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Abstract 

We simulate, analyse and compare the mechanical properties of a number of molecular sheet-

like systems based on fully-substituted, penta-substituted, tetra-substituted and tri-substituted 

poly(phenylacetylene) using static force-field based methods. The networks are modelled in a 

3D environment with and without inter-layer interactions in analogy to graphite and graphene 

respectively. It is shown that by varying the type of substitution and the length of the 

acetylene chain, one may control the mechanical properties of such systems. In particular, it 

is shown that poly(phenylacetylene) systems can be specifically designed to exhibit negative 

Poisson’s ratio, and that the stiffness can be controlled in an independent manner from the 

Poisson’s ratios. This is significant as it highlights the fact that such systems can be tailored 

to exhibit a particular set of mechanical properties. 
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1. Introduction 

Auxetics (materials with a negative Poisson’s ratio) exhibit the anomalous property of 

expanding laterally when uniaxially stretched and contracted when uniaxially compressed. 

Although this property is not commonly encountered in most everyday materials, in the last 

decades, particularly since the coining of the term ‘auxetic’ in 1991[1], various previously 

unknown materials and models which exhibit this property have been discovered and/or 

developed. These include molecular systems such as zeolites and silicates[2]–[6], liquid 

crystalline polymers[7], [8], carbon based systems[9]–[12] and cubic metals[13], [14]; 

microstructured materials such as foams[15]–[20] and microstructured polymers[21]–[24] as 

well as macromodels based on re-entrant honeycombs[25]–[27], rotating rigid units[5], [28]–

[32], dilational systems[33], [34], non-convex hard bodies[35], [36], chiral honeycombs[5], 

[37]–[40] and helices[41].  

Materials which have been extensively studied vis-à-vis their potential to exhibit a negative 

Poisson’s ratios are those made from phenyl rings connected together via acetylene chains. In 

particular, Evans et al. [1] had proposed a crystalline network having 1,2,3 tri-substituted 

phenyl rings connected together via acetylene chains of various lengths, collectively referred 

to as reflexyne networks as well as their 1,3,5 tri-substituted equivalents, collectively referred 

to as flexyne networks. The reflexyne networks with their arrow-shaped features were meant 

to mimic the behaviour of auxetic re-entrant honeycombs[25] whilst the flexyne networks 

with their Y-shaped joints were meant to mimic conventional honeycombs. These nano-scale 

networks were modelled as crystalline systems using force field based simulations[1], [42], 

[43] where it was shown that the sign of the Poisson’s ratio is dependent on the way the 

acetylene chains are connected to the phenyl rings, with the reflexynes exhibiting negative 

Poisson’s ratios for loading along the major directions whilst the flexynes exhibited positive 

Poisson’s ratio. More recently Grima and Evans have also modelled crystalline forms of 

1,2,3,4 tetra-substituted phenyl rings connected together via acetylene chains of various 
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lengths, collectively referred to as polytriangles, which were meant to mimic the behaviour of 

auxetic rotating triangles as well as their fully-substituted equivalents[9]. Here it was shown 

that the polytriangles have the potential to exhibit negative Poisson’s ratios whilst their fully 

substituted equivalents (i.e. crystalline forms of graphyne, graphdiyne, etc.) exhibit 

conventional behaviour. Graphyne can be split into three different types[44]; α-graphyne, 

which consists of propyne chains being connected to form a structure of hexagons; β-

graphyne, which uses the same type of chain but forms a structure of hexagons being 

surrounded by triangles; and γ-graphyne, which can be described as a structure formed from 

multiple poly(phenylacetylene) chains, which therefore are composed of carbon atoms in the 

sp and sp2 hybridised state[45]. The existence of γ-Graphyne is permitted due to the ability of 

carbon to form chains and crystal lattices. It is because of this property that variations of 

graphyne, such as graphdiyne, which has a similar structure to graphyne but has two triple 

bonds instead of one between phenyl rings[46], are possible. These systems have primarily 

been studied as monolayer systems [47]–[52], although, at least in theory it is equally 

possible to have these systems existing as crystals rather than mono-layers, these being an 

analogy to graphite as the crystalline equivalent to graphene.  

