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General abstract 

Many species use visual features to avoid predation by several methods, such 

as concealing themselves, deceiving predators and hindering capture. One of 

the most striking strategies is aposematism, or warning coloration, in which prey 

use conspicuous visual signals to advertise chemical or physical defences, and 

thereby deter predators from attacking. My thesis focuses on the form of these 

warning signals, namely which elements of visual patterns might be most 

effective in generating predator avoidance, as well as how these different visual 

features relate to defence levels and ultimately to prey survival in the wild. To 

address these issues, I studied the warning signals of Lepidoptera and in 

particular burnet moths (Zygaenidae: Zygaeninae), day-flying moths with 

distinctive red and black wings and the remarkable ability to both synthesise 

defensive compounds and sequester them from their host plants. Technological 

advances and a growing understanding of animal vision mean that animal 

signals can be studied in an increasingly precise and ecologically-relevant way. 

Throughout this thesis, I use sophisticated methods to quantify both the 

defensive chemicals and wing coloration of burnet moths, as perceived by their 

avian predators. I examine the key features of day-flying defended Lepidoptera, 

then focus on the potential for quantitative signal honesty in burnet moths. I 

explore the relationship between defence levels and measures of coloration, 

both within the six-spot burnet moth, Zygaena filipendulae, and across species 

in the Zygaenidae, then test the effects of variation in warning signals on 

predation risk for artificial burnet-like prey in the field. My work highlights some 

of the complicating factors that should be accounted for in the study of warning 

coloration, especially when investigating the potential for quantitative signal 

honesty. I hope my thesis will provide a basis for future research on the 

defensive strategies of day-flying moths and inspire others to pursue 

investigations into aposematism in the Zygaenidae. 
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Chapter 1 

Introduction: 
Conspicuous coloration as an 

anti-predator defence 

Zygaenidae from France and the UK. Clockwise from top left: Zygaena rhadamanthus, Adscita mannii, 
Z. filipendulae, Jordanita globulariae, Z. lavandulae, Z. transalpina. All photographs: E. S. Briolat.
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1.1  Abstract 

The dazzling array of colour and patterns on display in the natural world is a 

never-ending source of wonder, and offers stunning visual evidence of the 

processes of evolution. A species’ appearance fulfils a multitude of functions, 

both mediating its interactions with the environment, such as facilitating 

thermoregulation, and enabling intra- and inter-specific communication via 

visual signals. In particular, interactions between predators and prey play a 

significant role in shaping visual appearance. To avoid predation, prey species 

deploy a wide range of visual anti-predator strategies aimed at minimising 

detection or recognition as a suitable food source, reducing the likelihood of a 

successful attack, or otherwise deterring predators from selecting them. At one 

end of this spectrum, unprofitable species, possessing distasteful and toxic 

compounds or physical defences, advertise their aversive nature with bright and 

conspicuous warning, or aposematic, signals. This intuitively paradoxical 

strategy, attracting the attention of predators to deter attack, has been 

extensively studied since the pioneering work of 19th century naturalists. Yet, 

while the theory of aposematism is well-supported, with a wide range of 

examples across taxa, there are still many active areas of enquiry. Recent 

methodological advances, enabling new insights into the production and 

perception of colour, have reinvigorated the study of animal coloration, including 

aposematism. Questions surrounding the form of warning signals, and how 

specific features can influence predator behaviour, can now be addressed with 

increased relevance to natural predators and environmental conditions. The 

quantitative relationship between the strength of warning signals and the 

potency of the defences they advertise is an especially contentious issue, with 

both theoretical and empirical studies yielding conflicting conclusions. In this 

thesis, I use day-flying Lepidoptera, and especially the burnet moths 

(Zygaenidae), to explore still unresolved questions surrounding the form and 

function of warning signals from the perspective of their avian predators. 
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1.2  Visual strategies for anti-predator defence 

The physical appearance of an animal is often, at least to visually-driven 

humans, its most obvious and fundamental characteristic, and studying visual 

features represents one of the best opportunities for exploring a wide range of 

questions in ecology and evolution (Cuthill et al., 2017). Visual characteristics 

are shaped by a multitude of selective pressures related to how animals interact 

with their environment, as well as with conspecifics and heterospecifics around 

them. A visual stimulus can include movement (Paluh, Hantak and Saporito, 

2014) and posture (e.g. in skunks and newts; Lariviere and Messier, 1996; 

Mochida, 2009), but most research has focused on either fixed or dynamic 

colour patterns. These can be produced by pigments (Chittka, 2013), by 

nanoscale structures scattering light, a phenomenon known as structural 

coloration (Vukusic et al., 2001), or by light-emitting chemical reactions 

(bioluminescence; Wilson and Woodland Hastings, 1998). A key function of 

coloration in many species is to mediate thermoregulation, particularly through 

the dark pigment melanin (Watt, 1968), but colour patterns have generally 

attracted most attention as a medium for animal communication. Visual signals 

can be used in intra-specific communication, most famously for mate choice in 

sexual selection (e.g. Hill, 1990; Summers et al., 1999) but also in many other 

capacities, such as to provide badges of status (Senar, 2006), facilitate parent-

offspring communication (e.g. in nestling begging behaviour; Kilner and Davies, 

1998), or enable individual recognition (e.g. in paper wasps; Tibbetts, 2002). 

They are similarly important for interspecific communication in a diverse range 

of contexts including interactions between parasites and hosts (e.g. 

Spottiswoode and Stevens, 2010), and predators and prey (Ruxton, Sherratt 

and Speed, 2004). 

Predation is a key selective pressure shaping many aspects of prey phenotype, 

from behavioural to physical traits, including prey appearance. Prey species 

possess a remarkable range of visual antipredator strategies, forming layers of 

protection (Stevens, 2007). In the first instance, the most well-studied form of 

protective coloration is camouflage, a strategy aiming to prevent predators from 

detecting or recognising prey (Stevens and Merilaita, 2009; Skelhorn and Rowe, 

2016). A cryptic appearance can be achieved in many ways, most obviously by 

matching the colour and pattern of the natural environment, a technique known 
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as background matching, but also through disruptive coloration, in which high-

contrast markings break up the outline of the animal, countershading, and 

transparency, especially in aquatic environments (summarised in Nokelainen 

and Stevens, 2016). Intuitively, evading predators should select for the dull 

coloration and general discretion typically associated with crypsis, while bright 

colours are expected to be associated with sexual signalling. Yet, as an 

alternative to crypsis, visual signalling strategies involving extravagant visual 

features can be deployed to effectively deter predators. 

A signal is defined as an “action or structure that increases the fitness of an 

individual by altering the behaviour of other organisms detecting it", and whose 

features have evolved to produce that effect (Maynard Smith & Harper, 1995).  

One such tactic is to allow detection but deceive predators by masquerading as an 

unprofitable item (Skelhorn et al., 2010; Skelhorn, Rowland and Ruxton, 2010); 

well-known examples include stick insects, the leafy sea dragon (Phyllopteryx 

eques), and many Lepidoptera, from the twig-mimicking buff-tip moth (Phalera 

bucephala) to the Chinese character (Cilix glaucata), which resembles a bird 

dropping. If detection is inevitable and prey are recognised as edible, other 

signalling strategies can come into play. Startle, or deimatic, displays, lead to 

misclassification of the prey as a potential threat (Skelhorn, Holmes and Rowe, 

2016), while deflective signals function to misdirect the attention of a predator to 

less valuable body parts (e.g. long wing extensions or false head patterns in 

butterflies; López-Palafox, Luiz-Martínez and Cordero, 2015; Barber et al., 2015).   

These tactics are not mutually exclusive, and may interact to provide a flexible  

defence depending on circumstances. For example, the underwing moths (Catocala  
sp.) have background-matching forewings, but will reveal colourful hindwings to 

startle predators who persist with their attack (Sargent, 1990). Finally, defended 

species may use bright or otherwise conspicuous displays to warn predators of 

their unprofitability, a strategy known as aposematism, or warning coloration 

(Ruxton, Sherratt and Speed, 2004). 

The theory of warning coloration was first proposed by Alfred Russell Wallace, 

prompted by discussions with Darwin over the function of conspicuous 

coloration in insect larvae (Wallace, 1867). They were intrigued by the bright 

colours of caterpillars, which do not reproduce at that life stage, so could not be 
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using their signals to attract mates. Wallace hypothesised that species which 

were toxic or otherwise unprofitable might benefit from advertising their 

defences, to avoid injury or death from mistaken attacks (Wallace, 1889).  E. B. 

Poulton further developed this theory, supported by early evidence that 

conspicuous species could be distasteful and rejected by predators (Poulton, 

1887). He coined the term “aposematism” to describe “an appearance that 

warns off enemies because it denotes something unpleasant” (Poulton, 1890). 

Aposematic signalling requires three key elements: a conspicuous signal, an 

aversive or dangerous secondary defence, and predators with the ability to 

learn the association between the two (Cott, 1940). The secondary defences 

advertised by aposematic prey can vary widely, from toxic chemicals (e.g. 

alkaloids and cyanogenic glucosides in tiger moths [Erebidae; Weller, Jacobson 

and Conner, 1999]) to a pugnacious nature (Caro, 2009). In terms of the signal 

itself, aposematism is not restricted to visual communication, and there is 

increasing interest in other warning signal modalities, such as warning odours 

(Rowe and Guilford, 1999; Rowe and Halpin, 2013) and acoustic aposematism, 

most famously in the case of defended tiger moths deterring predation by bats 

(Hristov and Conner, 2005; Dowdy and Conner, 2016). Nevertheless, visual 

warning coloration remains by far the most well-studied type of aposematic 

signal, and this thesis likewise focuses on aposematic colours and patterns. 

The association of conspicuous coloration and defences is taxonomically 

widespread, especially common in invertebrates, amphibians and reptiles, but 

now also recognised to occur in birds (in pitohuis; Dumbacher et al., 1992) and 

mammals (e.g. the striped skunk Mephitis mephitis; Lariviere and Messier, 

1996; Caro, 2009). While mostly studied in the terrestrial environment, warning 

colours have also been investigated in aquatic organisms, particularly 

nudibranchs (e.g. Cortesi and Cheney, 2010), despite some uncertainties over 

the relevant predator visual systems and lighting conditions in the marine 

environment (Pawlik, 2012). Aposematic signalling has also been reported in 

poisonous fungi (Sherratt, Wilkinson and Bain, 2005) and defended plants (Lev-

Yadun, 2001; Cooney et al., 2012), although these taxa have so far received 

comparatively little attention. 
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1.3  The form and function of warning, or aposematic, signals 

There are several hypotheses attempting to explain why appearing conspicuous 

may be advantageous to defended prey. Drawing attention to physical defences 

would be beneficial, and could be one route by which aposematic signals might 

first evolve (Speed and Ruxton, 2005). In addition, cryptic strategies restrict 

prey to specific backgrounds or types of behaviour, so that camouflage remains 

effective, while a conspicuous strategy would free them from these “opportunity 

costs” (Ruxton, Sherratt and Speed, 2004). Yet the most important implication 

of conspicuous warning signals is their effect on predator behaviour. Animal 

signals are thought to be shaped by two fundamental considerations: the 

strategic message they aim to communicate, and the best means to effectively 

convey that message, a concept known as signal efficacy (Guilford and 

Dawkins, 1991). To maximise efficacy, a signal should be highly detectable, 

discriminable and memorable, to facilitate predator learning (Guilford and 

Dawkins, 1991; Ruxton, Sherratt and Speed, 2004). The bright and colourful 

patterns of aposematic signallers stand out from other prey and natural 

backgrounds, attracting the attention of predators and enhancing efficacy in a 

number of ways (Stevens and Ruxton, 2012). Firstly, conspicuous signals 

appear to provoke innate avoidance behaviour in predators. This may be linked 

to an initial fear of novel stimuli, or neophobia, as well as to more long-term 

reluctance to accept conspicuous prey even when palatable, a trait known as 

dietary conservatism (Marples, Roper and Harper, 1998; Thomas et al., 2003, 

2004). Even more importantly, the form of typical warning signals stimulates 

predator learning. In the most basic sense, high visibility to predators will 

increase the rate at which predators encounter and experience these colourful 

but defended prey, speeding up the development of an association between the 

signal and the defence. Conspicuousness may also facilitate learning via 

several other mechanisms, including greater memorability and easier 

recognition (reviewed in Speed, 2000). However, whether examining innate 

responses or learned aversions, the relative importance of novelty, 

distinctiveness and conspicuousness per se, defined as visibility to predators 

against natural backgrounds, in determining the efficacy of warning signals, is 

still unclear (Ruxton, Sherratt and Speed, 2004; Stevens and Ruxton, 2012). 

While Wallace’s original idea of warning coloration was based on 

distinctiveness from edible prey (Wallace, 1867), conspicuousness itself does 
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appear to have specific advantages. More studies quantifying the 

conspicuousness of warning colours against natural backgrounds, and 

assessing the relevance of this measure to predator behaviour (e.g. Arenas, 

Walter and Stevens, 2015) would contribute to resolving this debate. 

Focusing on the specifics of prey patterns, it can be difficult to ascertain the 

relevance of different signal features. Warning signals are composed of multiple 

visual components, including colour, lightness, overall pattern and specific 

pattern elements, and internal contrast between coloured patches. In general, 

chromatic features are considered to be more important in avoidance learning 

than achromatic information, at least for avian predators (Stevens and Ruxton, 

2012), as demonstrated by many experiments in controlled conditions (Osorio, 

Jones and Vorobyev, 1999; Aronsson and Gamberale-Stille, 2008) and in the 

field (e.g. Finkbeiner, Briscoe and Reed, 2014). Nevertheless, there is evidence 

that predators do attend to achromatic patterns (e.g. Aronsson and Gamberale-

Stille, 2012a,b). The role of specific shapes and features has also been 

investigated, especially in the context of eyespots (reviewed in Stevens, 2005). 

Studies of the relevance of pattern symmetry have yielded conflicting results 

(Forsman and Merilaita, 1999; Stevens, Castor-Perry and Price, 2008). 

Nevertheless, the arrangement of pattern elements is clearly important, as 

demonstrated by the presence of high contrast markings in both conspicuous 

aposematic patterns and disruptive camouflage. These two patterns have 

opposite effects on predator perception due to the distribution of these patches, 

either highlighting or concealing the outline of the body (Stevens, 2007).  A 

given pattern may also fulfil multiple roles, from crypsis to aposematism, 

depending on viewing distance (Barnett, Cuthill and Scott-Samuel, 2017) or the 

location and posture of an animal (e.g. in the wood tiger, Arctia plantaginis; 

Honma, Mappes and Valkonen, 2015). Moreover, even for classic features of 

aposematic patterns, disentangling which mechanisms are at work can be 

complicated. Long wavelength colours are very common in warning signals, but 

their effectiveness may be attributed to several characteristics (Stevens and 

Ruxton, 2012), such as specific aversions to these colours (Roper, 1990), their 

high chromatic and achromatic contrasts with melanic pattern elements, their 

conspicuousness against foliage or their stability under a range of illuminations 

(Arenas, Troscianko and Stevens, 2014). 
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Methodological breakthroughs in the fields of animal vision and image analysis 

in the last 20 years present a major opportunity for researchers working on 

animal communication (Cuthill et al., 2017), and will help to resolve many of the 

questions raised above, regarding the form of warning signals. Although 

examining signals from the perspective of the relevant receivers is not a new 

idea (Cott, 1940), the importance of this consideration has been increasingly 

emphasised (Stevens, 2007), as our understanding of animal visual systems 

and the differences between human and animal perception has grown (Osorio 

and Vorobyev, 2008). Ambient light conditions, natural backgrounds against 

which signals are displayed and receiver perception will all be critical to the 

effectiveness of visual signals (Endler, 1990), so colours should be measured in 

relevant natural conditions and with particular signal receivers in mind. Receiver 

characteristics at all stages of visual communication will be important for signal 

perception, from the design and composition of the eyes receiving the signal to 

the neural networks responsible for classifying and discriminating patterns, 

through processing in the retina, and there is still much to learn (Endler and 

Mappes, 2017). Yet it is now possible to analyse intra- and inter-specific visual 

signals based on our best understanding of animal perception, using visual 

modelling techniques (Stevens, Stoddard and Higham, 2009; Stevens, 2011). 

These methods are increasingly accessible, as digital photography offers a 

more practical alternative to expensive spectrometry as a reliable means of 

measuring colour (Stevens et al., 2007a; Pike, 2011), and more open access 
tools are released to support image analysis (e.g. Troscianko and Stevens, 

2015; Van Belleghem et al., 2017). Throughout this thesis, I use digital  
photography and models of avian vision to quantify warning signals in an 

ecologically-relevant way. 

Linking the strategic and efficacy components of signalling, conspicuousness is 

a uniquely appropriate property for warning signals as it provides some degree 

of reliability. In the case of aposematism, both predators and prey should stand 

to benefit from avoiding attack, yet their interests are not exactly aligned 

(Summers et al., 2015). To a predator, the net benefit of attacking defended 

prey will depend on individual traits, such as motivation, and environmental 

variables, including temperature or the availability of alternative prey (reviewed 

in Skelhorn and Rowe, 2016), as well as on the toxicity of the prey item. 
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Unprofitability itself can be highly variable within a single population 

(automimicry; Guilford, 1994; Svennungsen and Holen, 2007), and this variation 

can be enhanced by the presence of palatable (Batesian) or simply less well-

defended (‘quasi-Batesian’; Speed, 1993) mimics. How warning coloration can 

emerge as an evolutionarily stable strategy in these circumstances has been 

hotly debated. Early interpretations of warning coloration as a handicap signal 

(Zahavi, 1975, 1991) predicted honesty in aposematism, enforced by naïve or 

resistant predators who would attack conspicuous unpalatable prey (Grafen, 

1990). Yet handicap mechanisms imply an inherent cost of producing the 

signal, functionally related to the strategic message conveyed by the signal. 

This concept of warning coloration was thus generally rejected, as there was no 

evidence of a physiological link between colourful signals and defences. Early 

models (Grafen, 1990) were further criticised for their simplistic assumptions, 

ignoring predator learning (Guilford and Dawkins, 1993). An alternative concept 

of warning colours as conventional signals was proposed, whereby signal form 

is geared towards maximising signal efficacy, and need not be related to the 

defence being advertised (Guilford and Dawkins, 1993). Nevertheless, even in 

this scenario, conspicuousness will generally be disadvantageous to 

undefended prey due to the high cost of greater predation risk through 

increased detectability. This enforces a level of honesty in aposematic signalling 

(Sherratt, 2002; Ruxton, Sherratt and Speed, 2004), such that, on average, 

warning colours indicate unprofitable prey. 

1.4  Signal honesty in aposematism 

This basic association between conspicuousness and some form of defence is 

inherent in the definition of aposematism, and makes warning coloration a 

qualitatively honest signal (Summers et al., 2015). More controversial is the 

notion of quantitative honesty in aposematism, whereby signal strength would 

indicate the level of an individual’s defences. In a seminal model exploring the 

initial evolution of aposematism, Leimar, Enquist and Sillen-Tullberg (1986) 

suggested that conspicuousness and unprofitability should be negatively 

correlated in aposematic prey. They considered that predators can learn from 

their previous encounters with profitable or unprofitable prey, and generalise 

their experience along excitatory and inhibitory gradients. Under these 

conditions, once predators have learnt to associate warning signals and 
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defences, signallers should reduce their investment in defences to cut the costs 

of acquiring or producing defensive chemicals, leading to a breakdown of 

positive correlations between conspicuousness and the level of the defences 

advertised (Wang, 2011).  

Yet many subsequent theoretical investigations suggest that the evolution of 

quantitative honesty in aposematic signalling is possible, given specific 

conditions (reviewed in Summers et al., 2015). If predators are more cautious 

when attacking conspicuous prey (the “go-slow” hypothesis; Guilford, 1994), 

taking more time to better evaluate their unprofitability before consuming them, 

quantitative honesty can be a stable strategy (Holen and Svennungsen, 2012). 

Even without assuming that predators treat conspicuous prey differently from 

the outset, some models predict reliable associations between signals and 

defences if unprofitable prey are more likely to survive attacks than profitable 

prey (Sherratt, 2002), an assumption supported by empirical evidence (e.g. 

Wiklund and Järvi, 1982). Similarly, Speed et al. (2010) predict “more-or-less” 

honest signalling within populations, whereby signal levels on average indicate 

the strength of defence, if predators can assess prey defences during attacks 

through taste-rejection and learn to associate their signal value with an average 

measure of toxicity. Using a different approach, stochastic models suggest that 

coevolutionary dynamics between prey with different defence levels within 

populations (Speed and Franks, 2014), and between defended species and 

their palatable mimics (Franks, Ruxton and Sherratt, 2009), may also lead to 

positive correlations between signal and defence levels. 

Although initially dismissed, more recent work has suggested that a strict 

interpretation of aposematic signals as handicap signals may still be possible. In 

their resource-allocation model, Blount et al. (2009) suggested that signals and 

defences may compete for the same resources, leading to a positive correlation 

between signal strength and the potency of defence when resources are limited. 

They proposed that coloration and toxins might compete for energy in general, 

or more specifically for antioxidant function. Many pigments, including 

carotenoids and pteridines, have antioxidant properties, which would also be 

needed to detoxify the by-products of chemical defences, leading to a trade-off 

between producing stronger signals and accumulating more defensive 
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chemicals. Building on this initial model (Blount et al., 2009), further theoretical 

work suggests that resource allocation trade-offs could produce quantitative 

honesty without assuming that predators are innately wary of conspicuous prey 

or that conspicuousness confers additional fitness benefits (Lee, Speed and 

Stephens, 2011; Holen and Svennungsen, 2012). 

Positive correlations between signal and defence levels may also arise as a 

consequence of other functions of coloured patches, such as thermoregulation 

or mate choice (Guilford, 1988; Lee, Speed and Stephens, 2011). Without 

considering the strategic message of aposematic signals, the economics of 

defence and display can predict both positive and negative correlations 

between these traits (Speed and Ruxton, 2007). When the fitness costs of 

producing signals and defences increase in parallel, positive correlations are 

expected, while disjunctions in fitness costs will lead to negative correlations. 

Production costs and available resources will be critical to the relationship 

between warning colours and defences, even when mechanisms of handicap 

signalling are invoked. For example, in the resource allocation model, signals 

and defences are expected to be negatively correlated when resources are 

abundant, as very high levels of chemical defences will provide effective 

protection without the need for conspicuous signals, which incur costs of 

detectability to naïve, highly-motivated or resistant predators (Blount et al., 

2009). To estimate these parameters, and resolve some debates surrounding 

the assumptions of models of signal evolution, it is essential to study the 

relationship between coloration and defences in wild populations. 

Understanding how colour signals and defensive chemicals are produced is one 

important objective, as seen in studies of sequestration ability in defended 

newts (Mochida et al., 2013), colour production in stinkbugs (Fabricant et al., 

2013) and the relationship between alkaloid and carotenoid levels in ladybirds 

(Blount et al., 2012; Winters et al., 2014). This promising avenue of research 

should help determine how signals and defences are shaped by environmental 

conditions and if trade-offs between them are likely. A greater appreciation of 

how differences in signal and defence levels really affect predation risk would 

also be useful (Summers et al., 2015), as assumptions regarding predator 

responses to these two traits are critical in determining the outcomes of 

theoretical models (Speed and Ruxton, 2007; Blount et al., 2009). 
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Existing empirical evidence of the relationship between signals and defences in 

aposematic species is limited to a relatively small number of studies, primarily 

focusing on poison frogs (Dendrobatidae) and ladybirds (Coccinellidae). While 

many do find a positive correlation between quantitative measures of coloration 

and chemical defences, there are conflicting results both within and between 

populations, as well as across species (see Table 1.1). Moreover, the fairly 

narrow taxonomic spread of these studies and inconsistencies in the methods 

used to quantify both defences and visual signals mean caution is needed when 

attempting to draw broader conclusions from this collection of research 

(Summers et al., 2015). In terms of measuring coloration, it is critically important 

to consider signals from the perspective of the relevant receivers (Stevens, 

2007). Although visual modelling techniques accounting for predator perception 

are increasingly being adopted, coloration has been assessed by human 

classification or viewer-independent measures in several of these studies. The 

specific signal features considered also vary: while many used contrast against 

natural backgrounds as their measure of conspicuousness, others chose traits 

such as the brightness or size of specific colour patches. There is as yet little 

direct evidence to suggest that these features are particularly attended to by 

predators, and some may be involved in other functions, potentially confounding 

the results (Summers et al., 2015). For example, the yellow abdominal band in 

paper wasps (Vidal-Cordero et al. 2012) may be an intraspecific signal of 

dominance, and coloration in poison frogs also plays a role in mate choice 

(Summers et al., 1999). Greater clarity in terms of which signal features are 

used by predators to guide their foraging decisions in the wild would be helpful, 

in order to test truly relevant associations between signals and defences from 

the predators’ perspective (Summers et al., 2015). Currently, there is also an 

imbalance between the theoretical literature, with most models addressing the 

issue of signal honesty within a single population, and empirical work, which 

tends to focus on inter-specific or inter-populational differences. Testing the 

importance of specific signal features in aposematic patterns, and providing 

more data on the relationship between colour and defence in a novel study 

system, including within populations, are key aims of this PhD thesis. 
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Table 1.1: Published empirical studies relating coloration and toxicity in 

aposematic animals, both across and within species and populations, with 

details of the metrics used, attention to predator perception and results. This 

table shows the conflicting conclusions of empirical work on quantitative 

honesty in aposematism, and highlights some of the key issues in this field of 

research, namely the relatively narrow taxonomic focus of these studies, 

primarily based on dendrobatid frogs and ladybirds, and by contrast the 

diversity of methods and metrics employed when measuring coloration and 

toxicity, making the results difficult to compare. 

Study system Measures of 
coloration 

used 

Measures of 
defences 

used 

Predator 
vision? 

Correlations 
found? 

References 

INTERSPECIFIC 
Coccinellidae 
(ladybirds) 

Conspicuousness 
against host 
plants, internal 
pattern contrast, 
luminance, 
saturation, area 
of colour 

Toxicity assay 
in Daphnia
pulex water 
fleas 

Yes (birds) Positive for 
conspicuousness 
against plants 

Arenas, 
Walter and 
Stevens, 
2015 

Dendrobatidae 
(poison frogs) 

Brightness 
contrast between 
frog and leaf litter 
(ranked by 
humans and 
computer) 

Diversity, 
quantity 
(concentration) 
and lethality of 
alkaloids 

No Positive Summers 
and Clough, 
2001 

Dendrobatidae 
(poison frogs)

Conspicuousness 
to leaf litter 

Presence, 
quantity 
(concentration) 
and diversity 
of alkaloids 

No Positive –
conspicuousness 
and chemical 
defences 
associated 
across 
phylogeny 

Santos and 
Cannatella, 
2011 

Epipedobates 
(poison frogs) 

Internal 
chromatic and 
brightness 
contrast of frog 
pattern 

Toxicity assay 
in mice 

Yes (birds) None Darst, 
Cummings 
and 
Cannatella, 
2006 

Opistobranchs Chromatic 
contrast to 
natural 
backgrounds 

Toxicity assay 
in brine shrimp 

Yes 
(damselfish 
and 
triggerfish) 

Positive Cortesi & 
Cheney, 
2010 

Pachycephalidae 
(whistlers – 
songbirds) 

Human 
impression of 
colour pattern 

Batrachotoxin 
levels 

No None. The two 
most toxic 
species are most 
brightly-coloured, 
but other toxic 
species are not 
conspicuous 

Dumbacher, 
Spande and 
Daly, 2000; 
Dumbacher 
et al., 2008 

INTRASPECIFIC, BETWEEN POPULATIONS 
Cynops 
pyrrhogaster 
(Japanese fire-
bellied newt) 

Area of red on 
ventral side 

Tetradotoxin 
(TTX) & 6-epi
TTX levels, 
sequestration 
ability 

No None Mochida et
al., 2013 

Dendrobates 
pumilio
(strawberry 
poison frog) 

Colour, classified 
by humans 

Toxicity assay 
in mice 

No None Daly and 
Myers, 1967 
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Study system Measures of 
coloration 

used 

Measures of 
defences 

used 

Predator 
vision? 

Correlations 
found? 

References 

Dendrobates 
pumilio
(strawberry 
poison frog) 

Viewer-
independent 
overall 
brightness, and 
conspicuousness 
to predators 
against natural 
backgrounds  

Toxicity assay 
in mice 

Yes (birds, 
crabs & 
snakes) 

Positive for 
brightness, and 
conspicuousness 
to birds & crabs 

Maan and 
Cummings, 
2012 

Oophaga 
granulifera 
(granular poison 
frog) 

Conspicuousness 
against natural 
backgrounds 

Toxicity assay 
in mice 

Yes (birds) Negative Wang, 2011 

INTRASPECIFIC, WITHIN POPULATIONS (INCLUDING LABORATORY POPULATIONS) 
Coccinella 
septempunctata
(7-spot ladybird)

Elytra brightness 
and colour, 
carotenoid levels 
and spot size 

Coccinelline 
and 
precoccinelline 
levels 

Yes (birds) Positive for 
precoccinelline 
and carotenoid 
levels; positive 
for coccinelline 
and carotenoid 
levels in females, 
but negative in 
males; positive 
for coccinelline 
levels and spot 
size in low-diet 
treatment 

Blount et al., 
2012 

Coccinella 
septempunctata
(7-spot ladybird)

Egg and adult 
elytra saturation, 
brightness and 
hue 

Coccinelline 
and 
precoccinelline 
levels 

Yes (birds) Positive for egg 
saturation, hue 
and 
precoccinelline 
levels, and for 
elytra hue and 
coccinelline 
levels; negative 
for elytra 
brightness and 
coccinelline 
levels 

Winters et
al., 2014 

Dendrobates 
pumilio, Solarte 
population 
(strawberry 
poison frog)

Total reflectance, 
longwave 
chroma, 
luminance, 
chromatic 
contrasts and 
conspicuousness 

Concentration 
and diversity 
of alkaloids 

Yes (birds 
and frogs) 

Negative 
between total 
reflectance and 
both aggregate 
pumilotoxin 
content & 
pumilitoxin 
PTX307A levels 

Crothers et
al., 2016 

Harmonia 
axyridis 
(harlequin 
ladybird) 

Elytra redness, 
area of red, spot 
colour, and 
carotenoid 
concentration 

Concentration 
of alkaloids 

No Positive for area 
of red; lighter 
spots associated 
with higher 
harmonine levels 
in females 

Bezzerides 
et al., 2007 

Polistes dominula 
(paper wasp)

Brightness of 
yellow abdominal 
band 

Size of poison 
gland 

No Positive Vidal-
Cordero et
al., 2012 

1.5  Aposematism in burnet moths (Lepidoptera: Zygaenidae) 

Historically, Lepidoptera have been at the heart of research on warning 

coloration, from the brightly-coloured caterpillars stimulating discussions 

between Darwin and Wallace to the tropical butterflies inspiring the concepts of 
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Batesian and Müllerian mimicry of defended species (Bates, 1862; Müller, 

1879). To this day, work on Lepidoptera continues to contribute to our 

understanding of aposematism, although other species, primarily poison frogs 

(Dendrobatidae) and ladybirds (Coccinellidae), have also emerged as important 

model systems. Beyond the astounding diversity in colour and pattern that first 

attracted the attention of naturalists, Lepidoptera possess many qualities that 

make them amenable to research on visual signalling: their flat wings are ideally 

suited to photography and image analysis, many species can be reared in 

captivity, and their principal visual predators are birds, a group whose visual 

systems are relatively well-understood (Hart, 2001a; Ödeen and Håstad, 2003; 

Osorio and Vorobyev, 2008). Heliconius butterflies are without doubt the most 

important model for understanding the evolution of colour patterns, allowing 

crucial questions to be addressed, such as how mimicry rings evolve, how 

warning signals interact with sexual selection, and how diversity in warning 

coloration might arise and be maintained (reviewed in Jiggins, 2017). More 

recently, the wood tiger moth, Arctia plantaginis, has become established as 

another key species in which to investigate warning coloration. Studies of the 

wood tiger have yielded new insights into the selection pressures shaping the 

form of warning signals, examining the effect of different predator communities 

(Nokelainen et al., 2014), seasonality (Mappes et al., 2014), trade-offs with 

sexual selection (Nokelainen et al., 2012) and functional constraints (such as 

temperature; Lindstedt, Lindström and Mappes, 2009) amongst others. 

Meanwhile, other species provide opportunities to test the roles of particular 

signal properties, such as iridescence in the pipevine swallowtail, Battus

philenor (Pegram, Han and Rutowski, 2015). In this thesis, I focus primarily on a 

large and diverse family of Lepidoptera, which has as yet received 

comparatively little attention from researchers studying aposematism: the 

Zygaenidae, commonly known as forester and burnet moths. 

The Zygaenidae form a species-rich family of mostly day-flying moths, with a 

worldwide distribution but especially diverse in Asia and the Palearctic region 

(Naumann, Tarmann and Tremewan, 1999; Niehuis, Naumann and Misof, 

2006). Approximately 1000 described species fall into four recognised 

subfamilies: Callizygaeninae, Chalcosiinae, Procridinae and Zygaeninae 

(Niehuis, Naumann and Misof, 2006). In the Western Palearctic 44 species of 
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Procridinae, known as foresters, and 70 species of Zygaeninae (burnet moths) 

are found, along with a single member of the Chalcosiinae, the almond-tree leaf 

skeletonizer moth, Aglaope infausta (Naumann, Tarmann and Tremewan, 

1999). Species diversity is more limited in the British Isles, with only three 

species of Procridinae and seven species of Zygaeninae, four of which are now 

restricted to Northern Scotland. One of these, the New Forest burnet, Zygaena

viciae, is vanishingly rare, restricted to a single protected colony in Northwest 

Scotland after being collected to extinction from the New Forest (Young and 

Barbour, 2004). 

The defining characteristic of the Zygaenidae is their ability to synthesise the 

toxic cyanogenic glucosides linamarin and lotaustralin (Figure 1.1b); these 

compounds have been found in every one of the 45 species tested (Davis and 

Nahrstedt, 1982; Zagrobelny et al., 2004). Widespread defensive tools in plants, 

cyanogenic glucosides are known as phytoanticipins, defensive compounds 

constitutively expressed in plants in anticipation of herbivore attack (Pentzold et

al., 2014). They also occur in many arthropods, such as some polydesmoid 

millipedes (Diplopoda), centipedes (Chilopoda), beetles (Coleoptera), true bugs 

(Heteroptera) and many Lepidoptera, including Heliconius butterflies 

(Zagrobelny, Bak and Møller, 2008). Cyanogenic glucosides release cyanide 

when broken down by enzymes, for example in the gut of a predator 

(Zagrobelny, Bak and Møller, 2008), and are also bitter-tasting so may deter 

predation through taste-rejection (Skelhorn and Rowe, 2009). This provides an 

effective defence for the Zygaenidae, and early work injecting zygaenid extracts 

into mice, frogs, and more disturbingly, humans, demonstrated the toxicity of 

burnet moths even before the compounds responsible were identified 

(Rothschild et al., 1970; Marsh and Rothschild, 1974). Experiments with birds in 

captivity have further confirmed that they are generally considered unprofitable 

by avian predators (Heikertinger, 1939; Wiklund and Järvi, 1982; Rammert, 

1992), despite anecdotal records of predation in the wild (collated in Tremewan, 

2006). 

Since the identification of linamarin and lotaustralin in the six-spot burnet, 

Zygaena filipendulae (Davis and Nahrstedt, 1979), the chemistry of this species 

has been thoroughly investigated. The larvae of Zygaena species are 
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apparently unique in their ability to both synthesise cyanogenic glucosides de

novo, from the amino acids valine and isoleucine, and sequester the same 

compounds from their host plants at the same time (Zagrobelny et al., 2014a). 

De novo synthesis of cyanogenic glucosides is ancestral in the Zygaenidae but 

served as a pre-adaptation for some Zygaeninae to feed on cyanogenic plants. 

The evolution of sequestration ability then allowed these species to accumulate 

toxins more economically. Retaining the capacity for de novo synthesis enables 

fine-tuning of the ratios of linamarin and lotaustralin, compensating for the 

variability in toxin content in their host plants (Zagrobelny et al., 2014a). Z. 

filipendulae feeds on cyanogenic Bird’s foot trefoil (Lotus corniculatus), yet can 

almost completely compensate for a lack of cyanogenic glucosides in its diet, 

albeit at the cost of slower and reduced growth (Zagrobelny et al., 2007a). 

Uncovering the genetic pathway for the synthesis of linamarin and lotaustralin 

revealed a remarkable convergence between the herbivore and its host plant, 

with both species following the same steps and using similar classes of 

enzymes, but derived independently, to produce the cyanogenic glucosides 

(Jensen et al., 2011). These toxins play a crucial role throughout the life cycle of 

Z. filipendulae and are present at every stage (see Figure 1.1a; Jones,

Rothschild and Parsons, 1962). Beyond protection from predators, cyanogenic

glucosides also provide a store of nitrogen to fuel metamorphosis and serve as

a nuptial gift from males to females during courtship (Zagrobelny et al., 2007b).

Although primarily based on cyanogenic glucosides, the defensive arsenal of 

burnet moths is complex and multimodal. Effective at all life stages and against 

a range of predators, their defences include pyrazine warning odours 

(Rothschild, Moore and Brown, 1984), which enhance the aversiveness of 

visual warning signals (Rowe and Guilford, 1996; Lindström, Rowe and 

Guilford, 2001), as well as bitter-tasting fluids, and compounds that are toxic if 

ingested. For example, when disturbed, both larvae and adults release 

defensive droplets, aversive to many invertebrate and vertebrate predators 

(Jones, Rothschild and Parsons, 1962; Franzl and Naumann, 1985). Illustrating 

the multiple layers of their defences, the larval fluid’s viscosity provides 

protection from ants, while the presence of bitter cyanogenic glucosides and the 

neurotoxin β-cyanoalanine should deter vertebrates. If predators continue to 

attack and the droplets come into contact with β-glucosidases in the Zygaena 
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haemolymph, cyanide will be released as a further step in their defence

(Pentzold et al., 2016). These sophisticated defences are also advertised to

predators with unmistakeable, conspicuous warning signals, especially in the

adult stage.

Figure 1.1: The life cycle of the six-spot burnet moth, Zygaena filipendulae (a,

clockwise from top left: eggs, larva, cocoon and adult) and its defensive

chemicals (b). Egg photograph: © Harald Süpfle, Wikimedia Commons; all other

photographs E. S. Briolat. Chemical diagrams produced by Mika Zagrobelny. 

While the Procridinae are generally brown or green in colour, and discreet in

their behaviour, the Zygaeninae are classic examples of aposematic animals.

They are characterised not only by toxicity in all life stages but also by sluggish

behaviour, high local abundance and conspicuous wing patterns (Hofmann and

Tremewan, 2017). The typical appearance of a burnet moth features red spots

on black forewings and red hindwings, but four main phenotypes can be found:

red and black, yellow and black, dichromatic (yellow, red and black), and a

darker melanistic type (Figure 1.2). Moreover, these wing patterns can be

extraordinarily diverse, both within and between populations of the same

species. Variation in adult phenotype can take many forms, from changes in

spot colour, replacement of black scales with colour and increased melanism to

spot confluence and changes in abdominal pattern (Figure 1.3; Hofmann and
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Tremewan, 2017). The most famous example of polymorphism in the

Zygaeninae is found in Z. ephialtes, which possesses two pattern types (known

as “peucedanoid” and “ephialtoid”), both occurring in red or yellow forms. In

some locations, the prevalence of these pattern types is thought to be linked to

mimicry of another distasteful moth, the nine-spotted, Amata phegea (Sbordoni

et al., 1979). Polytypisms, or differences between populations, can also be

spectacular; for example, Z. carniolica, which typically has a dark background

colour, displays white wings with red spots in Cappadocia (Turkey). Zygaenidae

larvae are also highly variable both within and between species, and can be

cryptic or conspicuous (Hofmann and Tremewan, 2017). Despite considerable

interest in their diverse patterns from the entomological community, relatively

little work has been done on the function of burnet moth coloration, and none

with sophisticated modern methods accounting for predator vision. With the

exception of work on mimicry in Z. ephialtes, and some experiments on mate

choice (Zagatti and Renou, 1984; Toshova, Subchev and Toth, 2007), the

Zygaenidae are a relatively untapped resource for researchers working on

visual signals.
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Figure 1.2: The four main phenotypes found in the Zygaeninae: (a) red-black, 

(b) yellow-black, (c) dichromatic and (d) melanistic, with example species.

This figure is based on Figures 1323 - 1334 in Hofmann and Tremewan (2017); 
the original image has been removed from this thesis for copyright reasons. 
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Figure 1.3: Types of variation in the phenotype of adult Zygaeninae. This figure 

was created by E.S. Briolat, based on Table 70 in Hofmann and Tremewan 

(2017). 

The ability to identify and accurately quantify the chemical defences of the 

Zygaenidae, combined with the diversity of conspicuousness and other visual 

features seen in their wing patterns, makes them an attractive system in which 

to explore the relationship between coloration and defences. In this thesis, I 

explore the form of lepidopteran warning signals and how their characteristics 

relate to the presence and potency of defences, as well as to predation risk in 

the wild, using the Zygaenidae as my principal study system. I begin by 

presenting a detailed explanation of the photography and image analysis 

techniques used throughout this thesis in Chapter 2, illustrating them with some 
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preliminary experiments on Z. filipendulae. In Chapter 3, I test for broad trends 

in the visual features of day-flying defended Lepidoptera with a comparative 

analysis of museum specimens of British moths. I then focus on the six-spot 

burnet, Z. filipendulae in Chapter 4, and measure the colour and cyanogenic 

glucoside levels of specimens from Denmark, France and the UK to test for 

quantitative signal honesty in this species. In Chapter 5, I extend this study to 

address the question of signal honesty across species in the Zygaenidae. 

Finally, in Chapter 6, I test whether variation in several signal properties affects 

predation risk for burnet-like prey, by conducting artificial predation experiments 

in a natural habitat of Z. filipendulae. Throughout my work, I consider the 

perspective of relevant visual predators by analysing the warning signals of 

Lepidoptera as perceived by the avian visual system. In Chapter 7, I discuss the 

implications of my findings and the many outstanding questions that could be 

addressed by further research on signalling in burnet moths. Bringing these 

insights together, this thesis should serve to develop our understanding of the 

relationship between coloration and defences in aposematic animals, and 

highlight the great potential of burnet moths as a promising study system for 

researchers in the field of animal communication. 
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Chapter 2 

Methods for measuring warning colours –  
an illustration with preliminary experiments 

on the six-spot burnet moth  
(Zygaena filipendulae, L.) 

The Provence burnet, Zygaena occitanica, as perceived by human vision (left) 
and as a false-colour image (right; blue, green and red colours represent the ultraviolet-, 

short wavelength- and medium wavelength-sensitive channels of avian perception).  
Photographs: Jolyon Troscianko 
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2.1 Abstract 

Investigating the form and function of animal signals requires techniques to 

quantify colour, brightness and pattern in a reliable and biologically-relevant 

way. In this thesis, I use digital photography as a means to measure warning 

colours and other wing patterns in Lepidoptera. This increasingly popular 

method in the study of animal coloration presents numerous advantages over 

more traditional spectrometry, yet several precautions must be taken to ensure 

that it yields accurate and repeatable measures of colour and pattern. These 

include considerations regarding the equipment and experimental set-up used 

for photography, as well as protocols for subsequently processing the images 

and extracting meaningful metrics of coloration from them. In addition, the 

accuracy and relevance of measurements obtained from digital photography will 

largely depend on having adequate specimens to photograph, kept in 

appropriate conditions. Burnet moths (Lepidoptera: Zygaenidae) are an 

attractive family in which to explore warning coloration and signal honesty within 

and between species, yet some preliminary experiments were required to verify 

that the six-spot burnet, Zygaena filipendulae (L.), would be amenable to my 

investigations. In particular, I established that the wing markings of this species, 

which, to human observers, seem relatively uniform among individuals, do 

appear variable to avian predators, legitimising the study of differences in 

coloration between individuals. Another important methodological concern, dealt 

with in a second experiment, was the repeatability of measurements over time 

under my experimental conditions. Using these two preparatory tests as 

examples, this chapter describes and explains the techniques I have used to 

quantify warning colours throughout this thesis, and presents important results 

underpinning the rest of my work on burnet moths. 

2.2 Introduction 

Coloration in the natural world has long been a subject of fascination to 

naturalists, scientists and artists alike. Yet, by its very nature, colour is an 

elusive concept and a difficult subject to study, as it depends on the perception 

of the observer and the lighting conditions under which it is seen (Endler, 1990, 

1993). The critical importance of considering the observer’s perspective is 

increasingly apparent as we learn more about the visual systems of other 
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animals with capabilities very different from those of humans. In this context, 

devising tools and methods to quantify the colours and patterns seen in nature 

is not necessarily straightforward. 

The use of photography as a means of studying animal coloration has a long 

history, with Abbott Thayer’s illustration of the principles of protective coloration 

and countershading one of the most famous early examples (Thayer, 1896). 

Yet, for accurate quantification of colour, the preferred method of researchers 

interested in animal coloration has long been spectrometry, measuring the 

spectrum of light reflected from a point sample. More recently, the explosive 

increase in the quality and availability of digital cameras is modernising the 

study of animal coloration, with digital photographs replacing spectrometry to 

investigate colours in a range of contexts, from aposematism and camouflage to 

sexual signals and maternal investment (Stevens et al., 2007a; recent examples 

include Winters et al., 2014; Arenas, Walter and Stevens, 2015; Troscianko et al., 
2016). Digital photography has several significant advantages compared to   

spectrometry, previously reviewed in Stevens et al. (2007a) and Troscianko 
and Stevens (2015). These include practical considerations, as good quality  

cameras are more easily accessible to researchers than expensive spectrometers,

as well as different capabilities for analysis. One important benefit of photography 

is the ability to measure whole patterns with multiple colour patches at once. 

Spectrometry is limited to point measures of very small areas, which are 

vulnerable to changes in the distance and angle of the probe with respect to the

focal sample, while photographs can efficiently provide information about natural

scenes and complex objects. Several methods, such as granularity 

analyses (Chiao et al., 2009), have also been developed to enable pattern 

analyses from digital images. 

Nevertheless, several issues must be dealt with in order to generate objective 

and repeatable measurements from digital photographs, yet these are not 

always considered or appropriately addressed, leading to incomplete or 

erroneous results (Stevens et al., 2007a). Firstly, most cameras respond to 
differences in light levels across wavelengths in a non-linear way (Stevens et 

al., 2007a): this means that the Red, Green, and Blue (RGB) pixel values 

recorded from a digital image may not be equally influenced by changes in light 
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intensity. Non-linearity occurs because digital cameras are designed to optimise 

the perceived quality of photographs to human observers and for the wide 

range of printers and monitors used to display them, which themselves possess 

inherent non-linearities (Westland and Ripamonti, 2004), rather than to provide 

accurate measurements. To complicate matters, each camera brand and model 

may behave in a unique way, preventing comparisons between photographs 

taken with different equipment. As such, methods must be implemented to 

linearise the camera’s responses before the photographs can be used (Stevens 

et al., 2007a; Troscianko and Stevens, 2015). Moreover, ambient light is likely to 

differ in intensity and colour in both natural environments (Endler, 1993), as well 

as in the laboratory. Lighting conditions during photography will affect 

measurements taken from a photograph, so these must be normalised with 

respect to light levels. This can be done by simultaneously measuring 

reflectance standards, which reflect a known percentage of light across all 

wavelengths, and using those to standardise the pixel values obtained from the 

photographs (Stevens et al., 2007a).  The rapid development of methods 

implementing these processes facilitates accurate and robust analyses based 

on digital photography, unlocking its full potential as a tool for research (Stevens 

et al., 2007a; Pike, 2011; Akkaynak et al., 2014; Troscianko and Stevens, 2015). 

Beyond obtaining reliable and objective values, measurements of animal 

coloration are far more relevant to natural situations if they take into account the 

visual systems of the species paying attention to these stimuli (Stevens and 

Ruxton, 2012). When studying warning coloration, understanding how potential 

predators perceive the signals of aposematic species is crucial to assessing the 

effectiveness of the displays or the relevance of variation in colour and pattern. 

