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ABSTRACT

Combining visual and spectroscopic orbits of binary stars leads to a determination of the full 3D

orbit, individual masses, and distance to the system. We present a full analysis of the evolved binary

system δ Delphini using astrometric data from the MIRC and PAVO instruments on the CHARA

long-baseline interferometer, 97 new spectra from the Fairborn Observatory, and 87 unpublished

spectra from Lick Observatory. We determine the full set of orbital elements for δ Del, along with

masses of 1.78 ± 0.07 M� and 1.62 ± 0.07 M� for each component, and a distance of 63.61 ± 0.89

pc. These results are important in two contexts: for testing stellar evolution models and defining the

detection capabilities for future planet searches. We find that the evolutionary state of this system is

puzzling, as our measured flux ratios, radii, and masses imply a ∼ 200 Myr age difference between the

components using standard stellar evolution models. Possible explanations for this age discrepancy

include mass transfer scenarios with a now ejected tertiary companion. For individual measurements

taken over a span of 2 years we achieve < 10 µ-arcsecond precision on differential position with 10-

minute observations. The high precision of our astrometric orbit suggests that exoplanet detection

capabilities are within reach of MIRC at CHARA. We compute exoplanet detection limits around

δ Del, and conclude that if this precision is extended to wider systems we should be able to detect

most exoplanets > 2 MJ on orbits > 0.75 AU around individual components of hot binary stars via

differential astrometry.

Keywords: astrometry, binaries: close, binaries: spectroscopic, binaries: visual, planets and satellites:

detection

1. INTRODUCTION

Binary systems provide a unique opportunity for studying the physical properties of stars. Combining spectroscopic

and astrometric studies of binary stars allows one to determine the full 3D orbit of the system and obtain fundamental
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properties such as masses and distance. Systems for which both double-lined spectroscopic and visual orbits can

be obtained are therefore valuable systems for the testing of stellar evolution models. Long-baseline interferometry

provides the capability for resolving sub-arcsecond binary systems in order to obtain visual orbits of systems that

would otherwise only be resolved through spectroscopic studies. Bonneau et al. (2014) give a thorough overview on

how interferometric studies are combined with spectroscopy to determine the physical properties of both components

in a binary system. In this paper we use the Michigan Infra-Red Combiner (MIRC) on the Center for High Angular

Resolution Astronomy (CHARA) Array long-baseline interferometer to obtain a precise visual orbit of the close binary

system δ Delphini (HR 7928, HD 197461). With the visual orbit we achieve < 10 µ-arcsecond precision, maintained

over 2 years, on many of the individual measurements of differential position.

Because of the short-period variations in its light curve, δ Del was first classified as a δ Scuti variable by Eggen

(1956). Struve et al. (1957) confirmed this variable star classification through a spectroscopic study of δ Del. Neither

of these studies detected the binarity of the system. As part of the Reports of Observatories, 1965-1966, published in

The Astronomical Journal, Whitford reported in the Lick Observatory yearly summary that G. Preston had discovered

δ Del to be a double lined spectroscopic binary with a preliminary period of 40 days. The high eccentricity of the

system produced double lines that are only visible for about three of the 40 days, which is the reason why previous

observers had not discovered the binarity of the system. From an undergraduate thesis by Duncan in 1973, Duncan

& Preston (1979) reported the results of the first comprehensive study of δ Del as a binary system. Using Lick

Observatory spectra, they obtained radial velocities (RVs) from which they determined a binary orbit with a period

of 40.580 days and an high eccentricity of 0.7. They also found that both the primary (more massive) and secondary

components show δ Scuti pulsations with dominant periods of 0.158 and 0.134 days, respectively. They concluded that

the components were nearly equal in luminosity and temperature but determined a mass ratio of ∼ 1.2. This made

it impossible for Duncan and Preston to find locations in the Hertzsprung-Russell (HR) diagram that satisfied the

constraints of mass ratio, luminosity, and the stars being the same age. In this paper we combine our astrometric data

from CHARA, radial velocities from 97 new spectra obtained at Fairborn Observatory, and the unpublished radial

velocities from the 87 Lick Observatory spectra measured by Duncan & Preston (1979) to obtain a 3D orbit of δ Del.

We also reassess the age and other properties of the system using stellar evolution models.

Along with our orbital study of δ Del, we use the < 10 µ-as precision demonstrated on this system to explore the

feasibility of detecting exoplanets around stars in a close binary system using MIRC at CHARA. A Jupiter mass planet

at a separation of 1 AU imparts about a 10 µ-as wobble on a solar mass host star at the distance of δ Del. Thus,

with the precision of MIRC we should be able to detect this wobble on a single component of a close binary system.

Astrometric orbits of planets are desirable since they unveil important orbital parameters such as the inclination of the

orbit and true mass. Unlike radial velocity or transit methods, astrometric detection is favorable for planets that have

wider orbits. On the other hand, astrometry is sensitive to planets on somewhat tighter orbits than direct imaging

surveys. Although this regime is comparable to that explored through microlensing techniques, astrometry has the

advantage of repeat observations. Moreover, planet detection via differential astrometry with the use of long-baseline

interferometry favors A and B-type binary stars. This is a regime that is very difficult to explore with radial velocity

surveys because hot stars typically have weak and broad spectral lines. Transit surveys are also biased against these

stars since stellar pulsations and variability mask transit signals. Historically, the exoplanet field has been riddled with

false claims of detection via astrometry (see Muterspaugh et al. (2010) for a brief overview). However, as instrumental

precision continues to improve, astrometric detection of exoplanets is finally becoming feasible. By the end of its

nominal five year mission, Gaia is expected to reveal many new astrometric detections of giant exoplanets around

mostly lower-mass stars (Perryman et al. 2014; Sahlmann et al. 2014; Casertano et al. 2008; Sozzetti et al. 2014).

From the ground, long-baseline interferometry is a promising method for detecting exoplanets around intermediate

mass stars in close binary systems. The Palomar High-precision Astrometric Search for Exoplanet Systems (PHASES)

recently used long-baseline interferometry that led to the announcement of six substellar candidates to the individual

components of binaries (Muterspaugh et al. 2010). In this paper we show that the MIRC instrument at CHARA has

achieved the precision needed for exoplanet detection around single stars in close (sub-arcsecond) binary systems.

This paper is organized as follows. Section 2 describes our observations and the subsequent data reduction. Section

3 then outlines our orbit fitting techniques, and Section 4 presents the best fit orbital and physical parameters for the

δ Del binary system. In Section 5, we use stellar evolution considerations to interpret the unusual positions of the δ

Del components in the H-R diagram. The paper concludes, in Section 6, with a discussion of the corresponding limits

on future exoplanet detections.
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2. OBSERVATIONS AND DATA REDUCTION

2.1. Interferometry

Interferometric data for δ Del were collected in H-band on eleven nights from 2011 July 15 to 2013 July 14 with

MIRC at the CHARA Array. The CHARA Array is an optical/near IR interferometer with the longest baselines of

any interferometer of its type in the world (ten Brummelaar et al. 2005). MIRC combines all six telescopes available at

CHARA with baselines up to 330 meters. The instrument is described in detail by Monnier et al. (2006). Additionally,

R-band data were recently obtained with the Precision Astronomical Visible Observations (PAVO) instrument in 2017

June 14-17. PAVO is a visible light beam combiner on the CHARA array which is predominantly used for two-

telescope observations. The PAVO instrument and data reduction techniques are described further in Ireland et al.

(2008). Observational details and calibrators used for MIRC are displayed in Tables 1 and 2, while those for PAVO are

given in Tables 3 and 4. The angular diameters for the calibrators in Table 4 were obtained from the V −K surface

brightness relation of Kervella et al. (2004).

Table 1. Log of MIRC interferometric observations.

UT date Baseline No. of 10-sec averages Calibrators2

2011 Jul 15 S2E1W1W2E2 168 a

2011 Jul 17 S1S2E1W1W2 80 b

2012 June 10 W1W2E2 48 c

2012 June 12 S1S2W1W2E2 160 d

2012 June 15 S1S2E1W1W2E2 120 e

2012 June 16 S1S2W1W2 48 f

2012 June 20 S1S2W1W2E2 80 g

2012 Sep 19 S1S2E1W1W2E2 120 h

2012 Sep 20 S1S2W1W2E2 80 i

2013 Jul 13 S2W1W2 24 a

2013 Jul 14 S1S2E1W1W2E2 120 e

2Refer to Table 2 for details of the calibrators used.

