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Abstract

Chatterjee and Das (Chatterjee,K., Das, K. 2017, Bilateral trading and incomplete

information: Price convergence in a small market.) recently examined a model of a

small market with two homogeneous buyers and two heterogeneous sellers with one

of the sellers having private information. They show that as agents become patient

enough, for any prior belief about the type of the privately informed seller, in any

stationary equilibrium, prices in all transactions converge to the highest possible valu-

ation of the informed seller. In the model, it was assumed that the privately informed

seller’s type is distributed on a two-point support. In this note, we argue that the

asymptotic uniqueness result also holds when the privately informed seller’s valuation

is distributed on a continuous support. This shows the robustness of the uniqueness

result obtained in Chatterjee and Das (2017).

1 Introduction

In a recent paper [1] we examined a model of a small market with two homogeneous buyers

and two heterogeneous sellers. In that paper, it was assumed that the privately informed

seller’s valuation is distributed on a two-point support. Here we argue that even if this

valuation has a continuous distribution on a finite support, a similar result will hold; namely

as agents become patient enough, for any prior belief about the type of the privately informed
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seller, price offers in all stationary equilibria converge to the highest possible valuation of

the privately informed seller. This shows the robustness of the result obtained in [1]. Please

refer to [1] for related literature.

2 The Environment

We consider a small market with two uninformed homogeneous buyers and two heterogeneous

sellers. Buyers (B1 and B2) have a common valuation of v for the good (the maximum

willingness to pay for a unit of the indivisible good). There are two sellers. Each of the

sellers owns one unit of the indivisible good. Sellers differ in their valuations. The first seller

(SM) has a reservation value of M which is commonly known. The other seller (SI) has a

reservation value that is private information to her. The privately informed seller’s valuation

is continuously distributed on (L,H] according to some cdf G(s) where

v > H > M > L = 0

Let g(.) be the density function which is assumed to be bounded:

0 < g ≤ g(s) ≤ ḡ

We consider an infinite horizon multiplayer bargaining game with one-sided offers and

discounting. The extensive form is identical to that in [1].

At any time point t, the buyer’s posterior distribution about the privately informed seller’s

valuation can be characterized by a unique number se, which is the lowest possible valuation

of the seller. With a slight abuse of terminology, we will call se the buyer’s posterior. We

begin our analysis by discussing an important finiteness result of the two-player game with

one-sided asymmetric information.

2.1 Finiteness result of the Two-player Game

Consider the infinite horizon bargaining game between a buyer with valuation v and the

seller with private information. Every period, the buyer makes the offer.

From [2] we can infer that in such a game, as the discount factor δ → 1, the price offered

by the buyer converges to H for any posterior of the buyer. Further, as δ → 1, the maximum

number of periods for which the game would last is bounded above by N∗ where N∗ < ∞.

This implies that the privately informed seller by rejecting a sequence of equilibrium offers

a finite number of times can get an offer of H.
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2.2 Four-player game

In this subsection, we analyze the four-player game. Analogous to the discrete types case

(Chatterjee and Das (2017) [1]), we restrict our focus on stationary equilibria. We show that

if there exists a stationary equilibrium in the four-player game, then the asymptotic outcome

for all such equilibria is unique. That is, as δ → 1, price offers in all transactions go to H.

We show this in the following steps.

Let S be the set of posteriors such that for any posterior belonging to this set, a stationary

equilibrium exists where, on the equilibrium path, both buyers offer only to the seller with

private information. Let Γ(S) be the set of such equilibria in case there are more than one.

Let Γc(S) be the set of all those stationary equilibria where on the equilibrium path both

buyers do not solely make offers to the seller with private information when all four players

are present. We first prove the following proposition.

Proposition 1 As the discount factor δ → 1, all price offers in any equilibrium belonging

to the set Γc(S) converge to H.

Proof. We begin this proposition by observing that similar to the logic applied in the corre-

sponding lemmas of [1], it can be shown in the present case as well that for any equilibrium

in Γc(S), both buyers on the equilibrium path cannot solely make offers to SM , and SM al-

ways accepts an equilibrium offer immediately. In the following lemma, we show that for any

equilibrium in the set of equilibria considered, the informed seller by rejecting equilibrium

offers for a finite number of periods can take the posterior to H.

Lemma 1 Consider an arbitrary equilibrium in the set Γc(S). Given a s and δ, there exists

a Ts(δ) > 0 such that, conditional on getting offers, the informed seller can get an offer of

H in Ts(δ) periods from now by rejecting all offers she gets in between. Ts(δ) depends on the

sequence of equilibrium offers and corresponding strategies of the responders in the candidate

equilibrium. Ts(δ) is uniformly bounded above as δ → 1.

Proof.

In any equilibrium, a positive mass of types of the informed seller should always accept.

If a particular type s accepts, then all types s
′
< s should also accept. Thus, rejection always

leads to an upward revision of the posterior. This proves the first part of the lemma.

We will show that given a posterior s, in any equilibrium, the mass of types of the

informed seller accepting a sequence of equilibrium offers is always bounded below as δ → 1.

As argued in the discrete types case ([1]), we only need to consider the case where two

buyers offer to SI with positive probability. For a given s, let pl be the minimum offer
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which gets accepted by a positive mass of types of SI . We know that there exists a possible

outcome such that SI only gets the offer of pl. Since SM always accepts an equilibrium offer

immediately, SI in such a situation knows that rejecting the offer will lead to a two-player

game. By invoking the finiteness property of the two-player game, we can infer that as δ → 1,

the number of rejections required for the informed seller to get an offer of H converges to

some T̃ (0 < T̃ < ∞). Further, the posteriors in each time period t = 1, .., T̃ − 1 reaches

a limit st. Let pt be the price offered in time period t > 0, following a rejection from the

informed seller in t− 1. Note that p0 = pl and pT̃ = H.

