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Abstract—We develop an automatic oil spill segmentation  In the literature, the majority of oil spill analysis based on
method in terms of f-divergence minimization. We exploit f- SAR data lies in the investigation of the physical characteris-
divergence for measuring the disagreement between the distri- 45 of ojl spills for reflecting different types of electromagnetic

butions of ground-truth and generated oil spill segmentations. . - . .
To render tractable optimization, we minimize the tight lower waves. One general method for oil spill observation via SAR

bound of the f-divergence by adversarial training a regressor IS based on the non-Bragg scattering phenomena caused by
and a generator, which are structured in different forms of deep o0il spills. The capillary and short gravity waves give rise to

neural networks separately. The generator aims at producing Bragg scattering that is sensed by SAR. On the other hand, the
accurate oil spill segmentation, while the regressor characterizes oil spills on the ocean surface damp out the Bragg scattering

discriminative distributions with respect to true and generated L . .
oil spill segmentations. It is the co-play between the generator net resulting in dark patches in the SAR images. The non-Bragg

and the regressor net against each other that achieves a minimal Scattering regions provide indications for observing the oil spill

of the maximum lower bound for the f-divergence. The adver- regions in SAR images.

sarial strategy enhances the representational powers of both the | ately, more sophisticated oil and electromagnetic wave
generator and the regressor and avoids requesting large amounts relationships have been explored, and especially the polari-

of labelled data for training the deep network parameters. In . e - ; .
addition, the trained generator net enables automatic oil spill metric characteristics of oil spills have been comprehensively

detection that does not require manual initialization. Benefiting investigated. In this regards, researchers including Migliaccio
from the comprehensiveness off-divergence for characterizing et al. [32][4], Ricci et al. [3][2], Minchew et al. [20][6] and
diversified distributions, our framework can accurately segment Brekke et al. [6][8] have conducted studies that represent state-
variously shaped oil spills in noisy SAR images. Experimental ¢ tho_art ojl spill observation research based on polarimetric
results validate the effectiveness of the proposed oil spill segmen-SAR data. The polarimetry based strategies enhance oil spill
tation framework. o _p y . g. . P
o _ _ o observations in images through polarimetric analysis such that
_ Index Terms—OQil spill segmentation, /-divergence minimiza- y55ic jmage processing techniques such as thresholding [25]
tion, ad\_/ersarlal learning, synthetic aperture radar (SAR) image and K-means clustering [4] are normally applied to detect oil
processing. N .
spills in the enhanced representations. State of the art methods
[7] [19] in the geoscience and remote sensing literature focus
|. INTRODUCTION on investigating various physics based features which enable

IL spills, which are leaked from ships or drilling plat-COmPrehensive observations of oil spills. _
O forms, may cause disastrous consequences to the enviOn the other hand, researchers mainly from the image pro-
ronment and social economy. Synthetic aperture radar (SAE®SSINg and machine learning community have started work-
is regarded as a powerful tool for observing environment affé On developing more sophisticated oil spill segmentation
targets [31][15][30] due to its advantages of all-weather afgethods for accuraFer detecting Qll spill regions in images.
all-time operations. SAR also provides an important meaff4ost of the recent image processing techniques for oil spill
for monitoring marine oil spills [9][29]. Detecting oil spills S€gmentation are formulated in terms of energy minimization.
through SAR images timely is vital for damage assessméeM €nergy f_unct|onal measures oil spill fltpess_and similarity
and oil spread control. In this paper, we aim at developirfgiaracteristics suc_:h that it guides Fhe oil spill contours to
intelligent algorithms for automatically segmenting marine offVolve towards minimum energy. Xia et al. [33] developed
spill regions from SAR images. a modified continuous energy functional and employed level
sets for detecting oil spill contours. Mdakane et al. [18]
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tation [34]. Though manual initialization in terms of coarselpdversarial strategy, training our model requires only a small
observing and capturing oil spill regions is commonly acceptedllection of ground-truth segmented oil spill data, which
in practice, it is neither efficient nor reliable for accuraterovides an economical scheme for real world oil spill seg-
segmentation. In order to avoid the manual initialization imentations.

the segmentation procedure and render an automatic oil spillThe main contributions of this paper are summarized as
segmentation scheme, a strategy that trains a segmentatalows:

model based on labelled images and infers the oil spill regions, \We propose a novel oil spill segmentation method
without requiring manual initialization in the segmentation  in terms of minimizing thef-divergence between the

procedure is expected. . . ~ ground-truth and generated segmentations, which not
In this paper, we present a deep learning oriented oil only extends the theoretical implication gtdivergence
spill segmentation framework in terms of minimizing tife but also exhibits robustness in practice.

divergence between the ground-truth and the model generateg We formulate the objective in terms of minimizing the
segmentations. Thé-divergence minimization is achieved by lower bound Off_di\/ergence based on surrogate loss,
adversarial training a regressor and a generator. The adver- which results in a tractable optimization scheme for
sarial strategy is highly motivated by generative adversarial segmenting irregular oil spills in noisy SAR images.
network (GAN) [10] and its variants [21] [23], which train , We develop a deep learning strategy that adversarial
two models to play against each other for increasing model |earns thef-divergence and establishes an oil spill seg-
representational power. However, there exists a significant mentation framework without manual initialization.
difference between GAN and our work. GAN approximates g\ thermore, experimental evaluations validate that our

the target sample distribution via Kullback-Leibler divergencé., mework outperforms the state-of-the-art GAN and level set

In contrast, our framework characterizes oil spill distributions,othod and achieves accurate segmentation in the situations
s in terms of the generaf-divergence that enables Morey jreqular oil spill shapes and noise interferences.
comprehensive modeling capability. This merit makes our

framework easily address irregular oil spill shapes as well
as adverse influences caused by various noises in SAR im-
ages. Furthermore, we exploit the relationship betwégen
divergence and surrogate loss [22] and develop an efficient" this section, we commence by introducing the principle of
computation method for minimizing thé-divergence in the .[f-divergence based_0|l _splll segmentation. Then, we descr[be
task of oil spill segmentation. Specifically, we exploit twd'oW to reformulate it via surrogate loss. Finally, we exploit
different deep neural networks for implementing the generaf@®ep neural networks for developing variational representa-
and the regressor that adversarial optimize the minimal pns for f-divergence.

