The transition from granite to banded aplite-pegmatite sheet complexes: an example from
Megiliggar Rocks, Tregonning topaz granite, Cornwall

K. Breiter, J. Ďurišová, T. Hrstka, Z. Korbelová, Institute of Geology of the Czech Academy of
Sciences, Rozvojová 269, CZ-16500 Praha, Czech Republic

M. Vašinová Galiová, Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2,
CZ-611 37 Brno, Czech Republic; actual address: Department of Geology and Pedology,
Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 1,
613 00 Brno, Czech Republic

A. Müller, Natural History Museum, University of Oslo, P.O.Box 1172, Blindern, 0318 Oslo, Norway;
Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom

B. Simons, 14 Park an Fenten, St. Agnes, Cornwall, TR5 0A5, United Kingdom

R.K. Shail, B.J. Williamson, J.A. Davies, Camborne School of Mines, College of Engineering,
Mathematics and Physical Sciences, University of Exeter, Penryn Campus, Cornwall, TR10 9FE, United Kingdom

Abstract

The genetic relationship between a granite pluton and adjacent complex of rare-metal pegmatite-
aplite-banded sheets (Megiliggar Sheet Complex - MSC) has been studied at the border of the
Tregonning topaz granite at Megiliggar Rocks, Cornwall, SW England. Similarities in whole-rock
chemical and mineralogical compositions, together with a gradual change in textures away from the
granite margin, provide strong evidence for a genetic link between the Tregonning Granite and MSC.
The sheets are likely to represent apophyses of residual melt which escaped from the largely
crystallised roof of the granite pluton. The escaping melt was peraluminous, had a composition near
the F, B, Li slightly enriched granite minimum, and, in comparison with other Cornish granites, was
enriched in F, Li, Rb, Cs, Sn, W, Nb, Ta, and U, and depleted in Fe, Mg, Ca, Sr, Th, Zr, and REE.

With increasing distance from the Tregonning Granite, the silicate melt crystallized as homogeneous
leucogranite sheets and banded complex sheets (i.e. combinations of bands with granitic, aplitic and pegmatitic textures), then layered aplite-pegmatites; this sequence becoming progressively more depleted in the fluxing and volatile elements F, Li, Rb, and Cs, but showing no change in Zr/Hf ratios. The fixed Zr/Hf ratio is interpreted as indicating a direct genetic link (parental melt) between all rock types, however the melt progressively lost fluxing and volatile elements with distance from the granite pluton, probably due to wall-rock reaction or fluid exsolution and migration via fractures. Differentiation of the primary melt into Na-Li-F-rich and separate K-B-rich domains was the dominant chemical process responsible for the textural and mineral diversity of the MSC. On a large (cliff-section) scale, the proximal Na-Li-F-rich leucogranite passes through complex sheets into K-B-rich aplite-pegmatites, whilst at a smaller (< 1 m) scale, the K-B-rich bands are interspersed (largely overlain) by Na-Li-F-rich segregations. The grain size differences between the aplite and pegmatite could be related to pressure fluctuations and/or undercooling.

Key words: granite; aplite; pegmatite; magmatic layering; Megilggar Rocks; Cornwall

1. Introduction

The genetic relationship between granitic pegmatites and adjacent or enclosing granites has long been debated, particularly whether such pegmatites form from residual, volatile-rich melts sourced from the granites (London, 2008, chapter 5). In the case of pericontact pegmatites, e.g. stockscheider in tin granites in the Erzgebirge (Breiter et al., 2005), and intragranitic pegmatites, e.g. Black Hills, South Dakota (Norton, 1994) or Pikes Peak, Colorado (Simmons and Heinrich, 1975), a direct genetic link is generally accepted. Stockscheider represent an early product of volatile enrichment at the upper or lateral contacts of a granite melt with non-granite host rocks or a previously emplaced melt batch (Breiter et al., 2005). Intragranitic pegmatites represent late segregations of residual water-rich melt (Shearer et al., 1992). These pegmatite types are commonly found in both strongly peraluminous and subaluminous (S- and A-type) granite plutons. In the case of typical “classic pegmatites”, i.e. large dykes or bodies with strong internal zoning and enrichment of rare minerals/elements, typically intruded into metamorphic rocks distal from granite
plutons of appropriate composition, the source of the pegmatitic melt is often inferred (London 2008, chapter 10). Goad and Černý (1981) introduced the term “fertile granite” for the mainly leucocratic granitic plutons which lie proximal to pegmatite fields (mainly of LCT-type). These fulfil the theoretical expectations for fertile starting compositions coupled with long fractionation processes, forming bodies of complex pegmatites (Černý, 1991; Breaks and Moore, 1992). Nevertheless, despite an intensive search, localities enabling the direct study of the transition from a granite pluton to rare-element pegmatite dykes in the host rock are scarce (Neiva and Ramos, 2010; Autunes et al., 2013).

We describe here a superb example from Megiliggar Rocks in Cornwall, SW England. A subhorizontal sheet complex, showing the transition from leucogranites to aplites and pegmatites, is spectacularly displayed over 500 m of coastal cliff exposures at the SE margin of the Tregonning Granite. Although the locality is well-known, published mineralogical investigations and data are relatively sparse (Hall, 1930; Hosking, 1952; Stone, 1969, 1975, 1992; Stone and George, 1978; Badham, 1980; George et al., 1981; Exley and Stone, 1982; Stone et al., 1988; Henderson et al., 1989; Bromley, 1989; Floyd et al., 1993; Breiter et al., 2016; Duchoslav et al., 2017; Simons et al., 2017); the most comprehensive study of aplite-pegmatite banding is that of Stone (1969). The aims of this study are to describe the mineralogy, mineral chemistry and whole-rock geochemistry of the entire range of granitic rocks within the Megiliggar sheets (granites, aplites, pegmatites) and ascertain their relationship(s) with each other and the adjacent Tregonning Granite.

2. Geological setting

The Early Permian Cornubian Batholith of SW England is a classic location for the study of rare-metal granites (e.g. Manning and Exley, 1984; Stone and Exley, 1985; Charoy, 1986; Willis-Richards and Jackson, 1989; Chappell and Hine, 2006; Müller et al., 2006; Simons et al., 2016). These Variscan post-collisional peraluminous granites can be subdivided into five major types (Fig. 1a): two mica (G1), muscovite (G2), biotite (G3), tourmaline (G4) and topaz (G5) granites. The topaz granites are typically medium-grained, equigranular and aphyric alkali feldspar granites (<An3), and are characterized by lithium-rich micas and up to 3 vol.% topaz (Manning and Hill, 1990; Manning et al., 1996; Stone, 1992; Simons et al., 2016). Topaz granites occur principally in the Tregonning Granite.
and the Nanpean and Hensbarrow stocks within the composite St Austell Granite; the Meldon Dyke, north of the Dartmoor Granite, is a topaz aplite (Simons et al., 2016).

The Tregonning-Godolphin Granite (Stone, 1975, 1992) contains the fine- to medium-grained porphyritic two mica Godolphin Granite in the north, and the Tregonning Granite in the central and southern parts of the pluton which is exposed on the coast. Hall (1930) attributed these coastal exposures to the Godolphin Granite, following early Geological Survey usage (Reid and Flett, 1907), but the composite nature of the pluton was recognised by Stone (1960) and the Tregonning Granite has been distinguished separately in most subsequent work (e.g. Stone, 1975, 1990; Floyd et al., 1993; Simmons et al., 2016).

The host rocks to the Tregonning Granite are low-grade regionally- and contact metamorphosed metasedimentary rocks of the Mylor Slate Formation (Goode and Taylor, 1988; Leveridge and Shail, 2011). Field relations indicate that granite emplacement and contact metamorphism post-dated the development of folds and cleavages related to both Variscan thrusting (D1 and D2) and post-Variscan extension (D3) (Stone, 1966, 1975; Alexander and Shail, 1996; Pownall et al., 2012). The dominant fabric in the host rocks is a gently SE-dipping S3 crenulation cleavage (S2 of Stone, 1966) that commonly transposes earlier fabrics and locally contains variably boudinaged veins of metamorphic quartz (Alexander and Shail, 1996). The history of pre- and post-granite vein development and the associated fluid characteristics has been described by Wilkinson (1990, 1991) and Gleeson et al. (2000).

A series of leucocratic, partly layered granites, termed the “roof complex” (Stone, 1975), lies along the horizontal upper contact of the Tregonning Granite with the Mylor Slate Formation. At the SE margin of the Tregonning Granite, the roof complex is represented by gently SE-dipping leucogranite and aplite-pegmatite sheets within the Mylor Slate Formation that are continuously exposed in a 30-50 m high cliff section over a distance of c. 500 m between Legereath Zawn (“zawn” is a Cornish term meaning a deep and narrow sea-inlet cut by erosion into sea-cliffs, and with steep or vertical side-walls) and Tremearne Par (“Megiliggar Rocks” 50°04′26.4″ N, 5°24′42.6″ W) (Fig. 2a). We hereafter refer collectively to these sheets as the “Megiliggar Sheet Complex” (MSC). The geometrical
relations of these sheets, and their relations to the Tregonning Granite, have been variably represented
in sketch cross-sections (Hall, 1930; Stone, 1975; Badham, 1980; Exley and Stone, 1982; Bromley,
1989; Floyd et al., 1993; Fig. 1b in this work).

The easternmost exposure of the Tregonning Granite occurs around Legereath Zawn where it post-
dates an earlier biotite granite porphyry (‘elvan’) dyke (Hall, 1930), the ‘Legereath granite porphyry’
of Stone (1975) or ‘Legereath Zawn Elvan’ of Breiter et al. (2016). The uppermost part of the
Tregonning Granite is exposed in the western, northern and eastern walls of Legereath Zawn. In the
northern wall it occupies the full cliff height (50 m) but moving eastwards passes, at an elevation of c.
15 m, into the lowermost sheet of the MSC within the Mylor Slate Formation. We concur with Hall
(1930, Fig. 8B) that there is also a magmatic linkage, via a short sheet segment, between this
lowermost sheet and the uppermost part of the Tregonning Granite towards the base of the cliff on the
eastern side of Legereath Zawn. Although the contacts between the more easterly MSC sheets and the
trogan Granite are not exposed, we infer that all the MSC was sourced in a comparable manner
from the upper parts of the Tregonning Granite.