Table 2. Calibrators used for MIRC interferometric observations.

HD Sp. type H (mag) θUD (mas) Source for UD ID

205776 K2III 4.138 0.79 ± 0.055 Chelli et al. (2016) a

886 B2IV 3.43 0.41 ± 0.03 Barnes et al. (1978) b

135742 B8Vn 2.8 0.645 ± 0.045 Chelli et al. (2016) c

165777 A5V 3.426 0.68 ± 0.06 Chelli et al. (2016) d

187691 F8V 3.863 0.7 ± 0.04 Chelli et al. (2016) e

185395 F3+V 3.716 0.726 ± 0.014 White et al. (2013) f

161868 A1VnkA0mA0 3.64 0.571 ± 0.04 Chelli et al. (2016) g

6920 F8V 4.493 0.539 ± 0.037 Chelli et al. (2016) h

195810 B6III 4.55 0.35 ± 0.05 Barnes et al. (1978) i
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Table 3. Log of PAVO interferometric observations.

UT date Baseline1 No. of scans Calibrators2

2017 June 14 E2W1 3 cd

2017 June 15 E1W2 3 cd

2017 June 17 E2W2 5 cd

2017 June 18 S1W2 3 abcd

2017 June 19 W1W2 3 ac

1The baselines used have the following lengths: W1W2, 107.92 m; E2W2, 156.27 m; S1W2, 210.97 m; E1W2, 221.82 m; E2W1,
251.33 m.

2Refer to Table 4 for details of the calibrators used.

Table 4. Calibrators used for PAVO interferometric observations.

HD Sp. type V V −K AV θV −K ID

195943 A3IVs 5.380 0.138 0.089 0.299 a

196775 B3V 5.960 −0.473 0.261 0.153 b

196821 A0III 6.075 0.034 0.000 0.204 c

201616 A2Va 6.057 0.117 0.000 0.218 d

We used the MIRC combiner to measure visibilities and closure phases of δ Del. Amplitude calibration was performed

through use of a beamsplitter following spatial filtering. Observations of reference calibrators are made throughout the

night to correct for time-variable factors such as atmospheric coherence time, vibrations, differential dispersion, and

birefringence in the beam train. Using the standard data pipeline as described in earlier MIRC papers (e.g. Monnier

et al. 2012), we produce a calibrated OI-FITS file (Pauls et al. 2005) for each night (available upon request). For

each night we fit a binary model with the following free parameters: Uniform Disk (UD) diameter of component 1,

UD diameter of component 2, H band flux ratio of component 1 over component 2, angular separation, position angle

(PA) of vector pointing from component 1 to 2 (east of north). To estimate errors we derive a χ2 surface for a grid in

relative Right Ascension (RA) and Declination (Dec) and find the 1−σ confidence contour (approximated by an “error

ellipse” with a major axis, minor axis and PA of major axis) – for this, we made a simple assumption that the errors

in all wavelength channels are correlated. Because we lack a full covariance matrix, we consider this error analysis a

first estimate and will adjust the scale of the errors ellipses by a scalar factor later in the analysis as we fit the binary

orbit. The results from this analysis can be found in Table 5. Note that because of different (u,v) coverages and seeing

conditions, the errors vary strongly between the different nights. Visibilities and closure phases from MIRC for UT

2012 Jun 15 and visibilities from PAVO for UT 2017 Jun 14 along with the best fit models are shown in Figure 1.
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CHARA-PAVO Data for UT 2017 Jun 14
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Figure 1. Squared visibilities are plotted along with the best fit binary model on a single night for the PAVO and MIRC
interferometric data. For the MIRC data we also plot closure phases for a single night. The ”Triangle #” is a combination of
time, geometry (which closing triangle), and wavelength.
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The stellar angular diameters and flux ratio between components were poorly constrained on individual nights. To

improve our estimate, we used the final orbit (derived in §4.2) to allow a global fit for the diameters and flux ratio

under the assumption they do not vary (although this is not strictly true because of the δ Scuti pulsations). From the

orbit we fixed the orbital geometry and then fitted the angular diameters and flux ratio with the full dataset, using

bootstrap sampling to estimate our errors. Table 6 contains the results of this work: UD1 (brighter star) 0.49±0.03

mas, UD2 (fainter star) 0.49±0.03 mas, flux ratio 1.04±0.03. These errors include uncertainties on the wavelength

scale (±0.25%) and on the calibrator diameters.

To improve our diameter estimates, we also collected single-baseline observations of δ Del with the visible-light PAVO

combiner. The individual nights did not have sufficient (u,v) coverage to simultaneously constrain relative positions as

well as the stellar properties. Following a procedure similar to MIRC, we used the precise orbit predictions from our

model to fix the orbital geometry for the 5 nights of PAVO observations. We then did a global least-squares fit (and

bootstrap) with the following free parameters: UD diameter of component 1, UD diameter of component 2, R-band

flux ratio of component 1 over component 2. The best-fit reduced χ2 was 2.5, higher than normal, which may be

due to uncertainty in the wavelength scale of PAVO (±0.6%) being unaccounted for. Table 6 also contains the PAVO

results: UD1 (brighter star) 0.460±0.014 mas, UD2 (fainter star) 0.510±0.014 mas, Flux ratio 1.10±0.05. These errors

include uncertainties on the wavelength scale (±0.6%) and on the calibrator diameters (5%).

Lastly, we need to determine our final estimate of the effective temperatures for the two components of δ Del. To do

this we used Kurucz/Castelli models 1 (Castelli & Kurucz 2004) to fit for the limb-darkening corrected R and H band

diameters determined from interferometry, the interferometrically determined component flux ratios, and literature

photometry R = 4.17± 0.05 (Morel & Magnenat 1978), H = 3.70± 0.24 (Cutri et al. 2003). We found an acceptable

fit with the following stellar parameters: Component 1: LD diameter 0.500±0.014 mas, Temperature 7440K±210K;

Component 2: LD diameter 0.507±0.014 mas, Temperature 7110K±180K. These parameters along with physical radii,

luminosity, and component R/H magnitudes can be found in Table 6. We will use these properties to create a HR

diagram in §5.

Table 5. δ Del Astrometry Data

UT Date MJD sep (mas) P.A. (◦) error major axis (mas) error minor axis (mas) error ellipse P.A. (◦)

2011 Jul 15 55757.331 7.166 337.31 0.004 0.002 302

2011 Jul 17 55759.323 6.448 345.80 0.003 0.001 319

2012 Jun 10 56088.492 4.274 15.80 0.049 0.009 341

2012 Jun 12 56090.483 2.961 46.79 0.008 0.002 64

2012 Jun 15 56093.450 2.120 170.36 0.004 0.003 287

2012 Jun 16 56094.503 2.750 206.10 0.033 0.005 40

2012 Jun 20 56098.446 5.363 256.94 0.012 0.011 56

2012 Sep 19 56189.215 8.449 295.20 0.015 0.009 276

2012 Sep 20 56190.219 8.570 297.96 0.005 0.004 37

2013 Jul 13 56486.512 7.662 331.29 0.07 0.016 38

2013 Jul 14 56487.351 7.430 334.10 0.005 0.003 337

1 Specifically, we used the tables found at: https://www.oact.inaf.it/castelli/castelli/grids/gridp00k2odfnew/fp00k2tab.html
and https://www.oact.inaf.it/castelli/castelli/grids/gridm05k2odfnew/fm05k2tab.html.
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Table 6. δ Del Stellar Properties

Component 1 – Component 2

f1/f2 H-band – 1.04 ± 0.03 –

f1/f2 R-band – 1.10 ± 0.05 –

H (mag) 4.43 ± 0.24 4.47 ± 0.24

R (mag) 4.87 ± 0.03 4.98 ± 0.03

θUD H-band (mas) 0.49 ± 0.03 0.49 ± 0.03

θUD R-band (mas) 0.460 ± 0.014 0.510 ± 0.014

θLDD (mas) 0.500 ± 0.014 0.507 ± 0.014

Radii (R�) 3.43 ± 0.11 3.48 ± 0.11

Temperature (K) 7440 ± 210 7110 ± 180

Luminosity (L�) 32.4 ± 4.2 28.8 ± 3.4

2.2. Spectroscopy

We acquired 97 useful spectroscopic observations of δ Del between 2012 June and 2016 June with the Tennessee State

University 2 m Automatic Spectroscopic Telescope (AST) and a fiber-fed echelle spectrograph (Eaton & Williamson

2007) that is located at Fairborn Observatory in southeast Arizona. The detector was a Fairhild 486 CCD that has a

4096 × 4096 array of 15 micron pixels. The echelle spectrograms have 48 orders that cover a wavelength range from

3800 to 8260 Å. Our observations were made with a fiber that produces a resolution of 0.24 Å, and the spectrograms

have typical signal-to-noise ratios of 70–130. Fekel et al. (2013) have provided additional information about the facility.