the tight lower bound of thg'-divergence. In the adversarial

learning process, the generator aims to produce accurate/ilf-Divergence for Oil Spill Segmentation

spill segmentation for a given SAR image. The regressor is|, his subsection, we formulate oil spill segmentation in
fed by either ground-truth or generated oil spill segmentatiqg, s of f-divergence minimization. We aim to train a seg-

and regresses variational representations for the segmentalipiation model to minimize the distributional disagreement

dlstnbu_tl(_)ns. In thls_ scenario, generated segmentations t§Qideen the generated oil spill segmentation and the ground-
to exhibit large f-divergence. At the convergence of thgqih |n this scenario, we formulate the oil spill segmentation

adversarial training, the generator has the ability of foo"“&roblem as that of minimizing ari-divergence, in which the

the regressor to give smafl-divergence and is qualified 10 r_giergence measures the probabilistic difference between the
produce accurate oil spill segmentation for SAR images. Oﬁénerated segmentation and the ground-truth.

method provides an automatic segmentation approach Wh'c%upposing oil spill segmentations are distributed in the

can be considered as a post processing procedure after dhg,ain ) we denotePs and P, as the probabilistic distri-
oil spill observation. Therefore, we believe that our methog sions of the ground-truth segmentatisrand the generated

provides an effective post-processing procedure for the St@ffgmentationé*, respectively. Thef-divergence (1) between

of the art physics based oil spill observation strategies [1@3 and P; is given as follows:
G :

1. f-DIVERGENCEMINIMIZATION FOR OIL SPILL
SEGMENTATION

[32] [4].

There are several reasons for us to develop the adversarial ps(z)
training strategy rather than trying to directly minimize Dy(Ps||Pg) = / f pa(a) pg(x)dz, 1)
divergence. First, the adversarial training which characterizes S

the tight lower bound of -divergence renders a more tractablevherex is a distribution variable representing one segmenta-
computation scheme than straightforwatdlivergence mini- tion sample, and'(-) is a function relating to a specific type of
mization. Second, the surrogate loss exploited in the adversdistribution divergencens(x) andpg(x) are density functions

ial training has the ability of characterizing various types aif segmentation distributio?’s and P, respectively.
divergences and thus increases the model comprehensivenes3ur goal is to train a model that produces the generated
More importantly, the adversarial trained generator can egmentatiors which is as accurate as the true segmentation
employed to perform automatic oil spill segmentation witholu for a SAR image. Specifically, in the training procedure,
manual initialization. Last but not the least, benefiting thihe model is optimized by SAR images along with their



segmentation maps in terms of thiedivergence (1). In the

segmentation procedure, given an unknown SAR image, the min max By pg[#(v)] + Eznpg[p(—v)]. (5)

trained model is expected to automatically generate accurate Ps v

oil spill segmentation. We observe that the max operation in (5) practically con-
strains the lower bound obtained in (3) to be tight and confirms

B. Reformulating/-Divergence via Surrogate Loss a rigorous condition for minimizing -divergence.
The f-divergence minimization in terms of (5) is achieved

_ The f-divergence provides a comprehensive characterizg-, o fold manner. First, we seek the tighter lower bound
tion of distribution disagreement because various d|verger}9|ethe f-divergence in themaxstep. Then we minimize the
types can be adopted in (1). However, straightforwardly mingy,aineq jower bound in thenin-step. It is through iterating

mizing the f-divergence is always intractable. The reason fQf . andmin operations that achieves the minimal of the
this shortcoming is two-fold. First, the segmentation domai?’Ldivergence.

which may exhibit arbitrary forms, is difficult to characterizé

in practice. Second, even if some tricky technique enables

computing one type of divergence, it does not guarantee tf§at Deep Neural Nets for Variational Approximation

various divergences arising from the genefralivergence can  |n this subsection, we describe how to develop deep neural

be addressed in the same way. networks (DNNSs) for approximating the variational variables
To render an effective and tractable solution, we turn {9 of the oil spill segmentatiory-divergence introduced in

minimizing the tight lower bound off-divergence. This is Section II-B. Specifically, we establish two DNNs representing

effected by formulating the divergence functi¢r(2) in terms  a generatoty and a regressaR, separately. Given an oil spill

of a surrogate loss functiop as follows: SAR imagel, G aims at mapping it to its segmentatich
The regressoi? regresses a variational representation for a
flu) = — inf [p(—v) + o(v)ul. (2) ground-truth or generated segmentation distribution.

o ) Two basic components for constructing the DNNs are the
H_ere_z U _and v are two varla'qonal variables re_Iated to thyecoder (Fig. 1 (a)) and the encoder (Fig. 1 (b)). An encoder
distribution variabler. In the light of (1), the variable: has  qnsists of a convolutional layer, a batch normalization layer
a straightforward relat|0nsh|p with the distribution varlabl?lz] and an LReLU activation layer [16]. A decoder consists
x such thatu = ij—ﬁii Additionally, we characterize the ot 5 geconvolutional layer [35], a batch normalization layer
relationship between and via deep neural networks, whichang an LReLU activation layer. The detailed architectures of

will be presented in the next subsection. the generatory and the regressak are illustrated in Fig. 1
The employment of surrogate loss provides a different routg) and (d), respectively.

for achieving the f-divergence minimization. Specifically, The generatorG takes the SAR imagd as input. As
we represent thef-divergence by taking the surrogate losqystrated in Fig. 1 (c), the architecture 6f is adapted from
characterizedf(-) in (1), and have the derivations as followsinat in [26] and reformed in the shape of "U-Net" [28]. It is
ann encoder-decoder stacked network with skip connections
Dy(Ps||Pg) [11] added between mirrored layers (i.e., the encodeard the
decoder — 7). In this case, more low-level features are sent
:/ (229, )de
o \ps@) o

from encoders to decoders, which improves the reconstruction
ability of the decoders and the representation ability of DNNSs.
. ps(x) The generato€ produces a segmentation magor I as the
=/ —inf 1 ¢(=v) + ¢(v) @) pg(x)da (3) final output.
@ Ps The regressor takes the original SAR imagé and its

