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Ideally, the validation of weather and climate models requires that the predictions

remain close to an exact solution of the governing equations. The complexity of weather

and climate models means that it is not possible to compute exact solutions except in

trivial cases. However, in the limit of small Rossby number, the exact solution of the

Euler equations can be shown to be close to that of a semi-geostrophic model, which

can be computed. Previous studies have used the small Rossby-number limit to validate

numerical methods for a baroclinic wave without sub-grid physics. However, the method

of coupling to the sub-grid physics plays an important role in the performance of

weather and climate models. The aim of this paper is thus to extend the previous

studies to include a boundary-layer parametrization. We use a balanced model that

includes a known boundary-layer parametrization, the semi-geotriptic model. We then

demonstrate that the semi-geotriptic model is the appropriate small Rossby-number

limit of the solution of the Euler equations with the same boundary layer representation.

The semi-geotriptic model is then used to expose weaknesses in the numerical methods

for coupling the boundary layer to the rest of the model.
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1. Introduction

Exact solutions provide the ideal reference for validating weather

and climate models. It is not currently possible to compute exact

solutions except in trivial cases because the computations required

would be impracticable. Production numerical models use an

implicitly averaged form of the equations together with a range of

sub-grid parametrizations that account for processes not resolved

by the model grid. These include: the boundary layer, moist

c© 0000 Royal Meteorological Society Prepared using qjrms4.cls [Version: 2013/10/14 v1.1]



2 R. J. Beare and M. J. P. Cullen

convection, gravity waves and the land surface. Moreover, sub-

grid processes couple to the resolved dynamics in a complicated

way that is not presently fully understood (Cullen and Salmond

2003). The error introduced by this averaging cannot be usefully

estimated theoretically.

Under certain limiting conditions, the exact solution of the

Euler equations can be shown to be the same as that of a simpler

model, which can be computed. These solutions are thus valuable

for validating prediction models. In the limit of small Rossby

number (Ro), and in the absence of sub-grid processes, the exact

solution of the Euler equations have been shown to converge to

that of a semi-geostrophic (SG) model (Cullen 2007). For a two-

dimensional baroclinic wave case and in the absence of boundary-

layer diffusion, Cullen (2008) showed that computed solutions

of the SG and Euler solutions converged with decreasing Ro at

a second-order rate. Recently, Visram et al. (2014) validated a

semi-Lagrangian advection scheme for a similar case by testing

for second-order convergence to the SG solution. Here the SG

solution is the exact asymptotic limit of the Euler solution as Ro

tends to zero.

The need to enforce the no-slip condition at the lower boundary

requires a fundamental change to this procedure, even if the

primary interest is large-scale flows. For instance, the boundary

layer can play an order-one role in the development of baroclinic

waves (Beare 2007). In previous work, we have extended the SG

model to include a no-slip boundary condition by coupling it to

a standard one-dimensional boundary-layer formulation, which

should be sufficient on scales where the SG model is appropriate

(Beare and Cullen 2013). This is called the semi-geotriptic (SGT)

model. We previously demonstrated the use of the SGT model in

understanding: sea breezes, tropical convergence zones and mid-

latitude frontal jets (Cullen 1989; Beare and Cullen 2010, 2012,

2013). We also showed that solutions of the shallow water system

converged to SGT solutions at a first order rate in Rossby number

(Beare and Cullen 2012). However, the equivalent calculation

remains to be done for three-dimensional models.

Ideally, we need to show that the SGT model is the small-Ro

limit of solutions of the Navier-Stokes equations with the usual

no-slip boundary condition. Whilst proving this mathematically is

currently too ambitious, in this paper we intend to make a useful

contribution, showing large-scale numerical models including a

boundary-layer parametrization respect this limit. Classical fluid

dynamics treats the Euler equations in the interior of the fluid with

a one-dimensional boundary layer model matched to it close to the

boundary as an asymptotic limit of the Navier-Stokes equations

(e.g. Batchelor 2000). In the atmosphere, this theory has to be

extended to include boundary layers at higher Reynolds numbers,

using a boundary-layer diffusion with magnitude dependent on

the shear and stratification (Garratt 1992). Whilst the magnitude

of the effects of stratification remain uncertain (e.g Beare et al.

2006), the near-neutral, small-stratification limit is relatively well

understood. We therefore assume that the validity of a standard

boundary layer formulation has been established for a near-neutral

scenario. We then show formally that if this formulation is used in

the SGT model, the validity of SG as the small-Ro limit of the

Euler equations extends to the validity of SGT as the small-Ro

limit of the Navier-Stokes equations. This analysis is performed

using the hydrostatic primitive equations (HPEs), as these will be

an accurate approximation to the Euler equations whenever SGT

is applicable. The analyses of Bannon (1998), Snyder (1998) and

Tory and Reeder (2005) indicated the importance of Ro for scaling

advection when a boundary layer is included. We will perform a

scale analysis that shares some aspects with these studies, but also

identifies the temporal and Froude number regimes under which

the Ro controls the convergence of the HPE model solutions to

those of SGT.