3. Analytical methods

The whole-rock (WR) major element oxide determinations (using wet techniques, for detail see
http://www.geology.cz/extranet-eng/services/laboratories/inorganic-analysis) were carried out at the
Czech Geological Survey, Praha. Replicate analyses of an international reference material (JG-3;
Geological Survey of Japan) yielded an average error (1 sigma) of ± 1 % with respect to the
recommended values (Govindaraju, 1994). Trace elements were determined by ICP mass spectrometry
following lithium metaborate/tetraborate fusion or nitric acid digestion in the laboratories of the
Bureau Veritas, Vancouver, Canada (For details including limits of detection see http://
laboratory codes LF100 and MA200).

A TESCAN Integrated Mineral Analyzer (TIMA) was used for automated mineralogical, modal and
textural analysis employing Liberation Analysis mode (Gottlieb et al., 2000). Liberation Analysis
mode, with ‘high-resolution mapping’, includes the collection of backscattered electron (BSE) and
EDS data on a regular grid (10 μm point spacing in our case). At each point, the BSE level is determined. If the BSE level is above a certain threshold, the beam is kept directed on this spot until a predefined number of X-ray counts (1000 in our case) from the spectrometer are collected. The individual points are grouped based on a similarity search algorithm and areas of coherent BSE and EDS data merged to produce segments (i.e. mineral grains). Individual spectra from points within each segment are summed. The average BSE value is also calculated. Data from each segment are then compared against a classification scheme to identify the mineral and assign its chemistry and density (Hrstka et al., in prep.). The results are plotted in the form of a map showing the distribution of minerals within the sample.

Minerals were chemically analysed using a Cameca SX 100 electron microprobe, in wavelength-dispersive mode, at the Institute of Geology CAS. Analytical conditions for silicates were: accelerating voltage 15 kV, beam current 10 nA, beam diameter 2 μm. The following calibration standards were used: Na, Al – jadeite, Mg, Si, Ca – diopside, K – leucite, Ti – rutile, P – apatite, Mn – MnCr$_2$O$_4$, Fe – magnetite, F – fluorite, and Rb – RbCl. The matrix correction procedure X-Phi (Merlet, 1994) was applied. The empirical formulae of the feldspars were calculated based on 8 oxygen atoms per formula unit (8 O apfu); the empirical formulae of the micas were calculated based on 44 negative charges. The empirical formulae of the tourmaline were calculated based on 24.5 oxygen atoms per formula unit (boron excluded).

The Sn, W, Nb, Ta-oxide minerals and zircon were analyzed at an accelerating voltage and beam current of 15 kV and 7 nA, and 15 kV and 10 nA, respectively, with a beam diameter of 1 to 3 μm. The counting times on each peak were optimized for individual elements according to their expected concentrations (10–60 s), and half that time was used to obtain background counts. X-ray lines and background offsets were selected to minimize interference.

Lithium and trace elements in micas and tourmalines were determined using LA-ICP-MS at the Masaryk University, Brno. Micas were analyzed using a Nd:YAG-based laser ablation system at a wavelength of 213 nm (New Wave Research, Inc., Fremont, CA, USA), which was coupled to a ICP-QMS instrument with quadrupole mass spectrometer (Agilent 7500ce, Agilent Technologies, Santa Clara, CA, USA). Tourmaline grains were analyzed with an ArF excimer-based laser ablation system.
Analyte G2 (Teledyne CETAC Technologies) at a wavelength of 193 nm, which was coupled to an Element2 (Thermo Fischer Scientific) ICP-MS instrument with double focusing electrostatic and magnetic sectors. Operating conditions of both the LA-ICP-QMS and LA-ICP-SFMS were optimized with the aim of obtaining maximum signal-to-background ratios and sensitivity, minimum spectral and non-spectral interferences and best signal stability, and then kept constant throughout the analyses.

Micas were ablated under optimal conditions of: fluence (13 J cm\(^{-2}\)), frequency (10 Hz), ablation dwell time (40 s), duration of Ar-He gas blank measurement (40 s) and laser beam spot diameter (80 μm).

For tourmaline, a spot diameter of 30 μm, fluence of 3 J cm\(^{-2}\), frequency of 10 Hz, 60s ablation dwell time and 60s Ar-He gas blank measurement were applied. Silica was employed as the internal reference element having been previously determined in samples by electron microprobe. The systems were calibrated using artificial glass NIST610 and NIST612 to quantify the concentrations of Li, Al, Sc, Ga, Ge, Nb, In, Sn, Cs, Ta, W and Tl in mica, and Li, Be, B, Al, Sc, Zn, Ga, Ge, Rb, Nb, In, Sn, Cs, W, and Tl in tourmaline.

Trace element concentrations (Al, B, Be, Fe, Ge, Li, Mn, P, Rb, Sn, Sr, and Ti) in quartz were determined by LA-ICP-MS at the Institute of Geology CAS. This utilized a Thermo-Finnigan Element 2 sector field mass spectrometer coupled to an Analyte Excite 193 nm excimer laser (Photon Machines). Analyses were conducted using a repetition rate of 10-20 Hz, laser fluence of 3–5 J/cm\(^2\), beam size of 40-80 μm; all parameters were optimized against the intensity of signals. The ablated material was transported by high purity He gas from the laser ablation cell. Time-resolved signal data were processed using Glitter software (http://www.glitter-gemoc.com/). The isotopes \(^{29}\)Si and \(^{30}\)Si were used as internal standards based on the assumption that the analyzed quartz contains 99.95 wt% SiO\(_2\). The data were calibrated using artificial glass NIST612. For more details see Breiter et al. (2013).

4. Petrology of the Megiliggar Sheet Complex (MSC)

4.1 Textural varieties of MSC samples studied
The Tregonning Granite is a medium-grained equigranular granite, light in colour and composed of quartz, albite, perthitic K-feldspar, zinnwaldite/lepidolite micas, and Li-F-rich schorl. Apatite is minor, while rutile, Fe-columbite, and zircon are accessory (typical sample #5303, Fig. 3a).

A small body of fine-grained equigranular granite with macroscopic black mica, termed a biotite granite dyke, was found within the faulted zone at Legereath Zawn, in association with a typical granite-porphyry (‘elvan’) dyke. The biotite granite is composed of quartz, albite, K-feldspar, strongly muscovitized Li-Fe-mica (primarily siderophyllite-zinnwaldite in composition) and schorl. Apatite is minor; rutile, zircon and monazite are accessory minerals (sample #4962).

SE from Legereath Zawn, the following principal types (facies) can be defined within the sheets of the MSC (Fig. 1b):

- Homogeneous leucogranite which forms three major sheets, each up to 3 m thick and 200 m long (Fig. 2a). This rock is fine- to medium grained, equigranular and nearly white in colour. It is composed of quartz, albite>K-feldspar, zinnwaldite-trilithionite mica, and Li-enriched fluoroschorl. Sub-parallel dark layers up to 3 cm thick that are enriched in mica are locally conspicuous (Fig. 2b, c). Amblygonite and apatite are minor; zircon, Mn-columbite, and uraninite are accessory (typical sample #4963).

- These fine-to medium grained leucogranite sheets also contain a fine-layered aplitic facies and minor pods and laminae of pegmatite facies. Further SE, the proportions of granitic, aplitic and pegmatitic facies became nearly equal forming “complex sheets” (Fig. 2d, e). Some aplitic and pegmatitic layers form rhythmic structures; textural borders are smooth and gradational. The direction of crystallization, i.e. relative age of layers, may be inferred from orientation of feldspar crystals in unidirectional solidification textures (UST) (London, 2008). In some cases, the layering is a product of repeated injection (compare Bromley, 1989) with symmetrical zoning. These sheets are enriched in Li and F; they contain pinkish Li-bearing zinnwaldite-trilithionite micas and Li-enriched (deep green) tourmaline in some laminae, but muscovite and black schorl in others.

Albite dominates over K-feldspar. Manganese-rich apatite is minor; fluorite, monazite, xenotime, zircon, columbite, rutile, cassiterite, wolframite, uraninite, pyrite, arsenopyrite, molybdenite and native Bi are accessory minerals. Typical samples are #2015 (fine layered aplite), 4964 (fine-
grained granite with pegmatitic laminae), **5304** (fine-grained granite rich in tourmaline), **5305** (layered combination of granite, pegmatite and aplite, Fig. 3b).

- Major bodies of aplite/coarse-grained granite/pegmatite and abundant thinner aplite/pegmatite sheets with very different textures and scales of layering appear mainly in flat outcrops on the beach, and are subordinate in the cliff. They are composed of irregular and locally interpenetrative domains (layers, nests, dykes) of <1 mm-sized (aplitic), 1–2 cm-sized (granitic) and coarser (pegmatitic) matter. Contacts are both sharp and gradational; in-situ fractionation is combined here with repeated injection of similar magma (thin laminas crystallizing from both contacts inwards cross an older layering with upwards oriented crystallization). All textural varieties within these sheets contain more K-feldspar than albite, and are rich in tourmaline (schorl to foitite). Mica is in all cases muscovite/phengite in composition. Apatite is minor, and zircon, monazite, xenotime, uraninite, sphalerite, pyrite, molybdenite, and native Bi are accessory. Rocks are Li- and F-poor. Typical samples are **#4965** (layered aplite from centre of a thick sheet), **#5306** (aplite at the border of a sheet), and **#5307** (granitopegmatite, i.e. very coarse grained rock with granitic texture, centre of the sheet next to #5306, Fig. 3c). Quartz-cored tourmaline is also present (very coarse-grained granite, **#5302**).

- Thin pegmatite or aplite/pegmatite dykes (usually <20 cm, Figs. 3b, c) occur in the eastern part of the cliff. These dykes often change orientation (horizontal vs. vertical), diverge and coalesce. The pegmatite-like textures appear mainly along the contacts (Fig. 3d), but locally change laterally to pericontact and central positions (Fig. 2f). These dykes are tourmaline and muscovite-dominant, and Li- and F-poor. Occasionally, texturally similar, but steeply-inclined sheets occur (Fig. 2g).

