(-0.06‰) all δ

18
O data were > 0.0‰. In all plots green symbols represent specimens for which no 

trace element diagenetic screening was carried out and the orange symbols represent specimens 
with Fe or Mn concentrations that exceeded the diagenetic threshold (Fe > 500 ppm and Mn > 200 
ppm). 
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Figure E-2. Comparison of aragonite stable isotope data categorised by fossil type. 
The ‘Uncertain’ category represents specimens where it was not possible to identify to either a 
specific fossil type but where the fragmentary shell material was of sufficient quality to pass 
diagenetic screening. Note that with the exception of a single datapoint in the ‘Uncertain’ category 
(-0.06‰) all δ

18
O data were > 0.0‰. In all plots green symbols represent specimens for which no 

trace element diagenetic screening was carried out and the orange symbols represent specimens 
with Fe or Mn concentrations that exceeded the diagenetic threshold (Fe > 500 ppm and Mn > 200 
ppm). 
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Figure E-3. Comparison of bivalve aragonite nacre shell material stable isotope data categorised 
by taxa. The ‘Bivalve’ category represents specimens where it was not possible to identify to a 
specific taxon but where the fragmentary shell material was of sufficient quality to pass diagenetic 
screening. Note that all δ

18
O data were > 0.0‰. In all plots green symbols represent specimens for 

which no trace element diagenetic screening was carried out and the orange symbols represent 
specimens with Fe or Mn concentrations that exceeded the diagenetic threshold (Fe > 500 ppm 
and Mn > 200 ppm). 
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Oistotrigonia   (n=28)
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Figure E-4. Comparison of bivalve aragonite nacre shell material stable isotope data categorised 
by taxa. The ‘Bivalve’ category represents specimens where it was not possible to identify to a 
specific taxon but where the fragmentary shell material was of sufficient quality to pass diagenetic 
screening. Note that all δ

18
O data were > 0.0‰. In all plots red symbols represent specimens for 

which no trace element diagenetic screening was carried out and the orange symbols represent 
specimens with Fe or Mn concentrations that exceeded the diagenetic threshold (Fe > 500 ppm 
and Mn > 200 ppm). 
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E.2 Bivalves 

Table E-2. Screened stable isotope and trace element data for bivalve taxa. Stable isotope data 
reported as standard per mil (‰ VPDB) and trace element analyses (ppm) below detection limits = 
b/d. Temperature calculated using δ

18
OWater value of -1.2‰ (-1.0‰ SMOW). 

Eselaevitrigonia δ
13

C δ
18

O Mg Sr Na Fe Mn 
Temp 
(°C) 

D5.219.1185.2/I 2.66 1.09 20 5783 7945 58 44 10.7 

D5.219.1138.3/C 1.92 1.49 24 3681 3712 19 61 8.9 

D5.219.1125.2/C-2 0.37 1.31 136 2353 8919 120 3 9.7 

D5.219.1125.2/C-1 2.79 1.12 179 2856 5194 450 b/d 10.5 

D5.219.1096.3/H 2.80 1.69 105 1923 8207 101 5 8.1 

D5.219.1096.3/I 0.28 1.10 144 2030 6247 222 9 10.6 

D5.218.1016.2/J 2.34 0.70 15 1881 4504 b/d 7 12.4 

D5.218.1016.2/N 2.56 1.01 83 2450 4058 16 21 11.0 

D5.218.1016.2/L-2 2.81 0.87 32 1530 10044 24 11 11.6 

D5.218.1016.2/K 2.05 0.77 56 1793 6551 78 2 12.0 

D5.218.1016.2/L-1 1.96 0.81 70 1956 9603 133 13 11.9 

D5.215.216.3/A-1 1.14 0.75 b/d 2609 3506 143 18 12.1 

D5.215.216.3/A-2 1.00 0.86 5 2825 3873 453 119 11.6 

D5.215.696.2/AN 2.89 1.59 80 3325 6260 b/d 32 8.5 

D5.215.696.2/AQ 3.70 2.02 171 4341 8443 b/d 157 6.6 

D5.215.691.2/D-1 3.68 1.94 101 3150 7236 b/d 52 7.0 

D5.215.371.2/B 2.06 1.05 56 3363 3723 135 2 10.9 

D5.215.361.2/C 2.28 1.75 105 3215 4432 b/d 13 7.8 

D5.215.361.2/D 1.96 1.45 27 3049 3680 332 183 9.1 

D5.215.357.2/B 0.26 1.60 131 2415 4797 12 37 8.4 

D5.215.357.2/A 1.71 1.37 b/d 2296 4197 115 b/d 9.4 

D5.215.352.2/A 1.31 1.91 88 3563 6919 b/d 59 7.1 

D5.215.347.2/I -5.06 1.25 418 4355 5726 59 174 9.9 

D5.215.980.2/B 1.85 1.39 122 2236 3917 57 20 9.4 

D5.215.910.1/A 1.53 1.13 149 1969 9846 b/d b/d 10.5 

Mean 1.71 1.28 93 2838 6062 101 42 9.8 

Minima -5.06 0.70       

Maxima 3.70 2.02       

Std Err 1.68 0.40       

Std Dev 1.69 0.39       

Count 25 25       

Confidence Level 
(95%) 

3.30 0.78       

 

Lahillia δ
13

C δ
18

O Mg Sr Na Fe Mn 
Temp 
(°C) 

D5.215.696.2/AV 3.29 1.47 42 3252 3977 137 28 9.0 

 

Nucula δ
13

C δ
18

O Mg Sr Na Fe Mn 
Temp 
(°C) 

D5.219.1182.2/A 2.01 0.86 42 5997 8276 204 13 11.7 

D5.219.1091.2/F 2.67 1.67 178 2582 9797 131 b/d 8.2 

D5.218.1021.2/E 3.65 1.90 129 4553 8214 18 16 7.1 

D5.218.1021.2/G 1.72 1.77 402 5522 5997 368 81 7.7 

D5.218.1016.2/C 1.61 0.49 13 2758 4538 b/d 5 13.2 

D5.218.1016.2/B 1.70 0.92 77 1790 6967 38 130 11.4 

D5.215.701.2/A 2.37 1.80 79 2885 4120 21 56 7.6 

D5.215.696.2/AK 3.63 2.05 129 4810 3576 b/d 15 6.5 

D5.215.696.2/AA 1.08 1.17 b/d 2559 3834 136 34 10.3 

D5.215.696.2/AL 2.89 1.52 93 5005 3571 158 129 8.8 

D5.215.691.2/C 2.25 1.82 119 3414 7290 23 16 7.5 

D5.215.396.2/A 2.31 1.77 69 2308 4786 69 25 7.7 

D5.215.347.2/A -0.51 2.00 176 5700 5726 69 90 6.7 

Mean 2.11 1.52 116 3837 5899 95 47 8.8 
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Nucula δ
13

C δ
18

O Mg Sr Na Fe Mn 
Temp 
(°C) 

Minima -0.51 0.49       

Maxima 3.65 2.05       

Std Err 1.10 0.46       

Std Dev 1.09 0.49       

Count 13 13       

Confidence Level 
(95%) 

2.16 0.89       

 

Oistotrigonia δ
13

C δ
18

O Mg Sr Na Fe Mn 
Temp 
(°C) 

D5.219.1138.3/B 1.42 1.49 29 3276 4251 48 25 8.9 

D5.219.1125.2/E 2.37 1.03 98 2088 9197 9 1 10.9 

D5.219.1125.2/D 2.43 1.05 103 1900 11234 47 2 10.8 

D5.219.1122.2/D 1.47 0.72 b/d 1270 3582 198 b/d 12.3 

D5.219.1106.2/C 2.77 1.13 96 1460 4357 58 2 10.5 

D5.219.1091.2/I-2 2.82 0.77 b/d 1083 3715 181 b/d 12.0 

D5.218.1006.2/O 2.39 1.08 134 2160 10856 165 10 10.7 

D5.215.368.2/B 2.48 0.94 241 1494 4639 144 25 11.3 

D5.215.327.2/A-2 2.09 0.84 125 1058 3995 b/d 135 11.8 

D5.215.985.2/B 3.26 1.26 b/d 1431 6615 b/d 151 9.9 

D5.215.980.2/A 2.98 0.64 b/d 1546 3662 106 94 12.6 

D5.215.975.2/A 2.27 1.12 32 1646 4329 b/d 47 10.5 

D5.215.975.2/B 0.81 0.59 b/d 1495 3464 86 56 12.9 

D5.215.975.2/C 2.25 0.63 b/d 1339 3687 112 52 12.7 

D5.215.930.2/A 2.74 1.08 56 1296 4323 b/d 130 10.7 

D5.212.909.2/A 1.89 1.02 144 2000 4709 14 7 11.0 

D5.212.865.3/A-1 2.10 0.90 56 1456 5613 b/d b/d 11.5 

D5.212.865.3/A-2 1.13 0.99 62 1345 4570 b/d b/d 11.1 

D5.212.865.3/G 1.20 0.86 49 1421 9235 71 b/d 11.7 

D5.212.865.3/C 1.55 0.93 160 1136 12321 117 b/d 11.3 

D5.212.865.3/B 1.74 1.08 127 1582 8921 213 4 10.7 

D5.212.865.3/F 2.15 1.05 55 1412 5418 248 b/d 10.8 

D5.212.860.2/A 2.60 0.72 b/d 1099 3697 168 b/d 12.3 

Mean 2.13 0.95 68 1565 5930 86 32 11.3 

Minima 0.81 0.59       

Maxima 3.26 1.49       

Std Err 0.64 0.22       

Std Dev 0.64 0.22       

Count 23 23       

Confidence Level 
(95%) 

1.26 0.42       

 

Pinna δ
13

C δ
18

O Mg Sr Na Fe Mn 
Temp 
(°C) 

D5.215.216.2/A 2.44 0.92 b/d 2541 3417 181 b/d 11.4 

 

Solemya δ
13

C δ
18

O Mg Sr Na Fe Mn 
Temp 
(°C) 

D5.215.347.2/M -7.5 1.1 684 6768 2776 78 100 11 

 

Bivalve δ
13

C δ
18

O Mg Sr Na Fe Mn 
Temp 
(°C) 

D5.219.1149.1/A-2 2.40 1.42 68 2567 5215 155 b/d 9.3 

D5.219.1138.3/A 1.41 1.25 26 2916 4116 177 20 10.0 

D5.219.1125.2/G-1 2.70 1.32 3 192 695 b/d b/d 9.7 

D5.219.1125.2/L 1.94 1.05 53 1340 8365 11 b/d 10.8 

D5.219.1125.2/G-2 2.19 1.39 33 1890 6637 25 1 9.4 

D5.219.1125.2/M 1.21 1.34 63 2098 9489 48 2 9.6 
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Bivalve δ
13

C δ
18

O Mg Sr Na Fe Mn 
Temp 
(°C) 

D5.219.1125.2/N 2.07 0.97 125 1428 6664 94 2 11.2 

D5.219.1125.2/L -0.04 0.86 40 1662 3567 240 b/d 11.6 

D5.219.1091.2/H 2.26 1.41 36 2251 3680 350 b/d 9.3 

D5.215.701.2/B 2.88 1.53 27 3157 3794 164 125 8.8 

D5.215.378.2/A 2.18 1.91 71 2953 4732 56 14 7.1 

D5.215.371.2/A 2.33 1.54 68 3366 3786 234 1 8.7 

D5.215.361.2/B 2.45 1.80 95 3271 3970 b/d 56 7.6 

D5.215.352.2/B 2.91 1.92 185 2925 6597 24 48 7.0 

D5.212.909.2/B 2.19 1.01 83 1604 4436 64 b/d 11.0 

D5.212.909.2/C 2.05 0.99 96 1609 7914 391 7 11.1 

D5.212.870.2/A 2.52 1.11 38 1210 9178 106 b/d 10.6 

D5.212.865.3/E 1.95 0.88 28 1395 5437 34 b/d 11.6 

Mean 2.09 1.32 63 2102 5460 121 15 9.7 

Minima -0.04 0.86       

Maxima 2.91 1.92       

Std Err 0.67 0.35       

Std Dev 0.69 0.34       

Count 18 18       
Confidence Level 
(95%) 

1.32 0.68       
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E.3 Ammonites and nautiloids 
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Figure E-5. Comparison of ‘Nautiloid’ aragonite nacre shell material stable isotope data represents 
specimens where it was not possible to identify to a specific taxon but where the fragmentary shell 
material was of sufficient quality to pass diagenetic screening. Note that all δ

18
O data were > 0.0‰. 

In plot green symbols represent specimens for which no trace element diagenetic screening was 
carried out. 

Table E-3. Screened stable isotope and trace element data for cephalopod taxa. Stable isotope 
data reported as standard per mil (‰ VPDB) and trace element analyses (ppm) below detection 
limits = b/d. 

Diplomoceras δ
13

C δ
18

O Mg Sr Na Fe Mn 
Temp 
(°C) 

D5.215.955.3/A -1.63 1.44 426 4327 6719 179 61 9.1 
 

Grossouvrites δ
13

C δ
18

O Mg Sr Na Fe Mn 
Temp 
(°C) 

D5.215.691.2/B -1.32 0.53 178 3195 7506 369 15 13.1 
 

Maorites δ
13

C δ
18

O Mg Sr Na Fe Mn 
Temp 
(°C) 

D5.220.1214.2/A -2.71 1.33 529 4842 3660 52 136 9.6 

D5.218.1021.2/V -5.18 0.78 301 7202 3856 135 124 12.0 

D5.218.1006.2/I -0.89 1.24 157 4911 6432 115 29 10.0 

D5.215.696.2/Q 1.18 0.76 535 2964 3895 375 15 12.1 

D5.215.691.2/A -2.86 1.03 289 6496 6074 117 146 10.9 

Mean -2.09 1.03 362 5283 4783 159 90 10.9 

Minima -5.18 0.76       

Maxima 1.18 1.33       

Std Err 2.69 0.23       

Std Dev 2.38 0.26       

Count 5 5       
Confidence Level 
(95%) 

5.27 0.45       
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Ammonite δ
13

C δ
18

O Mg Sr Na Fe Mn 
Temp 
(°C) 

D5.218.1027.2/B -3.96 0.99 293 6412 3993 377 56 11.1 

D5.218.1016.2/O -2.72 1.03 100 1524 4933 63 2 10.9 

D5.215.696.2/AR 0.54 1.27 174 4110 4298 35 24 9.9 

D5.215.696.2/AT 0.24 0.88 93 4382 3199 483 5 11.6 

Mean -1.48 1.04 165 4107 4106 240 22 10.9 

Minima -3.96 0.88       

Maxima 0.54 1.27       

Std Err 0.15 0.20       

Std Dev 2.22 0.17       

Count 4 4       

Confidence Level 
(95%) 

0.29 0.39       

 

Nautiloid δ
13

C δ
18

O Mg Sr Na Fe Mn 
Temp 
(°C) 

D5.229.1292.2/A-2 -2.86 0.56 14 594 377 12 7 13.0 

D5.229.1292.2/A-1 -3.47 0.74 207 6139 3675 419 128 12.2 

D5.222.1257.2/A 0.06 0.77 466 3982 8943 b/d 14 12.1 

Mean -2.09 0.69 229 3572 4332 144 49 12.4 

Minima -3.47 0.56       

Maxima 0.06 0.77       

Std Err 0.43 0.13       

Std Dev 1.89 0.12       

Count 3 3       

Confidence Level 
(95%) 

0.85 0.26       
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E.4 Gastropods 
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Figure E-6. Comparison of gastropod aragonite stable isotope data categorised by taxa. 
The ‘Gastropod’ category represents specimens where it was not possible to identify to a specific 
taxon but where the fragmentary shell material was of sufficient quality to pass diagenetic 
screening. Note that all δ

18
O data were > 0.0‰. In all plots green symbols represent specimens for 

which no trace element diagenetic screening was carried out and the orange symbols represent 
specimens with Fe or Mn concentrations that exceeded the diagenetic threshold (Fe > 500 ppm 
and Mn > 200 ppm). 
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Table E-4. Screened stable isotope and trace element data for gastropod taxa. Stable isotope data 
reported as standard per mil (‰ VPDB) and trace element analyses (ppm) below detection limits = 
b/d. 