Fortunately, techniques exist to convert the information gained from digital 

photographs to the visual systems of many well-studied species (Stevens et al., 

2007a; Stevens, Stoddard and Higham, 2009; Stevens, 2011; Troscianko and 

Stevens, 2015). Throughout this thesis, I have mapped my wing photographs to 

avian vision, as birds are the most likely visual predators of day-flying 

Lepidoptera. Birds are tetrachromatic, possessing four types of single cones 

determining colour vision. Although they can all perceive ultraviolet 

wavelengths, the sensitivity of their most shortwave-sensitive cone type does 

vary, separating avian visual systems into two broad categories: an ultraviolet-
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sensitive (UVS) group, with a peak sensitivity λUVS ranging from 355 to 380 nm 

in measured species, and a violet-sensitive (VS) group, in which λVS ranges 

from 402 to 426 nm (Hart, Partridge and Cuthill, 1999; Hart et al., 2000; Ödeen 

and Håstad, 2003; Hart and Hunt, 2007). For adult Zygaenidae, anecdotal 

reports of avian predation implicate multiple species, including blackbirds and 

skylarks, passerine species falling into the UVS category (Ödeen and Håstad, 

2003), and corvids, belonging to the VS group (Ödeen and Håstad, 2003; 

Håstad, Victorsson and Ödeen, 2005; Tremewan, 2006). Therefore, I chose to 

model warning signals primarily as perceived by the UVS visual system, but 

also to check my conclusions with the VS system. 

The bulk of the experimental work in this thesis focuses on the Zygaenidae, a 

family of day-flying moths chosen as a study system because of existing 

literature concerning their phylogeny and chemical defences, as well as for their 

interesting variation in coloration between and within subfamilies (see Chapter 

1). To ensure that these species were amenable to this investigation and to the 

digital photography methods I would be using, I conducted two preliminary 

experiments. These were carried out under the same conditions and using the 

same techniques as all my work on burnet moth coloration in the subsequent 

chapters of this thesis. As such, describing these preliminary tests provides an 

opportunity to delve deeper into the rationale behind the methods I have used 

throughout my thesis for measuring and analysing colour data. Firstly, while 

different species in the Zygaena genus are identifiable based on their wing 

pattern, there appears to be little variation to the human eye within my principle 

study species, the six-spot burnet, Zygaena filipendulae (with the exception of 

rare aberrant orange, yellow or black morphs; Tremewan, 2006). I therefore 

measured variation in colour among my samples of Z. filipendulae, to determine 

whether the species was sufficiently variable for avian predators to discriminate 

between individual colours. In addition, due to the timings of field collections for 

different species or populations in different localities, not all specimens included 

in my analyses of colour and toxicity could be photographed with the same 

delay after emergence. I thus conducted a second experiment, repeatedly 

photographing a subset of specimens, to verify that wing colour did not 

significantly change over time under the experimental conditions. The protocols 
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I used for photographing specimens and analysing photographs in these 

experiments address the methodological concerns raised above. 

2.3 Methods 

2.3.1 Experimental set-up 

To ensure that my measurements remained as consistent as possible 

throughout the experimental period, all photographs of burnet moths used in 

this thesis were taken in the same controlled conditions, inside a darkroom. The 

specimens were illuminated by an EYE Color Arc® MT70 bulb (Iwasaki Electric 

Co. Ltd.), its UV-blocking coating removed by lightly scrubbing the bulb with a 

steel brush (Troscianko and Stevens, 2015). After this treatment, it emits a light 

spectrum close to D65 daylight irradiance, including UV wavelengths. The 

wings of most Zygaenidae are iridescent, so the angle of incident light reaching 

the wing will influence colour measurements (Meadows et al., 2011). To 

account for this, only the colours of the right-hand wings were measured, as the 

direction of the wing scales will affect iridescence. The light source was also 

kept at a constant 50° angle relative to each wing and the specimens were 

photographed directly from above, at a 90° angle to the wings. 

Photographs were taken with a Nikon D7000 camera, which had previously 

undergone a quartz conversion enabling it to be sensitive to UV wavelengths 

(Advanced Camera Services, Norfolk). The camera was fitted with a 105mm 

CoastalOptics quartz lens (Jenoptik, Jena, Germany), also sensitive to UV. In 

addition, a set of filters was attached to the lens, and each specimen was 

photographed twice: once restricting wavelengths of light to the human-visible 

spectrum, using a UV/infrared (IR) blocking filter (Baader UV/IR Cut Filter, 

transmitting between 400 and 700 nm) and once under ultraviolet wavelengths 

alone, using a UV pass and IR blocking filter (Baader U filter, transmitting 

between 300 and 400 nm). These two images per individual were then 

combined during image processing to cover the range of wavelengths relevant 

to avian visual systems. All images were taken in RAW format, with manual 

white balance (“cloudy” setting) and a constant ISO (typically ISO 400) and 

aperture (f8). Compressed image formats, such as JPEG, cannot be used, as 

in-camera processing and compression create irreversible artefacts, making 
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subsequent linearisation of pixel values unreliable (Akkaynak et al., 2014). 

Exposure length was adjusted according to light levels and was always 

considerably longer for photographs taken with the UV pass and IR blocking 

filter than for the human-visible ones, as camera sensitivity in UV wavelengths 

is approximately 100 times lower than in the human-visible spectrum 

(Troscianko and Stevens, 2015). 

Moth wings were dissected from frozen specimens, and placed flat on a 

background of grey ethylene-vinyl acetate (EVA), more commonly known as 

craft foam, for photography. Previous work in our research group investigating 

the properties of background materials for photography found that, of the test 

samples, black EVA had the lowest reflectance across all wavelengths 

(approximately 5% reflectance), so was most suitable to be used as a 

background substrate (Arenas, 2015; Arenas, Walter and Stevens, 2015). 

However, my pilot experiments revealed that the outline of the burnet moth 

wings was too difficult to distinguish from the black EVA background during 

image analysis, so grey EVA was substituted to facilitate wing selection. 

Background reflectance was especially problematic for previous work on 

ladybird elytra, as the light appeared to “bounce off” the translucent chitin 

structures making up the elytra (Arenas, 2015). This is not the case for 

zygaenid wings, which, in addition, do not appear transparent in most species, 

including Z. filipendulae, so the background colour should not affect 

measurements. For the few species with more fragile wings (see Chapter 5), 

additional care must be taken when interpreting the results, but keeping a 

consistent uniform background should enable robust comparisons, at least 

between individuals of these species. Each photograph also included an 

individual label, a scale bar and a set of reflectance standards, reflecting all 

wavelengths of light equally between 300 and 750 nm. These were used to 

standardise light levels between photographs, eliminating any residual variation 

in lighting arising even in these controlled conditions, and making my results 

comparable to measurements taken in other settings. For most of my 

experiments, including those presented in this chapter, I used a pair of 

standards reflecting 93% and 7% of light respectively, cut from Zenith Lite 

Diffuse Target sheets (SphereOptics, Pro-Lite Technology, Cranfield, UK). The 
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standards were placed in the same plane as the moth wings, an important 

condition for accurate measurements (Troscianko and Stevens, 2015). 

2.3.2 Image processing and mapping to animal visual models 

Processing digital images for analysing coloration requires a number of steps, 

which are now easily implemented in the open-access multispectral image 

analysis toolbox, run in ImageJ (Schneider, Rasband and Eliceiri, 2012) and 

developed in our research group (Troscianko and Stevens, 2015). Prior to 

analysis, the human-visible and ultraviolet photographs of each specimen must 

be checked to ensure they are appropriately exposed, either by inspecting the 

image histogram or with image processing tools in the software toolbox 

(Troscianko and Stevens, 2015). Over-exposure, quashing variation among 

high values, would especially prevent correct interpretation of measurements. 

The chosen images must then be linearised, using an ImageJ plugin (IJ-

DCRAW; Sacha, 2013) importing images via DCRAW (Coffin, 2015), a software 

package which extracts pixel values from RAW camera files in a linear way 

(Chakrabarti, Scharstein and Zickler, 2009). The validity of this method of 

linearisation has previously been verified, including with the camera set-up I 

used for photography (Troscianko and Stevens, 2015). Finally, selecting and 

measuring the reflectance standards in each image as it is imported enables the 

software to normalise pixel values with respect to light levels. As alternating 

between UV/IR-blocking and UV-pass filters can cause the camera to move 

slightly between shots, I used automatic alignment tools to accurately merge the 

human-visible and ultraviolet photographs for each sample wing. The toolbox 

software ultimately imports the combined picture as a multispectral image, a 32-

bit stack with 5 layers, corresponding to different channels, or images taken in a 

specific range of wavelengths: three in the human-visible spectrum (vR, vG, vB) 

and two in the ultraviolet (uR and uB). 

The next step in the analysis process is to map the camera pixel values onto 

the visual system of the potential predators of day-flying Lepidoptera, namely 

birds in both the UVS and VS groups. To do this, I used previously published 

data on the spectral sensitivities of model species for the US and VS systems, 

the blue tit Cyanistes caeruleus (Hart et al., 2000) and the Indian peafowl Pavo 

cristatus (Hart, 2002) respectively. Camera sensitivities in the five wavelength 
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channels (uB, uR, vR, vG, vB), in the presence of the lens and filters, have also 

been measured previously (Figure 2.1) and are highly repeatable between 

camera set-ups of the same type (Troscianko and Stevens [2015], using 

methods similar in principle to Lovell et al. [2005] and Garcia et al. [2013]). 

Nevertheless, to ensure maximum consistency at all stages in the process, all 

photographs analysed together as part of the same experiment were taken with 

the same camera. Converting pixel values in these five camera-vision channels 

to cone catch values for avian photoreceptors was achieved via a polynomial 

mapping technique (Troscianko and Stevens, 2015). This is essentially a 

multiple regression calculating the cone catch value for each photoreceptor type 

(ultraviolet/violet-sensitive [UVS/VS], short wavelength-sensitive [SWS], 

medium wavelength-sensitive [MWS] and long wavelength-sensitive [LWS]) 

based on the camera values for each channel; for tetrachromatic visual 

systems, the mapping algorithm allowed two-way interactions between 

channels. Cone catches are then standardised so that a grey stimulus has 

equal values in all cone types. The quality of this modelling technique was 

tested with a database of reflectance spectra from natural stimuli (Arnold et al., 

2010) and revealed a very high match between camera values and 

photoreceptor cone catches (R2>0.996) (Stevens and Cuthill, 2006; Pike, 2011; 

Troscianko and Stevens, 2015). 
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Figure 2.1: Standardised spectral sensitivities of the camera set-up, for 

wavelengths of light between 300 and 700 nm. 

2.3.3 Quantifying colour and lightness, as perceived by relevant signal receivers 

Once the images have been converted to cone catch values, useful 

measurements can be taken from areas of interest in the photographs. I also 

scaled the images using the scale bar in each photograph; although the camera 

is held at a fixed distance from the specimens, any slight differences in the 

height of the wings would otherwise affect the accuracy of measurements of 

wing length and area. For experiments with Zygaenidae, the images were 

scaled at 100 pixels/mm. On each image, I selected wing markings and 

background areas using the freehand tool in ImageJ (Figure 2.2), following a 

specific protocol for the zygaenid wings used in the experiments described here 

and in Chapters 4, 5 and 6. Each forewing spot was precisely outlined to allow 

for accurate measurements of area, and if the spot was damaged, separate 

measurements of undamaged sections were taken for spot colour. For the 

background and hindwing regions, areas as large as possible were selected, 

while avoiding any rubbed scales. The cone catch values for every 

photoreceptor type were measured, then averaged over the selected areas to 
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obtain a single set of values for the marking and background colours on each 

wing. These numbers are the raw data, from which a series of more easily 

interpretable metrics was subsequently calculated for each wing area. 

Figure 2.2: Example wing photograph, showing patch selection, scale bar 

(30mm) and reflectance standards. FW_b = forewing background, FW_m = 

forewing markings, HW_b = hindwing background, HW_m = hindwing markings. 

Achromatic, or lightness, information is perceived and processed in different 

ways across animal taxa. While humans and primates with similar vision gain 

achromatic information by combining the input to their long wavelength and 

medium wavelength photoreceptors (Osorio and Vorobyev, 2005), and bees 

use signals from their long wavelength photoreceptors (Giurfa et al., 1997), 

other species, such as flies and birds, use separate photoreceptors to code 

achromatic and chromatic information (Osorio and Vorobyev, 2005). In birds, 

experiments on chicks (Gallus gallus) detecting pattern differences (Osorio, 

Mikló and Gonda, 1999; Jones and Osorio, 2004) and on motion detection in 

pigeons (Campenhausen and Kirschfeld, 1998), suggest that special types of 

photoreceptors, known as double cones (λmax=565nm) are responsible for 

detecting lightness cues (Jones and Osorio, 2004; Osorio and Vorobyev, 2005, 
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2008). I therefore used luminance values equal to the cone catch values for the 

double cones as an avian visual system-dependent measure of lightness.  

To describe the colour of wing markings in a meaningful way, I used two 

additional metrics: saturation, a measure of colour intensity compared to white 

light (for example, saturation increases from pink to red), and hue, which 

provides a sense of the shade of the colour (Stevens, Stoddard and Higham, 

2009; Stevens, 2011). Saturation (sometimes referred to as chroma, e.g. in 

Stoddard and Prum, 2008) is determined by plotting each colour of interest in a 

tetrahedral colour space. First suggested by Burkhardt (1989) and Goldsmith 

(1990), this approach has more recently been revived by Kelber, Vorobyev and 

Osorio (2003), Endler and Mielke (2005) and Stoddard and Prum (2008). It 

provides a standardised way of measuring the colours of a range of different 

biological objects, including those with complex reflectance spectra, such as 

bird plumage, as perceived by tetrachromatic visual systems (Stevens, 

Stoddard and Higham, 2009). Following the methods of Goldsmith (1990) and 

Stoddard and Stevens (2011), cone catch values for each photoreceptor type 

(UVS/VS, SWS, MWS, LWS) were standardised to the total cone catch value to 

remove overall differences in brightness, then converted to Cartesian X, Y, Z 

coordinates to form a tetrahedral colour space (after Endler and Mielke, 2005). 

The centre of the tetrahedron corresponds to equal stimulation of each 

photoreceptor type – a grey, black or white colour - and saturation can be 

measured as the Euclidean distance between this central point and the colour 

of interest (a value between 0 and 0.75). This method of calculating saturation 

has been used in several recent studies of animal coloration (e.g. Stevens, 

Lown and Wood, 2014a,b; Winters et al., 2014; Arenas, Walter and Stevens, 

2015). 

Hue can also be assessed using the tetrahedral colour space, by converting 

Cartesian to polar coordinates to define colour vectors (Endler and Mielke, 

2005; Stoddard and Prum, 2008; Stevens, Stoddard and Higham, 2009), but 

these can be difficult to analyse and especially to interpret (Stevens, 2011). An 

alternative method, used here and throughout this thesis, is to estimate hue 

values based on the principal of colour opponent channels. Colour opponency 

is crucial to neural processing of colour in animals, with colour vision depending 
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on the comparison of inputs to photoreceptor types with different but 

overlapping sensitivities. The blue-yellow and red-green opponent channels in 

humans and trichromatic primates are relatively well-understood, so can be 

used to calculate physiologically relevant measures of hue (Lovell et al., 2005; 

Stevens, Stoddard and Higham, 2009). While opponent processing 

mechanisms are also important in other species, including birds and their close 

relatives, turtles, the exact channels are not clearly known (Ammermüller, 

Muller and Kolb, 1995; Osorio, Vorobyev and Jones, 1999; Twig and Perlman, 

2004). In the absence of this information, ratios representing hue in the form of 

opponent-style colour channels can be designed based on a priori expectations 

about the principal direction of variation in colour. These colour channels are 

not intended to mimic actual opponent channels but rather to describe colours 

in an intuitive and biologically relevant manner. Komdeur et al. (2005) pioneered 

this approach in a study of plumage colour in European starlings, Sturnus 

vulgaris. Predicting that females would prefer males with more purple feathers 

(reflecting more strongly in the red and blue parts of the visual spectrum), they 

calculated a measure of hue that would explicitly test this idea: 

    (2.1) 

Hue values can also be determined by using principal component analysis 

(PCA) to reveal the main axes of variation in colour in the samples of interest, a 

method developed to quantify egg colour among the hosts of the African cuckoo 

finch, Anomalospiza imberbis (Spottiswoode and Stevens, 2011; Stevens, 

2011) and since used to investigate both camouflage and warning colours (e.g., 

Stevens, Lown and Wood, 2014a,b; Winters et al., 2014; Arenas and Stevens, 

2017). Applying the methods of Spottiswoode and Stevens (2011) to my 

measures of wing colour, I performed PCA on the standardised cone catch 

values for UV/V-, SW-, MW- and LW-sensitive photoreceptors, and used the 

first two components, which cumulatively explain over 99% of variance in the 

data, to define two hue channels, ratios of the standardised cone catch values 

(see specific equations for Experiment 2 below). This process was always run 

on a single signal type (e.g. forewing markings, hindwing markings, forewing 

background areas), to ensure that the hue channels were representative of 

variation between similar colours. 
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Luminance, saturation and hue do not have any specific units of measurement, 

so no units are included on figures representing these metrics throughout the 

thesis. Luminance values correspond to standardised cone catch values for the 

double cones (a proportion of these cone catch values to total reflectance), so 

are positive values, between 0 and 1. Saturation is represented by the distance 

between the origin and a point plotted in a tetrahedral colour space (Stoddard 

and Stevens, 2011), so is given by positive values between 0 and 0.75. Hue 

values are based on a ratio of standardised cone catch values, and are always 

positive. 

2.3.4 Calculating visual contrasts 

The colour of each part of a warning signal pattern may not necessarily be that 

informative per se, compared to the perceived difference, or contrast, between 

the signal and the natural background against which it is seen (Arenas, 

Troscianko and Stevens, 2014; Arenas, Walter and Stevens, 2015). Equally, 

contrast between different components of the colour pattern may also play an 

important role in determining the salience and effectiveness of aposematic 

signals (Aronsson and Gamberale-Stille, 2012b; Stevens and Ruxton, 2012; 

Barnett, Scott-Samuel and Cuthill, 2016). To calculate contrasts between 

colours measured from photographs, I used the Vorobyev-Osorio receptor 

noise-limited model (Vorobyev and Osorio, 1998), which estimates the 

discriminability of two colours for a specific visual system. In this model, the 

visual contrast between two stimuli is determined by unspecified colour 

opponent mechanisms and is primarily limited by the amount of noise in each 

photoreceptor channel. It assumes that, for n photoreceptor types, there are n-1 

opponent channels, and that, for each one, discriminability depends on the 

difference in the cone catch values of the photoreceptors and on an estimate of 

noise in this channel. The standard Vorobyev-Osorio model ignores achromatic 

information, providing only a measure of how different two colours appear in a 

chromatic sense; for a tetrachromatic avian visual system, it makes use of the 

cone catch values for all the single cones (LWS, MWS, SWS and UVS/VS). 

Noise itself is determined by the relative abundance of each cone type in the 

retina, and a Weber fraction, an estimate of the smallest detectable change in 

stimulus intensity dependent on the initial magnitude of a stimulus, following 

Weber’s law. In all my calculations, I chose a widely-used and conservative 
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estimate of the Weber fraction (ω=0.05), deemed conservative as lower values 

of ω would result in higher contrast values (Stevens, Lown and Wood, 2014a). 

Cone ratios for the blue tit (UVS=1, SWS=1.92, MWS=2.68, LWS=2.7) and 

peafowl (VS=1, SWS=1.9, MWS=2.2, LWS=2.1) visual systems were taken 

from Hart et al. (2000) and Hart (2001b) respectively. 

The Vorobyev-Osorio model yields contrast values measured as “just-

noticeable differences” (JNDs), whereby colours with JND<1 are not 

discriminable, those with 1<JND<3 are likely to be only perceptibly different 

under good lighting conditions, and those with JND>3 should be increasingly 

easy to tell apart even in poor conditions (Siddiqi et al., 2004). A JND of 1 is 

typically considered the limit for differentiation between two colour stimuli (e.g. 

in Stobbe and Schaefer, 2008; Stevens, 2011; Cibulková, Veselý and Fuchs, 

2014), and behavioural tests on domestic chickens (Gallus gallus) showed that 

stimuli with JND>1 could easily be discriminated under bright lighting conditions 

(Olsson, Lind and Kelber, 2015). Yet several studies adopt a more conservative 

threshold of JND>3 for two colours to be discriminable under most natural 

conditions (e.g. Nokelainen et al., 2012; Hegna et al., 2013; Stevens, Lown and 

Wood, 2014a; Arenas et al., 2015), based on the precedent of work by Siddiqi 

et al. (2004). Recent behavioural tests with domestic chickens (Olsson, Lind 

and Kelber, 2015) provide some support for the idea that stimuli with JND>3 are 

more likely to be discriminated in all conditions. In their experiments, successful 

discrimination of stimuli separated by small chromatic differences was reduced 

with increasingly dim lighting, and the level of light intensity at which 

discriminability was compromised depended on the magnitude of the difference 

between the colours. However, from a JND of around 3, increasing differences 

between stimuli had a reduced impact on the likelihood of correct discrimination 

under low light conditions. 

To quantify the achromatic differences between stimuli, the principle of the 

Vorobyev-Osorio model can be adapted to measure differences between the 

double cone catch values, using the same Weber fraction (ω=0.05) to estimate 

noise (Siddiqi et al., 2004). Throughout this thesis, I used these calculations to 

determine the chromatic and achromatic contrast between the wing colours of 

different individuals (see Experiment 1 below), but also to investigate contrasts 
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between patches in multi-coloured wings and their visibility against different 

plant types, to provide a measure of signal detectability in natural conditions. 

2.3.5 Experiment 1: Individual variation in wing colour in Z. filipendulae 

I first carried out this test on a pilot dataset at the very beginning of my research 

project, but the results presented here are based on the entire collection of six-

spot burnets, Z. filipendulae, photographed throughout my PhD (N=115). The 

specimens were collected, as larvae or pupae, in 2015 and 2016, at several 

locations in France, the United Kingdom and Denmark, by myself and other 

entomologists (see Appendix 2.1 for details of locations and collectors). 

Similarly to methods previously used for this species (Zagrobelny et al., 2007a), 

the insects were housed individually in plastic boxes with air holes, inside an 

incubator maintained at 20°C, with a 16:8hr day:night cycle, until the emergence 

of the adults. Larvae were fed ad libitum with their natural host plant (Lotus 

corniculatus, Dorycnium pentaphyllum or Hippocrepis comosa). Chapter 4 

provides more information about rearing conditions and diet for these moths, 

most of which were used for my study of the relationship between colour and 

toxicity in Z. filipendulae. Adults were euthanised in a -80°C freezer immediately 

after emergence, and stored in these conditions until their wings were dissected 

and photographed, as described above. 

To estimate the variability of wing colours in my full dataset, I calculated 

pairwise chromatic and luminance contrasts between the colours of all 

individuals, for each wing area in turn. These contrasts appeared highly 

skewed, so were transformed using the logit function to satisfy graphical tests of 

normality. I then compared them to the threshold for discrimination by predators 

(JND=3) using paired t-tests, for each wing area in turn. All statistical analyses 

for this experiment and the next were run in R 3.3.1 (R Development Core 

Team, 2015). 

2.3.6 Experiment 2: Colour stability in zygaenid wings over time 

To carry out this experiment, I collected a further 20 specimens of Z. 

filipendulae, as pupae and fresh adults, from Holywell Bay (Cornwall, UK; 50° 

23’ 22.53’’ N, 5° 40’ 13.56’’ W) in June 2016. The pupae were housed in the 
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same way as all other moths used in my experiments, and freshly-emerged 

adults were euthanised in a -80°C freezer. The right forewing of each moth was 

dissected, then photographed using the same equipment and protocol as 

described above, at several time points, corresponding to delays experienced 

by samples in my main experiments (see Chapters 3 and 4): 1 hour, 24 hours, 

72 hours, 1 week, 2 weeks, 4 weeks and 8 weeks post emergence and 

freezing. Six individuals were not photographed at the 2-week point, yielding a 

final total of 134 images. The wings were held in a -80°C freezer throughout the 

experimental period. 

Red forewing patches were selected as described above, and the same image 

analysis techniques were used to determine luminance, saturation and hue 

values for every wing at each time point. I chose to analyse the effect of time on 

these colour metrics, as they form the basis for most of my analyses in 

subsequent chapters. For this particular experiment, only the UVS visual 

system was used. Hue calculations, based on measurements of the red 

markings for this dataset alone, yielded the following equations: 

(2.2) 

(2.3) 

UV, SW, MW, LW = standardised cone catch values for the UV-, SW-, MW- and 

LW- sensitive photoreceptors respectively.  

Analysis was restricted to the values of Hue1 (hereafter referred to as hue), as it 

accounted for over 91% of the variance in colour. To meet the assumptions of 

linear models, saturation and hue values were transformed using the logit 

function in the ‘car’ package in R (Fox and Weisberg, 2011). I then analysed 

these results using mixed models, with the ‘lme4’ package (Bates et al., 2014), 

including time as a fixed effect and individual ID as a random effect in the 

following general formula: . To improve model 

diagnostics, the results reported below are based on analyses excluding one 

and five outlier values for saturation and hue respectively, although analyses 

with the full dataset yielded qualitatively similar results. 
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2.4 Results 

2.4.1 Experiment 1: Individual variation in wing colour in Z. filipendulae 

While Z. filipendulae typically does not appear particularly variable in colour to 

human observers, there were significant individual differences in coloration, 

which were discernible by both types of avian predators. Across my entire 

dataset, for all wing areas, pairwise comparisons between individuals produced 

luminance and chromatic contrasts with JNDs greater than 3 (Table 2.1; Figure 

2.3). Chromatic contrasts were especially high: all areas except the hindwing 

border were overall perceptibly different between specimens, while achromatic 

differences were detectable only between the black areas of both wings (Table 

2.1). 

Table 2.1: Summary of individual differences in colour, for each wing area and 

visual system. UVS = ultraviolet-sensitive system, VS = violet-sensitive system; 

FW_m = red forewing markings, FW_b = black forewing background, HW_m = 

red hindwing area, HW_b = black hindwing border. 

Contrast 
Visual 
system 

Wing 
area 

Raw jnds Logit(jnd) T-test result:
H1 =logit(jnd)>logit(3) 

Min Max Median Mean Stdev 

Chromatic UVS FW_m 0.0743 33.520 4.125 -3.136 0.923 t=42.205, df=13109, p<0.001 

FW_b 0.143 20.680 4.113 -3.223 0.743 t=39.055, df=13109, p<0.001 

HW_m 0.104 51.840 4.114 -3.100 0.906 t=47.509, df=13109, p<0.001 

HW_b 0.0142 40.790 2.114 -3.776 0.960 t=-35.773, df=13109, p=1 

VS FW_m 0.181 66.180 6.852 -2.676 0.950 t=90.619, df=11573, p<0.001 

FW_b 0.1007 19.240 3.253 -2.393 0.786 t=0.393, df=13109, p=0.3473 

HW_m 0.1393 86.850 7.929 -3.473 1.120 t=103.09, df=11363, p<0.001 

HW_b 0.0424 48.270 2.082 -3.782 1.057 t=-33.145, df=13109, p=1 

Luminance UVS FW_m 0.00036 11.250 1.653 -4.319 1.123 t=-85.923, df=13109, p=1 

FW_b 0.00194 39.860 5.797 -2.962 1.231 t=47.793, df=13109, p<0.001 

HW_m 0.000023 8.666 1.458 -4.453 1.134 t=-98.651, df=13109, p=1 

HW_b 0.00064 47.640 4.695 -3.176 1.360 t=25.261, df=13109, p<0.001 

VS FW_m 0.000492 11.690 1.895 -4.178 1.156 t=-69.467, df=13109, p=1 

FW_b 0.000169 39.820 5.836 -2.956 1.231 t=48.323, df=13109, p<0.001 

HW_m 0.000746 9.918 1.687 -4.305 1.171 t=-81.064, df=13109, p=1 

HW_b 0.00152 49.120 4.747 -3.167 1.368 t=25.834, df=13109, p<0.001 
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Figure 2.3: Chromatic and luminance contrasts between all individuals, for the 

UVS (a) and VS (b) visual systems. The dashed blue line indicates the 

threshold for discrimination between specimens (JND=3). UVS = ultraviolet-

sensitive system, VS = violet-sensitive system; FW_m = red forewing markings, 

FW_b = black forewing background, HW_m = red hindwing area, HW_b = black 

hindwing border. Boxplots indicate the medians and interquartile ranges. 
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2.4.2 Experiment 2: Colour stability in zygaenid wings over time 

There was no significant change in the luminance, saturation or hue of the red 

forewing markings over time (linear mixed-effects models, LME; χ2(1)=0.0899, 

p=0.764; χ2(1)=2.290, p=0.130; χ2(1)=2.115, p=0.146 respectively; Figure 2.4). 

This suggests that, despite fluctuations in my results, the colours of the wings 

were not consistently altered by the time spent in a -80°C freezer. 

Figure 2.4: Luminance, saturation and hue values for the red markings of wings 

in Experiment 2. Boxplots provide a sense of the median and spread of the data 

across time post-termination, while each colour point represents an individual 

wing. 
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2.5 Discussion 

The results of these preliminary experiments suggested that Z. filipendulae was 

amenable to my research methods and questions. Firstly, the wing colours of Z. 

filipendulae are more variable to avian visual systems than they appear to 

human observers. In particular, the red wing markings, which are the main 

focus of my research in following chapters, are variable in chromatic terms; 

meanwhile, there are greater lightness differences between the dark scales of 

individual moths. The spectral sensitivities of avian photoreceptors, including 

the medium wavelength-sensitive (MWS) and long wavelength-sensitive (LWS) 

photoreceptors have less overlap than the human MWS and LWS 

photoreceptors, an effect exacerbated by the presence of oil droplets filtering 

the light absorbed by each photoreceptor type in the avian retina. As a result, 

even stimuli reflecting only in the human-visible spectrum will appear different to 

human and avian vision (Bennett, Cuthill and Norris, 1994) and the 

discriminability of colours, for example in bird plumage, will be higher in birds 

than humans (Vorobyev et al., 1998). Birds can thus perceive differences in the 

colours of zygaenid wings which are not apparent to human observers, much as 

many sexually dichromatic bird species, from an avian perspective, can be 

incorrectly classified as monomorphic by humans (Eaton, 2005). From a more 

practical perspective, the time spent in a -80°C freezer by Z. filipendulae 

samples between termination and photography, within the range experienced 

by the specimens in my study, did not have a significant effect on the colour of 

the red wing markings. As all the Zygaeninae rely on the same classes of 

pigments (melanin and pteridines; Tremewan, 2006), this enabled me to include 

several species from different localities and with varying emergence times in my 

analyses (see Chapter 5). 

In addition, this chapter explains how the equipment, set-up and image analysis 

methods I used enable accurate and reliable measurements of wing coloration, 

from the perspective of potential avian predators. In particular, they address 

crucial issues that must be considered when using digital photography to study 

animal coloration, such as sensitivity to UV, controlled conditions for 

photography, linearisation and normalisation of images, as well as techniques 

for analysing images while accounting for animal vision. The open-access 

toolbox used to implement these methods and the accompanying user guide 
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will facilitate the correct use of digital photographs for the purpose of research 

on colour and pattern in nature in a wide range of contexts (Troscianko and 

Stevens, 2015). I used these methods throughout my thesis for measuring the 

coloration of Lepidopteran wings and host plant samples. They are briefly 

summarised again in each chapter, and any additional techniques or deviations 

from the protocols described above are explained in more detail. 
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Chapter 3 

What makes an effective warning signal? 
A comparative study of British moths 

Aposematic Lepidoptera photographed on Penhale sands, Cornwall, UK. 
Clockwise from top left – Garden tiger Arctia caja, Scarlet tiger Callimorpha dominula, 

Cinnabar Tyria jacobaeae, Six-spot burnet Zygaena filipendulae. All photographs: E. S. Briolat 
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3.1 Abstract 

Toxic or otherwise unprofitable animals advertise their defences with bright and 

conspicuous visual displays known as aposematic, or warning, signals. To 

effectively convey their message to predators and facilitate avoidance learning, 

warning signals should be highly detectable, easily recognisable and 

memorable. Brighter, more colourful, more conspicuous patterns, as well as 

larger signals, are thought to enhance these properties, increasing the overall 

efficacy of warning signals. I tested these predictions of efficacy theory on the 

form of warning signals from the perspective of avian predators, with a 

comparative analysis of museum specimens of British moths. The wing colours 

of palatable species were compared to those of both diurnal and nocturnal 

moths known to possess chemical defences, or considered to be aversive to 

avian predators. Defended moths displayed more saturated and redder colours 

than palatable moths in some, but not all wing areas. They were also more 

conspicuous, in terms of chromatic contrast, than profitable moths against 

general tree bark and herbaceous backgrounds, although not against their 

specific host plants. The forewing patterns of defended species featured larger 

conspicuous markings and greater contrast between colours. Overall, chromatic 

features appeared to be more important than achromatic information in warning 

signals. Based on this study, high internal chromatic contrast and a greater 

diversity of colours appear to be key hallmarks of aposematic Lepidoptera. 

3.2 Introduction 

Avoiding attack from predators is a major driving force behind the diversity of 

colours and patterns found in the natural world, and different species make use 

of a range of visual strategies. While many species stand to benefit from being 

inconspicuous, whether escaping their predators’ notice entirely or avoiding 

recognition as a food source, those which possess toxic chemicals or other 

forms of defences often adopt a radically different tactic (Ruxton, Sherratt and 

Speed, 2004). The bright colours and patterns of these unprofitable species are 

known as warning, or aposematic signals (Poulton, 1890). While they attract the 

attention of predators, they have evolved to be recognised as associated with 

an unpleasant defence, and hence serve to warn predators away (Wallace, 

1867; Ruxton, Sherratt and Speed, 2004; Stevens and Ruxton, 2012). The form 
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of warning signals is widely considered to be shaped by two aspects of their 

function: communicating a strategic ‘message’ concerning prey defences, and 

conveying this information in an appropriate and effective way, a concept known 

as signal efficacy (Guilford and Dawkins, 1991). According to efficacy theory, 

warning signals should evolve to facilitate predator learning, by maximising 

three key properties: detectability, discriminability, and memorability (Guilford 

and Dawkins, 1991). 

Conspicuousness, or the high visibility of warning colours against natural 

backgrounds, is key to the effectiveness of aposematism, stimulating avoidance 

learning in a number of ways (Speed, 2000; Ruxton, Sherratt and Speed, 2004). 

Most basically, predators will encounter more noticeable conspicuous prey at a 

relatively higher frequency than cryptic items, and this will help them to more 

quickly learn the association between signals and defences (Gittleman, Harvey 

and Greenwood, 1980; Roper and Redston, 1987). Conspicuous prey may also 

trigger innate avoidance by predators (Smith, 1975), and would be 

distinguishable from alternative palatable prey (Sherratt and Beatty, 2003). 

Finally, being conspicuous may enhance both the initial learning speed of 

predators and their retention of learned associations over time (Roper and 

Redston, 1987), by tapping into several psychological mechanisms (Speed, 

2000). Yet conspicuousness is not the only property of warning signals. 

Aposematic displays are often composed of multiple visual features, with 

several patches of different colours and luminance, which contrast against each 

other, and are arranged into specific patterns. They are also highly variable, 

both within and between species, despite the expectation, first proposed by 

Fritz Müller (1879) that warning signals should converge on similar forms to 

simplify predator learning. Unpicking the relative contribution of different 

properties of warning signals to deterring predators from attack, and how 

variation in certain aspects can arise and be maintained, are still active areas of 

research (Stevens and Ruxton, 2012). 

Numerous laboratory experiments with captive birds have attempted to 

determine which visual features predators attend to and utilise when learning 

associations between warning signals and unprofitability (e.g. Gittleman, Harvey 

and Greenwood, 1980; Schuler and Hesse, 1985; Roper and Redston, 1987; 
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Roper, 1990; Exnerová et al., 2006; Svádová et al., 2009). These can be 

difficult to interpret, as features such as luminance, colour and conspicuousness 

are often tightly linked. The taste and odours of colour dyes and distasteful 

chemicals may also have confounded the results of early experiments (e.g. 

Roper and Redston, 1987). Nevertheless, this body of work has yielded several 

general conclusions. Overall, chromatic information is considered more 

important than luminance for learning and memory, at least for avian predators 

(Osorio, Jones and Vorobyev, 1999; Osorio, Vorobyev and Jones, 1999; 

Stevens and Ruxton, 2012). In particular, experiments testing the responses of 

birds to stink bug-like prey with manipulated patterns have suggested that 

colour takes precedence over pattern recognition (Exnerová et al., 2006; 

Aronsson and Gamberale-Stille, 2008; Svádová et al., 2009; Aronsson and 

Gamberale-Stille, 2012a). Yet achromatic contrast still plays a role, for example 

in distinguishing pattern textures (Osorio, Mikló and Gonda, 1999; Jones and 

Osorio, 2004), provoking initial avoidance of stimuli (Sandre, Stevens and 

Mappes, 2010), and speeding up learning (Aronsson and Gamberale-Stille, 

2012b).  In the wild, the effectiveness of different signal components will also 

depend on the perceptual and psychological characteristics of specific 

predators, as well as on the environmental variables, and in particular lighting 

conditions and the background against which the signal is displayed (Endler, 

1990, 1993; Rojas, Rautiala and Mappes, 2014). Artificial predation 

experiments have been used to test the role of visual features such as 

luminance, colour and pattern in determining predation risk in more ecologically-

relevant conditions (e.g.Finkbeiner, Briscoe and Reed, 2014; Arenas, Walter 

and Stevens, 2015; Flores et al., 2015; Pegram, Han and Rutowski, 2015; Tan, 

Reid and Elgar, 2016), and these have tended to confirm that, while pattern can 

have an effect, chromatic information is generally more important (Stevens and 

Ruxton, 2012). 

Beyond establishing the relative importance of chromatic and achromatic cues, 

several specific signal features have been investigated. Long wavelength 

colours, such as yellow and red, are prevalent among aposematic animals and 

are thought to be especially effective due to several characteristics (Stevens 

and Ruxton, 2012), such as an innate aversion of predators to these colours 

(Roper, 1990), their high chromatic and achromatic contrasts against natural 
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backgrounds, and the stability of these contrasts under a range of illuminations 

(Arenas, Troscianko and Stevens, 2014). In addition, experiments testing 

predator generalisation suggest that more saturated colours would be more 

strongly avoided (Gamberale-Stille and Tullberg, 1999). Larger signals, whether 

due to increased body size or an increase in the size of the signal specifically, 

have also been demonstrated to enhance avoidance learning in multiple 

experiments with artificial stimuli as well as natural prey items, such as the 

larvae of the wood tiger moth, Arctia plantaginis (Forsman and Merilaita, 1999; 

Lindström et al., 1999; Lindstedt, Lindström and Mappes, 2008; Smith, Halpin 

and Rowe, 2014). Finally, conspicuousness against natural backgrounds is 

important, as several field experiments with artificial models of aposematic frogs 

and ladybirds found that conspicuousness was more influential than prey 

pattern in determining the risk of predation (e.g. Hegna et al., 2011; Arenas, 

Walter and Stevens, 2015). 

While the presence of particular visual features in many aposematic species 

does not provide evidence of their role in deterring predators from attacking, it 

does suggest which components of warning signals are likely to be important. 

For this chapter, I investigated the presence of key signal features in defended 

and undefended British moths, using a comparative analysis based on museum 

specimens. With only a few exceptions, defended moths in the UK fall into two 

families: the burnet moths (Zygaenidae) and the tiger and footmen moths 

(Erebidae: Arctiinae and Erebidae: Lithosiinae). The chemical defences of these 

families have been studied extensively, but the depth of our knowledge varies 

substantially, especially when considering species found in the UK. Burnet 

moths also possess bitter-tasting cyanogenic glucosides, which release cyanide 

when hydrolysed, and which they both sequester from larval host plants and 

synthesise de novo (Davis and Nahrstedt, 1982; Nahrstedt, 1993; Zagrobelny, 

Bak and Møller, 2008). Their specific defensive compounds, linamarin and 

lotaustralin, have been identified, can be accurately quantified, and the genetic 

pathways responsible for their synthesis and breakdown have been elucidated 

in the six-spot burnet, Zygaena filipendulae (Jensen et al., 2011). However, the 

strength of chemical defences in the less brightly-coloured forester moths 

(Zygaenidae: Procridinae) is less well known. Tiger moths possess multiple 

chemical defences, primarily pyrrolizidine alkaloids, but also iridoid glucosides, 
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cardenolides and polyphenolics among others (Conner and Weller, 2004). 

Despite earlier interest (e.g. Bisset et al., 1960; Aplin, Benn and Rothschild, 

1968; Rothschild et al., 1979), recent research efforts have principally focused 

on North American species, such as Utetheisa ornatrix, and moths studied for 

their acoustic aposematism directed towards bats (e.g. Hristov and Conner, 

2005). As such, the defences of many of the less colourful members of this 

family found in the UK have not been precisely identified, and their effects on 

predators are relatively untested. 

Similarly to determining unprofitability, questions of efficacy in visual signals are 

best addressed from the perspective of the receivers to whom the signals are 

directed, which in the case of warning signals are potential predators (Stevens, 

2007). As birds are the principal visual predators of Lepidoptera, I analysed the 

colours of palatable and unpalatable moths using the two recognised types of 

avian visual system, the ultraviolet-sensitive and violet-sensitive systems (Hart 

and Hunt, 2007). Although I used museum specimens, rather than 

photographing animals in their environment, I did assess the conspicuousness 

of the specimens against potential natural backgrounds, by taking photographs 

of potential host plants. In this study, I explicitly tested a number of key 

predictions of efficacy theory, supported by previous work on warning signals 

and by observations of aposematic Lepidoptera from a human perspective. I 

expected defended species to present more saturated, redder colours and 

larger, more contrasting patterns, and to be more conspicuous against natural 

backgrounds than palatable species, which are expected to adopt crypsis as 

their principal anti-predator strategy. Moreover, the diurnal or nocturnal activity 

patterns of defended species were expected to affect their warning signals. An 

earlier comparative study of warning coloration in Lepidoptera suggested that 

warning coloration was more likely to evolve in combination with diurnal activity, 

as movement attracts attention, making it more difficult for diurnal species than 

for resting nocturnal moths to be cryptic to predators (Merilaita and Tullberg, 

2005). Differences between the fore- and hindwings of these species are 

expected, as only the forewings of most nocturnal species will be visible at rest 

during the daytime. Nocturnal prey may also be expected to display lighter 

colours, more conspicuous in dim lighting conditions. A number of bat species 

have been shown to use vision to complement echolocation, in particular when 
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hunting for insects in cluttered environments (Svensson and Rydell, 2002; Eklöf 

and Jones, 2003; Rydell and Eklöf, 2003), so pale coloration could additionally 

act as warning signals for pteropine predators, if the moths are similarly 

unpalatable to them. 

3.3 Methods 

3.3.1 Study species 

I chose UK moth species for this study on the basis of evidence of palatability or 

toxicity, information on their activity patterns as adults, and the existence of 

DNA sequences in the BOLD Systems Database for the DNA Barcode of Life 

(Ratnasingham and Hebert, 2007). I chose to compare three categories of 

moths: diurnal defended species (N=18), nocturnal defended species (N=17), 

and palatable species (which are also nocturnal, N=19). These groups were 

chosen in order to test the differences in coloration between defended and 

unprotected palatable species (which should respectively be avoided or 

preferentially-selected by predators), as well as the impact of diurnal versus 

nocturnal activity on the visual signals of defended species. According to 

aposematism theory (see section 3.2, Introduction), defended species whose 

predators rely on vision (such as birds) are predicted to display conspicuous 

and colourful markings, with saturated, longwave colours and large markings, 

while palatable species should employ camouflage to avoid being detected. 

Day-flying defended moths should be more exposed to visual predators than 

their nocturnal counterparts, so are expected to possess more conspicuous 

markings, including on their hindwings, which are usually hidden when at rest. 

Insufficient palatable day-flying moths with BOLD DNA sequences were found 

to include a palatable and diurnal category as well. Two of the defended 

species (Diaphora mendica and Diacrisia sannio) are sexually dimorphic and 

have different activity patterns, so fall into both the diurnal and nocturnal 

categories. In addition, one palatable species has two distinct morphs (Biston 

betularia), so a total of 55 wing patterns were included in the analysis (Figure 

3.1). Classification as palatable or defended was based on an extensive 

literature search for records of acceptability to avian predators, presence in the 

diet of predator species and experimental evidence of the presence or absence 

of chemical defences in the literature (Appendix 3.1). I photographed 15 
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specimens of each chosen species or morph, from the collections of Bristol City 

Museum and Art Gallery, the City of Plymouth Museum and Art Gallery, in April 

and May 2014 and the Natural History Museum, London in October 2014 (see 

Appendix 3.2 for details of their provenance). Upon visual inspection, the 

freshest and least damaged specimens available were chosen to be 

photographed. I also photographed freshly-emerged specimens of four species, 

to validate the results based on museum specimens (see Appendix 3.3 for this 

analysis). 

3.3.2 Photographic set-up 

Photographs were taken with the same equipment and using the same 

techniques as described in Chapter 2, although the images were taken in 

museum storerooms rather than in a darkroom. The set-up was consistently 

illuminated with an EYE Colour Arc lamp (MT70D, Iwasaki Electric Co. Ltd.), 

together with a photographic umbrella to diffuse the light. Photographs were 

taken with a Nikon D7000 camera fitted with a Jenoptic 105 mm quartz lens, 

transmitting light between wavelengths of 300 and 750 nm. Images were 

captured in RAW format with a manually set white balance and a constant 

aperture (f8). Each specimen was photographed twice, using different filters: a 

UV/infrared (IR) blocking filter, transmitting between 300 and 700 nm, for the 

human-visible photographs (Baader UV/IR Cut Filter) and a UV pass and IR 

blocking filter (Baader U filter), transmitting between 300 and 400 nm, for the 

UV photographs. This yielded a set of five image layers, corresponding to 

different parts of the visual spectrum: long wavelength (or red, vR), medium 

wavelength (or green, vG), short wavelength (or blue, vB) and ultraviolet (uB 

and uR; see Chapter 2). Where possible, a Spectralon grey reflectance 

standard (Labsphere, Congleton, UK), reflecting 40% of the light equally at all 

wavelengths between 300 and 700 nm, was included in the photographs. For 

some moths tightly packed together in museum drawers, a smaller standard 

was used; this reflected 50% of the light at all wavelengths. Alternatively, the 

Spectralon standard was photographed at the start of each photography 

session during which the lighting conditions remained constant. Each image 

also included a small ruler to provide scale. 
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Figure 3.1: Wing patterns of the species included in the comparative analysis. 

Ai = Agrotis ipsilon; Ap = Acronicta psi; Apr = Anaplectoides prasina; Apy = 

Amphipyra pyramidea; Are = Alcis repandata; At = Amphipyra tragopoginis; 

Bbm = Biston betularia (melanic form); Bbp = Biston betularia (pale form); Cn = 

Catocala nupta; Cv = Conistra vaccinii; Df = Drepana falcataria; Hb = 

Hoplodrina blanda; Hr = Hypomecis roboraria; Lp = Laothoe populi; Np = 

Noctua pronuba; Oc = Orthosia cerasi; Pa = Peridea anceps; So = Smerinthus 

ocellata; Sp = Sphinx pinastri; Xcn = Xestia c-nigrum; Ag = Adscita geryon; Apl 

= Arctia plantaginis; As = Adscita statices; Cd = Callimorpha dominula; Dmf = 

Diaphora mendica (female); Dsm = Diacrisia sannio (male); Eq = Euplagia 
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quadripunctaria; Pf = Phragmatobia fuliginosa; Si = Setina irrorella; Tj = Tyria 

jacobaeae; Ze = Zygaena exulans; Zf = Zygaena filipendulae; Zl = Zygaena 

lonicerae; Zlot = Zygaena loti; Zp = Zygaena purpuralis; Zt = Zygaena trifolii; Zv 

= Zygaena viciae; Ac = Arctia caja; Agr = Abraxas grossulariata; Av = Arctia 

villica; Dmm = Diaphora mendica (male); Dsf = Diacrisia sannio (female); Ec = 

Euproctis chrysorrhoea; Eco = Eilema complana; Ed = Eilema depressa; El = 

Eilema lurideola; Em = Eulithis mellinata; Es = Eilema sororcula; Hf = 

Hydriomena furcata; Mm = Miltochrista miniata; Pbu = Phalera bucephala; Pm = 

Pelosia muscerda; Slub = Spilosoma lubricipeda; Slut = Spilosoma lutea 

3.3.3 Image analysis 

All images were analysed using the Multispectral Imaging Toolbox described in 

Chapter 2, and implemented in ImageJ (Troscianko and Stevens, 2015). 

Images were linearised and normalised (Stevens et al., 2007), then mapped to 

the two recognised types of avian visual system (Stevens et al., 2007; Pike, 

2011; Troscianko and Stevens, 2015), ultraviolet-sensitive (UVS) and violet-

sensitive (VS), using data on the spectral sensitivities of their respective model 

systems, the blue tit Cyanistes caeruleus (Hart et al., 2000) and the Indian 

peafowl Pavo cristatus (Hart, 2002).This means that cone catch values can be 

measured for each photoreceptor type (ultraviolet/violet-sensitive [UV/V], short 

wavelength-sensitive [SW], medium wavelength-sensitive [MW], long 

wavelength-sensitive [LW] and the double cones) in both visual systems. I 

analysed one forewing and one hindwing per individual; left or right wings were 

chosen at random, unless one side was damaged. For each specimen, two 

types of coloured patches were isolated for analysis on both fore- and 

hindwings, corresponding to the background and main marking colours. As the 

colours and patterns of the species studied are highly variable, I drew up the 

following rules to achieve consistency in measurements across species. 