Numerical models, which are used on large enough horizontal

scales for a one-dimensional boundary layer formulation to be

appropriate, can also use the hydrostatic approximation. Thus we

examine the limiting behaviour of a model using the HPEs with

a boundary layer scheme as Ro decreases. If the HPEs with a

boundary layer correctly represented the averaged behaviour of

the Navier-Stokes equations, they would have solutions that are

smooth on the averaging scale and thus computable. However

we do not investigate this issue, but regard the numerical

computations with a sufficiently small timestep as our best

estimate of the averaged solutions. We then seek to validate these

solutions by investigating their behaviour as Ro decreases. If they

show the expected convergence to SGT, and the boundary layer

model can be assumed to be accurate, then the numerical model
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Validation of baroclinic-wave simulations 3

will be exhibiting the correct large-scale behaviour. We will use a

baroclinic-wave test case as it will allow direct comparison with

the previous SG studies. As with the SG problem, the rate of

convergence wil also be valuable for validation purposes.

We then aim to validate the HPE model at larger timesteps

using our understanding of the rates of convergence to the SGT

model. Increasing the timestep in the HPE model presents more

of a challenge for the numerical methods as the time variation

of the boundary-layer diffusion coefficient becomes important.

Such variation is a typical situation in weather and climate

models, where the timestep can only be reduced so much in the

interest of producing timely predictions (Diamantakis et al. 2006).

In situations where the convergence is disrupted, our method

indicates areas for model improvement.

2. Scale and convergence analysis

Before we proceed to the analysis of baroclinic wave simulations,

we need to establish when the Rossby number controls the

convergence of the HPE solutions to SGT solutions. We do this

by presenting a scale analysis of the HPEs, including a boundary-

layer parametrization. We then define the approximations made to

the HPEs in deriving the SGT model. In the following, the key

scale assumptions are displayed in boxes.

2.1. Key dimensionless parameters

The Boussinesq HPEs on an f -plane, including boundary-layer

parametrization terms are:

Du

Dt
+ fk× u +∇φ =

∂

∂z

(
Km

∂u

∂z

)
, (1)

∂φ

∂z
= g

θ − θ0
θ0

, (2)

Dθ

Dt
=

∂

∂z

(
Kh

∂θ

∂z

)
, (3)

∇.u +
∂w

∂z
= 0 and (4)

D

Dt
=

∂

∂t
+ u.∇+ w

∂

∂z
. (5)

The symbols used above are defined in Table 1. Vector values are

in bold and scalars are in italics throughout.

Symbol Meaning
t Time
D
Dt Material derivative
u Horizontal wind vector
f Coriolis parameter (constant)
k Unit vertical vector
× Cross product
∇ Horizontal vector gradient
φ Geopotential
z Height coordinate, pseudo-height

(Hoskins and Bretherton 1972)
g Gravitational acceleration
θ Potential temperature
θ0 Surface reference potential temperature
Km Boundary-layer vertical momentum diffusivity
Kh Boundary-layer vertical heat diffusivity
w Vertical wind

Table 1. Symbols used in Eqs. (1) - (5).

2.1.1. Momentum equation above boundary layer

We non-dimensionalise Eqs. (1) - (5) using the scales: horizontal

wind (U ), vertical wind (W ), horizontal length scale (L),

depth of the troposphere (H), Brunt-Väisällä frequency (N ) and

geopotential (N2H2). We assume that horizontal and vertical

gradients of geopotential are related by the factor H/L, which

excludes scalings based on a uniform reference profile. The

latter is not appropriate for considering the boundary layer. All

dimensionless variables are assumed to be order-one in magnitude

(notated as O(1), where O denotes the order). Changes in

magnitude are then reflected in the scaling parameters (such as

Ro) that form the coefficients of the dimensionless quantities. We

now seek to make consistent choices of scaling parameters.

We presume the existence of solutions that converge to

geostrophic balance above the boundary layer in the limit of small

Ro. We thus select a timescale for advection (T ) that satisfies

T ∼ L

U
∼ H

W
, (6)

so that each term of the material derivative (Eq. 5) scales in

the same way. The slow timescale enforced by Eq. (6) means

that fast waves, such as gravity waves, are excluded. In contrast,

higher-order balanced models do not enforce Eq. (6) (Cullen 2006,

section 2.4.3). The dimensionless form of Eq. (1) is

Material Derivative︷ ︸︸ ︷
Ro

Dû

Dt̂
+

Coriolis︷ ︸︸ ︷
k× û+

Pressure gradient︷ ︸︸ ︷
Ro

Fr2
∇̂φ̂ = 0, (7)
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4 R. J. Beare and M. J. P. Cullen

where ̂ indicates dimensionless values and the names of the

terms are annotated above for future reference. The definitions of

Ro and the Froude number (Fr) are

Ro =
U

fL
and (8)

Fr =
U

NH
. (9)

For small Ro, the Coriolis and pressure gradient terms in Eq.

(7) should balance, giving

Ro = Fr2. (10)

Equation (7) simplifies to

Ro
Dû

Dt̂
+ k× û + ∇̂φ̂ = 0. (11)

In the limit of Ro→ 0, Eq. (11) satisfies geostrophic balance

k× ûg + ∇̂φ̂ = 0, (12)

where ûg is the geostrophic wind.

2.1.2. Boundary-layer momentum equation

We showed previously that Ro controls the deviation from

geostrophic balance above the boundary layer. We now consider

the parameters determining Ekman balance within the boundary

layer. The relevant vertical scale is the boundary-layer depth (h),

defined as depth where the parametrized fluxes fall to zero. In

general, h varies in the horizontal so we use h, where the over-

bar indicates the horizontal mean, as the representative scale. We

also define K as the scale for the boundary-layer diffusion. The

boundary-layer drag scales as

∂

∂z

(
Km

∂u

∂z

)
∼ KU

h
2
. (13)

The timescale is assumed to be given by the advective timescale

in the boundary layer as well as above it, following Eq. (6).