Amberlaya δ
13

C δ
18

O Mg Sr Na Fe Mn 
Temp 
(°C) 

D5.222.1255.2/A 2.96 0.90 34 1940 10760 b/d 190 11.5 

D5.218.1021.2/A-2 2.16 1.23 107 3403 4622 b/d 84 10.0 

D5.218.1021.2/A-1 2.15 1.31 108 3710 5440 47 91 9.7 

D5.218.1021.2/C 2.77 1.42 85 2543 8544 76 76 9.2 

D5.218.1016.2/D 2.06 1.08 89 3334 4989 273 8 10.7 

D5.215.696.2/AU 0.51 1.29 190 5213 4548 b/d 49 9.8 

D5.215.696.2/P 2.73 1.18 239 2949 7159 40 50 10.3 

D5.215.686.2/A 3.28 1.20 112 2219 7735 29 34 10.2 

D5.215.368.2/C 2.78 0.72 39 3074 3834 115 25 12.3 

Mean 2.38 1.15 111 3154 6403 64 67 10.4 

Minima 0.51 0.72       

Maxima 3.28 1.42       

Std Err 0.85 0.23       

Std Dev 0.81 0.22       

Count 9 9       
Confidence Level 
(95%) 

1.67 0.45       

 

Pleurotomaria δ
13

C δ
18

O Mg Sr Na Fe Mn 
Temp 
(°C) 

D5.218.1021.2/B -0.19 1.03 107 4256 8695 140 37 10.9 

D5.215.216.5/A 2.02 0.97 71 3128 4238 b/d 10 11.2 
Mean 0.92 1.00 89 3692 6467 70 24 11.1 

Minima -0.19 0.97       

Maxima 2.02 1.03       

Count 2 2       

 

Gastropod δ
13

C δ
18

O Mg Sr Na Fe Mn 
Temp 
(°C) 

D5.215.361.2/A 2.40 1.04 87 2001 4491 b/d 19 10.9 
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E.5 Unidentified fossil types 
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Figure E-7. Comparison of screened stable isotope data from unidentified aragonite nacre shell 
material. This category represents specimens where it was not possible to identify a specific taxon 
or fossil type but where the fragmentary shell material was of sufficient quality to pass diagenetic 
screening. Note that all screened δ

18
O data were > -0.06‰. In all plots green symbols represent 

specimens for which no trace element diagenetic screening was carried out and the orange 
symbols represent specimens with Fe or Mn concentrations that exceeded the diagenetic threshold 
(Fe > 500 ppm and Mn > 200 ppm). 

 



High palaeolatitude record of Late Maastrichtian – Early Danian climate change, Seymour Island, 
Antarctica 

Page 253 

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

0 1000 2000 3000 4000

Fe (ppm)

δ
1

8
O

 ‰

-11

-9

-7

-5

-3

-1

1

3

5

0 1000 2000 3000 4000

Fe (ppm)

δ
1

3
C

 ‰

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

0 1000 2000 3000 4000

Mn (ppm)

δ
1

8
O

 ‰

-11

-9

-7

-5

-3

-1

1

3

5

0 1000 2000 3000 4000

Mn (ppm)

δ
1

3
C

 ‰

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

0 200 400 600 800 1000

Mg (ppm)

δ
1

8
O

 ‰

-11

-9

-7

-5

-3

-1

1

3

5

0 200 400 600 800 1000

Mg (ppm)

δ
1

3
C

 ‰

 

Figure E-8. Covariance plots of screened δ
18

O and δ
13

C vs screened trace element concentrations 
(Fe, Mn and Mg all ppm) as determined by ICP-OES analysis. In both plots blue symbols represent 
specimens exhibiting Mg < 1000 ppm, Fe < 500 ppm and Mn < 200 ppm and orange symbols 
represent specimens with Fe or Mn concentrations that exceeded the diagenetic threshold (Fe > 
500 ppm and Mn > 200 ppm). In no case does the inclusion of specimens with elevated levels of 
either Fe or Mn result in an expansion of the overall range of the stable isotope data. 
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Figure E-9. Covariance plots of partially screened δ
18

O and δ
13

C vs trace element concentrations 
(Sr and Na all ppm) as determined by ICP-OES analysis. In both plots blue symbols represent 
specimens exhibiting Mg < 1000 ppm, Fe < 500 ppm and Mn < 200 ppm and orange symbols 
represent specimens with Fe or Mn concentrations that exceeded the diagenetic threshold (Fe > 
500 ppm and Mn > 200 ppm). In neither case does the stable isotope data covary with the 
respective trace element. 
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Figure E-10. Covariance plots of partially screened data for Ca (%) vs δ
18

O and δ
13

C. In both plots 
blue symbols represent specimens exhibiting Mg < 1000 ppm, Fe < 500 ppm and Mn < 200 ppm 
and orange symbols represent specimens with Fe or Mn concentrations that exceeded the 
diagenetic threshold (Fe > 500 ppm and Mn > 200 ppm). In neither case does the stable isotope 
data covary with the Ca content of the analysed shell material. 

Table E-5. Screened stable isotope and trace element data from unidentified fossil types. 
Stable isotope data reported as standard per mil (‰ VPDB) and trace element analyses (ppm) 
below detection limits = b/d. 

Unidentified δ
13

C δ
18

O Mg Sr Na Fe Mn 
Temp 
(°C) 

D5.229.1353.2/C 2.12 0.64 21 2142 3932 92 b/d 12.6 
D5.222.1254.1/A -1.51 -0.06 60 4170 4479 83 11 15.7 
D5.219.1091.2/G 0.81 1.26 42 2024 3505 295 b/d 9.9 
D5.218.1021.2/W 0.21 0.94 148 4008 4594 201 20 11.3 
D5.215.368.2/A 1.73 1.55 78 2550 5080 b/d 12 8.7 
D5.212.855.2/B 2.64 1.17 45 1541 4986 20 b/d 10.3 
D5.212.855.2/C 1.00 0.97 97 1272 4216 123 b/d 11.2 
D5.212.833.2/A 2.22 1.08 b/d 1287 5283 b/d b/d 10.7 
Mean 1.15 0.94 61 2374 4509 102 5 11.3 
Minima -1.51 -0.06       
Maxima 2.64 1.55       
Std Err 1.28 0.40       
Std Dev 1.35 0.49       
Count 8 8       
Confidence Level 
(95%) 

2.50 0.79       
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E.6 Clumped isotope δ18OWater values  

Table E-6. Values of δ
18

OWater calculated from clumped isotope temperature data reported by 
Petersen et al. (2016). Data derived from the analysis of late Maastrichtian bivalves collected on 
Seymour Island. Stratigraphic height adjusted to reflect the BAS D5 stratigraphy (where D5 depth 
(m) = Petersen et al. (2016) depth – 30 m). 

Depth 
(m) 

Age 
(Ma) 

δ
18

OWater 
Depth 

(m) 
Age 
(Ma) 

δ
18

OWater 

1068 65.808 -3.01 895 66.971 -0.09 
1068 65.808 -1.92 895 66.971 -1.49 
1037 65.995 -2.19 895 66.971 -0.20 
1037 65.995 -1.63 895 66.971 1.05 
1029 66.043 -2.60 857 67.346 0.67 
1029 66.043 -2.46 857 67.346 -0.68 
1029 66.043 -0.48 857 67.346 -0.06 
1029 66.043 -0.71 827 67.643 -0.80 
1028 66.048 -0.51 827 67.643 -2.58 
1028 66.048 -1.89 825 67.663 -0.95 
1028 66.048 -1.90 825 67.663 -2.91 
1028 66.048 -1.93 825 67.663 0.03 
1021 66.080 -1.93 808 67.830 0.63 
1021 66.080 -1.00 808 67.830 -1.06 
1002 66.169 -1.17 795 67.959 -1.77 
1002 66.169 -1.85 795 67.959 0.22 
995 66.202 -0.73 678 68.728 -1.19 
995 66.202 -0.67 678 68.728 -3.42 
986 66.244 -3.33 663 68.800 -3.34 
986 66.244 -0.88 663 68.800 -3.07 
972 66.309 -2.55 663 68.800 -1.47 
972 66.309 -1.31 663 68.800 -1.43 
943 66.497 -2.82 633 68.943 -1.45 
943 66.497 -0.12 633 68.943 -1.21 
902 66.902 -0.10 629 68.963 -1.96 
895 66.971 0.42 629 68.963 -1.94 

 

E.6 Clumped isotope derived temperatures 

Table E-7. Palaeotemperatures derived from clumped isotope data, calculated from clumped 
isotope derived values for δ

18
Owater and from δ

18
O with ocean water (δ

18
Owater)  = -1.2‰  (SMOW = 

-1‰). All stable isotope measurements generated from aragonitic  bivalve shell material. Note the 
considerable temperature ranges reported, especially the presence of sub-zero values (All data 
from Petersen et al., 2016). Stratigraphic positions represent the BAS D5 sampling scheme. 

Temperature (°C) Strat. Ht. 
(m) 

Age 
(Ma) 

δ
18

O δ
 18

Owater Cl. 
Isotope 

δ
18

Owater 
SMOW = -

1.0‰ 

1068 65.808 0.704 -3.01 0.7 4.5 12.3 

1068 65.808 1.268 -1.92 2.9 6.8 9.9 

1037 65.995 0.487 -2.19 5.1 9.0 13.3 

1037 65.995 0.408 -1.63 7.9 11.8 13.6 

1029 66.043 -0.205 -2.60 6.4 10.2 16.3 

1029 66.043 -0.244 -2.46 7.1 11.0 16.5 

1029 66.043 0.502 -0.48 12.6 16.3 13.2 

1029 66.043 0.689 -0.71 10.7 14.5 12.4 

1028 66.048 0.620 -0.51 12.3 15.7 12.7 

1028 66.048 0.269 -1.89 7.4 11.2 14.2 

1028 66.048 0.678 -1.90 5.6 9.4 12.4 

1028 66.048 1.079 -1.93 3.6 7.5 10.7 

1021 66.080 0.621 -1.93 5.6 9.5 12.7 
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Temperature (°C) Strat. Ht. 
(m) 

Age 
(Ma) 

δ
18

O δ
 18

Owater Cl. 
Isotope 

δ
18

Owater 
SMOW = -

1.0‰ 

1021 66.080 0.998 -1.00 8.3 11.9 11.1 

1002 66.169 0.640 -1.17 8.9 12.8 12.6 

1002 66.169 0.042 -1.85 8.5 12.4 15.2 

995 66.202 0.988 -0.73 9.3 13.1 11.1 

995 66.202 0.004 -0.67 14.0 17.7 15.4 

986 66.244 0.596 -3.33 -0.2 3.6 12.8 

986 66.244 1.043 -0.88 8.4 12.2 10.9 

972 66.309 0.696 -2.55 2.6 6.5 12.4 

972 66.309 0.566 -1.31 8.6 12.5 12.9 

943 66.497 0.697 -2.82 1.7 5.4 12.4 

943 66.497 1.557 -0.12 9.5 13.3 8.6 

902 66.902 1.278 -0.10 10.8 14.6 9.8 

895 66.971 1.343 0.42 12.9 16.6 9.6 

895 66.971 0.577 -0.09 14.2 17.7 12.9 

895 66.971 0.948 -1.49 6.2 10.0 11.3 

895 66.971 1.457 -0.20 9.6 13.4 9.1 

895 66.971 1.592 1.05 14.8 18.3 8.5 

857 67.346 1.288 0.67 14.3 17.9 9.8 

857 67.346 1.135 -0.68 8.8 12.7 10.5 

857 67.346 0.982 -0.06 12.7 16.1 11.1 

827 67.643 1.110 -0.80 8.5 12.3 10.6 

827 67.643 0.285 -2.58 4.3 8.2 14.2 

825 67.663 0.964 -0.95 8.9 12.3 11.2 

825 67.663 0.197 -2.91 3.7 7.1 14.5 

825 67.663 1.159 0.03 11.9 15.7 10.4 

808 67.830 1.094 0.63 15.0 18.6 10.6 

808 67.830 -0.091 -1.06 12.7 16.4 15.8 

795 67.959 0.523 -1.77 6.8 10.7 13.1 

795 67.959 1.051 0.22 13.4 17.0 10.8 

678 68.728 0.971 -1.19 7.4 11.2 11.2 

678 68.728 -0.184 -3.42 2.6 6.5 16.2 

663 68.800 1.245 -3.34 -2.8 0.7 10.0 

663 68.800 1.105 -3.07 -1.2 2.5 10.6 

663 68.800 0.579 -1.47 8.1 11.7 12.9 

663 68.800 0.485 -1.43 8.4 12.3 13.3 

633 68.943 0.804 -1.45 6.9 10.8 11.9 

633 68.943 0.534 -1.21 9.2 13.0 13.1 

629 68.963 0.890 -1.96 4.3 8.2 11.5 

629 68.963 0.610 -1.94 5.6 9.5 12.7 
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Figure E-11. Latest Maastrichtian section 
on Seymour Island, Antarctica showing 
position of screened aragonite δ

13
C and 

δ
18

O data (n=213). 
Position of the K-Pg boundary (1029 m 
above section base) defined by 
palynological analysis (Thorn et al., 
2009). Note the good data coverage 
above 300 m except in section D5.229 
where gaps reflect a lack of suitable 
macrofossil specimens. No specimens 
were deemed suitable for isotopic 
analysis at stratigraphic positions below 
300 m. In both plots blue symbols 
represent specimens exhibiting Mg < 
1000 ppm, Fe < 500 ppm and Mn < 200 
ppm; green symbols represent 
specimens for which no trace element 
diagenetic screening was carried out and 
orange symbols represent specimens 
with Fe or Mn concentrations that 
exceeded the diagenetic threshold (Fe > 
500 ppm and Mn > 200 ppm). The 3 
most negative δ

13
C values represent 

specimens of the bivalve Solemya 
rossiana that have thiotrophic 
chemosymbionts involved in the 
anaerobic oxidation of methane (Little et 
al., 2015). 