Fekel et al. (2009) gave a general explanation of the velocity measurement of the AST echelle spectrograms. For δ Del

we used our solar-type star line list that contains 168 lines in the wavelength range 4920–7100 Å. At our resolution the

lines of the two components at maximum velocity separation are almost completely resolved. At most other phases the

features are very significantly blended as can be seen in Figure 2. We used rotational broadening functions (Sandberg

Lacy & Fekel 2011; Fekel & Griffin 2011) to fit simultaneously the line pairs. Because of pulsation, the shapes of the

lines vary to some extent from spectrum to spectrum. Therefore, although we used the average width and depth values

from our most widely separated line pairs as starting values for our velocity determinations, those two parameters

were not fixed in our fits. To test for systematics affecting our radial velocity determinations for this blended system,

we divided our line list into blue (4920-5501 Å) and red (5506-7200 Å) halves and remeasured velocities for 6 spectra

near maximum velocity separation and 10 spectra near the lower velocity separation. After comparing radial velocities

determined from the red half, the blue half, and the full wavelength range, we see no striking systematics in our results.

Our unpublished velocity measurements of several IAU radial velocity standards from spectra obtained with our

2 m AST have an average velocity difference of −0.6 km s−1 when compared to the results of Scarfe (2010). Thus, to

each of our measured velocities we have added 0.6 km s−1. The 97 Fairborn radial velocities used for orbit fitting are

listed in Table 7. In addition to these velocities, we measured two single-lined spectra from the 2 m AST to determine

velocities very close to the phase of the center-of-mass velocity. At MJD 56197.2428 we obtain a single-lined radial

velocity of 10.4 km s−1, and at MJD 57090.5220 we obtain a velocity of 8.8 km s−1. We did not include these two points

in the fitting routine because the precision of these measurements is lacking due to δ Scuti pulsations and different

rotational velocities of the components. However, the positions of these single-lined velocities appear to support the

system velocity and mass ratio obtained in our best fit orbit described in Section 4.2.

From our fits to the lines in our Fairborn Observatory spectra that are at phases near maximum velocity separation,

we have determined v sin i values of 17 ± 1 km s−1 for the more massive primary star and 12 ± 1 km s−1 for the less

massive secondary. For the same subset of spectra that we used to determine the v sin i values of the components,

we measured the average line equivalent widths of the two stars. That ratio, which for stars of similar temperature

corresponds to the luminosity ratio of the components, was highly variable, likely because of the rather significant

δ Scuti pulsations that also affect the line profiles. With the ratio of the more massive primary to the less massive

secondary ranging from 1.2 to 0.9, the average ratio is 1.03 ± 0.02 for a central wavelength of 6000 Å. Thus we assume

that the more massive star is also the brighter component henceforth.

At the Lick Observatory 87 spectra of δ Del were obtained with the 120-inch telescope at a dispersion of 5.3

Å mm−1 (Duncan 1973). Ten lines in the wavelength range 3900-4300 Å were used to determine radial velocities for

both components. Velocity measurements were made with a Grant measuring engine and reduced with a standard
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computer program. These radial velocities, which only cover phases very close to maximum velocity separation, are

presented in Table 8 and have not been published until now. We use the radial velocities of both components from the

87 observations acquired at Lick Observatory, as well as the 97 new observations obtained at Fairborn Observatory

when carrying out our orbital fitting routines.

Figure 2. Plotted are partial spectra from Fairborn Observatory for δ Del at maximum velocity separation and at lower
velocity separation. At maximum velocity separation (top spectrum) the peaks from the two components are almost completely
resolved. This gives us good constraints on the line width and depth, enabling reliable fits also at the epochs with smaller
velocity separation, when the lines are blended (bottom spectrum).

Table 7. δ Del Radial Velocities from Fairborn Observatory

MJD v1 [±1.3] (km/s) v2 [±0.7] (km/s) v1 (δ Scuti subtracted)

56100.194 20.2 -0.6 19.7

56101.23 18.9 1.2 18.0

56101.305 18.2 0.7 19.0

56106.306 16.6 3.3 15.8

56107.345 16.0 4.0 15.1

56126.284 -0.3 18.5 1.6

56168.311 -2.6 20.6 -1.1

56169.306 1.0 24.0 -1.3
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Table 7. δ Del Radial Velocities from Fairborn Observatory

MJD v1 [±1.3] (km/s) v2 [±0.7] (km/s) v1 (δ Scuti subtracted)

56172.306 -5.9 28.0 -7.4

56173.306 -4.9 25.7 -2.4

56261.174 19.3 -2.0 17.3

56262.168 18.2 -1.4 18.4

56266.142 16.7 1.5 18.7

56267.141 17.7 3.3 15.4

56415.456 -4.9 26.9 -6.9

56547.301 19.0 -0.3 18.3

56547.343 20.4 -1.5 18.3

56547.366 19.1 -0.2 18.7

56549.149 14.9 0.8 17.0

56574.09 0.9 22.8 2.3

56575.101 1.3 21.7 -0.5

56576.106 -6.5 26.2 -4.0

56577.089 -4.7 27.4 -5.1

56577.104 -3.3 27.1 -5.0

56577.204 -7.7 26.3 -5.2

56578.088 -8.1 28.6 -9.4

56578.204 -7.1 28.6 -8.9

56579.087 -10.2 27.6 -7.8

56583.084 21.5 -2.0 19.2

56584.094 16.6 -1.7 19.0

56585.082 18.0 -1.2 17.9

56586.112 17.6 -1.6 18.9

56623.097 20.0 0.2 19.6

56624.17 22.0 -1.7 19.8

56736.481 -6.2 18.1 -4.6

56737.501 -4.4 19.6 -6.0

56740.469 -8.1 26.5 -8.8

56741.46 -5.4 25.8 -7.1

56742.492 2.0 18.3 2.8

56744.471 20.2 1.2 21.4

56745.448 17.4 -1.1 19.7

56747.455 19.2 0.0 20.8

56776.348 -1.4 18.6 0.3

56777.369 0.9 22.4 -0.5

56778.457 1.3 24.2 -0.7

56779.367 -2.0 25.1 -3.7

56780.328 -1.5 28.4 -3.8

56781.337 -11.9 27.5 -9.5

56782.336 -4.1 25.9 -5.0

56785.329 20.1 -0.9 18.1

56786.309 22.4 -2.0 21.2

56787.337 21.6 -1.8 22.2

56788.318 22.0 -1.6 19.7
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Table 7. δ Del Radial Velocities from Fairborn Observatory

MJD v1 [±1.3] (km/s) v2 [±0.7] (km/s) v1 (δ Scuti subtracted)

56789.3 19.7 -1.6 19.6

56822.212 -7.3 29.1 -8.7

56822.255 -8.7 28.5 -6.5

56823.212 -6.6 24.1 -4.2

56826.255 20.5 -2.3 18.4

56826.288 20.7 -1.7 19.3

56827.255 18.5 -1.9 19.5

56827.288 18.5 -1.6 20.9

56828.294 21.8 -1.2 19.7

56829.326 15.8 -1.9 18.2

56830.323 21.4 -0.6 19.8

56831.287 20.0 -1.4 17.7

56899.285 -0.6 22.9 0.1

56944.086 -9.6 30.2 -7.3

56945.133 0.0 24.4 -1.6

56954.19 19.5 0.3 17.7

57103.516 -4.9 23.1 -4.6

57115.506 18.5 -0.8 18.8

57143.489 -2.2 21.9 -2.7

57184.291 -5.2 23.1 -2.9

57185.354 -3.7 24.9 -4.1

57186.354 -9.5 27.8 -7.5

57187.355 -6.4 28.6 -8.7

57188.355 -7.1 25.8 -5.5

57192.375 22.7 -0.8 20.4

57347.068 -2.8 25.7 -0.8

57348.075 -2.9 25.6 -5.2

57349.082 -9.6 27.0 -7.2

57350.069 -9.3 28.4 -9.2

57351.07 0.2 24.8 -1.4

57356.067 20.4 -2.9 18.1

57511.352 -9.5 26.2 -7.6

57512.316 -10.2 29.0 -7.8

57513.334 0.1 24.6 -2.2

57516.307 20.6 -0.1 18.3

57517.306 18.9 -0.7 20.6

57518.304 20.2 -1.8 20.6

57519.34 18.2 -1.4 19.5

57520.329 19.1 -0.6 20.6

57551.217 -8.3 26.5 -6.8

57552.219 -5.1 26.8 -7.4

57553.221 -10.5 27.5 -8.3

57557.219 23.3 -0.6 21.2

57558.243 15.8 -2.2 18.2
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Table 8. δ del RVs obtained from Lick Observatory