Fast waves are therefore excluded in the boundary layer as they

are above it. Each term of the material derivative (Eq. 5) within

the boundary layer scales in the same way as in Eq. (6). The

dimensionless form of Eq. (1) within the boundary layer is now

Material Derivative︷ ︸︸ ︷
Ro

Dû

Dt̂
+

Coriolis︷ ︸︸ ︷
k× û+

Pressure gradient︷︸︸︷
∇̂φ̂ =

Drag︷ ︸︸ ︷
EkBû, (14)

where the Ekman (Ek) number is defined as

Ek =
K

fh
2
. (15)

The dimensionless boundary-layer diffusion operator (B) is given

by

B = h
2 ∂

∂z
K̂m

∂

∂z
. (16)

We assume shallow boundary layers (h� H) and hydrostatic

balance. The change of the pressure gradient across the boundary

layer is therefore negligible compared to the change over the depth

of the troposphere. The no-slip boundary condition means that the

Coriolis and drag terms do vary in the vertical and have to balance

each other in the limit of small Ro (Eq. 14), giving

Ek = O(1). (17)

Equation (14) simplifies to

Ro
Dû

Dt̂
+ k× û + ∇̂φ̂ = Bû. (18)

Due to the timescale assumption (Eq. 6), the form of the material

derivative is the same in Eqs. (11) and (18). In the limit of Ro→ 0,

Eq. (18) satisfies Ekman balance, given by

k× ûe + ∇̂φ̂ = Bûe, (19)

where ûe is the Ekman momentum. It is important to note that

ûe → ûg above the boundary layer, so the Ekman momentum

includes the geostrophic momentum.

We assume that Km is driven by vertical wind shear and so

a function of the wind at the top of the boundary layer. Since we

have constrained Ek (Eqs. 15 and 17), it follows that h is a function

of Ro

h = h(Ro). (20)
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Figure 1. A schematic of the SGT model. It is close to Ekman balance within the
boundary layer, and semi-geostrophic (geostrophic momentum) above.

Related scale analyses have been performed by Snyder (1998)

and Tory and Reeder (2005). In contrast, here we have been

explicit in our timescale assumptions and in constraining Fr and

Ek so that Ro is a single controlling parameter. We have also

included the dependence of the boundary-layer depth on Ro.

2.2. SGT model

Ostdiek and Blumen (1997) analysed observations of frontal

boundary layers. Although the SG model was valid above the

boundary layer, its assumptions broke down within it. The

SGT model combines the SG model with a boundary layer,

as illustrated in Fig. 1. The SGT model maintains an Ekman-

balanced boundary layer in the presence of a time-varying SG

solution above. The dimensionless framework will help us to

understand the approximations made to the HPE model in deriving

the SGT model.

Just as the SG model uses the geostrophic momentum as a

prognostic variable, the SGT model uses the Ekman momentum.

Using the Ekman momentum, the SGT model diagnoses a

trajectory with components ûs in the horizontal and ŵs in the

vertical. In deriving the SGT model, two key approximations are

applied to Eq. (18). First, the material derivative is approximated

as

Ro
Dû

Dt̂
= Ro

Dsûe

Dt̂
+O(Ro2), (21)

where
Ds

Dt̂
=

∂

∂t̂
+ ûs.∇+ ŵs

∂

∂ẑ
. (22)

The O(Ro2) in Eq. (21) implies that there will be a second-

order deviation of the HPE model from the SGT model. The

second approximation is applied to the drag term in Eq. (11).

Given that Ekman momentum is now a prognostic variable,

Beare and Cullen (2012) and Beare and Cullen (2013) showed

that a second-order approximation of the drag term leads to a

physically unrealistic non-decaying energy equation. However, a

realistic energy evolution was recovered by using the first-order

approximation

Bû = Bûe +

Relaxation︷ ︸︸ ︷
B(ûe − ûs) +O(Ro) = B(2ûe − ûs) +O(Ro).

(23)

The annotated ‘relaxation’ term is first-order accurate in Ro; it

relaxes the Ekman momentum to the trajectory in time. Given zero

vertical velocity boundary conditions at the top and bottom of the

domain, the relaxation to Ekman balance also ensured a no-slip

surface boundary condition. Combining Eqs. (21) and (23) gives

the SGT momentum balance

2nd order accurate︷ ︸︸ ︷
Ro

Dsûe

Dt̂
+k× ûs + ∇̂φ̂ =

1st order accurate︷ ︸︸ ︷
B(2ûe − ûs), (24)

Equation (24) is a mathematical realisation of the schematic in

Fig. 1. In the boundary layer, a solution close to Ekman balance

is maintained; above the boundary layer, the solution matches the

geostrophic momentum approximation of the SG model given by

Ro
Dsûg

Dt̂
+ k× ûs + ∇̂φ̂ = 0. (25)

2.3. Convergence of HPE to SGT

The previous analysis is based on scale assumptions that need

to be shown to define a solution which is an asymptotic limit of

the HPEs with a boundary layer, and thus of the Euler equations

with the same boundary layer formulation. A mathematical proof

would be ideal, but does not currently exist. Instead we used

small-timestep HPE simulations to demonstrate convergence to an

SGT solution as Ro decreases. The Ekman momentum and SGT

trajectory was diagnosed from these simulations (see appendix).