In this respect, it is somewhat unfortunate that the predicted mechanical properties of the 

crystalline equivalent of the fully-substituted poly(phenylacetylene) systems (i.e. crystalline 

forms of graphyne, graphidyne, etc.) were first reported merely as a comparison to their 

auxetic tetra-substituted counterparts, with the result that not much analysis was performed 

on these systems. Similarly, no attempt was made to analyse the properties of other networks 

that can be produced through different modes of substitutions. In view of this, an attempt is 

made to revisit the properties of graphyne, graphdiyne and related sheet-like systems in an 

attempt to assess the properties that can be obtained from fully-substituted, penta-substituted, 

tetra-substituted and tri-substituted poly(phenylacetylene) systems shown in Figure 1 in an 

attempt to identify interesting and anomalous properties that these systems may exhibit. Here 
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it must be noted that depending on the manner of substitution, the systems in Figure 1 result 

in some very different geometries, where for example, the 1,3,5 tri-substituted systems and 

the 1,2,3,4,5 penta-substituted networks resemble honeycomb-like structures [53]; the 1,2,4,5 

tetra-substituted networks resemble wine-rack models [54] whilst the 1,2,3,4- tetra-

substituted networks resemble the polytriangles [9]. To simplify discussion a nomenclature 

system which is based on the manner of substitution of the phenyl rings and the length of the 

acetylene chains is being proposed, as described in Figure 1. The molecular networks are 

studied both as single graphene-like layers as well as a system of a collection of stacked 

graphite-like layers. 

INSERT FIGURE 1 

2. Simulations  

 

Simulations on the two versions of the systems shown in Figure 1, with n = 1, 2, 3, 4, 5  were 

carried out using static force-field based simulations within the Cerius2 molecular modelling 

environment using a methodology based on previous studies relating to similar systems [1, 2 

9]. In all cases a 3D unit cell was used to represent these molecular networks. In the first set, 

the networks were constructed as graphite-like molecular crystals where the sheets were 

aligned parallel to the (100) plane of the crystal and allowed to stack in the [100] direction 

with no additional constraints. In the second set, additional constraints were imposed on the 

system to model them as graphene-like systems by setting the lattice cell parameters 

, 90     and 200a Å. In this setup, the atoms of one layer are superimposable on the 

corresponding atom of the successive layer and 200 Å  apart. This means that the different 

layers are expected to behave as monolayers since an inter-layer separation of 200 Å  de 

facto means that the different layers are too far apart to interact.  
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In all cases, the crystals and monolayers were represented using one of the smaller possible 

unit cells with a continuum being simulated through the use of periodic boundary conditions. 

The orientations and unit cells used were as shown in Figure 2 and in all cases, the crystal 

cells were oriented with respect to the global Cartesian coordinate system, in a manner which 

forces the [001] crystal direction to remain parallel to the global z-axis and the crystal [010] 

direction aligned in the global yz-plane. For the systems where ,   were left unconstrained, 

this alignment leaves the [100] direction free to orient in any direction, whilst for systems 

where , 90     the [100] direction orients itself with the global x-axis.  

 

For all systems, an energy expression was set up, using the PCFF force-field [55]–[57]. The 

default settings were used with the exception of the non-bond terms which were summed 

using the Ewald summation method [58]. The atomic positions and appropriate crystal lattice 

parameters ( , , , , ,a b c     in the case of the crystals; , ,b c   in the case of the monolayers) 

were then optimised so as to minimise the energy of the system to the default Cerius2 high 

convergence criteria which include an RMS gradient less than 0.001 kcal mol-1 Å-1. 