- Quartz veins, variably developed throughout the study area, but conspicuous in the easternmost part around Tremearne Par (Hosking, 1952; Badham, 1980; Bromley, 1989). These are deformed (folded and/or boudinaged) within the S3 cleavage and pre-date granite emplacement; they were sourced from Variscan metamorphic fluids and are not part of the MSC.

For further description and interpretation, samples have been classified into three principal groups, based on a combination of textures, whole-rock chemistry, and mineral abundances and compositions:
(i) granites, i.e. fine- to medium-grained homogeneous rocks (Tregonning Granite #5303, leucogranite sheet #4963), (ii) Li-mica-dominated complex sheets (#2015, 4964, 5305, 5304), and (iii) muscovite-tourmaline-dominated aplite-pegmatites (#4965, 5302, 5306, 5307) [The term aplite-pegmatite is hereafter used for intimate banding of fine-grained (aplitic) and coarse-grained (pegmatitic) layers (Jahns and Tuttle, 1963; London, 2008)]. This classification is somewhat simplistic, as combinations of textural types and transitional facies are common, but is necessary to allow further description, interpretation, and discussion.

4.2 Detail zoning of the sheets

Two samples of fine-layered rock were chosen for a detailed study of mineralogical and geochemical zoning: a Li-mica dominated sample from a complex sheet (#2015, Fig. 4), and a muscovite-tourmaline-dominated aplitic domain of an aplite-pegmatite sheet (#4965, Fig. 5). Mineral maps across the zoning were constructed and mineral compositions in texturally distinct layers (laminae) were computed using TIMA-technology. Approximate chemical compositions of individual layers and WR (Fig. 6, Supplementary tables 1, 2) were computed from modal compositions of layers and chemical composition of rock-forming minerals determined by electron microprobe, with Li by the LA-ICP-MS.

The texture of sample #2015, from a Li, F-enriched complex sheet, is composite and can be divided into three sections. The lower part of the sequence, termed layers #1→7, evolved systematically with a decrease in the modal abundance of K-feldspar (28→6.5 vol.%), quartz (33→25 vol.%), and tourmaline (8→4 vol.%), along with a strong increase in the modal abundance of albite (16→74 vol.%, Fig. 4). In the middle section, lines 8→11, the modal abundance of minerals is much more variable, as it is in the upper part of the sample, layers #12→22, which is also rich in albite (38→74 vol.%), zinnwaldite (mostly 5–6 vol.%) and topaz (up to 11 vol.% in lines 19 and 20), and poor in K-feldspar (mostly <10 vol.%), tourmaline (mostly <1 vol.%) and muscovite (mostly <2 vol.%).

Additionally, the grain size of the albite-dominated layers is significantly finer than that of K-feldspar dominated layers.
Distinctive chemical changes appear between layers #11 and 12: K and B decrease, while F increases (Fig. 6a). Mineralogically, this is due to muscovite and tourmaline giving way to zinnwaldite and topaz. The pairs Na–K and F–B are negatively correlated (Fig. 6b, c) due to mineralogical antagonism of albite vs. K-feldspar and lepidolite vs. tourmaline. Boron and Fe show a positive trend (Fig. 6d), both hosted dominantly in tourmaline, and F with Mn, as F-rich micas are relatively enriched in Mn.

The relationship between F and B vs. the Ab-Kfs ratio is more complex; nevertheless, F- (resp. B-) enrichment in Ab- (resp. Kfs-) dominated layers is clear.

The tourmaline-muscovite aplite-pegmatite is dominated by aplite (#4965, Fig. 5) and shows only moderate variability in mineral compositions in layers #1-5, with 23–42 vol.% K-feldspar, 12–26 vol.% albite, 30–47 vol.% quartz, 4–8 vol.% muscovite and 4–10 vol.% schorl. The zoning is visually apparent from a variation in grainsize and orientation of tourmaline grains. There is no general trend in composition from layers #1→5. Layer #6 differs remarkably and is rich in topaz and muscovite (22.4 and 32.4 vol.% resp.), representing a vug filled with residual melt/fluid. Surprisingly, even though sample #4965 contains F-poor tourmaline and mica, the WR content of fluorine is, due to the high topaz vol.% in layer #6, higher than that in sample #2015 (Fig. 6c).

5. Whole-rock chemical compositions

All rock types forming the MSC are chemically similar, being rich in silica (69–76 wt.% SiO₂), leucocratic, and strongly peraluminous (ASI=1.23–1.46, (molar Al₂O₃/CaO+K₂O+Na₂O)) (Tab.1, Fig. 7). All rock types are, in comparison with other Cornubian granites, rich in alumina (mostly 14–16 wt.% Al₂O₃), phosphorus (0.3–0.7 wt.% P₂O₅), Li, Nb, Ta and Sn, but poor in iron (mostly <1 wt.% FeO₆), magnesium (mostly <0.2 wt.% MgO), calcium (with one exception ≤0.6 wt.% CaO), Zr and REE (Chappell and Hine, 2006; Simons et al., 2016).

Comparing the three main groups of rocks, the granites (comprising the Tregonning Granite and leucogranite sheet) are relatively poor in silica (69.2–71.1 wt.% SiO₂) and potassium (4.2–5.3 wt.% K₂O), but rich in sodium (3.4–4.3 wt.% Na₂O), lithium (ca. 0.40 wt.% Li₂O), fluorine (0.9–1.4 wt.% F), Rb (1400–1830 ppm), and Cs (200–250 ppm). In contrast, the aplite/pegmatite sheets are rich in silica (72.1–76.3 wt.% SiO₂) and potassium (mostly >5 wt.% K₂O), but poor in sodium (1.9–2.9 wt.%
Na₂O), lithium (<0.03 wt.% Li₂O), fluorine (0.2–0.64 wt.% F), Rb (356–755 ppm), and Cs (17–33 ppm). High-field strength trace elements (HFSE) are highly variable in their concentrations: Sn (13–80 ppm), W (4–46 ppm), Nb (17–69 ppm), Ta (6–50 ppm), and Zr (9–29 ppm). The chemical composition of the “complex sheets” usually lies between the “granites” and “aplite-pegmatites”.

Within the WR data, there is a strong positive correlation between Li, Rb, F, and Na (i.e. elements hosted in Li-mica and albite), and among all these elements and the Mn/Fe value. All rock types, excluding biotite granite, have very low contents of all REEs, flat REE distribution pattern, and a distinct tetrads effect (Fig. 7e). The extremely low REE-content of the sample 4963 probably indicates a strong interaction with a late- or post-magmatic fluid. The biotite granite has an REE pattern typical of common granitoids with a relative enrichment of LREE over HREE. The granites and sheets from Megiliggar show an extreme enrichment in Li, Nb, Ta, Sn and W relative to other Cornubian granites, and show significantly lower Zr and REE (e.g. Chappell and Hine, 2006; Müller et al., 2006; Simons et al., 2016, 2017).

The biotite granite differs from all the above mentioned rock types in being slightly enriched in FeO₉₅ (1.37 wt.%), MgO (0.26 wt.%) and strongly enriched in U (39 ppm), Th (7 ppm) and all REEs (for example Ce 25 ppm).

6. Minerals

Quartz typically has consistent primary abundances of trace elements and therefore gives reliable information about the composition of the magma from which it crystallized (e.g. Jacamon and Larsen, 2009). The chemical composition of quartz in samples from Megiliggar is characterized both by a relatively large scatter of trace elements in each sample, and, conversely, by similarity in composition across all samples (Fig. 8, Supplementary Table 3). Surprising is the strong positive correlation between Ti and Al, which is very different to the usual negative correlation between these elements in common granites, with Ti decreasing with increasing Al during fractionation (Müller et al., 2010; Breiter et al., 2014). The Al/Ti ratio, usually a good indicator of magma fractionation, has a narrow interval of 10–40. Quartz from all samples is very rich in Li, but poor in Ge. In comparison with a large dataset for Variscan granites and pegmatites (Breiter et al., 2013, 2014), quartz from the MSC
shows trace element trends which are more like those of granites than pegmatites. Indications of a hydrothermal origin, low contents of Ti (<5 ppm) coupled with very high Al (>>1000 ppm) (Rusk et al., 2008) were not found.

K-feldspar (Kfs) is present in two textural varieties: (i) as perthite which appears in rock facies with typical pegmatite textures, usually enriched in schorl, and (ii) as small phenocrysts (<25 mm) in the Tregonning Granite. Homogeneous Kfs, often with abundant inclusions of albite (but not admixtures), prevails in other rock types (groundmass in the Tregonning Granite, leucogranite sheet, aplites). In layered rock, the tourmaline-rich sample #4965 contains only homogeneous Kfs, while sample #2015 contains perthite in the layer #4 and homogeneous Kfs in all other layers.

Chemically, two groups of K-feldspars may be distinguished (Supplementary Table 4): (i) relatively more evolved P-enriched (>0.3 wt.% P₂O₅) grains with 0.2–0.6 wt.% Rb₂O were found in the granites (incl. biotite granite from Legereath Zawn) and complex sheets, and (ii) less evolved crystals, with P₂O₅<0.3 wt.% and Rb₂O<0.3 wt.%, in the aplite-pegmatites. The abundance of P and Rb does not relate to whether the K-feldspar has a homogeneous or perthitic texture.

Albite is the main plagioclase phase containing less than 1.2 wt.% CaO (<0.06 apfu Ca, Supplementary Table 2), in line with previous studies (Stone, 1992; Simons et al., 2017). The highest content of Ca was found in albite from the biotite granite dyke (0.47–1.18 wt.% CaO), while nearly all grains from the other rock types contain albite with <0.4 wt.% CaO. The Li-mica bearing complex sheets contain P-enriched albite (0.4–0.6 wt.% P₂O₅, 0.015–0.022 apfu P), while albite from the Tregonning Granite and from the tourmaline-bearing facies of the sheets usually contains less than 0.1 wt.% P₂O₅ (<0.004 apfu P).