The difference between HPE and SGT solutions was measured by

diagnosing

‖ûs − û‖ (26)
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6 R. J. Beare and M. J. P. Cullen

where ‖ ‖ denotes a root-mean-square (rms) domain average, and

where û is from the small timestep HPE simulations. Assuming

our scale assumptions are correct, the term with the least accuracy

will dominate the reduction of the difference between the HPE and

SGT models as Ro decreases. Within the boundary layer, the first-

order assumption should dominate (Eq. 23). In contrast, above the

boundary layer, the convergence is only limited by the second-

order assumption (Eq. 21). In order to isolate these dependencies,

we calculated Eq. (26) for separate sub-domains within and above

the boundary layer. When averaging over the entire domain, the

boundary-layer depth (Eq. 20) determines the relative volume

occupied by the boundary layer in the domain integral. We thus

postulate that, for the domain integral,

‖ûs − û‖ ∝ hRo. (27)

The boundary-layer depth is often controlled by the vertical shear

for a near-neutral scenario. The vertical shear is a function of U

and thus Ro. It is thus reasonable to postulate a power law for the

mean boundary-layer depth

h ∝ Rom, (28)

where m is a positive power. The existence of the power law was

tested in our simulations.

3. Baroclinic wave case

We now describe the baroclinic wave test case. First, we define

the 2D version of the HPE model. We then define the rescaling of

fields to achieve different values of Ro. The method of calculating

the difference between the small timestep HPE solutions and

those from the SGT model is then given. Finally, we repeat the

calculations using the HPE model at larger timesteps.

3.1. HPE model

We used numerical simulations of the HPEs (Eqs. 1-5) on a 2D

vertical slice (x, z). The components of the horizontal wind were

u =ug(z) + ua(x, z, t), (29)

v =vg(x, z, t) + va(x, z, t), (30)

where (ug, vg) and (ua, va) are the geostrophic and ageostrophic

horizontal wind vectors respectively and ug is a function of height

only. The model was configured for a mid-latitude baroclinic wave

coupled to a boundary-layer parametrization. The boundary-layer

scheme is defined in the appendix (Eqs. 45-47). Otherwise, the

configuration was similar to that of Keyser and Anthes (1982) and

Tory and Reeder (2005). The geostrophic basic state was defined

relative to the mid-level winds

ug =
2u0

H
(z −H/2), (31)

so that the large-scale wave remained stationary. The actual winds

in x were recovered by the transform u→ u+ u0. The horizontal

velocity scale used in the scale analysis (section 2) was chosen

as U = u0. The value of U was important in controlling the

magnitude of the advection in the x-direction. The equations

solved were

Du

Dt
− f(v − vg) =

∂

∂z

(
Km

∂u

∂z

)
, (32)

fvg =
∂φ

∂x
, (33)

Dv

Dt
+ f(u− ug) =

∂

∂z

(
Km

∂v

∂z

)
, (34)

f
∂ug
∂z

= − g

θ0

∂Θ

∂y
, (35)

∂φ

∂z
= g

θ − θ0
θ0

, (36)

Dθ

Dt
=

∂

∂z

(
Kh

∂θ

∂z

)
− v ∂Θ

∂y
, (37)

∂u

∂x
+
∂w

∂z
= 0, (38)

D

Dt
=

∂

∂t
+ u

∂

∂x
+ w

∂

∂z
, (39)

where ∂Θ
∂y is a constant basic state potential temperature gradient

in the y-direction. The advection across the basic-state potential

temperature gradient is the last term on the right hand side of Eq.

(37).

The lateral boundary conditions were periodic. At the bottom

boundary, we defined no-slip conditions for momentum and

followed Keyser and Anthes (1982) by using simplified insulating
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conditions for the potential temperature

ua = v =
∂θ

∂z
= 0 at z = 0. (40)

The vertical velocity boundary conditions were

w = 0 at z = 0 and H. (41)

3.2. Numerical solution of HPE equations

The dynamics was solved using the three-time-level method of

Williams (1967), except that a more numerically stable semi-

Lagrangian advection scheme was used. The Lorenz grid was used

in the vertical with 51 levels and a quadratic variation of grid

length to give additional resolution in the boundary layer. The

bottom level (first calculation point) was 5 m, and there were 11

levels within the first 500 m. In the horizontal, 162 equally spaced

points were used. The following scales were used: H = 9 km, L =

2000 km and N = 0.011 × 10−2 s−1.

For each simulation, the fields v, vg and θ were initialised with

the fastest-growing Eady wave (Williams 1967). The ageostrophic

circulation (ua, w) was initialised using the Sawyer-Eliassen

equation (Sawyer 1956; Eliassen 1962), given by Eq. (48) in

the appendix. Short, 12 hour, simulations were performed giving

the ‘smooth’ early growth phase of the baroclinic development;

others have considered the discontinuous frontal collapse for

longer integrations using just the dynamics (Visram et al. 2014).

However, Snyder (1998) found that, when the wind-turning from a

boundary layer is included, the flow can deviate substantially from

Ekman balance for a strong front. Thus short integrations were the

most appropriate for calculating asymptotic limits.