Following this optimisation procedure, the full 6x6 stiffness matrix C and its inverse, the 

compliance matrix, S = C-1 were calculated from the second derivative of the potential energy 

function since: 

       c
V

E
ij

i j


1 2
 

 i,j=1,2,…,6                    

where E is the energy expression, V is the volume of the unit cell and i are strain components. This 

data was then used to calculate the off-axis mechanical properties using standard axis 

transformation techniques [59]. From the transformed compliances, the off-axis Poisson’s 

ratios ( 32 22yz s s   ), the Young’s modulus ( 221yE s ) and shear modulus ( 441yzG s ) in 

the yz-plane were plotted against ζ , the transformation angle. Finally in an attempt to ensure 

that the results of the simulations were not an artefact of the size of the unit or the force-field 

used, the simulations were repeated using Dreiding  force-field [60] as implemented in 
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Cerius2 using the charge equilibration procedure by Rappé et al. [61]. A selection of systems 

were also re-simulated with the PCFF force-field using larger unit cells ( m m m   supercells 

in the case of crystals, 1 m m   supercells in the case of monolayers, m = 2, 3, 4.). 

 

3. Results and discussion  

Images of typical systems obtained after energy minimisation with the PCFF force-field and 

the simulated mechanical properties in the planes of the networks are shown in Figure 2 

(PA1245-n systems in Figure 3 in more detail). Note that all systems minimised to the 

required convergence criteria and the resulting systems had geometries which, and generally 

to a first approximation, may be described as planar. This is also clearly illustrated by the 

systems shown in Figure 2 and Figure S2 in the supplementary information, which plot also 

highlight the fact that the PA1234-n systems with 2n   exhibit quasi in-plane isotropic 

auxetic behaviour which tends to -1 as n increases whilst the PA1245-n systems are highly 

anisotropic and exhibit auxetic behaviour for loading in off-axis directions that approximately 

correspond to the 55°. Also, in general, the shapes of crystalline systems were similar to 

those of the monolayers, as were their in-plane Poisson’s ratios and other properties as shown 

in Figure 3. In fact there is a linear relationship between the cij of the crystalline systems and 

the respective monolayers as illustrated in Figure 4 and Table S1. Given this agreement 

between the properties of the monolayers and the crystals, the discussion in this paper will 

focus on the properties of the crystals.  

INSERT FIGURES 2 to 5 

Before proceeding any further it is important to note that as will be discussed in more detail 

below, there is an extremely strong relationship between the key architectural features in the 

nanosystems and their elastic response, with the elastic constants being reported here 

generally agreeing well to trends established in analytical models for these architectures 
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described in the literature. For example, a common trend which is observed is that the 

stiffness, both in terms of Young’s and shear moduli (see Figure 5) decreases as the length of 

the acetylene chains increases. This type of behaviour is to be expected and may be explained 

by looking at these systems from a purely mechanical point of view since these longer chains 

which are de facto behaving as nanobeams are easier to flex when compared to their shorter 

counterparts. Also, in the case of PA1245, the only systems which do not exhibit hexagonal 

symmetry, it can easily be identified from Figures 2 and S5 that the anisotropy in the stiffness 

may be mapped to the structures with the highest Young’s moduli being exhibited in the 

directions of the acetylene chains. In the case of the Poisson’s ratio for the tetrasubstituted 

auxetic systems, there is a general trend that as the length of the acetylene chains increases, 

the Poisson’s ratio tends increasingly more to the value predicted by the analytical models for 

the respective idealised models, that is, -1 for the PA1234 systems mimicking the rotating 

triangles, and cot cot
2 2

         
   

 where 
3

2

   in the case of the PA1245 systems 

mimicking the wine-racks (see Figure 5) which were recently found to exhibit auxetic 

behaviour [63]. This trend may be explained by the fact that the systems with longer chains 

resemble the macrostructures they are meant to mimic to a much greater extent. Similar 

arguments can be made to the systems with conventional Poisson’s ratios.  