. segmentation map (either ground-truth or generated) as inputs.
2 —inf /Q¢(_U)p§(m)dm + /Q ¢(v)ps(x)dz The regressoR is a convolutional neural network composed

. of convolutional layers followed by one LReLU layer and
- Hﬁf o ps[$(0)] + Eorepg[$(—0)] three encoders. The regressor architecture is finalized by a

The inequality follows Jensen’s inequality [5] and charactef@ND layer after the convolutional layer, and results in a
izes the lower bound of th¢-divergence. variational representation for a segmentation distribution as

We then reformulate th¢-divergence minimization into a € ultima output.
lower bound minimization problem as follows: We use the generator nét and regressor nefi thus
obtained to characterize the relationship between variational

variable v in the surrogate loss (2) and the segmentation

min { —min Eywpg[p(v)] + Esznp, [¢(—v)]}, (4) distribution variabler in (1). In order to regularize the uncon-

Ps Y strained output of DNNs and fully explore the representational

where we replace variational infimum signf by the min- power of our framework, we exploit a transformation function

imization signmin for practical implementation. We furthera(-) for scaling the variational representation regressed from

remove the negative sign by replacing the secaid by max R. We usef, and§, to denote the parameter sets #@rand

in (4) and reformulate the objective (4) into G, respectively, and hence reframe (5) as follows:
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Fig. 1. DNN architectures and inference procedure. The lasigponents of our framework are (a) decoder and (b) encoder. The decoder is composed of a
deconvolutional layer followed by a BN layer and an LReLU layer. The encoder (b) shares a similar architecture with the decoder, with the deconvolutior
layer being replaced by the convolutional layer. (c) Generator is composed of several encoders and decoders, with the dashed-dotted line indicating the
connections. (d) Regressor is composed of a convolutional layer and three encoders followed by one convolutional layer and one tanh layer. The regress
fed by a SAR image and its segmentation to generate the variational representation of the segmentation map. (e) At the inference stage, given an unkt
SAR image, the trained generator G tries to produce an accurate oil spill segmentation map without manual initialization.

TABLE |
THE OPTIONS OFf-DIVERGENCE FUNCTIONS(-), SURROGATE LOSSp(-) AND TRANSFORMATIONa(-).

f-divergence f(w) o(v) (v > 0) ay(w)
Pearsony? (P) (u—1)2 -3 4438 —w
Squared Helinger (SH) v/ (u) — 1)? e’ —1 1—ew
Total Variation (TV) Llu—1] e v 1 tanh(w)
Capacitory Discrimination Distance (CDD) ulog(u) — (u + 1) log(u + 1) log(1+e7?) —log(l4+e™ )
Symmetric Kullback-Leibler (SKL) ulog(u) — log(u) eV —v—1 —log(1+e~ %)

training our DNNs. The function(-) takes an exact form

min max Es~pg,i~p [¢(ar(R(S,I)))] results in a specific surrogate loss function. The surrogate loss
g ot (6) function along with a specific transformation functien(-)
+Ervp, [0(—ap(R(G(I),1)))]- concretizes thef-divergence. The relationships regarding a

The original GAN [10] structure consists of a generator anc(:Pncrgtef—dn_/(_argence and |_ts co_rrespondlnfq),_ 6() ?”d
() in specific forms are listed in Table I. This provides a

a discriminator. The GAN and our method share the same af-

chitecture for the generator. On the other hand, the discriminge ¢ general probabilistic characterization than the GAN that

tor of GAN and our regressor have different structures and plgnly admits the Kullback-Leibler divergence, which is just one

different roles. One major distinction is that the discriminatosrageclflc case in the family of-divergence. In this scenario,

ends up with a sigmoid layer and the output of our regressorol r framework is a general strategy that addresses a broad

scaled by the transformation functian(.). The advantages of category of oil spill segmentation tasks with respect to various

our method are two-fold. Firstly, the sigmoid layer confines trPerObab'“St'C divergence measurements.

discriminator to the discrete labeling scenario, and in contrast

our regressor characterizes continuous representations and ||| A pvERSARIAL TRAINING EOR MINIMIZING
enables more comprehensive similarity measure. Secondly,
our regressor is comprehensively trained subject to fthe
divergence such that the regressor output indicates the loweWe first introduce the basic principles for characterizing
bound of f-divergence. The intrinsic relationship betweerf-divergence by adversarial training the regressor and the
f-divergence and surrogate loss described in [22] enablgnerator. We then describe how to practically implement the
various specific distribution divergences to be employed ftraining procedures.

f-DIVERGENCE
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Fig. 2. The pipeline of the proposed oil spill segmentaticamework viaf-divergence minimization.

Algorithm 1: The training procedure of the proposed oil spill segmentation method.
Input: A training dataset consisting of original SAR images and their corresponding ground-truth oil spill
segmentation maps.
Output: The trained parameter séf for G.

for number of training iterationdo
1) Min-step optimization:
for k stepsdo
« Sample a minibatch ofn. examples{ (I, S1),...,(Im, Sm)} from the training dataset;
« Update the regressor by ascending its stochastic gradiefit &s:0, + nVy, Lrg.
end
2) Max-step optimization:
» Sample another minibatch of examples{(Iy, Si1),..., (Im, Sm)} from the training dataset;
« Update the generator by descending its stochastic gradieflf as:0, — nVy, L.

end

A. Adversarial Training Strategy enhances the representational powers of both the generator and
Th dth lav diff les i the regressor and avoids requesting large amounts of labelled
ne r_egressoR_ anc the generataf play di erentroles in a5 for training the deep network parameters. This provides

optimizing the objective (6). The requirement for the regress8rpractical advantage for oil spill segmentation, because it is