 



High palaeolatitude record of Late Maastrichtian – Early Danian climate change, Seymour Island, Antarctica 

Page 259 

300

1100

S
tr

a
ti

g
ra

p
h

y
 (

m
)

Epifaunal (n=20)

 K-Pg

-11.0 -9.0 -7.0 -5.0 -3.0 -1.0 1.0 3.0 5.0

δ
13C‰

Infaunal (n=128)

 K- Pg

-1 1.0 -9.0 -7.0 -5. 0 -3.0 -1 .0 1.0 3.0 5.0

δ
13C‰

Nektonic (n=32)

 K- Pg

-11.0 -9.0 -7.0 -5.0 -3.0 -1.0 1.0 3.0 5.0

δ
13C‰

Uncertain (n=33)

 K- Pg

-11. 0 -9.0 -7.0 -5.0 -3.0 -1.0 1.0 3.0 5.0

δ
13C‰

Epifa unal  ( n=20)

 K-Pg

-0.5 0.0 0.5 1.0 1.5 2.0 2.5

δ
18O‰

Infaunal  (n=128)

 K-Pg

-0.5 0.0 0.5 1.0 1.5 2.0 2.5

δ
18O‰

Nektonic (n=32)

 K-Pg

-0.5 0.0 0.5 1.0 1.5 2.0 2.5

δ
18O‰

Uncertain (n=33)

 K- Pg

-0. 5 0.0 0.5 1. 0 1 .5 2.0 2.5

δ
18O‰

1100

S
tr

a
ti

g
ra

p
h

y
 (

m
)

300

1100

S
tr

a
ti

g
ra

p
h

y
 (

m
)

300

1100

S
tr

a
ti

g
ra

p
h

y
 (

m
)

Epifaunal (n=20)

 K-Pg

-11.0 -9.0 -7.0 -5.0 -3.0 -1.0 1.0 3.0 5.0

δ
13C‰

Infaunal (n=128)

 K- Pg

-1 1.0 -9.0 -7.0 -5. 0 -3.0 -1 .0 1.0 3.0 5.0

δ
13C‰

Nektonic (n=32)

 K- Pg

-11.0 -9.0 -7.0 -5.0 -3.0 -1.0 1.0 3.0 5.0

δ
13C‰

Uncertain (n=33)

 K- Pg

-11. 0 -9.0 -7.0 -5.0 -3.0 -1.0 1.0 3.0 5.0

δ
13C‰

Epifa unal  ( n=20)

 K-Pg

-0.5 0.0 0.5 1.0 1.5 2.0 2.5

δ
18O‰

Infaunal  (n=128)

 K-Pg

-0.5 0.0 0.5 1.0 1.5 2.0 2.5

δ
18O‰

Nektonic (n=32)

 K-Pg

-0.5 0.0 0.5 1.0 1.5 2.0 2.5

δ
18O‰

Uncertain (n=33)

 K- Pg

-0. 5 0.0 0.5 1. 0 1 .5 2.0 2.5

δ
18O‰

1100

S
tr

a
ti

g
ra

p
h

y
 (

m
)

300

1100

S
tr

a
ti

g
ra

p
h

y
 (

m
)

 

Figure E-12. Stratigraphy vs. δ
13

C 
and δ

18
O data derived from 

screened aragonite categorised by 
habitat. K-Pg boundary inferred 
from palynology (Thorn et al., 
2009). Note the wide variability in 
data exhibited by the bivalve 
samples. The ‘Uncertain’ category 
represents specimens where it 
was not possible to identify to 
either a specific fossil type or taxon 
but where the fragmentary shell 
material was of sufficient quality to 
pass diagenetic screening. Note 
that with the exception of a single 
datapoint in the ‘Uncertain’ 
category (-0.06‰) all δ

18
O data 

were > 0.0‰. In both plots blue 
symbols represent specimens 
exhibiting Mg < 1000 ppm, Fe < 
500 ppm and Mn < 200 ppm; 
green symbols represent 
specimens for which no trace 
element diagenetic screening was 
carried out and orange symbols 
represent specimens with Fe or 
Mn concentrations that exceeded 
the diagenetic threshold (Fe > 500 
ppm and Mn > 200 ppm). 
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Figure E-13. Stratigraphy vs. 
partially screened aragonite δ

13
C 

and δ
18

O data categorised by fossil 
type. K-Pg boundary inferred from 
palynology (Thorn et al., 2009). 
Note the wide variability in data 
exhibited by the bivalve samples. 
The δ

13
C and δ

18
O data have 

respective ranges of ~16‰ and  
~1.95‰. The 3 lightest δ

13
C values 

represent specimens of the bivalve 
Solemya rossiana that have 
thiotrophic chemosymbionts 
involved in the anaerobic oxidation 
of methane (Little et al., 2015). The 
‘Uncertain’ category represents 
specimens where it was not 
possible to identify either a specific 
fossil type or taxon but the shell 
material passed diagenetic 
screening. Note that with the 
exception of a single value in the 
‘Uncertain’ category (-0.06‰) all 
δ

18
O data were > 0.0‰. Blue 

symbols represent specimens 
exhibiting Mg < 1000 ppm, Fe < 
500 ppm and Mn < 200 ppm; green 
symbols represent specimens for 
which no trace element diagenetic 
screening was carried out and 
orange symbols represent 
specimens with Fe or Mn 
concentrations that exceeded the 
diagenetic threshold (Fe > 500 ppm 
and Mn > 200 ppm).  
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Figure E-14. Stratigraphy vs. 
partially screened aragonite δ

13
C 

and δ
18

O data categorised by 
bivalve genus. K-Pg boundary 
inferred from palynology (Thorn et 
al., 2009). Note the wide variability 
in data exhibited by the bivalve 
samples. The ‘Uncertain’ category 
represents specimens where it was 
not possible to identify to either a 
specific fossil type or taxon but 
where the fragmentary shell 
material was of sufficient quality to 
pass diagenetic screening. Note 
that with the exception of a single 
datapoint in the ‘Uncertain’ 
category (-0.06‰) all δ

18
O data 

were > 0.0‰. In both plots blue 
symbols represent specimens 
exhibiting Mg < 1000 ppm, Fe < 
500 ppm and Mn < 200 ppm; green 
symbols represent specimens for 
which no trace element diagenetic 
screening was carried out and 
orange symbols represent 
specimens with Fe or Mn 
concentrations that exceeded the 
diagenetic threshold (Fe > 500 ppm 
and Mn > 200 ppm). 
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Figure E-15. Stratigraphy vs. partially screened aragonite δ
13

C 
and δ

18
O data categorised by gastropod genus. K-Pg boundary 

inferred from palynology (Thorn et al., 2009). Note the wide 
variability in data exhibited by the bivalve samples. The 
‘Uncertain’ category represents specimens where it was not 
possible to identify to either a specific fossil type or taxon but 
where the fragmentary shell material was of sufficient quality to 
pass diagenetic screening. Note that with the exception of a 
single datapoint in the ‘Uncertain’ category (-0.06‰) all δ

18
O data 

were > 0.0‰. In both plots blue symbols represent specimens 
exhibiting Mg < 1000 ppm, Fe < 500 ppm and Mn < 200 ppm; 
green symbols represent specimens for which no trace element 
diagenetic screening was carried out and orange symbols 
represent specimens with Fe or Mn concentrations that exceeded 
the diagenetic threshold (Fe > 500 ppm and Mn > 200 ppm). 
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Figure E-16. Stratigraphy vs. partially screened aragonite 
δ

13
C and δ

18
O ammonite data categorised by genus. K-Pg 

boundary inferred from palynology (Thorn et al., 2009). Note 
the wide variability in data exhibited by the bivalve samples. 
The ‘Uncertain’ category represents specimens where it was 
not possible to identify to either a specific fossil type or taxon 
but where the fragmentary shell material was of sufficient 
quality to pass diagenetic screening. Note that with the 
exception of a single datapoint in the ‘Uncertain’ category (-
0.06‰) all δ

18
O data were > 0.0‰. In both plots blue symbols 

represent specimens exhibiting Mg < 1000 ppm, Fe < 500 
ppm and Mn < 200 ppm; green symbols represent specimens 
for which no trace element diagenetic screening was carried 
out and orange symbols represent specimens with Fe or Mn 
concentrations that exceeded the diagenetic threshold (Fe > 
500 ppm and Mn > 200 ppm). 
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Figure E-17. Stratigraphy vs. partially screened aragonite δ
13

C and δ
18

O data categorised 
for ammonites and nautiloids where genus was unidentified. K-Pg boundary inferred from 
palynology (Thorn et al., 2009). Note the wide variability in data exhibited by the bivalve 
samples. The ‘Uncertain’ category represents specimens where it was not possible to 
identify to either a specific fossil type or taxon but where the fragmentary shell material was 
of sufficient quality to pass diagenetic screening. Note that with the exception of a single 
datapoint in the ‘Uncertain’ category (-0.06‰) all δ

18
O data were > 0.0‰. In both plots blue 

symbols represent specimens exhibiting Mg < 1000 ppm, Fe < 500 ppm and Mn < 200 ppm; 
green symbols represent specimens for which no trace element diagenetic screening was 
carried out and orange symbols represent specimens with Fe or Mn concentrations that 
exceeded the diagenetic threshold (Fe > 500 ppm and Mn > 200 ppm). 
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Figure E-18. Stratigraphy vs. 
partially screened aragonite δ

13
C 

and δ
18

O data categorised by 
gastropod genus (a) and 
unidentified shell material (b). K-Pg 
boundary inferred from palynology 
(Thorn et al., 2009). Note the wide 
variability in data exhibited by the 
bivalve samples. The ‘Uncertain’ 
category represents specimens 
where it was not possible to 
identify to either a specific fossil 
type or taxon but where the 
fragmentary shell material was of 
sufficient quality to pass diagenetic 
screening. Note that with the 
exception of a single datapoint in 
the ‘Uncertain’ category (-0.06‰) 
all δ

18
O data were > 0.0‰. In both 

plots blue symbols represent 
specimens exhibiting Mg < 1000 
ppm, Fe < 500 ppm and Mn < 200 
ppm; green symbols represent 
specimens for which no trace 
element diagenetic screening was 
carried out and orange symbols 
represent specimens with Fe or 
Mn concentrations that exceeded 
the diagenetic threshold (Fe > 500 
ppm and Mn > 200 ppm). 
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Table E-7. Stable isotope and calculated palaeotemperature coverage for the measured stratigraphy.  

δ
13

C‰ δ
18

O‰ SMOW = -0.8‰ SMOW = -1.0‰ SMOW = -1.2‰ SMOW = -1.5‰ 
Depth 

(m) 
No 

Mean Min Max Mean Min Max 
Min 
(°C) 

Max 
(°C) 

Min (°C) 
Max 
(°C) 

Min (°C) 
Max 
(°C) 

Min (°C) 
Max 
(°C) 

δ
13

C‰ 
Range 

δ
18

O‰ 
Range 

1084 7 0.42 -0.95 1.99 1.52 1.29 1.74 8.7 10.7 7.8 9.8 7.0 8.9 5.7 7.6 2.94 0.46 

1080 1 2.12 2.12 2.12 0.64 0.64 0.64 13.5 13.5 12.6 12.6 11.8 11.8 10.5 10.5 0.00 0.00 

1068 1 0.58 0.58 0.58 1.55 1.55 1.55 9.6 9.6 8.7 8.7 7.8 7.8 6.5 6.5 0.00 0.00 

1029 K-Pg boundary 

1028 3 -3.56 -4.35 -2.86 0.48 0.13 0.74 13.0 15.7 12.2 14.8 11.3 14.0 10.0 12.7 1.49 0.61 

995 1 0.06 0.06 0.06 0.77 0.77 0.77 12.9 12.9 12.1 12.1 11.2 11.2 9.9 9.9 0.00 0.00 

991 4 0.97 -1.51 3.33 0.75 -0.06 1.27 10.7 16.5 9.9 15.7 9.0 14.8 7.7 13.5 4.83 1.34 

943 1 -3.56 -3.56 -3.56 0.78 0.78 0.78 12.9 12.9 12.0 12.0 11.1 11.1 9.8 9.8 0.00 0.00 

925 1 -2.58 -2.58 -2.58 1.31 1.31 1.31 10.6 10.6 9.7 9.7 8.8 8.8 7.5 7.5 0.00 0.00 

919 1 -2.71 -2.71 -2.71 1.33 1.33 1.33 10.5 10.5 9.6 9.6 8.7 8.7 7.4 7.4 0.00 0.00 

909 2 1.41 1.30 1.51 1.14 1.02 1.26 10.8 11.8 9.9 11.0 9.1 10.1 7.8 8.8 0.21 0.24 

897 1 0.08 0.08 0.08 1.05 1.05 1.05 11.7 11.7 10.8 10.8 10.0 10.0 8.7 8.7 0.00 0.00 

895 1 1.45 1.45 1.45 1.62 1.62 1.62 9.2 9.2 8.4 8.4 7.5 7.5 6.2 6.2 0.00 0.00 

869 4 -0.86 -2.99 2.66 0.98 0.58 1.28 10.7 13.8 9.8 12.9 9.0 12.0 7.7 10.7 5.65 0.71 

863 1 2.01 2.01 2.01 0.86 0.86 0.86 12.5 12.5 11.7 11.7 10.8 10.8 9.5 9.5 0.00 0.00 

857 2 0.37 -0.38 1.12 0.49 0.38 0.59 13.7 14.6 12.8 13.7 12.0 12.9 10.7 11.6 1.50 0.21 

851 1 -0.29 -0.29 -0.29 0.98 0.98 0.98 12.0 12.0 11.1 11.1 10.3 10.3 9.0 9.0 0.00 0.00 

837 3 -1.04 -1.04 -1.04 1.53 1.53 1.53 9.6 9.6 8.8 8.8 7.9 7.9 6.6 6.6 0.00 0.00 

800 2 2.20 1.99 2.40 1.31 1.20 1.42 10.1 11.0 9.3 10.2 8.4 9.3 7.1 8.0 0.41 0.21 

779 3 1.58 1.41 1.92 1.41 1.25 1.49 9.8 10.8 8.9 10.0 8.1 9.1 6.8 7.8 0.51 0.24 

755 10 1.80 -0.04 2.79 1.14 0.86 1.39 10.2 12.5 9.4 11.6 8.5 10.8 7.2 9.5 2.83 0.52 

749 1 1.47 1.47 1.47 0.72 0.72 0.72 13.1 13.1 12.3 12.3 11.4 11.4 10.1 10.1 0.00 0.00 

727 1 2.77 2.77 2.77 1.13 1.13 1.13 11.4 11.4 10.5 10.5 9.6 9.6 8.3 8.3 0.00 0.00 

722 1 -2.18 -2.18 -2.18 1.13 1.13 1.13 11.3 11.3 10.5 10.5 9.6 9.6 8.3 8.3 0.00 0.00 

717 2 1.54 0.28 2.80 1.39 1.10 1.69 8.9 11.5 8.1 10.6 7.2 9.8 5.9 8.5 2.53 0.59 

712 15 2.46 0.80 2.97 1.26 0.77 1.67 9.0 12.9 8.2 12.0 7.3 11.2 6.0 9.9 2.18 0.89 

682 5 1.06 0.49 1.34 1.82 1.66 2.00 7.6 9.1 6.7 8.2 5.8 7.3 4.5 6.0 0.86 0.34 

647 1 -3.96 -3.96 -3.96 0.99 0.99 0.99 12.0 12.0 11.1 11.1 10.2 10.2 8.9 8.9 0.00 0.00 

642 12 1.49 -5.18 3.65 1.20 0.64 1.90 8.0 13.5 7.1 12.6 6.3 11.7 5.0 10.4 8.82 1.26 

637 12 1.60 -2.72 2.81 0.90 0.49 1.09 11.5 14.1 10.7 13.2 9.8 12.4 8.5 11.1 5.53 0.60 
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δ
13

C‰ δ
18

O‰ SMOW = -0.8‰ SMOW = -1.0‰ SMOW = -1.2‰ SMOW = -1.5‰ 
Depth 

(m) 
No 

Mean Min Max Mean Min Max 
Min 
(°C) 

Max 
(°C) 

Min (°C) 
Max 
(°C) 

Min (°C) 
Max 
(°C) 

Min (°C) 
Max 
(°C) 

δ
13

C‰ 
Range 

δ
18

O‰ 
Range 

632 1 0.32 0.32 0.32 1.05 1.05 1.05 11.7 11.7 10.8 10.8 10.0 10.0 8.7 8.7 0.00 0.00 

627 7 -0.27 -1.62 2.39 1.01 0.74 1.24 10.9 13.1 10.0 12.2 9.1 11.3 7.8 10.0 4.00 0.50 

622 11 2.12 1.00 3.31 0.98 0.40 1.85 8.2 14.5 7.4 13.6 6.5 12.8 5.2 11.5 2.31 1.45 

618 2 2.63 2.37 2.88 1.66 1.53 1.80 8.5 9.6 7.6 8.8 6.7 7.9 5.4 6.6 0.50 0.27 

613 19 2.26 0.24 4.34 1.42 0.76 2.11 7.1 13.0 6.2 12.1 5.4 11.2 4.1 9.9 4.09 1.35 

608 7 0.91 -2.86 3.73 1.24 0.52 1.95 7.8 14.0 6.9 13.1 6.1 12.3 4.8 11.0 6.59 1.43 

603 1 3.28 3.28 3.28 1.20 1.20 1.20 11.0 11.0 10.2 10.2 9.3 9.3 8.0 8.0 0.00 0.00 