More specifically, for a given n, the minimised PA12345-n and PA135-n systems may both 

be described as honeycombs with hexagonal pores of equal size. This geometry, which has a 

hexagonal symmetry, renders these two sets of systems isotropic in-plane as clearly evident 

by all their respective mechanical property plots (see Figure S1 and Figure S3). However, the 

manner of construction of these two sets of systems is very different with the ligaments 

making up the honeycomb in PA135-n systems being simply of acetylene chains whilst the 

ligaments of the PA12345-n system are a much more complex truss system made from 

acetylene chains connecting via penta-substituted phenyl rings. This difference in the manner 

of construction results in very different magnitudes of the various mechanical properties with 
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PA12345-n variants being significantly more stiff, having a higher Young’s moduli and 

higher shear moduli (see Figure 2). This increase in stiffness may be explained by the 

nanostructure and nanomechanics of the systems since whilst the PA135-n systems (n,n-

flexynes) may easily deform through flexure of the acetylene chains [42], flexure in the 

PA12345-n systems is not easy to accomplish due to the triangulation that results in a truss-

like system. Also interesting is the difference in the Poisson’s ratio afforded by these systems, 

where the PA135-n flexyne systems have their Poisson’s ratio approaching +1 as n increases 

whilst the PA12345-n tend to have Poisson’s ratios which are approximately half this value 

(see Figure S3). Here it should be noted that whilst it is beyond the scope of this work to 

provide a quantitative analysis of the deformations and nanomechanics of the different 

systems, it is to be expected that these two systems would not deform in an equivalent 

manner since the triangulation provides significant stiffening to the PA12345-n system which 

is more than that expected from just the increase in density. This means that, from a structural 

point of view, these systems may be considered as more similar to the fully substituted 

PA123456-n systems (i.e. graphyne, graphidyne, etc.) than the flexynes. In fact, it is 

interesting to note that the PA123456-n and PA12345-n systems have almost identical 

Poisson’s ratio properties although their moduli differ in magnitude, as expected.  

In the case of the PA1234-n systems ( 2n  ), the Poisson’s ratios tends to -1 as the length of 

the acetylene chain increases (see Figure S2). Such systems have already been studied in 

detail [9] and are known to exhibit auxetic behaviour due to a mechanism which involves 

relative rotation of the triangular units, a mechanism which is well known for its auxetic 

potential [29], [30]. Here it should be noted that simulations performed with the PCFF force-

field of the PA1234 system with n=5 suggest that the nanoscale deformations taking place in 

these networks are primarily due to flexure of the acetylene chains, which flexure still 

preserves the rotational symmetry of triangular unit with the consequence that the mechanism 

can still be described as ‘rotation of semi-rigid triangular units’ (see Figure 6). Similar 
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behaviour has been observed when performing finite element modelling of equivalent 

systems made from beams [30], that is, this type of deformation is not restricted to the 

nanoscale. It is also worth highlighting that for any given n, these auxetic systems exhibit 

very low Young’s moduli when compared to their non-auxetic counterparts studied here, 

which moduli are even lower than those of the less dense flexyne systems made from 

acetylene chains of equal length (see Table S1, Supporting information). This behaviour may 

be explained by the fact that these PA1234 systems deform in a manner where every 

acetylene chain in the system flexes in a manner that is highly amenable, with the result that 

the amount of energy required to accomplish such deformation is minimal. This further 

enhances the role of the rotation mechanism which results in the observed auxetic behaviour 

where the Poisson’s ratio tends to the theoretical value of -1.  

INSERT FIGURE 6 

Equally interesting are the PA1245 systems (see Figure 3 and 5), which are being studied for 

the first time, where it is being shown that these systems are capable of exhibiting very large 

negative Poisson’s ratio in off-axis directions which in some cases are more negative than -3. 