R is that the regressed variational representations for generaaﬁﬁcult to access a large number of oil spill SAR images for
segmentations are supposed to exhibit smaflativergence model training

than_th_ose_ for ground-truth: Therefor& plays a role of g gy pipeline of training the DNNSs via optimizing (6)
discriminating the segmentation generatect}bﬂror_n grour_1d- is illustrated in Fig. 2. In contrast to the energy minimization
truth as much as possible in the max operation. This MgXsey segmentation methods such as level sets [14] and graph

Epers(tju?n f;:lSO de_nables th(\e/vlr(]dentlflcaﬂo” of tf;btlghtllowms [24], the trained generator net enables automatic oil spill
ound for thef-divergence. Whereas, the generagbiries its detection that does not require manual initialization. Detailed

best to fQOlR by generating the segmentation MRS similar implementations of the adversarial training are presented in
as possible to the true segmentation ntafor /. Therefore, the following subsection

G aims at minimizing thef-divergence.

It is ObV'OUS.that the m_mmgaﬂon of the t'ght. Iowe_rB_ Implementations of the Adversarial Training
bound of thef-divergence gives rise to an adversarial train- T _
ing strategy for the regressor nét and the generator net [N (6), the maximization operates with respect to béth
G. It is the Co_p|ay betweerR and G against each other andG, whereas the minimization Opel’ateS with I’espect to ]USt
that achieves a minimal of the maximum lower bound fdr- We tackle the objective (6) in terms of tineaxstep as:
the f-divergence. The adversarial training strategy provides
a tractable manner for minimizing thg-divergence which g}%}g{ Esnps,inpr [0(ag (R(S, 1)) @)
normally exhibits in a sophisticated form. Furthermore, it + Erop, [¢(—as (R(G(I),1)))],



and themin-step as: A. Experimental Settings

) 1) Parameters:We use the same hyper-parameter setting
o Es~ps.i~p [9(=as (1G(T) = S[1))]; (8)  for evaluating GAN and the proposed oil spill segmentation
method. We train the DNN models using Adam optimizer [13]
with 5; = 0.5, 5, = 0.999. The learning rate is fixed gs=
0.0002 and the minibatch size is set as 1.
2) Evaluation Metrics: In our experiments, both the gen-

by é(—a;(|G(I) — S|)) in (8) for two reasons. First, the erated oil spill segmentation maps and the ground-truth ones

radients transferred fronk decr dramatically in b kare binary images, in which zero value pixels indicate the oil
gradients transterred Iro ecrease dramatically hac spills. To quantitatively evaluate the performance of alternative
propagation and thus tend to be insufficient to tr@invell in

i . ) oil spill segmentation methods, we compute #eeuracyof
practice. Second, in order to enhance the generative powelihog generated segmentation més follows:

G, training G by comparing it with ground-truth segmentation
is much more effective than that interfered with Therefore, . | gﬂ SNO leara
it is ineffective to trainG as the input ofR and we use (8) Accuracy(S) = Kl =,
instead as in thenin-step. card

Given a finite training set, we approximate the expectatiomere| - |...¢ denotes an operator that computes the cardinal
in (7) and (8) by using a minibatch of samples. The losy a set.O is a set composed of zero values, and shares the
functions of the regressor and the generator are given by same cardinal wittt.

In addition, the performance of the generated oil spill region

where|| - ||; is the L; norm utilized to further penalize the
dissimilarity between the generated segmentati¢(d) and
the ground-truths.

We discardR and replace the original(—as(R(G(I),I)))

1™ S is also evaluated in terms of thegion fitting error (RFE)
Lr= — Z[qﬁ(af(R(Si, L)) + ¢(—ar(R(G(L), I;)))], [17] as follows:
=1
9) X SUs -15NS
a.nd RFE(S) _ | U |card | m |card'
| S |ca7‘d
IR 4 . In this case, a smaller RFE indicates a more accurate segmen-
Lo = m Z;[é(_af(”G(I’) = Sillo)l (10) tation. In particular, when the generated segmentation tightly

. . . follows the ground-truth, the RFE is close to zero.
wherem is the minibatch size.

In this case, we alternatively optimize the deep network _ _
parameters ofR and G with respect to their loss functionsB. Segmentation on Synthetic SAR Images

until convergence. In contrast to most deep learning methodsTo evaluate the segmentation methods with respect to d-
that are effected by training models based on labelled big d&tfsrent interferences, we perform experimental comparisons
our framework does not require a large number of labellesttween GAN and the proposed method on synthetic SAR
segmentation maps for training ttfedivergence model. This images with various oil spill shapes and noises.
advantage is meaningful especially in the field of automatic Synthetic SAR images are of 256256 pixels and obtained
oil spill segmentation, where the ground-truth data are veky contaminating original images with various noises. The
limited. In practice, we validate that around 20 ground-truiériginal image is a clean synthetic image with no noise. In
segmentation maps for oil spill image patches are enougfis experiment, three original images containing one, two
for training an effectivef-divergence model. The capabilityand three objects are employed separately to simulate irregular
of training with small data benefits from the adversarigl.e., continuous and/or discontinuous) oil spill regions.
strategy which trains the generator to produce a number offo approximately simulate the noises that exist in real world
generated segmentation maps. The generated segment&®j®R images, we adopt two types of noise, i.e. (a) the salt and
maps in fact augment the size of training dataset and increge®per additive noise and (b) weighted multiplicative noise, for
the data variability. Therefore, the adversarial strategy enabjggerfering original images. (a) For generating salt and pepper
training a Comprehensivé-divergence model with a Sma”noisy Synthetic SAR images, a proporti@ﬁ] of pixe|s are
number of labelled oil spill segmentation maps. The detailegndomly selected and their intensities are reset to be random
training procedure of our segmentation framework is given iglues in the interval0, 255]. The parametep, is set to be
Algorithm 1. {0.0001, 0.0005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4}, separately,
for generating training images and testing images. (b)/l,et
IV. EXPERIMENTAL RESULTS denote an original image. The multiplicative noisy synthetic
In this section, experimental evaluations of different oil spiBAR images are simulated in terms Bf + p x P(z) x I,
segmentation methods are performed on both synthetic SAMRerep, is the weight parameter arfdl(z) is the probabilistic
images and real SAR images. We empirically compare théstribution of Gamma, Rayleigh or Log-normal (as given in
proposed segmentation method with its closely related GATble II) based noises. The weight parametgiis set to be
[10], neural networks and the state-of-the-art initializatiofD.03, 0.05, 0.07, 0.09} and {0.02, 2, 200} for generating
dependent method [14]. All experiments are performed ontraining images and testing images, respectively. Specifically,
PC server with a NVIDIA Tesla K80 GPU and 64GB memorywe employ Gamma biased noise unget 1.0 and§ = 1.0,