MJD v1 [±2.6] (km s−1) v2 [±1.3] (km s−1) v1 (δ Scuti subtracted) v2 (δ Scuti subtracted)

38306.242 -9.5 29.9 -9.1 28.5

39238.541 -7.6 25.6 -5.5 26.6

39239.409 -5.8 28.3 -9.1 27.0

39239.442 -6.8 26.4 -8.2 26.9

39239.452 -8.8 27.1 -9.1 28.0

39239.467 -10.8 27.4 -9.6 28.4

39239.474 -11.1 27.7 -9.3 28.5

39239.51 -7.7 29.4 -6.4 28.3

39239.516 -8.0 28.4 -7.3 27.1

39239.522 -7.1 28.4 -7.0 27.0

39279.447 -8.3 28.9 -7.2 28.6

39280.303 -5.2 28.4 -6.8 28.0

39280.317 -2.9 30.3 -5.7 30.7

39280.359 -2.3 30.2 -4.2 30.7

39280.362 -6.1 30.2 -7.7 30.5

39280.373 -9.0 28.9 -9.5 28.6

39280.382 -8.6 29.6 -8.0 28.8

39280.39 -8.2 29.7 -6.9 28.5

39280.398 -8.0 30.2 -6.1 28.8

39280.408 -8.4 32.5 -6.2 31.0

39280.415 -8.6 33.6 -6.4 32.3

39280.423 -9.8 32.1 -7.8 31.0

39280.43 -10.5 30.9 -9.0 30.2

39280.436 -10.8 29.9 -9.9 29.6

39280.442 -11.2 29.7 -10.9 29.7

39280.45 -9.9 29.0 -10.4 29.4

39280.456 -9.0 27.9 -10.1 28.6

39280.462 -8.3 27.8 -10.1 28.7

39281.356 -8.8 28.3 -6.6 27.6

39362.232 -9.8 28.8 -8.7 29.7

39362.247 -11.6 28.2 -9.5 28.5

39362.259 -10.4 29.0 -8.2 28.6

39362.27 -9.0 28.7 -7.2 27.7

39362.282 -0.7 29.5 0.1 28.1

39362.298 -4.3 28.4 -5.2 27.0

39362.312 -4.3 27.3 -6.6 26.5

39362.324 -4.5 25.9 -7.6 25.7

39362.335 -5.6 28.6 -8.9 29.0

39362.346 -5.4 27.1 -8.4 28.0

39362.359 -5.2 27.2 -7.2 28.2

39362.373 -7.0 25.6 -7.6 26.2

39362.386 -9.2 27.8 -8.4 27.7

39362.41 -12.5 27.7 -10.3 26.4

39362.422 -11.8 28.3 -9.8 26.8

39362.435 -9.1 27.2 -7.9 25.9



12

Table 8. δ del RVs obtained from Lick Observatory

MJD v1 [±2.6] (km s−1) v2 [±1.3] (km s−1) v1 (δ Scuti subtracted) v2 (δ Scuti subtracted)

39401.111 -5.9 25.4 -5.3 26.4

39401.132 -3.5 26.9 -1.4 27.6

39401.152 -6.2 28.5 -4.3 28.1

39401.256 -7.2 27.0 -7.9 27.9

39401.269 -8.1 27.0 -7.4 27.5

39401.282 -6.4 26.9 -4.6 26.6

39401.34 -6.4 26.8 -7.4 26.1

39402.098 -10.9 29.5 -9.3 28.2

39402.165 -3.2 27.3 -6.4 28.2

39402.175 -5.3 27.9 -8.1 28.9

39402.222 -9.5 29.2 -7.7 28.1

39402.231 -9.7 29.6 -7.5 28.2

39402.239 -7.9 30.0 -5.7 28.5

39402.319 -3.3 27.8 -6.6 28.6

39402.333 -3.3 29.2 -6.0 29.4

39726.278 -2.1 24.2 -3.2 25.2

39726.284 -3.0 24.3 -3.5 25.2

39726.289 -7.1 25.3 -7.0 26.1

39726.297 -7.4 27.0 -6.5 27.4

39726.305 -9.3 27.5 -7.7 27.5

39726.31 -9.9 27.8 -8.0 27.5

39726.316 -10.9 27.6 -8.8 27.0

39726.322 -9.8 28.0 -7.6 27.0

39726.323 -9.9 28.9 -7.7 27.9

39726.333 -9.5 28.2 -7.5 26.8

39726.338 -8.6 29.3 -6.9 27.8

39726.344 -6.0 28.9 -4.7 27.4

39726.351 -5.2 29.7 -4.5 28.3

39726.365 -3.4 29.8 -4.3 29.0

39726.384 -5.5 26.1 -8.2 26.4

39726.396 -3.3 26.3 -6.6 27.1

39726.406 -3.6 25.3 -6.9 26.3

39726.421 -2.0 26.2 -4.5 27.0

39726.438 -5.2 26.8 -6.0 26.8

39727.345 -7.4 29.4 -10.7 30.2

39727.426 -11.8 28.6 -9.6 27.9

39727.438 -9.3 28.2 -7.8 28.3

39727.451 -6.1 28.5 -5.7 29.2

39728.252 -9.1 24.5 -10.6 25.4

40781.310 -10.8 30.5 -12.9 29.3

40782.270 -10.2 29.7 -10.3 28.7
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3. ORBIT FITTING ROUTINE

3.1. Astrometry Model

The Campbell elements (ω,Ω,e,i,a,T ,P ) describe the motion of one star of a binary system relative to the other.

Those symbols have their usual meanings where ω is the longitude of the periastron, Ω is the position angle of the

ascending node, e is the eccentricity, i is the orbital inclination, a is angular separation, T is a time of periastron

passage, and P is orbital period. Good overviews for the use of least-squares fitting to determine the best fit orbital

elements are given by Wright & Howard (2009) and Lucy (2014). The errors in our positions for δ Del are ellipses,

and thus, to determine the best fit orbital elements with a least-squares routine, we must project the residuals into

the major and minor ellipse axes when defining χ2. We define χ2 in the major and minor axes as

χ2
major =

[(xdata − xmodel) sinσpa + (ydata − ymodel) cosσpa]2

σ2
major

χ2
minor =

[−(xdata − xmodel) cosσpa + (ydata − ymodel) sinσpa]2

σ2
minor

,

(1)

where σpa, σmajor, and σminor are the error ellipse position angle, error in major axis, and error in minor axis,

respectively. The final positions predicted by our model are given by xmodel and ymodel, while xdata and ydata are the

positions measured by MIRC. The total χ2 for the astrometry data is then just the sum of χ2
major and χ2

minor. The

reduced χ2 for our best fit suggests that astrometry error values are overestimated. We reduce the error values by a

factor of ∼ 3.5 to bring the reduced χ2 to 1. This ensures that one dataset is not unevenly weighting the fitting when

combining astrometry and radial velocity data.

3.2. Radial Velocities Model

The orbital elements for the double-lined spectroscopic binary are ω, e, K1, K2, γ, T , and P . The elements ω, e,

T , and P are the same as presented in the astrometry model, K1 and K2 are the velocity semi-amplitudes of each

component, and γ is the systemic velocity. These elements are used to compute a model value for velocity at each time

of observation. Once again the total χ2 for radial velocity data is just the sum of the individual components, χ2
primary

and χ2
secondary. The Fairborn radial velocities cover a much more extensive portion of the full orbit, and each velocity

is the average of a much greater number of lines, so we assign these velocities twice the weight of those obtained at

Lick Observatory. Since the reduced χ2 for the radial velocity best fit is > 1, we increase the RV error values by a

factor of ∼ 1.3 to bring reduced χ2 to 1 for fitting the combined RV and astrometry data.