3.3. Rescaling fields

In order to sample a range of Ro whilst satisfying the scaling

assumptions of Section 2, we employed the following rescaling

of variables. We fixed the initial potential temperature field and

the horizontal length scale L. In order to also maintain initial

thermal wind balance, we ensured the product fug was constant

in the initial fields. In the SG case, the geostrophic wind in

the y-direction was fixed (Cullen 2008). However, including a

boundary layer generates a component of the Ekman momentum

in the x-direction, the so-called wind turning. There is therefore

no preferred direction, and the wind in all horizontal directions

must be rescaled. We rescale the winds and Coriolis parameter in

the following way, using a factor α

ug → αug, (v, vg)→ α(v, vg), f → f/α. (42)

The Rossby and Froude numbers scale as

Ro ∼ ug/f ∼ α2, Fr ∼ ug ∼ α, Ro = Fr2, (43)

where Fr only depends on wind speed as the initial value of N

is fixed. Equation (43) thus ensured that, whilst varying Ro, the

simulations remained in the regime defined by Eq. (10).

The value of α2 was varied between 0.5 and 2 in increments of

0.125. For α = 1, the values of u0 = 14.7 ms−1, f = 10−4 s−1

and amplitude of vg of 3.87 ms−1 were used. A range of Ro from

0.037 to 0.15 resulted. The range was smaller than is possible for

cases without sub-grid physics (Visram et al. 2014) due to the

variation of boundary-layer depth with Ro. Nevertheless, a factor

of 4 in Ro was covered.

3.4. Validating the large-scale behaviour of the HPE model

The difference between the HPE and SGT models was calculated

using the following steps:

1. HPE model run at small timestep (control HPE

simulation). Simulations were repeated over the range of

Ro.

2. SGT solution diagnosed from each control HPE

simulation. See appendix (Eqs. 51-55) for details.

3. Difference between control HPE simulations and SGT

solutions calculated, and quantified using Eq. (26).

3.5. Validating HPE simulation against SGT model

The Ro-dependence of the differences between HPE and SGT

solutions was also used to validate the HPE model at larger

timesteps. We increased the boundary-layer timestep from 10 to

15 minutes so that the variation of the boundary-layer diffusion

between timesteps became large (at Ro ' 0.1). Methods of

timestepping the boundary-layer physics in weather and climate
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8 R. J. Beare and M. J. P. Cullen

models remains an active development area. Beljaars (1991) and

Cullen and Salmond (2003) proposed that a robust timestepping

method should also preserve Ekman balance. Here, we compared

three established methods of timestepping the boundary-layer

diffusion:

1. Implicit. The increments due to the boundary layer

were represented in the control HPE simulations by a

standard implicit method, using implicit weights of one

(Diamantakis et al. 2006). The weakness of the implicit

method is that the change of diffusion across the timestep

is not included.

2. K-update. The K-update method recalculates the diffusion

at the end of the timestep and then repeats the implicit

calculation (Cullen and Salmond 2003; Diamantakis et al.

2006). The updating of the diffusion means that all three

terms in the Ekman balance are evaluated at the same time.

At small Ro, the model is potentially closer to Ekman

balance at the end of the time step (Beljaars 1991).

3. Wood et al. The re-calculation of diffusion is computa-

tionally expensive in operational models, so the method of

Wood et al. (2007) approximates the non-linearity of the

diffusion as

Km ∝ χP+1, (44)

where P is the non-linearity and χ represents any of u, v or

θ. Here we used P = 1.5, as recommended by Wood et al.

(2007).

4. Results

4.1. Baroclinic wave case

In order to illustrate the control HPE simulations, here we describe

their evolution for Ro = 0.15. Figure 2 compares initial and

12-hour fields for the control HPE simulation. The initial wave

was the fastest growing normal mode, with no boundary layer

(Fig. 2a). The boundary-layer parametrization was part of the

subsequent HPE integration. By 12 hours, the overall amplitude

of the wave increased due to baroclinic instability and a boundary

layer with a mean depth of 5% of the domain was established (Fig.

2b). Since this was a near-neutral scenario, the boundary-layer

diffusion responded strongly to vertical shear of the horizontal

(a) Initial v̂

x̂

-0.5 0 0.5

ẑ 0.15

0.3

(b) v̂ at 12 hours

x̂

-0.5 0 0.5

ẑ 0.15

0.3

(c) θ̂ at 12 hours

x̂

-0.5 0 0.5

ẑ 0.15

0.3

Figure 2. Vertical cross sections of control HPE simulation for Ro = 0.15: (a)
Initial v-component of velocity, (b) 12 h v-component of velocity and (c) 12 h
potential temperature anomaly. Positive contours solid, negative values dashed.
Boundary-layer top is grey-dashed line. All figures dimensionless and potential
temperature normalised by

∂θref
∂z H =35 K, where θref is the background

potential temperature. Contour interval 0.04 for wind and 0.05 for potential
temperature.

wind. Thus, the maxima in boundary-layer depth corresponded

closely to the extrema in the v-component of velocity.

Figure 2c shows the 12-hour potential temperature anomaly.

Within the boundary layer, there were relatively low values on

the left of the domain, but higher values on the right. The

stratification varied across the domain, with shallow mixed layers

to the left and stratified layers in the centre and to the right. Similar
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(a) Control HPE simulation, Ro = 0.15.

x̂

-0.5 0 0.5

ẑ 0.15

0.3

(b) SGT model, Ro = 0.15.

x̂

-0.5 0 0.5

ẑ 0.15

0.3

Figure 3. Vertical cross-sections of dimensionless ageostrophic wind for Ro = 0.15:
(a) control HPE simulation and (b) diagnosed SGT solution. Contour interval 0.04,
positive values solid, negative values dashed. Boundary-layer top grey-dashed line.

variations of stratification are found in more complex simulations

of cyclogenesis (e.g. Beare 2007).