TABLE Il
PROBABILISTIC DISTRIBUTIONS OF MULTIPLICATIVE NOISES(E([-] AND Var[-] ARE THE EXPECTATION AND VARIANCE).

Distribution | Probabilistic density function Parameters
Gamma P(z) =271 9?1:(%2) I= VE;T[[ZZJ] - %TZ[]Z]
Rayleigh P(z) = ﬁei;cr_22 o? = ﬁVar[z]
Log-normal | P(z) = oz\l/ﬁe_% pw= ln(\/%), 0% = In( V;;[[;]] +1)

Rayleigh biased noise under= 1, Log-normal biased noise images.
undery = 0 ando = 0.5, separately. We totally generate 63 The detailed accuracy and RFE of segmenting synthetic
multiplicative noisy synthetic SAR images, with 36 imagenoisy SAR images containing one, two and three regions
for training and the rest for testing. We formulate the trainingre given in Table Il and Table IV. It is observed that our
objectives in terms of allf-divergences in Table I, and trainframework (based on different specific divergences) achieves
our framework with the parameters designed in the subsectioetter performance (both in terms of accuracy and RFE) than
IV-Al. GAN in the cases of one oil spill region. Especially, TV and
We commence by qualitatively visualizing the segmentatid®KL achieve the best performance for all noise types, with
results in different noisy situations. In Fig. 3, we show thapproximately 3% accuracy increase and 35% RFE decrease.
segmentation results of synthetic SAR images with differefor the two oil spill region cases, our models are better than
salt and pepper noise. Specifically, the images containing ofAN, e.g. P results in 15% accuracy increase and 25% RFE
two and three oil spill regions under varying salt and peppéecrease for the Gamma noise. Although our method and GAN
noises are illustrated in Fig. 3 (a), (b) and (c), respectively. Fbave indiscriminative accuracy performance in three oil spill
both GAN and the proposed method, the segmentation restigion cases, our method is superior to GAN in terms of RFE,
get worse with the increasing proportion of contaminatetith decreases for Gamma noise ranging from 25.5% to 33%,
pixels. Especially in Fig. 3, GAN cannot accurately segmefar Rayleigh noise ranging from 46.5% to 50.7%, and for Log-
both continuous and discontinuous oil spill regions und&ormal noise ranging from 49% to 51%. The weight parameter
heavy salt and pepper noise. p2 has little effect on the performance for different noises and
We then quantitatively evaluate the performance of GARIl spill regions. This reveals that our framework is robust with
and the proposed segmentation method on the synthetic SF&RpPect to different specific divergences in the multiplicative
images. For salt and pepper noise, the accuracy and RFESY scenario.
in terms of varying proportiorp; are shown in Fig. 4 and The overall segmentation performance of GAN is inferior
Fig. 5, respectively. Though ouf-divergence framework to our proposed method in terms of accuracy and RFE. For
overwhelmingly outperforms the GAN segmentation methdepth methods, the accuracy decreases and the RFE increases
in the additive noisy scenario, there are slightly performanéé the increasing of noise proportipn and ;. On the other
differences across the specific divergences in our framewoh@nd, the proposed method is more robust than GAN in various
which can be observed from the zoomed out curves in FigoISy situations.
4 (b) and Fig. 5 (b). Figs. 4 (a) and 5 (a) reveal that the TV
divergence are the inferior among all alternatives witliin C. Segmentation on Real SAR Images
divergence for segmenting one oil spill region. One possible |, tis subsection, we evaluate the proposed oil spill seg-
reason fqr this comparative ineffectiveness arises from tH?entation method on real SAR images with VV polarization
computation of abso_lute_value_ (see Tabl_e ). Compare_d wm NOWPAP databade We mainly use three types of SAR
the two and three oil spill region scenarios, the one oil spiilages in this experiment, i.e. C-band SAR images from ERS-
region exhibits a comparatively more continuous form. The grs > satellites and C-band ASAR images from Envisat-1
absolute value in the TV divergence results in abrupt changege|jite. These images containing different types of oil spills
when the variational variable is around one, and thus canngl cantyred in separate time by different sensors. The sources
properly characterize the one continuous oil spill regioRs SAR images and properties of sensors collected the data are

Furthermore, Figs. 4 (b), (c) and 5 (b), (c) reveal that the CDljsirated in Table V and Table VI, respectively. In the two

divergence performs worst among all alternatives witlfiin tables, “-* means unknown information.

divgrgence for segm.enting two qnd three oil s_piII r_egions. Onerrom the SAR images in the NOWPAP database, we extract
major reason for this comparative shortcoming is that CCBAR image patches that cover oil spill regions. One training
has a very complicated form (see Table 1), which may givgympie is a pair of a SAR image patch and its corresponding
rise to overfitting in learning oil spill regions. Therefore, "bround—truth segmentation. We randomly select 20 SAR im-

the two and three oil spill region scenarios, the discontinuoaaes for training and use the rest 23 images for testing. SAR
and complicated regions may be over learned in terms of the

CCD divergence such that biases arise in segmenting new SARttp://cearac.poi.dvo.ru/en/db/



TABLE Il
ACCURACY OF SEGMENTING SYNTHETICSAR IMAGES WITH WEIGHTED MULTIPLICATIVE NOISES.