3.3. Fitting Methods

We use a Markov chain Monte Carlo (MCMC) fitting routine to determine the best fit parameters for our binary

model. An MCMC fit can efficiently sample a large region of parameter space to ensure that a global minimum has been

reached, unlike the least-squares method which can become stuck at local minima solutions. Parameter distributions

from the MCMC sampling also provide more accurate error values than those obtained via least-squares fitting. We

carry out an MCMC fit using the Python package emcee developed by Foreman-Mackey et al. (2013).

Assuming independent Gaussian errors for our data, the log-likelihood function is just given as

ln(L) = −1

2
χ2, (2)

where χ2 is formulated as explained in the previous subsections. As a starting point for our MCMC walkers we use

the Python package lmfit for non-linear least squares fitting (Newville et al. 2014). To sample a large amount of

parameter space, we randomly perturb each parameter about its best fit value from least-squares as a starting point

for each walker. For each fit we run 2*Nparams walkers until convergence is reached. The Gelman-Rubin diagnostic

(Gelman & Rubin 1992) is used to test whether or not a chain has converged. This diagnostic compares the variance

of a parameter in one chain with the variance between chains and is given by

R =

√
V ar(Θ)

W
, (3)

where Θ is some parameter and W is the variance within a single chain. As a chain converges, this ratio approaches 1.

In the results presented, all of our chains have been run until R<1.001. Uniform priors are used for each parameter,

with search range restrictions given in Table 9.
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Table 9. MCMC Parameter Search Range

Parameter Min Value (>) Max Value (<)

P (days) 40 41

T (MJD) 56823 56825

e 0 1

ω (deg) 0 360

Ω (deg) 0 360

i (deg) 0 180

a (mas) 5.0 6.0

K1 (km/s) 0 30

K2 (km/s) 0 30

γ (km/s) 0 30

The orbital elements can be determined from separate fits to astrometry and RV data or from combining the datasets

to fit all ten orbital parameters at once. In the next section we present fitting results for all three cases (astrometry

alone, RV alone, and combined fit). The results of our fitting routines for δ Del are presented in the next section.

4. ORBITAL FITTING RESULTS

4.1. Astrometry Alone

Using our described fitting routine we first determine the best fit orbital elements from astrometry data alone. The

best fit orbit along with our measured positions is shown in Figure 3. Also plotted is the line of nodes, about which

the binary orbit is inclined. Data points near the nodes are crucial for constraining the angular semi-major axis, while

points away from the nodes help constrain the inclination. The best fit parameters and their errors from MCMC fitting

are displayed in Table 10. Figure 4 shows parameter posterior distributions. Correlations between T and P , ω and Ω,

and a and i are expected from a visual orbit. Our quoted error bar on each parameter is the standard deviation of the

posterior distribution from the MCMC routine. Along with the MCMC error, there is a systematic error of ±0.25%

on the angular semi-major axis due to MIRC absolute wavelength calibration (Monnier et al. 2012).
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Figure 3. The position of the primary component relative to its companion at the origin. The green ellipse is the best fit orbit
for δ Del determined by fitting to astrometry data. The error ellipses on each observation are too small to be seen at this scale,
so the insets display representative errors. The red line is the line of nodes, about which the orbit is inclined. Orbital motion
is counterclockwise, with the portion of the orbit above the line of nodes inclined towards the observer and the portion below
the line inclined away.
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Figure 4. A corner plot of parameter distributions from the MCMC routine for astrometry data. Histograms display the number
of times a given value was chosen as the best value for that element, and 2D plots show correlations between parameters. The
crosshairs denote the best fit from least-squares fitting.

4.2. Radial Velocity Alone

Due to short period variations in their radial velocity curves, both components of δ Del have been previously classified

as δ Scuti variables with periods of 0.158 ± 0.006 days for the primary (more massive) component and 0.134 ± 0.015

days for the secondary (Duncan & Preston 1979). Though modeling these pulsations does not change the final orbital

solution, we do detect δ Scuti variations in portions of our data. We detect significant period signals for the primary

component in the Fairborn and Lick Observatory data, as well as for the secondary component in the Lick Observatory

data. We describe our first-order corrections for these pulsations in Appendix A, and we list the resulting corrected

RVs in Tables 7 and 8. Once the δ Scuti pulsations are subtracted out of the RV data, we determine the best fit
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orbital elements to the RV data alone using our MCMC routine. Figure 5 shows our best fit orbit with residual plots

shown in figures 6 and 7. These include the 97 double-line RV points from Fairborn Observatory as well as the 87

data points from Lick Observatory. We also plot the two velocities measured from single-lined spectra near phase

0.6. These velocities are not included in the fit, due to the low precision of these points. However, the two velocities

appear to support our best fit values of system velocity and hence mass ratio. Figure 8 displays parameter posterior

distributions. Table 10 shows the best fit orbital elements from fitting to RV data alone, along with MCMC error

values. Duncan & Preston (1979) reported values of 40.580 ± 0.003 and 0.7 ± 0.1 for the period and eccentricity in

their preliminary orbit analysis. Our best value of 40.6051 ± 0.0002 days for the orbital period differs slightly from

theirs, while our eccentricity of 0.632 ± 0.004 is within their quoted uncertainty.
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Figure 5. Double-lined radial velocities along with the best fit model. The RV data combines 97 data points from Fairborn
Observartory with Duncan & Preston (1979)’s 87 unpublished RVs from Lick Observatory. The two gray marks just before
phase 0.6 are velocities obtained from single-lined spectra. These points are not included in the best fit, but the measurements
do help support our system velocity and mass ratio values.

Figure 6. Residual plot of the primary component of δ
Del from the best fit RV orbit.

Figure 7. Residual plot of the secondary component of δ
Del from the best fit RV orbit.
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Figure 8. A corner plot of parameter distributions from the MCMC routine for RV data. Histograms display the number of
times a given value was chosen as the best value for that element, and 2D plots show correlations between parameters. The
crosshairs denote the best fit from least-squares fitting.

4.3. Combined Fit with Physical Orbital Parameters

Since orbital elements ω, e, T , and P are constrained by both astrometry and RV data it is advantageous to combine

the datasets for a single fit. When combining datasets we assign a weight to each set to bring both reduced χ2
ast and

χ2
RV to 1 when fitting separately. The total χ2 to be minimized is

χ2
combined = wast ∗ χ2

ast + wRV ∗ χ2
RV, (4)

where wast and wRV are the weights assigned to the astrometry and radial velocity datasets. Table 10 shows the best fit

values for all ten orbital parameters determined from fitting to the combined set of data. Figure 9 shows the parameter
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distribution from our MCMC fitting routine. Note that there is a ±0.25% wavelength calibration systematic error on

the angular semi-major axis as mentioned in section 4.1. This systematic error affects the distance value determined

from the orbit.

Combining astrometry and RV data leads to a measurement of physical orbital elements of parallax, linear semi-

major axis, and masses of each component (see Torres et al. (2010) for relevant equations). These values and their

errors are shown in Table 11. Our results agree with the original parallax measurement by Hipparcos of 16.03± 0.68

mas (Perryman et al. 1997). However, the revised Hipparcos reduction for δ Del reports a parallax of 14.61± 0.2 mas

(van Leeuwen 2007), which is not consistent with our measurement. Our new parallax measurements decreases the

Hipparcos distance of δ Del from 68.45± 0.94 pc to our new value of 63.61± 0.89 (±0.16 systematic error) pc. Since

Hipparcos did not identify this source as a binary there could be systematic errors in the parallax determination, since

photocenter motion due to binarity could effect the parallax fit. However, since the magnitudes are nearly equal in

R band one would not expect a large photocenter shift. We point out that a discrepancy from the revised Hipparcos

reduction has been reported before in the close binary system ψ Persei (Mourard et al. 2015).

Note that we present the results of fits carried out from velocities with the δ Scuti pulsations subtracted. However,

we also carried out a combined fit using the measured RVs without the δ Scuti RV variations subtracted. None of

the orbital elements, mass ratio, or masses changed outside of the error bars quoted in the best fit solution with the δ

Scuti variations subtracted.