578 1 2.31 2.31 2.31 1.77 1.77 1.77 8.6 8.6 7.7 7.7 6.8 6.8 5.5 5.5 0.00 0.00 

558 1 2.18 2.18 2.18 1.91 1.91 1.91 8.0 8.0 7.1 7.1 6.2 6.2 4.9 4.9 0.00 0.00 

551 2 2.19 2.06 2.33 1.29 1.05 1.54 9.6 11.7 8.7 10.9 7.9 10.0 6.6 8.7 0.27 0.49 

548 4 2.32 1.73 2.78 1.01 0.72 1.55 9.5 13.2 8.7 12.3 7.8 11.4 6.5 10.1 1.05 0.84 

541 6 2.28 1.96 2.45 1.45 1.04 1.80 8.4 11.7 7.6 10.9 6.7 10.0 5.4 8.7 0.49 0.76 

538 2 0.98 0.26 1.71 1.49 1.37 1.60 9.3 10.3 8.4 9.4 7.6 8.6 6.3 7.3 1.46 0.23 

533 5 0.06 -2.42 2.91 1.63 1.40 1.92 7.9 10.2 7.0 9.3 6.2 8.4 4.9 7.1 5.33 0.52 

528 12 -3.41 -10.49 1.36 1.21 0.26 2.00 7.6 15.1 6.7 14.3 5.8 13.4 4.5 12.1 11.85 1.74 

526 1 -5.99 -5.99 -5.99 1.05 1.05 1.05 11.7 11.7 10.8 10.8 10.0 10.0 8.7 8.7 0.00 0.00 

508 3 2.17 2.04 2.38 1.29 0.84 1.62 9.2 12.6 8.4 11.8 7.5 10.9 6.2 9.6 0.34 0.78 

463 1 3.26 3.26 3.26 1.26 1.26 1.26 10.8 10.8 9.9 9.9 9.1 9.1 7.7 7.7 0.00 0.00 

458 3 2.41 1.85 2.98 0.96 0.64 1.39 10.2 13.5 9.4 12.6 8.5 11.8 7.2 10.5 1.14 0.76 

453 3 1.78 0.81 2.27 0.78 0.59 1.12 11.4 13.7 10.5 12.9 9.7 12.0 8.4 10.7 1.47 0.53 

443 1 2.82 2.82 2.82 0.73 0.73 0.73 13.1 13.1 12.2 12.2 11.4 11.4 10.0 10.0 0.00 0.00 

438 1 1.56 1.56 1.56 1.01 1.01 1.01 11.9 11.9 11.0 11.0 10.1 10.1 8.8 8.8 0.00 0.00 

435 1 -1.63 -1.63 -1.63 1.44 1.44 1.44 10.0 10.0 9.1 9.1 8.3 8.3 7.0 7.0 0.00 0.00 

408 1 2.74 2.74 2.74 1.08 1.08 1.08 11.6 11.6 10.7 10.7 9.8 9.8 8.5 8.5 0.00 0.00 

388 4 1.92 1.53 2.19 1.04 0.99 1.13 11.4 12.0 10.5 11.1 9.6 10.2 8.3 8.9 0.67 0.14 

348 1 2.52 2.52 2.52 1.11 1.11 1.11 11.5 11.5 10.6 10.6 9.7 9.7 8.4 8.4 0.00 0.00 

343 8 1.65 1.13 2.15 0.95 0.86 1.08 11.6 12.5 10.7 11.7 9.8 10.8 8.5 9.5 1.02 0.22 

338 1 2.60 2.60 2.60 0.72 0.72 0.72 13.2 13.2 12.3 12.3 11.4 11.4 10.1 10.1 0.00 0.00 

333 2 1.82 1.00 2.64 1.07 0.97 1.17 11.2 12.0 10.3 11.2 9.4 10.3 8.1 9.0 1.64 0.20 

311 1 2.22 2.22 2.22 1.08 1.08 1.08 11.6 11.6 10.7 10.7 9.8 9.8 8.5 8.5 0.00 0.00 
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Table E-8. Stable isotope and calculated palaeotemperature coverage categorised by fossil type, habitat, mode of life and genus. 

δ
13

C‰ δ
18

O‰ SMOW = -0.8‰ SMOW = -1.0‰ SMOW = -1.2‰ SMOW = -1.5‰ 
Category No 

Mean Min Max Mean Min Max 
Min 
(°C) 

Max 
(°C) 

Min 
(°C) 

Max 
(°C) 

Min 
(°C) 

Max 
(°C) 

Min 
(°C) 

Max 
(°C) 

δ
13

C‰ 
Range 

δ
18

O‰ 
Range 

Bivalve 151 1.51 -10.49 4.34 1.25 0.26 2.11 7.1 15.1 6.2 14.3 5.4 13.4 4.1 12.1 14.83 1.85 

Cephalopod 32 -1.62 -5.18 1.56 1.00 0.13 1.53 9.6 15.7 8.8 14.8 7.9 14.0 6.6 12.7 6.74 1.40 

Gastropod 20 1.99 -0.19 3.33 1.12 0.72 1.42 10.1 13.2 9.2 12.3 8.4 11.4 7.1 10.1 3.51 0.70 

Uncertain 10 0.82 -1.51 2.64 0.96 -0.06 1.55 9.5 16.5 8.7 15.7 7.8 14.8 6.5 13.5 4.15 1.61 

                  

Habitat                  

Epifaunal 20 1.99 -0.19 3.33 1.12 0.72 1.42 10.1 13.2 9.2 12.3 8.4 11.4 7.1 10.1 3.51 0.70 

Infaunal 128 1.43 -10.49 4.34 1.24 0.26 2.11 7.1 15.1 6.2 14.3 5.4 13.4 4.1 12.1 14.83 1.85 

Nektonic 31 -1.62 -5.18 1.56 0.99 0.13 1.53 9.6 15.7 8.8 14.8 7.9 14.0 6.6 12.7 6.74 1.40 

Planktonic 1 -1.63 -1.63 -1.63 1.44 1.44 1.44 10.0 10.0 9.1 9.1 8.3 8.3 7.0 7.0 N/A N/A 

Uncertain 33 1.61 -1.51 2.91 1.20 -0.06 1.92 7.9 16.5 7.0 15.7 6.2 14.8 4.9 13.5 4.41 1.99 

                  

Mode of life                  

Browser 2 0.92 -0.19 2.02 1.00 0.97 1.03 11.8 12.0 10.9 11.2 10.0 10.3 8.7 9.0 2.20 0.06 

Carnivore 32 -1.62 -5.18 1.56 1.00 0.13 1.53 9.6 15.7 8.8 14.8 7.9 14.0 6.6 12.7 6.74 1.40 

Carn/scavenger 17 2.09 0.51 3.33 1.14 0.72 1.42 10.1 13.2 9.2 12.3 8.4 11.4 7.1 10.1 2.82 0.70 

Deposit 49 1.34 -3.01 3.65 1.39 0.26 2.05 7.4 15.1 6.5 14.3 5.6 13.4 4.3 12.1 6.65 1.78 

Suspension 79 1.49 -10.49 4.34 1.14 0.38 2.11 7.1 14.6 6.2 13.7 5.4 12.9 4.1 11.6 14.83 1.73 

Uncertain 34 1.63 -1.51 2.91 1.19 -0.06 1.92 7.9 16.5 7.0 15.7 6.2 14.8 4.9 13.5 4.41 1.99 

                  

Genus                  

Amberlaya 14 2.28 0.51 3.33 1.13 0.72 1.42 10.1 13.2 9.2 12.3 8.4 11.4 7.1 10.1 2.82 0.70 

Ammonite 9 -1.07 -3.96 1.56 1.21 0.88 1.53 9.6 12.4 8.8 11.6 7.9 10.7 6.6 9.4 5.52 0.65 

Bivalve 22 1.93 -0.04 2.91 1.32 0.59 1.92 7.9 13.7 7.0 12.8 6.2 12.0 4.9 10.7 2.95 1.33 

Diplomoceras 1 -1.63 -1.63 -1.63 1.44 1.44 1.44 10.0 10.0 9.1 9.1 8.3 8.3 7.0 7.0 N/A N/A 

Eselaevitrigonia 43 1.66 -6.31 4.34 1.28 0.38 2.11 7.1 14.6 6.2 13.7 5.4 12.9 4.1 11.6 10.65 1.73 

Gastropod 4 1.50 0.80 2.40 1.14 1.02 1.26 10.8 11.8 9.9 11.0 9.1 10.1 7.8 8.8 1.60 0.24 

Grossouvrites 1 -1.32 -1.32 -1.32 0.53 0.53 0.53 13.9 13.9 13.1 13.1 12.2 12.2 10.9 10.9 N/A N/A 

Lahillia 1 3.29 3.29 3.29 1.47 1.47 1.47 9.9 9.9 9.0 9.0 8.1 8.1 6.8 6.8 N/A N/A 

Maorites 17 -1.68 -5.18 1.18 1.00 0.58 1.33 10.5 13.8 9.6 12.9 8.7 12.0 7.4 10.7 6.36 0.75 

Nautiloid 4 -2.66 -4.35 0.06 0.55 0.13 0.77 12.9 15.7 12.1 14.8 11.2 14.0 9.9 12.7 4.42 0.64 

Nucula  49 1.34 -3.01 3.65 1.39 0.26 2.05 7.4 15.1 6.5 14.3 5.6 13.4 4.3 12.1 6.65 1.78 

Oistotrigonia 28 2.14 0.81 3.26 0.92 0.59 1.49 9.8 13.7 8.9 12.9 8.1 12.0 6.8 10.7 2.45 0.91 
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δ
13

C‰ δ
18

O‰ SMOW = -0.8‰ SMOW = -1.0‰ SMOW = -1.2‰ SMOW = -1.5‰ 
Category No 

Mean Min Max Mean Min Max 
Min 
(°C) 

Max 
(°C) 

Min 
(°C) 

Max 
(°C) 

Min 
(°C) 

Max 
(°C) 

Min 
(°C) 

Max 
(°C) 

δ
13

C‰ 
Range 

δ
18

O‰ 
Range 

Pinna 5 1.88 0.32 2.62 1.07 0.84 1.62 9.2 12.6 8.4 11.8 7.5 10.9 6.2 9.6 2.30 0.78 

Pleurotomaria 2 0.92 -0.19 2.02 1.00 0.97 1.03 11.8 12.0 10.9 11.2 10.0 10.3 8.7 9.0 2.20 0.06 

Solemya 3 -8.01 -10.49 -5.99 1.05 0.99 1.11 11.4 12.0 10.6 11.1 9.7 10.2 8.4 8.9 4.51 0.12 

Unidentified 10 0.82 -1.51 2.64 0.96 -0.06 1.55 9.5 16.5 8.7 15.7 7.8 14.8 6.5 13.5 4.15 1.61 
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Table E-9. Variability of oxygen and carbon stable isotope data categorised by fossil type and 
diagenetic screening. The ‘Uncertain’ category describes aragonite shell material of uncertain 
fossil type. 

 No. δ
13

C Min Max δ
18

O Min Max 

Fossil Type Screened Aragonite 

Bivalve 82 1.89 -7.54 3.70 1.23 0.49 2.05 

Cephalopod 14 -1.83 -5.18 1.18 0.95 0.53 1.44 

Gastropod 12 2.13 -0.19 3.28 1.11 0.72 1.42 

Uncertain 8 1.15 -1.51 2.64 0.94 -0.06 1.55 

 Screened aragonite (Fe or Mn > threshold) 

Bivalve 115 1.52 -7.54 4.34 1.26 0.38 2.11 

Cephalopod 29 -1.69 -5.18 1.56 1.00 0.13 1.53 

Gastropod 16 2.20 -0.19 3.33 1.11 0.72 1.42 

Uncertain 9 1.01 -1.51 2.64 0.92 -0.06 1.55 

 Screened aragonite (No trace element screening) 

Bivalve 151 1.51 -10.49 4.34 1.25 0.26 2.11 

Cephalopod 32 -1.62 -5.18 1.56 1.00 0.13 1.53 

Gastropod 20 1.99 -0.19 3.33 1.12 0.72 1.42 

Uncertain 10 0.82 -1.51 2.64 0.96 -0.06 1.55 

 

Table E-10. Variability of oxygen and carbon stable isotope data categorised by habitat and 
diagenetic screening. The ‘Unidentified’ category describes aragonite shell material of uncertain 
type.  

 No. δ
13

C Min Max δ
18

O Min Max 

Mode of life Screened Aragonite 

Infaunal 1 2.66 2.66 2.66 1.09 1.09 1.09 

Epifaunal 12 2.13 -0.19 3.28 1.11 0.72 1.42 

Infaunal 63 1.82 -7.54 3.70 1.21 0.49 2.05 

Nektonic 13 -1.84 -5.18 1.18 0.92 0.53 1.33 

Planktonic 1 -1.63 -1.63 -1.63 1.44 1.44 1.44 

Uncertain 26 1.80 -1.51 2.91 1.20 -0.06 1.92 

 Screened aragonite (Fe or Mn > threshold) 

Infaunal 1 2.66 2.66 2.66 1.09 1.09 1.09 

Epifaunal 16 2.20 -0.19 3.33 1.11 0.72 1.42 

Infaunal 93 1.41 -7.54 4.34 1.25 0.38 2.11 

Nektonic 28 -1.69 -5.18 1.56 0.98 0.13 1.53 

Planktonic 1 -1.63 -1.63 -1.63 1.44 1.44 1.44 

Uncertain 30 1.65 -1.51 2.91 1.21 -0.06 1.92 

 Screened aragonite (No trace element screening) 

Epifaunal 20 1.99 -0.19 3.33 1.12 0.72 1.42 

Infaunal 128 1.43 -10.49 4.34 1.24 0.26 2.11 

Nektonic 31 -1.62 -5.18 1.56 0.99 0.13 1.53 

Planktonic 1 -1.63 -1.63 -1.63 1.44 1.44 1.44 

Uncertain 33 1.61 -1.51 2.91 1.20 -0.06 1.92 
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Table E-11. Variability of oxygen and carbon stable isotope data categorised by genus. The 
‘Uncertain’ category describes aragonite shell material of uncertain fossil type. 

Genus No. δ
13

C‰ Min Max δ
18

O‰ Min Max 

Eselaevitrigonia 1 2.66 2.66 2.66 1.09 1.09 1.09 

Amberlaya 9 2.38 0.51 3.28 1.15 0.72 1.42 

Ammonite 4 -1.48 -3.96 0.54 1.04 0.88 1.27 

Bivalve 18 2.09 -0.04 2.91 1.32 0.86 1.92 

Diplomoceras 1 -1.63 -1.63 -1.63 1.44 1.44 1.44 

Eselaevitrigonia 24 1.67 -5.06 3.70 1.29 0.70 2.02 

Gastropod 1 2.40 2.40 2.40 1.04 1.04 1.04 

Grossouvrites 1 -1.32 -1.32 -1.32 0.53 0.53 0.53 

Lahillia 1 3.29 3.29 3.29 1.47 1.47 1.47 

Maorites 5 -2.09 -5.18 1.18 1.03 0.76 1.33 

Nautiloid 3 -2.09 -3.47 0.06 0.69 0.56 0.77 

Nucula  13 2.11 -0.51 3.65 1.52 0.49 2.05 

Oistotrigonia 23 2.13 0.81 3.26 0.95 0.59 1.49 

Pinna 1 2.44 2.44 2.44 0.92 0.92 0.92 

Pleurotomaria 2 0.92 -0.19 2.02 1.00 0.97 1.03 

Solemya 1 -7.54 -7.54 -7.54 1.11 1.11 1.11 

Unidentified 8 1.15 -1.51 2.64 0.94 -0.06 1.55 

 



High palaeolatitude record of Late Maastrichtian – Early Danian climate change, Seymour 
Island, Antarctica 

Page 272 

Appendix F. Strontium isotope data 
Table F-1. 