Micas usually form small grains (<1 mm across) that are evenly distributed through the samples. Aggregates of larger muscovite flakes were only found in some thin laminae within complex sheets, e.g. layer #9 in sample 2015 (Fig. 4), and layer #6 in sample 4965 (Fig. 5). Three types of mica can be distinguished in the rocks studied: (i) zinnwaldite-trilithionite group (hereafter “lepidolite”), (ii) muscovite-phengite group (hereafter “muscovite”), and (iii) mica slightly enriched in Li within the siderophyllite–muscovite-zinnwaldite space (hereafter “Li-Fe-Al-mica”). This mica subdivision is represented on binary plots of mineral composition (Fig. 9a, b).
Lepidolite dominates in granites (e.g. outcrops of the Tregonning Granite and leucogranite sheets) and has also been found in the complex sheets. It is rich in Li (4–5 wt.% Li₂O), Rb (0.8–1.1 wt.% Rb₂O) and F (7.8–9 wt.% F) (Supplementary table 5); all these elements show a positive correlation.

Muscovite is present in complex sheets and dominates in aplite-pegmatites. It is enriched in Fe (typically containing 2 wt.% FeO, occasionally up to 4 wt.%), but poor in Li, Rb and F (<0.1 wt.% Li₂O, <0.2 wt.% Rb₂O, <0.1 wt.% F). In the fine-layered parts of complex sheets, muscovite and lepidolite micas alternate (Fig. 9c).

“Li-Fe-Al-mica” was found dominantly in the biotite granite dyke and occasionally also in the complex sheets. Macroscopically, this mica is black, resembling common biotite, which strongly differs from the light beige to pink colour of zinnwaldite–trilithionite. In comparison to the Li-micas of the zinnwaldite-trilithionite series, this mica is lower in Li (0.8–2.15 wt.% Li₂O), Rb (0.3–0.6 wt.% Rb₂O) and F (3–4 wt.% F) and strongly variable in Al and Fe (22–31 wt.% Al₂O₃, 4–18 wt.% FeO), with an approximate mean formula of K₂Li₁.₄Fe₁Al₂₋₇(Si₆Al₃O₂₀)F₁.₅(OH)₂.₅.

Of the trace elements, Cs is mainly present in lepidolite (500–6000 ppm, Supplementary table 6), whilst it does not exceed 100 ppm in muscovite and Li-Fe-Al-mica. Similarly, Ta (Fig. 9d) and W have a positive correlation with Li, reaching 25–75 ppm Ta and 300–600 ppm W in lepidolite from the Tregonning Granite and leucogranite sheet. Conversely, the highest content of Sn was found in muscovite from the complex sheets (180–340 ppm) and the highest Nb in the Li-Fe-Al-mica from the biotite granite dyke (120–350 ppm, Fig. 9e). Micas are the major host of Cs and W in all Megiliggar rocks, while their importance for the Sn-, Nb-, and Ta-budget of the rock is limited, consistent with the findings for topaz granites across the region (Simons et al., 2017).

Tourmaline was found, with variable modal abundances, in all examined varieties of granite and sheet rocks. It forms elongate grains less than 1 mm long in granites and aplites, but also up to 5–10 cm long and 1–2 mm wide thin needles in pegmatites. Higher abundances of tourmaline were found in rock types and laminae relatively rich in K-feldspar and muscovite, while samples relatively enriched in albite and lepidolite are usually tourmaline-poor. The tourmaline is mainly schorl and more rarely foitite (Fig. 10a). The most Li-rich tourmaline, which was found in the leucogranite sheet is dark green in colour, contains up to 0.7 apfu F (Supplementary table 7, Fig. 10b). Li is likely to occupy the Y-site.
in the following proportions: $\Box_{0.1}\text{Li}_{0.7}(\text{Fe+Mg+Mn})_{1.2}\text{Al}_{1}$ apfu (Fig. 10c). This tourmaline is alkaline and poor in vacancies; it should be termed Li-rich fluor-schorl. Tourmaline in other rocks is mostly black Li-F-poor schorl up to F-poor foitite. Tourmaline in the Tregonning Granite is usually zoned with relatively F-Na-Al-Mn-rich and Fe-Mg-depleted rims. These data are consistent with previous studies (London and Manning, 1995; Duchoslav et al., 2017).

In the finely banded rock domains (both #2015 and #4965), the contents of Fe, Mn, and Na in tourmaline increase, while Mg, Ca, and vacancies decrease from the oldest to the youngest layers. Some crystals are slightly zoned, often with schorl cores and slightly Li-F-enriched rims. Schorl crystals with quartz cores were found in some aplite/pegmatite sheets in the central part of the MSC (see images in the Supplementary material). Similar textures have been described from Roche Rock, St. Austell (Müller et al., 2005). This tourmaline is slightly chemically zoned (with relatively Fe-rich and Mg-poor rims), but is generally low in Li and F. The Li and F contents of tourmaline generally show a positive correlation with those in mica.

Among the trace elements (Supplementary table 8) in the tourmaline, Sn correlates strongly with Li reaching 60–130 ppm in fluor-schorl from the leucogranite sheet (Fig. 10d), and Ta attains 5–8 ppm in the leucogranite sheets. In contrast, the concentrations of W and Nb are generally very low: <0.5 ppm and <5 ppm, respectively, consistent with recent studies by Duchoslav et al. (2017) and Simons et al. (2017). Niobium and Ta in tourmaline, as in micas, are decoupled: Ta is preferentially enriched in fluor-schorl from the leucogranite sheets and in schorl from the youngest layer #6 in the fine-layered aplite #4965, while Nb prevails in tourmaline from all other locations. Levels of Zn in tourmaline vary mostly between 400 and 600 ppm with some outliers down to 150 and up to 700 ppm, but with little systematic difference between rock types. Gallium concentrations are highly variable (70–350 ppm), with the highest concentrations (>200 ppm) found in tourmaline from the leucogranite sheets and in the latest layer #6 of the sample #4965. The concentration of Be is usually <10 ppm, except in tourmaline from leucogranite sheets where it reaches 30–50 ppm. Contents of Cs, Ge and In are low in tourmaline from all rock types: <3 ppm, <5 ppm, <1 ppm, respectively. **Fluoroapatite** appears to have crystallised relatively late in all rock types as it is interstitial and anhedral. Apatite is enriched in Mn in the granites, reaching 0.2–0.3 apfu, and in the albite-rich
laminae of the layered rocks, with up to 0.52 apfu Mn (7.18 wt.% MnO). Amblygonite, which shows
limited alteration to montebrasite along cleavage planes, was found occasionally in the leucogranite
sheets as aggregates of anhedral grains several mm across. Monazite and xenotime form scarce small
grains (usually ~20 μm, occasionally up to 100 μm) in all rock types. They are the major carriers of
REE.

Rutile forms small anhedral grains which show irregular or patchy zonation (in SEM-BSE mode) and
contain inclusions of columbite, ixiolite or tantalite (Fig. 11a,b,c). Rarely, intergrowths of rutile and
cassiterite were found (Fig. 11d). Rutile, which is enriched in W and slightly in Nb (up to 6.1 wt.%
WO₃ and 1.6 wt.% Nb₂O₅), was often found as inclusions in micas in the biotite granite dyke. It is the
only Nb, W-bearing mineral in this rock. Rutile, which is strongly enriched in Nb and Ta (up to 17
wt.% Nb₂O₅, 36 wt.% Ta₂O₅), and appears together with Fe-columbite in the Tregonning Granite,
complex sheets and aplite-pegmatites (Fig. 12a), locally contains up to 0.7 wt.% Sc₂O₃ and 1 wt.%
WO₃ (Supplementary table 9).

Columbite-group minerals form 100–200 μm long needle-like crystals (Fig. 11e, f) or smaller (<30
μm) anhedral inclusions in rutile (Fig. 11a, c). They typically have a Ta/(Nb+Ta) ratio <0.5, i.e. the
mineral can be classified as **columbite**. The Mn/(Fe+Mn) value strongly varies not only among
samples, but also within a single grain. Generally, columbite-Mn is more common in the granites and
complex sheets, while columbite-Fe prevails in aplite-pegmatite sheets (Fig. 12b). Fe-columbite
contains 0.5–1 wt.% Sc₂O₃ and 2–10 wt.% WO₃. Columbite-like grains with >10 wt.% WO₃ (up to
30.7 wt.% WO₃) are classified as **ixiolite**, however it is difficult to confirm this without more
crystal-chemical information. The W-rich grains (domains in complex grains) are relatively Nb- and
Fe-rich (Figs. 12b, c). **Tantalite-Mn** was found only as one small crystal included in rutile in the
Tregonning Granite (Fig. 11b).

Cassiterite occurs as scarce subhedral grains in complex sheets (#5304), locally associated with rutile
(Fig. 11d). It is poor in minor elements (>97.8 wt% SnO₂) containing only traces of Nb and Fe.

Wolframite forms small (~20 μm) anhedral grains in some samples from complex sheets (#2015,
5304). It is poor in minor elements (usually <1 wt.% Nb₂O₅+Ta₂O₅+Sc₂O₃), with only one grain
containing 4.3 wt.% Nb₂O₅, 2.6 wt.% Ta₂O₅ and 1 wt.% SnO₂.
Monazite and xenotime (Fig. 11g), major hosts of REE, are scarce, but were found in all rock types. Uraninite, which forms both euhedral and anhedral grains up to 50 μm across, is quite common and is usually rimmed by pyrite (Fig. 13h, i). Within the finely banded aplite (#4965) it was found as inclusions in columbite and zircon (Fig. 11j).

Zircon is a rare accessory mineral in all rock types, as indicated from low WR Zr values, but rare euhedral grains, 10-20 μm across, were found in all samples (Fig. 11f). Numerous inclusions of uraninite were found in some zircon grains from the fine-layered aplite (Fig. 11j, k). Zircon from the aplite-pegmatite sheets has generally lower Zr/Hf values and lower contents of trace elements than zircon from the complex sheets (Fig. 13). Zircon from the biotite granite dyke is chemically uniform having intermediate Zr/Hf values (≈50) and low contents of all trace elements. All zircon types are free of the “ore elements” Nb, Ta, W, Bi, and Cu. Magmatic fluorite was found occasionally in some finely banded rock samples. Sulphides (arsenopyrite (Fig. 11l)>> sphalerite, galena, bismuthinite, molybdenite) and native Bi were found in some aplite-pegmatite sheets.