This feature has now been confirmed to be a characteristic of wine-rack like systems [61], 

and highlights the importance that one does not restrict the analysis to on-axis behaviour as 

discussed elsewhere. 

All this is very significant since it has been shown that by changing the manner of 

substitution and/or length of the acetylene chain one can independently vary the pore-size, 

stiffness and/or the Poisson’s ratio of these systems. This highlights the versatility of 

poly(phenylacetylene) networks which can be specifically designed to exhibit tailor-made 

mechanical or other properties. Here it should also be noted that these systems are expected 

to exhibit other useful properties which are either a result of the chemistry of the systems or 

their physics. For example, as a result of the extensive delocalisation of these systems, one 

would expect that polyphenyacetylenes would also be highly conductive polymers. Thus, the 
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particular combination of this property with some specific set of mechanical properties is 

likely to broaden the practical importance of these networks. 

Before we conclude it is important to note that the work presented here is based entirely on 

simulations performed using a static force-field based method. Although it was confirmed 

that the results obtained are force-field independent since the results being reported here 

obtained with the PCFF force-field are being confirmed by the Dreiding force-field, one may 

still argue that what is being reported here are just estimates of what is expected to happen if 

these systems would be synthesised and tested. Obviously, irrespective of how complex and 

intricate a model may be, any predictions obtained from it would remain estimates. However, 

one may equally argue that the main strength of this work is the comparison of the trends and 

it is more than likely that any qualitative conclusions that are being made are valid. This is 

justified by the fact that the trends which are being reported are in line with what one would 

expect through a geometric analysis of the systems. For example, the isotropic nature of the 

results obtained for the PA135, PA1234, PA12345 and PA123456 systems is a consequence 

of the crystal symmetry of the systems (a geometric effect) and the fact that the calculated 

mechanical properties are in accordance with this symmetry confirms validity of this work. 

Nevertheless, it is only through experimental work that the predictions being made here can 

be finally confirmed and it is hoped that this work will provide an impetus to experimentalists 

to synthesise and test systems based on the work presented here.  

It is also equally important to highlight the fact that although the crystal systems and the 

monolayer systems exhibit similar trends, large scale effects that could be present in 

monolayer systems have not been considered. This is primarily due to the fact that throughout 

all simulations, a small unit cell size was used which cannot encompass macroscale effects. 

In particular, it is well known that in large sheets of graphene in which defects have been 

introduced, there is a tendency for the formation of ripples, which may themselves give rise 

to interesting properties including auxeticity amongst others [11], [62]. Obviously, such an 
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effect is not possible to reproduce on a small scale where the unit cell only contains a few 

tens of atoms. Although one might argue that overlooking such effects may raise doubt on the 

validity of the results presented in this work, it should be noted that the effects described in 

this work are still likely to be present in a more localised manner on a nanoscale rather than 

on a macroscopic scale. Nevertheless, should one wish to estimate the properties that 

monolayers exhibit on the large scale, it would be more appropriate to carry out molecular 

dynamics simulations of considerably larger systems since such techniques are likely to be 

more appropriate for simulation of the macroscale behaviour of such membranes. In addition, 

given that the simulations were of a static nature, molecular dynamics could also provide 

insights into how the mechanical properties of these networks change with temperature. One 

may argue that the presence of acetylene chains lends the networks a degree of flexibility so 

that an increase in temperature is likely to cause a degree of rippling in the networks, an 

effect which has been reported in graphyne and graphdiyne [62]. This rippling, modifies the 

macro-scale geometry of the sheet so that other mechanisms may come into effect when loads 

are applied to the system. More specifically, one would expect that ‘flattening’ of the sheet is 

the dominant mechanism at smaller strains, which is likely to be characterised by relatively 

low Young’s moduli when compared to the flatter counterparts modelled here. Nonetheless, 

the mechanisms leading to the properties reported here are still very likely to operate 

although at higher strains. 