Background and main marking colours were chosen according to human 

perception alone. When the wing appeared uniform in colour, the entire wing 

was isolated as a single patch. In contrast, if the background colour was 

interspersed with markings of a different colour, five randomly distributed 

circular patches of the background were measured and their values averaged. 

The size of these patches varied with the wing size of the species and individual 
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moth, but was always selected to be as large as possible, without touching any 

other patches or markings of a different colour. To analyse the colour of the 

markings, up to five of the largest patches, depending on the type of pattern, 

were selected and their value averaged. For example, for a species with pale 

wings and many dark markings (e.g. Spilosoma lubricipeda forewings), five 

patches of the pale background, as large as possible without including any of 

the dark spots, were averaged for the background colour measurement, while 

the five largest markings were selected and their values averaged for the main 

marking colour. For species with fewer than five markings of the same type, all 

the markings were selected and averaged to obtain the main marking colour; for 

those with a single patch or border of contrasting colour, the largest possible 

area on this patch was selected to be measured as the main marking colour. On 

mottled wings, in which areas of different colour are hard to define, the 

background colour was obtained by averaging five circular patches distributed 

around the wing, excluding distinctive markings. These distinctive markings 

correspond to any markings that stand out against the overall mottled 

background, as I perceived when inspecting the wings. The most prominent (i.e. 

most conspicuous to my eyes) of these distinctive marking types was selected 

as the main marking colour. Wing veins were avoided when these appeared to 

be a different colour from the wing scales, for example in moths with dark wing 

veins on a paler wing. See Appendix 3.4 for details of the zones chosen for 

analysis in each species. 

3.3.4 Colour metrics 

Once coloured areas had been selected, I calculated a number of colour 

metrics and compared these patches to several other colours, using methods 

described in detail in Chapter 2. Figure 3.2 provides a summary of the analyses 

performed in this study. In brief, I computed a measure of the perceived 

lightness of each colour patch, or luminance, and two measures of coloration: 

saturation and hue. The cone catch value for the double cones was used as a 

measure of luminance, as these photoreceptors are thought to be responsible 

for achromatic vision in birds (Jones and Osorio, 2004; Osorio and Vorobyev, 

2005, 2008). To calculate saturation, cone catches were plotted in a tetrahedral 

colour space (Endler and Mielke, 2005), and saturation was taken as the 

Euclidean distance between the centre of the space and each colour, following 
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the methods of Stoddard and Prum (2008). Hue values were computed as two 

ratios of cone catches, which provide a sense of the main directions of variation 

in colour among samples. The equations for these cone catch ratios are derived 

by applying principal component analysis (PCA) on the standardised cone catch 

values for UV/V-, SW-, MW- and LW-sensitive photoreceptors, following the 

methods of Spottiswoode and Stevens (2011), as described in detail in Chapter 

2. PCA was run on the standardised cone catch values for each type of colour

(forewing background, forewing markings, hindwing background and hindwing 

markings) and each visual system separately. The equations obtained are as 

follows: 

𝐻𝐻𝐻𝐻𝐻𝐻1𝑈𝑈𝑈𝑈𝑈𝑈(𝐹𝐹𝐹𝐹 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝐻𝐻𝑏𝑏𝑏𝑏) =  𝐻𝐻𝐻𝐻𝐻𝐻1𝑈𝑈𝑈𝑈(𝐹𝐹𝐹𝐹 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝐻𝐻𝑏𝑏𝑏𝑏) = 𝑀𝑀𝑀𝑀+𝐿𝐿𝑀𝑀
𝑈𝑈𝑈𝑈+𝑈𝑈𝑀𝑀

 (3.1) 

𝐻𝐻𝐻𝐻𝐻𝐻1𝑈𝑈𝑈𝑈𝑈𝑈(𝐹𝐹𝐹𝐹 𝑚𝑚𝑏𝑏𝑏𝑏𝑏𝑏𝑚𝑚𝑏𝑏𝑏𝑏𝑚𝑚) =  𝐻𝐻𝐻𝐻𝐻𝐻1𝑈𝑈𝑈𝑈(𝐹𝐹𝐹𝐹 𝑚𝑚𝑏𝑏𝑏𝑏𝑏𝑏𝑚𝑚𝑏𝑏𝑏𝑏𝑚𝑚) = 𝐿𝐿𝑀𝑀
𝑈𝑈𝑈𝑈+𝑈𝑈𝑀𝑀+𝑀𝑀𝑀𝑀 3⁄

(3.2) 

𝐻𝐻𝐻𝐻𝐻𝐻1𝑈𝑈𝑈𝑈𝑈𝑈(𝐻𝐻𝐹𝐹 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝐻𝐻𝑏𝑏𝑏𝑏) =  𝐻𝐻𝐻𝐻𝐻𝐻1𝑈𝑈𝑈𝑈(𝐻𝐻𝐹𝐹 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝐻𝐻𝑏𝑏𝑏𝑏) = 𝐿𝐿𝑀𝑀
𝑈𝑈𝑈𝑈+𝑈𝑈𝑀𝑀+𝑀𝑀𝑀𝑀 3⁄

(3.3) 

𝐻𝐻𝐻𝐻𝐻𝐻1𝑈𝑈𝑈𝑈𝑈𝑈(𝐻𝐻𝐹𝐹 𝑚𝑚𝑏𝑏𝑏𝑏𝑏𝑏𝑚𝑚𝑏𝑏𝑏𝑏𝑚𝑚) = 𝑀𝑀𝑀𝑀+𝐿𝐿𝑀𝑀
𝑈𝑈𝑈𝑈+𝑈𝑈𝑀𝑀

   (3.4) 

𝐻𝐻𝐻𝐻𝐻𝐻1𝑈𝑈𝑈𝑈(𝐻𝐻𝐹𝐹 𝑚𝑚𝑏𝑏𝑏𝑏𝑏𝑏𝑚𝑚𝑏𝑏𝑏𝑏𝑚𝑚) = 𝐿𝐿𝑀𝑀
𝑈𝑈𝑈𝑈+𝑈𝑈𝑀𝑀+𝑀𝑀𝑀𝑀 3⁄

(3.5) 

UV, SW, MW, LW = standardised cone catch values for the UV-, SW-, MW- and 

LW- sensitive photoreceptors respectively. UVS = ultraviolet-sensitive (blue tit) 

visual system, VS = violet-sensitive (peafowl) visual system. FW = Forewings, 

HW = Hindwings. 

Hue1 accounted for at least 79% of the variance in colour in each colour 

patch/visual system combination, so subsequent analyses focus solely on Hue1 

values (hereafter referred to as hue). Overall, higher hue values represent a 

relatively higher proportion of reflectance in longer wavelengths, indicating 

redder colours. 

3.3.5 Internal contrast and diversity in coloration 

In addition, I calculated the internal chromatic and luminance contrast of the 

moths’ forewings and hindwings, by comparing the background and marking 

colours of each wing. Chromatic contrast was determined with a widely-used 
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log version of the receptor noise-limited Vorobyev-Osorio colour discrimination 

model (Vorobyev and Osorio, 1998), which takes into account the sensitivity 

and abundance of each cone type, and noise in the photoreceptors (see 

Chapter 2 for further details). Relative cone abundance values for the blue tit 

(UV=1, SW=1.92 MW=2.68, LW=2.7, Hart et al., 2000) and peafowl (V=1, 

SW=1.9, MW=2.2, LW=2.1 Hart, 2001b; Håstad, Victorsson and Ödeen, 2005) 

were used for the UVS and VS visual sytems respectively. Noise was calculated 

with a relatively conservative estimate of the Weber fraction, 𝜔𝜔 = 0.05, for the 

most abundant cone type (Eaton, 2005; Håstad, Victorsson and Ödeen, 2005; 

Stevens, 2011; Stevens, Lown and Wood, 2014). Luminance contrast was 

computed as the natural logarithm of the ratio between mean double cone catch 

values of background and marking areas, divided by the same Weber fraction 

(Siddiqi et al., 2004). Both chromatic and luminance contrast are measured in 

“just-noticeable differences” or JNDs: values between 1 and 3 indicate that 

colours are likely to be distinguishable only under good lighting conditions, while 

those below this threshold are likely to be indiscriminable, and those above 3 

should be increasingly easy to tell apart (Siddiqi et al., 2004). 

To provide another measure of the diversity of colours found in each species 

and in each category of species (Palatable, Defended diurnal, Defended 

nocturnal), I calculated the volume occupied by these colours in a tetrahedral 

avian colour space (Stoddard and Prum, 2008). Volumes were calculated and 

plotted using the ‘pavo’ package in R (Maia et al., 2013) and included both 

forewing and hindwing colours. 

3.3.6 Comparisons to natural backgrounds 

To assess their conspicuousness in nature, I also compared the colour of the 

moths’ wings to those of the leaves and bark (where appropriate) of known host 

plants for each species, based on records from the Natural History Museum’s 

HOSTS database (Robinson et al., 2010). Appendix 3.6 provides a full list of the 

species used. Photographs of host plants were taken with the same camera 

equipment as the moths and processed using the same methods. All plants 

were photographed in Cornwall, UK, using plants found in and around the 

University of Exeter’s Penryn Campus (Penryn, TR10 9FE) and the Eden 

Project (Bodelva, PL24 2SG). Tree trunks were photographed in situ, with a pair 
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of reflectance standards (reflecting 7 and 93% of all wavelengths, cut from 

Zenith Lite Diffuse Target sheets [SphereOptics, Pro-Lite Technology, Cranfield, 

UK]) strapped to the trunk, and a photographic umbrella to ensure uniform 

illumination in the photographs. Leaves were picked and photographed where 

possible in a dark room, illuminated by the same EYE Colour Arc lamp as used 

to photograph the moths, or in the field under a photographic umbrella. Five 

independent samples of each type of background (leaf or trunk) for each plant 

species were photographed, and the images were converted to avian vision. 

For analysis, an area of each leaf or trunk as large as possible was selected 

using the freehand tool in Image J, taking care to avoid any shiny patches on 

the leaves. The cone catch values from each of these selections were averaged, 

to obtain a single measure of colour per plant item. For the footmen moths 

(Lithosiinae), lichens were selected from photographs of tree trunks from six 

species (Willow, Salix sp.; Apple, Malus sp.; Beech, Fagus sylvatica; Alder, 

Alnus glutinosa, Scots Pine, Pinus sylvestris; English oak, Quercus robur) using 

the freehand tool in ImageJ. From the values obtained for each plant leaf and 

trunk, and each lichen, three values were subsequently calculated, and 

compared to the moth colours. Firstly, the cone catch values for the leaves of 

each moth’s known hostplants (or lichens for the Lithosiinae) were averaged to 

obtain an average measure of likely host foliage, against which a moth may 

choose to rest, or a female might be seen laying her eggs. Secondly, a general 

average of the leaves of all herbaceous plants photographed was calculated. 

Thirdly, an average of all tree bark images was computed. The 

conspicuousness of the moths’ colours was measured as chromatic and 

luminance contrast to these three plant colours, in JNDs, as explained above for 

the internal contrast between wing background and wing marking colours. For 

each moth species, chromatic and luminance contrast were calculated for both 

forewing colours, against their specific average host plant background, as well 

as against the average herbaceous and average tree bark backgrounds. This 

was designed to provide a sense of the moths’ conspicuousness against their 

own host plants, as well as against two types of common natural background, 

herbaceous and woody. Only forewing colours were compared to the plant 

colours, as most species display only their forewings when at rest. 
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Figure 3.2: Diagram representing the colour metrics and comparisons tested in 

this study, using the wings of the scarlet tiger (Callimorpha dominula) as an 

example. 

3.3.7 Pattern analysis 

Wing pattern was analysed with a spatial frequency or “granularity” analysis, a 

method previously used in studies of cuttlefish body pattern (Barbosa et al., 

2008; Chiao et al., 2009) and egg mimicry by brood parasites (Spottiswoode 

and Stevens, 2010; Stoddard and Stevens, 2010). For each specimen, the 

image layer corresponding to the avian double cones was selected for spatial 

frequency analysis. All images were scaled to the same size (41 pixels/mm). 

Using custom-made programmes in ImageJ, a Fourier transform was applied to 

each image, and spatial information was broken down into bands of different 

frequencies (24 bins from 2 to 5000 pixels, increasing on a log scale), 

corresponding to markings of different sizes. Plotting the energy in each of 

these frequency bands produces a “granularity spectrum” (Chiao et al., 2009), 

revealing the extent to which different marking sizes contribute to the overall 

pattern. From these spectra, three measures of pattern were extracted for each 

wing: total energy, peak frequency, and proportion energy. Total energy, 

calculated as the total amplitude of the spectrum, provides a measure of overall 

contrast levels, with higher values indicative of more contrasting markings. Peak 

frequency is the frequency at which energy is maximal, and so corresponds to 

the marking size that is most prominent in the pattern. Finally, proportion energy 

represents the extent to which this principal marking size dominates the wing 

pattern. 
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3.3.8 Phylogenetic reconstruction 

To determine the phylogenetic relationships of the species used in this study 

(Figure 3.3), I downloaded the only genetic data available for all species, partial 

DNA sequences from the cytochrome c oxidase 5P (COI-5P) gene, from the 

BOLD Systems Database for the DNA Barcode of Life Project (Appendix 3.7). 

Sequences from the spindle ermine moth (Yponomeuta cagnagella, Hübner 

1813) were included to root the tree. To account for the great disparity in the 

number of sequences available for each species, each taxon’s sequences  were 

aligned using MUSCLE (Edgar, 2004) in MEGA 7.0.18 (Kumar, Stecher and 

Tamura, 2016) and a consensus sequence was generated, using the Ambiguity 

Consensus Maker tool available at http://www.hiv.lanl.gov/. IUPAC ambiguity 

codes (Cornish-Bowden, 1985) were used to resolve differences between 

sequences, although nucleotides present at each position at a frequency of less 

than 2% were ignored. The 53 consensus sequences were then aligned using 

the same protocol, and a phylogenetic tree was reconstructed using maximum 

likelihood methods and automatic model selection by AIC with the Smart Model 

Selection tool (Lefort, Longueville and Gascuel, 2017) implemented in PhyML 

3.0 (Guindon et al., 2010). Bootstrap values were computed for 1000 replicates. 
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Figure 3.3: Phylogenetic reconstruction of the species used in the comparative 

analysis. Diurnal defended species are shown in red, nocturnal defended 

species in purple, palatable species in green; in the defended Diacrisia sannio 

and Diaphora mendica (in pink), males and females have different activity 

patterns. Bootstrap support values for 1000 replicates are given for each 

branch. 
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3.3.9 Statistical analyses 

All statistical analyses were carried out in R 3.3.1 (R Development Core Team, 

2015). Each type of colour patch (forewing background, forewing markings, 

hindwing background and hindwing markings) was analysed separately, and for 

internal contrasts, fore- and hindwings were analysed separately. The effect of 

category (Palatable [P]), Defended diurnal [DD] and Defended nocturnal [DN]) 

on each colour metric was tested with linear mixed effects models (LMEs), 

using the package ‘lme4’ (Bates et al., 2014). Diagnostic plots were examined 

using the mcp.fnc function in the ‘LMERConvenienceFunctions’ (Tremblay and 

Ransijn, 2014), and colour metrics were transformed using the square-root or 

log function as appropriate, to satisfy the assumptions of linear mixed models. 

The pattern metrics of peak proportion and total energy were similarly analysed 

with linear mixed effects models, and total energy was log-transformed to meet 

model assumptions. Peak frequency was analysed using a generalised mixed 

effects model, fitting a Poisson distribution with a log link. An observation-level 

random effect was included to account for overdispersion (Harrison, 2014), and 

model assumptions were verified using the DHARMa package in R (Hartig, 

2017). While the phylogenetic tree based on COI-5P sequences is poorly 

supported (Figure 3.3), it is clear that diurnal defended species fall into two 

groups: the burnets and foresters (Zygaenidae) and the tiger moths (Erebidae: 

Arctiinae). Similarly, most of the nocturnal defended species belong to the 

Erebidae family. To account for this phylogenetic non-independence without 

relying on a poorly-supported phylogeny, the family and species names were 

included as a nested random effect in all models. Significant effects were 

determined using likelihood ratio tests, and Tukey’s post-hoc tests were carried 

out using the glht function in the ‘multcomp’ package (Hothorn, Bretz and 

Westfall, 2008). All tests were repeated with data corresponding to the UVS and 

VS visual systems, but for clarity, only the results for the UVS system are 

reported and plotted below. Results for the VS system are quoted below when 

they yielded different conclusions and can be found in full in Appendix 3.8. 
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3.4 Results 

3.4.1 Lighter colours in nocturnal species

The main hindwing colour was lighter in both categories of nocturnal moths, 

whether defended or not, than for defended diurnal species (LME, (χ2)2= 

12.275, p=0.00216, Tukey’s post-hoc tests: pDD-P=0.00861, pDN-P=0.343, pDD-

DN<0.001). Nocturnal moths also tended to have lighter hindwing marking 

colours and defended nocturnal species lighter forewing background colours, 

although these trends did not quite reach significance (Table 3.1, Figure 3.4). 

Table 3.1: Results of linear mixed models testing the effect of category on 

luminance for the ultraviolet-sensitive visual system. Significant results are 

highlighted in italics. 

Wing area  (Χ2) df p 
Forewing background 5.222 2 0.0735 
Forewing markings 3.859 2 0.145 
Hindwing background 12.275 2 0.00216 
Hindwing markings 5.124 2 0.0772 

3.4.2. More saturated colours in defended species 

Some wing colours appeared more saturated in defended moths than in their 

edible counterparts (Table 3.2, Figure 3.5). Nocturnal defended moths 

displayed more saturated colours in their principal forewing markings than 

palatable moths, as did defended diurnal moths, although this latter comparison 

did not quite reach significance for the UVS visual system (LME, (χ2)2= 8.160, 

p=0.0169, Tukey’s post-hoc tests: pDD-P=0.0556, pDN-P=0.0158, pDD-DN=0.947). 

Moreover, the main colours of the hindwings for both categories of defended 

moths were more saturated than the equivalent colours in palatable moths 

(LME, (χ2)2= 8.910, p=0.0116, Tukey’s post-hoc tests: pDD-P<0.001, pDN-P=0.656, 

pDD-DN=0.0125). 
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Table 3.2: Results of linear mixed models testing the effect of category on        

saturation for the ultraviolet-sensitive visual system. Significant results are  

highlighted in italics.  

Wing area (Χ2) df p 
Forewing background 3.657 2 0.161 
Forewing markings 8.160 2 0.0169 
Hindwing background 8.910 2 0.0116 
Hindwing markings 2.377 2 0.305 

3.4.3 Redder colours in defended species 

Forewing colours did not significantly differ in overall hue between categories, 

although there was a trend for lower values in markings of the palatable 

species. However, the main hindwing background colours had higher hue 

values in the diurnal defended category than in the others (LME, (χ2)2= 9.616, 

p=0.00817, Tukey’s post-hoc tests: pDD-P<0.001, pDN-P=0.839, pDD-DN=0.00227; 

Table 3.3, Figure 3.6). According to the equation for hue of the hindwing 

background colours (equation 3.3), this suggests that diurnal defended moths 

had colours with a relatively greater reflectance in long wavelengths on their 

hindwings, indicating redder signals. 

Table 3.3: Results of linear mixed models testing the effect of category on hue 

for the ultraviolet-sensitive visual system. Significant results are highlighted in 

italics. 

Wing area (Χ2) df p 
Forewing background 4.955 2 0.0840 
Forewing markings 5.910 2 0.0521 
Hindwing background 9.616 2 0.00817 
Hindwing markings 1.056 2 0.590 
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Figure 3.4: Luminance of forewing (a) and hindwing (b) colours, plotted by

category. P = Palatable, DD = defended diurnal, DN = defended nocturnal. Only 

significant pairwise comparisons are shown. Boxplots show the median and 

interquartile range (IQR). In this and all subsequent plots, the whiskers extend 

to the maximum value, if less than 1.5 IQR away from the third quartile, and to 

the minimum value, within 1.5 IQR of the first quartile. Points outside this range 

are plotted as outliers. Significance levels: ***:p<0.001, **:p<0.01, *:p<0.05. 
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Figure 3.5: Saturation of forewing (a) and hindwing (b) colours for the

ultraviolet-sensitive visual system, plotted by category. P = Palatable, DD = 

defended diurnal, DN = defended nocturnal. Boxplots show the median and 

interquartile range (IQR). Only significant pairwise comparisons are shown. 

Significance levels: ***:p<0.001, **:p<0.01, *:p<0.05. 
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Figure 3.6: Hue values of forewing (a) and hindwing (b) colours for the

ultraviolet-sensitive visual system, plotted by category. P = Palatable, DD = 

defended diurnal, DN = defended nocturnal. Boxplots show the median and 

interquartile range (IQR). Only significant pairwise comparisons are shown. 

Significance levels: ***:p<0.001, **:p<0.01, *:p<0.05 
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3.4.4 Greater colour contrast and diversity in defended species 

Defended moths, both nocturnal and diurnal, displayed forewing patterns with a 

higher internal chromatic contrast, or contrast between their two principal 

colours, than palatable moths (LME, (χ2)2= 19.674, p<0.001, Tukey’s post-hoc 

tests: pDD-P<0.001, pDN-P<0.001, pDD-DN=0.534; Figure 3.7). However, there was 

no difference in hindwing chromatic contrast between categories. In addition, 

there were no differences in luminance contrast for either the fore- or hindwings 

(Table 3.4). 

In support of the greater chromatic differences between colour patches in 

defended moths, calculations of the volume occupied by the colours of moths in 

each category suggest that diurnal defended moths possess a greater variety of 

colours, both overall and on average per species (Figure 3.8). Volume in a 

tetrahedral colour space provides a measure of colour diversity (Stoddard and 

Prum, 2008), whereby larger volumes indicate a greater number of different 

colours found in the patterns measured. Altogether, the colours measured on 

moths in the diurnal defended category occupied a total volume four times 

larger than that occupied by the colours of palatable species (Table 3.5), 

suggesting that a wider range of colours is found across the defended species 

in this analysis than across the unprotected, edible ones. Similarly, individual 

species in the diurnal defended group also tended to occupy larger volumes 

than those in the other categories (LME, (χ2)2= 19.674, p<0.001, Tukey’s post-

hoc tests: pDD-P<0.001, pDN-P=0.139, pDD-DN=0.200), indicating that defended 

species tend to make use of a wider palette of colours on their wings. 

Table 3.4: Results of linear mixed models testing the effect of category on 

internal chromatic and luminance contrast of the wings for the ultraviolet-

sensitive visual system. Significant results are highlighted in italics. 

Type of contrast Wing  (Χ2) df p 
Chromatic Forewings 19.674 2 <0.001 

Hindwings 3.698 2 0.157 
Luminance Forewings 0.553 2 0.759 

Hindwings 0.258 2 0.879 
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Table 3.5: Total volume occupied by the forewing and hindwing colours of all 

the moths in each category in the avian (ultraviolet-sensitive) tetrahedral colour 

space. 

Category Palatable Toxic diurnal Toxic nocturnal 
Volume 0.00199 0.00800 0.00489 

Figure 3.7: Internal chromatic contrast of forewing and hindwing colours for the 

ultraviolet-sensitive, plotted by category. P = Palatable, DD = defended diurnal, 

DN = defended nocturnal. Boxplots show the median and interquartile range. 

Only significant pairwise comparisons are shown. Significance levels: 

***:p<0.001, **:p<0.01, *:p<0.05 
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Figure 3.8: Volumes occupied by wing colours in the avian tetrahedral colour 

space for the ultraviolet-sensitive visual system. (a) Convex hulls depict the total 

volume occupied by all the wing colours measured for each category, for 

palatable (in green), nocturnal defended (in purple) and diurnal defended moths 

(in red). (b) Boxplots of the volumes occupied by all the wing colours for every 

species in each category, showing the median and interquartile range of each 

group. P = Palatable, DD = defended diurnal, DN = defended nocturnal. 

Significance levels: ***:p<0.001, **:p<0.01, *:p<0.05 

3.4.5 Greater conspicuousness in defended species 

The main background forewing colours of nocturnal defended moths tended to 

have higher chromatic contrast against an average herbaceous plant colour 

than diurnal defended moths; this difference was not significant for the UVS 

visual system, but it was when considering the VS system (Table 3.6 for UVS 

results; for the VS system: LME, (χ2)2= 8.337, p=0.0155, Tukey’s post-hoc tests: 

pDD-P=0.462, pDN-P=0.338, pDD-DN=0.0143). However, for both visual systems, 

the colours of the main forewing markings of defended moths were more 

conspicuous against the herbaceous background than those of edible species, 
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in terms of colour (UVS system, LME, (χ2)2= 7.834, p=0.0249, Tukey’s post-hoc 

tests: pDD-P=0.0479, pDN-P=0.0301, pDD-DN=0.998; Figure 3.9a). 

The greater chromatic conspicuousness of defended moths is more clearly 

demonstrated when comparing their wing colours to an average tree bark 

background. The colours of both categories of defended moths presented 

greater chromatic contrast against bark, whether considering their forewing 

background or main marking colours (LME, (χ2)2= 6.470, p=0.0394, Tukey’s 

post-hoc tests: pDD-P=0.0418, pDN-P=0.0281, pDD-DN=0.983 and (χ2)2= 12.504, 

p=0.00193, Tukey’s post-hoc tests: pDD-P=0.0121, pDN-P=0.0012, pDD-DN=0.830 

respectively; Figure 3.9b). However, there was no difference between 

categories in chromatic contrast against the foliage of their own specific host 

plants, or in luminance contrast against any of the plant background types 

(Table 3.6). 
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Table 3.6: Results of linear mixed models testing the effect of category on 

conspicuousness to natural backgrounds for the ultraviolet-sensitive visual 

system. Significant results are highlighted in italics. 

a. Chromatic contrast

Plant type Wing area (Χ2) df p 
Average herbaceous Forewing 

background 
3.088 2 0.214 

Forewing markings 7.834 2 0.0249 
Average tree bark Forewing 

background 
6.470 2 0.0394 

Forewing markings 12.504 2 0.00193 
Average host plant 
foliage* 

Forewing 
background 

0.126 2 0.939 

Forewing markings 4.724 2 0.0942 
* or lichen for Lithosiinae   

b. Luminance contrast 

Plant type Wing area (Χ2) df p 
Average herbaceous Forewing 

background 
4.381 2 0.112 

Forewing markings 4.709 2 0.0949 
Average tree bark Forewing 

background 
1.766 2 0.414 

Forewing markings 3.602 2 0.165 
Average host plant 
foliage* 

Forewing 
background 

0.540 2 0.764 

Forewing markings 2.706 2 0.259 
 * or lichen for Lithosiinae 
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Figure 3.9: Chromatic contrast of forewing colours against natural backgrounds: 

herbaceous plant leaves (a) and tree bark (b), for the ultraviolet-sensitive visual 

system, plotted by category. P = Palatable, DD = defended diurnal, DN = 

defended nocturnal. Boxplots show the median and interquartile range. Only 

significant pairwise comparisons are shown. Significance levels: ***:p<0.001, 

**:p<0.01, *:p<0.05 
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3.4.6 Larger and more contrasting markings in defended species 

Nocturnal defended and palatable moths have more contrasting patterns on 

their forewings than diurnal defended species, indicated by greater total energy 

(LME, (χ2)2= 6.922, p=0.0314, Tukey’s post-hoc tests: pDD-P=0.216, pDN-P=0.518, 

pDD-DN=0.0207, Figure 3.10a). Peak frequency in the forewings is higher in both 

categories of defended moths than in palatable species, suggesting that the 

most prominent markings are larger in defended species (LME, (χ2)2= 10.895, 

p=0.00431, Tukey’s post-hoc tests: pDD-P=0.0131, pDN-P=0.00370, pDD-DN=0.980, 

Figure 3.10b).  This is not due to these categories of moths having a larger 

body size, as in fact the palatable species in this study are larger than both 

groups of defended moths (LME, log-transformed forewing length, (χ2)2= 

11.101, p=0.00389, Tukey’s post-hoc tests: pDD-P=0.0293, pDN-P=0.00188, pDD-

DN=0.837). Similarly, the relative importance of these forewing markings is 

greater in the defended categories, as suggested by greater peak proportion 

values (LME, (χ2)2= 12.329, p=0.00210, Tukey’s post-hoc tests: pDD-P=0.0168, 

pDN-P<0.001, pDD-DN=0.780; Figure 10c). However, there was no difference 

between categories in any pattern metric for the hindwings (Table 3.7). 

Table 3.7: Results of mixed effects models testing the effect of category on 

pattern metrics. Significant results are highlighted in italics. 

Wing Pattern metric (Χ2) df p 
Forewing Peak frequency 10.895 2 0.00431 

Peak proportion 12.329 2 0.00210 
Total energy 6.922 2 0.0314 

Hindwing Peak frequency 2.283 2 0.319 
Peak proportion 0.827 2 0.662 
Total energy 4.451 2 0.108 
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Figure 3.10: Forewing total energy (a), peak frequency (b) and peak proportion 

(c) plotted by category. Boxplots show the median and interquartile range.

Significance levels: ***:p<0.001, **:p<0.01, *:p<0.05 

3.5 Discussion 

This comprehensive analysis of the colours, patterns, and conspicuousness of 

palatable and defended moths has highlighted a number of key characteristics 

of these different groups. Several, although not all, of my initial predictions were 

borne out. Both categories of defended moths studied here did display more 

saturated colours than palatable species but only for certain wing areas. Diurnal 

defended moths also had redder colours than palatable moths on their 

hindwings, along with similar trends for their forewing markings. Moreover, the 

forewings of both groups of defended species showed greater chromatic 

contrast between the wing background and wing marking areas than the edible 

species. Although the relevance of increased contrast beyond the threshold for 

discriminability (JND>3) is unclear (Eaton, 2005; Cheney et al., 2014), diurnal 

defended species occupied a larger volume in the avian tetrahedral colour 

space, providing another measure of diversity in coloration (Stoddard and Prum, 

2008). In terms of pattern, the most prominent forewing markings of defended 
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species tended to be larger and more important to the overall contrast of the 

wings. However, their wing patterns were not altogether more contrasting than 

those of palatable species in an achromatic sense, and in fact the three 

categories of species did not differ in many achromatic metrics. Nocturnal 

moths did have lighter-coloured hindwings than their diurnal counterparts, but 

there was no difference between defended and undefended nocturnal species. 

Finally, in terms of conspicuousness to natural backgrounds, only chromatic 

contrast between moth and plant colours varied between categories. The 

colours of defended moths were more conspicuous than those of palatable 

species against an average tree bark background, and to a lesser extent 

against a general herbaceous background, but there were no differences 

between defended and undefended species against the foliage of their own host 

plants. 

The forewings of most moths, both nocturnal and diurnal, are more likely to be 

exposed to visual predators when at rest, so they should provide a more 

appropriate canvas for warning signals than the hindwings. In addition, 

palatable species may employ multiple anti-predator strategies, with crypsis in 

the forewings as a first line of defence, followed by secondary defences if the 

moths have been detected and predators approach (Edmunds, 1974). These 

include startle displays (for example in underwings, Catocala spp.; Sargent, 

1990) and the use of eyespots (as seen in the eyed hawkmoth, Smerinthus 

ocellata; Stevens, 2005). As these strategies benefit from the use of bright and 

conspicuous colours, similar to those of warning signals, the differences 

between defended and undefended species should be less pronounced in the 

hindwings. Nevertheless, in this study, there were significant differences in 

colour (hue, saturation) and luminance between the hindwings of moths 

belonging to the three categories of prey, suggesting that hindwing colours may 

still be used in aposematism. In some species with brightly-coloured hindwings, 

such as the garden tiger, Arctia caja, and other tiger moths, warning coloration 

may be used facultatively as part of a dynamic signal, while the forewings 

provide disruptive camouflage (Kettlewell, 1965; Forsman and Merilaita, 1999; 

Skelhorn, Holmes and Rowe, 2016). However, there were no differences 

between defended and undefended prey in terms of internal contrast or pattern 
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properties in the hindwings, indicating that hindwing pattern may be less 

relevant. 

3.5.1 The importance of chromatic information, internal contrast and marking 

size 

In many ways, the results of this comparative study confirm existing ideas on 

the importance of specific signal features in warningly-coloured prey. Evidence 

of more pronounced differences between defended and palatable species in 

terms of chromatic rather than achromatic features supports previous work 

suggesting that colour is the most relevant feature of warning signals, including 

experimental evidence with natural predators in the field (Finkbeiner, Briscoe 

and Reed, 2014). In addition, the defended moths chosen for analysis are 

smaller in size than the palatable species, yet their most contrasting markings 

are larger. This result supports the beneficial effect of larger signals in 

aposematic displays, and is in line with several experiments demonstrating the 

greater effectiveness of larger signals, particularly in the context of 

Lepidopteran eyespots (Forsman and Merilaita, 1999; Stevens, Hardman and 

Stubbins, 2008). Testing the reactions of great tits (Parus major) to patterned 

artificial caterpillars also demonstrated that signal rather than body size was 

more important in determining the predators’ reluctance to attack (Remmel and 

Tammarub, 2011). 

Less widely-supported by prior experiments on warning signals is the 

importance of internal contrast in the wing patterns of aposematic species. 

Several studies have demonstrated that domestic chicks (Gallus gallus 

domesticus) attend primarily to colour rather than pattern when learning a 

discrimination task between palatable and distasteful prey (Aronsson and 

Gamberale-Stille, 2008; Aronsson and Gamberale-Stille, 2012a). In some 

experiments, chicks learned faster when the main object colour contrasted 

against the background, but internal contrast had no such effect, and chicks 

trained to avoid striped prey later generalised completely between striped and 

unstriped prey of the same colour (Aronsson and Gamberale-Stille, 2009). 

Nevertheless, great tits (Parus major) preferentially attacked edible bugs with 

plain brown signals rather than patterned bugs, regardless of their colour 

(Svádová et al., 2009), suggesting that pattern can be relevant. Moreover, work 
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on blue tits (Cyanistes caeruleus) has shown that, although colour still takes 

precedence, internal contrast can lead to faster avoidance learning (Aronsson 

and Gamberale-Stille, 2012b). Domestic chicks can also use pattern for 

discrimination when necessary, suggesting a hierarchical use of cues, in which 

internal contrast would be used if colour is not sufficiently informative (Aronsson 

and Gamberale-Stille, 2012a). The fact that internal chromatic contrast is found 

to be a key characteristic of defended Lepidoptera in this study suggests that it 

may be more important than previously recognised. It is also worth noting that 

these experiments on the role of internal contrast have all used black internal 

markings, and thus have focused primarily on achromatic contrast, which this 

present study suggests may be less relevant. The importance of chromatic 

contrast also highlights a key difference between this present investigation and 

a previous study comparing the visual signals of invertebrates, which found no 

difference between defended and undefended species (Bohlin, 2013). In that 

project, internal contrasts were measured solely from grayscale images, prior to 

mapping to avian vision; they thus calculated only brightness differences rather 

than chromatic contrasts, overlooking a trait which my work suggests may be a 

key characteristic of aposematic patterns. 

3.5.2 Conspicuousness of palatable and defended species 

The conspicuousness of palatable and defended species against natural 

backgrounds similarly revealed a somewhat unexpected result. Defended 

species were expected to be more conspicuous than palatable ones against all 

backgrounds. Accordingly, I found that their colours had greater chromatic 

contrast than those of edible moths against bark backgrounds, and nocturnal 

defended moths were more conspicuous against an average herbaceous 

background. However, there was no difference between categories in their 

conspicuousness to the moths’ specific host plant foliage. The greater 

conspicuousness against bark echoes the findings of a recent study on 

aposematic ladybird species, whose colours were overall more contrasting 

against an average brown background (based on photographs of bark and soil), 

than against an average green or specific host plant background (Arenas and 

Stevens, 2017). However, for ladybirds, this result depended on habitat use: 

specialist species were more contrasting against their specific host plants, while 

generalists were equally conspicuous on all types of natural backgrounds. Many 
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moths make use of multiple host plants, only a subset of which were 

photographed for this study (see Appendix 3.6), potentially contributing to the 

lack of differences between categories when considering host plant foliage as a 

natural background. In addition, the plant and moth photographs were taken in 

controlled conditions under D65 daylight conditions, thus not testing the 

conspicuousness of moth colours under a range of more ecologically-relevant 

lighting conditions, for example for nocturnal moths potentially exposed at dawn 

and dusk. More importantly, behavioural choices may further modify the 

conspicuousness of defended and undefended species in natural conditions. 

Moths, and in particular diurnal ones, can be found on a much wider variety of 

backgrounds than their host plant foliage, including brightly-coloured flowers. 

Defended moths, freed from the opportunity costs of crypsis (Speed, Brockhurst 

and Ruxton, 2010), are likely to be found on a wider range of backgrounds, and 

appear conspicuous against all of these. Conversely, palatable moths may hide 

out of sight under leaves or in small crevasses when at rest, so be difficult to 

locate even if their colours appear conspicuous against most natural 

backgrounds. 

The absence of differences between categories in luminance contrast against 

any natural backgrounds offers further support for the greater importance of 

chromatic contrast, rather than achromatic information, to effective warning 

signals. Yet it may also reflect a trade-off between conspicuousness to avian 

predators and reduced visibility to other predators. While chromatic contrast is 

considered to be most important for avoidance learning in birds, achromatic 

contrast may be more relevant for invertebrate predators, such as mantids 

(Prudic, Skemp and Papaj, 2007). The effectiveness of Lepidopteran defences 

against invertebrates is relatively poorly-understood compared to their 

interactions with avian predators, although recent studies are beginning to 

rectify that imbalance (Pentzold et al., 2016; Rojas et al., 2017). If they are 
not protected against this class of predator, conspicuousness to invertebrates 

may be disadvantageous even to defended species. Many species of 

parasitoids are also known to make use of visual cues to locate hosts, and 

some, such as the ichneumonid Pimpla turionellae (Hymenoptera: 

Ichneumonidae), may use achromatic contrast to guide them (Fischer et al., 

2003). There is mixed evidence as to whether chemical defences such as 
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pyrrolizidine alkaloids can confer protection against parasitoids (Bezzerides et 

al., 2004; Conner and Weller, 2004). As such, reducing their visibility to these 

enemies may also be an important consideration for all moths, especially when 

on host plant foliage where females will lay their eggs. 

3.5.3 Limitations of this and other museum-based studies 

To put the above results in context, several caveats and limitations must be 

considered when interpreting this study. Specimens stored in museum 

collections can suffer from fading, affecting brightness and colour (Starling et 

al., 2006). This an important consideration for studies of coloration, not only for 

Lepidoptera but also for other types of museum collections, such as eggshells 

(Starling et al., 2006; Cassey et al., 2010).  As a first precaution, I photographed 

the least damaged specimens available for this study. To gain a sense of 

whether and to what extent the fading of museum specimens might 

nevertheless affect the conclusions of this study, I also compared museum and 

fresh specimens of four species of defended moths. Overall, the results suggest 

that the relative differences between species are fairly consistent between fresh 

and collection specimens, although more caution may be needed when 

interpreting the results of measurements of dark hindwing markings (see 

Appendix 3.3). I had also hoped to precisely account for the phylogenetic 

relationships between species, but too little genetic information was available 

for a wide range of species, particularly the palatable ones, for this to be 

feasible. The COI sequences obtained from the DNA Barcode of Life project 

(Ratnasingham and Hebert, 2007) are poorly-suited to phylogenetic 

reconstruction (DeSalle, Egan and Siddall, 2005), although their limitations may 

be in future be overcome by increased taxon sampling to several hundred 

species per family, increasing the reliability of trees based on DNA barcodes 

(Wilson, 2011). In the absence of a satisfactory phylogeny for the species 

included in the study, I accounted for the clustering of defended species into 

two families (Erebidae and Arctiidae), by including family-level classification as 

a random effect in all models. Finally, there is some uncertainty surrounding the 

levels of defence in each species and in the classification of their activity 

patterns. In terms of activity, seasonal patterns may be relevant, as changes in 

the abundance of naïve predators (Mappes et al., 2014) and of predator types, 

such as birds and bats, may alter the relative costs and benefits of investing in 
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aposematic signals. For example, the ability to produce ultrasonic clicks for 

acoustic aposematism is more widespread in North American tiger moths 

(Erebidae) emerging later in the season when bats are most active (Ratcliffe 

and Nydam, 2008). In addition, several species measured here, such as the 

garden tiger (Arctia caja) and magpie moth (Abraxas grossulariata) are classed 

as nocturnal, yet are easily disturbed and observed in the daytime (Newland, 

Still and Swash, 2013). Their wings display characteristics identified here as 

features of defended diurnal species, such as highly contrasting patterns and a 

diversity of colours, so their inclusion in the diurnal group would most likely only 

strengthen the conclusions presented here. Nevertheless, to improve the 

accuracy of this study, it would be useful to include a more quantitative measure 

of activity patterns, such as diel flight periodicity (Fullard and Napoleone, 2001; 

Ratcliffe and Nydam, 2008). 

More difficult to overcome is the paucity of reliable and comparable data on the 

defences of British Lepidoptera and their relative acceptability to predators. 

Studies of chemical defences in Lepidoptera have understandably focused on 

colourful and exotic species (eg. Rothschild et al., 1970; Bowers and Farley, 

1990), and as a result, there is little information on the profitability of most 

species of dull-coloured British moths. Where palatability has been investigated, 

very different methods have been used to estimate the level of defences: while 

the defensive compounds of some species have been precisely identified and

quantified (e.g. burnet moths, Zygaenidae; Davis and Nahrstedt, 1982; 

Zagrobelny and Møller, 2011), the assessment of other species relies on 

experimental evidence of rejection by avian predators (eg. Sargent, 1995), 

injection of extracts into mice (Marsh and Rothschild, 1974) or presence of the 

item in the stomach of a few individuals (eg. Campbell, 1936). There is also 

substantial variation in unprofitability between individuals of the same defended 

species (Brower et al., 1968), which is not accounted for here. The potency of 
prey defences is important in determining predation risk, as avian predators can 

make educated foraging decisions, estimating the risk of consuming a prey 

item, potentially on a case-by-case basis using taste-rejection (Skelhorn and 

Rowe, 2006). They can also weigh the cost of ingesting toxins against the 

potential nutritional benefits and their own needs before choosing to attack 

(Barnett, Bateson and Rowe, 2007). As a result, weakly-defended species may 
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not necessarily benefit from being overly conspicuous; although not a preferred 

food source, they may still experience a substantial predation risk under many 

ecological conditions. Further research on the unprofitability of moths thought to 

be distasteful would thus strengthen this study, enabling a more nuanced 

classification of species as either strongly or weakly-defended. 

Notwithstanding these caveats, this study constitutes a valuable preliminary 

investigation into the features likely to be most important for signal efficacy in 

aposematic Lepidoptera. General trends in warning signals provide useful hints 

to guide further work, but the role of different signal traits must be tested using 

appropriate predators, in the field or laboratory, to establish their relevance in 

natural situations. The key characteristics of defended moths picked up by this 

comparative analysis, and in particular the importance of internal chromatic 

contrast, would warrant further investigation to test their effects on predator 

avoidance. 
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Chapter 4 

Testing for signal honesty in aposematic 
Lepidoptera – a case-study in the six-spot burnet, 

Zygaena filipendulae 

Six-spot burnet moth, Z. filipendulae. Photograph: E. S. Briolat 
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4.1 Abstract 

The distinctive black and red wing pattern of six-spot burnet moths (Zygaena 

filipendulae) is a classic example of aposematic coloration, warning predators of 

their potent cyanide-based chemical defences. While such warning signals 

provide a qualitatively honest signal of unprofitability to predators, the idea of 

quantitative honesty, whereby variation in the level of the warning signals could 

provide accurate estimates of individual prey toxicity, is more controversial. 

Combining sophisticated measures of cyanogenic glucoside content and wing 

colour, from the perspective of avian predators, this study investigates the 

relationship between coloration and toxicity in Z. filipendulae, to test signal 

honesty both within and across populations in Denmark, France and the UK. 

Mean cyanogenic glucoside concentration was correlated with some measures 

of wing coloration across populations in females, but not males. Among 

females, smaller and lighter forewing markings were associated with a higher 

concentration of cyanogenic glucosides, contrary to expectations in an honest 

signalling paradigm. Trends within single populations were similarly indicative of 

signal dishonesty, and consistent differences between the sexes were apparent. 

Larger females, carrying a greater total cyanogenic glucoside load, displayed 

larger but less conspicuous markings than smaller males, according to several 

colour metrics. Diverse factors may contribute to the general absence of honest 

signalling within and between populations, including plentiful resources, the high 

aversiveness of zygaenid defences, and the effect of changes in colour and 

toxicity over a moth’s lifetime in natural conditions. Meanwhile, contrasting 

activity patterns and possible interactions with sexual signalling may account for 

the differences between males and females. These results highlight important 

reasons why positive correlations between toxicity and coloration might not 

always be expected in aposematic species. 

4.2 Introduction 

Warning coloration, or aposematism, is a key adaptive explanation for the bright 

and colourful patterns on show in the animal kingdom. Conspicuous visual 

signals act to warn potential predators that a prey item is toxic or otherwise 

unprofitable, a theory first proposed by Alfred Russell Wallace in relation to 

colourful caterpillars (Wallace, 1867). Despite the long history of research into 
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animal warning signals ever since, many issues surrounding this topic remain 

unresolved, perhaps most notably the question of signal honesty in 

aposematism. While the evolution of qualitatively honest signals to predators, 

reliably indicating the presence of a defence, is inherent in the definition of 

aposematism and has strong support from empirical work and theoretical 

modelling, evidence for quantitative honesty, in which the value of a signal 

reflects the level of the signaller’s defences, remains equivocal (Summers et al., 

2015). Relatively few empirical studies have tested the relationship between 

properties of visual signals and toxicity in aposematic species, while taking into 

account the predator’s visual perception and phylogenetic relationships where 

necessary (Darst, Cummings and Cannatella, 2006; Cortesi and Cheney, 2010; 

Wang, 2011; Blount et al., 2012; Maan and Cummings, 2012; Winters et al., 

2014; Arenas, Walter and Stevens, 2015; Crothers et al., 2016). Mirroring the 

contrasting predictions of the many theoretical investigations into the potential 

for honest signalling in aposematism (reviewed in Summers et al., 2015; see 

Chapter 1), these studies have yielded conflicting results, with positive 

correlations between signals and defences emerging in some, but not all, 

cases. Models attempting to reconcile these observations have focused on the 

economics of signal and defence, proposing that correlations or disjunctions in 

the costs of these two strategic components of aposematism will shape the 

relationship between them, with honesty arising when costs increase in parallel 

(Speed and Ruxton, 2007). Nevertheless, a major obstacle to quantitative 

honesty in aposematism is the absence of a direct physiological link between 

signal and defence (Ruxton, Sherratt and Speed, 2004). The resource-limitation 

model, proposed by Blount et al. (2009), potentially resolves this issue by 

suggesting that signals and defences may be competing for shared resources, 

whether energy in general or specific nutrients, such as carotenoids or other 

antioxidants. Going some way towards addressing these ideas, recent studies 

have begun to measure the physiological underpinnings of colour signals and 

toxicity, such as hormone and carotenoid levels (Blount et al., 2012; Crothers et 

al., 2016) or sequestration ability (Mochida et al., 2013). However, more 

empirical work is needed to truly understand when and why honest signals may 

or may not be observed in nature. 
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In the case of signal honesty, relating theoretical models to empirical data is 

made more difficult by a mismatch in focus: while many modelling studies relate 

to variation within populations, relatively few studies have investigated this in 

the wild (Summers et al., 2015; Crothers et al., 2016). In this study, I aim to start 

redressing the balance by focusing on variation within a single species, the six-

spot burnet moth, Zygaena filipendulae L. (Lepidoptera: Zygaenidae). Zygaena 

species are classic examples of aposematic Lepidoptera, combining striking red 

and black wing patterns with potent chemical defences based on the 

cyanogenic glucosides linamarin and lotaustralin (Davis and Nahrstedt, 1979, 

1982), which release hydrogen cyanide (HCN) when brought into contact with 

enzymes in larval haemolymph or in the gut of predators. Present throughout 

the Western Palearctic (Naumann, Tarmann and Tremewan, 1999), Z. 

filipendulae is also locally abundant in Cornwall (UK), enabling the collection of 

specimens from very distant populations in distinct habitat types, as well as of 

large samples from some local populations. Moreover, the cyanide-based 

defences of Z. filipendulae have been extensively studied since they were first 

identified (Davis and Nahrstedt, 1979), down to the genetic pathway controlling 

their synthesis (Zagrobelny et al., 2009; Jensen et al., 2011). For this 

investigation, measures of cyanogenic glucoside levels were obtained with an 

LC-MS technique refined for identifying linamarin and lotaustralin in zygaenid 

moth samples, and previously employed in numerous studies of their chemical 

defences (Zagrobelny et al., 2004, 2007a,b, 2014, 2015; Fürstenberg-Hägg et 

al., 2014a; Pentzold et al., 2015, 2016). 