Table 10. Best fit orbital elements from astrometry and RV data

Astrometry Alone RV Alone Astrometry+RV

P (d) 40.60510 ± 0.00015 40.60514 ± 0.00016 40.60505 ± 0.00014

T (MJD) 56823.604 ± 0.030 56823.6180 ± 0.032 56823.5019 ± 0.0028

e 0.6319 ± 0.0043 0.6334 ± 0.0046 0.64008 ± 0.00018

ω(◦) 67.17 ± 0.58 66.94 ± 0.61 65.07 ± 0.32

Ω(◦) 65.17 ± 0.58 – 63.73 ± 0.33

i(◦) 14.08 ± 0.19 – 13.92 ± 0.18

a (mas) 5.4707 ± 0.00391 – 5.4676 ± 0.00371

K1 (km/s) – 13.98 ± 0.14 13.88 ± 0.14

K2 (km/s) – 15.26 ± 0.07 15.27 ± 0.07

γ (km/s) – 9.61 ± 0.07 9.48 ± 0.07

1±0.014 (systematic)

Table 11. Best fit physical elements from combining RV and astrometry data

Physical Element Best Value

parallax, π (mas) 15.72 ± 0.22 (±0.04)1

distance, d (pc) 63.61 ± 0.89 (±0.16)1

semi-major axis, a (AU) 0.348 ± 0.005

M1/M2 1.100 ± 0.012

M1 (M�) 1.78 ± 0.07

M2 (M�) 1.62 ± 0.07

1systematic error in parentheses
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Figure 9. A corner plot of parameter distributions from the MCMC routine for combined astrometry and RV data. Histograms
display the number of times a given value was chosen as the best value for that element, and 2D plots show correlations between
parameters. The crosshairs denote the best fit from least-squares fitting.

5. STELLAR EVOLUTION FOR δ DEL

5.1. Rotational Velocities and Orbital Evolution

From our fits to the lines in our Fairborn Observatory spectra that are at phases near maximum velocity separation,

we have determined v sin i values of 17 ± 1 km s−1 for the more massive primary star and 12 ± 1 km s−1 for the less

massive secondary. If the rotational and orbital axes are parallel, as is usually assumed, then we can use our orbital

inclination value of 13.9◦ to determine the equatorial rotational velocities of the components. With that inclination

the projected velocities increase to 71 and 50 km s−1, respectively.

Over time the orbits of close binaries tend toward circularization and rotational synchronization with the orbital
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period occurs for the components (e.g., Zahn 1977; Tassoul 1987; Tassoul & Tassoul 1992; Matthews & Mathieu 1992).

In the case of an eccentric orbit, Hut (1981) has shown that the rotational angular velocity of a star will tend to

synchronize with that of the orbital motion at periastron, a condition called pseudosynchronous rotation. With the

periastron separation used as the semimajor axis, a period of 8.78 days results. Our computed radii from §2.1 then

produce pseudosynchronous velocities of 19.6 and 20.2 km s−1. Both values are much smaller than our equatorial

rotational velocities. Given the youth of the system, its moderate orbital period, and that neither star has a significant

outer convective envelope, it is not surprising that the rotational velocities of the components have not decreased to

their pseudosynchronous values.

Gray & Garrison (1989), Gray et al. (2001), and others have classified the composite spectrum of δ Del as a peculiar

early F star, and Reimers (1976) found that its two components have identical peculiar chemical compositions. Such

findings are consistent with the computed equatorial rotational velocities of the two stars, which are both less than 120

km s−1, the value below which A and early F stars generally have peculiar metal abundances (Abt & Morrell 1995).

5.2. Position on HR Diagram

With our measured radii and flux ratios from MIRC and PAVO data, we are able to plot the position of both

components of δ Del on an HR diagram. We use MESA Isochrones and Stellar Tracks (MIST) models to plot

isochrones and tracks for different stellar masses (Dotter 2016; Choi et al. 2016; Paxton et al. 2011, 2013, 2015). When

compared with solar metallicity tracks, the track masses that match our luminosity and temperature determinations

are not consistent with our best fit masses of 1.78 M� and 1.62 M� from our orbit. However, the metallicities for δ

Del listed on SIMBAD suggest that this system may be metal poor. There is a spread in metallicity measurements

from solar to metal poor values, depending largely on the adopted value of the effective temperature. Reimers (1976)

measure [Fe/H]=−0.35, and Cenarro et al. (2007) report [Fe/H]=−0.30. We find that a value of [Fe/H]=−0.5 gives

solar tracks which are most consistent with our mass, luminosity, and temperature determinations. The position of

each component of δ Del on an HR diagram, along with stellar tracks and isochrones, are shown for both low and solar

metallicities in Figures 10 and 11. The mean Hβ value, b − y, and B − V colors listed in SIMBAD suggest a mean

spectral class of about F0, which is what was found by Morgan & Abt (1972) and Gray & Garrison (1989). The best

luminosity class estimates indicate that the average component for δ Del is evolved, consistent with our HR diagram

results. Thus, the stars have evolved to late A or early F-type positions and were most likely originally late A-type

stars.
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Figure 10. Position of both components of δ Del on an
HR diagram for the low metallicity case. MIST models
are used to compute the plotted stellar tracks (solid lines)
and isochrones (dashed lines). The luminosity and tem-
perature values are consistent with our determined masses
if component 2 is more evolved than component 1.
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HR diagram for the solar metallicity case. MIST models
are used to compute the plotted stellar tracks (solid lines)
and isochrones (dashed lines). The masses predicted from
the HR diagram in this case are not consistent with those
determined from our orbit.

As can be seen from Figure 10, the individual masses determined from orbital fitting of radial velocity and astrometry

data are only consistent with the measured radii and flux ratios if one stellar component is more evolved than the

other. Note that although the error bars in Figure 10 seem to overlap, the mass ratio above unity measured from the

spectroscopic orbit makes overlap impossible. The position of the lower mass star on the HR diagram suggests an age

> 1.2 Gyr, while the age of the higher mass star is just over 1 Gyr. This ∼ 200 Myr age difference is puzzling, as one
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would expect two stars of a close binary system to be the same age. Since the components of δ Del are only separated at

maximum RV separation, one possibility for this odd HR diagram placement is that there are systematic errors present

in our radial velocity results which affect the mass ratio. The properties of the two stars derived from interferometry

suggest that the mass ratio should be very close to unity, while our measured value from the spectroscopic orbit is

∼ 1.1. It is not clear in which direction possible systematics would change the semi-amplitudes and, hence, mass

ratio. The situation is further complicated by the pulsation of both components. Though we do not see any obvious

systematics from our test described in §2.2, we nevertheless caution that systematic errors of the RV semi-amplitudes

are a possible explanation for the odd positions of the components in the HR diagram. The two single-lined radial

velocities that we measure when both components are at their center-of-mass velocity add further support that our

value for system velocity is correct. This strengthens the claim of the mass ratio from the RV orbit, though we reiterate

that these two velocity measurements are of low precision due to δ Scuti pulsations and different rotational velocities

of the components that will not in general average out.

Assuming that there are no systematic errors present in the mass ratio, we can think of four possible explanations

for resolving the age difference problem in the HR diagram: 1) δ Scuti stars age differently than normal stars on the

immediate post-main-sequence branch, 2) stellar evolution models are not accurate on the subgiant branch, 3) early

interaction with a third component caused a difference in evolution rates, or 4) the age difference in the components

of δ Del is a result of a merger event for the inner stars of an initially triple system.

Theoretically, δ Scuti stars are expected to evolve as normal stars on the main-sequence and immediate post-main-

sequence (e.g Baglin et al. 1973; Breger 1979, 1980). However, as pointed out by Petersen & Christensen-Dalsgaard

(1996), there is very little observational proof of this hypothesis. Recently Niu et al. (2017) used photometric and

spectroscopic data on the δ Scuti variable AE Ursae Majoris to provide such evidence that δ Scuti variables do in

fact evolve as normal stars on the immediate post-main-sequence. However, one observation may not be sufficient for

making this claim about all δ Scuti variables. A potential cause of abnormal aging among δ Scuti variables is the

non-solar metal abundances present at the photosphere (e.g. Guzik et al. 1998). As pointed out by North et al. (1997)

metallicity determination of δ Scuti variables may only be confined to the superficial layers of these stars and not

reflect an internal metal distribution. Thus, mass determination via standard solar-scaled models may be invalid for

these stars. Tsvetkov (1990) compared three different types of mass determinations for 89 δ Scuti variables. Although

the mass determined from the evolutionary state on the HR diagram was consistent for most of their sample, for 9 of

their stars the different methods of mass determination produced inconsistent results. The mass determination via the

HR diagram differed by a factor of 2–5 between other methods. Hence, the HR diagram may not be reliable for mass

determination for δ Scuti variables. North et al. (1997) also note that there is no one-to-one relation between mass

and position on an HR diagram at the end of the core-hydrogen exhaustion phase. We find that δ Del lies right around

this phase in stellar evolution, which may account for the discrepancies between mass prediction from the MIST stellar

model and from the combined spectroscopic and visual orbit.