7. Discussion

The origin of layered albite-pegmatite sheets, which can include finely-banded aplites (line rock, Schaller, 1925), is an intriguing petrogenetic question which has broad implications for the genesis of pegmatites. Sheets containing fine-grained “aplitic” (usually in the lower half) and coarse-grained “pegmatitic” textures (usually in the upper half) have been explained previously as having both metasomatic (Schaller, 1925; Stone, 1969), and magmatic origins (Jahns and Tuttle, 1963; Webber et al., 1997; London, 2014). The MSC exposures at Megiliggar Rocks provide an excellent locality for testing these hypotheses. Our discussions focus on the relationship between the sheets and the nearby Tregonning Granite, mainly whether the sheets were formed from relatively evolved melt segregations.
within the roof of the Tregonning Granite. Differentiation of initially homogeneous granitic melt to
Na-Li-F- and K-B-enriched portions was the main process determining the diversity of sheet rocks.
This Na-Li-F vs. K-B differentiation was manifested at two scales: (i) between the Tregonning Granite
and MSC; and (ii) within the aplite-pegmatite banding of individual sheets.

7.1 MSC rocks as fractionated equivalents of the Tregonning Granite; large-scale Na-Li-F vs. K-

B differentiation

All previous authors agree unequivocally that there is a link between the Tregonning Granite and the
MSC. Hosking (1952) interpreted the MSC as having a purely magmatic origin, with aplite and
pegmatite sheets (including layers or laminae in the sheets) forming by repeated injections of the same
primary magma which varied episodically in its water and volatile contents. Later, Stone (1969, 1975,
1992) proposed a combination of magmatic and metasomatic processes, with initial formation of the
aplates by crystallisation of residual melts from the Tregonning Granite, followed by subsolidus
metasomatic recrystallization of the aplates to pegmatites and replacement of albite by K-feldspar. This
view was based on the observation that the aplitic parts of the sheets were more mineralogically and
chemically similar to the Tregonning Granite than the pegmatitic portions. The development of banded
aplite-pegmatite sheets has also been interpreted to be a consequence of repeated melt decompression
during fracture propagation accompanying xenolith separation (Bromley and Holl, 1986; Bromley,
1989). During decompression, volatile exsolution drove the residual melt towards the solidus,
resulting in rapid nucleation and crystallization of aplite; the exsolved hydrous fluid trapped above the
aplite contributed to the development of a complementary pegmatite layer.

From our textural and chemical data we suggest a dominantly magmatic origin for all MSC rock types;
however, interpretation of the WR chemical data is not straightforward. Nevertheless, the Na vs. K
differentiation, mineralogically expressed in albite vs. K-feldspar enriched domains is well
documented. In an eastwards traverse from the margin of the Tregonning Granite, through the
leucogranite sheets and complex sheets to the aplite-pegmatite sheets, there are conspicuous changes
in some major and trace element concentrations (Table 1): Na₂O decreases from 3.3–4.3 to 1.9–2.9
wt.%, F decreases from 0.9–1.4 to 0.2–0.6 wt.%, Li₂O decreases from 0.23–0.41 to 0.01–0.03 wt.%,
Rb decreases from 530–1830 ppm to 360–760 ppm, and Cs from 88–253 ppm to 17–33 ppm. In contrast, K$_2$O in the same direction increases from 3.3–4.5 to 3.5–6.1 wt.%. The concentration of B, as evident from the abundance of tourmaline, also increases eastwards, but chemical data for this element are not available. The contents of Si, Al, Fe and P remain fairly constant, and the HFSE are variable but show no obvious trends.

According to the K/Rb ratio, the most common index for magmatic fractionation, the leucogranite sheets (K/Rb=19) are more evolved than the Tregonning Granite (K/Rb=31), which is consistent with their interpretation as a product of crystallization of residual melt sourced from the Tregonning Granite roof zone. The lepidolite-bearing complex sheets show K/Rb values only slightly higher than the leucogranites (K/Rb=30–44), and have slightly lower contents of Li, Rb, and F, indicating that they may also represent fractionated equivalents of the Tregonning Granite melt, notwithstanding fracture-controlled partial escape of Li-F-bearing fluids into the surrounding host rocks. Conversely, the chemical composition of tourmaline-muscovite dominated aplite-pegmatite sheets is less evolved than the Tregonning Granite having relatively low Rb-contents (high K/Rb=58–94) and extremely low F, Li, and Cs abundances.

The complex sheets and aplite-pegmatite sheets have highly variable mobile alkalis and fluorine compositions. Lower contents of the rare alkalis in the distal parts of the sheet system may be explained by variable fluid escape from the crystallizing melt. Enrichment of the Mylor Slate Formation in the exocontact, previously noted by Stone and Awad (1988), may have been controlled by fractures now represented by steeply dipping aplite/pegmatite sheets (Fig. 2g). However, this does not explain the relative B enrichment in the distal aplite-pegmatite sheets. In the proximal part of the MSC (Fig. 1b), both Li-F-bearing tourmaline and mica crystallized late in the leucogranites, due to low levels of Fe in the melt. In the middle part of the MSC, in the complex sheets, crystallization of tourmaline precedes the crystallization of Li-F-micas. Tourmaline was the first Fe-bearing mineral in which the melt became saturated; this demonstrates a relatively high abundance of B and Fe in the melt at the beginning of the crystallization. Mica crystallized later, when F was sufficiently concentrated in the residual melt. In the distal MSC, within the aplite-pegmatite sheets, B predominates over F, even though its fluid/melt partition coefficient is distinctly higher than that of
fluorine. Thus, the eastwards proximal to distal decrease in F was not a result of its partitioning into a fluid and escape to the slates, but a consequence of its consumption by the relatively late crystallization of F-minerals (topaz?) in the proximal and central parts of the MSC. The last portion of melt, filling the distal parts of the sheet system, was F-poor, but still had sufficient B for tourmaline saturation, with Fe scavenged from the slate host rocks.

Variations in Nb- and Ta-contents and Nb/Ta ratios are often used as indicators of the degree of granite and pegmatite melt evolution and/or zoning (Ballouard et al., 2016). Tantalite has a higher solubility in peraluminous granite melts at low temperature relative to columbite (e.g. Linnen and Keppler, 1997), which commonly results in the melt evolving from Fe–Nb- to Mn–Ta-enriched end-members of the columbite group (Černý et al., 1985; London, 2008). Moreover, the crystallisation of micas also aids in the decoupling of Nb and Ta within a peraluminous melt, with Nb preferentially partitioning into biotite compared with Ta; the latter is strongly partitioned into residual F-bearing melts (e.g. Stepanov and Hermann, 2013). Nevertheless, changes in the Nb/Ta ratio are also influenced by a succession of coprecipitating minerals (oxides, micas, tourmaline) and the combined effects of Li, Na, B, F, and P in the melt or fluid phase (e.g., Johan and Johan, 1994; Belkasmi et al., 2000; Novák et al., 2003; Van Lichtervelde et al., 2006; Wise et al., 2012). In the MSC, fluorine presumably remained in pockets of residual melt until the crystallisation of topaz (e.g. Figs. 4, 5), with Ta therefore concentrated within the last layers to crystallise, while Nb is more evenly distributed throughout the rocks. However, in examining larger volume WR samples (Figs. 14a, b), the Nb/Ta ratio is scattered between 1–7 independent of rock type and Li- and F-content. In micas and tourmaline (Figs. 14c-f) the Nb- and Ta-contents and the Nb/Ta ratio are highly variable within individual samples, but the general trend is to relative Ta-enrichment in Li-enriched grains and/or the outer zones of crystals. We conclude that WR Nb/Ta ratios in Megiliggar rocks were controlled by the order of crystallization and relative amounts of oxides vs. silicate carriers and, in this case, can not serve as a marker of melt fractionation.

The mineralogy of the different MSC rock types reflects their WR compositions, with the leucogranite sheets and complex sheets containing lepidolite, relatively high P-contents in both feldspars and Rb in K-feldspar, and higher Li and Fe/Mg in tourmaline. These signatures are characteristic of “evolved” or
“highly fractionated” rocks, comparable with peraluminous tin granites in the Erzgebirge (Förster et al., 1999; Breiter et al., 2005) and France (Raimbault et al., 1995), and LCT pegmatites (London, 2008). In contrast, the aplite-pegmatite sheets, which contain Li-F-poor muscovite, and often schorl, are chemically and mineralogically more primitive. However, all rock-types show nearly identical and low (12–21) WR Zr/Hf values, which are generally indicative of high degrees of fractionation (Hanchar and Hoskin, 2003; Breiter and Škoda, 2017). The zircon Zr/Hf value (Fig. 13) is consistent with WR Zr/Hf data and zircon from the aplite/pegmatite sheets is at least as strongly differentiated as zircon from the complex sheets and is more fractionated than zircon from the Tregonning Granite. The field relations and geochemical similarity indicate a direct link between the Tregonning Granite and the MSC. The textural and mineral diversity in the sheets, from proximal to distal, eastwards across the study area, was caused by Na-Li-F vs. K-B fractionation, where the K-B-rich portion of melt (fluid) could migrate more effectively to the distal part of the crystallizing magmatic system. However, the Zr/Hf value, unaffected by this fractionation, is similar across the whole MDC, demonstrating a uniform magmatic source. The composition of the biotite granite dyke is distinctive and does not follow the aforementioned trends; this lithology does not appear to form part of the MSC. Instead, it is likely to be an expression of earlier magmatism petrogenetically linked to the Godolphin Granite (two mica) or biotite granite porphyry (‘elvan’) dykes (see Simons et al., 2016). The suggestion that the easternmost distal expression of the MSC is represented by quartz veins linked directly to aplite-pegmatite sheets (Hosking, 1952; Badham, 1980; Bromley, 1989) is refuted; we think that this assertion was based on miscorrelation of the easternmost MSC sheets with pre-granite subhorizontal quartz veins contained within the S3 cleavage. The similar orientation of the MSC sheets and these quartz veins reflects the influence of the mechanical anisotropy imparted by the S3 cleavage on the propagation of fractures controlling emplacement of the MSC.