Considering the importance of the relative costs of signals and defences in 

determining the evolution of quantitative signal honesty, understanding these 

costs in Z. filipendulae is crucial to predicting the relationship between colour 

and toxicity in this species. Uniquely among insects, the larvae of Zygaena 

species can acquire the same defensive compounds by both sequestering them 

from their host plants and synthesising them de novo (Fürstenberg-Hägg et al., 

2014b). The ability to synthesise linamarin and lotaustralin and tolerate these 

toxic compounds evolved first in the Zygaenidae; this then allowed Zygaena 

species, pre-adapted to handle cyanogenic glucosides, to adopt cyanogenic 

plants of the Fabaceae family as their hosts, thereby accessing the same 

chemical defences more cheaply (Niehuis et al., 2007; Fürstenberg-Hägg et al., 
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2014b). While larvae fed on acyanogenic host plants can largely compensate 

for the lack of these compounds in their diet, they develop more slowly, reach a 

lower mass at pupation and incur a higher mortality than individuals fed on 

cyanogenic plants, confirming that de novo synthesis is indeed energetically 

costly (Zagrobelny et al., 2007a). De novo synthesis is thought to have been 

maintained to enable the larvae to keep a tight control over the ratio of linamarin 

to lotaustralin, relevant to other behaviours such as mate choice, regardless of 

the diversity in the cyanogenic content of their host plants (Fürstenberg-Hägg et 

al., 2014a). The costs of producing the cyanogenic glucosides may be linked to 

nitrogen limitation, as investment in chemical defences competes with other 

products for nitrogen. Highlighting this trade-off, cyanogenic glucoside content 

decreases significantly during pupation, suggesting that these compounds are 

broken down to fuel metamorphosis, and especially the synthesis of chitin, the 

main constituent of the cocoon and pupal case (Zagrobelny and Møller, 2011; 

Fürstenberg-Hägg et al., 2014a). 

In addition, like the reds, oranges and yellows of pierid butterflies (Watt, 1964) 

and wood tiger moths, Arctia plantaginis (Lindstedt, 2016), the red colours of 

the Zygaeninae are generated by pterin, or pteridine, pigments, (Tremewan, 

2006). Pterins are rich in nitrogen, so there may be a direct energetic trade-off 

between producing signals and additional defences de novo (Morehouse and 

Rutowski, 2010). Moreover, pterins are known to have antioxidant functions, 

playing an important role in protecting immune cells (McGraw, 2005). This 

suggests a potential trade-off between antioxidant function, safeguarding 

against stored toxins, and pigmentation, as has been proposed for carotenoids 

(Blount et al., 2009, 2012). Although this study primarily focuses on the red wing 

markings, the dark background colour of the forewings may also be costly to 

produce. The melanin required to produce black scales is involved not only in 

pigmentation, but also in immune defences against parasitoids and 

thermoregulation in Lepidoptera (Lindstedt, Lindström and Mappes, 2009; 

Hegna et al., 2013; Nokelainen, Lindstedt and Mappes, 2013), while iridescence 

is thought to be an expensive, condition-dependent form of coloration (Doucet 

and Meadows, 2009). 
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Signals and defences are thus both potentially costly for Z. filipendulae to 

produce, suggesting that honest signalling could arise in this system, depending 

on how these costs relate to each other. In this study, I examine the relationship 

between cyanogenic glucoside content and several measures of coloration to 

determine whether this species does display quantitatively honest signals, 

across 12 distinct localities, and in more detail within 3 populations with larger 

sample sizes. Diversity in warning signals between and within populations may 

be determined by different mechanisms and selective pressures (Summers et 

al., 2015), so it is important to consider both levels of variation. Within 

populations, predator learning may be important to the maintenance of signal 

honesty, while differences in the predator community, habitat or other 

characteristics could alter the relative costs of signals and defences between 

populations (see Speed and Ruxton, 2007).  I also carried out an experiment 

manipulating the availability of cyanogenic glucosides in the larval diet, to test 

whether limiting resources would affect the moths’ relative investments in toxins 

and pigments. Along with precise quantification of toxins by LC-MS, visual 

system-dependent measures of coloration, based on models of avian vision, 

were used to assess variation in colour as perceived by potential predators. As 

such, these results should contribute new insights into honest signalling within 

and between populations of a single aposematic species. 

4.3 Methods 

4.3.1 Specimen collection and rearing 

Although my work focuses on adult coloration and toxicity, all individuals 

included in this study were collected at the larval or pupal stages, to ensure that 

only virgin moths were used. This is critical to obtaining meaningful results, as 

the levels of cyanogenic glucosides fluctuate greatly during reproduction: males 

transfer a significant nuptial gift of linamarin and lotaustralin to females during 

mating, accounting for approximately 30% of their body mass and cyanogenic 

glucoside content (Zagrobelny et al., 2007b, 2013), while females deposit 

cyanogenic glucosides in their eggs (Zagrobelny et al., 2007a). Larvae and 

pupae of Z. filipendulae were collected from April to June 2015, at a range of 

sites in the United Kingdom, France and Denmark (Figure 4.1; Appendix 2.1, 

restricted to specimens from 2015). The insects were reared in the laboratory 
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until emergence of the adults. They were individually housed in plastic boxes 

with air holes, inside an incubator at 20°C with a 16:8h day:night cycle, similarly 

to previous work on this species (Zagrobelny et al., 2007a). Larvae were reared 

with the same host plant species as they were found on in the field. For larvae 

from France, three different host plants were used (common bird’s foot trefoil, 

Lotus corniculatus L., prostrate canary clover, Dorycnium pentaphyllum Scop. 

and horseshoe vetch Hippocrepis comosa L.); where possible, cuttings from 

plants on local field sites were used, as well as D. pentaphyllum plants from a 

commercial nursery (Les Senteurs du Quercy, Mas de Fraysse, 46230 

Escamps, France). Larvae found on L. corniculatus were fed cuttings from 

plants grown in greenhouses from commercially-sourced plugs (Wildflower 

Shop, Elm House, Green Street, Suffolk, IP21 5AZ, UK). All larvae were fed ad 

libitum, with food replaced daily for freshness. A total of 107 adults emerged 

with undamaged wings and were used in subsequent photography and toxicity 

analyses (NTOTAL=107 NDENMARK=25, NFRANCE=18, NUNITED KINGDOM=64). 

Figure 4.1: Map of field sites on which Z. filipendulae larvae and pupae were 

collected, with inset details of Cornish sites (GPS coordinates in Appendix 2.1). 

Specimen numbers refer to adults photographed from each site. 

N° specimens 

     1 

     2 – 10 

     20+ 

©OpenStreetMap 
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4.3.2 Wing photography and image analysis 

As soon as the adults emerged and their wings were fully expanded, they were 

euthanised by placing them in a -80°C freezer. I determined the sex and mass 

of each individual, before dissecting and photographing their wings with a 

calibrated, UV-sensitive digital camera (Nikon D7000 fitted with a 105mm 

CoastalOptics quartz lens). Photographs were taken in controlled conditions in 

a dark room, illuminated by an EYE Color Arc® MT70 bulb (Iwasaki Electric Co. 

Ltd.), emitting a spectrum of light similar to D65 daylight conditions. Each image 

included a scale bar, label, and a set of reflectance standards, reflecting 7% 

and 93% of all wavelengths of light respectively (Zenith Lite Diffuse Target 

sheets, SphereOptics, Pro-Lite Technology, Cranfield, UK), so as to further 

control for any variation in lighting conditions. As the wings of Z. filipendulae are 

iridescent, and thus the angle of incident light on the scales affects the colour of 

the wings, the light source was fixed in a constant position, at a 50° angle 

relative to the wings, in all photographs, and only the right-hand wings were 

used for colour measurements. Each specimen was photographed twice, using 

different filters (a UV/infrared blocking filter [Baader UV/IR Cut Filter], 

transmitting between 300 and 700nm, and a UV pass and IR blocking filter 

[Baader U filter], transmitting between 300 and 400nm). Combining these 

photographs yields a set of five image layers, or channels, corresponding to   

different parts of the visual spectrum: vR, vG, vB, uR and uB (see Chapter 2 for 

further details). 

I performed all subsequent image analysis with a dedicated image calibration 

and analysis toolbox in ImageJ (Troscianko and Stevens, 2015). To account for 

the camera’s non-linear response to different wavelengths of light, and changes 

in ambient light conditions (Stevens et al., 2007a), images were linearised and 

normalised as per the methods described in the software guide (see Chapter 2 

for more details). The wing colours were then analysed from the perspective of 

potential predators, which in this case are most likely to be birds, with reports of 

attacks on burnet moths attributed to a range of species, including blackbirds 

(Turdus merula), skylarks, (Alauda arvensis), cuckoos (Cuculus canorus), 

house sparrows (Passer domesticus), starlings (Sturnus vulgaris) and meadow 

pipits (Anthus pratensis) (Tremewan, 2006). In order to do this, I mapped the 

moth wing images to the two known categories of avian visual system, which 
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differ in the sensitivity of their most shortwave-sensitive cone type, the violet-

sensitive (VS) and ultraviolet-sensitive (UVS) groups (Hart et al. 1999). I used 

data from their respective model species, the blue tit Cyanistes caeruleus (Hart 

et al., 2000) and the peafowl Pavo cristatus (Hart, 2002). With the same 

software package (Troscianko and Stevens, 2015), linearised and normalised 

images were transformed to avian vision via a polynomial mapping technique 

with a D65 irradiance spectrum (Westland and Ripamonti, 2004; Stevens et al., 

2007a; Pike, 2011; Troscianko and Stevens, 2015), yielding five image layers, 

with predicted cone catch values for each photoreceptor type: ultraviolet (UV or 

V), short wavelength (SW), medium wavelength (MW) and long wavelength 

(LW) sensitive photoreceptors, as well as the double cones. I selected the wing 

markings and background areas on each photograph using the freehand tool in 

ImageJ, as described in Chapter 2.  While the position of the camera relative to 

each specimen was the same for all photographs, all images were also scaled 

to 100 pixels/mm to eliminate any small differences, which would affect size 

measurements. Each forewing spot was precisely outlined to allow for accurate 

measurements of its area, and if the spot was damaged separate 

measurements of undamaged sections were taken for spot colour. To measure 

the dark scales of the forewings and the red scales of the hindwings, zones as 

large as possible were selected, while avoiding damaged areas and creases in 

the fragile wings. Cone catch values for every photoreceptor type were 

measured from each selected patch, then averaged to obtain a single measure 

of colour per wing marking type. My analysis focuses primarily on the moths’ 

red markings, as red coloration is a widespread and particularly effective 

aposematic signal (Stevens and Ruxton, 2012; Arenas, Troscianko and 

Stevens, 2014). However, I also measured the dark background colours to 

calculate chromatic and luminance contrasts between the markings and 

background areas of each wing. 

From the cone catch values, I calculated three metrics for the red markings of 

the fore- and hindwings: luminance, saturation and hue. The rationale behind, 

and methods used to obtain these values are described in detail in Chapter 2. In 

brief, luminance provides a visual system-dependent measure of brightness, 

while saturation and hue respectively describe the intensity and perceived 

shade of a colour. Luminance is equal to the cone catch value for the double 
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cones, thought to mediate the perception of brightness contrasts in birds (Jones 

and Osorio, 2004; Osorio and Vorobyev, 2005). To derive a measure of 

saturation, colours were plotted in a tetrahedral colour space, with the 

coordinates corresponding to the proportion of total cone catch values to each 

channel: ultraviolet (UV-), short wavelength (SW-), medium wavelength (MW-) 

and long wavelength (LW-) sensitive. Saturation then corresponds to the 

Euclidean distance between the colour of interest and the centre of the colour 

space (Endler and Mielke, 2005; Stoddard and Prum, 2008). Finally, as seen in 

previous studies of animal coloration (Spottiswoode and Stevens, 2011; 

Stevens, Lown and Wood, 2014a,b), estimates of hue were based on the 

concept of colour opponency. Similarly to human vision, opponent mechanisms 

are known to be important for processing colour signals in birds (Osorio, 

Vorobyev and Jones, 1999), although the exact opponent channels have not as 

yet been elucidated. Nevertheless, principal component analysis (PCA) can be 

used to estimate the principal axes of variation in colour between samples. 

Following Spottiswoode and Stevens (2011), I performed PCA on a covariance 

matrix of the standardised values of all colour patches for the four photoreceptor 

channels (UV, SW, MW, LW) for each visual system. The first two principal 

components thus obtained were used to calculate ratios of cone catch values, 

forming logical colour channels (Hue1 and Hue2) – these do not represent 

actual opponent channels but provide meaningful measures of hue, broadly 

inspired by opponent mechanisms. The specific equations for hue used here 

are as follows: 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

UV, SW, LW, MW = standardised cone catch values for the UV-, SW-, MW- and 

LW- sensitive photoreceptors respectively. UVS, VS = ultraviolet-sensitive (blue 

tit) visual system, violet-sensitive (peafowl) system. 
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The hue channels were identical for fore- and hindwing markings. Based on 

these equations, high values of Hue1 correspond to colours with relatively 

greater reflectance in the long wavelength (LW) colour channel than in the 

short, medium and ultraviolet wavelength channels (SW, MW, UV), so represent 

redder colours. Only Hue1 values were used in subsequent analyses, as the 

principal components from which Hue1 ratios are derived (henceforth referred 

to as hue) account for 81-95% of the variance in colour in the fore- and 

hindwing markings. Further information on the methods for computing hue 

values can be found in Chapter 2. 

In addition, I calculated two measures of visual contrast to provide a sense of 

the perceived differences between red and black areas on the moths’ forewings 

and hindwings. The salience of these internal contrasts constitutes an important 

feature of warning signals, affecting predator learning (Aronsson and 

Gamberale-Stille, 2012b; Barnett, Scott-Samuel and Cuthill, 2016). Chromatic 

contrast was calculated with a widely-used log version of the receptor noise-

limited Vorobyev-Osorio colour discrimination model (Vorobyev and Osorio, 

1998), which takes into account the sensitivity and abundance of each cone 

type (relative cone abundance is UV=1, SW=1.92 MW=2.68, LW=2.7 for the 

UVS system (Hart et al., 2000) and V=1, SW=1.9, MW=2.2, LW=2.1 for the VS 

system (Hart, 2002; Håstad, Victorsson and Ödeen, 2005), as well as the noise 

in the photoreceptors. Noise was calculated with a widely-used and relatively 

conservative estimate of the Weber fraction, ω = 0.05, for the most abundant 

cone type (Eaton, 2005; Håstad, Victorsson and Ödeen, 2005; Stevens, 2011; 

Stevens, Lown and Wood, 2014a). Luminance contrast was computed as the 

natural logarithm of the ratio between mean double cone catch values of 

background and marking areas, divided by the same Weber fraction (Siddiqi et 

al., 2004). Contrast values are measured in “just-noticeable differences” or 

JNDs: values between 1 and 3 indicate that colours are likely to be 

distinguishable under good lighting conditions, while those below this threshold 

are likely indiscriminable. Colours with JNDs above 3 should be increasingly 

easy to tell apart (Siddiqi et al., 2004). More details concerning these 

calculations can be found in Chapter 2. 
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4.3.3 Contrast to natural backgrounds 

Conspicuousness of prey to the natural backgrounds on which they are found is 

a key component of aposematic signalling (Stevens and Ruxton, 2012; Arenas, 

Walter and Stevens, 2015), which should be measured more often in empirical 

studies of honest signalling (Arenas, 2015). To address this issue, I calculated 

chromatic and luminance contrasts between the moth’s wing markings and 

three likely natural backgrounds: the leaves and flowers of their principal host 

plant (Lotus corniculatus, Fabaceae) and a popular nectaring flower, field 

scabious (Knautia arvensis, Dipsacaceae) (Naumann, Tarmann and Tremewan, 

1999; Zagrobelny et al., 2015). I photographed five independent samples of 

each plant, collected in Cornwall (UK), with the same equipment and under the 

same conditions as the moth wings. L. corniculatus flowers were dissected so 

that the upper and lower petals (known as the banner and wings respectively) 

could be photographed as flat as possible. Plant areas for analysis were once 

again selected using the freehand tool in Image J: each of the three leaflets of 

every L. corniculatus leaf, each petal from the L. corniculatus flowers, and three 

outer petals and the central area of K. arvensis flowers. I then averaged these 

colour measurements to obtain a single value per plant background type, and 

calculated contrasts between these values and those of the moth forewing 

markings using chromatic and luminance JNDs, as described above. 

4.3.4 Quantifying cyanogenic glucosides 

The cyanogenic glucoside content of each specimen was determined by Dr. 

Mika Zagrobelny, in the Department of Plant and Environmental Sciences at the 

University of Copenhagen. Measurements were obtained with a specific liquid 

chromatography – mass spectrometry (LC-MS) protocol optimized for detecting 

cyanogenic glucosides, such as linamarin and lotaustralin in extracts from 

plants and insects. Prior to LC-MS analysis, the frozen samples were each 

ground up in 1ml ice-cold 55% MeOH, containing 0.1% formic acid and 

0.044mM amygdalin, a cyanogenic glycoside not present in the Zygaenidae, as 

an internal standard. All samples were subsequently passed through an 

Anopore 0.45μm filter (Whatman) and analytical LC-MS was carried out using 

an Agilent 1100 Series LC (Agilent Technologies, Germany), interfaced with a 

Bruker HCT-Ultra ion trap mass spectrometer (Bruker Daltonics, Bremen, 
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Germany). Chromatographic separation was performed with a Zorbax SB-C18 

column (Agilent; 1.8μM, 2.1x50 mm) at a flow rate of 0.2 ml/min, increased to 

0.3 ml/min from 11.2 to 13.5 min. Oven temperature was maintained at 35°C 

and the mass spectrometer was run in positive electrospray mode. The mobile 

phases were A (H2O with 0.1% (v/v) HCOOH, 50 μM NaCl) and B (MeCN with 

0.1% (v/v) HCOOH), with a gradient program as follows: 0 to 0.5 min, isocratic 

2% B; 0.5 to 7.5 min, linear gradient 2 to 40% B; 7.5 to 8.5 min, linear gradient 

40% to 90% B; 8.5 to 11.5 isocratic 90% B; 11.6 to 17 min, isocratic 2% B.

Mass spectral data were analysed with the native data analysis software, to 

detect sodium adducts of linamarin (retention time [RT] 2.6 min, [M+Na]+ at m/z 

270), lotaustralin (RT 5.5 min, [M+Na]+ at m/z 284), and amygdalin (RT 6.6 min, 

[M+Na]+ at m/z 480), then compare them to authentic standards (Møller, Olsen 

and Motawia, 2016). The total amount of each compound was estimated 

according to its Extracted Ion Chromatogram (EIC) peak areas and quantified 

based on calibration curves of linamarin, lotaustralin, and amygdalin standards. 

4.3.5 Dietary manipulations 

To test the effect of increasing the costs of acquiring chemical defences, I 

collected additional larvae (at L5-L6 stage) from three locations in Cornwall 

(Holywell Bay, Porthnanven and Upton Towans) in May and June 2015, to 

participate in a dietary experiment. These larvae were housed as above, but 

were fed ad libitum with plants grown from cuttings of an acyanogenic L. 

corniculatus plant originally collected at the Botanical Garden of the University 

of Copenhagen. This plant contains no cyanogenic glucosides and has 

previously been used in dietary manipulations with Z. filipendulae larvae 

(Zagrobelny et al., 2007a). Due to differences in larval stage when collected and 

high mortality when feeding on the acyanogenic host, only 25 larvae survived to 

adulthood, with 10 fed on acyanogenic plants for at least 10 days before 

pupation. Colour and toxicity measurements were taken from the adult moths as 

described above. For the purposes of this study, I compared these 10 

individuals to moths from the same populations, which had been fed on 

cyanogenic L. corniculatus (henceforth wild-type, WT; N=30). For the image 

analysis, I selected the colour patches while blind to dietary treatment. 

120



4.3.6 Statistical analyses 

I analysed all results using R 3.3.1 (R Development Core Team, 2015). 

Forewing and hindwing data were treated separately, and all analyses were 

repeated with data from both the UVS (blue tit) and VS (peafowl) visual 

systems. For all linear models in both within and between population analyses, 

assumptions were checked with diagnostic plots, and minimal adequate models 

were obtained via stepwise model simplification. If any outliers were identified 

(Cook’s distance >1 in diagnostic plots), the models were run with and without 

these data points to test their influence; results are only reported without outliers 

if their removal significantly affected the model output. Tukey’s post-hoc tests 

were implemented to determine significant pairwise comparisons, using the glht 

function in the ‘multcomp’ package in R (Hothorn, Bretz and Westfall, 2008). 

Following a similar approach to a previous study of signal honesty among 

poison frog populations (Maan and Cummings, 2012), I examined correlations 

between mean cyanogenic glucoside levels and mean colour values between 

populations, for all colour metrics. Linear models testing the relationship 

between colour and toxin levels were run for each sex separately, as varying 

numbers of males and females were sampled in each population, potentially 

affecting the outcome of models based on a single average per population. 

To explore the question of honesty in aposematic signalling within populations, I 

investigated three populations in more detail (Holywell Bay, UK, Lamorna Cove, 

UK, and Taastrup, Denmark, where N>20). I used multiple linear regressions to 

test the relationship between the concentration of cyanogenic glucosides in 

each sample and wing coloration, in each population separately. The presence 

of two outlier points significantly affected results in Lamorna Cove, so analyses 

for this species were performed with a reduced dataset (N=23). Each model 

included all relevant colour metrics for either the forewing or hindwing markings, 

with one exception. Saturation and hue values were calculated from the same 

cone catch values, so as expected, were highly correlated (Pearson’s 

correlation > 0.99). Linear regression models thus included either saturation or 

hue, to avoid the problem of high collinearity in the analysis; models including 

only one of these measures of colour had variance inflation factors (VIFs) below 

the recommended threshold of 10 (Dormann et al., 2013) and yielded the same 
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conclusions (see Appendix 4.1). Stepwise model simplification was carried out 

to identify the minimal model in each case. I then investigated sex differences in 

coloration in these three populations, with linear models allowing population and 

sex to interact. I also analysed contrasts between forewing markings and 

natural backgrounds with linear mixed effects models (LME), including sex, 

population and plant type as fixed effects and individual ID as a random effect, 

using the package ‘lme4’ (Bates et al., 2014). Model diagnostics were checked 

using the mcp.fnc function in the ‘LMERConvenienceFunctions’ package 

(Tremblay and Ransijn, 2014). To fit model assumptions, luminance contrast 

was transformed with the logit function in the ‘car’ package (Fox and Weisberg, 

2011). Finally, I also used mixed effects models, including population as a 

random effect, to test the effect of dietary treatment on cyanogenic glucoside 

concentration, body mass and coloration. Concentration of toxins was log-

transformed to fit the assumptions of linear mixed effects models. 

4.4  Results 

For clarity, the following result descriptions, tables and graphs are all based on 

the ultraviolet-sensitive (UVS, or blue tit) visual system only. Results for the 

violet-sensitive (VS, or peafowl) visual system were qualitatively similar; details 

can be found in Appendix 4.4. 

4.4.1 Variation between populations 

There was no significant relationship between colour metrics and toxin 

concentration across populations for males (Table 4.1). In addition, measures of 

hindwing coloration were not significantly associated with cyanogenic glucoside 

levels in either sex. However, for females, there were some relationships 

between defences and forewing coloration: the mean concentration of defensive 

compounds per population was significantly positively correlated with marking 

luminance but negatively correlated with relative spot area, and there were 

other trends towards a negative relationship between colour metrics and toxin 

levels (Figure 4.2, Table 4.1). 

122



Table 4.1: Correlations between colour metrics and cyanogenic glucoside 

concentrations across populations. Significant results are highlighted in italics. A 

relatively high R2 value for the positive correlation between toxicity and 

luminance in females suggests this may be the most relevant result, while low 

R2 values for relationships with p-values near the significance threshold 

(p<0.05) indicate that these are unlikely to be biologically important. 

FW=forewing, HW=hindwing. 

Colour metric Males Females 
FW luminance No correlation, F1,7=0.451, 

p=0.523, R2=-0.0737 
Positive correlation, F1,9=16.466, 
p=0.00285, R2=0.607 

FW saturation No correlation, F1,7=0.238, 
p=0.641, R2=-0.105 

Trend towards negative correlation, 
F1,9=4.349, p=0.0667, R2=0.251 

FW hue No correlation, F1,7=0.114, 
p=0.746, R2=-0.125 

Trend towards negative correlation, 
F1,9=4.061, p=0.0747, R2=0.234 

FW chromatic 
contrast 

No correlation, F1,7=0.812, 
p=0.397, R2=-0.0240 

Trend towards negative correlation, 
F1,9=5.032, p=0.0516, R2=0.287 

FW luminance 
contrast 

No correlation, F1,7=0.414, 
p=0.541, R2=-0.0791 

No correlation, F1,8=1.064, p=0.329, 
R2=0.00639 

Proportion of red in 
FWs 

No correlation, F1,7=0.0034, 
p=0.955, R2=-0.142 

Negative correlation, F1,9=5.252, 
p=0.0476, R2=0.298 

HW luminance No correlation, F1,7=0.291, 
p=0.606, R2=-0.0972 

No correlation, F1,9=1.782, p=0.215, 
R2=0.0725 

HW saturation No correlation, F1,7=0.183, 
p=0.682, R2=-0.114 

No correlation, F1,9=0.0005, p=0.983, 
R2=-0.111 

HW hue No correlation, F1,7=0.0908, 
p=0.772, R2=-0.128 

No correlation, F1,9=0.0047, p=0.947, 
R2=-0.111 
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Figure 4.2: Mean cyanogenic glucoside concentration and marking luminance 

(a) and size (b) across populations, for males (open circles) and females (filled

circles). Error bars correspond to standard errors for both colour metrics and 

toxin concentration. CNGlcs = cyanogenic glucosides. Lines represent the linear 

relationship between colour metrics and cyanogenic glucoside concentration for 

females. 

4.4.2 Variation within populations 

4.4.2.i Cyanogenic glucoside concentration and coloration 

In both the Holywell Bay and Taastrup populations, forewing luminance was 

positively correlated with cyanogenic glucoside concentration (linear models, 

luminance, F1,20=4.358, p=0.0499, and F1,23=6.768, p=0.0160 respectively; 

Figure 4.3a, Appendix 4.1). Moreover, in the Holywell Bay population, chromatic 

contrast between the forewing background and marking colours was negatively 

correlated with cyanogenic glucoside concentration (linear model, chromatic 

contrast, F1,20=5.645, p=0.0276; Figure 4.3b). In contrast, cyanogenic glucoside 
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levels were not correlated with any colour metrics in Lamorna Cove (Appendix 

4.1). 

Figure 4.3: Relationship between forewing luminance (a), chromatic contrast (b) 

and the concentration of cyanogenic glucosides, in the Holywell Bay and 

Taastrup populations. CNGlcs = cyanogenic glucosides. 

4.4.2.ii Differences between sexes 

Toxin levels did not significantly differ between sexes (linear model, sex, 

F1,69=0.0002, p=0.990). However, the total amount of cyanogenic glucosides 

was significantly different: larger females possessed consistently greater 

amounts of these compounds than males, in all three populations (linear model, 
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sex, F1,69=107.31, p<0.001). Moreover, males and females differed in all colour 

metrics, with the exception of forewing luminance. Saturation, hue and 

chromatic contrast of the red forewing markings were higher in males than 

females, while female markings were larger relative to total wing area (Table 

4.2a, Figure 4.4a). Forewing luminance contrast was higher in males than 

females in Lamorna Cove, but not in the other populations (Table 4.2a, Figure 

4.4a). In the hindwings, luminance was higher in females, but saturation and 

hue values were again greater in males (Table 4.2b, Figure 4.4b). Populations 

also differed overall in some metrics: chromatic contrast was higher in Lamorna 

Cove than in the Taastrup population (Tukey’s HSD: pLamorna-Holywell=0.116, 

pTaastrup-Holywell=0.897, pLamorna-Taastrup=0.0334) and hindwing luminance was lower 

in the Lamorna Cove population than in the others (Tukey’s HSD: pLamorna-

Holywell=0.00939, pTaastrup-Holywell=0.999, pLamorna-Taastrup=0.00739). 

Table 4.2: Results of linear models examining sex and population differences in 

colour metrics. Significant results are highlighted in italics. 

a. In the forewings
Factor F df p F df p F df p 

Luminance Saturation Hue 
Sex:Population 0.843 2,67 0.435 1.166 2,67 0.318 1.285 2,67 0.283 
Population 2.388 2,69 0.0993 1.945 2,69 0.151 1.347 2,69 0.267 
Sex 0.0824 1,71 0.775 4.073 1,71 0.0472 4.696 1,71 0.0336 

Proportion red Chromatic contrast Luminance contrast 
Sex:Population 1.509 2,67 0.229 0.475 2,67 0.624 4.565 2,67 0.0138 
Population 2.283 2,69 0.110 3.786 2,69 0.0276 - - -
Sex 17.766 1,71 <0.001 12.902 1,69 <0.001 - - -

  

     b. In the hindwings 
Factor F df p F df p F df p 

Luminance Saturation Hue 
Sex:Population 0.246 2,67 0.770 1.208 2,67 0.305 1.183 2,67 0.313 
Population 6.614 2,69 <0.01 1.011 2,69 0.369 0.690 2,69 0.505 
Sex 16.199 1,69 <0.001 36.192 1,71 <0.001 12.19 1,71 0.001 
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Figure 4.4: Mean and standard error for colour metrics in the forewings (a) and 

hindwings (b) of specimens from Holywell Bay, Lamorna Cove and Taastrup. 

Filled circles represent females, open circles males. Luminance contrast is 

plotted by population, as the relationship between sex and this metric varies 

between localities. Significance levels: ***:p<0.001, **:p<0.01, *:p<0.05. 

4.4.2.iii Contrast to natural backgrounds 

Chromatic contrast to plant tissues on which Z. filipendulae are likely to be 

observed was higher in males than females (LME, sex, (χ2)2=4.752, p=0.0293), 

and lowest overall in the Taastrup population (LME, population, (χ2)2=20.23, 

p<0.001, Tukey’s HSD: pLamorna-Holywell=0.163, pTaastrup-Holywell=0.0253, pTaastrup-

Lamorna<0.0001; Figure 4.5a). However, luminance contrast did not vary 
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according to population or sex (LME, sex:population, (χ2)2=1.667, p=0.435; sex: 

(χ2)1=0.48, p=0.488; population, (χ2)2=4.429, p=0.109). The forewing markings 

were consistently least conspicuous against the leaves of their host plant, Lotus 

corniculatus, and most conspicuous against its flowers (LME, plant type, 

(χ2)2=768.12, p<0.001 and (χ2)2=705.96, p<0.001 for chromatic and luminance 

contrast respectively; Tukey’s HSD, p<0.001 for all pairwise comparisons; 

Figure 4.5). It is important to note that contrast values were consistently greater 

than the threshold for discrimination (JND=3), and were especially high in 

chromatic terms, making all forewing markings conspicuous, regardless of 

population, sex and plant type differences. 

Figure 4.5: Mean and standard errors for chromatic (a) and luminance (b) 

contrast between forewing markings and natural backgrounds. In (a), filled 

circles represent females, open circles males, and dashed lines represent the 

mean chromatic contrast for each plant type. In (b), mean values were 

calculated across males and females, as there were no significant differences 

between sexes. The dotted line represents the threshold for easy discrimination, 

JND=3. Lc=Lotus corniculatus, Ka=Knautia arvensis. Significance levels: 

***:p<0.001, **:p<0.01, *:p<0.05. 
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4.4.3 Consequences of dietary manipulations 

Individuals fed acyanogenic host plants compensated for their poor diet with de 

novo synthesis of cyanogenic glucosides: in fact, the concentration of 

glucosides in adult tissues was higher in moths fed the acyanogenic diet (LME, 

diet, (χ2)1 =4.241, p=0.00395; Figure 4.6a). Nevertheless, moths in the 

acyanogenic treatment had a smaller body mass at emergence (LME, diet, (χ2)1 

=8.100, p=0.00443), and as a consequence, females fed acyanogenic plants 

possessed a smaller total amount of cyanogenic glucosides than females in the 

WT treatment (LME, sex:diet, (χ2)1 = 6.589, p=0.0103; Figure 4.6b). 

Figure 4.6: Concentration of cyanogenic glucosides across both sexes (a) and 

total cyanogenic content in males and females (b), plotted by dietary treatment. 

Boxplots show median and interquartile range. CNGlcs=cyanogenic glucosides. 

Significance levels: *:p<0.05. 

There was no overall difference in colour metrics between moths fed different 

diets (see Appendix 4.2), yet the dietary treatment did affect the relationship 

between some measures of colour and cyanogenic glucoside levels (see 

Appendix 4.3). As seen in the Holywell Bay and Taastrup populations, forewing 

luminance and the concentration of cyanogenic glucosides were positively 
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correlated in the wild-type treatment, but this relationship was reversed in the 

acyanogenic treatment, especially for males (LME, luminance:diet:sex 

(χ2)1=4.715, p=0.0299; Figure 4.7). Moreover, the relative size of the red 

markings on the forewings and cyanogenic glucoside levels were positively 

correlated in the wild-type treatment, and negatively in moths fed acyanogenic 

plants (LME, percent red:diet (χ2)1=5.099, p=0.0239; Figure 4.8). 

Figure 4.7: Relationship between forewing marking luminance and the 

concentration of cyanogenic glucosides, plotted by sex and dietary treatment. 

Filled circles = females, Open circles = males. CNGlcs=cyanogenic glucosides. 

Lines correspond to the results of linear mixed-effects models. 
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Figure 4.8: Relationship between relative forewing marking size and the 

concentration of cyanogenic glucosides, plotted by dietary treatment. 

CNGlcs=cyanogenic glucosides. Lines correspond to the results of linear 

mixed-effects models. 

4.5 Discussion 

The principal aim of this study was to test for quantitative honesty in the warning 

signals of Z. filipendulae. It is important to note that all individuals were highly 

toxic and conspicuous, so any differences between individuals, sexes, and 

populations could merely act to provide more detailed information about the 

level of defence. Across populations, correlations between measures of colour 

and toxin levels were only found in female specimens, for whom higher 

concentrations of cyanogenic glucosides were associated with lighter and 

smaller markings. Within populations, sex appeared to be the primary 

determinant of coloration: female markings were larger, but also lighter, less 

saturated, less red and less contrasting than those of males. Few colour metrics 

were correlated with cyanogenic glucoside concentration within populations: I 

found positive correlations between toxin levels and luminance in two localities, 

and a negative correlation between toxicity and chromatic contrast in only one 

population. Trends were similar for both types of avian visual system, so 

conclusions are applicable to a variety of potential avian predators of Z. 
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filipendulae. Collectively, these results primarily indicate either a lack of 

association or a dishonest relationship between measures of colour and toxin 

concentration, at both the individual and population levels. 

Disentangling the specific roles of chromatic and achromatic information in 

influencing predator behaviour, along with specific colours, internal contrasts 

and conspicuousness to natural backgrounds, is an important area for future 

research in the field of visual communication (Stevens and Ruxton, 2012). In 

this study, most colour metrics indicated signal dishonesty or a lack of any 

quantitative relationships with defence levels, but larger females did display 

larger markings than males, which could be an informative cue for predators, 

and positive correlations between lightness and cyanogenic glucoside levels 

could be interpreted as an honest signal. In one population, marking luminance 

and internal chromatic contrast related to cyanogenic glucosides in opposite 

ways, so the potential for signal honesty would depend on which measure of 

coloration predators attend to. Both chromatic and achromatic information is 

thought to influence predator behaviour; luminance cues are considered to be 

more important for initial avoidance, while chromatic cues are more critical for 

avoidance learning, at least in birds (Osorio, Jones and Vorobyev, 1999), 

though further research on this topic is needed (Stevens and Ruxton, 2012). In 

the absence of more information on predator behaviour, it is possible that they 

could use lightness as a cue for the level of unprofitability. However, this could 

also be considered dishonest, as darker colours, requiring more pigments and 

hence more costly to make, would intuitively be expected to indicate more 

highly-defended individuals. 

4.5.1 Resource allocation trade-offs and dishonest signalling 

Several empirical studies in other taxa have previously found either no 

relationship or negative correlations between aposematic signals and the 

strength of the defences they are advertising, including both within and between 

populations of single species of poison frogs. Populations of orange and green 

Oophaga granulifera (Dendrobatidae), less conspicuous to avian predators 

against natural backgrounds than red populations, were found to possess 

greater levels of toxic alkaloids than red frogs (Wang, 2011). In this case, 

migration of populations into areas where more potent alkaloids were available 
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in the poison frog diet is thought to have driven a subsequent reduction in visual 

conspicuousness, reflecting a strategic trade-off between signals and defences 

in aposematism (Darst, Cummings and Cannatella, 2006; Speed and Ruxton, 

2007). The aversiveness of highly toxic prey will in itself stimulate predator 

learning, reducing the incentive for displaying obvious signals, which also carry 

costs, such as visibility to naïve predators. Such a pattern also fits in with the 

predictions of resource-limitation models of signal honesty in aposematism; if 

resources are plentiful, so toxins can be acquired cheaply, prey should invest 

primarily in these rather than visual signals, while signals should be honest 

when resources are limited (Blount et al., 2009). Alternatively, differences in 

predator and prey communities between populations could be responsible for a 

lack of signal honesty across populations (Endler and Mappes, 2004). For 

example, prey exposed to predators relying less on vision when hunting will be 

selected to reduce investment in visual signals (Wang, 2011). A wide range of 

other factors, from the availability and profitability of alternative prey to 

differences in predator experience or tolerance for toxins will also affect the 

relative costs and benefits of conspicuous signalling for defended prey 

(Mappes, Marples and Endler, 2005; Skelhorn, Halpin and Rowe, 2016). 

Strategic and metabolic trade-offs may also explain negative relationships 

between coloration and toxicity within populations. In the highly toxic and 

conspicuous Solarte population of the poison frog Oophaga pumilio, several 

measures of coloration were found to be negatively correlated with pumiliotoxin 

levels (Crothers et al., 2016). This particular population is highly toxic and 

overall very conspicuous compared to other O. pumilio populations; as these 

prey items are extremely aversive, the powerful selective pressure for predators 

to avoid them will encourage strong levels of generalisation, in turn allowing for 

the frogs to invest less in their warning signals (Crothers et al., 2016). This 

situation draws parallels with Z. filipendulae, which are also very conspicuous 

and especially toxic among Lepidoptera (Rothschild et al., 1970; Sbordoni et al., 

1979). For such unprofitable prey, there may be little to gain by communicating 

additional information to predators by the means of quantitatively honest 

signals, since anything resembling the toxic prey will be strongly avoided. 

Finally, effective generalisation due to perceptual limitations of the predators 

cannot be ruled out (Crothers et al., 2016). Although individual moth colours are 
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perceptibly different to avian predators (Chapter 2), this does not necessarily 

mean that they are capable of distinguishing them and making foraging 

decisions based on these differences in the field. As all the specimens 

measured here appeared conspicuous against natural backgrounds, natural 

variation in colour may not necessarily be relevant. This question is addressed 

in Chapter 6. 

The dietary experiment suggests that resource allocation trade-offs may be 

relevant to aposematic signalling in Z. filipendulae, although it is difficult to 

make definitive conclusions. Toxin concentration was not adversely affected by 

the acyanogenic diet, and was in fact higher in these moths than in those fed a 

host plant containing cyanogenic glucosides. Nevertheless, the adult moths in 

the acyanogenic treatment were smaller, leading to a reduction in total 

cyanogenic glucoside content in females, compared to the wild-type treatment. 

Coloration did not differ between diets, suggesting that moths in the 

acyanogenic treatment prioritised the maintenance of toxin concentration and 

wing colour, at the expense of growth. The relationship between most colour 

metrics and toxicity was generally not affected by diet, but there were two 

interesting exceptions. Forewing marking luminance and toxin levels were 

positively correlated in the WT treatment, but negatively so in the acyanogenic 

treatment, especially for males. This means that, when moths had to synthesise 

their own defences de novo, those with higher toxin levels invested more in 

pigments (which would make their markings darker) than moths with fewer 

toxins. This result hints at a more honest relationship between coloration and 

toxin levels in the acyanogenic treatment, when resources are limited, as 

predicted by the resource-limitation model (Blount et al., 2009, 2012). However, 

this was not supported by parallel trends in other colour metrics; on the 

contrary, the relative size of red forewing spots was negatively correlated with 

cyanogenic glucoside levels in the acyanogenic treatment, suggesting 

dishonesty in signalling. High mortality rates, and in particular a very high level 

of larval parasitism in one sample population, unfortunately led to a very small 

sample size in my dietary experiment, limiting the interpretation of its results. It 

would be interesting to repeat this experiment with more samples to properly 

explore the resource allocation trade-offs in this species. Testing the toxicity of 

eggs laid by females in these dietary treatments, as well as the toxicity and 
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coloration of their offspring at adulthood, would also be a valuable test of any 

knock-on maternal effects of the dietary restriction. 

4.5.2 Sexual dimorphism and sexual signalling 

More clearly than cyanogenic glucoside levels, sex emerged as a key factor 

underlying variation in appearance in Z. filipendulae, in all studied populations. 

Differences in activity patterns between sexes may expose them to unequal 

predation pressures, as the more active males, flying to seek out females 

(Naumann, Tarmann and Tremewan, 1999), may be more likely to encounter 

predators and hence gain greater benefits from investing in conspicuous 

warning signals. However, Z. filipendulae often occur in large numbers and 

calling females are also highly conspicuous, exposed on flowers such as K. 

arvensis (Zagrobelny et al., 2013; pers obvs.). Perhaps more relevant is the 

size dimorphism between males and females: for males, redder and more 

saturated markings might compensate for their smaller marking size, improving 

their salience to predators. By contrast, females may benefit from prioritising 

investment in toxins to ensure protection, as predators balance the risk of 

consuming toxic prey with the nutritional benefit gained from consuming larger, 

more nutritious prey (Smith, Halpin and Rowe, 2016). 

Evidence of sexual dichromatism also raises the possibility that colour could be 

involved in sexual selection and mate choice. While pheromones are 

recognised as the principal means for intra-specific communication in the 

Zygaenidae, several observational and experimental studies suggest that visual 

cues might also be relevant in certain species, including Z. filipendulae 

(reviewed in Subchev 2014; Sarto i Monteys et al. 2016). Both Z. filipendulae 

and Z. trifolii, potentially along with other European species (Hofmann and Kia-

Hofmann, 2010), are thought to employ two alternative mating strategies, with 

males relying on pheromone plumes to locate calling females in the afternoon, 

but using optical cues to find mates in the morning when females are not 

producing pheromones (Naumann, Tarmann and Tremewan, 1999; Subchev, 

2014). Multiple cues might also be used in different phases of mate localisation: 

Zagatti and Renou (1984) observed that males of Z. filipendulae rely on 

pheromone plumes to locate mates, then use visual cues to orient themselves 

at close range (approximately 50cm away from the females), a strategy also 

seen in Z. niphona and Z. fausta (Koshio, 2003; Friedrich and Friedrich-Polo, 
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2005; Sarto i Monteys et al., 2016). Studies seeking to manipulate visual cues 

during courtship in the Zygaenidae have found some limited evidence for their 

use in male mate choice (Zagatti and Renou, 1984; Toshova, Subchev and 

Toth, 2007). Monitoring the approach and copulatory attempts of wild Z. 

filipendulae males to an array of artificial female stimuli, Zagatti and Renou 

(1984) reported that, although males did not discriminate between mounted 

female specimens of closely-related species, the presence of red coloration 

generally encouraged copulation, and fresher specimens were preferred, 

leading them to conclude that males favour more saturated colours. Although 

the males were likely to perceive the crude differences between the artificial 

baits used in that study, little is known about visual perception in the 

Zygaenidae, so more systematic discrimination tests would be needed to 

establish whether colour difference on the scale measured here could be 

relevant to mate choice. Moreover, I found no evidence of positive correlations 

between colour and cyanogenic glucoside levels in either sex in natural 

populations, so colour would not provide quantitative information about the 

defences of potential mates. However, male preference for more saturated 

colours, as proposed by Zagatti and Renou (1984), may suggest an important 

reason why quantitative honesty between colour and the levels of defensive 

compounds at emergence may not be favoured in this species. 

4.5.3 Variable and multimodal signalling 

Over the lifetime of an adult burnet moth (and many Lepidoptera in general), 

wing scales are progressively brushed off, such that older individuals are visibly 

faded (pers. obvs.). In the orange sulphur butterfly (Colias eurytheme), wing 

colours fade with age (Kemp, 2006), and the decline in UV reflectance in 

particular may help females select younger males (Papke, Kemp and Rutowski, 

2007), an advantageous strategy as male age is negatively correlated with the 

protein content of nuptial gifts in this and other butterfly species (Rutowski and 

Gilchrist, 1986; Rutowski, Gilchrist and Terkanian, 1987). In Z. filipendulae, 

females receive nuptial gifts of cyanogenic glucosides (Zagrobelny et al., 

2007a) and are known to reject smaller and less well-defended suitors 

(Zagrobelny et al., 2007b, 2013), a bias which can be overcome if the males are 

injected with extra cyanogenic glucosides or painted with linamarin (Zagrobelny 

et al., 2015). How females gauge male quality is still unclear, but could be 
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similar to female assessment of pyrrolizidine alkaloid nuptial gifts in the arctiid 

Utetheisa ornatrix, relying on compounds exposed on the males’ abdominal 

brushes, or corremata (Iyengar, Rossini and Eisner, 2001; Zagrobelny et al., 

2007b, 2013). However, chemical cues are not always reliable: in fact, males 

emit higher levels of HCN if previously mated due to the presence of residual 

compounds on their corremata, despite having fewer cyanogenic glucosides to 

offer (Zagrobelny et al., 2007b; Zagrobelny et al., 2015). Since the cyanogenic 

glucoside reserves of older males are more likely to have been depleted by 

successive matings, wing colour could assist female choice as a useful proxy 

for male age. Likewise, female Z. filipendulae can mate multiple times 

(Naumann, Tarmann and Tremewan, 1999), but males will benefit from mating 

with younger females, with a greater number of eggs available for fertilisation. 

As a result, both sexes should prefer younger mates, and brighter, more 

saturated wing colours could act as reliable indicators of quality. From a 

predator’s perspective, wing colour could similarly be used as a crude signal of 

toxin content in the wild. Taking toxin and colour measurements from a range of 

individuals at a given date in any given population, effectively a snapshot of 

prey items available to predators, would help test this hypothesis. 

Rather than focusing on visual signals alone, observations in Zygaena 

filipendulae demonstrate the importance of considering these as elements of a 

more complex multimodal and multicomponent signalling system (see Rowe 

and Halpin, 2013). In this study, I found that the red markings of Z. filipendulae 

do not function as straightforward quantitatively honest signals of the levels of 

defensive compounds, neither within nor between populations. However, these 

visual cues are likely to be used in combination with pheromone emission, 

deposits on corremata and, for predators, with the bitter taste of the cyanogenic 

glucosides, to evaluate the profitability of individuals. Further research into the 

volatiles emitted by zygaenids, including degradation products of cyanogenic 

glucosides (HCN and ketones; Zagrobelny et al., 2015) and pyrazines 

(Rothschild, 1961; Rothschild, Moore and Brown, 1984; Moore, Brown and 

Rothschild, 1990; Tremewan, 2006), odours often associated with warningly-

coloured insects (Guilford et al., 1987), will help develop a more comprehensive 

picture of their defensive strategy. Testing the response of natural predators to 

these volatiles, as well as taste-rejection due to the bitter cyanogenic 

glucosides, and how these cues interact with each other and visual signals, are 
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the next logical steps towards establishing the relevance of these strategic 

components to survival in the wild. In this and other study systems, integrating 

the effects of multiple cues, especially visual and chemical, is a major route 

towards a deeper understanding of aposematic signalling strategies. 
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Chapter 5 

Colour and toxicity in burnet moths  
(Zygaenidae) – cautionary tales in the study of  

signal honesty across species 

All wing photographs: E. S. Briolat 
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5.1 Abstract 

How levels of signals and defences should compare across closely-related 

aposematic species is a largely unresolved question, addressed by some 

theoretical models and a limited number of empirical studies. This study tests 

for evidence of a quantitatively honest relationship between measures of wing 

marking coloration, as perceived by avian predators, and levels of toxic 

cyanogenic glucosides across 14 species of burnet and forester moths 

(Lepidoptera: Zygaenidae), collected in Denmark, France, and the UK. Broad 

differences in coloration and toxicity between field seasons, and variation 

between sexes in each species, suggested that sex-specific trends and 

ecological conditions should be accounted for in studies of signal honesty. The 

relationship between coloration and levels of defensive chemicals across 

species varied, depending on the colour metric considered and the year of 

sampling, but were generally similar across sexes, although the significance of 

these relationships did vary. Overall, there was no evidence of signal honesty 

across species in the Zygaenidae, contrary to expectations based on recent 

studies in ladybirds and nudibranchs. Altogether, these results indicate that the 

relationship between colour and toxicity in aposematic species may be more 

intricate and dynamic than has been suggested by previous empirical work. 