Close binary star evolution is in general a complex topic, where the closest systems often involve formation scenarios

where the systems interact with a tertiary companions (Tokovinin 2004), and interaction with the circumstellar and

circumbinary disks means that stars can be born with a variety of initial rotational velocities. Differential rotational

velocities change interior mixing, and can cause a difference in evolutionary rates. Additionally, interaction (such as

accretion of He-rich material) with a now-ejected initially higher mass companion could also cause a difference in the

evolutionary states between the two components.

If the MIST models do in fact correctly describe these components, then the low-mass component must have an age

of just over 1.2 Gyr while the high-mass component has an age of just over 1.0 Gyr. A possible way to account for this

age difference is to assume that one of the stars is the result of a merger event. An inner binary of an initially triple

system would have had to merge within ∼ 200 Myr. The result of the merger would be a single star (the more massive

component) which then evolved normally within the now binary system. The merger hypothesis has been proposed

before to explain the existence of peculiar stars, and merger timescales of 100-500 Myr are theoretically possible (e.g.

Andrievsky 1997; de Mink et al. 2014). However, there are two major problems with one component of δ Del being the

result of a merger event: 1) merger products are likely to have abnormal rotation rates, and 2) merger products are

not likely to have a non-affected nearby main-sequence companion (de Mink et al. 2014). δ Del has both a relatively

slow rotation rate and a very nearby companion. It is beyond the scope of this paper to determine whether or not it

is truly possible for one component of this close binary system to be the result of an early merger event. Although it

seems to be an unlikely scenario, if the stellar evolution models are correct for this binary then interaction with an

early third companion is the only possibility we can think of to resolve the age discrepancy seen in the HR diagram.
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6. TOWARD ASTROMETRIC DETECTION OF EXOPLANETS

From the ground, long-baseline interferometry is a promising method for using differential astrometry to detect

exoplanets. The astrometric detection method favors planets farther from the host star, unlike RV or transit surveys.

Moreover, interferometric binary observations favor hot (A and B-type) binary stars which are difficult to probe via

RV surveys because of weak and broad spectral lines. Thus, developing the capability to detect exoplanets with the

MIRC instrument can probe a region that is not well explored by other detection methods. The recent PHASES

project monitored binary stars with the Palomar Testbed Interferometer to obtain precise differential astrometric

orbits and detected 6 candidate substellar objects orbiting single stars of a binary system (Muterspaugh et al. 2010).

Unfortunately this project was halted due to the closure of the Palomar Testbed Interferometer in 2009. In this

section, we demonstrate that the MIRC instrument at CHARA is capable of achieving the precision necessary for

astrometric detection of exoplanets. The precision needed to detect the wobble of a star at δ Del’s distance from a

Jupiter mass planet within a few AU is on order of 10 µ-arcseconds. With our δ Del orbit MIRC has achieved this

precision in differential position of one star in a binary system with 10 minute observations. Thus, if there was a large

planet around one component of δ Del it would be possible to detect as residuals on our astrometric orbit. Claiming a

detection is not simple, as it involves adding 7 planet orbital parameters to the 7-parameter binary model. Adding free

parameters to a model may lower the χ2 of a fit, but this does not necessarily make it a ”better” model. A detection

criterion often used for claiming radial velocity planet detections is the Bayesian Information Criteria (BIC) value (e.g.

Feng et al. 2016; Motalebi et al. 2015; Sato et al. 2015). The BIC is computed by

BIC = −2 lnL+ k lnn, (5)

where k is the number of free parameters, n is the number of data points, and L is the likelihood function. For our

models, −2 lnL = χ2. When comparing two models the one with a lower BIC value is selected as being a better fit to

the data.

We do not detect a planet around either component of δ Del, which is unsurprising since the binary separation is

∼ 0.3 AU. Still, we can use the precision of this orbit to test planet detection limits around δ Del and gain insight as to

the types of planets we can detect when extending this precision to wider binary systems. To compute detection limits,

we add simulated planet wobbles to our observations and fit the resulting data with a binary fit and a binary+planet

fit. Note that we are testing for planets around individual stars of a binary system. while it is possible that a

circumbinary planet exists around δ Del, our differential astrometric data is not sensitive to these types of orbits. We

also emphasize that in this study we are only testing which planets show statistically significant detection signals with

our measurement precision. Sophisticated fitting routines and many epochs of observations will be needed to recover

the full orbit of real planets. Though fitting to 14 free parameters is a formidable challenge, in reality we will target

systems where the 7 binary parameters are known quite well. Thus, only the 7 planet orbital elements will truly be

free parameters. Future work of our group will include developing such fitting routines, building off of the work of

recent studies that have tackled this challenge (e.g. Perryman et al. 2014; Sozzetti et al. 2014; Ranalli et al. 2017).

The position of one star plotted relative to the companion is a sum of the position due to the binary orbit and the

perturbation from the planet. Relative to a star at the origin, we can calculate the position vector [xs(t), ys(t)] of

one companion. We can also calculate the perturbation on a star due to an orbiting planet. Using the planet orbital

elements, the position vector of the star from the planet is [xp(t), yp(t)]. The final astrometric position of a star with

a binary companion and orbiting planet is then a sum of the two vectors

[x(t), y(t)] = [xs(t), ys(t)] +
[xp(t), yp(t)]

1 +Ms/Mp
, (6)

where Ms is the mass of the star and Mp the planet mass. The planet vector is shortened since we are only seeing the

reflex motion of the star due to the presence of the planet.

To test planet detection limits around δ Del we simulate 10 planets with 0 eccentricity and random values for ω, Ω,

i, and T0 at each point on a grid with semi-major axes varying from 0.01− 3 AU and masses from 0.01− 10 MJ . We

record the percentage of the planets we successfully recover at each grid point. The planet perturbation at the time of

data collection is added to each real data point of our δ Del orbit. For each simulated planet we perform a binary fit

(7 parameters) and a binary+planet fit (14 parameters) and compare the BIC values. We use the known binary and

simulated-planet parameters as initial guesses for a least-squares fit to compute χ2 for the binary and binary+planet

model. The model including a planet in the binary system is considered better if it has a lower BIC value and ∆BIC>5

between the models (Liddle 2007). We consider true detections to be those in which the recovered planet mass and

semi-major axis are within 30% of the true input values of the simulated planet. Figure 12 displays our planet detection
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limits around a binary star with the observational precision of δ Del. Our detection limits suggest that with MIRC

we are able to recover most planets > 2 MJ at orbits > 0.75 AU around single components of intermediate mass close

binary systems.
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Figure 12. Planet detection limits around δ Del are computed by simulating the wobble from a planet at each point on a mass,
semi-major grid. A candidate detection is made based on the BIC criterion. If the best fit planet mass and semi-major axis
are within 30% of the actual input values then we classify it as a true detection. For each mass, semi-major grid point we
simulate 10 planets with random orbital elements and record the percentage of the time the planet is recovered. The dashed
curve denotes the points on the grid where a planet would impart a 10 micro-arcsecond wobble on the star.

The Gaia mission will also use the astrometry method for discovering giant exoplanets. While Gaia is expected to

be extremely successful in recovering massive planets around low mass stars, companions with mass MP < 10 MJ

around around A and B-type stars will likely remain undetectable by Gaia. A common criterion for detection of an

undiscovered exoplanet with Gaia is

S/N = a(
σΛ√
N

)−1 > 20, (7)

where σΛ is the single-epoch measurement error, a is the semi-major axis of the detected orbit, and N is the number of

observations (Sahlmann et al. 2016). Using this criteria for a discovery with σΛ = 50 µ-as and N = 70 measurements

over 5 years, a 1 MJ planet on a 3 AU orbit around an A-type star of 2 M� could be detected out to 10 pc. Since there

are just 4 A-type stars within 10 pc, Jupiter-mass planet discoveries around massive stars are expected to be rare with

Gaia. A 10 MJ planet on a 3 AU orbit around an A-star is detectable out to 100 pc, where there are over 400 A-type

stars available for study (De Rosa et al. 2014). Thus, companions ∼10 MJ and greater around A-type stars should be

detectable with Gaia. With better single-epoch measurements, we plan to search for Jupiter-mass planets on orbits

<5 AU around A and B-type stars which will complement the more massive companions discovered by Gaia.