7.2 Local Na-Li-F vs. K-B fractionation within layered sheets

The complex sheets and aplite-pegmatite sheets within the MSC differ from the majority of common pegmatite sheets having a more complex structure, often appearing to have formed as a result of
multiple melt injections. The banding almost certainly originated via \textit{in situ} fractionation, as crystals grew upwards; in combination with the emplacement of younger narrow melt injections which crystallized from both contacts inwards (compare Hosking, 1952). This feature was encountered in both complex sheets and aplite-pegmatites. Crystallization within most single sheets (or sheet domains), i.e. formed from a single injection of melt, is comparable with other examples of pegmatite sheets (Weber et al., 1997; London et al., 2012).

Samples #4965 and #2015 represent parts of \textit{in situ} crystallized layered sequences, at an appropriate layer scale for detailed investigation. Sample #4965 (Fig. 5, Supplementary table 2) represents a fine-grained (aplitic) part of an aplite-pegmatite sheet which is albite-poor and dominated by quartz, K-feldspar, muscovite and tourmaline. The composition of individual laminae can be traced effectively from the Qtz–Kfs ratio, but without any general evolutionary trend (Fig. 15a). The abundance of tourmaline varies between 4.1–9.8 vol.% (ca. 0.4–1.0 wt.% B$_2$O$_3$). The younger laminae #4→6 contain 1–2 vol.% apatite (up to 1 wt.% P$_2$O$_5$). The melt, from which layers #1→5 crystallized, was B- and P-rich, but relatively F-poor (<0.15 wt.%), and only the youngest lamina #6 reaches nearly 5 wt.% F due to crystallization of common topaz from the residual liquid or from a new injection of F-rich melt/fluid. In any case, the crystallised rock composition lies away from the granite minima (Johannes and Holtz, 1996, Fig. 15b).

Sample #2015 (Fig. 4, Supplementary table 1) represents a finely banded portion of a Li-F-bearing complex sheet. Its mineral composition is more complex than in the previous case, with bands dominated by K-feldspar, tourmaline and muscovite alternating with those strongly enriched in albite and zinnwaldite. The oldest portion of the layered sequence, lines #1→7, evolved systematically from a Qtz-Kfs-rich composition towards the Ab-apex of the Qtz-Ab-Kfs diagram (16→72 wt.% Ab, Figs. 4, 15a). The bands have variable compositions, but the general trend towards Ab-enrichment is obvious. The computed volatile content varies between 0→1.6 wt.% B$_2$O$_3$, 0.2→0.8 wt.% P$_2$O$_5$, and 0.1→2.4 wt.% F. Although B generally decreases along this trend, P levels remain unchanged and F, Li and Rb increase (Fig. 9c). Here, it should be noted that the sample does not really represent the mean of the whole banded sheet, but only a partial section; the real composition of the injected melt may be different.
7.3 Comparison with similar aplite-pegmatite sheets

The first model for the generation of layered aplite-pegmatite sheets was developed by Jahns and Tuttle (1963), which was based on a study of miarolitic pegmatites in San Diego County, California. The authors described a typical arrangement of “sodic aplite” in lower, and “potassic pegmatite” in the upper parts of horizontal sheets with inward crystallization of both facies which finished in the central pocket zone. Later, London et al. (2012) and London (2014) confirmed the common position of (often layered) aplitic domains in the lower part, and pegmatitic domains in the upper part of many horizontal pegmatite sheets, but questioned their dominantly sodic vs. potassic character. Another, rhythmic style of layering, expressed as alternations of 0.5–2 m thick K-feldspar and tourmaline-dominated pegmatite and albite-rich aplite layers, has been reported from the B-rich Calamity Peak layered pluton (Duke et al., 1992).

The evolution of the banded sequences in the MSC is comparable with the George Ashley Block (GAB) pegmatite, Pala district, California (Weber et al., 1997). The mean composition of the granite sheet and complex sheets from Megiliggar is only slightly Ab-enriched in comparison with the mean of the GAB pegmatite, which may be explained by a higher content of F in the Megiliggar sheets (Fig. 15b). The composition of the oldest band in the sample #2015 and the WR #4965 is nearly identical to the composition of the K-rich portions of the GAB pegmatite, located in its central-upper parts, while the mean of the late fine-layered portion of sample #2015 is equal to the composition of the finely banded aplitic portion of the GAB pegmatite (Webber et al., 1997; Fig. 15b). Therefore, the banded portions of the MSC we have studied experienced the same differentiation as the whole George Ashley Block pegmatite dyke. In both localities, both contrasting rock facies (Na+F+Li vs. K+B-enriched) are adjacent in a single sheet, together having logically expected compositions near the “granitic minimum” of a slightly B-, resp. F-enriched melt (Manning, 1981; Pichavant, 1987; Fig. 15b).

Weber et al. (1999) and London et al. (2012) concluded that crystallization of finely banded aplite (“line rock”) to give a water- and fluxes-poor mineral assemblage near the lower contact of the sheets...
was likely due to undercooling, whereas accumulation of volatiles in the upper parts of the sheet decreased the degree of undercooling and promoted crystallization from a flux-enriched boundary-layer, i.e. crystallization of rare minerals and grain-size coarsening. At Megiliggar, this process is expressed in complex sheets which show a transition from muscovite-bearing aplite through to Li-F-mica-bearing aplite to coarse-grained sheet domains bearing Li-F-mica and tourmaline. In the aplite-pegmatites, the increase in F and Li during crystallization of the aplite unit was minimal, but their influence was superseded by increasing abundances of water and boron. Repeated sudden decompression followed by exsolution of fluid driving such grain-size changes might be driven by repeated fracture propagation during the lateral growth and inflation of the MSC (Weber et al., 1997; London, 2008) rather than xenolith separation (Bromley and Holl, 1986; Bromley, 1989). In such conditions, the growth rate of K-feldspar is higher than that of quartz and albite (Swanson, 1977): this is well demonstrated in layers 1→7 of sample #2015, although the initial dominance of K-feldspar was superseded, in a stepwise fashion, by albite. Similar, although not so significant, is the evolution in lines 11→13, 15→17 and 20→22.

7.4 Possible implications for models of pegmatite genesis

Among recent models for the genesis of pegmatites, the complex model by London (for example London, 2008, 2014) and model based on the study of melt inclusions by Thomas (for example Thomas et al., 2006; Thomas and Davidson, 2012, 2013) are the best constrained and often discussed, including mutual discussion of both authors (London, 2015; Thomas and Davidson, 2015). In a very simplistic way, London explained the specific features of pegmatites as crystallisation products of peraluminous water-undersaturated melts via the boundary layer effect, while Thomas and Davidson prefer crystallization from immiscible hydrous peralkaline melt. Detail discussion of the mentioned models is beyond the scope of this article, but we would like to stress the importance of our findings from Megiliggar, which we feel should be considered in any future models for pegmatite genesis.
The evidence from outcrops at Megiliggar, and our detail mineralogical studies, suggests an intimate coexistence of “granite”, “aplite” and “pegmatite” rocks of similar mineral and chemical composition, differing only in grain size and texture. We did not find any evidence of abrupt changes in mineral and chemical composition, though sudden changes in texture, from pegmatitic to aplitic varieties, and vice versa, are common. In other words, an evolved peraluminous granitic melt may repeatedly change in its style of crystallization from granitic to aplitic and pegmatitic without any abrupt changes in chemical or mineral composition. The factors controlling granitic or pegmatitic styles of evolution (water and volatile contents? undercooling? fluctuation of pressure?) changed gradually, smoothly, are were reversible.

8. Conclusions

Chemical and mineralogical data together with a gradual change in prevailing textures suggests a strong genetic link between the Tregonning Granite and MSC. The lithologies within the MSC formed from residual melt escaping from the Tregonning Granite. This melt was strongly peraluminous and, in comparison with other Cornish granites, rich in F, Li, Rb, Cs, Sn, W, Nb, Ta, and U, and poor in Fe, Mg, Ca, Sr, Th, Zr, and REE.

During crystallization, the melt underwent differentiation into Na-Li-F-enriched vs. K-B-enriched domains, which may be traced at two scales: (i) in finely banded sequences where the K-B-enriched layers evolved into more Na-Li-F-enriched ones, and (ii) generally, the Na-Li-F-enriched proximal leucogranite sheets pass gradually into K-B-dominated distal aplite-pegmatites. The mean composition of the sheets is similar to the eutectic composition of leucocratic granitic melts saturated in water and slightly enriched in F and B. Differentiation to fine-grained (i.e. aplitic) and coarse-grained (i.e. pegmatitic) layers was most probably forced by repeated decompression and undercooling due to fracture propagation during the lateral growth and inflation of the MSC system.

With distance from the contact with the parental Tregonning Granite, the melt became depleted in the fluxing and volatile elements F, Li, Rb, and Cs, probably due to escape of fluid to surrounding slates.
or via fractures, but the Zr/Hf value in all rock types remains virtually unchanged indicating derivation
from a single parental magma source.

Knowledge gained at Megiliggar Rocks may help to better understand the chemical and mineralogical
evolution of large aplite-pegmatite systems and their relation to parental granite plutons. Mineral and
textural zoning, usually evolving from the contacts to the core of the pegmatite bodies, is at
Megiliggar combined with a lateral transition from dominantly granitic to aplitic and pegmatitic
textures, chemically expressed in Na-F-Li vs. K-B differentiation. The combination of transversal and
longitudinal zoning in the Megiliggar sheets may provoke similar studies in other well-exposed aplite-
pegmatite systems.

Acknowledgements

Laser-ablation ICP-MS analyses of micas and tourmaline in Masaryk University Brno were supported
by the Czech Science Foundation project No. GA14-13600S. All other analytical work for this
contribution was supported by the RVO 67985831 in the Institute of Geology of the Czech Academy
of Sciences, Praha. We are grateful to P. Davidson and an anonymous referee for their reviews.