5.2 Introduction 

Traditional theories of warning coloration, based primarily on the concept of 

Müllerian mimicry (Müller, 1879), suggest that warning signals should converge 

on similar forms, as signal monomorphy would facilitate predator learning. Yet, 

polymorphic and polytypic variation is widespread in aposematic species 

(Arenas and Stevens, 2017), and understanding how this variation is 

maintained is an important and active area of research (Rojas, Devillechabrolle 

and Endler, 2014; Stevens, 2015; Summers et al., 2015). Similarly unresolved 

is the relationship between these variable signals and the potency of the 

defences they advertise, prompting theoretical and empirical investigations at 

the level of individuals, populations, and species. The key question concerns 

how investment in the two strategic components of aposematism, signals and 

secondary defences, should be portioned out once an aposematic strategy has 

evolved (Cortesi and Cheney, 2010). According to initial models of warning 

141



coloration as a handicap signal (Grafen, 1990), an honest relationship might be 

expected if stronger signals, such as more conspicuous markings, are too costly 

for poorly-defended individuals to maintain. This hypothesis was criticised due 

to the lack of a clear physiological link between signal expression and defence 

production in aposematic species (Guilford and Dawkins, 1993), although the 

resource competition model, whereby defences and signals compete for a 

shared resource, such as antioxidants, may offer a solution (Blount et al., 2009, 

2012). In contrast, some modelling approaches instead find that associations 

between conspicuous coloration and defences will break down (e.g. Leimar, 

Enquist and Sillen-Tullberg, 1986) or that defended species should prioritise 

investment in defences, which do not carry the detection costs associated with 

warning signals (e.g. Speed and Ruxton, 2007). This would lead to negative 

correlations between signals and defences. However, further theoretical 

studies, incorporating a greater awareness of the importance of predator 

behaviour (Endler and Mappes, 2004), suggest that signal honesty could occur 

even without the need for a strictly-Zahavian handicap mechanism (e.g. 

Guilford, 1994; Speed et al., 2010; Speed and Franks, 2014). Considering the 

relative costs of signal and defence production may also explain why honest 

and dishonest relationships between signals and defences occur: positive 

correlations between these two strategic elements should arise when their 

respective costs increase in parallel, while negative correlations are expected 

when they do not (Speed and Ruxton, 2007). 

Across species, several evolutionary mechanisms have been proposed to 

underpin the relationship between visual signals and secondary defences 

(Summers et al., 2015). Interactions with other species mimicking the defended 

prey (Franks, Ruxton and Sherratt, 2009), cautious or “go-slow” behaviour on 

the part of predators (Guilford, 1994), exaptation through other functions of 

visual signals (Lee, Speed and Stephens, 2011), and resource allocation trade-

offs (Blount et al., 2009), are all thought to have the capacity to lead to honest 

signalling between populations or species (Holen and Svennungsen, 2012; 

Summers et al., 2015). However, empirical tests across species are restricted to 

very few taxa, focusing primarily on poison frogs (Dendrobatidae) and ladybirds 

(Coccinellidae). While most of these studies revealed a positive correlation 

between the strength of the signals and defences, or signal honesty (Summers 
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and Clough, 2001; Cortesi and Cheney, 2010; Santos and Cannatella, 2011; 

Arenas, Walter and Stevens, 2015), others did not (Darst, Cummings and 

Cannatella, 2006). There is also substantial variation in the methods used to 

assess coloration, increasingly but not always accounting for predator vision, 

and chemical defences, either quantifying known toxins or measuring the 

effects of extracts in bioassays with mice, brine shrimp or Daphnia water fleas. 

These inconsistencies are likely to contribute to the contrasting trends found in 

the same or closely-related species, such as poison frogs (Daly and Myers, 

1967; Summers and Clough, 2001; Darst, Cummings and Cannatella, 2006; 

Santos and Cannatella, 2011; Maan and Cummings, 2012), and make it difficult 

to compare between studies. Further work in other study systems is needed to 

put conflicting results in context and gain a better sense of general trends in the 

relationship between coloration and defence in the wild (Stevens, 2015; 

Summers et al., 2015). 

Burnet moths (Zygaenidae) provide a valuable opportunity to test the 

relationship between signals and defences across closely-related species. 

These diurnal aposematic moths are chemically-defended, with at least 45 

species known to contain the cyanogenic glucosides linamarin and lotaustralin 

(Davis and Nahrstedt, 1982; Zagrobelny et al., 2004), rendering them highly 

distasteful to predators. In the Western Palearctic, the Zygaenidae are 

represented by three subfamilies: the Zygaeninae, Procridinae and 

Chalcosiinae. Variation in wing coloration is subtle within the Zygaeninae, and 

more dramatic between subfamilies: while the Zygaenidae display classic 

warning signals, with red markings on a dark background, temperate species of 

Procridinae, or forester moths, are characterised by iridescent green or dull 

brown coloration (Drouet, 2016), which is generally considered cryptic (Efetov 

and Tarmann, 1999). The single representative of the Chalcosiinae in Western 

Europe, Aglaope infausta (L.), has brown forewings with discrete red markings 

and red hindwings. In addition, molecular data and recent phylogenies of the 

Zygaenidae and the genus Zygaena are available (Niehuis, Naumann and 

Misof, 2006a, 2006b, 2006c; Niehuis et al., 2007), enabling evolutionary 

relationships to be accounted for when comparing between species. 
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My study provides meaningful measures of wing coloration in 14 zygaenid 

species, from the perspective of their most likely predators (Tremewan, 2006), 

using digital photography and models of avian vision (Endler and Mielke, 2005; 

Stevens et al., 2007a). Individuals were collected over two field seasons, in 

2015 and 2016, from a range of locations in Denmark, France and the UK. For 

their chemical defences, a liquid chromatography – mass spectrometry (LC-MS) 

protocol refined for the detection of cyanogenic glucosides in the Zygaenidae 

and their host plants was used to accurately measure the levels of linamarin 

and lotaustralin in each sample (see Chapter 4). Put together, these results 

allow a number of questions to be addressed, from variation in signals and 

defences over time to the relationship between coloration and toxicity both 

within and between species. Moreover, although many species of Zygaenidae 

are known to be aposematic, comprehensive studies of their chemical defences 

have focused on Z. filipendulae (e.g. Zagrobelny and Møller, 2011) and, to a 

lesser extent, Z. trifolii (Franzl, Nahrstedt and Naumann, 1986; Holzkamp and 

Nahrstedt, 1994). The data shown here represent the first detailed exploration 

of the chemical defences and coloration of multiple species in this family, and 

add to a relatively small number of studies investigating the relationship 

between signals and defences across species. The combined use of 

sophisticated objective measures of defence strength, quantification of 

coloration as perceived by relevant predators and phylogenetic controls make 

this a particularly valuable contribution to the field of honest signalling in 

aposematism. 

5.3 Methods 

5.3.1 Specimen collection and rearing 

Individuals of 14 species were collected in spring and summer 2015 and 2016, 

from a range of locations in Denmark, France, and the UK (Table 5.1, Figure 

5.1; see Appendix 5.1 for full details of collection numbers and localities). 

Specimens were collected at the larval or pupal stage then reared to maturity in 

individual boxes with air-holes, ensuring that only virgin individuals were used 

for analysis. After collection, larvae and pupae were kept in an incubator at 

20°C, with a 16:8h day:night cycle, following protocols from previous work on Z. 

filipendulae (Zagrobelny et al., 2007a). Each species was provided with sprigs 
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of the same host plant as they were found on in the field, ad libitum and 

checked daily for freshness (Table 5.1). After emergence, and once their wings 

were fully expanded, the imagines were euthanised by placing them in a -80°C 

freezer. Their wings were dissected for photography, then the entire sample 

was placed in 1ml 80% methanol in preparation for LC-MS analysis of 

cyanogenic glucoside content. Due to the difficulty of finding larvae or pupae of 

certain species, and high mortality, five species are limited to very small sample 

sizes (N=1 or N=2, see Table 5.1). 

Figure 5.1: Map of collection localities colour-coded by species, and illustrating 

five example habitats: (a) Holywell Bay, UK, (b) Bostraze Bog, UK, (c) Antigny, 

France, (d) Le Fournas, France, (e) Le Cialancier, France. The Danish locality 

where Z. filipendulae was collected is not represented. The colour of each circle 

represents the species collected in that locality (see key); circles with multiple 

colours indicate that several different species were found there. 
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Table 5.1: Number (N), species and host plants of photographed specimens. 

Species Country of 
collection Host plants at collection sites 

N 

2015 2016 
Aglaope infausta France Cotoneaster sp., Crateagus sp., Prunus 

sp. (Rosaceae) 21 17 

Rhagades pruni France Prunus spinosa (Rosaceae) 8 8 
Theresimima 
ampellophaga 

France Vitis sp. (Vitaceae) 0 1 

Zygaena cynarae France Peucedanum cervaria (Apiaceae) 1 0 
Zygaena ephialtes France Securigera varia (Fabaceae) 21 0 
Zygaena erythrus France Eryngium campestre (Apiaceae) 0 11 
Zygaena exulans France Polyphagous – host plant unknown 0 5 
Zygaena filipendulae Denmark,    

France, UK 
Lotus corniculatus, Dorycnium 
pentaphyllum, Hippocrepis comosa 
(Fabaceae) 

107 8 

Zygaena lonicerae France Trifolium sp. (Fabaceae) 0 1 
Zygaena minos France Pimpinella saxifraga (Apiaceae) 1 1 
Zygaena occitanica France Dorycnium pentaphyllum (Fabaceae) 0 2 
Zygaena sarpedon France Eryngium campestre (Apiaceae) 6 2 
Zygaena transalpina France Hippocrepis comosa, Securigera varia 

(Fabaceae) 3 13 

Zygaena trifolii UK Lotus pedunculatus (Fabaceae) 9 14 

5.3.2 Photography and image analysis 

As described previously (see Chapter 4), the right-hand wings were 

photographed in controlled conditions inside a dark room, with a calibrated, UV-

sensitive digital camera (Nikon D7000 fitted with a 105mm CoastalOptics quartz 

lens). Light was provided by an EYE Color Arc Lamp MT70 bulb (Iwasaki 

Electric Co. Ltd.), equivalent to D65 daylight conditions, and kept in a constant 

position at a 50° angle relative to the wings. To control for any remaining 

variation in illumination, a set of reflectance standards, reflecting 7% and 93% 

of all wavelengths of light respectively (Zenith Lite Diffuse Target sheets, 

SphereOptics, Pro-Lite Technology, Cranfield, UK), were included in each 

photograph. Each specimen was photographed twice, with a UV/infrared 

blocking filter (Baader UV/IR Cut Filter), and a UV pass and IR blocking filter 

(Baader U filter). 

Image analysis was performed using the multispectral image analysis toolbox in 

ImageJ (Troscianko and Stevens, 2015), according to the same protocols as 
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the analysis of Z. filipendulae wing photographs (see Chapters 2 and 4). 

Photographs taken with both filters were aligned and merged to produce a 

multispectral image with five layers, corresponding to reflectance in different 

parts of the visual spectrum: vR, vG, vB, uR and uB (see Chapter 2 for details). 

Images were linearised and normalised (Stevens et al., 2007a), scaled to 100 

pixels/mm, then mapped to avian vision to describe coloration from the 

perspective of the moths’ most likely visual predators (Tremewan, 2006).  My 

previous analyses of lepidopteran wing colours using models of both types of 

avian visual system, violet-sensitive (VS) and ultraviolet-sensitive (UVS) (Hart et 

al. 1999), showed very similar results (see Chapters 3 and 4), so in this study I 

restricted the analysis to the UVS visual system. I converted reflectance data to 

avian cone catches with a polynomial mapping technique (Westland and 

Ripamonti, 2004; Stevens et al., 2007a; Pike, 2011; Troscianko and Stevens, 

2015), using data on the sensitivity of each cone type from the model species 

for this visual system, the blue tit, Cyanistes caeruleus (Hart et al., 2000). The 

end result was a composite of five image layers for each wing, with predicted 

cone catch values for each photoreceptor type: ultraviolet (UV or V), short 

wavelength (SW), medium wavelength (MW) and long wavelength (LW) 

sensitive photoreceptors, as well as double cones. Wing markings and 

background areas on each photograph were selected using the freehand tool in 

ImageJ, following the same general rules as for Z. filipendulae (Chapters 2 and 

4). I focused my analysis on the red markings of the forewings, as these are 

most often exposed to visual predators; in the Zygaenidae, the hindwings are 

covered at rest. However, several species did not present red markings on their 

forewings: for Rhagades pruni, the iridescent blue patch at the base of the 

forewing was selected as its markings, while the uniform forewing background 

colour was used in the unpatterned Theresimima ampellophaga. 

Based on the average cone catch values for the wing markings of each 

individual, several coloration metrics were calculated, as described in Chapters 

2, 3 and 4: luminance, saturation, hue, and both chromatic and luminance 

contrasts between markings and background colours in the wings. Luminance 

was taken as the double cone catch value (Jones and Osorio, 2004; Osorio and 

Vorobyev, 2005) and provides a measure of perceived lightness. Saturation, 

representing colour intensity, was determined as the Euclidean distance 
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between the colour of interest and the centre of a tetrahedral colour space, as in 

previous studies of animal coloration (Endler and Mielke, 2005; Stoddard and 

Prum, 2008). Hue was calculated using a technique broadly inspired by the 

concept of colour opponency, known to be important for colour vision in birds 

(Osorio, Vorobyev and Jones, 1999), whereby colour can be described in the 

form of a ratio. Following methods developed by Spottiswoode and Stevens 

(2011), principal component analysis (PCA) was performed on a covariance 

matrix of the standardised values of all colour patches for the four photoreceptor 

channels (UV, SW, MW, LW) for each visual system. The first principal 

component accounted for over 91% of variation in marking colour, so was used 

to derive a single ratio of cone catch values that captures the principal axis of 

variation in colour across samples. The specific equation used for hue values in 

this study is as follows: 

𝐻𝐻𝐻𝐻𝐻𝐻𝐹𝐹𝐹𝐹𝐹𝐹 (𝑈𝑈𝑈𝑈𝑈𝑈) =  𝐿𝐿𝐹𝐹+𝑈𝑈𝑈𝑈
𝑈𝑈𝐹𝐹+𝐹𝐹𝐹𝐹

 (5.1) 

UV, SW, MW, LW = standardised cone catch values for the UV-, SW-, MW- and 

LW- sensitive photoreceptors respectively. FWM = forewing markings,  

UVS = ultraviolet-sensitive visual system. 

High values of hue thus correspond to colours with relatively greater reflectance 

in the long wavelength (LW) and/or ultraviolet (UV) wavelength colour channel 

than in the short and medium wavelength channels (SW, MW), so represent 

redder colours, or higher ultraviolet reflectance, or both. 

Chromatic and luminance contrasts between the markings, when present, and 

background colours of the wings were measured as just-noticeable differences 

(JNDs). Two colours can be perceived as distinct in optimal lighting conditions if 

JND>1, and are increasingly easy to distinguish when JND>3 (Siddiqi et al., 

2004). Chromatic contrast was calculated according to a log version of the 

receptor noise-limited Vorobyev-Osorio colour discrimination model (Vorobyev 

and Osorio, 1998), which accounts for the sensitivity and abundance of each 

cone type and the noise in the photoreceptors, computed here with a relatively 

conservative estimate of the Weber fraction, ω = 0.05, for the most abundant 

cone type (Eaton, 2005; Håstad, Victorsson and Ödeen, 2005; Stevens, 2011; 

Stevens, Lown and Wood, 2014a). Following the same principle, luminance 
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contrast was taken as the natural logarithm of the ratio between mean double 

cone catch values of background and marking areas, divided by the same 

Weber fraction (Siddiqi et al., 2004). Theresimima ampellophaga, which has no 

wing markings, was excluded from this analysis. Further details of the rationale 

behind the calculations of colour metrics can be found in Chapter 2. 

5.3.3 Quantification of cyanogenic glucosides 

Cyanogenic glucoside concentration in each sample of plant or insect tissue 

was obtained via liquid chromatography – mass spectrometry (LC-MS), using 

the same techniques as for Z. filipendulae samples (see Chapter 4). Specimens 

were prepared for analysis by breaking them up in 1ml ice-cold 55% MeOH, 

with 0.1% formic acid and 0.044mM amygdalin, a cyanogenic glycoside not 

found in the Zygaenidae which acts as an internal standard. Details of the 

procedure for LC-MS analysis are recorded in Chapter 4. The mass spectral 

data were analysed with the native data analysis software. Sodium adducts of 

linamarin were compared to authentic standards (Møller, Olsen and Motawia, 

2016), and the total amount of each compound was estimated according to its 

Extracted Ion Chromatogram (EIC) peak areas and calibration curves for 

linamarin, lotaustralin, and amygdalin standards. The concentration of 

cyanogenic glucosides was determined by dividing the total amount of 

compounds in each sample by the specimen mass, recorded at the time of 

preservation. The LC-MS was run on samples taken in 2015 and 2016 

separately; however, I verified that any differences in toxicity measurements 

between years were not due to differences in the sensitivity of the equipment by 

re-running a subset of samples from both years in 2017 (see Appendix 5.2). 

5.3.4 Phylogenetic reconstruction 

The phylogenetic tree used for analysis was based on available sequences for 

the Zygaenidae, as used in previous work on the evolutionary history of this 

family (Niehuis, Naumann and Misof, 2006a; Niehuis et al., 2007): complete 

sequences of the mitochondrial genes for NADH dehydrogenase subunit 1 

(ND1), tRNA-leucine (tRNA-Leu), the large subunit ribosomal RNA (16S rRNA), 

tRNA-valine (tRNA-Val) and a large fragment of the sequence for the 

mitochondrial small subunit of rRNA (12S rRNA), as well as two nuclear DNA 
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fragments, an almost complete sequence of the small subunit rRNA (18S rRNA) 

and the 5’ end of the large subunit rRNA (28S rRNA). Following Niehuis, 

Naumann and Misof (2006a,b,c), the lunar hornet moth Sesia bembeciformis 

(Lepidoptera: Sesiidae) was used as an outgroup to root the tree. A set of 

sequences for each species photographed, and the outgroup, were acquired 

from GenBank (http://www.ncbi.nlm.nih.gov/; see Table 5.2 for taxa and 

accession numbers). The sequences for each gene were aligned using 

MUSCLE (Edgar, 2004), implemented by the ‘ape’ package (Paradis, Claude 

and Strimmer, 2004) in R 3.3.1 (R Development Core Team, 2015). These 

alignments were then concatenated to produce a final alignment (5697 base 

pairs [bp] long). Figure 5.2 provides a sense of the genetic distances between 

sequences in this alignment. 

Table 5.2: Species names and EMBL accession numbers for the sequences 

used in this study. 

Taxon Accession numbers 
ND1 16S rRNA* 12S rRNA 18S rRNA 28S rRNA 

Sesiidae 
Sesia bembeciformis (Hübner,1806) AJ844306 AJ831588 AJ785615 AJ830746 AJ844024 
Zygaenidae – Chalcosiinae 
Aglaope infausta (Linnaeus, 1767) AJ844314 AJ831596 AJ785623 AJ830754 AJ844032 
Zygaenidae – Procridinae 
Rhagades pruni (Denis & Schiffermüller, 1775) AJ844324 AJ831606 AJ785633 AJ830764 AJ844042 
Theresimima ampellophaga 
(Bayle-Barelle, 1808) AJ844325 AJ831607-8 AJ785634 AJ830765 AJ844043 
Zygaenidae – Zygaeninae 
Zygaena cynarae samarensis (Holik, 1939) AJ844389 AJ831677 AJ785698 AJ830829 AJ844107 
Zygaena ephialtes albaflavens (Verity, 1920) AJ844427 AJ831722 AJ785736 AJ830867 AJ844145 
Zygaena erythrus actae (Burgeff, 1926) AJ844390 AJ831678 AJ785699 AJ830830 AJ844108 
Zygaena exulans exulans (Hohenwarth, 1792) AJ844428 AJ831723 AJ785737 AJ830868 AJ844146 
Zygaena filipendulae gemina (Burgeff, 1914) AJ844429 AJ831724 AJ785738 AJ830869 AJ844147 
Zygaena lonicerae leonensis (Tremewan, 1961) AJ844433 AJ831728 AJ785742 AJ830873 AJ844151 
Zygaena minos ingens (Burgeff, 1926) AJ844407 AJ831698 AJ785716 AJ830847 AJ844125 
Zygaena occitanica huescacola 
(Tremewan & Manley, 1965) AJ844362 AJ831649 AJ785671 AJ830802 AJ844080 
Zygaena sarpedon lusitanica (Reiss, 1936) AJ844418 AJ831713 AJ785727 AJ830858 AJ844136 
Zygaena transalpina hippocrepidis 
(Hübner, 1799) AJ844442 AJ831737 AJ785751 AJ830882 AJ844160 
Zygaena trifolii diffusemarginata  
(Rothschild, 1933) AJ844444 AJ831739 AJ785753 AJ830884 AJ844162 
*: Including tRNA-Leu and tRNA-Val 

Phylogenetic relationships were assessed with maximum likelihood (ML) 

methods, using the ‘phangorn’ package (Schliep, 2011) in R. ML estimates 

calculated with the modelTest function in ‘phangorn’ identified a GTR+G+I 
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model, allowing for variation in mutation rates between sites and the presence 

of invariant sites, as the most appropriate model of evolution. Tree topology was 

then optimised by nearest-neighbour interchange (NNI), using the optim.pml 

function; no further improvement was seen with stochastic rearrangement. 

Finally, partitions allowing different rates of evolution for nuclear and 

mitochondrial sequences (3263 and 2434 bp respectively) and for each gene 

(ND1 = 1013 bp, 12S rRNA = 626 bp, 16SrRNA [+tRNA-Leu, tRNA-Val] = 1624 

bp, 18S rRNA = 1881 bp, 28SrRNA = 553 bp) were tested with the pmlPart 

function. The highest likelihood was found for a partitioned model considering 

each gene separately (logLikno partition=-19987.92, logLiknuclear/mitochondrial partition=-

19749.85, logLikpartition by gene=-19661.71; AICno partition=40049.83, 

AICnuclear/mitochondrial partition=39575.70, AICpartition by gene=39405.41). The final rooted 

tree (Figure 5.3) was bootstrapped with 1000 replicates, and nodes with less 

than 70% support were collapsed into polytomies. 

Figure 5.2: Distribution of pairwise differences between the concatenated 

sequences in the final alignment used for phylogenetic reconstruction, 

calculated following the K80 model, allowing for different rates of transitions and 

transversions (Kimura, 1980). 
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Figure 5.3: Phylogenetic tree of the Zygaenidae species used in this study. 

Branch labels represent bootstrap values for 1000 replicates. The scale bar 

corresponds to genetic distances between sequences, represented by the 

length of the branches. Image credits: S. bembeciformis, 

www.biolib.cz/en/image/id129534, ©Josef Dvořák; T. amphellophaga, adapted 

from www.lepinet.fr/especes/nation/lep/index.php?id=02140, ©Daniel Morel; all 

other images E. S. Briolat. 

5.3.5 Weather data 

Climatic data (monthly mean, minimum, and maximal temperature, total rainfall 

and total hours of sunshine in 2015 and 2016) were collated from publicly-

available historical observations at the Met Office and Météo France. Eight 

weather stations, closest to all field collection sites, were selected for analysis 
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(Table 5.3). Weather conditions in Denmark were not recorded, as samples of 

Z. filipendulae from Denmark were only collected in 2015 from a single field site.

Data from the three coldest months of the year (December, January, and 

February) and the three months prior to specimen collection (March, April, and 

May) were examined to provide a sense of winter and growing season 

conditions respectively. Records of hours of sunshine were not available for 

Cap Cépet station. 

Table 5.3: Locations of selected weather stations 

Station name Country (Region) Latitude Longitude Altitude 
(m) 

Camborne United Kingdom (Cornwall) 50.218 -5.327 87 
Cap Cépet – 7661 France (Provence Alpes Côte d’Azur) 43.079 5.941 115 
Dijon – 7280 France (Bourgogne Franche-Comté) 47.268 5.088 219 
Embrun – 7591 France (Provence Alpes Côte d’Azur) 44.566 6.502 871 
Montpellier – 7643 France (Languedoc-Roussillon Midi-

Pyrenées) 
43.577 3.963 2 

Nice – 7690 France (Provence Alpes Côte d’Azur) 43.649 7.209 2 
St Girons – 7627 France (Languedoc-Roussillon Midi-

Pyrenées) 
43.005 1.107 414 

Tours – 7240 France (Centre – Val de Loire) 47.445 0.727 108 

5.3.6 Statistical analyses 

All analyses were carried out in R 3.3.1 (R Development Core Team, 2015). 

Restricting the data to the seven species collected in both years (see Table 

5.1), differences in cyanogenic glucoside concentration and colour metrics 

between years were analysed with linear models. As results of previous work on 

Z. filipendulae suggested that there may be differences between sexes (see

Chapter 4), I included sex in these models, and allowed year, sex and species 

to interact. Luminance, hue and chromatic contrast were log-transformed to fit 

model assumptions. Winter and growing season weather data (temperature, 

hours of sunshine and rainfall) were analysed using linear mixed effects models 

(LMEs), with year as a fixed effect and month and location as random effects, 

using the package ‘lme4’ (Bates et al., 2014). Model assumptions were checked 

with the mcp.fnc function in the ‘LMERConvenienceFunctions’ package 

(Tremblay and Ransijn, 2014). 
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Due to the significant effects of year and sex on both toxicity and colour metrics, 

the relationship between colour metrics and cyanogenic glucoside levels across 

species were analysed for each year separately. In each case, the data were 

also analysed over both sexes, and for males and females separately. 

Phylogenetic generalised least squares (PGLS) models were applied to account 

for evolutionary relatedness between species (see Figure 5.3), using the 

package ‘caper’ (Orme, 2013) and allowing λ to be fitted by maximum 

likelihood, following methods presented in Mundry (2014). My basic approach 

was to test the relationship between cyanogenic glucoside concentration and all 

available colour metrics in a single model. However, to deal with the problem of 

collinearity, several models had to be run in each case, swapping out highly-

correlated variables. Variance Inflation Factors (VIFs) were calculated using the 

vif function in the ‘car’ package (Fox and Weisberg, 2011). Appropriate models 

were then chosen by a combination of a commonly-used “rule-of-thumb”, 

whereby VIFs should not exceed 10, and logical expectations of correlations 

(O’Brien, 2007; Dormann et al., 2013): for example, colour measures such as 

saturation, hue and chromatic contrast are calculated from the same cone catch 

values, so are expected to be correlated, while marking size is not tied to these 

variables. To fit model assumptions, for the dataset of females in 2015, 

saturation was transformed using the square-root function, and chromatic 

contrast was log-transformed. Cyanogenic glucoside concentration was log-

transformed for all the 2016 datasets. 

5.4 Results 

5.4.1 Patterns of coloration and toxicity across species, sex and years 

Both the year the samples were collected in and the sex of the individuals had 

an impact on the variables of interest, as demonstrated by significant 

interactions between sex, year and species (Table 5.4). Differences in 

cyanogenic glucoside concentration between years varied across species and 

between sexes: cyanogenic glucoside levels in females increased between 

2015 and 2016 in most species, with the exception of Z. sarpedon, whereas the 

picture was more complex in males (Figure 5.4). Clearer trends emerged from 

measures of coloration, with individuals from 2016 having consistently more 

salient markings (Figure 5.5). In terms of luminance, individuals of all species 
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with red wing markings collected in 2015 had paler wing markings than in 2016, 

although the extent of the difference varied between species and sexes (Figure 

5.5a; Table 5.4). Conversely, for all other colour metrics, values for these 

species were overall higher in 2016 than 2015, despite differences between 

sexes (Figures 5.5b-5.5f).  In Rhagades pruni, which displays iridescent blue 

markings, trends for luminance and hue were opposite to those seen in all other 

species (Figures 5.5a and 5.5d). Nevertheless, this led to similar effects on 

marking saturation and internal contrasts in the forewings, which were all higher 

in 2016 than 2015. As sex and year do strongly influence both colour metrics 

and cyanogenic glucoside levels, subsequent analyses of the relationship 

between colour and toxicity were carried out separately for each year and each 

sex. 

Table 5.4: Results of linear models testing differences in cyanogenic glucoside 

(CNGlc) concentration and colour metrics between 2015 and 2016. Significance 

levels: *:p<0.05, **:p<0.01, ***:p<0.001. 

Metric Factor F df P Significance 
CNGlc 
concentration 

Sex:Species:Year 3.213 5, 192 0.00826 ** 

Luminance Sex:Species:Year 2.354 5, 192 0.0422 * 
Saturation Sex:Species:Year 1.424 5, 192 0.217 - 

Sex:Year 0.171 1, 197 0.680 - 
Sex:Species 1.488 5, 198 0.195 - 
Species:Year 4.166 6, 203 <0.001 *** 
Sex 5.869 1, 203 0.0163 * 

Hue Sex:Species:Year 0.821 5, 192 0.536 - 
Sex:Year 0.0614 1, 197 0.805 - 
Sex:Species 1.525 5, 198 0.184 - 
Species:Year 27.948 6, 203 <0.001 *** 
Sex 4.995 1, 203 0.0265 * 

Chromatic contrast Sex:Species:Year 0.472 5, 192 0.797 - 
Sex:Year 0.0056 1, 197 0.940 - 
Sex:Species 3.080 5, 198 0.0106 * 
Species:Year 3.320 6, 198 0.00389 ** 

Luminance 
contrast 

Sex:Species:Year 1.123 5, 192 0.350 - 

Sex:Year 2.059 1, 197 0.153 - 
Sex:Species 5.571 5, 198 <0.001 *** 
Species:Year 10.674 6, 198 <0.001 *** 

Relative marking 
size 

Sex:Species:Year 0.84 5, 192 0.350 - 

Sex:Year 0.0013 1, 197 0.971 - 
Sex:Species 5.455 5, 198 <0.001 *** 
Species:Year 2.970 6, 198 0.00846 ** 
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Figure 5.4: Mean concentration of cyanogenic glucosides (CNGlc) in males and 

females of each species, collected in 2015 and 2016. Error bars represent 

standard errors. Filled circles = samples collected in 2015, Open circles = 

samples collected in 2016. 
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Figure 5.5: Mean values of coloration for males and females of seven species 

collected in 2015 and 2016. Error bars represent standard errors. Filled circles 

= samples collected in 2015, Open circles = samples collected in 2016. In (b), 

relative marking size is measured as the percentage of the forewing area 

occupied by contrasting markings. In (e) and (f), the red dashed line represents 

the threshold for discrimination, JND = 3. All contrasts exceed this threshold, 

with the exception of Z. sarpedon luminance contrast in 2015, suggesting that 

the internal pattern of the wings is visible to avian predators. 
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5.4.2 Relevant differences in climatic conditions between years 

Although collection sites were widely distributed across France and in Cornwall 

(UK), in a range of habitat types, there were broad climatic differences between 

the two years across all localities. The winter preceding the first set of field 

collections (December 2014 – February 2015) was significantly colder than the 

second (December 2015 – February 2016), with lower mean minimum, mean, 

and maximum temperatures (LME, minimum temperature, (χ2)1=38.714, 

p<0.001; mean temperature, (χ2)1=42.638, p<0.001; maximum temperature, 

(χ2)1=24.919, p<0.001; Figure 5.6). By contrast, spring 2015 was warmer, 

sunnier and drier than spring 2016 (LME, minimum temperature, (χ2)1=15.312, 

p<0.001; mean temperature, (χ2)1=22.472, p<0.001; maximum temperature, 

(χ2)1=19.436, p<0.001; hours of sun, (χ2)1=8.3144, p<0.001; rainfall, 

(χ2)1=6.662, p<0.001; Figure 5.7). 

Figure 5.6: Temperature ranges in the winters preceding the 2015 and 2016 

collections. Circles indicate monthly mean temperature and solid lines represent 

mean minimum and maximum temperatures. 
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Figure 5.7: Weather conditions in the growing season in 2015 and 2016. In (a), 

circles indicate monthly mean temperature and solid lines represent mean 

minimum and maximum temperatures, while bars in (b) and (c) correspond to 

total rainfall and hours of sunshine respectively. 

These differences in the winter and growing conditions are likely to have 

affected the growth, nutritional value and toxicity of zygaenid hostplants, and 

may have had a direct impact on the larvae themselves. For example, harsher 

diapause conditions during the first winter (2014-2015) may have reduced larval 

survival and caused surviving larvae to use up more resources, while warmer 
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and sunnier conditions may have altered the costs and benefits of pigmentation 

in the larval stages, potentially shaping the allocation of pigments in adults. 

5.4.3 Relationship between colour and toxicity across species, within years 

There were few significant correlations between measures of coloration and 

cyanogenic glucoside concentration across species (see Appendix 5.3 for full 

model tables). The trends that did emerge were similar whether males, females, 

or all specimens were considered, although these relationships were not always 

significant. For samples collected in 2015, there was a positive correlation 

between luminance and cyanogenic glucoside concentration (PGLS; across 

both sexes, F1,7=13.409, p=0.00954; for females, F1,6=14.975, p=0.00827, and 

close to reaching significance for males, F1,7=5.916, p=0.051; Figure 5.8a). 

There was also a trend towards a negative relationship between measures of 

colour (saturation, hue, and chromatic contrast between markings and 

background colours) and cyanogenic glucoside levels, but this was only 

significant in females (PGLS; saturation, F1,6=11.78, p=0.0139; hue, F1,6=15.68, 

p=0.00745; chromatic contrast, F1,6=13.713, p=0.0101; Figure 5.8b). 

In addition, the relationships emerging between coloration and toxicity were not 

the same in both collection years. In 2016, there was a positive correlation 

between luminance contrast and cyanogenic glucoside concentration, although 

this was not significant in females (PGLS; across both sexes, F1,9=6.803, 

p=0.00285; in males, F1,8=11.474, p=0.00954; in females, F1,6=3.957, p=0.0938; 

Figure 5.9). This relationship between internal luminance contrast and the level 

of chemical defences could not be attributed to trends in marking luminance. 

Unlike in 2015, there was no trend between luminance and cyanogenic 

glucoside concentration in either sex, or overall, in 2016 (Figure 5.10). There 

were no significant relationships between any other colour metrics and the 

levels of defensive chemicals in 2016. 
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Figure 5.8: Mean cyanogenic glucoside (CNGlc) concentration and (a) 

luminance and (b) hue in species sampled in 2015, calculated in males, females 

and across both sexes. Lines represent the results of PGLS models: solid lines 

correspond to significant results, dashed lines to results close to significance. 

Finally, maximum likelihood estimates found very little phylogenetic signal in the 

residuals of the regressions between colour metrics and cyanogenic glucoside 

levels (λ=1*10-6 in each case). However, λ is difficult to estimate with small 

sample sizes (Symonds and Blomberg, 2014; Arenas, Walter and Stevens, 

2015). This limitation should be taken into account, as most of the significant 

relationships between colour and toxin levels disappeared if λ was set to 1, 

corresponding to a Brownian motion model of evolution (Table 5.5). 
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Figure 5.9: Mean log-transformed cyanogenic glucoside (CNGlc) concentration 

and luminance contrast in species sampled in 2016, calculated in males, 

females and across both sexes. Lines represent the results of PGLS models: 

solid lines correspond to significant results, dashed lines to results close to 

significance. 

Figure 5.10: Mean value of luminance and cyanogenic glucoside (CNGlc) 

concentration per species, across both sexes, in specimens from 2015 and 

2016. Filled circles=2015, Open circles=2016. 
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 the relationship between cyanogenic   Table 5.5: Results of PGLS models testing
         glucoside concentration ([CNGlc]) and colour metrics, with λ estimated by 

         maximum likelihood (λ=1*10-6) and λ=1 (Brownian motion model of evolution). 

Dataset Model Results with λ=1*10-6 Results with λ=1 
2015, 
overall 

[CNGlc] ~ luminance F1,7=13.409, p=0.00805 F1,7=5.454, p=0.0522 

2015, 
males 

[CNGlc] ~ luminance F1,6=5.916, p=0.051 F1,6=2.669, p=0.153 

2015, 
females 

[CNGlc] ~ luminance F1,6=14.975, p=0.00827 F1,6=4.368, p=0.0816 

2015, 
females 

[CNGlc] ~ saturation F1,6=11.78, p=0.0139 F1,6=3.563, p=0.0108 

2015, 
females 

[CNGlc] ~ hue F1,6=15.68, p=0.00745 F1,6=5.277, p=0.0613 

2015, 
females 

[CNGlc] ~ chromatic contrast F1,6=13.713, p=0.0101 F1,6=4.583, p=0.0761 

2016, 
overall 

[CNGlc] ~ luminance contrast F1,9=6.803, p=0.0285 F1,9=4.241, p=0.0696 

2016, 
males 

[CNGlc] ~ luminance contrast F1,8=11.474, p=0.00954 F1,8=11.61 p=0.00926 

2016, 
females 

[CNGlc] ~ luminance contrast F1,6=3.957, p=0.0938 F1,6=3.637, p=0.105 

5.5 Discussion 

The primary aim of this study was to assess signal honesty across closely-

related species in the Zygaenidae. However, collecting specimens over two field 

seasons uncovered some unexpected complications, which highlight some of 

the difficulties associated with studying signal honesty across species or 

populations. I chose to analyse specimens collected in 2015 and 2016 

separately, as there were important differences in the measurements of colour 

and toxicity in these two years, across all species. In addition, my previous work 

on Z. filipendulae (see Chapter 4) suggested that differences between the 

sexes could be relevant, and relationships across species were indeed variable 

between sexes in this study. 

5.5.1 Signal honesty across species 

In terms of the original question, I found little evidence of signal honesty across 

these species. Luminance was positively correlated with the concentration of 

cyanogenic glucosides across species in 2015, but paler markings seem 
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unlikely to constitute more salient markings. In terms of other colour metrics, the 

only relationships that emerged in 2015 were negative correlations, suggesting 

dishonesty in signalling: saturation, hue and chromatic contrast were all 

negatively correlated with cyanogenic glucoside levels, especially in females. In 

2016, the only relationship between coloration and toxin levels was a positive 

correlation between luminance contrast and cyanogenic glucoside 

concentration. This could potentially be a useful cue for predators, but there 

were no other significant correlations between coloration and toxicity. 

Achromatic information is generally considered less important than chromatic 

cues for avoidance learning, especially in birds, but could still be relevant to 

them, in particular in terms of distinguishing small pattern elements (Stevens, 

2007) or triggering initial avoidance of aposematic patterns (Sandre, Stevens 

and Mappes, 2010). Luminance contrast in the pattern of prey items also 

facilitated detection and avoidance learning in experiments with mantids 

(Prudic, Skemp and Papaj, 2007), suggesting that it could be a useful cue for 

invertebrate predators, to which burnet moths are also exposed. To interpret the 

results of this present study with confidence, it would be useful to test which 

visual cues predators attend to when faced with a burnet moth-like pattern, and 

especially gauge their response to variation in luminance or chromatic features 

of the wing markings. It is also important to note that the trend in luminance 

contrast observed in 2016 was not due to differences in marking luminance, so 

was likely to be driven by changes in the luminance of the moth wings’ dark 

background scales. As the dark pigment melanin is involved in many other 

functions, from immune defences to thermoregulation (Solano, 2014), other 

selective pressures besides avoiding predation could be responsible for the 

trends in wing background luminance, and hence the relationship between 

luminance contrast and toxin levels. 

The absence of signal honesty in the Zygaenidae is contrary to the results of 

other recent studies of signal honesty across species, in ladybirds (Arenas, 

Walter and Stevens, 2015) and nudibranchs (Cortesi and Cheney, 2010), and 

demonstrates that quantitative signal honesty is not ubiquitous across families 

of aposematic species. Across species, a range of factors, including different 

habitat or microhabitat features (Endler, 1993), predator communities (Endler 

and Mappes, 2004; Nokelainen et al., 2014) and life-history traits (Longson and 
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Joss, 2006), are likely to impose different fitness costs and benefits on the 

production of both signals and defences. If these costs and benefits do not 

change in parallel, honest signalling may not evolve (Speed and Ruxton, 2007). 

In the Zygaenidae, the economics of signals and defences are likely to differ 

between species, as they vary in their means of acquiring toxins, as well as in 

their behaviour. The Procridinae behave more like cryptic species, flying rapidly 

and seeking to evade capture, while red-spotted burnet moths are much more 

sluggish (Hofmann and Tremewan, 2017), affecting their exposure to predators. 

Nevertheless, it is important to note that many studies of signal honesty across 

aposematic species have used conspicuousness of the prey pattern to natural 

backgrounds as their measure of signal strength, while this study concentrates 

on measures of coloration inherent in the moth wings themselves. For logistical 

reasons, it was not possible to photograph all the host plants of the different 

species. Some polyphagous species were collected as cocoons, so the host 

plant was unclear (e.g. Z. exulans), and, in any case, burnet moths are often 

found at rest on plants other than their hosts, and especially on flowers, which 

were not in bloom at the time when larvae and pupae were collected. 

Considering conspicuousness against natural backgrounds would be an 

important next step in this analysis, so as to make this data more comparable to 

previous studies. 

In addition to establishing which measures of colour are more relevant to 

predators, it would also be useful to gain a better understanding of how avian 

predators may experience the chemical defences of the Zygaenidae. Toxin 

levels may not always be the best indicator of a species’ defences. For 

example, Aglaope infausta and Rhagades pruni have the highest concentration 

of toxins across the studied species, but they are also much smaller, and so 

hold a smaller total amount of cyanogenic glucosides. It is reasonable to expect 

that the concentration of cyanogenic glucosides is most relevant, as this will 

determine the aversiveness of defensive secretions emitted by adults 

(Rothschild, 1985) and of the haemolymph if the moth is wounded. Size will also 

affect how attractive a prey item will appear to predators, as they balance the 

relative nutritional gain from consuming prey against the noxious effects of their 

defences to make educated decisions while foraging; in this case, smaller toxic 

prey, such as A. infausta or R. pruni, may be more likely to be avoided (Smith, 

165



Halpin and Rowe, 2014, 2016). Alternatively, small species could be more likely 

to be completely ingested, suggesting that the total amount of toxins, or how 

nasty the experience of consuming a specimen would be, might be more 

relevant to predator learning. Most of the observations of birds attacking burnet 

moths are anecdotal (Tremewan, 2006), so more rigorous investigations of how 

birds respond to different zygaenid species, for example whether or not they 

can taste and reject them, would be helpful in resolving this issue. 

Relatively few studies have explored the relationship between coloration and 

the levels of chemical defences across species while accounting for phylogeny 

(Summers and Clough, 2001; Cortesi and Cheney, 2010; Santos and 

Cannatella, 2011), so this present study makes a rare and valuable contribution 

to the field. There are of course limitations to this dataset, primarily due to very 

small sample sizes for certain species (N=1 or N=2), but these were included in 

the analysis as increasing the number of species in phylogenetic analyses is 

crucial to more reliable results. It would in fact be preferable to include even 

more species, especially when attempting to separately analyse specimens of 

each sex, or collected in different years. Small phylogenies suffer from a lack of 

power (Freckleton, Harvey and Pagel, 2002), making it difficult to accurately 

estimate parameters of phylogenetic signal, such as λ (Symonds and Blomberg, 

2014). My results demonstrate that the value of λ does alter the significance of 

the relationships between colour metrics and measures of toxin levels, although 

it does not dramatically change the overall conclusions. To strengthen this 

analysis, it would nevertheless be useful to sample more species and include 

more specimens from each species. As this is difficult to do using only field 

collections, especially when attempting to account for fluctuations in resource 

levels between seasons and differences between populations, raising 

individuals of each species from wild-caught gravid females could be a useful 

approach. 

5.5.2 Sex differences in signal honesty 

In this dataset, trends were broadly similar across both sexes, but the 

significance of the relationships did differ. For example, the negative 

relationship between measures of colour (hue, saturation and chromatic 

contrast) and cyanogenic glucoside levels across species was only significant 
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for females, and not when averages per species across both sexes were 

considered. This suggests that ignoring differences between the sexes could 

mask sex-specific trends or lead to significant relationships being overlooked, 

an important consideration as no existing studies of quantitative honesty across 

aposematic species and populations analyse males and females separately, 

even in taxa in which males and females are known to differ (e.g. in ladybirds; 

Arenas, Walter and Stevens, 2015). Sex differences in the relationship between 

coloration and defences have previously been found in seven-spot ladybirds 

(Coccinella septempunctata; Blount et al., 2012): larger females, thought to be 

more resource-limited than males, were found to have an honest relationship 

between elytra carotenoids and coccinelline levels, while males displayed a 

dishonest relationship, matching the predictions of the resource allocation 

theory (Blount et al., 2009). Female ladybirds may also benefit more from 

honest signalling as their larger size makes them a more attractive and 

conspicuous prey item to predators (Blount et al., 2012). Similar considerations 

could apply to burnet moths, which are also sexually dimorphic in size, with 

females much larger than males. 

Males and females will also experience different trade-offs of coloration as an 

aposematic signal with other functions, such as sexual selection. In burnet 

moths, little is known about the potential for mate choice based on coloration, 

but visual cues could be relevant to intra-specific communication, and this 

would likely differ between sexes (Zagatti and Renou, 1984; Toshova, Subchev 

and Toth, 2007; see Chapter 4). They also behave differently, with males flying 

to locate perched females calling with pheromones (Naumann, Tarmann and 

Tremewan, 1999). This could mean that the sexes are differentially exposed to 

predators, although it is unclear whether the more active sex would actually be 

more visible to predators or benefit more from quantitative signal honesty, as 

accurately assessing the colour of flying males may be more difficult than for 

females at rest. 

5.5.3 Differences between years and the effect of environmental conditions 

As well as analysing males and females together, existing studies of the 

relationship between signals and defences in aposematic species are typically 

restricted to specimens collected within a relatively short time frame, and do not 
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consider temporal variation in signals and defences (see Chapter 1). This 

present study suggests that, on the contrary, seasonal differences could be 

relevant, as I found significant variation in coloration and toxicity across two 

years of sampling. I made every effort to ensure that these between-year 

differences were not caused by inconsistencies in the experimental procedures, 

but rather reflected real effects seen in natural populations. Rearing conditions 

were kept as consistent as possible between specimens collected in 2015 and 

2016: although caterpillars were held in natural conditions during field trips, I 

regularly sent new pupae away to be housed in an incubator, with the same 

settings in both years. In addition, there were differences in coloration and 

cyanogenic glucoside between years in Z. trifolii specimens, collected at the 

pupal stage in the same location and immediately placed in the incubator, 

suggesting that any variation in larval rearing conditions was not responsible for 

the differences between field seasons. The time spent in the -80°C freezer 

between termination and photography was shown not to impact coloration (see 

Chapter 2), while the methods and equipment used for image capture did not 

vary between years. All images from both seasons were processed and 

analysed together. In terms of differences in cyanogenic glucosides, running a 

subset of samples from both years again together suggested that the 

differences observed between years could not be attributed to variation in the 

sensitivity of the LC-MS equipment (see Appendix 5.2).  

With only two years of data, it is difficult to determine the causes of the variation 

I found between years, especially the complex trends in cyanogenic glucoside 

levels. Nevertheless, there were general differences in climatic variables 

between years, across all the diverse areas in which samples were collected, 

suggesting that environmental conditions and available resources broadly 

differed between 2015 and 2016.  Environmental variation is likely to impact 

investment in coloration and chemical defences in burnet moths, although 

predicting these effects is not straightforward. Variation in temperature, for 

example, encompasses a range of measures (such as the overall mean 

temperature, extreme temperatures or seasonality) which may have different 

impacts on specific species (Seabra et al., 2015). In terms of coloration, 

temperature is known to affect both adult and larval colour patterns in 

aposematic tiger moths (Erebidae; Goulson and Owen, 1997; Lindstedt, 
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Lindström and Mappes, 2009). Fluctuations in the colour of adult warning 

signals across years in the wood tiger moth (Arctia plantaginis) have also been 

linked to variation in local ecological conditions (Galarza et al., 2014). The 

increased salience of red markings in burnet moths in 2016 compared to 2015 

could therefore be linked to temperature differences during overwintering or 

larval development. For example, colder conditions during the winter diapause 

of zygaenid larvae in 2014/2015 may have been more costly in terms of 

resources, reducing their ability to later produce as much pigment as in more 

favourable years. However, data would have to be collected over many more 

field seasons to properly test such speculations. 