Figure 3a shows the ageostrophic wind for the control HPE

simulation. Above the boundary layer there was a baroclinic wave.

Within the boundary layer, positive maxima of ageostrophic wind

corresponded to negative minima in the v-component of velocity

(shown previously in Fig. 2b). The correlation was the familiar

wind-turning effect. The control HPE simulation also exhibited

substantial forward tilting of the ageostrophic wind. The tilting

was due to the opposing effects of advection by the vertically-

sheared basic state horizontal wind and drag from the boundary

layer. Similar tilting was reported by Keyser and Anthes (1982),

although here the amplitude was smaller as the integrations were

shorter.

4.2. Differences between HPE and SGT models

Above the boundary layer, the control HPE simulation (Fig. 3)

was close to the SGT solution. However, differences remained

within the boundary layer at Ro = 0.15. Compared with the

(a) HPE simulation, Ro = 0.037.

x̂

-0.5 0 0.5

ẑ 0.15

0.3

(b) SGT model, Ro = 0.037.

x̂

-0.5 0 0.5

ẑ 0.15

0.3

Figure 4. Vertical cross-section of dimensionless ageostrophic wind at Ro = 0.037
for the: (a) control HPE simulation and (b) diagnosed SGT solution. Contour
interval 0.04, positive values solid, negative values dashed. Boundary-layer top
indicated by grey-dashed line.

control HPE simulation, the SGT model was less tilted in the x-

direction. Within the boundary layer, the ageostrophic wind of the

SGT model was shifted to the right relative to the control HPE

simulation. These differences were consistent with the reduced

accuracy of the SGT assumption in the boundary layer compared

with the free troposphere. It was also consistent with inaccuracies

of the Ekman momentum approximation reported by Snyder

(1998).

In contrast, at the smaller value of Ro = 0.037, the phase

and orientation differences between the SGT model and control

HPE simulation were markedly reduced (Fig. 4). The small

differences provide clear evidence of convergence of the control

HPE simulation to the SGT solution with decreasing Ro. Also,

the boundary-layer depth decreased substantially, indicating its

dependence on Ro, as proposed in Section 2.

We now combine the results of 13 control HPE simulations

with Ro in the range of 0.037 to 0.15. Figure 5 shows encouraging

convergence of the control HPE simulations to the SGT solution

c© 0000 Royal Meteorological Society Prepared using qjrms4.cls
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Figure 5. Rms difference between HPE and SGT solutions averaged over entire
model domain and plotted against Ro (log-log plot). The Ro1.7 line is grey-dashed.
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Figure 6. Domain-averaged boundary-layer depth (h) against Ro (log-log plot).
The Ro0.7 line is grey-dashed.

with decreasing Ro. Below Ro = 0.1, the norm of the difference

tended to Ro1.7.

4.3. Understanding the convergence of HPE solutions to SGT

We now interpret the convergence rate in Fig. 5. The variation of

mean boundary-layer depth with Ro is shown in Fig. 6. There was

a clear power law for Ro < 0.1 and the exponent was m = 0.7

(Eq. 28). In agreement with our scale assumptions, the difference

between the HPE and SGT solutions varied as the product of the

mean boundary-layer depth and Ro (Eq. 27). The convergence rate

was thus determined by the boundary layer.

It was instructive to separate the domain-averaged differences

between the HPE and SGT solutions into averages within the

boundary layer and above it (Fig. 7). The convergence of the

HPE to the SGT solutions was first-order within the boundary

layer, but second-order above it. Within the boundary layer, the

Rossby no.
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10
-1

|| 
H

P
E

 -
 S

G
T

 ||

10
-3

10
-2

10
-1

Ro
Within BL

Ro
2

Above BL

Figure 7. Differences between HPE and SGT solutions split into averages within
and above the boundary layer. The Ro line grey-dashed. The Ro2 line grey-dotted.

first-order assumptions controlled the convergence rate; here, the

boundary-layer depth was implicit in the averaging calculation,

so its dependence on Ro was factored out. Above the boundary

layer, the second-order approximation of the material derivative

dominated below Ro = 0.1. The second-order convergence rate

was in agreement with that found for the dynamics-only SG case

during the early phases of baroclinic development (Cullen 2008).

These findings were in agreement with the estimates made in Eqs.

(21) and (23).

The comparisons between the SGT model and HPE simulations

in Figs. 3 and 4 can be understood further from the momentum

budgets. Figure 8 compares momentum budgets for the control

HPE simulations within the boundary layer. For Ro = 0.15 (Fig.

8a), advection was important, and the Ekman balance between the

Coriolis and drag terms was not a good approximation. Given that

the SGT model relaxed back to Ekman balance in the boundary

layer, it could not be expected to be a good approximation to the

HPE simulations at Ro = 0.15 (Fig. 3). However, for Ro = 0.037,

the advection became a small component and Ekman balance was

valid (Fig. 8b). The agreement between the HPE simulations and

the SGT model was now much better in the boundary layer.