Synthetic SAR Image with One Oil Spill Region Two Qil Spill Regions Three Oil Spill Regions
p2 0.02 2 200 0.02 2 200 0.02 2 200
GAN 0.9313 0.9347 0.9321| 0.8422 0.8508 0.8516| 0.8471 0.8443 0.8442
P 0.9565 0.9558 0.9566| 0.9560 0.9556 0.9561| 0.8781 0.8809 0.8820
Gamma SH 0.9554 0.9548 0.9522| 0.9349 0.9343 0.9341| 0.8665 0.8798 0.8778
TV 0.9570 0.9569 0.9570| 0.9363 0.9361 0.9346| 0.8869 0.8879 0.8877
CDD 0.9564 0.9560 0.9566| 0.9336 0.9335 0.9338| 0.8795 0.8812 0.8814
SKL 0.9559 0.9563 0.9567| 0.9311 0.9328 0.9329| 0.8537 0.8623 0.8629
GAN 0.9353 0.9361 0.9362| 0.8628 0.8606 0.8597| 0.8481 0.8544 0.8548
P 0.9560 0.9556 0.9560( 0.9337 0.9327 0.9344| 0.8781 0.8809 0.8785
Rayleigh SH 0.9551 0.9541 0.9547| 0.9354 0.9353 0.9354| 0.8807 0.8814 0.8820
TV 0.9568 0.9561 0.9564| 0.9356 0.9353 0.9357| 0.8799 0.8824 0.8815
CDD 0.9564 0.9560 0.9566| 0.9336 0.9335 0.9338| 0.8795 0.8812 0.8814
SKL 0.9567 0.9560 0.9562| 0.9338 0.9338 0.9338| 0.8735 0.8768 0.8792
GAN 0.9292 0.9328 0.9334| 0.8610 0.8610 0.8622| 0.8483 0.8499 0.8489
P 0.9561 0.9558 0.9565( 0.9339 0.9345 0.9348| 0.8855 0.8861 0.8865
Log-normal SH 0.9547 0.9526 0.9534| 0.9357 0.9363 0.9360( 0.8872 0.8874 0.8877
TV 0.9570 0.9569 0.9570 0.9363 0.9361 0.9364| 0.8869 0.8879 0.8877
CDD 0.9573 0.9575 0.9571| 0.9346 0.9341 0.9341| 0.8871 0.8879 0.8875
SKL 0.9574 0.9573 0.9575 0.9345 0.9342 0.9342| 0.8839 0.8850 0.8821
TABLE IV

RFE OF SEGMENTING SYNTHETICSAR IMAGES WITH WEIGHTED MULTIPLICATIVE NOISES.

Synthetic SAR Image with

One Oil Spill Region

Two Oil Spill Regions

Three Oil Spill Regions

P2 0.02 2 200 0.02 2 200 0.02 2 200
GAN 0.0173 0.0166 0.0194| 0.0348 0.0345 0.0364| 0.0337 0.0343 0.0321
P 0.0120 0.0108 0.0125| 0.0268 0.0267 0.0264| 0.0220 0.0225 0.0240
Gamma SH 0.0125 0.0115 0.0128| 0.0272 0.0276 0.0281| 0.0245 0.0225 0.0236
TV 0.0117 0.0112 0.0116| 0.0269 0.0267 0.0279| 0.0235 0.0220 0.0229
CDD 0.0122 0.0115 0.0125| 0.0266 0.0258 0.0273| 0.0217 0.0202 0.0208
SKL 0.0118 0.0110 0.0118| 0.0260 0.0263 0.0265| 0.0251 0.0212 0.0227
GAN 0.0182 0.0174 0.0174| 0.0309 0.0320 0.0313| 0.0363 0.0299 0.0324
P 0.0122 0.0118 0.0114| 0.0262 0.0273 0.0272| 0.0194 0.0200 0.0211
Rayleigh SH 0.0121 0.0115 0.0111| 0.0266 0.0278 0.0270| 0.0186 0.0197 0.0210
TV 0.0117 0.0111 0.0117| 0.0260 0.0265 0.0270| 0.0193 0.0198 0.0203
CDD 0.0121 0.0117 0.0115| 0.0268 0.0263 0.0262| 0.0179 0.0186 0.0204
SKL 0.0112 0.0109 0.0109| 0.0257 0.0270 0.0264| 0.0182 0.0192 0.0202
GAN 0.0168 0.0181 0.0185| 0.0309 0.0320 0.0313| 0.0352 0.0329 0.0343
P 0.0111 0.0112 0.0114| 0.0265 0.0268 0.0260| 0.0179 0.0186 0.0185
Log-normal SH 0.0115 0.0115 0.0115| 0.0268 0.0259 0.0258| 0.0179 0.0191 0.0191
TV 0.0112 0.0113 0.0113]| 0.0264 0.0264 0.0259| 0.0179 0.0185 0.0184
CDD 0.0115 0.0115 0.0114| 0.0257 0.0259 0.0253| 0.0171 0.0177 0.0178
SKL 0.0111 0.0111 0.0110| 0.0252 0.0256 0.0255| 0.0179 0.0181 0.0178
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Fig. 3. Oil spill segmentation on synthetic SAR images coimated by different salt and pepper noisesiqa)) Images containing one, two, and three oil
spill regions, respectively. For each kind of synthetic SAR image, the noise proppitigaries in terms of {0.0001, 0.05, 0.4}.

TABLE V

SARIMAGES FROM THENOWPAPDATABASE.