Environmental conditions could also affect the moths’ levels of chemical 

defences, by influencing the cyanogenic glucoside content of host plants, or 

more generally impacting the amount of resources available for developing 

larvae. Cyanogenic glucoside levels in plant tissue are highly variable and 

strongly affected by environmental conditions (Gleadow and Woodrow, 2002), 

including temperature, nitrogen and phosphorus availability, carbon dioxide 

levels and water stress (Patel and Wright, 1958; Gleadow, Foley and Woodrow, 

1998; Woodrow, Slocum and Gleadow, 2002). Research on white clover 

(Trifolium repens) across gradients of latitude and altitude suggests that colder 

temperatures are associated with lower frequencies of cyanogenic plants 

(Daday, 1954a, 1954b, 1958; De Aráujo, 1976; Richards and Fletcher, 2002) 

although there can be contradictory effects within seasons (Stochmal and 

Oleszek, 1997). The effect of temperature on bird’s foot trefoil (L. corniculatus), 

the main host plant of Z. filipendulae, is less clear-cut (Ellis, Keymer and Jones, 

1977; Jones, 1977) and some studies have revealed opposite trends to T. 

repens, finding greater levels of cyanogenic glucosides at higher altitudes 

(Salgado et al., 2016). 

Moreover, the zygaenid species included in this study feed on a range of plants, 

which do not all possess cyanogenic glucosides. It is difficult to predict the 

effect of the differing conditions between the two years on all these plants, 

and more work is needed to determine how temperature changes over winter 

and during the growing season may impact the nutritional content of potential 

host plants, including the toxin load of cyanogenic plants. For the zygaenid 
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larvae able to sequester defences from their host plants, the cyanogenic 

glucoside content of those plants may affect their chemical defences under 

natural conditions, even though they are capable of de novo synthesis, and may 

be able to compensate for an acyanogenic diet in the laboratory (e.g. Z. 

filipendulae, Zagrobelny et al., 2007a). Unfortunately, I did not collect plant 

samples from study sites in both years, so the relationship between host plant 

and moth toxin content cannot be elucidated here. For the species relying 

completely on de novo synthesis of cyanogenic glucosides, the quality of host 

plants may still be important. Plant productivity will impact the availability of host 

plants for larvae to feed on, while nitrogen limitation will lead to reduced 

investment in cyanogenic glucosides due to trade-offs with other products, as 

suggested by the breakdown of cyanogenic glucosides during pupation to fuel 

chitin synthesis (Zagrobelny et al., 2007b). Interestingly, the species in which 

cyanogenic glucoside levels decreased between years in males (A. infausta, R. 

pruni and Z. sarpedon) all feed on acyanogenic host plants, suggesting that 

resource allocation trade-offs may broadly differ between species able to 

sequester cyanogenic glucosides from their host plants and those who cannot. 

Investigating coloration and chemical defences within populations across 

multiple seasons could be a valuable means of testing for quantitative honesty 

in aposematic signalling, providing the opportunity to study how resources are 

allocated to these two elements of aposematism in response to environmental 

conditions, and as the communities of predators and prey co-evolve. 

Overall, this study suggests that the relationship between signals and defences 

in and across aposematic species is more complicated and dynamic than may 

have been previously appreciated.  Although the sample sizes for certain 

species are small, this dataset provides cross-species information on colour and 

defences with a rare level of detail, using sophisticated measurements of well-

understood chemical defences and multiple measures of coloration, including 

marking size, saturation, hue, luminance and internal contrasts, while taking into 

account predator perception. The results indicate that the relationship between 

coloration and defence may not be consistent between sexes or between 

seasons, highlighting the potential pitfalls of ignoring these complicating factors. 

It is clearly difficult to obtain sufficient data to adequately account for sex, 

population and seasonal differences when testing for a relationship between 
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colour and toxicity in wild-caught animals, yet this could be crucial to capturing 

the complexity of aposematic signalling strategies. One slightly less ambitious 

step towards this more detailed approach would be to explore the effects of 

variation in resources across seasons in a single population. Conversely, 

measuring the coloration and toxicity of several species in a single location 

would help resolve the question of mimicry across closely-related species 

exposed to the same predator community. Moreover, in order to make 

inferences about signal honesty, it is of paramount importance to gain a better 

understanding of which aspects of aposematic signals are most relevant to 

predators, and may be used in their assessment of prey profitability, as well as 

how predators respond to variation in the concentration versus the total amount 

of toxins in a prey item. 
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Chapter 6 

Effect of spot presence, size, colour, 
and wing iridescence on predation rates 

of artificial burnet moths in the wild 

Real and artificial six-spot burnet moths on Penhale Sands. Photograph: E. S. Briolat 
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6.1 Abstract 

Aposematic species advertise their defences using conspicuous visual signals, 

often with multiple components and properties such as colour, brightness and 

pattern. The relative importance of each of these traits in generating predator 

avoidance is difficult to ascertain, yet is crucial to resolving the question of 

quantitative honesty in aposematism. Studies of signal honesty record 

differences in visual traits and variation in the potency of chemical defences, but 

the relationship between these two elements will only affect prey survival if their 

natural predators pay attention to these specific features and take them into 

consideration when making foraging decisions. To explore the relevance of 

multiple aspects of the six-spot burnet moth’s warning signals, artificial 

predation trials were carried out using burnet moth-like prey made of wire, 

paper, and plasticine. Separate experiments were designed to test firstly the 

effect of forewing spot colour and wing iridescence, and secondly the impact of 

spot presence and size, on attack rates by avian predators. To maximise the 

relevance of these experiments to burnet moths in the wild, the artificial prey 

were designed to mimic the colours of real six-spot burnets as perceived by 

avian predators, and were deployed in a natural habitat for this species. In 

addition, predation experiments were run during three distinct field seasons in 

2016 and 2017, enabling an investigation of the effect of seasonality on 

predation rates. Spot colour appeared to have a significant effect on predation 

risk for the moth-like baits, but, contrary to expectations that more conspicuous 

and redder signals would be more effectively avoided, prey with redder spots 

incurred higher predation rates. In support of previous work in Lepidoptera, the 

presence of an iridescent sheen appeared to have no impact on survival. 

Predation rates of moths with and without spots differed greatly between field 

seasons, yet there was no significant difference in predation rates of prey with 

red spots, either large or small, versus prey with a uniform brown wing colour, in 

any of the three field seasons. These results suggest that spot colour rather 

than pattern may be the most important aspect of burnet moth warning signals, 

and also highlight some strengths and limitations of artificial predation 

experiments in assessing the effectiveness of aposematic signals. 
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6.2 Introduction 

While most animals attempt to avoid catching the eye of a predator, defended 

species can benefit from a conspicuous appearance. These warningly-coloured, 

or aposematic, animals use bright or otherwise highly visible visual signals to 

warn predators of their unprofitability and deter attack (Ruxton, Sherratt and 

Speed, 2004). Conspicuousness itself is an advantageous feature, in terms of both   

aspects of signal function: the strategic, or informational, component, relating to the 

message carried by the signal, and the efficacy component, concerned with 

communicating this message most effectively (Guilford and Dawkins, 1991). By 

attracting the attention of predators, conspicuousness is an inherently costly 

trait: while defended prey may be rejected or survive an attack, being so 

obvious to predators is too risky for profitable prey. From a strategic 

perspective, conspicuousness is thus well-suited to conveying reliable 

information about prey defences (Sherratt and Beatty, 2003). Conspicuous 

signals are also considered to stimulate predator learning in multiple ways, from 

increased detectability to improved memorability (reviewed in Speed, 2000), 

thereby enhancing signal efficacy. Nevertheless, it is difficult to disentangle the 

effects of conspicuousness from those of novelty or distinctiveness (Ruxton, 

Sherratt and Speed, 2004). For example, experiments with domestic chicks (Gallus  

gallus domesticus) suggest that avoidance of distasteful water can be stimulated by 

unfamiliarity, regardless of the specific colour used (Shettleworth, 1972). Adding 

to this complexity, conspicuous warning signals are often composed of multiple 

pattern elements, or components (Rowe, 1999), and can be described by 

several visual properties, such as brightness, colour and pattern, as well as by 

their contrast to natural backgrounds. Teasing apart the relative contributions of 

these different signal features is a complex task, and a key area of future 

research into warning signals (Stevens and Ruxton, 2012; see Chapter 3). 

Many experiments have attempted to unpick the roles of colour and pattern in 

aposematic signals, yet this debate remains somewhat unresolved. Tests with 

artificial patterns in the laboratory have suggested that domestic chicks pay 

more attention to colour than pattern elements (Gamberale-Stille and Guilford, 

2003; Aronsson and Gamberale-Stille, 2008), yet other studies have shown that 

highly contrasting markings can also attract their attention (Osorio, Jones and 

Vorobyev, 1999). In similar experiments with blue tits (Cyanistes caeruleus), 
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colour again appeared more important than pattern, but the presence of 

contrasting markings did contribute to avoidance learning of distasteful prey, as 

striped prey benefitted from faster learning by predators (Aronsson and 

Gamberale-Stille, 2012b). Achromatic information may be most important for 

generating initial avoidance, by making the signals more salient, while colour 

plays a larger role in subsequent learning in birds, although perhaps not in 

invertebrates (Stevens and Ruxton, 2012; Prudic, Skemp and Papaj, 2007). In  

the field, work on Heliconius wing patterns and ladybirds supports the idea that  

colour may be the most important feature of warning signals (Finkbeiner, Briscoe  

and Reed, 2014; Arenas, 2015), yet other studies have demonstrated that the  

extent of melanisation (Hegna et al., 2013), distinctive markings (Wüster et al.,  

2004), achromatic contrast (Prudic, Skemp and Papaj, 2007) and overall pattern 

(Tan, Reid and Elgar, 2016) can have an impact on survival in predation trials.   

For colour itself, the relative importance of novelty, conspicuousness against the   

background, and specific colours per se, is also unclear. Long wavelength colours,   
such as red and yellow, may be more effective warning signals as they present  

more consistent chromatic and achromatic contrasts across different illuminations 

(Arenas, Troscianko and Stevens, 2014), making it difficult to separate the role 

of conspicuousness from any inherent quality of red and yellow signals. Further 

studies of the impact of signal features on predation risk in other systems would 

thus be helpful to clarify the situation. 

As reported in Chapters 2, 4 and 5, there is variation in wing colour and pattern 

in burnet moths (Zygaenidae), both within the six-spot burnet (Z. filipendulae) 

and across species. Establishing how these features contribute to protecting 

these insects will help to further our understanding of the roles of colour and 

pattern in aposematic species, and is also relevant to the question of signal 

honesty. Measuring variation in coloration among aposematic individuals, 

populations, and species, and relating these differences to variation in toxicity 

(Chapters 4 and 5), are only the first steps in investigating the potential for 

quantitative honesty in defended animals. For the relationship between signals 

and defences to have an impact on prey survival in the wild, variation in signal 

form must have a measurable effect on predator behaviour, affecting their 

foraging choices. Testing predator responses to variation in burnet moth signals 

will help clarify the relevance of any relationships, or absence thereof, between 
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signal characteristics and chemical defences in these species. The following 

experiments were designed to test the importance of variation in several 

features of the forewing pattern of Z. filipendulae: spot presence, size and 

colour. According to efficacy theory, and to the results of similar studies with 

ladybird models (Arenas, Walter and Stevens, 2015), redder and larger spots 

were expected to increase predator avoidance, and thus have a beneficial 

impact on prey survival. 

In addition, the forewings of the Zygaeninae are iridescent, displaying a striking 

green or blue sheen at certain angles of incident light. Iridescence is thought to 

prevent predation in a number of ways, by enhancing camouflage and hindering 

prey capture, especially when in motion (Pike, 2015), or deterring predators by 

heightening startle displays and functioning as an aposematic signal (Doucet 

and Meadows, 2009). Aposematism involving iridescence has often been 

proposed to exist in beetles, butterflies and true bugs (Bowers and Larin, 1989; 

Vulinec, 2015; Seago et al., 2009; Rutowski, Nahm and Macedonia, 2010; 

Pegram, Han and Rutowski, 2015; Fabricant et al., 2014), but very few studies 

have tested whether iridescence actually promotes avoidance of prey by natural 

predators (Fabricant et al., 2014; Pegram, Han and Rutowski, 2015). In learning 

trials in captivity, iridescent patches resulted in greater initial avoidance of 

hibiscus harlequin (Tectocoris diophthalmus) baits and affected the ability of 

great tits to generalise to similar stimuli (Fabricant et al., 2014). However, field 

experiments with blue and orange pipevine swallowtail butterflies (Battus 

philenor) found no effect of iridescence on prey survival (Pegram, Han and 

Rutowski, 2015). My study aimed to test whether iridescence could convey an 

additional protective effect on red and black patterned moth-mimicking prey, 

and thus might play a role in aposematism in the Zygaenidae. 

One of the most common and versatile techniques to investigate predatory 

behaviour in the wild is the use of predation experiments with artificial prey. In 

the field of visual signals, this tool has been successfully used to test the impact 

of a wide range of features, such as colour (Arenas, Walter and Stevens, 2015), 

luminance contrast (Flores et al., 2015), pattern complexity and other pattern 

features (Easley and Hassall, 2014; Rojas, Devillechabrolle and Endler, 2014; 

Barnett, Scott-Samuel and Cuthill, 2016), as well as predator preference for 
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local or novel morphs (e.g. Chouteau, Arias and Joron, 2016; Hegna, Saporito 

and Donnelly, 2013). More recently, artificial predation experiments have been 

refined to test more complex and dynamic factors affecting prey survival, such 

as the composition of the predator community and the frequency of different 

morphs in the prey community (Nokelainen et al., 2014; Wennersten and 

Forsman 2009), seasonality (Mappes et al., 2014), predator learning (Dell’Aglio, 

Stevens and Jiggins, 2016) and microhabitat structure (Willmott et al., 2017). 

Learning from these studies, my work was designed to comprehensively test 

the impacts of burnet moth signal features, in as naturalistic a setting as 

possible. The artificial prey were deployed in a natural habitat of Z. filipendulae 

in Cornwall (UK), ensuring that they were exposed to a relevant predator 

community, and camera traps were used to determine the key predator species 

attacking the artificial prey. One experiment was repeated across multiple 

seasons, to test the effect of seasonality on predation rates. Unlike most 

predation experiments with stimuli mimicking Lepidoptera, in which baits are 

pinned to trees or plants, the artificial moths used here were stuck into the 

ground, to closely resemble adult Z. filipendulae later seen on low-growing 

flowers in this same location. Finally, a key advantage of using artificial prey in 

studies of visual signals is the ability to carefully manipulate the stimuli, to test 

the effect of specific signal characteristics. With modern visual modelling 

techniques (Stevens et al., 2007a; Endler and Mielke, 2005), stimuli can even 

be designed to match colours as perceived by the visual system of relevant 

predator species. Here, the prey colours were chosen to mimic those of real 

burnet moths collected in Cornwall, as perceived by avian predators. Altogether, 

these precautions and technical details ensure that the effects of spot colour, 

pattern and iridescence measured here are as relevant as possible to the 

predation risks experienced by wild burnet moths. 

6.3 Methods 

6.3.1 Colour measurements from wild burnet moths 

I collected Z. filipendulae caterpillars and cocoons (n=50; nmale=23, nfemale=27) 

from three sites in Cornwall, UK: Holywell Bay (50° 23’ 22.53’’ N, 5° 40’ 13.56’’ 

W), Lamorna Cove (50° 3’ 40.50’’ N, 5° 33’ 16.70’’ W) and Pendeen Watch (50° 

9’ 50.42’’ N, 5° 40’ 13.56’’ W) in May and June 2015. The moths were reared to 
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adulthood inside an incubator (16:8h day:night cycle, temperature at 21°C), 

conditions similar to those used in previous projects with this species 

(Zagrobelny et al., 2007a), then euthanised in a -80°C freezer immediately after 

eclosion. As described in Chapters 2, 4 and 5, I then cut their wings off and 

photographed them on a background of grey ethylene-vinyl acetate (EVA), 

using a calibrated Nikon D7000 camera. Photographs were taken in controlled 

lighting conditions inside a dark room, illuminated by an EYE Color Arc Lamp 

MT70 bulb (Iwasaki Electric Co. Ltd.), emitting a spectrum of light similar to D65 

daylight conditions. All images included a scale bar and a set of 7% and 93% 

reflectance standards, which reflect light equally at every wavelength, so as to 

control for any variation in light conditions. 

Each specimen was photographed twice, using different filters (a UV/infrared 

blocking filter [Baader UV/IR Cut Filter], transmitting between 400 and 700nm, 

and a UV pass and IR blocking filter [Baader U filter], transmitting between 300 

and 400nm). Merging these photographs yields a set of four image layers, 

corresponding to different parts of the visual spectrum: long wavelength (LW), 

medium wavelength (MW), short wavelength (SW) and ultraviolet (UV). 

Subsequent image analysis was performed using a dedicated image calibration 

and analysis toolbox in ImageJ (Troscianko and Stevens, 2015); images were 

linearised and normalised (Stevens et al., 2007a) as per the methods described 

in the software guide. The wing colours were then analysed from the 

perspective of potential predators, which in this case are most likely to be birds, 

with anecdotal reports of burnet moth predation attributed to many different 

species, including blackbirds and skylarks (Tremewan, 2006). In order to do 

this, the moth wing images were mapped to the two known categories of avian 

visual system, which differ in the sensitivity of their most shortwave-sensitive 

cone type (the violet-sensitive [VS] and ultraviolet-sensitive [UVS] groups; Hart, 

Partridge and Cuthill, 1999), using data from their respective model species, the 

blue tit Cyanistes caeruleus (Hart et al., 2000) and the peafowl Pavo cristatus 

(Hart, 2002). Using the same software package (Troscianko and Stevens, 

2015), linearised and normalised images were transformed via a polynomial 

mapping technique with a D65 irradiance spectrum (Westland and Ripamonti, 

2004; Stevens et al., 2007a; Pike, 2011), yielding five image layers, with 

predicted cone catch values for each photoreceptor type: ultraviolet- (UV or 
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VS), short wavelength- (SW), medium wavelength- (MW) and long wavelength- 

(LW) sensitive photoreceptors, as well as double cones. Though potential 

predators of burnet moths include species falling in both avian groups (see 

Chapters 4 and 5), all subsequent analysis and stimulus design was based on 

the ultraviolet-sensitive visual system alone. 

Only the right forewing of each individual was measured, as the wings are 

iridescent, so the direction of the light source and wing scales affects their 

colour. Wing markings and background areas were selected using the freehand 

tool in ImageJ, and cone catch values for every photoreceptor type were 

measured. After viewing the resulting data, one outlier was removed from the 

final dataset (n=49; nmale=22, nfemale=27). I used these values, along with size 

measurements of the same individuals, to design the artificial prey for the 

following experiments. 

6.3.2 General design of artificial prey 

The overall shape of the artificial prey was designed to mimic a burnet moth at 

rest, with two triangular forewings either side of a black body. I drew the wings 

in Inkscape, then printed them onto waterproof paper (Xerox Premium 

NeverTear 120μm) using a laser printer (HP Color Laser JetPro M252dw). 

Experiment 1 was designed to test the effect of variation in the red forewing 

spot colour, and of the presence or absence of iridescence, on predation rates 

for artificial moths in the wild: each artificial moth had a unique spot colour, and 

was either iridescent (I) or matte (M). For Experiment 2, four treatments were 

devised to test the effect of spot size on predation rate: large spots (LS), small 

spots (SS), and two uniform treatments (ULS and USS, matching the overall 

colour of the LS and SS stimuli respectively; Figure 6.1).  Spot size was based 

on measurements of red spot area in the wild burnet moth dataset described 

above, with the large and small spots corresponding to the 5th and 95th 

percentiles respectively (Table 6.1). To maximise detectability while remaining 

within the natural size range of Z. filipendulae, total wing area of stimuli in both 

experiments was based on the 95th percentile of the wild burnet moth dataset 

(Table 6.1). 
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I assembled the printed wings into artificial moths by threading them through the 

middle onto lengths of gauge 19 green floral wire; the wire was then folded back 

90°, so that the moth would lie parallel to the surface when the wire was 

inserted into the ground. The body was represented by a cylindrical piece of 

non-toxic black modelling clay (NewplastTM), 15 mm long and 4 mm in diameter, 

crafted with a clay extruder to obtain a consistent size. This was glued to the 

middle of the moth with superglue, covering the wire, and hooked over the tip of 

the wire at the front of the moth for additional security (Figure 6.4b). 

Figure 6.1: General design and dimensions of all the artificial prey (a) and wing 

patterns used in Experiment 2 (b). Moth wings in Experiment 2 are the same 

size as those in experiment 1. LS = Large spots, SS = Small Spots, ULS = 

Uniform equivalent to large spot treatment, USS = Uniform equivalent to small 

spot treatment 

Table 6.1: Size of forewings and red spots in the wild moth dataset and the 

experimental stimuli. All artificial prey in Experiments 1 and 2 were the same 

size; spot size in Experiment 1 was identical to spot size in the LS treatment of 

Experiment 2 (LS = large spots, SS = small spots). r = spot radius 

Wild burnet moth dataset Artificial prey 
5th 
percentile 

Mean ± s.d. 95th 
percentile 

SS stimulus LS stimulus 

Forewing 
area (mm2) 54.18 65.65 ± 8.26 79.19 78 78 

Total spot 
area (mm2) 7.99 11.90 ± 2.44 15.28 

7.8 (6 spots with 
r = 0.64mm)  

14.94 (6 spots 
with r = 0.89mm) 
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6.3.3 Colour matches between wild burnet moths and artificial prey 

Following Arenas, Walter and Stevens (2015), artificial prey colours were 

chosen based on the visible spectrum of reflectance of natural moth wings 

(wavelengths between 400 and 700 nm). I selected printed colours to match 

those of real burnet moths from the dataset described above, according to a 

trichromatic model of bird vision. As photoreceptor cone catches in the wild 

burnet moth dataset did fall into normal distributions, median values were used 

to define “ideal” black and red colours to which the artificial prey colours should 

be matched. Colour matches were found via a combination of feed-forward and 

feed-back processes, using custom-made plugins in ImageJ. All colours were 

printed onto waterproof paper (Xerox Premium NeverTear 120μm) using a laser 

printer (HP Color Laser JetPro M252dw). Initially, a calibration sheet of 1026 

randomly-generated colours was produced (Figure 6.2a), photographed in the 

same conditions and with the same equipment as the moth wings, then 

transformed to a trichromatic model of bird vision as described above. This was 

used to generate a polynomial model relating printer colours to avian cone 

catches, from which I could estimate the RGB values corresponding to the 

“ideal” black colour. To obtain the best possible match, I then generated a 

second sheet of colour swatches (Figure 6.2b), with colours varying randomly 

around the model’s best RGB estimate. Similarity between the “ideal” and 

printed colours was then assessed by calculating just-noticeable differences 

(JNDs, following the receptor-noise limited Vorobyev-Osorio model [Vorobyev 

and Osorio, 1998]; see details in Chapter 2). I chose a colour differing from the 

“ideal” black by less than 1 JND, at which point the colours are not 

distinguishable by avian vision, even in perfect lighting conditions (Siddiqi et al., 

2004). This colour formed the black background colour of every artificial moth, 

with the exception of iridescent moths (treatment I) in Experiment 1. The same 

technique was used to find the closest match to the colour of the red forewing 

spots, used in the LS and SS treatments, as well as to create the uniform 

treatments, ULS and USS, in Experiment 2 (Figure 6.2c-e; Table 6.2). For these 

uniform treatments, the “ideal” colours were based on measurements of the 

overall colour of wings in the LS and SS treatments respectively, printed to size 

and photographed using the same protocols as the colour calibration sheets. 
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Table 6.2: Photoreceptor cone catches and contrasts between burnet moth 

colours and printed colours for the artificial prey. LS = Large spots, SS = Small 

Spots, ULS = Uniform equivalent to large spot treatment, USS = Uniform 

equivalent to small spot treatment. 

Median cone 
catch values 
for natural 

colours 

Cone catch 
values for 

chosen 
colours 

Difference 
between natural 

and matched 
colours 

Corresponding 
RGB values 
for printed 

colours 

Black 
background (all 
treatments 
except iridescent 
moths in Expt. 1) 

lw = 0.0689 
mw = 0.0798 
sw = 0.0707 

lw = 0.0694 
mw = 0.0785 
sw = 0.0719 

JND = 0.454 
R = 97 
G = 99 
B = 78 

Black 
background with 
iridescent paint 
(Expt. 1) 

lw = 0.0689 
mw = 0.0798 
sw = 0.0707 

lw = 0.0716 
mw = 0.0806 
sw = 0.0714 

JND = 0.443 
R = 116 
G = 113 
B = 87 

Red spot colour 
(LS and SS 
treatments) 

lw = 0.211 
mw = 0.0310 
sw = 0.0540 

lw = 0.207 
mw = 0.0314 
sw = 0.0557 

JND = 0.687 
R = 211 
G = 36 
B = 37 

ULS colour 
lw = 0.0900 

mw = 0.0597 
sw = 0.0535 

lw = 0.0927 
mw = 0.0615 
sw = 0.0539 

JND = 0.330 
R = 124 
G = 82 
B = 37 

USS colour 
lw = 0.0843 

mw = 0.0697 
sw = 0.0594 

lw = 0.0790 
mw = 0.0615 
sw = 0.0558 

JND = 0.0264 
R = 116 
G = 94 
B = 58 
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Figure 6.2: Calibration sheets used to find colour matches for the artificial prey. 

(a) Initial set of randomly-generated colours. (b-e) Set of random colours

generated from the model estimate to find the closest colour matches used in 

Experiment 2: for the black background (b), forewing spots in LS and SS 

treatments (c) and the ULS (d) and USS treatments (e) 

6.3.4 Red forewing spot colours for Experiment 1 

For Experiment 1, to test the effect of variation in the colour of the red forewing 

spots on predation rates, I generated 1000 artificial prey, each with a unique red 

forewing spot colour. These colours were created using custom-made plugins in 

a. b. 

c. d. 

e.
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ImageJ. Starting from the colour chosen to match the median red colour of the 

wild burnet moth dataset (and also used in the LS and SS treatments of 

Experiment 2), I generated new red colours by allowing each colour channel (R, 

G, B) to follow its own independent distribution, similarly to the pattern of natural 

variation. To assess this variation, the colours of the wild burnet moth dataset 

were converted to RGB values in ImageJ, using the polynomial model produced 

earlier for colour-matching and the standard deviations in each RGB channel 

were calculated (sdR = 4.17, sdG = 20.09, sdB = 5.92). The final 1000 RGB 

values were drawn from normal distributions centred on the value for the 

median red colour, with a standard deviation equal to 2 standard deviations as 

calculated above for each channel. The resulting colour set (Figure 6.3a) 

included 735 colours (73.5%) that fall within 3 JNDs of at least one of the 

median, 5th and 95th percentile values of red colours in the burnet moth dataset; 

these were considered to be within the natural range of colours for this species. 

A further 265 colours (26.5%) had a JND greater than 3 from all of these natural 

colours, making them distinguishable from real burnet moth colours; these were 

taken to represent colours outside the six-spot burnet’s natural range. 

In addition, to test the effect of iridescence on predation risk, a second set of 

1000 moths were produced. Previous experiments testing the effect of 

iridescence have relied on removing it from certain individuals, for example by 

painting over iridescent patches (Fabricant et al., 2014; Pegram, Nahm and 

Rutowski, 2015), but the prey used here are entirely artificial. Iridescence was 

re-created by painting prey items with interference paint (C.T. Interference 

Green-Blue #2484-1, Golden Fluid Acrylics ®, Golden Artist Colours Ltd.). This 

changes colour as the light angle varies, the key characteristic of iridescent 

surfaces (Doucet and Meadows, 2009). A realistic green iridescence was 

produced, mimicking the sheen of natural burnet moth wings, at least to human 

observers. Colours for the iridescent moths were obtained by measuring 

calibration sheets coated in the interference paint. The 1000 red spot colours for 

this iridescent (I) group (Figure 6.3b) were drawn from the same distributions as 

the previous, non-iridescent (N), set. When painted with the interference paint, 

photographed and measured as per the above methods, the colour sheet thus 

produced includes a similar number of colours falling within the natural range of 

burnet forewing colours (70%) and without (30%). The presence of the 
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interference paint also altered the colour match for the black background colour, 

so a new colour was chosen to best match the “ideal” black colour, based on 

photographs of colour calibration sheets coated with interference paint (Table 

6.2). As such, the effect of iridescence on predation risk could be tested by 

comparing the survival of moths with a black background colour matched to 

natural burnet moths, and red colours drawn from the same distribution, but 

differing in the presence or absence of an iridescent coating of interference 

paint. All photographs involving interference paint were taken with the light 

source placed at 0° from the wings, an angle at which no iridescence was 

produced. 

6.3.5 Colour measurements used in the analysis of Experiment 1 

For each red colour used in the experiment, a number of metrics were 

calculated, to be used in the final analysis of the effects of coloration on prey 

survival. As the perception of brightness differences in birds is thought to be 

mediated by their double cones (Jones and Osorio, 2004), luminance was 

measured as the cone catch values of each colour for blue tit double cones. 

Measurements of hue were based on cone catch values for the LW, MW and 

SW channels alone. Hue was calculated on the basis of colour opponency, 

following methods previously used in a number of studies of animal coloration 

(e.g. Spottiswoode and Stevens, 2011; Stevens, Lown and Wood, 2014a,b, see 

Chapters 2, 3, 4 and 5). Though the exact opponent channels operating in avian 

vision have yet to be determined, it is possible to construct ratios approximating 

a measure of hue by performing principal component analysis (PCA) on a 

covariance matrix of the standardised values for each colour channel, as in 

Spottiswoode and Stevens (2011). The first two principal components thus 

obtained were used to calculate two ratios forming logical colour channels 

(Hue1 and Hue2). Only Hue1, accounting for over 76% of the variance in 

colour, was included in subsequent analyses (hereafter referred to as hue). The 

specific equations for hue are as follows: 

(6.1) 

(6.2) 
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SW, MW, LW = Standardised cone catch values for the SW-, MW- and LW- 

sensitive photoreceptors respectively. 

Higher hue values therefore represent colours with relatively higher reflectance 

in the long wavelength colour channel, indicating redder colours. 

Internal chromatic contrasts were calculated between the red marking and black 

background colours for each prey. Chromatic contrasts were based on 

trichromatic JNDs following the Vorobyev-Osorio model (Vorobyev and Osorio 

1998), with blue tit cone ratios (Hart, 2001b) and a Weber fraction of 0.05. 

Luminance contrasts between colours were taken as the natural logarithm of 

the ratio of cone catches for the double cones, based on methods in Siddiqi et 

al. (2004). 

Finally, to gain a sense of the conspicuousness of the artificial prey against the 

natural backgrounds on which they were placed, 100 randomly selected prey 

from Experiment 1 (niridescent=nmatte=50) were photographed in situ in the field, 

with a calibrated Nikon D7000 camera and filters for both human-visible and UV 

wavelengths of light, as described above for photography of the model Z. 

filipendulae specimens. When estimating conspicuousness in the field, 

ultraviolet information was considered (Arenas, Walter and Stevens, 2015). 

Images were aligned, normalised and transformed to a tetrachromatic blue tit 

visual model using the same tools and techniques described above. On each 

prey item analysed, six red spots were randomly selected for measurements of 

spot colour and six equivalent circles, randomly placed on the black 

background, were used to measure the black colour in ImageJ. The natural 

background was measured by four rectangles (each the same width and length 

as the moth prey), randomly placed within three body lengths of the prey item. 

For each colour region (spot, black background, natural background), the 

measurements from each selected area were averaged to obtain one value per 

region and per prey item, and these were used to calculate chromatic and 

luminance JNDs between either the prey spots or black background colours and 

the natural background (Vorobyev and Osorio, 1998; Siddiqi et al., 2004; 

Troscianko and Stevens, 2015). 
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Figure 6.3: Sheets with 1000 colours used for the red forewing spots of artificial 

prey in Experiment 1, for the normal (a) and iridescent (b) stimuli. 

6.3.6 Field site and experimental procedures 

Experiments were carried out on Penhale camp (50° 22’ 38.97’’ N, 5° 8’ 27.99 

W), a 350 ha site owned by the Ministry of Defence, within Penhale Dunes 

SSSI, on the north coast of Cornwall. The area is characterised by fixed grey 

dunes with marram, humid dune slacks, dune grassland and shifting sand 

dunes on the shoreline (English Nature, 2005; Figure 6.4a). The six-spot burnet 

(Zygaena filipendulae) is commonly found in these habitats along the Cornish 

coast, and numerous caterpillars, cocoons and adults were observed on site 

a. 

b. 
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over the course of the experiments. In addition, restrictions to public access in 

this area enabled the experiments to proceed with minimal disturbance from 

humans or domestic animals. Experiments 1 and 2 were carried out between 

13th March and 27th April 2016, and Experiment 2 was then repeated from 14th 

April to 6th May 2017 and from 22nd June to 5th July 2017. These repeats were 

designed to test whether predation rates in spring were consistent across years, 

and whether the emergence of real burnet moths on site in summer had an 

impact on predator responses to the artificial prey. Experiment 1 and the first 

two runs of Experiment 2 took place before any adult moths emerged, ensuring 

that, while the birds on site were likely to have had previous experience of toxic 

burnet moths, none of them would have recently encountered this highly 

aversive stimulus. The final repeat of Experiment 2 was carried out while adult 

burnet moths were in flight on site; the first adults were observed on site 2 

weeks before the start of the experiment, allowing potential predators to 

experience these distasteful prey prior to being exposed to the artificial mimics. 

Figure 6.4: View of the field site (a) and examples of artificial prey used in 

Experiment 1 (b): matte on left, iridescent on right. 

Artificial prey were set out in non-overlapping transects (blocks; Cuthill et al., 

2005) 500m long, following paths and the contours of the landscape, such as 

dune ridges, streams and lakes. Along each transect, 100 prey items were 

placed 5m apart, for a total of 60 transects, or 6000 artificial moths (2000 for 

Experiment 1 and 1000, 1500 and 1500 for Experiment 2). Equal numbers of 

moths from each treatment were placed along every transect in a randomised 

b. a. 
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order (nI=nM=50 in Experiment 1, nLS=nSS=nULS=nUSS=25 in Experiment 2). In 

Experiment 1, the order of spot colours was also randomised. The moths were 

pushed into the ground so that their wings lay 3-5 cm above the surrounding 

vegetation, a height designed to mimic a moth resting on the nearby plants, 

while remaining sufficiently visible for transect checks. Each transect was put 

out at dawn, checked every 24 hours, and remained in the field for 72 hours in 

total. 

With regard to potential predators of the artificial prey, a total of 42 bird species 

were identified on site across the experimental periods, including 20 

insectivores or generalists which could attack the artificial prey. Camera traps 

placed on site in 2017 (Visortech® NX-4095, VicTsing® Trail Camera 

GEOD032AB and Sumikon® DSC-36.hd) recorded predation events by multiple 

species: carrion crow (Corvus corone), jackdaw (Corvus monedula), magpie 

(Pica pica), mistle thrush (Turdus viscivorus), meadow pipit (Anthus pratensis), 

stonechat (Saxicola torquatus), robin (Erithacus rubecula) and chaffinch 

(Fringilla coelebs) (Figure 6.5). Prey items were considered to have been 

attacked by birds if the plasticine bodies showed evidence of sharp v- or u-

shaped marks, characteristic of bird beaks, while shallow marks that could have 

resulted from rain and hailstorms or contact with nearby vegetation were 

ignored. Predation by rodents (Figure 6.6a) was clearly identified by the 

presence of bite marks, while tiny holes and regular scuff marks were 

considered to have been caused by insects and snails. During each daily check, 

attacked items and prey severely damaged by rodents or insects were 

photographed and removed. Birds were filmed consuming the entirety of the 

plasticine body (see Figure 6.5d), so baits on which the body was missing were 

also considered attacked. However, red foxes (Vulpes vulpes) were also 

observed attacking the artificial prey (Figure 6.6b), as reported in previous 

artificial predation experiments (eg. Valkonen et al., 2012). Mammals such as 

rodents and foxes appear to be attracted to plasticine (Rangen, Clark and 

Hobson, 2000), whether out of curiosity or as a source of minerals, but as they 

rely primarily on olfactory cues, it is important to separate these mammalian 

attacks from avian predation (Valkonen and Mappes, 2012). Foxes were 

recorded pulling the moths out of the ground and chewing them on three 

separate occasions, usually bending the wings, so severely damaged moths 
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with no clear evidence of peck marks were excluded from the analysis. I scored 

the items as predated or not while checking them in the field, so this was not 

carried out blind to treatment (although the specific hue of red spots in 

experiment 1 could not be determined in the field). However, I also 

photographed all prey items with marks on, and later used these images to 

check that my scoring was consistent across the experimental period, to 

achieve as objective an assessment of predation as possible. 

Figure 6.5: Examples of attacks filmed by camera traps. (a) Carrion crow 

(Corvus corone), (b) Magpie (Pica pica), (c) Jackdaw (Corvus monedula), (d) 

Mistle thrush (Turdus viscivorus), (e) Robin (Erithacus rubecula), (f) Stonechat 

(Saxicola torquatus). 
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Figure 6.6: Mammalian predators of artificial prey on site. (a) Mouse (likely 

wood mouse, Apodemus sylvaticus) and (b) Red fox (Vulpes vulpes). 

6.3.7 Statistical analyses 

All statistical tests were carried out in R versions 3.3.1 (R Development Core 

Team 2015). Survival data were analysed using Cox mixed effects survival 

analyses with the packages “survival” (Therneau, 2015a) and “coxme” 

(Therneau, 2015b). For each experiment, the transect number was classed as a 

random effect (Arenas, Walter and Stevens, 2015). Prey items attacked by 

rodents and foxes or damaged by insects were censored (Cuthill et al., 2005), 

as were items that could not be recovered, unless their exact location was 

known and nearby prey had been pulled out of the ground, in which case they 

were considered to have been attacked. For Experiment 1, spot hue, spot 

luminance and iridescence treatment (iridescent or matte) were included in the 

full model and allowed to interact; the best model was then identified via 

stepwise model simplification. As hue and chromatic contrast were highly 

correlated (Spearman’s rank correlation=0.9370537), the effects of chromatic 

and luminance contrasts and the iridescence treatment were tested in a 

separate model. These two models were subsequently compared using 

Akaike’s Information Criterion (AIC). Similarly, chromatic and luminance 

contrasts between the prey spots and the median red colour of the wild Z. 

filipendulae specimens were analysed in a separate model. For Experiment 2, 

season and treatment (LS, SS, ULS and USS) were the only fixed effects 

tested. 

In addition, to further validate the results, odds ratios and likelihood ratios, or G-

tests, were computed. The odds ratio (OR), the ratio of the probability of 

predation for one treatment to the probability of predation for another (Stevens 

et al., 2007b), was calculated to compare iridescent and non-iridescent prey in 
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Experiment 1, and for planned comparisons between spotted and uniform 

treatments (SS and LS versus ULS and USS), and treatments with the same 

average colour (LS and ULS versus SS and USS) in Experiment 2. G-tests 

were run for the same comparisons and to compare every treatment in 

Experiment 2, relative to a null hypothesis of equal predation rates for each 

group, using the “RVAideMemoire” package (Hervé, 2016) in R; results are 

reported for tests without a Williams correction as the dataset is sufficiently 

large (>200 datapoints), and including the correction did not alter the results 

(data not shown). 

Luminance and chromatic contrasts between a subset of artificial prey from 

Experiment 1 and their natural backgrounds were analysed with simple linear 

models, testing the effect of treatment (matte or iridescent) on contrast to the 

background; JNDs were log-transformed to fit the model assumptions. One-

tailed t-tests were used to verify that contrasts between the prey and 

backgrounds exceeded the threshold for discrimination (JND=3). 

6.4 Results 

In Experiment 1, run in March-April 2016, 7.15% of artificial prey were 

considered to have been attacked by birds. For Experiment 2, 8%, 12.13% and 

28.13% predation rates were recorded in March-April 2016, April-May 2017 and 

June-July 2017 respectively. Overall, predation rate per transect varied from 1 

to 71%, with a median predation risk of 7%. 

6.4.1 Experiment 1 – colour, iridescence and predation risk 

6.4.1.i Iridescence 

Experiment 1 was designed to test the effect of different aspects of prey 

coloration, including hue, luminance, and iridescence, on predation rates. There 

was a slight trend for iridescent prey to be attacked more than the matte ones, 

but this was not significant according to survival analysis (ORI vs. N=1.270, 

coxme, treatment, df=1, Χ2=0.182, p=0.700; likelihood ratio test, G=2.332, df=1, 

p=0.127; see Figure 6.7). 
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Figure 6.7: Survival of matte and iridescent artificial prey in Experiment 1. The 

difference in predation risk between these groups was not significant. 

6.4.1.ii Natural prey coloration 

The closeness of spot colour in the artificial prey to their natural burnet moth 

models had no impact on predation rates. Luminance and colour contrasts 

relative to the median red colour of the wild Z. filipendulae dataset had no effect 

on prey survival (coxme; luminance contrast to median red, df=1, Χ2=0.0227, 

p=0.880; chromatic contrast to median red, df=1, Χ2=2.883, p=0.0895). 

Similarly, whether spot colour was considered to be within the natural range of 

Z. filipendulae coloration (within 3 JNDs of the median, 5th percentile or 95th

percentile of the dataset) or outside the range (>3 JNDs above all these values) 

had no effect (coxme, range; df=1, X2=0.849, p=0.357). 

6.4.1.iii Hue, luminance and internal contrast 

Spot colour did have a discernible effect on survival of the artificial prey. While 

marking luminance had no effect on predation risk, prey whose spots had 

higher hue values, representing redder colours, incurred greater attack rates 

(Figure 6.8a; coxme, hue, df=1, Χ2=4.620, p=0.0316). Variation in spot hue also 

affects the chromatic and luminance contrasts between the spots and black 
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background colour of the artificial prey, which may be relevant to detection and 

attack by predators. Testing the effects of internal contrasts and iridescence on 

predation yielded a significant effect of chromatic contrast alone, with other 

factors dropping out of the model (coxme; chromatic contrast, df=1, Χ2=7.52, 

p=0.00610): prey with more contrasting patterns (higher JNDs between spots 

and background) had reduced survival (Figure 6.8b). The high JND values 

(>13) mean that all artificial prey had strongly contrasting markings, with spots 

easily discernible from the background wing colour on the basis of colour, yet 

greater chromatic contrast still appeared to further increase predation risk. 

Model comparison using AIC suggests that hue and internal chromatic contrast 

explain the experimental results equally well (AICcoxme(hue)=1403.84 , 

AICcoxme(chromatic contrast)= 1400.823). 

6.4.1.iv Conspicuousness to natural backgrounds 

Based on the subset of prey items photographed, all artificial prey were highly 

conspicuous to avian vision: chromatic contrast between prey colours and their 

natural environment was significantly greater than the threshold for 

discrimination, at JND=3 (one-tailed t-tests; T=66.641, df=99, p<0.001 and T= 

52.649, df=99, p<0.001 for spot and background colours respectively), as was 

luminance contrast (one-tailed t-tests; T=18.947, df=99, p<0.001 and T= 9.490, 

df=99, p<0.001 for spot and background colours respectively). There was no 

difference between the chromatic conspicuousness of iridescent and matte prey 

colours (F1, 98=0.0631, p=0.802 and F1, 98=3.241, p=0.0749 for spot and 

background colours respectively). However, iridescent prey were more 

contrasting to the natural backgrounds than matte prey, in terms of luminance 

(F1, 98=6.056, p=0.0156 and F1, 98=53.21, p<0.001 for spot and background 

colours respectively, Figure 6.9). 
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Figure 6.8: Prey with higher spot hue values (a) and higher chromatic contrasts

(b) had lower survival. For visualisation, spot hue and chromatic contrast values

were split into quartiles. Higher hue values represent redder colours (equation 

6.1). 
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Figure 6.9: Luminance contrast between artificial prey spot colour (a) and wing 

background colour (b) and their natural backgrounds in the field. Boxplots show 

the median and interquartile range. Significance levels: ***:p<0.001, **:p<0.01, 

*:p<0.05. 

6.4.2 Experiment 2 – spot size and predation risk 

Experiment 2 was designed to test the effect of the presence and size of spots 

on predation risk for artificial moth-like prey, and was run multiple times to 

investigate the possibility of differences in predation between years and 

seasons. Predation risk for the artificial prey was much higher overall in 2017 

than in 2016 (coxme; season, df=2, Χ2=59.176, p<0.001, with Tukey’s post-hoc 

tests: pSpring 2016 – Spring 2017<0.001, pSpring 2016 – Summer 2017<0.001, pSpring 2017 – Summer 

2017= 0.329). However, there was no interaction between treatment and season 

(coxme; season:treatment, df=6, Χ2=9.615, p=0.142), suggesting that 

preferences for particular spot patterns did not significantly differ between 

seasons. There was also no effect of treatment overall (coxme; treatment, df=3, 

Χ2=1.930, p=0.587; Figure 6.10), indicating no preference for prey with or 

without spots. This was confirmed by tests on each field season separately 

(Table 6.3). Overall, spotted prey were attacked slightly less than their uniform 

equivalents, and the redder prey were attacked slightly more than the darker 

ones, but neither trend was significant (ORLS and SS vs.ULS and USS=0.932, G=1.016, 

df=1, p=0.314; ORLS and ULS vs.SS and USS=1.085, G=1.383, df=1, p=0.240 

respectively). 
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Table 6.3: Effect of treatment (LS, SS, ULS and USS) on predation rates in 

each season for Experiment 2, as analysed by coxme models and likelihood 

ratio tests. LS= Large spots, SS= Small Spots, ULS= Uniform equivalent to 

large spot treatment, USS= Uniform equivalent to small spot treatment. 

Season 
coxme Likelihood ratio test 

df Χ2 p df G p 
All seasons 3 1.930 0.587 3 4.123 0.249 
Spring 2016 3 5.446 0.142 3 2.920 0.404 
Spring 2017 3 3.243 0.356 3 3.184 0.364 
Summer 2017 3 0.908 0.824 3 0.853 0.837 

Figure 6.10: Survival of artificial prey in Experiment 2, across all three seasons 

together. There are no significant differences between groups. Dotted lines 

indicate uniform prey. SS=small spots, USS=uniform small spots, LS=large 

spots, ULS=uniform large spots. 
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6.5 Discussion 

Of all the coloration and pattern metrics tested across Experiments 1 and 2, 

only chromatic components of the forewing markings had a significant impact 

on predation rates in the field. Using continuous variation in colour to design the 

artificial prey stimuli proved an effective technique to test the role of multiple 

colour variables in enhancing prey survival. Artificial prey with spots both redder 

in hue and more highly contrasting to the background colour of the wing had 

reduced survival. In Experiment 2, predation rates varied between field seasons 

but were not affected by the presence or size of red spots, echoing results of 

predation experiments on spot size and contrast in ladybird models (Arenas, 

2015). 

6.5.1 Surprising effects of colour, but not pattern or iridescence 

Collectively, these results are contrary to expectations for warning signals. The 

presence of spots, and an increased spot size, would typically be considered to 

constitute stronger warning signals, yet these characteristics did not have a 

protective effect on artificial prey in the field. Similarly, more contrasting and 

thus more conspicuous colours, as well as redder hues, are generally thought of 

as boosting the efficacy component of warning signals, making them more 

effective at generating avoidance (Stevens and Ruxton, 2012). In terms of 

strategic value, in an honest signalling paradigm, redder and more conspicuous 

individuals would be expected to be more strongly defended and thus more 

readily avoided. Among ladybirds (Coccinellidae) for example, redder species 

were found to be more toxic than orange, yellow and brown ones, and red 

ladybird models were correspondingly avoided more than artificial prey of other 

colours (Arenas, Walter and Stevens, 2015). The results of the present 

experiments seem to support previous work suggesting that colour may be 

more important than pattern (Finkbeiner, Briscoe and Reed, 2014), as colour 

does have an impact on predation, whereas spot presence and size do not. 

However, and contrary to predictions, the more conspicuous moths, in terms of 

internal contrast, were more likely to be predated; it is important to note that all 

prey in Experiment 1 were highly conspicuous against their natural 

backgrounds. While it is not possible to disentangle the relative importance of 

increasing internal chromatic contrast or redder hues in driving the higher 
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predation rates, in both cases the results contradict expectations based on 

warning signal theory. Detectability of the artificial prey thus appears to be the 

most important factor in determining the likelihood of attack by avian predators 

here, rather than any specific avoidance of aposematic patterns. 