4.4. Validating large-timestep HPE simulations against the

SGT model

We repeated the HPE simulations at a larger boundary-layer

timestep of 15 mins (previously 10 mins). The variation of the

boundary-layer diffusion between timesteps became important

at Ro of about 0.1. Such a regime is typical in operational
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(a) Ro = 0.15
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(b) Ro = 0.037
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Figure 8. Momentum budgets in y-direction for control HPE simulations and
middle of the boundary layer (z = h/2) for two values of Ro. Momentum
tendencies non-dimensionalised by fu0 and plotted against x̂. Coriolis refers to
the −f(u− ug) term.

weather and climate models. Figure 9 shows cross-sections of the

ageostrophic winds from the HPE model for the Implicit and K-

update schemes. Whilst the K-update fields were not perfectly

smooth, they improved markedly on the Implicit scheme. The

Implicit scheme gave substantial small-scale noise within the

boundary layer; the small scales were inconsistent with those

required for Ekman balance, as described in section 2.

The SGT fields diagnosed from the control HPE simulations

were now used to validate the HPE simulations at larger timesteps.

If the larger-timestep HPE simulations and the SGT model did not

converge at the rate previously calculated, it indicated numerical

problems. Figure 10 shows the difference between the HPE

simulations using different timestepping schemes and the SGT

model. At smaller values of Ro, all HPE models followed the

ideal Ro1.7 line. However, above Ro = 0.08, the HPE model

(a) Implicit

x̂

-0.5 0 0.5

ẑ

0.025

0.05

(b) K-update

x̂

-0.5 0 0.5

ẑ

0.025

0.05

Figure 9. Vertical cross-section of ageostrophic winds from the HPE model with
boundary-layer timestep 15 mins and Ro = 0.1. (a) Implicit and (b) K-update
schemes. Contour interval 0.04, positive values solid, negative values dashed.
Boundary-layer top grey-dashed line.
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Figure 10. The difference between HPE model with boundary-layer timestep 15
mins and SGT model (rms domain average) against Ro (log-log plot). Shown for
3 methods of boundary-layer timestepping: Implicit, K-update and Wood et al.
(2007). The Ro1.7 line is grey-dashed.

using the Implicit scheme started to deviate markedly above the

ideal line, and no longer converged at the required rate. The HPE

model using the K-update scheme deviated slightly above the

ideal line at Ro = 0.1. The HPE model using the Wood et al. (2007)

scheme followed the ideal Ro1.7 line for the range of Ro shown.

Both the K-update and Wood et al. (2007) schemes accounted for
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12 R. J. Beare and M. J. P. Cullen

the variation of the boundary-layer diffusion across the timestep,

giving improved convergence properties compared to the Implicit

scheme.

5. Discussion

In this paper, we presented a new way of validating baroclinic-

wave simulations coupled to a boundary-layer parametrization.

Our study represents one example of the more general problem

of physics-dynamics coupling: understanding how physical

parametrizations couple to the resolved dynamics (Staniforth et al.

2002; Cullen and Salmond 2003). Physics-dynamics coupling

presents many challenges for the future development of weather

and climate models. Our new test involved running HPE models

at the small-Ro limit, and comparing with a balanced model

that included a boundary layer: the SGT model. Previous work

focused on the convergence of the HPE solutions to SG solutions

for the dynamics-only case (Cullen 2008; Visram et al. 2014).

For the first time, we determined the role of the boundary-layer

parametrization in modifying the dynamics-only results. Our key

findings were:

1. When the timescale was controlled by advection, Ro

controlled the convergence of the HPE solutions to SGT.

2. The domain-averaged rms difference between HPE and

SGT solutions varied as the product of Ro and the mean

boundary-layer depth; for our cases, the difference varied

as Ro1.7.

3. The Ro1.7 dependence was also used to validate the HPE

model at a larger timestep. The convergence rate was

disrupted for a standard implicit timestepping scheme, but

improved for schemes that accounted for the change of the

boundary-layer diffusion across the timestep.

The comparison of the HPE and SGT models over a range of

Ro has not been done before. The SGT model extended the SG

model by including a realistic boundary layer close to Ekman

balance. In addition to averaging over the entire domain, we found

it useful to consider separate averages over the boundary layer

and free troposphere. The SGT model was first-order accurate

within the boundary layer, because it was strongly constrained by

Ekman balance. However, it was second-order accurate in the free

troposphere, in agreement with the dynamics-only case (Cullen

2008; Visram et al. 2014). Thus the convergence of HPE solutions

to SGT model was dominated by the differences in the boundary

layer. However, the boundary-layer depth was shown to decrease

with Ro, improving the domain averaged convergence rate.

Perhaps the closest study to ours is Snyder (1998). There,

he diagnosed the Ekman momentum approximation from a 2D

HPE frontal simulation including a boundary layer. He concluded

that the Ekman momentum approximation was poor in frontal

scenarios. In contrast, here we considered the early phases of

baroclinic development, in the limit of small Ro. The benefit of

the SGT model was found to be greater in these situations. The

reduced accuracy of the SGT model within the boundary layer

provided a caution against its use at values of Ro above about 0.1.

For example, the accuracy of the SGT model would be poor at

sharp fronts, in agreement with Snyder (1998).

We have avoided the need to compute solutions of the SGT

model prognostically in this study by using a diagnostic technique.