Capture Time Sensor Type of Oil Spills
08.11.1993 01:46:10 ERS-1 SAR -
19.06.1995 02:30:12 ERS-1 SAR -
02.09.1996 02:00:55 ERS-2 SAR -
20.07.1997 02:14:26 ERS-2 SAR Ship Spill
22.09.1997 02:00:22 ERS-2 SAR -
27.09.1999 02:01:50 ERS-2 SAR -
17.12.1997 01:57:42 ERS-2 SAR -
30.09.2000 02:05:08 ERS-2 SAR -
15.08.2007 13:04:01  Envisat ASAR Ship Spill

images in different sizes are resized into 266256 and the

pixel values are normalized into [-1, 1] before training.
We train the proposed method by minimizing aft

divergences listed in Table | and compare the segmentatimutperforms other divergences, while the SH divergence per-

performance with GAN. In Fig. 6, we show the segmentatidiorms inferior results. For segmenting discontinuous oil spills,

TABLE VI
SAR SENSORS
Sensor Wavebands Spatial Resolution Noise Floor
ERS-1,2 SAR C-band 30 nx 30 m (3 looks) -
Envisat ASAR C-band 150 nx 150 m -20~-22 dB

results on four real SAR images. For each SAR image, five
different f-divergences (i.e. P, SH, TV, CDD and SKL) based
segmentation models produce more accurate segmentation
than GAN. GAN generates the segmentation maps with larger
incorrect areas (marked by dotted boxes) than our method.
To quantitatively evaluate the performance of GAN and
the proposed segmentation method on real SAR images,
we provide comparison of accuracy and RFE in Table VII
and Table VIII, respectively. The overall performance of the
proposed method is superior to GAN in terms of both accuracy
and RFE. For segmenting continuous regions, the P divergence
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Fig. 4. ACC of segmenting synthetic SAR images with respect to varying salt and pepper noises. The noise prop@timt to be {0.0001, 0.0005, 0.01,
0.05, 0.1, 0.2, 0.3, 0.4}. Figures (a), (b) and (c) represent the synthetic images containing one, two and three oil spill regions, respectively. The performa
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TABLE VI

ACCURACY OF SEGMENTING OIL SPILLS FROMSARIMAGES IN FIG. 6.

Fig. 6 (a) Fig. 6 (b) Fig. 6 (c) Fig. 6 (d)

GAN 0.9958 0.9942 0.9988 0.9863
P 0.9984 0.9958 0.9991 0.9883
SH 0.9983 0.9952 0.9989 0.9867
TV 0.9985 0.9954 0.9988 0.9881
CDD 0.9980 0.9947 0.9990 0.9882
SKL 0.9984 0.9959 0.9990 0.9883

TABLE VIl

RFE OF SEGMENTING OIL SPILLS FROMSAR IMAGES IN FIG. 6.

Fig. 6 (a) Fig. 6 (b) Fig. 6 (c) Fig. 6 (d)

GAN 0.2908 0.2447 0.1363 0.2490
P 0.1107 0.1781 0.0940 0.2128
SH 0.1164 0.2014 0.1252 0.2410
TV 0.1071 0.1941 0.1293 0.2163
CDD 0.1361 0.2211 0.1087 0.2137
SKL 0.1107 0.1735 0.1099 0.2120

the P, TV and SKL divergences are more suitable, whereas the
CDD divergence is inapplicable.

We further evaluate the proposed method on segmenting
wild images, which are obtained from different sources rather
than the training image source. We evaluate the performance
of our trained model (with P divergence) on several wild SAR
images, as shown in Fig. 7: one C-band Envisat ASAR image
(Fig. 7 (a)), with VV polarization and a spatial resolution of
150 m; two airborne L-band UAVSAR images (Fig. 7 (b) (c)),
with HH, VV and HV polarization and a spatial resolution of
6 m; and a Space Shuttle X-SAR image (Fig. 7 (d)), with VV
polarization and a spatial resolution of 30 m. The segmentation
results are illustrated in Fig. 7. From Fig. 7, we observe that
our model trained on C-band VV polarization images from the
NOWPAP database is able to generate accurate segmentation
for the C-band Envisat ASAR image (Fig.7 (a)), L-band data
from UAVSAR (Fig.7 (b) (c)) and Space Shuttle X-SAR data
from the NOWPAP database (Fig.7 (d)). In addition, our model
trained on the single-polarization data is able to generate
segmentation for multi-polarization data (Fig.7 (b) (c)).

We also evaluated the trained model on MODIS images.
Fig. 8 shows the segmentation results on four MODIS images
using our trained model (with P divergence). Although our
method is only trained on single-polarization SAR images,
our method is able to segment oil spill regions in images
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Fig. 7. Segmentation results on wild SAR images using theqzegp method

with P divergence. (a) is a ASAR image from Envisat-1 satellite, with a si Fi ;
of 220 x 154 pixels. (b) (c) are airborne L-band images from UAVSAR, witrzlme training curves of accuracy and RFE with respect to the

a size of 1800x 700 and 2800x 2000 pixels respectively. (d) is a SpaceNUmber of training iterations in Fig. 9 (a) and (b), respectively.
Shuttle X-SAR image, with a size of 189 190 pixels. It can be seen that the accuracy and RFE curves of training
GAN vary drastically at the early stage and fluctuate slightly
during the convergence progress. On the contrary, the curves
of our method reflect the learning and converging process are
ﬂ* more stable and robust. The stable and efficient convergence
S PR for training our framework benefits from the comprehen-
M P siveness off-divergence. As pointed in [1], the Kullback-

v Leibler and Jensen-Shannon divergences used in GAN are
/ " not capable of characterizing nonoverlapping distributions.

Therefore, turbulence inevitably occurs in training GAN when
distributions vary from separate to overlapping. However, our
f-divergence framework characterizes more comprehensive di-
Image / Segmentation § Image / Segmentation § vergences that effectively avoid the shortcomings of Kullback-
Leibler and Jensen-Shannon divergences. Therefore,four

Fig. 8. Segmentation results on wild MODIS images using theppsed divergence framework provides a more stable and efficient
method with P divergence. tra|n|ng process

with different polarization mode (both single-polarization an¥- Comparison with Neural Networks
multi-polarization), which are captured by different sensors In this part, we evaluate the performance of the proposed
(e.g. SAR, ASAR, UAVSAR, X-SAR and MODIS) in differ- method by comparing its segmentation results with that of
ent bands (C-band and L-band). In addition, our method tise classic neural networks. The classic method trains a
able to generate segmentation for images in different spatigural network to segment oil spills by optimizingZa loss
resolution, from a lower resolution (150 m of ASAR, and 30 raetween the generated segmentatforand the ground-truth
of SAR and X-SAR) to a higher resolution (6 m of UAVSAR).segmentatiors, i.e. |5 — S||. We use two different types of

To have a better understanding of the convergence propergural networks, one of which has the same architecture as
of GAN and the proposed segmentation method, we shake generator (Fig. 1 (¢)), and the other is a much simpler
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TABLE IX
ACCURACY OF SEGMENTING REALSAR IMAGES IN FIG. 11.