In addition to these surprising results, this study found no evidence that 

iridescence was an effective aposematic signal; though the trend was non-

significant, if anything iridescent prey were attacked more than non-iridescent 

ones. This supports previous work on the pipevine swallowtail butterfly, Battus 

philenor (Pegram, Han and Rutowski, 2015), which similarly found no effect of 

iridescence on prey survival in the field. In the Procridinae, or forester moths, a 

sub-family of the Zygaenidae which share the chemical defences of burnet 

moths (though at a lower concentration; Mika Zagrobelny, pers. comm.) and are 

characterised by bright green, turquoise or brown iridescent wings, iridescence 

is thought to have a dual function: crypsis at rest in grasses and aposematism 

when feeding on exposed flowers (McNamara et al., 2011). In the present 

experiment, iridescence conferred no protection on artificial prey, whether by 

aposematism or improved crypsis, raising the question of the true function of 

iridescence in zygaenid moths. However, the effect of iridescence in these 

predation trials may be masked by the high detectability of the contrasting black 

and red markings; iridescence might thus still play a role in anti-predator 

defence in the Procridinae, which lack these markings. Compounding this issue, 

iridescent prey in this experiment displayed greater luminance contrasts to the 

surrounding environment than the matte prey, again increasing their visibility to 

predators. Alternatively, iridescence may be more relevant to the visual 

components of mate choice rather than to anti-predator defence, as has been 

suggested for a range of iridescent invertebrates (Doucet and Meadows, 2009; 

Fabricant et al., 2013), including B. philenor (Rajyaguru et al., 2013) and other 

Lepidoptera (Rutowski et al., 2005; Papke, Kemp and Rutowski, 2007; Kemp, 

2008; Rutowski, Nahm and Macedonia, 2010; Rajyaguru et al., 2013). 

6.5.2 Considerations when interpreting results, limitations and strengths of this 

study, and future perspectives 

An inherent weakness of artificial predation experiments such as those 

presented here is their inability to separate out the different phases of predation, 
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in particular initial detection of prey and acceptance of the item as a suitable 

food source after discovery. The results of Experiment 1 collectively suggest 

that more conspicuous prey items were more likely to be attacked, but cannot 

reveal whether many more of these items were located and subsequently 

rejected by predators or not. Moreover, the identical performance of spotted 

prey and their uniform colour equivalents could suggest that predators were not 

able to resolve the spots, or simply ignored them. If the decision to attack the 

prey is taken from a sufficient distance away, distance-dependent effects could 

make the colours of the spotted prey blend together, giving them a more cryptic 

appearance, as has been suggested for striped caterpillars (Barnett and Cuthill, 

2014; Barnett et al., 2017). However, this seems unlikely, as the moth and 

marking sizes are based on real moth measurements, and all predation events 

recorded on camera showed birds foraging at ground level, with plenty of 

opportunity to observe the stimuli before pecking them, rather than swooping in 

from above. 

Relatively few studies attempt to discover exactly which species are responsible 

for the attacks they record. In most cases, only general observations of the 

most commonly found avian species on site are used to provide a basic 

indication of potential predators, although more in-depth assessments of the 

predator community are sometimes carried out, such as transect counts 

(Valkonen et al., 2012; Nokelainen et al., 2014) or using data from ringing and 

mist-netting (Mappes et al., 2014). These more detailed observations have 

informed conclusions as to the impact of specific predator groups on predation 

risk (Valkonen et al., 2012; Nokelainen et al., 2014), and have been used to 

estimate encounter rates between specific predator species and prey morphs 

between microhabitats (Willmott et al., 2017). Deploying camera traps is a less 

labour-intensive method for acquiring accurate data on the actual predators 

participating in the experiment, although only a small subset of predations can 

be captured. Camera-trap footage, along with evidence from tracks and other 

clues, can help determine the visual systems through which prey appearance is 

processed in the wild, enabling researchers to analyse visual signals, whether 

aposematism or camouflage, in the most relevant ways (e.g. Troscianko et al., 

2016). Moreover, camera traps can uncover the role of unsuspected predators 

and provide information on the methods of predation, increasing the accuracy of 
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the end dataset. In these experiments, observing predation of moths by foxes in 

2017 allowed me to recognise predations for which foxes were most likely to be 

responsible, and which otherwise would have been erroneously attributed to 

birds. Observations of small birds, such as stonechats (Saxicola rubicola), 

pecking at the wings of the artificial prey without leaving any marks, highlighted 

the potential limitations of recording predations on the plasticine baits. 

Conversely, footage of a mistle thrush (Turdus viscivorus) entirely consuming 

the plasticine body enabled baits with missing plasticine bodies to be more 

confidently included as predations in the dataset. 

A further strength of the experiments reported here lies in repeating the 

predation trials over multiple seasons. While there was no change in predator 

preference for moths with or without spots across field seasons, there was a 

significant increase in average predation risk for all items between 2016 and 

2017. Environmental conditions are likely to be responsible for this change, 

although this is difficult to ascertain with only two years of data. Following an 

extremely dry winter, there were no water sources on site in 2017, where there 

had previously been several lakes and a stream running through the dunes; 

these visibly harsher conditions may have affected insect life on site and made 

foraging more difficult for insectivorous birds. As suggested by laboratory 

experiments, birds experiencing these harsher conditions may have been more 

willing to attack potentially defended prey (Barnett, Bateson and Rowe, 2007; 

Chatelain, Halpin and Rowe, 2013). In summer 2017, the presence of a new 

generation of young and naïve predators (as recorded by camera-trap footage) 

may have additionally contributed to the overall increase in predation rates, 

while making no distinction between spotted and plain prey. Mappes et al. 

(2014) demonstrated that the survival of artificial prey mimicking wood tiger 

larvae (Arctia plantaginis) varied across seasons in northern Finland: 

aposematic models were more at risk than cryptic models in July, coinciding 

with a high number of naïve fledgling birds. Correspondingly, aposematic 

lepidopteran larvae were less common at that time of year, when aposematism 

was a less-rewarding strategy. Differences in average predator naivety over 

time may also contribute to the maintenance of ontogenetic colour 

polymorphism in the striated shieldbug, Graphosoma lineatum, in which bugs 

emerging in early spring have conspicuous red and black markings, while later-
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emerging individuals have a paler, more cryptic form (Johansen et al., 2010; 

Tullberg et al., 2008). By contrast, the emergence of Z. filipendulae in coastal 

habitats in Cornwall in early summer coincides with the first foraging 

experiences of many fledgling birds, when predation risk for aposematic prey is 

expected to be at its highest. Predation risk for spotted prey, more closely 

resembling real burnet moths, was initially expected to decrease in the summer 

repeat of Experiment 2, when temperatures were warmer, more alternative 

invertebrate prey should be available and predators had had recent 

opportunities to experience the distasteful prey. However, the presence of naïve 

predators may have counteracted these effects, such that overall predation 

rates of spotted prey did not decrease in June-July. It would be interesting to 

repeat the experiment once more, later in summer, when all potential predators 

would have presumably experienced unprofitable aposematic prey. 

Nevertheless, the results of my experiments seem to suggest that colour alone 

may not be a sufficiently protective trait for wild burnet moths. Burnet moths 

advertise their toxicity, not only through visual conspicuousness, but also with 

several other types of signals, in particular gustatory and olfactory. When 

attacked, larvae of Z.filipendulae produce droplets of  defensive fluids from 

cuticular cavities, and adults secrete both fluids from their mouthparts and 

haemolymph from their legs (Zagrobelny et al. 2008). Larval defensive droplets 

contain compounds deterring predation by other invertebrates (Pentzold et al. 

2016), as well as cyanogenic glucosides, whose bitter taste may lead to taste-

rejection by avian predators. If an attack continues and the droplets come into 

contact with moth haemolymph or the predator’s digestive enzymes, the 

breakdown of the cyanogenic glucosides will release toxic cyanide. Moreover, in 

adults, pyrazines, “warning odours” commonly found in defended insects 

including Z. filipendulae and Z. lonicerae (Rothschild et al. 1984; Tremewan 

2006) combine with hydrogen cyanide (HCN) to produce a foul odour 

(Zagrobelny, Bak and Møller, 2008), vividly described by Miriam Rothschild as 

“close to physical pain”, and blamed for triggering asthma attacks (Rothschild, 

1961). Pyrazines in particular are known to play a key role in the multimodal 

signals of defended insects (Guilford et al., 1987). The combination of pyrazine 

odours and warning signals, such as red and yellow coloration, can cause birds 

to avoid even palatable stimuli (Rowe and Guilford, 1996), and pyrazines have 
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further been shown to contribute to avoidance of novel and conspicuous stimuli, 

as well as promote faster and more accurate learning of associations between 

signals and defences (reviewed in Rowe and Guilford, 1999). The relative 

effects of vision, smell and taste in triggering and maintaining avoidance of 

defended prey by predators are currently being investigated in the wood tiger 

moth (Arctia plantaginis; Emily Burdfield-Steel and Bibiana Rojas, pers. comm.), 

and similar work in the Zygaenidae is the next logical step towards a better 

understanding of the anti-predator strategy of these species. Experiments with 

stimuli mimicking burnet moths paired to distasteful baits, or associated with 

pyrazine odours, may come closer to a realistic test of avian responses to 

burnet moths. Moreover, these present experiments were strictly concerned 

with avian predation, but burnet moths are also vulnerable to many invertebrate 

predators such as ants and spiders, against which they deploy a suite of 

chemical defences in defensive droplets (Penzold et al., 2016). The 

combination of chemical and visual signals may be critical for survival in the 

wild, providing protection against a broader range of predators. 

Even without resorting to distasteful baits, this study highlights several ways in 

which artificial predation experiments can be improved to provide more detailed 

and reliable information about how visual signals affect predation risk in the 

wild. A better understanding of the most likely predators facilitates more 

accurate data collection, and can also help improve the design of artificial 

stimuli, by identifying the most relevant predator visual systems. Using more 

continuous variation in coloration, rather than discrete treatments, improves the 

statistical power of the analysis, which can be valuable in these typically very 

large experiments, in which thousands of artificial baits are deployed to ensure 

significant results despite low predation rates (e.g. over 12000 in a study of 

adder markings, Wüster et al., 2004). Finally, while it is not uncommon for 

predation trials to run over multiple field seasons, very few other studies have 

explicitly tested for an effect of seasonality on predation risk (but see Mappes et 

al. [2014] and Arenas [2015]). Predator naïvety, but also other relevant factors 

such as environmental conditions, predator condition and the community of 

alternative prey available, will all vary over time. Experiments attempting to 

unpick the importance of these variables, rather than testing only the role of 
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signal features, will help build a more comprehensive picture of predation risk 

 for aposematic prey in the wild. 
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Chapter 7 

Discussion: 
Aposematism in burnet moths – 
new insights and opportunities 

A pair of six-spot burnet moths, Z. filipendulae.  
Photograph: E. S. Briolat 
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7.1 Abstract 

Despite a long history of research since the theory was first proposed in the 19th 

century, warning coloration remains a fertile field of investigation. In this thesis, I 

studied the warning signals of Lepidoptera to explore how specific features of 

aposematic patterns may relate to quantitative variation in prey toxicity and may 

ultimately contribute to prey survival in the wild. I was able to take full 

advantage of recently-developed tools for analysing visual signals from their 

likely receivers, and sophisticated techniques to quantify defensive chemicals, 

to provide sensitive and ecologically-relevant insights. Having established that 

the six-spot burnet moth, Zygaena filipendulae, is more variable in appearance 

to avian predators than it seems to humans, and that reliable measurements of 

coloration could be obtained, I focused primarily on this species and its close 

relatives in the Zygaenidae. My investigations into the patterns of British moths 

using museum specimens suggested that most expectations for the form of 

aposematic wing patterns, based on typical warning signals across taxa and the 

predictions of efficacy theory, were met, at least to some extent. Defended 

species generally tended to possess more saturated, redder and more 

contrasting colours, making them more conspicuous against natural 

backgrounds. Concentrating on the six-spot burnet moth, very few signal 

features seemed to correlate with levels of cyanogenic defences, whether 

between or within populations, suggesting a lack of quantitative relationships 

between coloration and defences, and in some cases hinting at dishonesty in 

signalling. I found similar trends across species in the Zygaenidae, but these 

results also highlighted the importance of environmental variation and sex-

specific patterns in determining the relationship between colour and 

unprofitability. Finally, my predation experiments confirmed that variation in 

coloration does affect predator behaviour, albeit in sometimes unexpected 

ways. Collectively, these studies point to several general conclusions, 

principally the primary role of chromatic features, and especially internal 

chromatic contrast, in aposematic signals, and the complexity of the selective 

landscape affecting the relationship between coloration, toxicity and predator 

behaviour. These first forays into the warning signals of the Zygaenidae from 

the perspective of avian predators also highlight the significant potential of this 

family of moths as a study system in which to explore questions relating to 

aposematism. 
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7.2 General conclusions concerning the form of warning signals 

7.2.1 Quantitative signal honesty is not ubiquitous in aposematic species 

Both within and between populations of the six-spot burnet moth, Zygaena 

filipendulae, and across species of Zygaenidae, I found no clear evidence of 

quantitative signal honesty. There were very few significant correlations 

between measures of coloration and toxin levels, suggesting that in general, 

there was no quantitative relationship between signals and defences in these 

species. In terms of coloration, the trends that did emerge pointed to dishonesty 

in signalling, as more saturated, redder and more contrasting markings were 

associated with lower levels of cyanogenic glucosides, for example within the 

Holywell Bay population of Z. filipendulae and across females of the nine 

Zygaenidae species I studied in 2015. These results are in conflict with those of 

many studies of quantitative honesty in warningly-coloured species, including 

recent work on nudibranchs and ladybirds (Cortesi and Cheney, 2010; Arenas, 

Walter and Stevens, 2015; see Chapter 1). Although many theoretical models 

do find that quantitative honesty in aposematic species is possible, there are 

also many factors which may prevent the evolution of quantitative honesty as a 

stable strategy (Summers et al., 2015). First and foremost amongst these are 

disjunctions in the relative costs of signals and defences. Theoretical models 

suggest that, if the costs of one of these elements increases, while the other 

does not, investment in the least costly component will be prioritised, leading to 

negative correlations between quantitative measures of signals and defences 

(Speed and Ruxton, 2007). Even if coloration and defensive chemicals compete 

for shared resources (as hypothesised in the resource-allocation theory; Blount 

et al., 2009), aposematic species are expected to invest more in defences when 

resources are plentiful. High toxicity will be an effective deterrent on its own, 

while conspicuousness carries inevitable costs of visibility to resistant, naïve or 

highly-motivated predators. Strategic trade-offs between coloration and 

defensive chemicals may explain other negative correlations between signals 

and toxins, found in particular in very toxic poison frogs (Wang, 2011; Crothers 

et al., 2016). Many other circumstances promoting variation in signal form, such 

as trade-offs with other functions of visual signals and differences in predator 

communities (Mappes, Marples and Endler, 2005), could be responsible for a 

lack of signal honesty across populations and species. In burnet moths, the high 
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aversiveness of their defences and the fragility of their coloration, fading over 

time in natural populations, are likely to be important factors. 

Nevertheless, there were positive correlations between the luminance, or 

perceived lightness, of red markings and cyanogenic glucosides levels, both 

within the six-spot burnet, Zygaena filipendulae, and across species (Chapters 

4 and 5). Intuitively, lighter markings seem unlikely to constitute more 

conspicuous signals. In addition, increased marking luminance did not seem to 

result in increased luminance contrast between the markings and background 

colour of the wings, or increased conspicuousness against natural 

backgrounds. However, positive correlations between luminance contrast and 

the concentration of defensive compounds were found across species in 2016 

(Chapter 5). Achromatic information is generally considered less important than 

chromatic cues in determining avoidance learning, at least in birds, but may still 

have a role to play (Stevens and Ruxton, 2012). Luminance contrast can be 

relevant to avoidance learning in invertebrate predators, such as mantids 

(Prudic, Skemp and Papaj, 2007), suggesting that visual communication with 

invertebrate enemies should not be discounted. Moreover, contrasting melanic 

patterns are widespread in aposematic species, and experiments testing their 

value for avoidance learning have yielded somewhat conflicting conclusions. 

Overall, studies of the reaction of birds to patterned prey have suggested that 

contrasting markings are less important than overall colour (Exnerová et al., 

2006; Aronsson and Gamberale-Stille, 2008, 2009), but may nevertheless 

further speed up learning (Aronsson and Gamberale-Stille, 2012b), or provide 

further information on prey quality (Aronsson and Gamberale-Stille, 2012a). 

Predation experiments with artificial prey models in the field have similarly 

indicated that pattern and luminance cues are less relevant than colour (Hegna 

et al., 2011; Flores et al., 2015), although patterns can have an effect on 

survival in some cases (Tan, Reid and Elgar, 2016). In addition, there is some 

evidence that luminance contrast could be important, even for avian predators: 

experiments testing the response of great tits (Parus major) to mealworms 

painted to resemble different morphs of vapourer moth larvae (Orygia antiqua) 

found that high luminance contrast between the painted markings and the 

mealworm promoted initial avoidance of the prey (Sandre, Stevens and 
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Mappes, 2010). As a result, the possibility of quantitative signal honesty based 

on luminance must be considered. 

7.2.2. The relative importance of various signal and defence properties is 

difficult to assess 

These difficulties in interpreting my results highlight a key problem in the study 

of quantitative honesty in aposematic animals: the lack of knowledge about 

which aspects of coloration, and to a lesser extent defences, are truly relevant 

to predators. Broad differences between the sensory modalities used by the 

principal predators of defended prey when foraging, or in the sensitivity of their 

visual systems, are known to be important in determining the evolution of 

warning signals (Willink et al., 2014; Fabricant and Herberstein, 2015). Yet 

which specific features of visual signals are most important in promoting 

predator avoidance is still relatively unclear, despite considerable work in this 

area (Stevens and Ruxton, 2012). As discussed above, there is still some 

debate over the relative importance of chromatic and achromatic information, 

and of colour versus pattern. While it does not constitute a test of avian 

responses to signal features, my comparative analysis of British moths 

suggests that a diverse palette of colours, and strong internal chromatic 

contrast, are important characteristics of warning signals (Chapter 3). In 

addition, the predation experiments I carried out suggested that variation in 

colour had an impact on prey survival, while wing iridescence and the presence 

or size of spots did not (Chapter 6). My results thus support the idea that 

chromatic information is most important, although the role of marking luminance 

would benefit from further study. 

Without clear predictions concerning which signal properties would be most 

relevant to potential predators, I tested for trends in a wide range of signal 

features, and my results are correspondingly not straightforward to interpret. 

Many existing studies of honesty in aposematic signals have focused on 

specific visual components of signals (such as the area or luminance of a 

specific colour patch, see Chapter 1), but this may lead to misleadingly simple 

conclusions. In most cases, signal strength is measured as conspicuousness 

against natural backgrounds, a key feature of warning coloration and an 

inherently costly trait (Sherratt, 2002). Yet some experiments have suggested 
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that colour contrasts are more difficult to learn than simple associations 

between colours and defences (Gamberale-Stille and Guilford, 2003), so 

conspicuousness may not be the only signal property to which predators attend. 

When multiple signal traits and types of defences have been considered in 

studies of quantitative honesty, the results are much more complex, with few 

trends emerging and occasionally inconsistent patterns (Bezzerides et al., 2007; 

Blount et al., 2012; Maan and Cummings, 2012; Winters et al., 2014; Arenas, 

Walter and Stevens, 2015; Crothers et al., 2016). For example, in the seven-

spot ladybird, Coccinella septempunctata, the relationship between coloration 

and defences varies between sexes and dietary treatments, and according to 

which alkaloid defence (coccinelline or precoccinelline) is quantified (Blount et 

al., 2012). These complicated trends may provide a more accurate 

representation of the signalling landscape that predators must navigate. 

Ideally, studies of quantitative honesty should measure coloration, defences 

and how these traits affect predator behaviour (see Arenas, Walter and 

Stevens, 2015). However, my own artificial predation experiments did not 

support the idea of quantitative honesty (Chapter 6). More conspicuous 

patterns, with more highly-contrasting and redder markings, were in fact more 

likely to be attacked, suggesting that greater detectability was more relevant 

than avoidance of aposematic signals in this study. My work is difficult to 

compare to that of Arenas, Walter and Stevens (2015), as I considered only 

visual properties inherent in the wing patterns themselves, rather than 

conspicuousness against natural backgrounds, in my cross-species analysis. 

The wing patterns of burnet moths differ from the elytra of ladybirds, as long 

wavelength colours generally occupy most of the ladybird elytra and are in 

direct contact with natural backgrounds, whereas in burnet moths the long 

wavelength markings are embedded in dark background scales. As such, 

conspicuousness of these colours to natural backgrounds may be less relevant 

in this family. Moreover, measurements in Zygaena filipendulae suggested that 

all specimens were highly conspicuous (Chapter 4), and this is expected to be 

the case for all Zygaeninae. The species that might be considered less visible 

against natural backgrounds, such as the brown Aglaope infausta 

(Chalcosiinae) and Rhagades pruni (Procridinae), in fact contained the highest 

levels of cyanogenic glucosides (Chapter 5). However, as they are also the 
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smallest Zygaenidae I analysed, they possessed the least cyanogenic 

glucosides in total. This then raises the question of whether the total amount of 

defensive compounds or their concentration is most relevant to predators (see 

Chapter 5). The levels of defensive chemicals are generally thought to be more 

important, which would make sense for species which, like burnet moths, 

produce defensive secretions (Rothschild, 1985). Nevertheless, more detailed 

information on the anti-predator strategies of the more discreet and smaller 

Procridinae, as well as observations of avian responses to them, would help 

determine whether these insects are likely to be tasted and rejected on the 

basis of toxin levels, or would be consumed whole. 

Much like coloration, measuring defences in a meaningful way, relevant to 

potential predators, is not a trivial task. The best method would be to test the 

responses of natural predators of the aposematic species in question to 

individual prey, varying in their level of defence. Yet this is rarely feasible due to 

practical considerations and ethical restrictions when working with vertebrate 

predators. Many experiments offering distasteful prey to model species such as 

great tits (Parus major) or starlings (Sturnus vulgaris) have nevertheless been 

carried out, whether with real invertebrates (e.g. Wiklund and Jarvi, 1982) or 

mealworms injected with bitter-tasting compounds (e.g. Barnett, Bateson and 

Rowe, 2014; Rowland, Fulford and Ruxton, 2017). Experiments with natural 

prey provide information about which species are most likely to be avoided in 

nature (Sargent, 1995), while those with manipulated baits allow controlled tests 

of the effects of toxin levels, bitter taste, and how these interact with other prey 

features (reviewed in Skelhorn, Halpin and Rowe, 2016). As a drawback, 

interpreting the behavioural responses of predators can be difficult and hard to 

compare across studies. Quantifying defensive compounds with analytical 

techniques such as liquid chromatography – mass spectrometry (LC-MS) has 

the advantage of producing quantitative data, which is easily comparable across 

species with the same type of defences. However, this may not capture the true 

impact of prey defences on predator physiology, as the mix of compounds in 

defensive fluids may interact to enhance the unpleasant experience. Equally, 

some predators may have evolved a level of resistance to  prey toxins, as seen 

in some populations of garter snakes, Thamnophis sirtalis, resistant to 

tetrodotoxin (Geffeney, 2002). An intermediate strategy is to conduct bioassays, 
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often based on injecting extracts from prey into mice (Marsh and Rothschild, 

1974; Summers and Clough, 2001) and now increasingly using invertebrates 

such as Daphnia water fleas (Arenas, Walter and Stevens, 2015) and Formica 

ants (Lindstedt et al., 2017). These provide a measure of the biological effects 

of the prey’s defences, albeit not to the most relevant predator. Verifying results 

with multiple techniques is probably the best solution to these difficulties (see 

Maan and Cummings, 2012), and I would be keen to validate my work on 

burnet moth defences by carrying out complimentary bioassays. 

7.2.3 Complex selective pressures shape the relationship between coloration 

and defences 

Aside from the limitations of our understanding of how predators respond to 

different signal and defence properties, one of the main sources of complexity 

brought to the fore by my research is variation in selective pressures between 

the sexes. Different costs and benefits of signalling to predators may arise due 

to disparities in traits such as body size (e.g. ladybirds; Blount et al., 2012) or 

activity patterns (e.g. more active males in burnet moths). In the comparative 

analysis of museum specimens, two of the species measured are sexually 

dimorphic and have contrasting flight times (the muslin moth, Diaphora mendica 

and the clouded buff, Diacrisia sannio [Erebidae]; Chapter 3). Moreover, 

aposematic signals may interact with sexual signalling and mate choice, and 

this is likely to have different effects on males and females. In some species, 

separate body parts or visual features may be used to mediate intra- and 

interspecific signalling, such as dorsal and ventral surfaces in poison frogs and 

swallowtail butterflies (Siddiqi et al., 2004; Rutowski, Nahm and Macedonia, 

2010, but see Maan and Cummings, 2008). Others adopt sexual signals that 

cannot be seen by other potential receivers, creating private channels of 

communication. For example, the chromatic features of male damselflies can be 

perceived by prospective female partners, but not by their dipteran prey 

(Outomuro et al., 2017), while correlated evolution of UV-sensitive 

photoreceptors and UV-reflective yellow pigments allows Heliconius species to 

discriminate between co-mimics which appear indistinguishable to birds (Bybee 

et al., 2012). However, this is not always possible, and trade-offs between 

sexual and anti-predator signalling do occur. In the wood tiger moth, Arctia 

plantaginis, yellow males are more effectively avoided by avian predators, but 
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white morphs have greater reproductive success (Nokelainen et al., 2012). 

Conversely, sexual selection and predator preferences could both favour the 

same signal form, as suggested by experiments in Heliconius erato (Finkbeiner, 

Briscoe and Reed, 2014). Sex-specific trends are rarely, if ever, considered in 

studies of quantitative honesty in aposematic signalling. This omission may be 

concealing interesting trends, so future work should consider the possibility of 

different relationships in males and females (Maan and Cummings, 2009). 

Further complications arise due to changes in the selective landscape over 

time, and depending on ecological conditions. Measurable differences in 

defence levels and signal salience between field seasons forced me to consider 

specimens collected in 2015 and 2016 separately, which I had not anticipated 

(Chapter 5). Similarly, the stark differences in environmental conditions, and in 

particular water levels and its downstream effects on invertebrate populations, 

are likely to have affected the results of my artificial predation experiments in 

2016 and 2017 (Chapter 6). I collected specimens for my analyses of the 

relationship between coloration and defences from many separate locations, to 

improve my chances of finding sufficiently large sample sizes, especially across 

multiple species. However, considering the subtle effects of different predator 

and prey communities, as well as of contrasting environmental conditions, it 

seems important to firstly gain a better understanding of how individuals invest 

in signals and defences within the same location. These individuals would be 

facing the same ecological conditions, making the results easier to interpret. 

Measuring colours and defences at a single location at any given point in time, 

effectively a snapshot of what a predator might encounter, would test whether 

prey coloration does actually provide useful quantitative information to a 

foraging predator. 

Conversely, tracking changes in coloration and defences in the same location 

across time would enable more detailed investigations of how prey might invest 

in signals and defences, in response to changing environmental conditions and 

available resources, or other seasonal patterns. The need for thermoregulation 

is likely to change in space, along gradients of altitude and latitude, and in time, 

with the seasons, or at an even shorter scale with the time of day, affecting the 

relative costs and benefits of aposematic signals (see work on thermoregulation 
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and signalling in the wood tiger moth, A. plantaginis; Lindstedt, Lindström and 

Mappes, 2009; Hegna et al., 2013). Predator communities are also inherently 

variable, both seasonally and on a daily cycle (e.g. the prevalence of bats and 

birds hunting tiger moths; Ratcliffe and Nydam, 2008). Even within the same 

class of predator, experience and motivation will vary, and may follow general 

trends across time. The striated shieldbug, Graphosoma lineatum, is typically 

red with black stripes, but adults emerging late in the season in Sweden adopt a 

paler form, with a cream background colour, thus switching to a more cryptic 

rather than aposematic strategy (Tullberg et al., 2008). Changes in the predator 

community, and especially an abundance of naïve fledglings, who have not 

learnt the association between red colours and unprofitability, may be 

responsible for this change in phenotype, tipping the balance of costs and 

benefits of signalling towards camouflage rather than conspicuousness 

(Johansen et al., 2010). Similar considerations may have shaped broader 

trends in the abundance of aposematic Lepidoptera (Mappes et al., 2014). 

Multiple species of burnet moths often co-occur in continental Europe, so these 

species may represent a promising system in which to investigate how whole 

communities of aposematic prey respond to variation in ecological conditions. 

7.3 Future perspectives for research on aposematism in the Zygaenidae 

7.3.1 Challenges and opportunities for studies of aposematism in burnet moths 

As I discovered over the course of my research project, working with burnet 

moths does pose some challenges, primarily relating to collection and rearing. 

Males provide females with nuptial gifts of cyanogenic glucosides during 

mating, and females invest their defensive resources in their eggs, leading to 

substantial changes in cyanogenic glucoside levels pre- and post-reproduction. 

Males lose approximately 30% of their body weight during mating (Zagrobelny 

et al., 2013) and females invest up to 20% of their total cyanogenic glucoside 

resources obtained as larvae into their eggs (Zagrobelny et al., 2007a). 

Obtaining meaningful measurements of cyanogenic glucoside levels therefore 

requires virgin individuals, such that wild specimens have to be collected at the 

larval or pupal stage. The six-spot burnet, Z. filipendulae, is easy to find in 

Cornwall (UK) as the larvae feed openly on bird’s foot trefoil, Lotus corniculatus, 

and spin their cocoons high up on grass stems. However, there is considerable 
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variation in the behaviour of Zygaenidae larvae as well as in the appearance 

and position of their cocoons, and many cocoons are concealed low in 

vegetation or under rocks (Hofmann and Tremewan, 2017). Some larvae, such 

as Aglaope infausta and both Z. filipendulae and Z. occitanica feeding on tufts 

of Dorycnium pentaphyllum, can be collected easily with beating trays from their 

host plants. Others, such as Z. sarpedon and Z. erythrus, have to be prised 

from the central whorls of low-growing and spiky Eryngium plants. Many 

Procridinae, or foresters, are leaf-miners, their larvae feeding inside the leaves 

of their host plants (Drouet, 2016), making them very difficult to locate. In 

addition, while all the Zygaeninae other than Z. brizae lay their eggs in batches 

(Hofmann and Kia-Hofmann, 2011), most forester moths lay their eggs singly 

(Tarmann, 2005), reducing their density in the field. I had hoped to include 

many more foresters in my cross-species analysis, as their defences have been 

examined in comparatively little detail. Unfortunately, I only succeeded in finding 

fewer than 10 specimens of Jordanita spp. (with the help of Eric Drouet), only 1 

of which survived to adulthood. Rearing burnet moths from eggs or even small 

larvae is also non-trivial, due to their obligatory larval diapause in winter 

(Tremewan, 1985), summer aestivation in some species (e.g. Z. fausta), and 

the propensity for some species to return into diapause multiple times (eg. Z. 

cynarae and Z. transalpina, pers. obvs.). Even with single-diapause strains, 

successfully rearing less than 5% of eggs to adulthood would not be unusual 

(Tremewan, 2006). Low sample sizes are one of the main limitations of the 

studies presented in this thesis, especially in the dietary experiment, testing the 

effect of acyanogenic diet on resource allocation to signals and defences in Z. 

filipendulae (see Chapter 4). This remains a valuable opportunity to test 

resource allocation in an aposematic species, so would be worth repeating with 

larger sample sizes. 

However, these difficulties can be overcome with experience and if more 

resources and personnel are dedicated to rearing the specimens. Conversely, 

burnet moths also present considerable advantages. There is a dedicated 

community of both professional researchers and amateur entomologists 

interested in burnet moths and foresters. These experts represent a 

phenomenal source of knowledge of their natural history, can provide 

assistance with field locations and rearing techniques, and even host a biennial 
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conference devoted to these species. Moreover, there have been extensive 

investigations into the phylogenetic relationships between species in the 

Zygaenidae, providing a sound basis for comparative analyses across species 

(e.g. Niehuis, Naumann and Misof, 2006a, 2006b; Niehuis et al., 2007). Most 

importantly, the chemical defences of burnet moths have been elucidated with a 

rare level of detail among aposematic species, down to the genetic and 

metabolic pathways involved in de novo synthesis and sequestration of 

cyanogenic glucosides (Jensen et al., 2011; Fürstenberg-Hägg et al., 2014b). 

Since all Zygaenidae tested so far possess the same defensive compounds, 

linamarin and lotaustralin (Davis and Nahrstedt, 1982), and these can be 

quantified using LC-MS techniques, defence levels can be compared both 

within and between species. 

Further investigations of warning coloration in the Zygaenidae could develop the 

work I carried out in this thesis in a number of ways. As I relied on specimens 

from fairly easily-accessible collection sites in the UK, France and Denmark, I 

was restricted to certain species, which do not display the most variable wing 

patterns in the family. Selecting from a broader range of species, even within 

the Western Palearctic, would be informative, enabling a test of signal honesty 

across species with more divergent wing patterns. Within species, there are 

some striking examples of polymorphisms and polytypisms which also warrant 

further research. For example, the pale phenotype of Z. carniolica kappadokiae, 

which has white background scales, has been linked to thermoregulation 

(Buntebarth, 2004) and crypsis against the volcanic soil of its habitat in 

Cappadocia (Tremewan, 2006), but its cyanogenic glucoside content and 

effectiveness in stimulating avoidance by predators have not been tested. 

Similarly, many species have melanistic coastal populations with reduced red 

markings (a phenomenon known as “littoral melanism”; Tremewan, 2006; 

Tarmann and Tremewan, 2013), but how these populations vary in their toxicity 

and behaviour is unknown. Finally, I would also be interested in applying more 

rigorous measurements of colour, from the perspective of avian predators, and 

techniques for quantifying cyanogenic glucosides, to investigate the putative 

Müllerian mimicry between Zygaena ephialtes and the nine-spotted, Amata 

phegea (Turner, 1971; Sbordoni et al., 1979). The red-spotted Zygaeninae have 

also traditionally been considered to mimic each other, potentially as part of a 
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wider mimicry ring with other red insects, including the cinnabar moth, Tyria 

jacobaeae, and red beetles (Tremewan, 2006). In continental Europe, the 

distributions of different Zygaena species greatly overlap, so individual 

predators may well encounter multiple species, making mimicry a viable 

strategy. Whether zygaenid species are truly mutualistic Müllerian mimics, such 

that the presence of multiple co-mimics decreases predation risk for all species 

concerned (Müller, 1879), remains untested. However, if the differences in toxin 

levels between species are biologically relevant to predators, the more weakly-

defended species may be acting as parasitic quasi-Batesian mimics, benefitting 

from their resemblance to more highly-defended species (Speed, 1999; 

Rowland et al., 2010). Quantifying cyanogenic glucosides and coloration in 

several populations of sympatric species would help resolve this question. 

Zygaena species are well-suited to the study of quantitative signal honesty, as 

their ability to sequester and de novo synthesise cyanogenic glucosides allows 

for a test of the effect of resource limitation on their investment in signals and 

defences (Blount et al., 2009, 2012). Yet while the energetic costs of de novo 

synthesis and sequestration of cyanogenic glucosides are fairly well-understood 

(Zagrobelny et al., 2007a; Fürstenberg-Hägg et al., 2014b), much less is known 

about the production of colourful wing patterns in the Zygaenidae. Melanin is 

responsible for the dark background colour, and pteridines (including 

erythropterin and another compuound similar to drosopterin; Tremewan, 2006) 

for the white, yellow and red markings, although carotenoids are also involved 

in the yellow colour of adult haemolymph (Feltwell and Rothschild, 1974). As 

pteridines are nitrogen-rich (Chittka, 2013), they may compete with other 

nitrogen-based compounds, including cyanogenic glucosides, if resources are 

limited. This could apply to other species, such as the stinkbug Tectocoris 

diopthalmus, whose red patches are also produced by erythropterin (Fabricant 

et al., 2013). An understanding of the costs of pteridine production, and how 

investment in pigments may trade off with other functions, would help complete 

the picture of the costs and benefits relevant to quantitative signal honesty. A 

growing number of studies are investigating the basis of colour signals in 

aposematic species, focusing primarily on carotenoid pigments (e.g. Lindstedt 

et al., 2010; Blount et al., 2012; Fabricant et al., 2013), although there has also 

been work on pteridines, particularly in sulphur butterflies, Colias spp. (Rutowski 
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et al., 2007). In those species, pteridines are implicated in long wavelength 

colours as well as iridescence and ultraviolet reflectance (Rutowski et al., 2005, 

2007). The red scales of burnet moths present high levels of ultraviolet 

reflectance (pers. obvs.), a phenomenon previously observed in a few species 

of butterflies and moths (e.g. the common rose, Pachliopta aristolochiae, and 

the rosy underwing, Catocala electa; Eguchi and Meyer-Rochow, 1983). This is 

another aspect of the visual features of burnet moths that would warrant further 

investigation, both of the mechanistic basis of red and ultraviolet coloration, and 

of the relative importance of these two components in aposematic and 

intraspecific communication. 

7.3.2 Interactions between aposematic and sexual signalling 

The tight link between anti-predator defences and sexual selection in burnet 

moths is both a complicating factor and an especially interesting aspect of 

signalling in these species. Similarly to tiger moths (Erebidae), in which males 

provide nuptial gifts of alkaloids (Weller, Jacobson and Conner, 1999; Conner 

and Weller, 2004) the defensive chemicals of burnet moths are an integral part 

of their life cycle and play a major role in sexual signalling and mate choice. 

Males provide females with a substantial nuptial gift of cyanogenic glucosides in 

their spermatophore (Zagrobelny et al., 2007b; Zagrobelny et al., 2013), and 

females accept and reject males on the basis of their levels of these 

compounds. Experiments on female choosiness in Z. filipendulae showed that 

rejected males have a body mass 25% smaller and cyanogenic glucoside levels 

60% lower than those which are accepted (Zagrobelny et al., 2013), and that 

this bias can be overcome if the males are injected or painted with extra 

linamarin (Zagrobelny et al., 2015). Both sexes also release hydrogen cyanide 

(HCN) as part of a cocktail of volatiles, and levels of emission are especially 

high in virgin females, suggesting that HCN may play a role in mate attraction 

(Zagrobelny et al., 2015). 

While cyanide-based compounds clearly have multiple functions in the 

Zygaenidae, the role of warning coloration in other types of signalling is less 

clear. Visual characteristics are known to be important for mate choice in 

butterflies, with pheromones operating in the later stages of courtship, while 

moths typically rely on long-distance pheromones emitted by females to attract 
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males (Vane-Wright and Boppré, 1993). Yet one family of day-flying moths, the 

Castniidae (“butterfly-moths”, or “sun-moths”), have evolved to utilise visual 

cues: females appear to have lost their abdominal pheromone-producing 

glands, and thus the capacity for producing long-distance pheromones, while 

males adopt the perching and patrolling strategies seen in butterfly species 

(Sarto i Monteys et al., 2016). The day-flying Zygaenidae appear to have 

adopted an intermediate strategy, in which pheromones are predominantly 

important, but visual cues may also come into play (Sarto i Monteys et al., 

2016). Several Zygaena species are thought to use optical cues to orient 

themselves towards their potential mates at close range (Zagatti and Renou, 

1984; Koshio, 2003; Friedrich and Friedrich-Polo, 2005). In addition, Zygaena 

trifolii males switch between two alternative searching strategies, following 

pheromone plumes to find females in the morning, then locating them using 

visual information in the afternoon when females are not emitting pheromones 

(Naumann, Tarmann and Tremewan, 1999; Hofmann and Kia-Hofmann, 2010). 

These moths also use a combination of chemical and visual information when 

choosing flowers to nectar on, and are attracted to the blue colour of field 

scabious, Knautia arvensis (Naumann et al., 1991; Ockenfels and Schmidt, 

1992), lending further support to the idea that visual stimuli are relevant to their 

behaviour. 

Given that my research also suggests that there are differences in coloration 

between the sexes, it would be interesting to gain a better understanding of the 

visual features burnet moths themselves may attend to. I did not find evidence 

of quantitative honesty in signalling in either sex in Z. filipendulae, suggesting 

that colour would not provide detailed information about the cyanogenic 

glucoside levels of prospective partners. However, coloration may be a useful 

signal of the freshness of a potential mate, which could act as a crude proxy for 

quality, as older males are likely to have given away substantial nuptial gifts in 

previous matings, and females lay most eggs in their first batch (see Chapter 4). 

As yet, there have been very few attempts to investigate the role of visual cues 

in intraspecific communication in the Zygaenidae. Early experiments using 

artificial baits and preserved specimens suggested that males may have a 

preference for more saturated colours, although chemical cues from the 

specimens may have confounded the results (Zagatti and Renou, 1984). Males 
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also failed to distinguish between the wing patterns of closely-related species. 

These experiments, and more recent work on the vine bud moth, Theresimima 

ampellophaga (Toshova, Subchev and Toth, 2007) suggest only a very crude 

perception of colour patterns, but they did not attempt to account for the moths’ 

visual system. This is a difficult task, as the specific characteristics of vision in 

the Zygaenidae are not yet known, and the diversity of lepidopteran visual 

systems makes it difficult to draw inferences from other species, especially with 

relatively little data available for moths (Briscoe and Chittka, 2001; Stavenga 

and Arikawa, 2006). Nevertheless, it would be valuable to at least consider 

reflectance in the UV wavelengths, as most Lepidoptera possess UV-sensitive 

photoreceptors (Briscoe and Chittka, 2001). Finally, the potential for female 

choice based on visual signals is completely untested. Unfortunately, female 

preference for more toxic males makes designing experiments testing their 

response to visual cues particularly difficult. Any underlying variation in male 

toxin content will confound the results of choice tests, while injecting the males 

with glycosides to eliminate this variation will result in very high quality males 

whose high levels of glycosides might override the effect of any other available 

information. Although doubtlessly challenging, experimental work assessing the 

role of intraspecific visual signalling in burnet moths would be extremely 

valuable in clarifying the potential trade-offs between aposematic coloration and 

other functions. 

7.3.3 Multimodal signalling in burnet moths 

Burnet moths have a complex and intricate anti-predator strategy, or multimodal 

defensive display (as defined by Rowe and Halpin, 2013), going beyond a 

simple association of colour signals and toxic cyanogenic glucosides. This is 

exemplified by the defensive fluids of Zygaena larvae, secreted from cuticular 

cavities when the larvae are disturbed. The bitter taste of cyanogenic 

glucosides may be aversive to birds, which could taste and reject them, as has 

been demonstrated by experiments exposing starlings to bitter compounds 

(Skelhorn and Rowe, 2009, 2010). If predators continue to attack, and they 

swallow the defensive droplets or wound the caterpillar such that the droplets 

come into contact with haemolymph, toxic cyanide will be released. At the same 

time, the viscous fluids inhibit predation by ants, forming precipitates that block 

their mandibles (Pentzold et al., 2016). Equally, adults possess multiple layers 
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of signals and defences, including emission of HCN (Zagrobelny et al., 2015), 

pyrazine odours (Moore, Brown and Rothschild, 1990), conspicuous wing 

patterns and brightly-coloured haemolymph, defensive secretions (Jones, 

Parsons and Rothschild, 1962), and cyanogenic glucosides distributed 

throughout adult tissues (Zagrobelny et al., 2014b). 

There are many hypotheses for the benefits of multimodal signalling, based 

either on the strategic message they carry, or concerns of signal efficacy 

(Guilford and Dawkins, 1991; Rowe and Halpin, 2013). In terms of strategic 

components, each modality may convey a separate ‘message’ regarding 

quality, or they may act synergistically to provide more accurate information. 

Adopting multiple types of signals also increases signal efficacy in a number of 

ways (reviewed in Rowe and Halpin, 2013), primarily facilitating predator 

learning and enabling communication with multiple predator types, which may 

differ in their preferred sensory modality (e.g. tiger moths [Erebidae] using 

warning coloration to signal to avian predators, and acoustic warning signals to 

deter bats; Ratcliffe and Nydam, 2008). Signalling to several taxa is likely to be 

important in burnet moths, which are vulnerable to both invertebrate and 

vertebrate predators at all life stages. While research on aposematism has 

overwhelmingly focused on avian predators, the importance of other predator 

guilds, and especially invertebrates is increasingly being recognised (e.g. 

(Prudic, Skemp and Papaj, 2007; Willink et al., 2014; Fabricant and 

Herberstein, 2015). Similarly to the defensive secretions of burnet moth larvae, 

adult wood tiger moths protect themselves from both avian and invertebrate 

enemies: their abdominal defensive fluids are aversive to ants, but not birds, 

while their thoracic fluids deter avian predators, primarily due to the presence of 

a pyrazine odour (Rojas et al., 2017). It is likely that adult burnet moths are 
similarly aversive to different types of predators. Burnet moths are also targeted 

by many species of parasitoids, especially at the larval stage (e.g. Žikić et al., 

2013). Defensive compounds such as alkaloids in the tiger moth Utetheisa 

ornatrix (Bezzerides et al., 2004), have been shown to protect invertebrates 

against parasitism, so the potential for burnet moth defences aimed at 

parasitoids should also be considered. 
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Nevertheless, the multiple components of burnet moth signals and defences 

may also work together to improve their protection from avian predators. 

Multimodal signalling could contribute to some of the more unexpected results 

from my studies. For example, my predation experiments found no evidence 

that birds avoided prey with red spots, even when noxious burnet moths were 

present in the field. This could indicate that the visual signals of burnet moths 

need to be reinforced with other cues, such as odours (pyrazines and/or 

hydrogen cyanide) to be effective, especially if predators are highly-motivated to 

feed due to poor environmental conditions. Experiments with avian predators, 

unpicking the respective roles of colour, taste and smell in inducing avoidance 

of burnet moths, would shed some light on this possibility. Similar work has 

already been carried out in the seven-spot ladybird (Coccinella 

semptempunctata), by presenting domestic quail (Coturnix coturnix japonicus) 

with palatable beetles endowed with one or several of ladybird signals (Marples, 

van Veelen and Brakefield, 1994). Colour was the most effective feature in 

generating avoidance when presented alone, but the combination of taste and 

colour led to increased rejection. Moreover, no single cue or pairwise 

combination of cues elicited as strong an avoidance response as the ladybirds 

themselves, suggesting that these insects benefit from combining all these 

elements. More recently, the interactions between alkaloid defences, 

conspicuous wing patterns and pyrazine odours have been suggested to play a 

role in predator deterrence by aposematic wood tiger moths. Different colour 

morphs may even employ alternative strategies, relying more heavily on either 

initial avoidance of visual signals and unpleasant odours, such as pyrazines, or 

last-ditch defences by taste-rejection (Emily Burdfield-Steel and Bibiana Rojas, 

pers. comm.). So far, experiments presenting burnet moths to birds have shown 

that they are generally rejected as prey, and can survive attacks, suggesting 

that taste-rejection is likely to occur in the wild, but these studies have not 

specifically set out to separate the effects of different signal components 

(Heikertinger, 1939; Wiklund and Järvi, 1982; Rammert, 1992). Multimodal 

signalling has received an increasing amount of attention in the last two 

decades, and is still a key avenue of research in the field of animal 

communication and aposematism in particular (Cuthill et al., 2017). The 

especially complex strategies of burnet moths may yield more insights into the 

interactions between different elements of anti-predator defences. 
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7.4 Concluding remarks 

Burnet moths provide an attractive study system in which to investigate many 

complex facets of aposematic signalling. These include the relationship 

between defence levels and variable signals, both within and between species, 

the relative importance of multiple predator types in shaping defensive 

strategies, and the interactions between inter- and intraspecific signalling. In this 

thesis, I have only scratched the surface of many questions that could be 

addressed in the Zygaenidae, yet my results nevertheless make valuable 

contributions. In particular, my work has highlighted the complexity of the 

selective pressures affecting the relationship between aposematic signal 

features and defences. Selective forces may change through time due to 

dynamic predator communities and variable environmental conditions, and may 

vary between sexes and different populations or species. While this complexity 

has been recognised (e.g. Mappes, Marples and Endler, 2005; Mappes et al., 

2014; Skelhorn, Halpin and Rowe, 2016), it is worth emphasising, especially in 

the context of the debate over quantitative honesty in aposematic species. If 

multiple signal properties and types of defences are considered, as well as sex-

specific trends and other complicating factors, results are likely to be more 

nuanced than a simple honest or dishonest dichotomy may allow for. Moving 

forward, several of my experiments, such as dietary manipulations in Zygaena 

species, comparative analyses of coloration and defence levels across the 

Zygaenidae, and meticulously-designed artificial predation experiments in 

multiple seasons, are worth pursuing and expanding to confirm and further 

explore the conclusions of my PhD. I sincerely hope that my results will inspire 

future work on the warning colours and other signalling strategies of this 

charismatic family of moths. 
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Appendix 2.1: Coordinates of sites on which Z. filipendulae larvae and pupae 

were collected. 