7. SUMMARY

Obtaining both spectroscopic and visual orbits of binary stars allows one to measure the full 3D orbit, masses,

and parallax of the system. This information is crucial for testing models of stellar evolution. In this work we have

obtained a highly precise visual orbit with > 2 years of data from the MIRC instrument on the CHARA long-baseline

interferometer. We also use 97 new spectra from Fairborn Observatory along with 87 unpublished spectra obtained at

Lick Observatory by Duncan & Preston (1979) to obtain a double-lined spectroscopic binary orbit. In our full binary

analysis of δ Del we determine component masses of 1.78 ± 0.07 M� and 1.62 ± 0.07 M�. We measure a distance of

63.61± 0.89 (±0.16 systematic error) pc, which differs from the revised Hipparcos value of 68.45± 0.94 pc.

We find that the evolutionary state of δ Del is puzzling. Combining our H-band MIRC observations with R-band

data from the PAVO instrument on CHARA, we are able to determine individual magnitudes and temperatures for
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each component. A metallicity of [Fe/H]=−0.5 is required to match our mass determination to MIST stellar models.

The position on the HR diagram, however, implies that one component is more evolved than the other by ∼ 200

Myrs. We propose four possibilities for explaining this seemingly impossible evolutionary state: 1) stellar models are

incorrect on the subgiant branch, 2) δ Scuti variables evolve differently than normal stars just after the main sequence,

3) interactions with a now-ejected tertiary companion created different mixing processes for each component or 4) the

more massive component of δ Del is the result of a merger event at an age of ∼ 200 Myr which then evolved as a

normal star.

Because of the high precision of our visual orbit of δ Del, we calculate exoplanet detection limits around one of the

two stars of this binary system after accounting for the orbital motion of the companion. With the MIRC instrument

we have maintained < 10 µ-as precision on differential position over > 2 years. This is the precision needed to detect

Jupiter-mass planets at orbits up to a few AU. Though the presence of a planet around a component of δ Del is

unlikely because of the extremely close binary separation, we have shown that if this precision can be extended to

wider binaries MIRC is within reach of detecting planets > 2 MJ at orbits > 0.75 AU. Developing this capability will

allow us to search for exoplanets in regimes that are difficult to probe with RV and transit surveys, such as around hot

binary stars. Our group is starting project ARMADA (ARrangement for Micro-Arcsecond Differential Astrometry),

which will use MIRC at the CHARA array to target hot binary stars with the goal of detecting massive exoplanets on

orbits up to a few AU around intermediate mass stars.
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A&A, 426, 297

Liddle, A. R. 2007, MNRAS, 377, L74

Lucy, L. B. 2014, A&A, 563, A126

Matthews, L. D., & Mathieu, R. D. 1992, in Astronomical

Society of the Pacific Conference Series, Vol. 32, IAU Colloq.

135: Complementary Approaches to Double and Multiple Star

Research, ed. H. A. McAlister & W. I. Hartkopf, 244

Monnier, J. D., Pedretti, E., Thureau, N., et al. 2006, in

Proc. SPIE, Vol. 6268, Society of Photo-Optical

Instrumentation Engineers (SPIE) Conference Series, 62681P

Monnier, J. D., Che, X., Zhao, M., et al. 2012, ApJL, 761, L3

Morel, M., & Magnenat, P. 1978, A&AS, 34, 477

Morgan, W. W., & Abt, H. A. 1972, AJ, 77, 35

Motalebi, F., Udry, S., Gillon, M., et al. 2015, A&A, 584, A72

Mourard, D., Monnier, J. D., Meilland, A., et al. 2015, A&A,

577, A51

Murdoch, K. A., Hearnshaw, J. B., & Clark, M. 1993, ApJ, 413,

349

Muterspaugh, M. W., Lane, B. F., Kulkarni, S. R., et al. 2010,

AJ, 140, 1657

Newville, M., Stensitzki, T., Allen, D. B., & Ingargiola, A. 2014,

LMFIT: Non-Linear Least-Square Minimization and

Curve-Fitting for Python, , , doi:10.5281/zenodo.11813

Niu, J.-S., Fu, J.-N., Li, Y., et al. 2017, MNRAS, 467, 3122

North, P., Jaschek, C., & Egret, D. 1997, in ESA Special

Publication, Vol. 402, Hipparcos - Venice ’97, ed. R. M.
Bonnet, E. Høg, P. L. Bernacca, L. Emiliani, A. Blaauw,

C. Turon, J. Kovalevsky, L. Lindegren, H. Hassan,
M. Bouffard, B. Strim, D. Heger, M. A. C. Perryman, &

L. Woltjer, 367–370

Pauls, T. A., Young, J. S., Cotton, W. D., & Monnier, J. D.
2005, PASP, 117, 1255

Paxton, B., Bildsten, L., Dotter, A., et al. 2011, ApJS, 192, 3

Paxton, B., Cantiello, M., Arras, P., et al. 2013, ApJS, 208, 4
Paxton, B., Marchant, P., Schwab, J., et al. 2015, ApJS, 220, 15

Perryman, M., Hartman, J., Bakos, G. Á., & Lindegren, L. 2014,
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APPENDIX

A. δ SCUTI PULSATIONS

Because of short period variations in their radial velocity curves, both components of δ Del have been previously

classified as δ Scuti variables with periods of 0.158 ± 0.006 days for the primary (more massive) component and

0.134 ± 0.015 days for the secondary (Duncan & Preston 1979). However, this previous analysis of the 1979 Lick

Observatory data also concluded that there are multiple periodicities in the δ Scuti pulsations. Hence, fitting the

pulsations to a single sinusoid with the peak period does not capture the true nature of these variations. More

evenly sampled data at all epochs is likely needed to model these pulsations thoroughly. Nevertheless, we describe a

”first-order” correction of these pulsations in order to improve the overall RV fit.

We first carry out a least-squares fit to all of the radial velocity data from Fairborn and Lick observatories, and

we subtract out the resulting best-fit RV for each data point. We then search for additional periodic signals in the

residuals by generating a Lomb-Scargle periodogram with the built-in function from the astropy package (Astropy

Collaboration et al. 2013). A single sinusoid is fit to the residual data with a period determined from the highest peak

of the periodogram. The significance of a peak is determined by estimating the false-alarm probability (FAP) using

the bootstrap method described in (Murdoch et al. 1993).

In the Fairborn Obs data, we find a significant peak in the primary at 0.157 days. The secondary component,

however, shows no significant peaks in the Fairborn data. The strongest peak in the periodogram has a FAP of ∼0.91,

suggesting that it is not a true signal. Thus we do not model any pulsations in this component for the Fairborn data.

We detect significant peaks in both components of the 1979 Lick Observatory data, though the periodograms show

peaks for many different periods. For the secondary component in the Lick Observatory data we model the pulsations

with the first peak at 0.1323 days, within the error bars of the 1979 analysis. Since there is also a peak at 0.157

days for the primary component in the Lick data, we again use this period to model the pulsations of the primary.

We subtract the δ Scuti pulsations out of the radial velocity data, separately for the Fairborn and Lick Observatory

velocities, and re-fit the resulting data with our RV model. Our reduced χ2 value for the RV fit decreases from 3.5 to

1.8 after subtracting out the pulsations. The periodograms for each dataset are shown in Figure A1. Figure A2 shows

the δ Scuti pulsations of the primary in the Fairborn data and both components in the Lick data.
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Figure A1. After subtracting out the best-fit RV orbit, we search for additional periodicity in the data due to δ Scuti pulsations.
We detect significant peaks in the primary component of the Fairborn data, and both components of the Lick data. The orange
background signal depicts peaks of 3-sigma significance determined by bootstrapping. The peaks in the secondary component
of the Fairborn data are not highly significant.
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Figure A2. δ Scuti pulsations in the residuals for the Fairborn and Lick RV data after the best fit orbit is subtracted out.
The primary component of both datasets has a period of 0.157 days. The secondary in the Lick data has a period of 0.132
days. We detect no significant period signal for the secondary in the Fairborn Observatory data. Figures are phase-folded with
T0 = 56823.6.