87
Sr/

86
Sr isotope data for present day seawater, run as an internal standard 

0.709175 0.709171 0.000003 
Seawater 

0.709179 0.709175 0.000004 

Table F-2. 
87

Sr/
86

Sr isotope results derived from NIGL NBS987 standard 

Run Batch Sample 
87

Sr/
86

Sr ± 1SE 

Triton1-553 NBS987 Sr standard 0.710253 0.000005 

Triton1-553 NBS987 Sr standard 0.710250 0.000004 

Triton1-554 NBS987 Sr standard 0.710258 0.000003 

Triton1-554 NBS987 Sr standard 0.710251 0.000003 

Triton1-553 NBS987 Sr standard 0.710244 0.000003 

Triton1-554 NBS987 Sr standard 0.710245 0.000002 

Triton1-564 NBS987 Sr standard 0.710251 0.000002 

Triton1-564 NBS987 Sr standard 0.710252 0.000003 

Triton1-564 NBS987 Sr standard 0.710255 0.000002 

Triton1-564 NBS987 Sr standard 0.710257 0.000001 

Triton1-564 NBS987 Sr standard 0.710258 0.000002 

Triton1-565 NBS987 Sr standard 0.710255 0.000002 

Triton1-565 NBS987 Sr standard 0.710259 0.000002 

Triton1-565 NBS987 Sr standard 0.710257 0.000001 

Triton1-573 NBS987 Sr standard 0.710253 0.000004 

Triton1-575 NBS987 Sr standard 0.710256 0.000002 

Triton1-575 NBS987 Sr standard 0.710256 0.000002 

Triton1-575 NBS987 Sr standard 0.710253 0.000002 

   0.710254  

   0.000004  

   5.9  
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Table F-3. 
87

Sr/
86

Sr isotope data analysed from late Maastrichtian aragonite nacre shell material 
for Batches 1 and 2 of powder samples from Seymour Island. Lookup age data from the 
LOWESS Smoothed Global Strontium Isotope Curve (McArthur et al., 2001) are inconsistent 
with 

87
Sr/

86
Sr data from this study, further investigation continues. K-Pg boundary at 1029 m 

above datum as defined by palynology (Bowman et al., 2012), 
87

Sr/
86

Sr isotope value = 
0.707833 as derived from the global Strontium Isotope Stratigraphy (SIS) curve (McArthur et al., 
2001). 

Depth 
(m) 

Age 
(Ma) 

Specimen ID 
87

Sr/
86

Sr ± 2SE Fossil Type Genus 

1084 65.5 D5.229.1361.2/C 0.707864 0.000005 Bivalve Nucula  

1084 65.5 D5.229.1361.2/C 0.707838 0.000010 Bivalve Nucula  

1084 65.5 D5.229.1361.2/A 0.707861 0.000004 Bivalve Nucula  

1084 65.5 D5.229.1361.2/A 0.707867 0.000004 Bivalve Nucula  

1084 65.5 D5.229.1361.2/F 0.707871 0.000004 Bivalve Nucula  

1084 65.5 D5.229.1361.2/F 0.707851 0.000006 Bivalve Nucula  

1028 66.0 D5.229.1292.2/A-3 0.707878 0.000004 Nautiloid Nautiloid 

1028 66.0 D5.229.1292.2/A-3 0.707877 0.000011 Nautiloid Nautiloid 

1028 66.0 D5.229.1292.2/A-4 0.707872 0.000006 Nautiloid Nautiloid 

1028 66.0 D5.229.1292.2/A-4 0.707878 0.000004 Nautiloid Nautiloid 

1028 66.0 D5.229.1292.2/A-4 0.707860 0.000005 Nautiloid Nautiloid 

995 66.3 D5.222.1257.2/A 0.707877 0.000004 Nautiloid Nautiloid 

995 66.3 D5.222.1257.2/A 0.707881 0.000002 Nautiloid Nautiloid 

995 66.3 D5.222.1257.2/A 0.707882 0.000005 Nautiloid Nautiloid 

995 66.3 D5.222.1257.2/A 0.707879 0.000003 Nautiloid Nautiloid 

991 66.3 D5.222.1255.2/A 0.707855 0.000004 Gastropod Amberlaya 

991 66.3 D5.222.1255.2/A 0.707838 0.000011 Gastropod Amberlaya 

991 66.3 D5.222.1255.2/D 0.707841 0.000005 Gastropod Amberlaya 

991 66.3 D5.222.1255.2/D 0.707840 0.000003 Gastropod Amberlaya 

991 66.3 D5.222.1255.2/D 0.707823 0.000005 Gastropod Amberlaya 

919 66.9 D5.220.1214.2/A 0.707858 0.000007 Ammonite Maorites 

919 66.9 D5.220.1214.2/A 0.707852 0.000004 Ammonite Maorites 

919 66.9 D5.220.1214.2/A 0.707857 0.000004 Ammonite Maorites 

919 66.9 D5.220.1214.2/A 0.707857 0.000004 Ammonite Maorites 

869 67.3 D5.219.1185.2/G-1 0.707800 0.000004 Ammonite Maorites 

869 67.3 D5.219.1185.2/G-1 0.707866 0.000004 Ammonite Maorites 

869 67.3 D5.219.1185.2/G-1 0.707872 0.000006 Ammonite Maorites 

869 67.3 D5.219.1185.2/I 0.707753 0.000005 Bivalve Eselaevitrigonia 

869 67.3 D5.219.1185.2/I 0.707775 0.000007 Bivalve Eselaevitrigonia 

869 67.3 D5.219.1185.2/D 0.707797 0.000005 Ammonite Maorites 

863 67.4 D5.219.1182.2/A 0.707741 0.000008 Bivalve Nucula  

779 68.1 D5.219.1138.3/A 0.707848 0.000009 Ammonite Maorites 

755 68.3 D5.219.1125.2/L 0.707874 0.000006 Bivalve Bivalve 

755 68.3 D5.219.1125.2/L 0.707867 0.000010 Bivalve Bivalve 

755 68.3 D5.219.1125.2/L 0.707863 0.000013 Bivalve Bivalve 

755 68.3 D5.219.1125.2/M 0.707876 0.000004 Bivalve Bivalve 

755 68.3 D5.219.1125.2/M 0.707857 0.000006 Bivalve Bivalve 

755 68.3 D5.219.1125.2/N 0.707881 0.000004 Bivalve Bivalve 

755 68.3 D5.219.1125.2/N 0.707873 0.000005 Bivalve Bivalve 

712 68.5 D5.219.1091.2/F 0.707853 0.000004 Bivalve Nucula  

712 68.5 D5.219.1091.2/F 0.707847 0.000004 Bivalve Nucula  

682 68.7 D5.218.1061.2/C 0.707837 0.000003 Bivalve Eselaevitrigonia 

682 68.7 D5.218.1061.2/F 0.707845 0.000002 Bivalve Bivalve 

682 68.7 D5.218.1061.2/H 0.707845 0.000003 Bivalve Bivalve 

637 68.9 D5.218.1016.2/C 0.707854 0.000003 Bivalve Nucula  

637 68.9 D5.218.1016.2/L-2 0.707848 0.000005 Bivalve Eselaevitrigonia 

637 68.9 D5.218.1016.2/K 0.707846 0.000003 Bivalve Eselaevitrigonia 

613 69.0 D5.215.696.2/P 0.707841 0.000004 Gastropod Amberlaya 

613 69.0 D5.215.696.2/AN 0.707850 0.000005 Bivalve Eselaevitrigonia 

613 69.0 D5.215.696.2/AK 0.707847 0.000004 Bivalve Nucula  

578 69.2 D5.215.396.2/A 0.707840 0.000003 Bivalve Nucula  

578 69.2 D5.215.396.2/A 0.707843 0.000003 Bivalve Nucula  
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Depth 
(m) 

Age 
(Ma) 

Specimen ID 
87

Sr/
86

Sr ± 2SE Fossil Type Genus 

578 69.2 D5.215.396.2/A 0.707837 0.000003 Bivalve Nucula  

548 69.4 D5.215.368.2/B 0.707827 0.000008 Bivalve Oistotrigonia 

548 69.4 D5.215.368.2/A 0.707831 0.000009 Unidentified Unidentified 

541 69.4 D5.215.361.2/A 0.707818 0.000007 Gastropod Gastropod 

541 69.4 D5.215.361.2/B 0.707797 0.000004 Bivalve Bivalve 

538 69.4 D5.215.357.2/A 0.707831 0.000007 Bivalve Eselaevitrigonia 

538 69.4 D5.215.357.2/B 0.707805 0.000007 Bivalve Eselaevitrigonia 

533 69.4 D5.215.352.2/D 0.707800 0.000003 Bivalve Nucula  

533 69.4 D5.215.352.2/B 0.707832 0.000003 Bivalve Bivalve 

533 69.4 D5.215.352.2/A 0.707822 0.000006 Bivalve Eselaevitrigonia 

528 69.5 D5.215.347.2/E 0.707799 0.000009 Bivalve Nucula  

528 69.5 D5.215.347.2/F 0.707831 0.000012 Bivalve Nucula  

526 69.5 D5.215.345.2/A-1 0.707828 0.000005 Bivalve Solemya  

453 69.8 D5.215.975.2/A 0.707805 0.000005 Bivalve Oistotrigonia 

388 70.2 D5.212.909.2/A 0.707810 0.000003 Bivalve Oistotrigonia 

388 70.2 D5.212.909.2/B 0.707821 0.000003 Bivalve Bivalve 

388 70.2 D5.212.909.2/A 0.707817 0.000003 Bivalve Oistotrigonia 

343 70.4 D5.212.865.3/B 0.707819 0.000004 Bivalve Oistotrigonia 

343 70.4 D5.212.865.3/E 0.707817 0.000004 Bivalve Bivalve 

343 70.4 D5.212.865.3/A-2 0.707819 0.000004 Bivalve Oistotrigonia 

333 70.5 D5.212.855.2/C 0.707816 0.000038 Unidentified Unidentified 

333 70.5 D5.212.855.2/C 0.707791 0.000030 Unidentified Unidentified 

311 70.6 D5.212.833.2/A 0.707822 0.000003 Unidentified Unidentified 

311 70.6 D5.212.833.2/A 0.707825 0.000003 Unidentified Unidentified 

Table F-4. Correlation of Sr concentration with specimens exhibiting anomalous 
87

Sr/
86

Sr data. 
There is a definite change in the levels of Sr measured between 837 and 895 m, with a distinct 
peak between 863 and 869 m. 

Height Specimen Id δ
13

C‰ δ
18

O‰ 
87

Sr/
86

Sr 
± 2SE 
(x10

-6
) 

Sr 
(ppm) 

Fossil 
Type 

897 D5.220.1202.2/B-4 0.08 1.05    C 
895 D5.220.1200.2/A 1.45 1.62   2514 B 
869 D5.219.1185.2/G-2   0.707800 6  C 
869 D5.219.1185.2/G-1 -2.99 0.97   8381 C 
869 D5.219.1185.2/I 2.66 1.09 0.707749 2 5783 B 
869 D5.219.1185.2/I   0.707775 7  B 
869 D5.219.1185.2/I   0.707851 6   
869 D5.219.1185.2/C -0.76 0.58   11129 C 
869 D5.219.1185.2/D -2.34 1.28 0.707793 2 6459 C 
863 D5.219.1182.2/A   0.707741 8  B 
863 D5.219.1182.2/A   0.707851 6  B 
863 D5.219.1182.2/A 2.01 0.86   5997 B 
857 D5.219.1179.2/A-1 1.12 0.59   2884 B 
857 D5.219.1179.2/A-2 -0.38 0.38   4008 B 
851 D5.219.1176.2/A -0.29 0.98   4680 C 
837 D5.219.1168.2/B -1.04 1.53   2777 C 
837 D5.219.1168.2/B -1.04 1.53   2800 C 
837 D5.219.1168.2/B -1.04 1.53   2952 C 
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Appendix G. Palaeontology 
Table G-1. Distribution of identified macrofossils from the Latest Maastrichtian López de Bertodano Fm., Seymour Island succession. Note that the table does not 
represent the full range of identified individual specimens because for clarity duplicate entries were removed. Where formal identification of genus was not possible 
material was classified as either Unidentified Ammonite/Bivalve/Gastropod/Nautiloid or shell material. 
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 Genus Unidentified Habitat 
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 Genus Unidentified Habitat 
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 Genus Unidentified Habitat 
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Appendix H. Specimen data 
Table H-1. Specimen identification, geochemistry, diagenetic screening and stable isotope data. Entries coloured orange exhibited elevated Fe or Mn levels, those 
coloured green had no trace element screening and finally, entries coloured blue were classified as either calcite or having elevated Mg levels (> 1,000 ppm). 
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1080 D5.229.1353.2/C 2.12 0.64 380734 21 2142 3932 92 0 U Unidentified Uncertain Uncertain 4 2000 Minimal fusing of nacre 5 Excellent 13.5 12.6 11.8 10.5

1028 D5.229.1292.2/A-1 -3.47 0.74 400725 207 6139 3675 419 128 C Nautiloid Nektonic Carnivore 3 1500 Partially fused plates 4 Good 13.0 12.2 11.3 10.0

1028 D5.229.1292.2/A-2 -2.86 0.56 409321 14 594 377 12 7 C Nautiloid Nektonic Carnivore 3 1000 Fused plates?? 5 Excellent 0.707870 0.707866 13.8 13.0 12.1 10.8

995 D5.222.1257.2/A 0.06 0.77 390683 466 3982 8943 0 14 C Nautiloid Nektonic Carnivore 0 No image 5 Excellent 0.707881 0.707877 12.9 12.1 11.2 9.9

991 D5.222.1254.1/A -1.51 -0.06 399463 60 4170 4479 83 11 U Unidentified Uncertain Uncertain 0 350 Low resolution 5 Excellent 16.5 15.7 14.8 13.5

991 D5.222.1255.2/A 2.96 0.90 397009 34 1940 10760 0 190 G Amberlaya Epifaunal Carnivore/scavenger5 1500 Good 5 Excellent 0.707854 0.707850 12.3 11.5 10.6 9.3

919 D5.220.1214.2/A -2.71 1.33 401044 529 4842 3660 52 136 C Maorites Nektonic Carnivore 0 No image 5 Excellent 0.707856 0.707852 10.5 9.6 8.7 7.4

869 D5.219.1185.2/I 2.66 1.09 395254 20 5783 7945 58 44 B Eselaevitrigonia Infaunal Suspension 2 1000 Neomorphism?? 5 Excellent 0.707753 0.707749 11.5 10.7 9.8 8.5

863 D5.219.1182.2/A 2.01 0.86 411521 42 5997 8276 204 13 B Nucula Infaunal Deposit 3 1500 Fused plates?? 5 Excellent 12.5 11.7 10.8 9.5

800 D5.219.1149.1/A-2 2.40 1.42 462684 68 2567 5215 155 0 B Bivalve Uncertain Uncertain 5 1500 Fused plates?? 2 S/N ratio & peaks missing 10.1 9.3 8.4 7.1

779 D5.219.1138.3/A 1.41 1.25 401027 26 2916 4116 177 20 B Bivalve Uncertain Uncertain 0 No image 5 Excellent 10.8 10.0 9.1 7.8

779 D5.219.1138.3/B 1.42 1.49 395698 29 3276 4251 48 25 B Oistotrigonia Infaunal Suspension 0 No image 5 Excellent 9.8 8.9 8.1 6.8

779 D5.219.1138.3/C 1.92 1.49 396978 24 3681 3712 19 61 B Eselaevitrigonia Infaunal Suspension 3 2000 Fused plates?? 5 Excellent 9.8 8.9 8.1 6.8

755 D5.219.1125.2/C-1 2.79 1.12 465932 179 2856 5194 450 0 B Eselaevitrigonia Infaunal Suspension 0 No image 4 Good - S/N ratio 11.4 10.5 9.7 8.4

755 D5.219.1125.2/C-2 0.37 1.31 398125 136 2353 8919 120 3 B Eselaevitrigonia Infaunal Suspension 0 No image 4 Good 10.6 9.7 8.9 7.6