Suppose there exists an equilibrium of the four-player game such that pl is the initial

price offer and the number of rejections required for the informed seller to get H is not

bounded above as δ → 1. This implies that we can find a δ′ < 1 such that for all δ > δ′, we

have sut < st for all t = 1, 2, ..., T̃ . Here, sut is the updated posterior following a rejection in

t− 1. Let put be the offer (or highest of the offers) to the informed seller at time point t ≥ 1.

We will now show that for all t ≥ 1, put > pt.

Consider t = 1. We know that

pl − s1 = δ(p1 − s1)⇒ δp1 = pl − (1− δ)s1

Similarly,

pl − su1 = δ(pu1 − su1)⇒ δpu1 = pl − (1− δ)su1

Thus, we have δ(pu1 − p1) = (1− δ)(s1 − su1) > 0⇒ pu1 > p1.

Consider t > 1. We will show that if put−1 > pt−1, then put > pt.

pt−1 − st = δ(pt − st)⇒ δpt = pt−1 − (1− δ)st

Similarly,

pt−1 − sut = δ(put − sut )⇒ δput = put−1 − (1− δ)sut

Thus, we have δ(put −pt) = put−1−pt−1 + (1− δ)(st− sut ) > 0. Hence for all t ≥ 1, put > pt.

This implies that pT̃ ≥ H. Hence, the price offer reaches H after a finite number of

rejections. This is contradictory to our conjectured hypothesis. Thus, in any equilibrium,

the informed seller can get an offer of H after rejecting for a finite number of times. This

concludes the proof of the lemma.

The above lemma shows that in any equilibrium belonging to the set Γc(S), the privately

informed seller can get an offer of H by rejecting equilibrium offers a finite number of times.

Similar to the logic used in applied in [1] for the corresponding lemmas, we can argue that for

any equilibrium in Γc(S) both buyers cannot solely make offer to SI and both buyers make
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offers to SM with positive probability. Finally, similar to [1] we can show that as δ → 1,

for any equilibrium in Γc(S), all price offers converge to H. This concludes the proof of the

proposition.

We will now show that the set S is empty.

Lemma 2 Let S be the set of all posteriors (s < H) such that for s ∈ S, it is possible to

have a stationary equilibrium where both buyers offer only to SI . The set S is empty

Proof. Suppose S is non-empty. This implies that for any s ∈ S, it is possible to have a

stationary equilibrium such that both buyers on the equilibrium path offer only to SI . Since

a positive mass of types of SI always accepts an offer in equilibrium, next period SM will face

a two-player game with a positive probability. This implies that the expected continuation

payoff of SM is strictly less than H. Hence, the highest price offer in such an equilibrium is

always strictly less than H.

Let p̄ be the largest price offer (as argued p̄ < H), for any s in such an equilibrium

(W.L.O.G, such an offer exists). In any equilibrium, a positive mass of types of the informed

seller always accept an equilibrium offer. From Bayes’ Theorem and δ < 1, we can infer

that the sequence of prices must be increasing. Consider the offer of p̄. In the continuation

game, given the updated belief conditional on the offer being rejected, the equilibrium will

either be in Γ(S) or in Γc(S). In the former case any type s
′
< H accepts this offer with

probability 1. This means in the continuation game by Bayes’ rule we will have the posterior

to be equal to H and hence, the price offer will be equal to H. Hence, all these s
′

types can

profitably deviate for high values of δ. In the latter case, there exists a type s
′
< H who

accepts this offer. In the previous proposition, we have argued that for high values of δ all

price offers converge to H. This implies the type s
′

which accepts the offer can profitably

deviate for high values of δ. Hence, we cannot have S to be non-empty. This concludes the

proof.

Since S is empty, Γc(S) is the set of all stationary. We now state our main result of this

note in the theorem below,

Theorem 1 In any arbitrary stationary equilibrium of the four-player game, as the discount

factor goes to 1, price offers in all transactions converge to H for all values s ∈ [L,H).

Proof. The proof the theorem follows directly from proposition (1) and lemma (2).

5



3 Conclusion

We have shown that even when the privately informed seller’s valuation has a continuous

distribution on a finite support, the asymptotic equilibrium outcome in the model of a small

market is unique. This result might help us to make a more tractable analysis of the small

market with more than one privately informed sellers.
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Gul, Ed Green, Vijay Krishna, Selçuk Özyurt, Larry Samuelson and Asher Wolinsky for their

insightful comments and suggestions. We also thank the conference participants of the Royal

Economic Society, World Congress of the Econometric Society and the seminar participants

at the Brown University and the Indian Statistical Institute for helpful comments. Finally,

we thank the editor Roberto Serrano for his suggestions. Dr Chatterjee would also like to

thank the Institute for Advanced Study, Princeton, and the Richard B. Fisher endowment

for financial support of his membership of the Institute during the year 2014-15.

References

[1] Chatterjee, K., Das, K. 2017. “Bilateral trading and incomplete information: Price

convergence in a small market ”, Games and Economic Behavior, Vol. 106 (November

2017), Pages: 89-113 .

[2] Fudenberg, D., Levine, D., and Tirole, J. , 1985. “Infinite-Horizon Models of Bargaining

with One-Sided Incomplete Information. ”A. Roth (ed.), Game-Theoretic Models of

Bargaining , Cambridge University Press .

6


	Introduction
	The Environment
	Finiteness result of the Two-player Game
	Four-player game

	Conclusion