References

Alexander, A.C., Shail, R.K., 1996. Late - to post - Variscan structures on the coast between
Penzance and Pentewan, south Cornwall. Proceedings of the Ussher Society, 9 72–78.
Petrogenetic links between lepidolite-subtype aplite-pegmatite, aplite veins and associated
Badham, J.P.N., 1980. Late magmatic phenomena in the Cornish batholith – useful field guide for tin
fractionation in peraluminous granites: A marker of the magmatic-hydrothermal transition.
Geology 44, 231–234.

Thomas, R., Webster, J.D., Rhede, D., Seifert, W., Rickers, K., Förster, H.-J., Heinrich, W., Davidson, P., 2006. The transition from peraluminous to peralkaline granitic melts: evidence from melt inclusions and accessory minerals. Lithos 91, 137–149.

Tables

Table 1 Chemical composition of studied rocks (major elements in wt.%, trace elements in ppm)

Tables only as electronic appendices:

Supplementary table 1 Modal (vol.%) and computed chemical (wt.%) composition of layered portion of a complex sheet (sample#2015)

Supplementary table 2 Modal (vol.%) and computed chemical (wt.%) composition of layered portion of an aplite-pegmatite sheet (sample#4965)

Supplementary table 3 Trace element concentrations in quartz (ppm) by LA-ICP-MS

Supplementary table 4 Chemical composition (wt.%, by EMPA) and empirical formulae of feldspars

Supplementary table 5 Chemical composition (wt.%, by EMPA) and empirical formulae of mica

Supplementary table 6 Trace element contents in mica (ppm) by LA-ICP-MS

Supplementary table 7 Chemical composition (wt.%, by EMPA) and empirical formulae of tourmaline

Supplementary table 8 Trace element contents in tourmaline (ppm) by LA-ICP-MS

Supplementary table 9 Chemical composition (wt.%, by EMPA) and empirical formulae of Ti, Sn, W, Nb, Ta minerals

Supplementary table 10 Chemical composition (wt.%, by EMPA) and empirical formulae of zircon

Supplementary table 11 Detection limits of trace elements in the whole-rock analyses (ppm)

Explanation to figures
Fig. 1 A- Geological sketch map of granite plutons in Cornwall (acc. to Simons et al., 2016); B-
Schematic section through Megiliggar Rocks showing the location of samples (not to scale). The total
length of the section is ca. 600 m. The sheets are likely to represent apophyses of residual melt which
escaped from the largely crystallized roof of the granite pluton. With increasing distance from the
Tregonning Granite, the silicate melt crystallized as homogeneous leucogranite sheets, banded
complex sheets (i.e. combinations bands with granitic, aplitic and pegmatitic textures), and layered
aplite-pegmatites. A gradual change in textures away from the granite margin, together with
similarities in whole-rock chemical compositions, provide strong evidence for a genetic link between
the Tregonning Granite and Megiliggar Sheet Complex.

Fig. 2 Field photographs: a, cliff at Megiliggar Rocks, western part of the major leucogranite sheets
(up to 2.5 m thick) laterally (to the right) passing into “complex sheets”; b-e, the textural evolution of
the sheets with increasing distance from the Tregonning Granite (from West to East):
Close to the granite the sheets are more or less homogeneous (leucocratic sheet granite). About 50 m
from the contact the first layered structures can be traced caused by a local enrichment in mica (b).
Further on (c. 75 m) grain-size differences between individual layers start to develop, in addition to the
local mica enrichments, and about 100 m away the first thin veinlets with pegmatitic textures appear
within the sheet (c). Further east the borders between the layers become more distinct; the differences
in the grain sizes of the aplitic, granitic and pegmatitic layers increases together with the thickness in
particular of the pegmatitic layers (d to e).” f, bifurcation of a thin (~30 cm) aplite-pegmatite sheet,
showing comb K-feldspar crystals along both the contact in the upper sheet vs. central position in the
lower sheet; g, steeply inclined, thin (~10–15 cm) aplite-pegmatite sheet cutting the slate in the eastern
part of the cliff.

Fig. 3 Rock textures: a, Tregonning granite (#5303); b, typical layering in the “complex sheets”
composed of granitic (G), pegmatitic (P) and aplitic (A) layers (#5305); c, aplite-pegmatite sheet with
aplitic layer near the contact and coarse-grained granite to pegmatite in the centre (# 5306 resp.
aplite-pegmatite sheet with pegmatitic (stockscheider-like) rim and aplitic centre. Contact plane between the sheets and Mylor Slates is highlighted by arrows.

Fig. 4 Detailed investigation of a finely-banded portion of a complex sheet (sample 2015): left - photo of an 18 cm wide cut sample face; Central - mineral map determined by TIMA (in the middle, Kfs (K-feldspar) - red, Ab (Albite) – light blue, Qtz (Quartz) – dark blue, Msc (Muscovite) – pink, Zin (Zinnwaldite) – brown, Tur (Tourmaline) – green), Rest – other accessory minerals; Right - mineral composition of individual bands (vol.%). Crystallization of the rock proceeded upwards.

Fig. 5 Detail investigation of a tourmaline aplite (sample 4965): left - photo of a 12.5 cm wide sample cut face; middle - mineral map determined by TIMA (Kfs (K-feldspar) – red, Ab (Albite) – light blue, Qtz (Quartz) – dark blue, Msc (Muscovite) – pink, Tur (Tourmaline) – dark green, Toz (Topaz) – black, Ap (Apatite) – yellow-green), Rest – other accessory minerals; Right - mineral composition of individual bands (vol.%). The crystallization proceeded upwards.

Fig. 6 Approximate chemical composition of individual layers in finely banded rocks computed from modal compositions and chemical analyses of minerals: a, distribution of selected elements across the layering (#2015); b, K₂O vs. Na₂O; c, B₂O₃ vs. F; d, FeO vs. B. Mean values of the whole samples are highlighted by red marks in diagrams b–d.

Fig. 7 Whole-rock compositions of studied rocks. In diagram f, only typical analyses are shown. Note the tetrad effect in Fig. e! Contents of some of the REE in the sheet leucogranite are below the detection limits of ICP-MS.

Fig. 8 Trace elements in quartz: a, Al vs. Ti; b, Al/Ti vs. Li; c, Al/Ti vs. Ge. Data from Variscan granites (I-, S-, A-types, Breiter et al. 2013) and pegmatites (muscovite to lepidolite types, Breiter et al. 2014) from the Bohemian Massif are shown for comparison.
Fig. 9 Chemical composition of micas: a, Si vs. Fe; b, Si vs. F; c, composition of micas (means of 4–5 EMPA analyses) across the finely banded portion of a complex sheet (sample#2015); d, Li vs. Ta; e, Li vs. Nb. In diagrams a–b, three groups of micas are highlighted: I, zinnwaldite–trilithionite series; II, muscovite–phengite series; III, altered (?) Li-Fe-Al mica.

Fig. 10 Chemical composition of tourmaline: a, Fe/(Mg+Fe) vs. □/(□+Na+K) (apfu); b, F vs. □/(□+Na+K) (apfu); c, occupation of the Y-site (apfu); d, Li vs. Sn (ppm).

Fig. 11 BSE-images of minerals: a, Nb-Ta-rich rutile (grey) with inclusions of W-rich Fe-columbite (bright), #2015, in banded rock; b, patchy zoned Nb-Ta-enriched rutile (grey) with small crystals of tantalite (bright), #5303, in Tregonning granite; c, rutile with inclusions of columbite and ixiolite, #4964, in composite granite/pegmatite sheet; d, intergrowth of cassiterite (bright) and rutile (dark grey), #5304, in granitic part of the composite granite/pegmatite sheet; e, needle-like crystals of Mn-columbite with Ta-enriched rims in Li-mica, #4963, in leucocratic sheet granite; f, crystals of Fe-columbite (light grey with bright zones) in association with two colander-like zircon crystals, #5302, in coarse grained tourmaline-bearing sheet granite; g, monazite (Mnz) associated with xenotime (Xen), zircon (Zrn), Mn-rich apatite (Ap), pyrite (Py) and tourmaline (Tur) in quartz, #2015, in banded rock; h, crystal of uraninite (bright) rimmed by pyrite in quartz, #2015, in banded rock; i, grain of uraninite (bright) with thin rim of pyrite associated with a Nb, Y-phase, #5307, in pegmatitic core of composite aplite/pegmatite sheet; j, central part of an altered zircon grain contains numerous inclusions of uraninite while its rim is inclusions free, #4965, in tourmaline-rich banded rock; k, zoned zircon with Hf-enriched rim, in leucocratic sheet granite, #4963; l, zoned crystal of arsenopyrite, #2015, in banded rock. White scale bars in all cases 50μm.

Fig. 12 Nb-Ta-Sn-W-oxide cross plots: a, Nb vs. Ta in rutile; b, columbite classification diagram; c, W vs. Mn/(Fe+Mn) in columbite and “ixiolite”. Coloured symbols = columbite, empty symbols = ixiolite.
Fig. 13 Relation between the Zr/Hf ratios and U concentrations in zircon (using data also from Breiter et al., 2016).

Fig. 14 Variation in the Nb/Ta ratio at Megiliggar Rocks: a, Nb/Ta vs. F in whole rocks; b, Nb/Ta vs. Li$_2$O in whole rocks; c, Nb vs. Ta in micas; d, Li vs. Nb/Ta in micas; e, Nb vs. Ta in tourmaline; f, Li vs. Nb/Ta in tourmaline.

Fig. 15a Composition of whole rocks and individual bands in banded rocks in the Qtz-Ab-Kfs triangle. Note systematic evolution of the lower (older) part of the sample #2015: systematic shift to the Ab-apex from line 1 to 7 (red arrow). Later zones, poorer in Kfs, scatter along the Qtz-Ab join. Sample #4965 represents the aplite-pegmatite melt with rather chaotic zoning; b Composition of proposed starting melt (Tregonning granite) and the Megiliggar sheet rocks computed according to whole-rock chemical data and EMPA of rock-forming minerals (sample 2015 acc. to modal analyse by TIMA). Three typical compositions of the George Ashley pegmatite (layered aplite rich in Ab, whole dyke, granular pegmatite rich in Kfs) acc. to Webber et al. (1997) and water-saturated leucogranitic solidus with 1 wt.% added F, resp. B (Manning, 1981 resp. Pichavant, 1987) are also shown for comparison.