755 D5.219.1125.2/D 2.43 1.05 396162 103 1900 11234 47 2 B Oistotrigonia Infaunal Suspension 0 No image 5 Excellent 11.7 10.8 10.0 8.7

755 D5.219.1125.2/E 2.37 1.03 407841 98 2088 9197 9 1 B Oistotrigonia Infaunal Suspension 0 No image 5 Excellent 11.8 10.9 10.1 8.8

755 D5.219.1125.2/G-1 2.70 1.32 417140 3 192 695 0 0 B Bivalve Uncertain Uncertain 3 2000 Fused plates 5 Excellent 10.5 9.7 8.8 7.5

755 D5.219.1125.2/G-2 2.19 1.39 401002 33 1890 6637 25 1 B Bivalve Uncertain Uncertain 3 2000 Fused plates 5 Excellent 10.2 9.4 8.5 7.2

755 D5.219.1125.2/L 1.94 1.05 396745 53 1340 8365 11 0 B Bivalve Uncertain Uncertain 2 1500 Fused plates ++ 5 Separate analysis 0.707874 0.707870 11.7 10.8 10.0 8.7

755 D5.219.1125.2/L -0.04 0.86 379421 40 1662 3567 240 0 B Bivalve Uncertain Uncertain 2 1500 Fused plates 4 Good - S/N ratio 12.5 11.6 10.8 9.5

755 D5.219.1125.2/M 1.21 1.34 389493 63 2098 9489 48 2 B Bivalve Uncertain Uncertain 0 No image 5 Excellent 0.707876 0.707872 10.4 9.6 8.7 7.4

755 D5.219.1125.2/N 2.07 0.97 396498 125 1428 6664 94 2 B Bivalve Uncertain Uncertain 1 1500 Nacre fused + neomorphism5 Excellent 0.707881 0.707877 12.1 11.2 10.3 9.0

749 D5.219.1122.2/D 1.47 0.72 373977 0 1270 3582 198 0 B Oistotrigonia Infaunal Suspension 4 1500 Dissolution pits/endolithic bacteria damage. Minimal fusing of nacre4 S/N ratio 13.1 12.3 11.4 10.1

727 D5.219.1106.2/C 2.77 1.13 395727 96 1460 4357 58 2 B Oistotrigonia Infaunal Suspension 4 350 Low resolution, higher mag image corrupted5 Excellent 11.4 10.5 9.6 8.3

717 D5.219.1096.3/H 2.80 1.69 400851 105 1923 8207 101 5 B Eselaevitrigonia Infaunal Suspension 0 No image 0 No profile 8.9 8.1 7.2 5.9

717 D5.219.1096.3/I 0.28 1.10 401605 144 2030 6247 222 9 B Eselaevitrigonia Infaunal Suspension 0 No image 5 Excellent 11.5 10.6 9.8 8.5

712 D5.219.1091.2/F 2.67 1.67 408617 178 2582 9797 131 0 B Nucula Infaunal Deposit 4 3500 Fusing of nacre 5 Excellent 9.0 8.2 7.3 6.0

712 D5.219.1091.2/G 0.81 1.26 381096 42 2024 3505 295 0 U Unidentified Uncertain Uncertain 4 1500 Minimal fusing of nacre 4 Missing peaks 10.8 9.9 9.1 7.8

712 D5.219.1091.2/H 2.26 1.41 410019 36 2251 3680 350 0 B Bivalve Uncertain Uncertain 5 1500 Good 5 Excellent 10.1 9.3 8.4 7.1

712 D5.219.1091.2/I-2 2.82 0.77 379089 0 1083 3715 181 0 B Oistotrigonia Infaunal Suspension 4 1500 Minimal fusing of nacre 4 Missing peaks 12.9 12.0 11.2 9.9

647 D5.218.1027.2/B -3.96 0.99 388961 293 6412 3993 377 56 C Ammonite Nektonic Carnivore 0 No image 5 Excellent 12.0 11.1 10.2 8.9

642 D5.218.1021.2/A-1 2.15 1.31 436717 108 3710 5440 47 91 G Amberlaya Epifaunal Carnivore/scavenger0 No image 5 Excellent 10.6 9.7 8.8 7.5

642 D5.218.1021.2/A-2 2.16 1.23 406520 107 3403 4622 0 84 G Amberlaya Epifaunal Carnivore/scavenger0 No image 5 Excellent 10.9 10.0 9.2 7.9

642 D5.218.1021.2/B -0.19 1.03 399035 107 4256 8695 140 37 G Pleurotomaria Epifaunal Browser 3 1500 Fusing of nacre 5 Excellent 11.8 10.9 10.0 8.7

642 D5.218.1021.2/C 2.77 1.42 395255 85 2543 8544 76 76 G Amberlaya Epifaunal Carnivore/scavenger0 No image 5 Excellent 10.1 9.2 8.4 7.1

642 D5.218.1021.2/E 3.65 1.90 397134 129 4553 8214 18 16 B Nucula Infaunal Deposit 3 2000 Neomorphism on surface, nacre (score 4)5 Excellent 8.0 7.1 6.3 5.0

642 D5.218.1021.2/G 1.72 1.77 377781 402 5522 5997 368 81 B Nucula Infaunal Deposit 0 No image 4 Good + minor gypsum 8.6 7.7 6.9 5.6

642 D5.218.1021.2/V -5.18 0.78 401142 301 7202 3856 135 124 C Maorites Nektonic Carnivore 0 No image 5 Excellent 12.9 12.0 11.1 9.8

642 D5.218.1021.2/W 0.21 0.94 420262 148 4008 4594 201 20 U Unidentified Uncertain Uncertain 2 1500 Fusing of nacre + neomorphism4 Missing peaks 12.2 11.3 10.4 9.1

637 D5.218.1016.2/B 1.70 0.92 423011 77 1790 6967 38 130 B Nucula Infaunal Deposit 0 No image 5 Excellent 12.3 11.4 10.5 9.2

637 D5.218.1016.2/C 1.61 0.49 399302 13 2758 4538 0 5 B Nucula Infaunal Deposit 0 No image 5 Excellent 0.707855 0.707851 14.1 13.2 12.4 11.1

637 D5.218.1016.2/D 2.06 1.08 401034 89 3334 4989 273 8 G Amberlaya Epifaunal Carnivore/scavenger0 No image 5 Excellent 11.6 10.7 9.8 8.5

637 D5.218.1016.2/J 2.34 0.70 398527 15 1881 4504 0 7 B Eselaevitrigonia Infaunal Suspension 4 1500 Minimal fusing of nacre 5 Excellent 13.2 12.4 11.5 10.2

637 D5.218.1016.2/K 2.05 0.77 409060 56 1793 6551 78 2 B Eselaevitrigonia Infaunal Suspension 0 No image 5 Excellent 0.707847 0.707843 12.9 12.0 11.2 9.9

637 D5.218.1016.2/L-1 1.96 0.81 397119 70 1956 9603 133 13 B Eselaevitrigonia Infaunal Suspension 4 1500 Minimal fusing of nacre 5 Excellent 12.7 11.9 11.0 9.7

637 D5.218.1016.2/L-2 2.81 0.87 388810 32 1530 10044 24 11 B Eselaevitrigonia Infaunal Suspension 0 No image 5 Excellent 0.707847 0.707843 12.5 11.6 10.8 9.5

637 D5.218.1016.2/N 2.56 1.01 405702 83 2450 4058 16 21 B Eselaevitrigonia Infaunal Suspension 0 No image 5 Excellent 11.9 11.0 10.1 8.8

637 D5.218.1016.2/O -2.72 1.03 413959 100 1524 4933 63 2 C Ammonite Nektonic Carnivore 2 1500 Fusing of nacre + neomorphism5 Excellent 11.8 10.9 10.1 8.8

627 D5.218.1006.2/I -0.89 1.24 408471 157 4911 6432 115 29 C Maorites Nektonic Carnivore 0 No image 5 Excellent 10.9 10.0 9.1 7.8

627 D5.218.1006.2/O 2.39 1.08 404224 134 2160 10856 165 10 B Oistotrigonia Infaunal Suspension 0 No image 5 Excellent 11.6 10.7 9.8 8.5  
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622 D5.215.216.2/A 2.44 0.92 375090 0 2541 3417 181 0 B Pinna Infaunal Suspension 0 No image 5 Excellent 12.3 11.4 10.5 9.2

622 D5.215.216.3/A-1 1.14 0.75 376061 0 2609 3506 143 18 B Eselaevitrigonia Infaunal Suspension 0 No image 5 Excellent 13.0 12.1 11.3 10.0

622 D5.215.216.3/A-2 1.00 0.86 404178 5 2825 3873 453 119 B Eselaevitrigonia Infaunal Suspension 0 No image 5 Excellent 12.5 11.6 10.8 9.5

622 D5.215.216.5/A 2.02 0.97 396754 71 3128 4238 0 10 G Pleurotomaria Epifaunal Browser 3 1000 Focus poor & some fusing of nacre5 Excellent 12.0 11.2 10.3 9.0

618 D5.215.701.2/A 2.37 1.80 387530 79 2885 4120 21 56 B Nucula Infaunal Deposit 2 1000 Focus poor & fused nacre5 Excellent 8.5 7.6 6.7 5.4

618 D5.215.701.2/B 2.88 1.53 386874 27 3157 3794 164 125 B Bivalve Uncertain Uncertain 0 No image 5 Excellent 9.6 8.8 7.9 6.6

613 D5.215.696.2/AA 1.08 1.17 363184 0 2559 3834 136 34 B Nucula Infaunal Deposit 0 No image 5 Excellent 11.2 10.3 9.5 8.1

613 D5.215.696.2/AK 3.63 2.05 394180 129 4810 3576 0 15 B Nucula Infaunal Deposit 5 2000 Good nacre + some dissolution/endolithic boring5 Excellent 0.707846 0.707842 7.4 6.5 5.6 4.3

613 D5.215.696.2/AL 2.89 1.52 385590 93 5005 3571 158 129 B Nucula Infaunal Deposit 0 No image 5 Excellent 9.7 8.8 7.9 6.6

613 D5.215.696.2/AN 2.89 1.59 418403 80 3325 6260 0 32 B Eselaevitrigonia Infaunal Suspension 4 2000 Surface debris, some fused plates(?)5 Excellent 0.707849 0.707845 9.4 8.5 7.6 6.3

613 D5.215.696.2/AQ 3.70 2.02 418297 171 4341 8443 0 157 B Eselaevitrigonia Infaunal Suspension 0 No image 5 Excellent 7.5 6.6 5.7 4.4

613 D5.215.696.2/AR 0.54 1.27 405873 174 4110 4298 35 24 C Ammonite Nektonic Carnivore 0 350 Low resolution 5 Excellent 10.7 9.9 9.0 7.7

613 D5.215.696.2/AT 0.24 0.88 388283 93 4382 3199 483 5 C Ammonite Nektonic Carnivore 0 No image 5 Excellent 12.4 11.6 10.7 9.4

613 D5.215.696.2/AU 0.51 1.29 413816 190 5213 4548 0 49 G Amberlaya Epifaunal Carnivore/scavenger4 1500 Surface debris, some fused plates0 No profile 10.7 9.8 8.9 7.6

613 D5.215.696.2/AV 3.29 1.47 410700 42 3252 3977 137 28 B Lahillia Infaunal Suspension 0 No image 5 Excellent 9.9 9.0 8.1 6.8

613 D5.215.696.2/P 2.73 1.18 417601 239 2949 7159 40 50 G Amberlaya Epifaunal Carnivore/scavenger0 No image 5 Excellent 0.707841 0.707837 11.1 10.3 9.4 8.1

613 D5.215.696.2/Q 1.18 0.76 379456 535 2964 3895 375 15 C Maorites Nektonic Carnivore 0 No image 3 Noisy profile 13.0 12.1 11.2 9.9

608 D5.215.691.2/A -2.86 1.03 420903 289 6496 6074 117 146 C Maorites Nektonic Carnivore 3 2000 Minimal fusing of nacre 4 Good 11.8 10.9 10.1 8.8

608 D5.215.691.2/B -1.32 0.53 403126 178 3195 7506 369 15 C Grossouvrites Nektonic Carnivore 4 2000 Good nacre 5 Excellent 13.9 13.1 12.2 10.9

608 D5.215.691.2/C 2.25 1.82 418128 119 3414 7290 23 16 B Nucula Infaunal Deposit 3 2000 Minimal fusing of nacre 5 Excellent 8.4 7.5 6.6 5.3

608 D5.215.691.2/D-1 3.68 1.94 403506 101 3150 7236 0 52 B Eselaevitrigonia Infaunal Suspension 5 1500 Good nacre + some dissolution/endolithic boring5 Excellent 7.9 7.0 6.1 4.8

603 D5.215.686.2/A 3.28 1.20 419109 112 2219 7735 29 34 G Amberlaya Epifaunal Carnivore/scavenger4 2000 Good nacre 5 Excellent 11.0 10.2 9.3 8.0

578 D5.215.396.2/A 2.31 1.77 402167 69 2308 4786 69 25 B Nucula Infaunal Deposit 1 750 Neomorphism? 5 Excellent 0.707840 0.707836 8.6 7.7 6.8 5.5

558 D5.215.378.2/A 2.18 1.91 403765 71 2953 4732 56 14 B Bivalve Uncertain Uncertain 4 1000 Good nacre 5 Excellent 8.0 7.1 6.2 4.9

551 D5.215.371.2/A 2.33 1.54 388731 68 3366 3786 234 1 B Bivalve Uncertain Uncertain 0 No image 5 Excellent 9.6 8.7 7.9 6.6

551 D5.215.371.2/B 2.06 1.05 388696 56 3363 3723 135 2 B Eselaevitrigonia Infaunal Suspension 0 No image 5 Excellent 11.7 10.9 10.0 8.7

548 D5.215.368.2/A 1.73 1.55 406251 78 2550 5080 0 12 U Unidentified Uncertain Uncertain 3 2000 Minimal fusing of nacre 5 Excellent 9.5 8.7 7.8 6.5

548 D5.215.368.2/B 2.48 0.94 405530 241 1494 4639 144 25 B Oistotrigonia Infaunal Suspension 3 1500 Localised fusing of nacre, primary structure present5 Excellent 12.2 11.3 10.5 9.2

548 D5.215.368.2/C 2.78 0.72 380259 39 3074 3834 115 25 G Amberlaya Epifaunal Carnivore/scavenger0 No image 0 No profile 13.2 12.3 11.4 10.1

541 D5.215.361.2/A 2.40 1.04 406792 87 2001 4491 0 19 G Gastropod Epifaunal Uncertain 5 2000 Good nacre + some dissolution/endolithic boring5 Excellent 11.7 10.9 10.0 8.7

541 D5.215.361.2/B 2.45 1.80 388673 95 3271 3970 0 56 B Bivalve Uncertain Uncertain 4 1500 Minimal fusing of nacre 5 Excellent 8.4 7.6 6.7 5.4

541 D5.215.361.2/C 2.28 1.75 395210 105 3215 4432 0 13 B Eselaevitrigonia Infaunal Suspension 3 1500 Focus poor & localised fusing of nacre5 Excellent 8.7 7.8 6.9 5.6

541 D5.215.361.2/D 1.96 1.45 384957 27 3049 3680 332 183 B Eselaevitrigonia Infaunal Suspension 0 No image 5 Excellent 10.0 9.1 8.2 6.9

538 D5.215.357.2/A 1.71 1.37 390679 0 2296 4197 115 0 B Eselaevitrigonia Infaunal Suspension 0 No image 5 Excellent 10.3 9.4 8.6 7.3

538 D5.215.357.2/B 0.26 1.60 398003 131 2415 4797 12 37 B Eselaevitrigonia Infaunal Suspension 3 1500 Focus poor & some fusing of nacre5 Excellent 9.3 8.4 7.6 6.3

533 D5.215.352.2/A 1.31 1.91 409555 88 3563 6919 0 59 B Eselaevitrigonia Infaunal Suspension 2 350 Low resolution 5 Excellent 0.707820 0.707816 8.0 7.1 6.2 4.9