Site name Country Latitude Longitude Altitude 
(m) 

N Collectors Year 

Taastrup Denmark 55.6346 12.2625 30 25 Mika Zagrobelny 2015 

Cabasse France 43.4201 6.2355 250 4 Emmanuelle 
Briolat 

2015 

La Chapelle-
en-

Valgaudémar 

France 44.8169 6.1953 2100 1 Eric Drouet 2016 

Lardier-et-

Valenca 

France 44.2512 5.5689 830 5 Eric Drouet 2015 

Le Fournas France 44.0753 5.9722 480 1 Emmanuelle 
Briolat, Eric 
Drouet 

2015 

Les Piles, La 
Saulce 

France 44.4432 6.0288 600 1 Eric Drouet 2016 

Mortiès France 43.7700 3.8223 200 1 Alain Migeon 2016 

Mouans-

Sartoux 

France 43.6204 6.9725 150 2 Emmanuelle 
Briolat, Alain 
Bourgon, Pierre 
Desriaux 

2015 

St Bauzille France 43.3542 3.3233 140 2 Alain Migeon 2016 

St-Cézaire-sur-
Siagne 

France 43.3848 6.4928 450 1 Emmanuelle 
Briolat, Alain 
Bourgon, Pierre 
Desriaux 

2016 

St Félix de 

Tournegat 

France 43.1312 1.7483 310 2 David Demergès 2015 

Vacquières France 43.8445 3.9436 110 2 Alain Migeon 2016 

Veynes France 44.3239 5.4924 900 4 Eric Drouet 2015 

Holywell Bay United 
Kingdom 

50.3910 -5.1430 20 23 Emmanuelle 
Briolat 

2015 

Lamorna Cove United 
Kingdom 

50.0610 -5.5544 30 25 Emmanuelle 
Briolat 

2015 

Pendeen 
Watch 

United 
Kingdom 

50.1636 -5.6705 60 9 Emmanuelle 
Briolat 

2015 

Porthnanven United 
Kingdom 

50.1157 -5.6996 20 5 Emmanuelle 
Briolat 

2015 

Upton Towans United 
Kingdom 

50.2100 -5.3972 40 2 Emmanuelle 
Briolat 

2015 
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Appendix 3.3: Validation of museum study with freshly-eclosed specimens of 

four species. 

Methods 

Provenance of specimens and photography 

Comparisons between museum and fresh specimens were based on five 

individuals of the Scarlet tiger (Callimorpha dominula) and Cinnabar (Tyria 

jacobaeae), as well as five randomly-selected individuals of the Six-spot Burnet 

(Zygaena filipendulae) and Five-spot Burnet (Zygaena trifolii) used in 

subsequent work (see Chapters 4 and 5). Cinnabars and scarlet tigers were 

obtained as pupae, then frozen upon eclosion; Cinnabars were collected by 

Andrew Spicer in Bedford, UK and Scarlet tigers were obtained commercially 

from Worldwide Butterflies. Five and six-spot burnets were collected in 

Cornwall, UK (Bostraze Bog and Holywell Bay, respectively, see chapter 5 for 

details). The wings were photographed and analysed as described above. In 

the photographs of fresh specimens, two PTFE reflectance standards (reflecting 

5 and 95% of all wavelengths) were used rather than a single one. 

Comparisons between museum and fresh specimens are based on the UVS 

(blue tit) visual system alone. Colour patches on the moth wings were selected 

to match those on the museum specimens of the same species. 

Statistical analyses 

The colours of fresh and museum specimens of four species of moths were 

analysed using linear models, for each wing area separately, with provenance 

(museum or fresh) and species as fixed effects. The dependent variables tested 

were luminance and cone catch values for each photoreceptor type. The effect 

of the interaction between provenance and species was tested with a likelihood 

ratio test, to test whether the relative differences between the colours of each 

species were consistent between fresh and museum specimens. Colour metrics 

were log-transformed to fit the assumptions of linear models.  

238



Results 

The relative differences between species in terms of luminance and cone catch 

values for the ultraviolet-, short wavelength-, medium wavelength- and long 

wavelength-sensitive photoreceptors are generally not affected by the 

provenance of specimens (museum collections or freshly-frozen). With the 

exception of cone catch values for the medium-wavelength-sensitive 

photoreceptors, there is no effect of provenance on the relative differences 

between species’ colours in the forewings (Supplementary table 3.3). However, 

the relative differences between the hindwing colours of these four test species 

do appear to be less stable between museum and fresh specimens 

(Supplementary table 3.3), suggesting that some caution may be required when 

interpreting the results of analyses based on the hindwing colours of museum 

specimens. Supplementary figure 3.3 shows two metrics particularly expected to 

be affected by the storage of museum specimens, luminance and cone catch 

values for the UV-sensitive photoreceptors, for all wing areas. 

Supplementary table 3.3: Significance of the provenance:species interaction in 

analysis of museum and fresh specimens, for the UVS (blue tit) visual system. 

Significant interactions, highlighted in italics indicate a difference in the relative 

values of each species depending on their provenance, from museum 

collections or freshly-frozen. 

Colour metric Wing area F df p 
Luminance Forewing background 1.056 3,72 0.373 

Forewing markings 2.563 3,72 0.0614 
Hindwing background 1.263 3,72 0.294 
Hindwing markings 8.640 3,72 <0.001 

UV Forewing background 0.532 3,72 0.662 
Forewing markings 1.614 3,72 0.194 
Hindwing background 4.796 3,72 0.00421 
Hindwing markings 11.18 3,72 <0.001 

SW Forewing background 0.919 3,72 0.436 
Forewing markings 0.835 3,72 0.479 
Hindwing background 1.863 3,72 0.144 
Hindwing markings 9.877 3,72 <0.001 

MW Forewing background 0.900 3,72 0.446 
Forewing markings 4.563 3,72 0.00554 
Hindwing background 0.577 3,72 0.632 
Hindwing markings 10.05 3,72 <0.001 

LW Forewing background 1.192 3,72 0.319 
Forewing markings 2.21 3,72 0.0943 
Hindwing background 2.629 3,72 0.0567 
Hindwing markings 7.422 3,72 <0.001 
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Supplementary figure 3.3: Luminance (a) and cone catch values for the UV-

sensitive photoreceptors (b) for fresh and museum specimens of four species. 

FW = forewing, HW = hindwing. Museum specimens appear generally lighter and 

with lower UV cone catch values. However, the relative differences between 

species appear consistent whether the specimens measured are fresh or from a 

museum collection, with the exception of the hindwing marking areas (see 

Supplementary table 3.3). Boxplots show the median and interquartile range.
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Discussion 

In general, the relative differences between species are fairly consistent 

between fresh and collection specimens, However, there were some differences 

in the cone catch values to each photoreceptor type when the hindwing 

markings were considered, affecting the relative values of the different species 

when fresh or preserved in museums. This may suggest that more caution 

would be needed when interpreting results concerning hindwing marking 

colours, but is likely to be a result of the hindwing patches selected in these 

particular species. In all four species, the hindwing markings were very dark, 

and for three of these (Z. filipendulae, Z. trifolii and Tyria jacobaeae), were 

selected from very small border areas. Moreover, individuals will also 

experience fading with age in nature, so will not all have colours as vivid as 

freshly-eclosed specimens. As such, comparisons between moth wings based 

on this museum sample can be interpreted with relative confidence.  
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Appendix 3.5: Equations for Hue2, based on museum specimens of 

Lepidoptera. 

𝐻𝐻𝐻𝐻𝐻𝐻2𝑈𝑈𝑈𝑈𝑈𝑈(𝐹𝐹𝐹𝐹 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝐻𝐻𝑏𝑏𝑏𝑏) =  𝐻𝐻𝐻𝐻𝐻𝐻2𝑈𝑈𝑈𝑈(𝐹𝐹𝐹𝐹 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝐻𝐻𝑏𝑏𝑏𝑏) = 𝑈𝑈𝑈𝑈+𝐿𝐿𝐿𝐿
𝑈𝑈𝐿𝐿+𝑀𝑀𝐿𝐿

(S3.5.1) 

𝐻𝐻𝐻𝐻𝐻𝐻2𝑈𝑈𝑈𝑈𝑈𝑈(𝐹𝐹𝐹𝐹 𝑚𝑚𝑏𝑏𝑏𝑏𝑏𝑏𝑚𝑚𝑏𝑏𝑏𝑏𝑚𝑚) = 𝑀𝑀𝐿𝐿+𝐿𝐿𝐿𝐿
𝑈𝑈𝑈𝑈+𝑈𝑈𝐿𝐿

(S3.5.2)

𝐻𝐻𝐻𝐻𝐻𝐻2𝑈𝑈𝑈𝑈(𝐹𝐹𝐹𝐹 𝑚𝑚𝑏𝑏𝑏𝑏𝑏𝑏𝑚𝑚𝑏𝑏𝑏𝑏𝑚𝑚) = 𝑈𝑈𝐿𝐿+𝑀𝑀𝐿𝐿+𝐿𝐿𝐿𝐿 3⁄
𝑈𝑈𝑈𝑈

(S3.5.3) 

𝐻𝐻𝐻𝐻𝐻𝐻2𝑈𝑈𝑈𝑈𝑈𝑈(𝐻𝐻𝐹𝐹 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝐻𝐻𝑏𝑏𝑏𝑏) =  𝐻𝐻𝐻𝐻𝐻𝐻2𝑈𝑈𝑈𝑈(𝐻𝐻𝐹𝐹  𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝐻𝐻𝑏𝑏𝑏𝑏) = 𝑀𝑀𝐿𝐿+𝐿𝐿𝐿𝐿
𝑈𝑈𝑈𝑈+𝑈𝑈𝐿𝐿

 (S3.5.4) 

𝐻𝐻𝐻𝐻𝐻𝐻2𝑈𝑈𝑈𝑈𝑈𝑈(𝐻𝐻𝐹𝐹 𝑚𝑚𝑏𝑏𝑏𝑏𝑏𝑏𝑚𝑚𝑏𝑏𝑏𝑏𝑚𝑚) = 𝑈𝑈𝑈𝑈+𝐿𝐿𝐿𝐿
𝑈𝑈𝐿𝐿+𝑀𝑀𝐿𝐿

(S3.5.5) 

𝐻𝐻𝐻𝐻𝐻𝐻2𝑈𝑈𝑈𝑈(𝐻𝐻𝐹𝐹 𝑚𝑚𝑏𝑏𝑏𝑏𝑏𝑏𝑚𝑚𝑏𝑏𝑏𝑏𝑚𝑚) = 𝑈𝑈𝐿𝐿+𝑀𝑀𝐿𝐿+𝐿𝐿𝐿𝐿 3⁄
𝑈𝑈𝑈𝑈

(S3.5.6) 

UV, SW, MW, LW = standardised cone catch values for the UV-, SW-, MW- and 

LW- sensitive photoreceptors respectively. UVS = ultraviolet-sensitive (blue tit) 

visual system, VS = violet-sensitive (peafowl) visual system. FW = Forewings, 

HW = Hindwings. 
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Appendix 3.6: Host plants photographed for each species of moth in the 

comparative analysis of museum specimens. 

Moth species Chosen hostplants 
Abraxas grossulariata Gooseberry, Ribes uva-crispa 
Acronicta psi  Alder, Alnus glutinosa; Birch, Betula pendula; Oak, Quercus robur; 

Willow, Salix sp. 
Adscita geryon  Rockrose, Helianthemum nummularium 
Adscita statices Sorrel, Rumex acetosa 
Agrotis ipsilon  Hawthorn, Crataegus sp.; Red clover, Trifolium pratense; White 

clover, Trifolium repens 
Alcis repandata Birch, Betula pendula; Gooseberry, Ribes uva-crispa; Heather, 

Calluna vulgaris; Meadowsweet, Filipendula ulmaria; Willow, Salix 
sp. 

Amphipyra pyramidea  Honeysuckle, Lonicera sp.; Oak, Quercus robur 
Amphipyra tragopoginis Willow, Salix sp. 
Anaplectoides prasina  Honeysuckle, Lonicera sp. 
Arctia caja  Apple, Malus sp.; Birch, Betula pendula; Dandelion, Taraxacum 

officinale; Gooseberry, Ribes uva-crispa; Meadowsweet, 
Filipendula ulmaria; Ribwort plantain, Plantago lanceolata; Red 
clover, Trifolium pratense; Sorrel, Rumex acetosa; White clover, 
Trifolium repens 

Arctia plantaginis Ribwort plantain, Plantago lanceolata; Sorrel, Rumex acetosa 
Arctia villica  Forget-me-not, Myosotis sp.; Gorse, Ulex europaeus; Ribwort 

plantain, Plantago lanceolata; Sorrel, Rumex acetosa 
Atolmis rubricollis  Lichens* 
Biston betularia  Alder, Alnus glutinosa; Birch, Betula pendula 
Callimorpha dominula  Comfrey, Symphytum officinale; Oak, Quercus robur 
Catocala nupta  Willow, Salix sp. 
Conistra vaccinii  Blackthorn, Prunus spinosa; Oak, Quercus robur; Willow, Salix sp. 
Diacrisia sannio  Heather, Calluna vulgaris 
Diaphora mendica  Ribwort plantain, Plantago lanceolata 
Drepana falcataria  Alder, Alnus glutinosa 
Eilema complana  Lichens* 
Eilema depressa  Lichens* 
Eilema lurideola  Lichens* 
Eilema sororcula  Lichens* 
Eulithis mellinata  Gooseberry, Ribes uva-crispa 
Euplagia quadripunctaria Hemp agrimony, Eupatorium cannabinum; Nettle, Urtica dioica; 

Ribwort plantain, Plantago lanceolata 
Euproctis chrysorrhoea Apple, Malus sp.; Blackthorn, Prunus spinosa; Hawthorn, 

Crataegus sp. 
Hoplodrina blanda  Ribwort plantain, Plantago lanceolata; Sorrel, Rumex acetosa 
Hydriomena furcata  Heather, Calluna vulgaris 
Hypomecis roboraria  Oak, Quercus robur 
Laothoe populi  Willow, Salix sp. 
Miltochrista miniata  Dog Lichen, Peltigera canina (only 1 specimen) 
Noctua pronuba  Dandelion, Taraxacum officinale 
Orthosia cerasi  Oak, Quercus robur; Willow, Salix sp. 
Pelosia muscerda  Lichens* 
Peridea anceps  Oak, Quercus robur 
Phalera bucephala  Oak, Quercus robur 
Phragmatobia fuliginosa Dandelion, Taraxacum officinale 
Setina irrorella  Lichens* 
Smerinthus ocellata  Apple, Malus sp.; Willow, Salix sp. 
Sphinx pinastri  Scots pine, Pinus sylvestris 
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Moth species Chosen hostplants 
Spilosoma lubricipeda Oak, Quercus robur; Ribwort plantain, Plantago lanceolata; Red 

clover, Trifolium pratense; Sorrel, Rumex acetosa; White clover, 
Trifolium repens 

Spilosoma lutea Oak, Quercus robur; Ribwort plantain, Plantago lanceolata 
Tyria jacobaeae Ragwort, Senecio jacobaea 
Xestia c-nigrum  Nettle, Urtica dioica 
Zygaena exulans  Heather, Calluna vulgaris 
Zygaena filipendulae Bird’s foot trefoil, Lotus corniculatus; Greater bird’s foot trefoil, 

Lotus pedunculatus 
Zygaena lonicerae Bird’s foot trefoil, Lotus corniculatus; Greater bird’s foot trefoil, 

Lotus pedunculatus; Meadow Vetchling, Lathyrus pratensis; Red 
clover, Trifolium pratense; White clover, Trifolium repens 

Zygaena loti  Bird’s foot trefoil, Lotus corniculatus 
Zygaena purpuralis Mother-of-thyme, Thymus praecox 
Zygaena trifolii  Bird’s foot trefoil, Lotus corniculatus; Greater bird’s foot trefoil, 

Lotus pedunculatus 
Zygaena viciae Bird’s foot trefoil, Lotus corniculatus; Meadow vetchling, Lathyrus 

pratensis 
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Appendix 3.8: Results of analyses of wing colours, for the violet-sensitive (VS, 

peafowl) visual system. 

Supplementary table 3.8.1: Results of linear mixed effects models, testing the 

effect of category on luminance 

Wing area (Χ2) df p 
Forewing background 4.859 2 0.0881 
Forewing markings 3.801 2 0.150 
Hindwing background 12.478 2 0.00195 
Hindwing markings 5.146 2 0.0763 

Supplementary table 3.8.2: Results of linear mixed effects models, testing the 

effect of category on saturation 

Wing area (Χ2) df p 
Forewing background 2.852 2 0.240 
Forewing markings 8.546 2 0.0139 
Hindwing background 9.0912 2 0.0106 
Hindwing markings 3.078 2 0.215 

Supplementary table 3.8.3: Results of linear mixed effects models, testing the 

effect of category on hue values 

Wing area (Χ2) df p 
Forewing background 4.175 2 0.124 
Forewing markings 5.419 2 0.0666 
Hindwing background 10.083 2 0.00646 
Hindwing markings 1.561 2 0.458 

Supplementary table 3.8.4: Results of linear mixed effects models, testing the 

effect of category on chromatic contrast  

Wing area (Χ2) df p 
Forewings 13.669 2 0.00108 
Hindwings 3.200 2 0.202 

Supplementary table 3.8.5: Results of linear mixed effects models, testing the 

effect of category on luminance contrast  

Wing area (Χ2) df p 
Forewings 0.483 2 0.785 
Hindwings 0.427 2 0.808 
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Supplementary table 3.8.6: Results of linear mixed models testing the effect of 

category on conspicuousness to natural backgrounds. 

Contrast Plant type Wing area (Χ2) df p 
Chromatic Average herbaceous Forewing 

background 
8.337 2 0.0155 

Forewing markings 7.589 2 0.0225 
Average tree bark Forewing 

background 
4.851 2 0.0885 

Forewing markings 11.713 2 0.00286 
Average host plant 
foliage* 

Forewing 
background 

0.126 2 0.939 

Forewing markings 4.724 2 0.0942 
Luminance Average herbaceous Forewing 

background 
5.144 2 0.0764 

Forewing markings 5.121 2 0.0773 
Average tree bark Forewing 

background 
3.424 2 0.181 

Forewing markings 3.662 2 0.160 
Average host plant 
foliage* 

Forewing 
background 

0.540 2 0.764 

Forewing markings 2.706 2 0.259 
* or lichen for Lithosiinae

Supplementary table 3.8.7: Volumes occupied by the colours of all the moths in 

each category in the avian tetrahedral colour space. 

Category Palatable Toxic diurnal Toxic nocturnal 
Volume 0.000957 0.0328 0.0237 

Comparison of volumes for each species, between categories: (Χ2)2=7.419, 
p=0.0245. 
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Appendix 4.1: Full results of model simplification for multiple regression 

between cyanogenic glucoside concentration, sex and colour metrics in three 

populations of Z. filipendulae. Significant results are highlighted in italics. 

a. Forewings

Holywell Bay 
Model including saturation Model including hue 

Factor F df p Factor F df p 
Saturation:Sex 0.112 1,11 0.745 Chromatic 

contrast:Sex 
0.0957 1,11 0.764 

Chromatic 
contrast:Sex 

0.0049 1,12 0.945 Hue:Sex 0.0037 1,12 0.952 

Luminance:Sex 0.223 1,13 0.645 Luminance:Sex 0.215 1,13 0.651 
Proportion red:Sex 0.424 1,14 0.526 Proportion red:Sex 0.380 1,14 0.547 
Luminance 
contrast:Sex 

0.394 1,15 0.540 Luminance 
contrast:Sex 

0.402 1,15 0.536 

Sex 0.0001 1,16 0.991 Sex 0.0007 1,16 0.979 
Saturation 0.0504 1,17 0.825 Hue 0.132 1,17 0.721 
Luminance contrast 0.439 1,18 0.516 Luminance contrast 0.439 1,18 0.516 
Proportion red 1.671 1,19 0.212 Proportion red 1.671 1,19 0.212 
Luminance 4.358 1,20 0.0499 Proportion red 4.358 1,20 0.0499 
Chromatic contrast 5.645 1,20 0.0276 Chromatic contrast 5.645 1,20 0.0276 
Lamorna Cove Lamorna Cove 

Model including saturation Model including hue 
Factor F df p Factor F df p 
Saturation:Sex 0.0267 1,11 0.873 Hue:Sex 0.0142 1,11 0.907 
Chromatic 
contrast:Sex 

0.614 1,12 0.449 Chromatic 
contrast:Sex 

0.533 1,12 0.480 

Luminance:Sex 1.676 1,13 0.218 Luminance:Sex 1.733 1,13 0.211 
Luminance 
contrast:Sex 

1.193 1,14 0.293 Luminance 
contrast:Sex 

1.015 1,14 0.331 

Proportion red:Sex 2.024 1,15 0.175 Proportion red:Sex 1.844 1,15 0.195 
Proportion red 1.273 1,16 0.276 Proportion red 1.428 1,16 0.250 
Saturation 1.786 1,17 0.199 Hue 2.035 1,17 0.172 
Chromatic contrast 0.409 1,18 0.531 Chromatic contrast 0.409 1,18 0.531 
Sex 1.316 1,19 0.266 Sex 1.316 1,19 0.266 
Luminance contrast 0.973 1,20 0.336 Luminance contrast 0.973 1,20 0.336 
Luminance 1.506 1,21 0.233 Luminance 1.506 1,21 0.233 
Taastrup Taastrup 

Model including saturation Model including hue 
Factor F df p Factor F df p 
Chromatic 
contrast:Sex 

0.0032 1,13 0.956 Chromatic 
contrast:Sex 

0.0103 1,13 0.921 

Luminance:Sex 0.0064 1,14 0.937 Luminance:Sex 0.0175 1,14 0.897 
Proportion red:Sex 0.0832 1,15 0.777 Proportion red:Sex 0.098 1,15 0.759 
Luminance 
contrast:Sex 

0.740 1,16 0.402 Luminance 
contrast:Sex 

0.711 1,16 0.412 

Saturation:Sex 0.0686 1,17 0.797 Hue:Sex 0.0792 1,17 0.782 
Chromatic contrast 0.775 1,18 0.390 Chromatic contrast 0.974 1,18 0.337 
Saturation 0.141 1,19 0.712 Hue 0.310 1,19 0.584 
Sex 1.203 1,20 0.286 Sex 1.203 1,20 0.286 
Proportion red 0.924 1,21 0.347 Proportion red 0.924 1,21 0.347 
Luminance contrast 3.435 1,22 0.0773 Luminance contrast 3.435 1,22 0.0773 
Luminance 6.768 1,23 0.0160 Luminance 6.768 1,23 0.0160 
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b. Hindwings

Holywell Bay 
Model including saturation Model including hue 

Factor F df p Factor F df p 
Saturation:Sex 0.0116 1,17 0.916 Hue:Sex 0.0001 1,17 0.991 
Luminance:Sex 0.584 1,18 0.455 Luminance:Sex 0.626 1,18 0.439 
Luminance 0.675 1,19 0.421 Luminance 0.656 1,19 0.428 
Saturation 0.928 1,20 0.347 Hue 0.772 1,20 0.390 
Sex 1.525 1,21 0.231 Sex 1.525 1,21 0.231 
Lamorna Cove Lamorna Cove 

Model including saturation Model including hue 
Factor F df p Factor F df p 
Saturation:Sex 2.780 1,17 0.114 Hue:Sex 4.125 1,17 0.0582 
Luminance:Sex 2.232 1,18 0.153 Luminance:Sex 2.293 1,18 0.147 
Luminance 0.029 1,19 0.958 Hue 0.0231 1,19 0.881 
Saturation 0.0195 1,20 0.890 Luminance 0.016 1,20 0.901 
Sex 0.467 1,21 0.502 Sex 0.467 1,21 0.502 
Taastrup Taastrup 

Model including saturation Model including hue 
Factor F df p Factor F df p 
Saturation:Sex 0.0007 1,19 0.980 Hue:Sex 0.0001 1,19 0.992 
Luminance:Sex 0.180 1,20 0.676 Luminance:Sex 0.174 1,20 0.681 
Saturation 0.592 1,21 0.450 Hue 0.627 1,21 0.437 
Sex 0.780 1,22 0.387 Sex 0.780 1,22 0.387 
Luminance 1.576 1,23 0.222 Luminance 1.576 1,23 0.222 
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Appendix 4.2: Full results of mixed models testing the effects of sex and diet 

on colour metrics in Z. filipendulae. Significant results are highlighted in italics. 

Factor (χ2)1 p (χ2)1 p (χ2)1 p 
FW luminance FW saturation FW hue 

Sex:Diet 0.369 0.544 1.181 0.277 1.0323 0.310 
Diet 0.955 0.329 0.0082 0.928 0.0062 0.937 
Sex 0.340 0.560 0.0552 0.814 0.0449 0.832 

FW proportion red Chromatic contrast Luminance contrast 
Sex:Diet 0.675 0.411 0.728 0.394 0.501 0.479 
Diet 2.651 0.104 0.0717 0.789 1.880 0.170 
Sex 17.911 <0.001 2.975 0.0846 2.270 0.132 

HW luminance HW saturation HW hue 
Sex:Diet 0.266 0.606 0.166 0.684 0.0537 0.817 
Diet 0.976 0.323 0.379 0.538 0.0452 0.832 
Sex 0.197 0.657 0.364 0.546 0.495 0.482 
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Appendix 4.3: Full results of mixed models testing the relationship between 

cyanogenic glucoside concentration and colour, dietary treatment and sex in Z. 

filipendulae. Significant results are highlighted in italics. 

Factor/Interaction (χ2)1 p (χ2)1 p (χ2)1 p 
 FW luminance FW saturation FW hue 
Colour:Diet:Sex 4.715 0.0299 0.114 0.736 0.0977 0.755 
Colour:Sex - - 0.0324 0.857 0.0765 0.782 
Diet:Sex - - 1.907 0.167 2.026 0.155 
Colour:Diet - - 0.297 0.586 0.184 0.668 
Colour - - 1.929 0.165 1.599 0.206 
Sex - - 0.0324 0.857 0.0324 0.857 
Diet - - 4.241 0.0395 4.241 0.0395 
 FW proportion 

red 
Chromatic 
contrast 

Luminance 
contrast 

Colour:Diet:Sex 2.233 0.135 0.891 0.345 0.0003 0.987 
Colour:Sex 0.659 0.417 0.247 0.619 0.643 0.423 
Diet:Sex 0.0067 0.935 1.930 0.165 3.102 0.0782 
Colour:Diet 5.099 0.0239 0.391 0.532 0.0136 0.907 
Colour - - 4.075 0.0435 0.003 0.956 
Sex 0.105 0.746 0.422 0.516 0.0324 0.857 
Diet - - 5.311 0.0212 4.241 0.0395 
 HW luminance HW saturation HW hue 
Colour:Diet:Sex 3.812 0.0509 0.0008 0.977 0.0018 0.966 
Colour:Sex 1.866 0.172 0.0878 0.767 0.0925 0.761 
Diet:Sex 2.974 0.0846 2.190 0.139 2.393 0.122 
Colour:Diet 2.004 0.157 0.537 0.464 0.287 0.592 
Colour 0.773 0.379 0.169 0.681 0.110 0.740 
Sex 0.0324 0.857 0.0324 0.857 0.0324 0.857 
Diet 4.241 0.0395 4.241 0.0395 4.241 0.0395 
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Appendix 4.4: Results of analyses for Z. filipendulae, with colour metrics based 

on the violet-sensitive (VS) visual system. The same transformations were 

applied to the data as for the analyses based on the ultraviolet-sensitive (UVS) 

visual system. Significant results are highlighted in italics. 

a. Colour and toxicity between populations

Using the VS model revealed the same correlations between colour and

cyanogenic glucosides as for the UVS data, although, in addition, forewing

chromatic contrast was significantly negatively correlated, and luminance

contrast positively correlated, with toxin levels in females.

Supplementary table 4.4a: Correlations between colour metrics and cyanogenic 

glucoside concentrations across populations. Significant results are highlighted 

in italics. FW=forewing, HW=hindwing. 

Colour metric Males Females 
FW luminance No correlation,  

F1,7=1.036, p=0.343 
Positive correlation, 
F1,9=15.485, p=0.00343 

FW saturation No correlation,  
F1,7=0.868, p=0.382 

Trend towards negative 
correlation, 
F1,9=3.386, p=0.0989 

FW hue No correlation,  
F1,7=0.865, p=0.383 

No correlation,  
F1,9=2.868, p=0.125 

FW chromatic 
contrast 

No correlation,  
F1,7=0.567, p=0.476 

Negative correlation, 
F1,9=6.580, p=0.0304 

FW luminance 
contrast 

No correlation,  
F1,7=0.671, p=0.440 

Positive correlation, 
F1,9=13.785, p=0.00482 

Proportion of red 
area in FWs 

No correlation, 
F1,7=0.0034, p=0.955 

Negative correlation, 
F1,9=5.252, p=0.0477 

HW luminance No correlation,  
F1,7=0.686, p=0.435 

No correlation,  
F1,9=1.806, p=0.212 

HW saturation No correlation,  
F1,7=0.725, p=0.423 

No correlation,  
F1,9=0.0061, p=0.939 

HW hue No correlation,  
F1,7=0.753, p=0.414 

No correlation,  
F1,9=0.0047, p=0.947 
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b. Colour and toxicity within populations

i. Relationship between colour and toxicity in Holywell, Lamorna and

Taastrup

Multiple regressions yielded qualitatively identical results to those using the 

UVS visual model, with one exception: the negative correlation between 

chromatic contrast and toxicity was no longer significant in the Holywell Bay 

population. 

Supplementary table 4.4b: Results of multiple regressions exploring the 

relationship between cyanogenic glucoside concentration and colour metrics in 

the forewings (i) and hindwings (ii). Results are presented for models including 

saturation only, as results of models with hue are similar. 

a. Forewings

Factor F df p 
Holywell Bay 
Proportion red:Sex 0.015 1,11 0.905 
Luminance contrast:Sex 0.110 1,12 0.746 
Saturation:Sex 0.242 1,13 0.631 
Chromatic contrast:Sex 0.0468 1,14 0.832 
Luminance:Sex 0.234 1,15 0.636 
Saturation 0.0001 1,16 0.993 
Proportion red 0.0003 1,17 0.987 
Chromatic contrast 0.799 1,18 0.383 
Sex 2.902 1,19 0.105 
Luminance contrast 2.942 1,20 0.102 
Luminance 4.472 1,21 0.0466 
Lamorna Cove 
Saturation:Sex 0.0582 1,11 0.814 
Proportion red:Sex 0.0796 1,12 0.783 
Luminance:Sex 1.780 1,13 0.205 
Luminance contrast:Sex 1.444 1,14 0.250 
Chromatic contrast:Sex 1.344 1,15 0.265 
Luminance contrast 0.154 1,16 0.700 
Proportion red 0.651 1,17 0.431 
Saturation 1.042 1,18 0.321 
Sex 0.859 1,19 0.366 
Chromatic contrast 0.843 1,20 0.369 
Luminance 1.401 1,21 0.250 
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Factor F df p 
Taastrup    
Chromatic contrast:Sex 0.0019 1,13 0.966 
Proportion red:Sex 0.0339 1,14 0.857 
Luminance:Sex 0.0923 1,15 0.765 
Luminance contrast:Sex 0.476 1,16 0.5 
Saturation:Sex 0.204 1,17 0.657 
Chromatic contrast 0.138 1,18 0.715 
Saturation 0.0435 1,19 0.837 
Luminance contrast 0.767 1,20 0.392 
Sex 1.304 1,21 0.266 
Proportion red 0.928 1,22 0.346 
Luminance 6.505 1,23 0.0179 

 

b. Hindwings 

Factor F df p 
Holywell Bay    
Saturation:Sex 0.125 1,17 0.728 
Luminance:Sex 0.227 1,18 0.640 
Luminance 0.684 1,19 0.418 
Sex 1.309 1,20 0.266 
Saturation 1.956 1,21 0.177 
Lamorna Cove    
Saturation:Sex 3.120 1,17 0.0953 
Luminance:Sex 1.854 1,18 0.190 
Saturation 0.0036 1,19 0.953 
Luminance 0.118 1,20 0.735 
Sex 0.467 1,21 0.502 
Taastrup    
Saturation:Sex 0.0607 1,19 0.808 
Luminance:Sex 0.178 1,20 0.678 
Saturation 0.341 1,21 0.565 
Sex 0.906 1,22 0.352 
Luminance 1.458 1.23 0.240 

 

ii. Sex differences in coloration 

 
Population and sex differences in colour metrics were very similar between 

visual models. However, with the VS visual model, population-level differences 

in forewing luminance, saturation and hue became significant: markings in the 

Taastrup population were significantly lighter (pHolywell-Lamorna=0.524, pHolywell-

Taastrup=0.356, pLamorna-Taastrup=0.0365), less saturated (pHolywell-Lamorna=0.790, 

pHolywell-Taastrup=0.190, pLamorna-Taastrup=0.0316) and with lower hue values (pHolywell-

Lamorna=0.856, pHolywell-Taastrup=0.160, pLamorna-Taastrup=0.0338) than those from 
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Lamorna Cove. In addition, there were no significant differences in luminance 

contrast. 

Supplementary table 4.4c: Results of linear models testing for sex and 

population-level differences in colour metrics across Holywell Bay, Lamorna 

Cove and Taastrup. Unlike the UVS data, luminance contrast was not logit-

transformed. 

Factor F df p F df p F df p 
FW luminance FW saturation FW hue 

Sex:Population 1.101 2,67 0.340 1.224 2,67 0.301 1.392 2,67 0.256 
Population 3.681 2,69 0.0303 3.464 2,69 0.0369 3.464 2,69 0.0369 

Sex 1.266 1,69 0.264 4.372 1,69 0.0402 4.378 1,69 0.0401 

Proportion red Chromatic contrast Luminance contrast 
Sex:Population 1.509 2,67 0.229 1.361 2,67 0.264 0.0511 2,67 0.950 
Population 2.283 2,69 0.110 4.249 2,69 0.0182 1.153 2,69 0.322 
Sex 17.766 1,71 <0.001 19.293 1,69 <0.001 0.286 1,71 0.651 

HW luminance HW saturation HW hue 
Sex:Population 0.444 2,67 0.644 1.415 2,67 0.250 1.505 2,67 0.229 
Population 7.787 2,69 <0.001 2.409 2,69 0.0975 2.615 2,69 0.0804 
Sex 16.062 1,69 <0.001 30.375 1,71 <0.001 7.313 1,71 <0.01 
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c. Contrast between wing and natural background colours

Results were qualitatively identical to those based on the UVS model for 

chromatic contrast to plants, and very similar for luminance contrast. However, 

population-level differences in luminance contrast became significant with the 

VS model (markings in Taastrup were less contrasting than those in Lamorna 

Cove). 

Supplementary table 4.4d: Results of mixed models testing differences in 

contrast between forewing markings in Holywell Bay, Lamorna Cove and 

Taastrup, and natural backgrounds. Lc=Lotus corniculatus, Ka=Knautia 

arvensis.  

Factor χ2 df p Tukey’s post-hoc tests 
Chromatic 
contrast 
Sex:Population 3.211 2 0.201 - 
Sex 4.884 1 0.0271 - 
Population 15.566 2 <0.001 pHolywell-Lamorna=0.323, pHolywell-

Taastrup=0.0476, pLamorna-

Taastrup<0.001 
Plant type 638.07 2 <0.001 pLc leaves-Lc flowers <0.001, pLc leaves-Ka

flowers<0.001, pLc flowers-Ka flowers
<0.001 

Luminance 
contrast 
Sex:Population 2.356 2 0.308 - 
Sex 1.268 1 0.260 - 
Population 6.316 2 0.0425 pHolywell-Lamorna=0.535, pHolywell-

Taastrup=0.347, pLamorna-

Taastrup=0.0325 
Plant type 852.92 2 <0.001 pLc leaves-Lc flowers <0.001, pLc leaves-Ka

flowers<0.001, pLc flowers-Ka flowers
<0.001 
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d. Dietary manipulations

Results for the dietary experiment were qualitatively identical for both visual

models.

i. Differences in coloration between diets

Supplementary table 4.4e: Results of mixed models testing for coloration 

differences between dietary treatments. 

Factor (χ2)1 p (χ2)1 p (χ2)1 p 
FW luminance FW saturation FW hue 

Sex:Diet 0.280 0.596 1.217 0.270 1.066 0.302 
Diet 0.574 0.449 0.0353 0.851 0.0033 0.954 
Sex 0.270 0.604 0.132 0.717 0.162 0.687 

FW proportion red Chromatic contrast Luminance contrast 
Sex:Diet 0.675 0.411 0.470 0.493 2.025 0.155 
Diet 2.651 0.104 0.001 0.974 0.0011 0.974 
Sex 17.911 <0.001 2.530 0.112 1.157 0.282 

HW luminance HW saturation HW hue 
Sex:Diet 0.0636 0.801 1.015 0.314 0.717 0.397 
Diet 0.0884 0.766 0.149 0.7 0.0145 0.904 
Sex 0.496 0.481 0.0064 0.936 0.0257 0.873 
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ii. Diet and the relationship between colour and toxicity

Supplementary table 4.4f: Results of mixed models testing the relationship 

between colour and cyanogenic glucoside concentration as affected by dietary 

treatment. 

Factor/Interaction (χ2)1 p (χ2)1 p (χ2)1 p 
FW luminance FW saturation FW hue 

Colour:Diet:Sex 4.004 0.0454 0.263 0.608 0.321 0.571 
Colour:Sex - - 0.0202 0.887 0.0451 0.832 
Diet:Sex - - 1.843 0.175 1.927 0.165 
Colour:Diet - - 0.435 0.510 0.345 0.557 
Colour - - 2.566 0.109 2.505 0.114 
Sex - - 0.0324 0.857 0.0324 0.857 
Diet - - 4.241 0.0395 4.241 0.0395 

FW 
proportion red 

Chromatic 
contrast 

Luminance 
contrast 

Colour:Diet:Sex 2.233 0.135 0.609 0.435 0.186 0.667 
Colour:Sex 0.659 0.417 0.125 0.724 3.646 0.0562 
Diet:Sex 0.0067 0.935 1.687 0.194 1.130 0.288 
Colour:Diet 5.099 0.0239 0.875 0.350 1.281 0.258 
Colour - - 3.653 0.0560 0.914 0.339 
Sex 0.105 0.746 0.0324 0.857 0.0324 0.857 
Diet - - 4.241 0.0395 4.241 0.0395 

HW luminance HW saturation HW hue 
Colour:Diet:Sex 3.233 0.0722 0.518 0.472 0.567 0.452 
Colour:Sex 1.190 0.275 0.0001 0.994 0.0113 0.915 
Diet:Sex 2.423 0.120 1.654 0.199 1.722 0.189 
Colour:Diet 2.948 0.0860 0.579 0.447 0.564 0.453 
Colour 0.829 0.363 1.408 0.235 1.634 0.201 
Sex 0.0324 0.857 0.0324 0.857 0.0324 0.857 
Diet 4.241 0.0395 4.241 0.0395 4.241 0.0395 
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Appendix 5.1: Details of field collections: localities, sample numbers and 

collectors. 

Species Year 
emerged 

Origin Country Latitude Longitude Altitude 
(m) N Collectors 

A. infausta 2015 Antigny France 47.0454 4.3524 420 3 b,f 
2015 La Faurie France 44.3401 5.4419 820 2 e 
2015 Le Fournas France 44.0753 5.9722 480 5 b,e 
2015 Nolay France 46.9293 4.6656 455 4 b,f 
2015 Sully France 47.1738 4.3748 490 7 f 
2016 Antigny France 47.0454 4.3524 420 15 b 
2016 Andon France 43.4534 6.5140 1110 2 a,b,d, 

R. pruni 2015 Antigny France 47.0454 4.3524 420 7 b,f 

2015 Lardier-et-
Valenca France 44.2512 5.5689 830 1 e 

2016 Lusigny-sur-
Ouche France 47.0831 4.6744 400 2 b 

2016 Nolay France 46.9293 4.6656 455 6 b 
T. 
ampellophaga 2016 Biot France 43.6269 7.0981 60 1 a 

Z. cynarae 2015 Mouans-
Sartoux France 43.6204 6.9725 150 1 a,b,d 

Z. ephialtes 2015 Corzé France 47.5395 -0.3413 50 21 i 

Z. erythrus 2016 Garriguet-
Ste- Eulalie France 43.9866 4.3052 90 8 e 

2016 Le Fournas France 44.0753 5.9722 480 3 b 

Z. exulans 2016 Molines-en-
Queyras France 44.7018 6.8208 2600 5 e 

Z. filipendulae 2015
2016 

See 
Appendix 
2.1 

- - - - 107 a-e,h, j, k 

Z.lonicerae 2016 Roubion France 44.0529 7.0301 1270 1 b,d 

Z. minos 2015 Le 
Cialancier France 44.2091 6.9781 1000 1 a,b,d 

2016 Le 
Cialancier France 44.2091 6.9781 1000 1 a,b 

Z.occitanica 2016 Mouans-
Sartoux France 43.6204 6.9725 150 1 a,d 

2016 Callian France 43.3829 6.4630 430 1 a,b,d 
Z.sarpedon 2015 La Faurie France 44.3401 5.4419 820 6 e,g 

2016 Le Fournas France 44.0753 5.9722 480 2 b 
Z. transalpina 2015 Mazaugues France 43.3486 5.9225 690 1 e 

2015 Mouans-
Sartoux France 43.6204 6.9725 150 2 a,b 

2016 Mazaugues France 43.3486 5.9225 690 12 e 
2016 Roubion France 44.0529 7.0301 1270 1 b,d 

Z. trifolii 2015 Bostraze 
Bog UK 50.1304 -5.6501 160 7 b,j 

2015 Loggans 
Moor UK 50.2021 -5.3979 20 2 b,j 

2016 Bostraze 
Bog UK 50.1304 -5.6501 160 14 b,j 

a: Alain Bourgon, b: Emmanuelle Briolat, c: David Demergès, d: Pierre Desriaux, e: Eric Drouet, f: Claude 

Dutreix, g: Anne Filosa, h: Alain Migeon, i: Marc Nicolle, j: W. G. Tremewan, k: Mika Zagrobelny 
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Appendix 5.2: Verifying the reliability of LC-MS analyses across years. 

For logistical and funding reasons, it was not possible to analyse the toxicity of 

all samples from both field seasons at the same time. However, to check that 

this did not affect the results, I decided to re-run a subset of samples of two 

species, A. infausta and Z. trifolii, collected in 2015 and 2016 (Ntotal=20, N=5 for 

each combination of year and species) together in June 2017. Total cyanogenic 

glucoside content was analysed with a linear model, allowing run (original data 

or 2017 re-run), species and year of collection to interact. There were no 

significant effect of any interactions with run (linear model: Run:Year:Species: 

F1,32=0.101, p=0.753 ; Run:Year: F1,33=0.104, p=0.749; Run:Species: 

F1,35=0.167, p=0.685), suggesting that running the samples separately in 2015 

and 2016 did not affect the results. Overall, the measurements of total 

cyanogenic glucoside content in each sample appeared slightly lower in this 

new run than in the original data, suggesting that the equipment, which had 

recently been less regularly used and maintained, was slightly less sensitive 

(the overall effect of run on cyanogenic glucoside content was close to 

significance: F1,37=3.845, p=0.0575). 

Supplementary figure 5.2: Total cyanogenic glucoside content in A. infausta 

and Z. trifolii samples, as measured in the original dataset, and in a 2017 re-run. 

Boxplots show the median and interquartile range. 

273



Appendix 5.3: Results of Phylogenetic Generalised Least Squares (PGLS) 

models testing the relationship between toxicity and coloration in Zygaenidae, in 

each subset of data (combination of collection years and sex). Significant 

relationships are highlighted in italics. ILC=Internal Luminance Contrast, 

ICC=Internal Chromatic Contrast. In all cases, maximum likelihood found 

λ=1*10-6. 

2015, Males: Variables included in models of cyanogenic glucoside concentration 
Luminance, Marking size, 

ILC, ICC 
Luminance, Marking size, 

ILC, Saturation 
Luminance, Marking size, 

ILC, Hue 
ILC F1,3=0.0007, 

p=0.980 
ILC F1,3=0.0021, 

p=0.967 
ILC F1,3=0.0538, 

p=0.814 
ICC F1,4=1.172, 

p=0.340 
Saturation F1,4=1.739, 

p=0.258 
Hue F1,4=0.472, 

p=0.530 
Marking 
size (%) 

F1,5=3.879, 
p=0.106 

Marking 
size (%) 

F1,5=3.879, 
p=0.106 

Marking 
size (%) 

F1,5=3.879, 
p=0.106 

Luminance F1,6=5.916, 
p=0.051 

Luminance F1,6=5.916, 
p=0.051 

Luminance F1,6=5.916, 
p=0.051 

2015, Females: Variables included in models of cyanogenic glucoside concentration 
Marking size, ILC, 

Luminance 
Marking size, ILC, 

Hue 
Marking size, ILC, 

Saturation 
Marking size, ILC, 

ICC 
ILC F1,4=0.734, 

p=0.440 
ILC F1,4=0.108, 

p=0.759 
ILC F1,4=0.0031, 

p=0.958 
ILC F1,4=0.0576, 

p=0.822 
Marking 
size (%) 

F1,5=1.217, 
p=0.320 

Marking 
size 
(%) 

F1,5=0.751, 
p=0.426 

Marking 
size (%) 

F1,5=0.130, 
p=0.733 

Marking 
size 
(%) 

F1,5=0.183, 
p=0.687 

Luminance F1,6=14.975 
p=0.00827 

Hue F1,6=15.68, 
p=0.00745 

Saturation F1,6=11.78, 
p=0.0139 

ICC F1,6=13.713, 
p=0.0101 

2015, Overall: Variables included in models of cyanogenic glucoside concentration 
Luminance, Marking size, 

ILC, Hue 
Luminance, Marking size, 

ILC, ICC 
Luminance, Marking size, 

ILC, Saturation 
Hue F1,4=0.0379, 

p=0.855 
ICC F1,4=0.0252, 

p=0.882 
Saturation F1,4=0.0001, 

p=0.993 
Marking 
size (%) 

F1,5=0.819, 
p=0.407 

Marking 
size (%) 

F1,5=0.819, 
p=0.407 

Marking 
size (%) 

F1,5=0.819, 
p=0.407 

ILC F1,6=4.355, 
p=0.0820 

ILC F1,6=4.355, 
p=0.0820 

ILC F1,6=4.355, 
p=0.0820 

Luminance F1,7=13.409, 
p=0.00805 

Luminance F1,7=13.409, 
p=0.00805 

Luminance F1,7=13.409, 
p=0.00805 

2016, Males: Variables included in models of cyanogenic glucoside concentration 
Luminance, Marking size, 

ILC, Hue 
Luminance, Marking size, 

ILC, Saturation 
Luminance, Marking size, 

ILC, ICC 
Luminance F1,5=0.0009, 

p=0.978 
Marking 
size (%) 

F1,5=0.0467, 
p=0.836 

Luminance F1,5=0.138, 
p=0.726 

Marking 
size (%) 

F1,6=0.285, 
p=0.613 

Saturation F1,6=0.236, 
p=0.644 

Marking 
size (%) 

F1,6=0.308, 
p=0.600 

Hue F1,7=1.176, 
p=0.314 

Luminance F1,7=1.190, 
p=0.311 

ICC F1,7=1.658, 
p=0.239 

ILC F1,8=11.474, 
p=0.00954 

ILC F1,8=11.474, 
p=0.00954 

ILC F1,8=11.474, 
p=0.00954 
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2016, Females: Variables included in models of cyanogenic glucoside concentration 
Luminance, Marking size, 

ILC, Hue 
Luminance, Marking size, 

ILC, Saturation 
Luminance, Marking size, 

ILC, ICC 
Luminance F1,3=0.0956, 

p=0.777 
Luminance F1,3=0.0207, 

p=0.895 
Luminance F1,3=0.154, 

p=0.721 
Hue F1,4=0.0389, 

p=0.853 
Saturation F1,4=0.0567, 

p=0.824 
ICC F1,4=0.057, 

p=0.823 
Marking 
size (%) 

F1,5=1.141, 
p=0.334 

Marking 
size (%) 

F1,5=1.141, 
p=0.334 

Marking 
size (%) 

F1,5=1.141, 
p=0.334 

ILC F1,6=3.957, 
p=0.0938 

ILC F1,6=3.957, 
p=0.0938 

ILC F1,6=3.957, 
p=0.0938 

2016, Overall: Variables included in models of cyanogenic glucoside concentration 
Luminance, Marking size, 

ILC, Hue 
Luminance, Marking size, 

ILC, ICC 
Luminance, Marking size, 

ILC, Saturation 
Hue F1,6=0.0001, 

p=0.911 Luminance F1,6=0.0416, 
p=0.845 

Saturation F1,6=0.315, 
p=0.595 

Marking 
size (%) 

F1,7=0.259, 
p=0.626 

Marking 
size (%) 

F1,7=0.0872, 
p=0.776 

Marking 
size (%) 

F1,7=0.259, 
p=0.626 

Luminance F1,8=0.722, 
p=0.420 

ICC F1,8=1.031, 
p=0.340 

Luminance F1,8=0.722, 
p=0.420 

ILC F1,9=6.803, 
p=0.0285 

ILC F1,9=6.803, 
p=0.0285 

ILC F1,9=6.803, 
p=0.0285 
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