Additional rock and mineral images in electronic form are available as a “Supplementary image pdf-file”
Figure 1

Click here to download high resolution image
Figure 6

Click here to download high resolution image
Figure 7

Click here to download high resolution image
Figure 15
Click here to download high resolution image
Table 1: Chemical composition of studied rocks (wt.% trace elements in ppm)

<table>
<thead>
<tr>
<th>Granite</th>
<th>Complex sheets (Li-mica bearing)</th>
<th>Aplitic-pegmatites (tourmaline dominated)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tregoning granite</td>
<td>Biotite granite dyke</td>
</tr>
<tr>
<td>Sample</td>
<td>5303</td>
<td>4963</td>
</tr>
<tr>
<td>SiO₂</td>
<td>69.23</td>
<td>71.11</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.05</td>
<td>0.01</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>16.66</td>
<td>15.57</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>0.28</td>
<td>0.14</td>
</tr>
<tr>
<td>FeO</td>
<td>0.58</td>
<td>0.37</td>
</tr>
<tr>
<td>FeOtot</td>
<td>0.83</td>
<td>0.50</td>
</tr>
<tr>
<td>MgO</td>
<td>0.12</td>
<td>0.07</td>
</tr>
<tr>
<td>MnO</td>
<td>0.04</td>
<td>0.09</td>
</tr>
<tr>
<td>CaO</td>
<td>0.39</td>
<td>0.23</td>
</tr>
<tr>
<td>Li₂O</td>
<td>0.38</td>
<td>0.41</td>
</tr>
<tr>
<td>Na₂O</td>
<td>3.37</td>
<td>4.33</td>
</tr>
<tr>
<td>K₂O</td>
<td>5.28</td>
<td>4.23</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.41</td>
<td>0.52</td>
</tr>
<tr>
<td>F</td>
<td>1.13</td>
<td>1.33</td>
</tr>
<tr>
<td>L.O.I.</td>
<td>1.20</td>
<td>1.00</td>
</tr>
<tr>
<td>H₂O₋(⁻)</td>
<td>0.11</td>
<td>0.16</td>
</tr>
<tr>
<td>F(ekv)</td>
<td>-0.47</td>
<td>-0.56</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Granite pegmatite</th>
<th>Layered aplite</th>
<th>Aplitic margin</th>
<th>Pegmatitic core</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ba</td>
<td>12 5 25</td>
<td>11 35 19</td>
<td>16 128 63</td>
<td>45</td>
</tr>
<tr>
<td>Be</td>
<td>7 9 9</td>
<td>4 10 2</td>
<td>1 10 4</td>
<td><1</td>
</tr>
<tr>
<td>Cs</td>
<td>199 253 74</td>
<td>107 182 88</td>
<td>33 23 25</td>
<td>17</td>
</tr>
<tr>
<td>Ga</td>
<td>42 45 39</td>
<td>44 48 43</td>
<td>40 24 33</td>
<td>29</td>
</tr>
<tr>
<td>Hf</td>
<td>1.1 1.1 2.7</td>
<td>0.8 1.6 0.9</td>
<td>0.7 1.6 1.4</td>
<td>0.9</td>
</tr>
<tr>
<td>Nb</td>
<td>40 52 33</td>
<td>68 69 57</td>
<td>38 34 26</td>
<td>17</td>
</tr>
<tr>
<td>Rb</td>
<td>1401 1832 898</td>
<td>1201 885 1091</td>
<td>755 538 613</td>
<td>356</td>
</tr>
<tr>
<td>Sn</td>
<td>22 80 26</td>
<td>17 61 13</td>
<td>13 14 15</td>
<td>13</td>
</tr>
<tr>
<td>Sr</td>
<td>24 17 20</td>
<td>11 116 17</td>
<td>11 59 40</td>
<td>27</td>
</tr>
<tr>
<td>Ta</td>
<td>17.3 16.7 6.6</td>
<td>10.1 50 12.4</td>
<td>8.2 20.4 9.1</td>
<td>5.8</td>
</tr>
<tr>
<td>Th</td>
<td>1 1 7</td>
<td>1 1 1</td>
<td>1 2 2</td>
<td>1</td>
</tr>
<tr>
<td>U</td>
<td>16 9 39</td>
<td>6 21 7</td>
<td>3 16 25</td>
<td>14</td>
</tr>
<tr>
<td>V</td>
<td><8 <8 9</td>
<td><8 14 9</td>
<td><8 <8 <8</td>
<td><8</td>
</tr>
<tr>
<td>W</td>
<td>10 37 19</td>
<td>28 46 21</td>
<td>10 4 5</td>
<td>8</td>
</tr>
<tr>
<td>Zr</td>
<td>17 13 62</td>
<td>9 23 12</td>
<td>11 26 29</td>
<td>15</td>
</tr>
<tr>
<td>Y</td>
<td>5.6 0.6 14.4</td>
<td>7.7 5.0 5.0</td>
<td>4.2 4.4 11.4</td>
<td>7.5</td>
</tr>
<tr>
<td>La</td>
<td>2.0 1.0 11.0</td>
<td>1.9 1.9 1.7</td>
<td>1.2 2.5 2.6</td>
<td>1.7</td>
</tr>
<tr>
<td>Ce</td>
<td>4.6 0.6 25.0</td>
<td>4.6 3.7 3.0</td>
<td>3.2 5.7 6.3</td>
<td>4.2</td>
</tr>
<tr>
<td>Pr</td>
<td>0.6 0.1 2.7</td>
<td>0.5 0.4 0.5</td>
<td>0.4 0.6 0.7</td>
<td>0.5</td>
</tr>
<tr>
<td>Nd</td>
<td>2.1 <0.3 9.5</td>
<td>1.5 1.6 1.7</td>
<td>1.4 2.2 2.8</td>
<td>1.8</td>
</tr>
<tr>
<td>Sm</td>
<td>1.0 <0.05 2.8</td>
<td>0.7 0.7 0.7</td>
<td>0.6 0.8 1.1</td>
<td>0.8</td>
</tr>
<tr>
<td>Eu</td>
<td>0.04 <0.02 0.07</td>
<td>0.03 0.06 0.04</td>
<td>0.04 0.19 0.13</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>0.87</td>
<td><0.05</td>
<td>2.63</td>
<td>0.76</td>
</tr>
<tr>
<td>----</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Gd</td>
<td>0.20</td>
<td>0.01</td>
<td>0.53</td>
<td>0.20</td>
</tr>
<tr>
<td>Tb</td>
<td>1.19</td>
<td>0.08</td>
<td>2.82</td>
<td>1.25</td>
</tr>
<tr>
<td>Dy</td>
<td>0.17</td>
<td><0.02</td>
<td>0.53</td>
<td>0.16</td>
</tr>
<tr>
<td>Ho</td>
<td>0.43</td>
<td>0.04</td>
<td>1.41</td>
<td>0.52</td>
</tr>
<tr>
<td>Er</td>
<td>0.07</td>
<td>0.01</td>
<td>0.21</td>
<td>0.09</td>
</tr>
<tr>
<td>Yb</td>
<td>0.50</td>
<td>0.09</td>
<td>1.41</td>
<td>0.79</td>
</tr>
<tr>
<td>Lu</td>
<td>0.06</td>
<td>0.01</td>
<td>0.19</td>
<td>0.10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0.3</th>
<th><0.1</th>
<th>0.3</th>
<th><0.1</th>
<th>2.3</th>
<th><0.1</th>
<th><0.1</th>
<th>1.0</th>
<th>1.9</th>
<th>1.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mo</td>
<td>1.9</td>
<td>0.8</td>
<td>2.8</td>
<td>1.3</td>
<td>0.8</td>
<td>0.8</td>
<td>1.0</td>
<td>1.6</td>
<td>0.6</td>
<td>1.2</td>
</tr>
<tr>
<td>Cu</td>
<td>10</td>
<td>7</td>
<td>13</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>12</td>
<td>19</td>
<td>13</td>
<td>7</td>
</tr>
<tr>
<td>Pb</td>
<td>41</td>
<td>35</td>
<td>61</td>
<td>47</td>
<td>27</td>
<td>31</td>
<td>19</td>
<td>30</td>
<td>40</td>
<td>77</td>
</tr>
<tr>
<td>Zn</td>
<td>10</td>
<td>24</td>
<td>60</td>
<td>33</td>
<td>75</td>
<td>59</td>
<td>23</td>
<td>6</td>
<td>53</td>
<td>363</td>
</tr>
<tr>
<td>Bi</td>
<td>10</td>
<td>2</td>
<td>1.9</td>
<td>1.1</td>
<td>1.0</td>
<td>1.8</td>
<td>1.3</td>
<td>16.9</td>
<td>16</td>
<td>3.8</td>
</tr>
<tr>
<td>Sc</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>9</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Tl</td>
<td>7.5</td>
<td>10.3</td>
<td>5.1</td>
<td>6.4</td>
<td>4.4</td>
<td>5.4</td>
<td>5.1</td>
<td>4.5</td>
<td>3.8</td>
<td>2.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>31</th>
<th>19</th>
<th>38</th>
<th>30</th>
<th>31</th>
<th>34</th>
<th>58</th>
<th>94</th>
<th>78</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>K/Rb</td>
<td>15</td>
<td>12</td>
<td>23</td>
<td>11</td>
<td>14</td>
<td>14</td>
<td>16</td>
<td>16</td>
<td>21</td>
<td>16</td>
</tr>
<tr>
<td>Zr/Hf</td>
<td>2.3</td>
<td>3.1</td>
<td>5.0</td>
<td>6.7</td>
<td>1.4</td>
<td>4.6</td>
<td>4.6</td>
<td>1.7</td>
<td>2.9</td>
<td>2.9</td>
</tr>
</tbody>
</table>

Rem.: major elements in wt.%, trace elements in ppm, elemental ratios by weight.