533 D5.215.352.2/B 2.91 1.92 408822 185 2925 6597 24 48 B Bivalve Uncertain Uncertain 4 1000 Minimal fusing of nacre 5 Excellent 0.707832 0.707828 7.9 7.0 6.2 4.9

528 D5.215.347.2/A -0.51 2.00 417069 176 5700 5726 69 90 B Nucula Infaunal Deposit 3 2000 Fusing of nacre 5 Excellent 7.6 6.7 5.8 4.5

528 D5.215.347.2/I -5.06 1.25 420848 418 4355 5726 59 174 B Eselaevitrigonia Infaunal Suspension 1 750 Poor - 4 Good - low count 10.8 9.9 9.1 7.8

528 D5.215.347.2/M -7.54 1.11 398382 684 6768 2776 78 100 B Solemya Infaunal Suspension 0 No image 5 Excellent 11.4 10.6 9.7 8.4

508 D5.215.327.2/A-2 2.09 0.84 380658 125 1058 3995 0 135 B Oistotrigonia Infaunal Suspension 0 No image 4 Good + minor gypsum 12.6 11.8 10.9 9.6

463 D5.215.985.2/B 3.26 1.26 426573 0 1431 6615 0 151 B Oistotrigonia Infaunal Suspension 0 No image 5 Excellent 10.8 9.9 9.1 7.7

458 D5.215.980.2/A 2.98 0.64 379708 0 1546 3662 106 94 B Oistotrigonia Infaunal Suspension 4 2000 Dissolution/endolithic boring0 No profile 13.5 12.6 11.8 10.5

458 D5.215.980.2/B 1.85 1.39 411452 122 2236 3917 57 20 B Eselaevitrigonia Infaunal Suspension 4 2000 Minimal fusing of nacre 5 Excellent 10.2 9.4 8.5 7.2

453 D5.215.975.2/A 2.27 1.12 410450 32 1646 4329 0 47 B Oistotrigonia Infaunal Suspension 4 2000 Minimal fusing of nacre 5 Excellent 11.4 10.5 9.7 8.4

453 D5.215.975.2/B 0.81 0.59 367532 0 1495 3464 86 56 B Oistotrigonia Infaunal Suspension 0 No image 4 Good + minor gypsum 13.7 12.9 12.0 10.7

453 D5.215.975.2/C 2.25 0.63 380039 0 1339 3687 112 52 B Oistotrigonia Infaunal Suspension 0 No image 4 Good 13.5 12.7 11.8 10.5

435 D5.215.955.3/A -1.63 1.44 418957 426 4327 6719 179 61 C Diplomoceras Planktonic Carnivore 3 2000 Fusing of nacre 5 Excellent 10.0 9.1 8.3 7.0

408 D5.215.930.2/A 2.74 1.08 403847 56 1296 4323 0 130 B Oistotrigonia Infaunal Suspension 0 No image 5 Excellent 11.6 10.7 9.8 8.5

388 D5.212.909.2/A 1.89 1.02 421887 144 2000 4709 14 7 B Oistotrigonia Infaunal Suspension 0 No image 5 Excellent 0.707818 0.707814 11.8 11.0 10.1 8.8

388 D5.212.909.2/B 2.19 1.01 415468 83 1604 4436 64 0 B Bivalve Uncertain Uncertain 0 No image 4 Good - low count 0.707821 0.707817 11.9 11.0 10.1 8.8

388 D5.212.909.2/C 2.05 0.99 395948 96 1609 7914 391 7 B Bivalve Uncertain Uncertain 0 No image 4 Good, minor gypsum? 12.0 11.1 10.2 8.9

388 D5.215.910.1/A 1.53 1.13 388598 149 1969 9846 0 0 B Eselaevitrigonia Infaunal Suspension 3 1500 Fusing of nacre 5 Excellent 0.707809 0.707805 11.4 10.5 9.6 8.3

348 D5.212.870.2/A 2.52 1.11 396678 38 1210 9178 106 0 B Bivalve Uncertain Uncertain 0 No image 5 Excellent 11.5 10.6 9.7 8.4

343 D5.212.865.3/A-1 2.10 0.90 420258 56 1456 5613 0 0 B Oistotrigonia Infaunal Suspension 2 1500 Out of focus, fused plates4 Good, low count 12.3 11.5 10.6 9.3  
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343 D5.212.865.3/A-2 1.13 0.99 407388 62 1345 4570 0 0 B Oistotrigonia Infaunal Suspension 2 1500 Poor focus + fused plates5 Excellent 0.707819 0.707815 12.0 11.1 10.2 8.9

343 D5.212.865.3/B 1.74 1.08 393919 127 1582 8921 213 4 B Oistotrigonia Infaunal Suspension 5 1500 Excellent 5 Excellent 0.707819 0.707815 11.6 10.7 9.8 8.5

343 D5.212.865.3/C 1.55 0.93 380290 160 1136 12321 117 0 B Oistotrigonia Infaunal Suspension 0 No image 5 Excellent 12.2 11.3 10.5 9.2

343 D5.212.865.3/E 1.95 0.88 477385 28 1395 5437 34 0 B Bivalve Uncertain Uncertain 0 No image 3 Low count 0.707817 0.707813 12.5 11.6 10.7 9.4

343 D5.212.865.3/F 2.15 1.05 469267 55 1412 5418 248 0 B Oistotrigonia Infaunal Suspension 0 No image 4 Good - low count 11.7 10.8 9.9 8.6

343 D5.212.865.3/G 1.20 0.86 399768 49 1421 9235 71 0 B Oistotrigonia Infaunal Suspension 4 3500 Good nacre 5 Excellent 12.5 11.7 10.8 9.5

338 D5.212.860.2/A 2.60 0.72 382742 0 1099 3697 168 0 B Oistotrigonia Infaunal Suspension 0 No image 5 Excellent 13.2 12.3 11.4 10.1

333 D5.212.855.2/B 2.64 1.17 404371 45 1541 4986 20 0 U Unidentified Uncertain Uncertain 3 1500 Some fusing of nacre 5 Excellent 11.2 10.3 9.4 8.1

333 D5.212.855.2/C 1.00 0.97 400685 97 1272 4216 123 0 U Unidentified Uncertain Uncertain 4 1000 Good nacre 5 Excellent 12.0 11.2 10.3 9.0

311 D5.212.833.2/A 2.22 1.08 407342 0 1287 5283 0 0 U Unidentified Uncertain Uncertain 0 No image 3 Peak offset + low count 0.707823 0.707819 11.6 10.7 9.8 8.5

1084 D5.229.1361.2/A 0.52 1.52 392013 264 3216 4616 0 229 B Nucula Infaunal Deposit 4 1500 Minimal fusing of nacre? & pyrite framboids4 Moderate - low count 0.707864 0.707860 9.7 8.8 7.9 6.6

1084 D5.229.1361.2/B -0.88 1.47 375173 271 3705 7447 844 2295 B Nucula Infaunal Deposit 0 No image 3 Gypsum present 9.9 9.0 8.1 6.8

1084 D5.229.1361.2/C -0.95 1.42 334434 536 2744 7423 399 421 B Nucula Infaunal Deposit 0 No image 3 Gypsum present 0.707865 0.707861 10.1 9.2 8.4 7.1

1084 D5.229.1361.2/D -0.07 1.29 302899 401 2359 4713 1542 219 B Nucula Infaunal Deposit 0 No image 3 Gypsum present 10.7 9.8 8.9 7.6

1084 D5.229.1361.2/F 1.99 1.74 459871 295 5871 4829 217 863 B Nucula Infaunal Deposit 0 No image 2 Poor signal - low count 0.707871 0.707867 8.7 7.8 7.0 5.7

1068 D5.229.1334.2/A 0.58 1.55 382589 464 3741 3529 450 299 B Nucula Infaunal Deposit 3 1500 Dissolution pits/endolithic bacteria?? Image orthogonal to shell structure & fused plates5 Excellent 9.6 8.7 7.8 6.5

1028 D5.229.1292.2/A-1 -4.35 0.13 401016 921 6179 3216 1324 538 C Nautiloid Nektonic Carnivore 3 1500 Fused plates?? 4 Good 0.707878 0.707874 15.7 14.8 14.0 12.7

991 D5.222.1255.2/D 3.33 0.89 395433 149 2108 4331 22 320 G Amberlaya Epifaunal Carnivore/scavenger4 1000 Minimal fusing of nacre 5 Excellent 0.707832 0.707828 12.4 11.6 10.7 9.4

943 D5.220.1226.2/A -3.56 0.78 394015 204 8279 3529 506 286 C Maorites Nektonic Carnivore 0 No image 1 LMC 12.9 12.0 11.1 9.8

925 D5.220.1217.2/A -2.58 1.31 390641 577 4839 3801 340 410 C Maorites Nektonic Carnivore 0 No image 3 S/N ratio 10.6 9.7 8.8 7.5

895 D5.220.1200.2/A 1.45 1.62 395113 223 2514 4641 1286 59 B Pinna Infaunal Suspension 3 1500 Dissolution pits?? Image orthogonal to shell structure2 S/N ratio & peaks missing 9.2 8.4 7.5 6.2

869 D5.219.1185.2/C -0.76 0.58 415936 771 11129 4740 526 1462 C Maorites Nektonic Carnivore 4 750 Minimal fusing of nacre 1 S/N ratio 13.8 12.9 12.0 10.7

869 D5.219.1185.2/D -2.34 1.28 433565 524 6459 5430 226 482 C Maorites Nektonic Carnivore 0 350 Low resolution 1 S/N ratio 0.707797 0.707793 10.7 9.8 9.0 7.7

869 D5.219.1185.2/G-1 -2.99 0.97 449557 853 8381 4196 340 769 C Maorites Nektonic Carnivore 0 No image 5 Excellent 12.1 11.2 10.3 9.0

857 D5.219.1179.2/A-1 1.12 0.59 394125 198 2884 5065 340 294 B Bivalve Uncertain Uncertain 0 No image 5 Excellent 13.7 12.8 12.0 10.7

857 D5.219.1179.2/A-2 -0.38 0.38 479278 211 4008 4155 493 882 B Eselaevitrigonia Infaunal Suspension 0 No image 4 Good - S/N ratio 14.6 13.7 12.9 11.6

851 D5.219.1176.2/A -0.29 0.98 393901 447 4680 3588 481 394 C Maorites Nektonic Carnivore 0 No image 4 Good 12.0 11.1 10.3 9.0

837 D5.219.1168.2/B -1.04 1.53 416847 319 2952 6567 717 134 C Ammonite Nektonic Carnivore 0 No image 0 No profile 9.6 8.8 7.9 6.6

837 D5.219.1168.2/B -1.04 1.53 392478 289 2800 4515 1299 102 C Ammonite Nektonic Carnivore 0 No image 0 No profile 9.6 8.8 7.9 6.6

837 D5.219.1168.2/B -1.04 1.53 384844 326 2777 3976 1366 119 C Ammonite Nektonic Carnivore 0 No image 5 Excellent 9.6 8.8 7.9 6.6

722 D5.219.1101.2/D -2.18 1.13 392717 974 2987 3744 996 171 C Ammonite Nektonic Carnivore 0 No image 4 Good - peaks shifted 11.3 10.5 9.6 8.3

682 D5.218.1061.2/B 0.98 1.78 308873 608 1345 3038 389 411 B Eselaevitrigonia Infaunal Suspension 0 No image 4 Good + minor gypsum 8.5 7.7 6.8 5.5

682 D5.218.1061.2/C 1.29 2.00 402962 304 3540 10203 0 203 B Eselaevitrigonia Infaunal Suspension 0 No image 5 Excellent 0.707836 0.707832 7.6 6.7 5.8 4.5

682 D5.218.1061.2/D 1.18 1.66 363693 755 1842 4025 184 233 B Eselaevitrigonia Infaunal Suspension 3 3500 Fusing of nacre 4 Good + minor gypsum 9.1 8.2 7.3 6.0

682 D5.218.1061.2/F 1.34 1.91 391269 318 2946 12384 0 269 B Bivalve Uncertain Uncertain 4 2000 Minimal fusing of nacre 5 Excellent 0.707846 0.707842 8.0 7.1 6.2 4.9

682 D5.218.1061.2/H 0.49 1.74 346052 509 1425 5621 476 474 B Bivalve Uncertain Uncertain 0 No image 4 Good + minor gypsum 0.707846 0.707842 8.7 7.8 7.0 5.7

642 D5.218.1021.2/D 2.59 1.83 412086 222 4513 6676 333 222 B Nucula Infaunal Deposit 0 No image 5 Excellent 8.3 7.4 6.6 5.3

642 D5.218.1021.2/H 2.42 0.73 419512 58 1725 5114 0 222 B Oistotrigonia Infaunal Suspension 0 No image 5 Excellent 13.1 12.2 11.4 10.0

642 D5.218.1021.2/I 3.00 0.81 411783 41 1390 4657 0 294 B Nucula Infaunal Deposit 0 No image 5 Excellent 12.7 11.9 11.0 9.7

642 D5.218.1021.2/J 2.54 0.64 447051 113 2062 5577 0 905 B Oistotrigonia Infaunal Suspension 0 No image 5 Excellent 13.5 12.6 11.7 10.4

637 D5.218.1016.2/G 2.37 1.04 478153 82 3157 6114 199 587 G Amberlaya Epifaunal Carnivore/scavenger0 No image 5 Excellent 11.7 10.9 10.0 8.7

637 D5.218.1016.2/M 1.62 0.94 382172 397 1802 8150 707 21 B Nucula Infaunal Deposit 0 No image 4 Good 12.2 11.3 10.4 9.1

632 D5.218.1011.2/A 0.32 1.05 376079 304 2913 4094 549 94 B Pinna Infaunal Suspension 0 No image 5 Excellent 11.7 10.8 10.0 8.7

627 D5.218.1006.2/A 0.25 1.12 394336 224 4019 4076 538 83 C Maorites Nektonic Carnivore 0 No image 5 Excellent 11.4 10.5 9.7 8.4

627 D5.218.1006.2/B -1.48 0.74 406475 602 3787 4926 2999 301 C Maorites Nektonic Carnivore 0 35 Insufficient resolution 5 Excellent 13.1 12.2 11.3 10.0

627 D5.218.1006.2/C -1.62 0.97 369566 368 4337 3925 720 101 C Maorites Nektonic Carnivore 0 No image 4 Good + minor gypsum 12.1 11.2 10.3 9.0

627 D5.218.1006.2/P -0.16 0.75 391552 366 4114 3294 1128 53 U Unidentified Uncertain Uncertain 0 No image 4 Good + minor gypsum 13.0 12.1 11.3 10.0

622 D5.215.216.4/A 1.96 1.31 365079 681 2422 4111 3494 208 G Amberlaya Epifaunal Carnivore/scavenger4 1000 Surface debris, some fused plates5 Excellent 10.6 9.7 8.8 7.5

622 D5.215.705.2/H 2.98 1.85 401311 218 3011 5182 47 335 B Eselaevitrigonia Infaunal Suspension 0 No image 0 No profile 8.2 7.4 6.5 5.2

613 D5.215.696.2/AM 4.34 2.11 427445 156 5995 6076 67 454 B Eselaevitrigonia Infaunal Suspension 0 35 Low resolution image 5 Excellent 7.1 6.2 5.4 4.1

613 D5.215.696.2/AO 1.76 1.61 364206 824 2914 6846 132 3945 B Nucula Infaunal Deposit 2 2000 Poor focus + fused plates5 Excellent 9.3 8.4 7.5 6.2

613 D5.215.696.2/N 1.96 1.20 385728 279 3131 8298 773 34 G Amberlaya Epifaunal Carnivore/scavenger4 2000 Good nacre 5 Excellent 11.1 10.2 9.3 8.0

533 D5.215.352.2/C 0.61 1.41 384594 105 5545 3390 281 465 B Nucula Infaunal Deposit 0 No image 3 Moderate - low count 10.2 9.3 8.4 7.1