It should finally be noted that although the systems described here are yet to be synthesised, it 

is more than likely that what has been reported for very specific poly(phenylacetylene) 

networks would also be applicable to other systems which have similar architectural features. 

Given the fact that auxetics are now being increasingly sought after, it is hoped that the 

present work will be of benefit to the scientific community and bring the subject of negative 

Poisson’s ratios, including some of the earlier and fundamental work in this field [64-68], to 

the limelight.  
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Conclusion 

This work has explored the mechanical properties of a number of molecular systems based on 

poly(phenylacetylene) networks, through a force-field based method. It has been shown that 

by varying the type of substitution on the phenyl ring and the length of the acetylene chain, 

one may be able to control the mechanical properties of the system, namely stiffness, linear 

compressibility and Poisson’s ratio. In particular, the results suggest that polyphenylacetlenes 

made from tri, penta and hexa substituted phenyls (PA135-n, PA12345-n and PA123456-n) 

exhibit a positive isotropic Poisson’s ratio. In contrast, those made from tetra substituted 

phenyls (PA1234-n and PA1245-n) can be designed to exhibit negative Poisson’s ratios that 

become increasingly negative with higher n-values. In addition, the PA1234-n networks, 

which mimic the rotating triangles model exhibit an almost isotropic behaviour which tends 

to -1 with increasing n whilst the PA1245-n, which mimic the wine-rack structure, have a 

negative on-axis linear compressibility, and very highly negative Poisson’s ratio off-axis. It 

was also found that PA12345-n and PA135-n have the same pore sizes but PA12345-n are 

much stiffer in terms of Young’s and shear moduli, and lower linear compressibility, which 

behaviour is expected from a geometric perspective. All this is very significant as it 

highlights the possibility of tailoring these extremely versatile networks to exhibit particular 

mechanical behaviour.  
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Figures 

(a) (b)

(c) (d) (e)  

Figure 1: Schematic diagrams of the systems modelled having n triple bonds per 
acetylene chains: (a) the fully substituted systems, henceforth referred to as PA123456-
n; (b) the penta substituted systems, henceforth referred to as PA12345-n [53]; (c) the 
1,2,4,5 tetra-substituted networks which resemble the wine-racks, henceforth referred 
to as PA1245-n;  (d) the 1,2,3,4 tetra-substituted networks which correspond to the 
polytriangles-n-yne [9], henceforth referred to as PA1245-n;  and (e) the 1,3,5 tri-
substituted networks which correspond to the regular n,n-flexynes [42] henceforth 
referred to as PA135-n. 
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Figure 2: Images of the crystalline systems where n = 5 and their off-axis plots in the yz-
plane (the plane of the networks) of the Poisson’s ratio yz Young’s modulus Ey and 
shear modulus in the planes of the networks as simulated by the PCFF force-field. 
Negative Poisson’s ratios are shown in red while positive Poisson’s ratios are shown in 
blue. It is clear that PA135, PA12345 and PA123456 show no negative Poisson’s ratios. 
PA1234 shows an isotropic negative Poisson’s ratio of c. 0.75 whereas PA1245 shows 
anisotropic behaviour with negative Poisson’s ratios for loading off-axis at an angle 
nearly parallel to one of the acetylene chains. 
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Figure 3: Images of the novel crystalline systems: PA1245-n, together with their off-axis 
plots of the Poisson’s ratio, νyz, Young’s modulus, Ey, and shear modulus, Gyz, in the 
planes of the networks as simulated by the PCFF force-field. 
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Figure 4: A plot of the cij of the crystalline systems against the cij of the respective 