This is used to show whether HPE solutions scale with Ro in the

manner expected by theory. As discussed in Cullen (2007), if a

solution of a reduced model like SGT exists, it is possible to prove

that solutions of the full equations converge to it, possibly with

prepared initial data. While the necessary mathematical theory

has not yet extended to this case, we have demonstrated the

expected rates of convergence. This adds support to the theoretical

estimates as well as suggesting that the control HPE solutions

have the correct large-scale behaviour. The large timestep tests

show that this behaviour can be degraded by inaccurate numerical

techniques.

The approach here could also be applied to testing either

alternative parametrizations or different dynamical regimes other

than a baroclinic wave. For example, Ekman balance still

applies in the boundary layer even when the Coriolis parameter

is zero (Beare and Cullen 2012). Thus equatorial scenarios

could be investigated. Many challenges for weather and climate

models involve their physics-dynamics couplings. The validation

approach used here could be employed with more complicated

numerical weather prediction models. For example, the role of the

grid, advection scheme and numerical coupling of the advection

and boundary-layer schemes could be investigated. Using an

c© 0000 Royal Meteorological Society Prepared using qjrms4.cls



Validation of baroclinic-wave simulations 13

idealised baroclinic wave case for the Met Office Unified Model

(Beare 2007), the geostrophic winds and Coriolis parameter could

be rescaled simply as shown here. Thus, the convergence to the

SGT model could be used to validate a full numerical weather

prediction model.
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6. Appendix

6.1. Boundary-layer scheme

The boundary-layer scheme used vertical diffusions of momentum

and heat expressed as a function of a mixing length (λ), the

vertical wind shear (S) and functions of gradient Richardson

number (Ri)

Km = λ2Sfm(Ri), Kh = λ2Sfh(Ri),

S2 =

(
∂u

∂z

)2

+

(
∂v

∂z

)2

, Ri =
g

S2θ0

∂θ

∂z
, (45)

where the mixing length was defined as

1

λ
=

1

λ0
+

1

κ(z + z0)
, (46)

and λ0 = 40 m, κ = 0.4 is the von-Karman constant and z0 = 0.1 m

the roughness length. The terms fm and fh are stability functions

for momentum and heat respectively and defined separately for

stable and unstable stratification

fm(Ri) = Prfh(Ri) =


1/(1 + 10Ri) Ri ≥ 0,

(1− 16Ri)1/2 Ri < 0,

(47)

where Pr = 0.7 is the neutral Prandtl number. A two-time-level

scheme was used for the boundary layer parametrization. In the

control set-up, an implicit timestepping method was used for the

boundary layer.

We now summarise the methods of diagnosing velocities

for the: Ekman balance, SGT model and initial ageostrophic

circulations.

6.2. Calculating Ekman-balanced velocity

Since the boundary-layer drag term was evaluated implicitly,

an alternative evaluation of (ue, ve) to that used by Beare and

Cullen (2013) was required. Instead, we made a first evaluation

of (ue, ve), by setting the material derivative to zero in Eqs.

(32) and (34) and keeping the boundary-layer drag fixed. We

then recalculated the boundary-layer terms, and iterated further

if required.
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14 R. J. Beare and M. J. P. Cullen

6.3. Sawyer-Eliassen equation

The standard SG Sawyer-Eliassen equation was used to initialise

the ageostrophic circulation in the model

f

(
f +

∂vg
∂x

)
∂2ψ′

∂z2
− 2

g

θ0

∂θ

∂x

∂2ψ′

∂x∂z
+N2 ∂

2ψ′

∂x2
= 2

∂vg
∂x

g

θ0

∂Θ

∂y
,

(48)

where

(ua, w) =

(
∂ψ′

∂z
,−∂ψ

′

∂x

)
. (49)

The boundary conditions on vertical velocity gave

ψ′ = 0 at z = 0 and z = H, (50)

where ψ′ was periodic in x.

6.4. Calculating SGT model velocity

Beare and Cullen (2013) derived a Sawyer-Eliassen circulation

equation including a boundary layer using the SGT model. The

equation was derived by requiring that Ekman balance was

maintained in the time evolution. We also included baroclinic

forcing here to give

Lψ =

Boundary layer︷ ︸︸ ︷(
f2 +D2 +

∂D
∂t

)
∂ue
∂z
− ∂Fb

∂x
+

Baroclinic︷ ︸︸ ︷(
∂ve
∂x

+
∂v

∂x

)
g

θ0

∂Θ

∂y

(51)

where the operator, D, applied to an an arbitrary function, g, is

written as Dg = ∂2

∂z2
(Kmg) and

Fb =
g

θ0

∂

∂z

(
Kh

∂θ

∂z

)
. (52)

The operator L in Eq. (51) is given by

Lψ =

[
f

(
f +

∂ve
∂x

)
+D2 +

∂ue
∂x
D
]
∂2ψ

∂z2
+N2 ∂

2ψ

∂x2

−
(
∂ue
∂z
D −D∂ue

∂z
+ 2

g

θ0

∂θ

∂x

)
∂2ψ

∂x∂z
− ∂D
∂x

∂ue
∂z

∂ψ

∂z

+
∂D
∂z

∂ue
∂z

∂ψ

∂x
. (53)

The streamfunction ψ was defined as

(us − ug, ws) =

(
∂ψ

∂z
,−∂ψ

∂x

)
. (54)

The vertical velocity was zero on the top and bottom boundaries,

giving

ψ = 0 at z = 0 and z = H, (55)

and ψ was periodic in x. The method for calculating vs was as

Beare and Cullen (2013).
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