533 D5.215.352.2/D -2.42 1.40 418583 127 3728 7350 63 280 B Nucula Infaunal Deposit 3 1000 Fusing of nacre 4 Noisy pattern 0.707800 0.707796 10.2 9.3 8.4 7.1

533 D5.215.352.2/E -2.12 1.48 373346 352 4692 3372 253 1961 B Nucula Infaunal Deposit 0 No image 3 Moderate - low count 9.8 9.0 8.1 6.8  
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528 D5.215.347.2/J -0.58 1.25 381900 24 3159 3795 120 254 B Nucula Infaunal Deposit 0 No image 5 Excellent 10.8 10.0 9.1 7.8

528 D5.215.347.2/L -2.77 1.47 371708 101 3060 3631 244 941 B Nucula Infaunal Deposit 0 No image 4 Good 9.9 9.0 8.2 6.9

508 D5.215.327.2/A-1 2.04 1.41 418660 184 2388 9111 0 624 B Nucula Infaunal Deposit 4 1000 Good nacre 5 Excellent 10.1 9.3 8.4 7.1

443 D5.215.965.2/A 2.82 0.73 388113 0 1316 3839 398 332 B Eselaevitrigonia Infaunal Suspension 0 No image 5 Excellent 13.1 12.2 11.4 10.0

438 D5.215.960.3/B 1.56 1.01 413687 361 3090 5780 1640 226 C Ammonite Nektonic Carnivore 4 2000 Minimal fusing of nacre 3 Noisy profile 11.9 11.0 10.1 8.8

343 D5.212.865.3/D 1.40 0.90 403556 0 0 9854 0 307 B Oistotrigonia Infaunal Suspension 0 No image 4 Good 12.4 11.5 10.6 9.3

1084 D5.229.1361.2/E 1.12 1.74 B Nucula Infaunal Deposit 4 1500 Minimal fusing of nacre 2 Poor signal - low count 8.7 7.8 7.0 5.7

1084 D5.229.1361.2/H 1.23 1.44 B Nucula Infaunal Deposit 0 No image 2 Poor - low count 10.0 9.1 8.3 7.0

991 D5.222.1254.1/A -0.90 1.27 U Unidentified Uncertain Uncertain 0 No image 0 No profile 10.7 9.9 9.0 7.7

909 D5.220.1209.3/A-1 1.30 1.26 G Gastropod Epifaunal Carnivore/scavenger0 No image 0 No profile 10.8 9.9 9.1 7.8

909 D5.220.1209.3/A-2 1.51 1.02 G Gastropod Epifaunal Carnivore/scavenger0 No image 0 No profile 11.8 11.0 10.1 8.8

897 D5.220.1202.2/B-4 0.08 1.05 C Maorites Nektonic Carnivore 2 2000 Fused plates?? 1 S/N ratio 11.7 10.8 10.0 8.7

800 D5.219.1149.1/A-1 1.99 1.20 B Bivalve Uncertain Uncertain 0 No image 5 Excellent 11.0 10.2 9.3 8.0

712 D5.219.1091.2/A-2 0.80 1.23 G Gastropod Epifaunal
Carnivore/s

cavenger
0 No image 0 No profile 10.9 10.1 9.2 7.9

712 D5.219.1091.2/F 2.62 1.24 B Nucula Infaunal Deposit 4 3500 Fusing of nacre 5 Excellent 10.9 10.0 9.1 7.8

712 D5.219.1091.2/F 2.66 1.24 B Nucula Infaunal Deposit 4 3500 Fusing of nacre 5 Excellent 10.9 10.0 9.1 7.8

712 D5.219.1091.2/F 2.67 1.24 B Nucula Infaunal Deposit 4 3500 Fusing of nacre 5 Excellent 10.9 10.0 9.1 7.8

712 D5.219.1091.2/F 2.70 1.29 B Nucula Infaunal Deposit 4 3500 Fusing of nacre 5 Excellent 10.7 9.8 8.9 7.6

712 D5.219.1091.2/F 2.70 1.21 B Nucula Infaunal Deposit 4 3500 Fusing of nacre 5 Excellent 11.0 10.2 9.3 8.0

712 D5.219.1091.2/F 2.72 1.25 B Nucula Infaunal Deposit 4 3500 Fusing of nacre 5 Excellent 10.8 10.0 9.1 7.8

712 D5.219.1091.2/F 2.73 1.25 B Nucula Infaunal Deposit 4 3500 Fusing of nacre 5 Excellent 10.8 10.0 9.1 7.8

712 D5.219.1091.2/F 2.84 1.21 B Nucula Infaunal Deposit 4 3500 Fusing of nacre 5 Excellent 11.0 10.1 9.3 8.0

712 D5.219.1091.2/F 2.94 1.31 B Nucula Infaunal Deposit 4 3500 Fusing of nacre 5 Excellent 10.6 9.7 8.8 7.5

712 D5.219.1091.2/F 2.97 1.34 B Nucula Infaunal Deposit 4 3500 Fusing of nacre 5 Excellent 10.5 9.6 8.7 7.4

637 D5.218.1016.2/E 0.86 1.09 G Amberlaya Epifaunal Carnivore/scavenger0 No image 5 Excellent 11.5 10.7 9.8 8.5

627 D5.218.1006.2/I -0.37 1.21 C Maorites Nektonic Carnivore 0 No image 0 No profile 11.0 10.2 9.3 8.0

622 D5.215.216.2/A 2.59 0.91 B Pinna Infaunal Suspension 0 No image 0 No profile 12.3 11.4 10.6 9.3

622 D5.215.216.2/A 2.62 0.84 B Pinna Infaunal Suspension 0 No image 0 No profile 12.6 11.8 10.9 9.6

622 D5.215.216.3/A-10 1.93 1.04 B Eselaevitrigonia Infaunal Suspension 0 No image 0 No profile 11.7 10.9 10.0 8.7

622 D5.215.216.3/A-11 1.27 0.97 B Eselaevitrigonia Infaunal Suspension 0 No image 0 No profile 12.1 11.2 10.3 9.0

622 D5.215.705.2/H 3.31 0.40 B Eselaevitrigonia Infaunal Suspension 0 No image 4 Good + minor gypsum 14.5 13.6 12.8 11.5

613 D5.215.696.2/AI 1.39 1.12 B Nucula Infaunal Deposit 0 No image 2 Poor - low count 11.4 10.5 9.7 8.3

613 D5.215.696.2/AN 3.27 1.66 B Eselaevitrigonia Infaunal Suspension 0 No image 0 No profile 9.1 8.2 7.3 6.0

613 D5.215.696.2/AN 3.27 1.58 B Eselaevitrigonia Infaunal Suspension 0 No image 0 No profile 9.4 8.5 7.6 6.3

613 D5.215.696.2/AN-2 2.93 1.48 B Eselaevitrigonia Infaunal Suspension 0 No image 0 No profile 9.8 9.0 8.1 6.8

613 D5.215.696.2/W 1.41 1.08 B Eselaevitrigonia Infaunal Suspension 0 No image 0 No profile 11.6 10.7 9.9 8.6

608 D5.215.691.2/A -2.38 0.87 C Maorites Nektonic Carnivore 0 No image 0 No profile 12.5 11.6 10.7 9.4

608 D5.215.691.2/D-1 3.30 0.52 B Eselaevitrigonia Infaunal Suspension 0 No image 5 Excellent 14.0 13.1 12.3 11.0

608 D5.215.691.2/D-1 3.73 1.95 B Eselaevitrigonia Infaunal Suspension 4 1500 Good nacre + some dissolution/endolithic boring5 Excellent 7.8 6.9 6.1 4.8

548 D5.215.368.2/B 2.30 0.84 B Oistotrigonia Infaunal Suspension 0 No image 0 No profile 12.6 11.8 10.9 9.6

541 D5.215.361.2/E 2.20 1.13 B Nucula Infaunal Deposit 4 1500 Out of focus, nacre good4 Good 11.3 10.5 9.6 8.3

541 D5.215.361.2/E 2.41 1.53 B Nucula Infaunal Deposit 4 1500 Good nacre 4 Good 9.6 8.8 7.9 6.6

528 D5.215.347.2/A-2 -3.01 0.78 B Nucula Infaunal Deposit 0 No image 5 Excellent 12.9 12.0 11.1 9.8

528 D5.215.347.2/E 1.36 1.70 B Nucula Infaunal Deposit 0 No image 0 No profile 8.9 8.0 7.1 5.8

528 D5.215.347.2/F -0.50 1.74 B Nucula Infaunal Deposit 0 No image 0 No profile 8.7 7.8 7.0 5.7

528 D5.215.347.2/K -2.57 0.26 B Nucula Infaunal Deposit 0 No image 0 No profile 15.1 14.3 13.4 12.1

528 D5.215.347.2/N -10.49 0.99 B Solemya Infaunal Suspension 0 No image 0 No profile 12.0 11.1 10.2 8.9

526 D5.215.345.2/A-1 -5.99 1.05 B Solemya Infaunal Suspension 0 No image 0 No profile 11.7 10.8 10.0 8.7

508 D5.215.327.2/A 2.38 1.62 B Nucula Infaunal Deposit 5 1000 Good nacre + some dissolution/endolithic boring5 Excellent 9.2 8.4 7.5 6.2

458 D5.215.980.2/A 2.41 0.85 B Oistotrigonia Uncertain Uncertain 3 2000 Fusing of nacre 4 Good - minor peak offset 12.6 11.7 10.8 9.5  
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1001 D5.229.1264.2/A -6.47 -0.74 392535 5843 2172 3085 3499 4699 A Ammonite [lmc] Nektonic Carnivore 3 1000 Fused plates?? 1 Excellent (LMC)

1001 D5.229.1264.2/B -4.23 -0.90 367880 5635 2247 2644 12313 4757 U Unidentified [lmc] Uncertain Uncertain 0 No image 1
Poor signal - low count 

(LMC)
991 D5.222.1255.2/B -5.45 0.48 369258 6572 1846 2818 2350 380 A Kitchinites [lmc] Nektonic Carnivore 0 350 Low resolution 1 Moderate - low count (LMC)

991 D5.222.1254.1/A-1 2.46 -0.91 363860 5490 2193 2403 9696 4662 U Unidentified [lmc] Uncertain Uncertain 4 1500 Minimal fusing of nacre 5 Excellent

991 D5.222.1254.1/A-2 2.13 1.42 385457 2530 2981 6230 2051 1692 U Unidentified [lmc] Uncertain Uncertain 3 1500 Fused plates?? 1
Moderate - low count + 

gypsum?
991 D5.222.1254.1/A-2 2.13 1.42 382520 2493 2986 7397 2012 1671 U Unidentified [lmc] Uncertain Uncertain 3 3500 Fused plates?? 5 Excellent

991 D5.222.1254.1/A-2 -0.44 -0.44 386462 2469 3046 2777 3485 2139 U Unidentified [lmc] Uncertain Uncertain 4 1500 Well defined plates 0 No profile

991 D5.222.1254.1/A -2.44 0.15 464243 2451 4002 4369 3829 1580 U Unidentified [lmc] Uncertain Uncertain 0 No image 5 Excellent

979 D5.222.1248.2/E -10.42 -2.94 403826 9099 2395 2444 3151 2634 A Ammonite [lmc] Nektonic Carnivore 2 1500 Fused plates?? 1 S/N ratio - LMC

979 D5.222.1248.2/H -10.05 -0.56 415264 6479 2245 3224 4792 5942 A Ammonite [lmc] Nektonic Carnivore 0 No image 1 LMC

979 D5.222.1248.2/G -20.71 -2.12 382907 15263 1205 2022 2996 5106 A Maorites [lmc] Nektonic Carnivore 0 No image 1 LMC

961 D5.222.1238.2/F -3.18 0.40 410174 8545 2045 5001 20708 2868 A Maorites [lmc] Nektonic Carnivore 2 1500 Fused plates?? 1 LMC

961 D5.222.1238.2/A -11.40 0.29 373909 4365 1900 3813 5070 4110 A Maorites [lmc] Nektonic Carnivore 0 No image 1 LMC

955 D5.222.1234.2/K -0.96 -0.28 376060 3810 1503 8007 5536 2822 A Anagaudryceras [lmc]Nektonic Carnivore 3 1500 Fused plates?? + gypsum1 Gypsum?? (LMC)

955 D5.222.1234.2/B -2.24 0.33 378791 2039 1751 8620 3790 2058 U Unidentified [lmc] Uncertain Uncertain 0 No image 1 LMC

955 D5.222.1234.2/A 0.30 0.03 399750 1696 1696 3951 4842 1296 U Unidentified [lmc] Uncertain Uncertain 0 350 Low resolution 1 S/N ratio- LMC

949 D5.220.1229.2/B -10.33 0.46 402339 7507 3024 3527 332 740 A Maorites [lmc] Nektonic Carnivore 0 No image 1 LMC 0.707851 0.707847

949 D5.220.1229.2/A -4.78 0.64 374036 4050 3249 3048 3147 614 A Maorites [lmc] Nektonic Carnivore 0 No image 1 LMC

937 D5.220.1223.2/F 9.60 0.30 447130 3343 2420 3059 6627 8207 A Maorites [lmc] Nektonic Carnivore 0 No image 1 LMC

925 D5.220.1217.2/B -10.78 -0.03 390859 10277 2312 6309 143 580 A Maorites [lmc] Nektonic Carnivore 0 No image 1 LMC

897 D5.220.1202.2/A-1 0.19 1.31 372482 2115 2599 8329 4053 413 A Maorites [lmc] Nektonic Carnivore 0 No image 1 LMC

897 D5.220.1202.2/B-3 1.09 1.34 385535 1220 2880 3750 4604 800 A Maorites [lmc] Nektonic Carnivore 3 1500 Fused plates?? 4 Minor LMC

897 D5.220.1202.2/A-2 2.06 1.58 333678 14180 1644 7004 41069 378 B Bivalve [lmc] Uncertain Uncertain 0 No image 1 LMC

869 D5.219.1185.2/F-1 -6.75 0.84 414033 3442 4498 6786 580 1341 A Maorites [lmc] Nektonic Carnivore 0 No image 1 LMC

869 D5.219.1185.2/F-2 -5.89 1.12 459226 2824 5062 4691 803 1147 A Maorites [lmc] Nektonic Carnivore 0 No image 1 LMC

869 D5.219.1185.2/H -6.95 0.92 398046 1582 5175 3303 264 540 A Maorites [lmc] Nektonic Carnivore 0 No image 1 LMC 0.707865 0.707861

837 D5.219.1168.2/A 1.65 1.28 419292 1197 3400 5800 2494 2316 A Ammonite [lmc] Nektonic Carnivore 3 1500 Fused plates?? 1 S/N ratio - minor LMC

682 D5.218.1061.2/J 0.45 1.67 291991 1033 1406 5275 1047 229 U Unidentified [lmc] Uncertain Uncertain 4 1500 Minimal fusing of nacre 2 Gypsum?

647 D5.218.1027.2/A 3.01 0.10 B Pycnodonte Epifaunal Suspension 0 No image 1 Calcite

642 D5.218.1021.2/F 2.81 1.70 396972 2734 2723 6554 7261 50 B Nucula  [lmc] Infaunal Deposit 0 No image 5 Excellent

642 D5.218.1021.2/Q 3.77 0.16 430946 1074 702 3874 249 349 B Pycnodonte [lmc] Epifaunal Suspension 0 No image 1 Calcite

637 D5.218.1016.2/A -11.45 0.82 361295 2562 8332 6026 2529 1169 A Maorites [lmc] Nektonic Carnivore 0 No image 1 LMC

627 D5.218.1006.2/N -3.96 0.74 404980 8039 3583 4855 3586 1067 A Ammonite [lmc] Nektonic Carnivore 0 No image 1 LMC

627 D5.218.1006.2/G -0.99 0.92 454445 1754 3680 6120 1178 449 A Maorites [lmc] Nektonic Carnivore 2 1000 Fusing of nacre + neomorphism1 Aragonite + LMC  
 
 
 