Input Fig. 11 (@)  Fig. 11 (b)
RSF; 0.9202 0.9621
RSF 0.9159 0.9620
P 0.9099 0.9670
Ground-truth ' ‘ ?\‘ . SH 0.9134 0.9678
¥ v 0.9188 0.9683
CDD 0.9183 0.9679
SKL 0.9114 0.9658
Generator L, ' TABLE X
RFE OF SEGMENTING REALSARIMAGES IN FIG. 11.
Fig. 11 (a) Fig. 11 (b)
RSF; 0.6960 0.9651
Simple NN_Z, § i RSF 0.7282 0.9816
' P 0.0763 0.0900
\ SH 0.1062 0.1836
Y 0.1311 0.2302
CDD 0.1310 0.1726
P p SKL 0.0911 0.2195

(a) (b)
We compare RSF and the proposed method on segmenting

Fig. 10. Comparison between two different types of neuraagks and our  two SAR images with slender oil spills in Fig. 11, which are
trained model (with P divergence). difficult for segmentation in terms of their irregular shapes. We
conduct two different level set manual settings for each SAR

| network st ¢ lutional | q image, which are marked by the dashed boxes on the input
neural network consisting ot one convolutional layer an Orill‘_?‘lages. The segmentation results of RSF related to different
deconvolutional layer. The segmentation results are shown

) . . ifftialization are shown below the ground-truth segmentation.
Fig. 10 as ‘Generatol;’ and ‘Simple_NN_L;’, respectively. g g

. . . Specifically,RSF; is on the left side an®SF; is on the right
For a fair comparison, we train the both neural networks gP Y ! 2 ¢

- . ige in Fig. 11 (a) and (b), respectively.
same training data and parameter setting as the real S ) )
experiment. In Fig. 10, we only show the segmentation results/ € Ségmentation results dtSF, and RSF, are quite
of our trained model (with P divergence), since there is onfjifférent to each other. Neither of them can accurately detect

a slight difference between our models with respect differefite ©il spill regions, especially for the slender parts as shown
divergences. It is observed that the classic method for oil sglf Fig- 11. On the other hand, the proposed method (especially
segmentation using the both neural networks cannot geneti! P and CDD divergence) is able to generate more accurate
a clear segmentation at all. However, our trained model (wiigmentation maps for the irregular and slender oil spills.
P divergence) generates clear segmentations, even in the cas¥e also compare the quantitative results in terms of ac-
of having non-oil dark spots on the SAR image (Fig. 10 (b)turacy and RFE in Tables IX and X for RSF and proposed
method, respectively. On the one hand, the proposed method
. , L . , achieves comparable segmentation accuracy as RSF method
E. Comparison with Initialization Dependent Oil Spill Sedgit, gifferent initialization. On the other hand, the RFE of
mentation the proposed model is much lower than that of RSF. For
In this part, we evaluate the performance of the proposetstance, the RFE of P divergence based segmentation model
method by comparing its segmentation results with level setalmost ten times lower than that BSF; andRSF5, which
segmentation which is initialization dependent. We use theflects the effectiveness of our method. More importantly, the
state-of-the-art region scalable fithess (RSF) level set segmpreposed method does not require manual initialization in the
tation method [14] for comparison. RSF requires a manusgégmentation procedure. Therefore, it enables segmentation in
initialization by setting initial oil spill contours. It should an automatic and effective manner, which requires no human
be noted that different initialization usually leads to differerguidance and provides a more practically efficient route to real
segmentation performance. world oil spill segmentation.
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V. CONCLUSION AND FUTURE WORK [11]

We have presented an automatic oil spill segmentation
method for SAR image based ghdivergence minimization. [12] S. loffe and C. Szegedy, “Batch normalization: Accelerating deep
Specifically, we aim at minimizing thef-divergence of a
true segmentation distribution and a generated segmenta"
distribution for the purpose of accurately detecting oil spill
regions in a SAR image. To practically achieve this goal, we4] C. Li, C. Kao, J. C. Gore, and Z. Ding, “Minimization of region-scalable
have reformulated th¢-divergence minimization in terms of
seeking the minimal of thef-divergence tight lower bound [15] H. Li, 3. Wu, W. Perrie, and Y. He, “Wind speed retrieval from hybrid-pol
and have adversarial trained two deep neural networks for compact polarization synthetic aperture radar images’E J. Ocean.
variational approximation. There are several advantages of r?l%ﬁ
method. First, it does not require a large number of training
samples because the adversarial training procedure generatesbeep Learning for Audio, Speech and Language Proces2ogs3.

segmentation samples and enhance the representation pd#é
of the model. Second, our method performs accurate segmen-

tation for irregular oil spills even in very noisy conditiong1s]
because the comprehensiveness feflivergence enables it

to have the capability of tackling rigorous situations. Third,
our segmentation method is totally automatic in detecting oil
spills in an unknown image and does not require manuaf!
initialization.

There are several issues worth investigation in our futups)
work. First, we will consider how to develop a model that
automatically segment oil spill images with different sizes and
resolutions. Second, we will incorporate the useful informatiqpy;
such as multi-polarization features into our framework for
lifting its potential in discriminating oil spills from lookalikes. [22]
In addition, we will keep investigating the effectiveness o?
our framework subject to more sophisticated scattering and

contrast ratio models.
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