monolayers. The units for the cij coefficients are in GPa. 
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Figure 5:(a) An alternative representation of the off-axis plot of the Poisson’s ratio in 
the yz plane against the angle of rotation, θ, for the PA1245-n crystalline systems where 
they are compared to the analytical model [63] (b) A close-up at the Poisson’s ratio in 
the range of 0o to 90o indicates that when n = 1, the system shows a positive Poisson’s 
ratio, while for systems n =2, 3, 4, 5 the range of angles at which negative Poisson’s ratio 
occurs is between 30.74o and 59.23o. This plot also shows that as n increases, the 
behaviour of the system mimics increasingly better the behaviour of the idealised wine-
rack model (which was recently found to be auxetic [61]). 
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Figure 6: Consecutive 120° rotation for the PA1234-5 network under a uniaxial stress of 
(a) 0 GPa and (b) 2 GPa, showing the preservation of the three-fold rotational 
symmetry characteristic of the idealised rotating rigid triangles system.

(a) 

(b) 



26 
 

 

SUPPLEMENTARY INFORMATION 

PA n 
crystalline systems 

  

monolayer systems 

22 33 44 23 22 33 44 23 

13
5 

1 143.698 143.587 33.116 77.394 2.466 2.466 0.569 1.328 

2 99.419 99.387 12.208 74.998 1.753 1.753 0.216 1.321 

3 78.141 78.080 5.704 66.704 1.392 1.392 0.101 1.190 

4 65.136 65.177 3.048 59.065 1.166 1.166 0.055 1.057 

5 56.034 56.023 1.820 52.391 1.009 1.009 0.033 0.944 

  

12
34

 

1 227.743 203.145 89.267 28.983 

  

2.940 2.884 1.456 0.088 

2 101.614 101.948 65.656 -29.797 1.733 1.733 1.110 -0.488 

3 71.167 71.062 53.555 -36.016 1.229 1.229 0.921 -0.612 

4 55.130 55.365 45.662 -36.013 0.962 0.962 0.791 -0.621 

5 45.505 45.733 39.886 -34.074 0.799 0.799 0.696 -0.593 

  

12
45

 

1 136.600 486.970 127.726 125.617 

  

2.198 8.100 2.146 2.100 

2 56.678 393.577 111.042 117.989 0.973 6.442 1.851 1.978 

3 42.948 321.100 94.990 103.914 0.754 5.332 1.612 1.775 

4 36.006 278.793 84.696 93.140 0.629 4.578 1.427 1.576 

5 31.097 244.878 75.805 83.128 0.544 4.020 1.279 1.409 

  

12
34

5 

1 319.817 317.636 101.045 117.070 

  

5.441 5.441 1.721 2.000 

2 245.270 245.604 70.853 103.739 4.183 4.184 1.208 1.768 

3 201.968 202.154 56.291 89.477 3.445 3.445 0.960 1.525 

4 184.033 185.467 52.158 75.075 2.941 2.943 0.808 1.324 

5 149.406 149.589 40.818 67.857 2.577 2.577 0.704 1.169 

  

12
34

56
 

1 539.487 539.492 179.049 181.393 

  

9.215 9.215 3.060 3.094 

2 417.937 418.406 129.075 159.988 7.100 7.100 2.193 2.714 

3 348.276 347.593 105.519 136.923 5.854 5.854 1.775 2.304 

4 297.502 299.137 90.335 117.670 5.006 5.006 1.515 1.976 

5 260.437 259.835 79.025 102.070 4.381 4.381 1.330 1.720 

Table S1: The elastic constants, cij (GPa) for the in-plane mechanical properties of the 
various systems studied. 
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Figure S1:  Structures and off-axis mechanical properties of the crystalline PA135n 
systems as simulated by the PCFF force-field. 
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Figure S2: Structures and off-axis mechanical properties of the crystalline PA1234n 
systems as simulated by the PCFF force-field. 
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Figure S3: Structures and off-axis mechanical properties of the crystalline PA12345n 
systems as simulated by the PCFF force-field. 

 



30 
 

z

x

z

y
n

5

4

2

1

3

νyz Ey (GPa) Gyz (GPa)

 

Figure S4: Structures and off-axis mechanical properties of the crystalline PA123456n 
systems as simulated by the PCFF force-field. 

 


