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Abstract. The trend of future massively parallel computer architec-
tures challenges the exploration of additional degrees of parallelism also
in the time dimension when solving continuum mechanical partial dif-
ferential equations. The Adomian decomposition method (ADM) is in-
vestigated to this respect in the present work. This is accomplished by
comparison with the Runge-Kutta (RK) time integration and put in the
context of the viscous Burgers equation.

Our studies show that both methods have similar restrictions regarding
their maximal time step size. Increasing the order of the schemes leads
to larger errors for the ADM compared to RK. However, we also discuss
a parallelization within the ADM, reducing its runtime complexity from
O(n2) to O(n). This indicates the possibility to make it a viable com-
petitor to RK, as fewer function evaluations have to be done in serial, if
a high order method is desired. Additionally, creating ADM schemes of
high-order is less complex than it is with RK.

Keywords: Adomian decomposition, Burgers’ equation, Runge-Kutta,
parallel in time

1 Introduction

Simulations play an ever increasing role in science and industry. They are neces-
sary, for instance, to simulate systems which cannot be studied experimentally
such as planetary movements, to predict the weather of the next days, or to
simulate molecular interactions for development of pharmaceutics. Very often,
hard time constraints require to get simulation results within a reasonable time
frame. Weather simulation is probably one of the most obvious examples. Addi-
tionally, driven by the stagnation in processor speed and the increasing degrees
of on-chip parallelization over the last decade, exploring additional degrees of
parallelism in the time domain is of steadily increasing interest. This is one of
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the main driving factors for parallel-in-time methods, see [22] for a review and
overview.

Frequent choices of time stepping schemes from the family of the Runge-
Kutta methods are the explicit, implicit, or implicit-explicit form [9, 19]. The
application of these time stepping methods was already studied intensively. A
less used and investigated method is the Adomian decomposition method (ADM)
[6]. So far, the ADM was only considered as a time stepping method, but to our
best knowledge no investigation was done regarding its properties of extracting
additional degrees of parallelism. This motivates the present work in which we
investigate the ADM in the context of parallelization and compare it to the ex-
plicit Runge-Kutta (RK) method for the viscous Burgers equation. Here, the
focus lies on both the accuracy, which can be gained, and the time step restric-
tions.

1.1 Related Work

Adomian himself used the decomposition to calculate the exact solution for a
specific initial velocity distribution [7]. Many authors approximated the exact so-
lution by applying the Adomian decomposition using a truncated series instead
of the originally used infinite series. Their work [8, 20, 27, 28, 32] shows that tak-
ing only a few terms of the series into account yields highly accurate results for
the Burgers’ equation. In [15, 21, 26] it is noted that truncating the series yields a
small convergence radius, such that the maximal time step is bounded. Applying
the ADM to an equation which is discretized in space reduces the radius even
further [32].

The problem with the convergence radius was circumvented in [2] by using the
ADM as a time stepping scheme with a stable time step size. Applying the ADM
each time step makes spatial derivatives necessary for each interim solution. A
reduction of complexity was used by approximating the interim solutions by an
easily derivable series. With this method a good approximation of the exact
solution was found. In [35] it is shown that the ADM is also able to yield very
accurate results when the spatial domain is discretized and the ADM is used as
a numerical time stepping scheme.

This work focuses on a comparison of the ADM with the RK method which
was already done for other models. These comparisons were carried out numer-
ically with a continuous spatial domain. For the Lorenz equation it was shown
in [24] that the ADM with four terms of the series allows for larger time steps
than the classical RK method and reaching the same order of accuracy. Another
comparison based on the Lorenz equation compared the ADM with 15 terms of
the series with Runge-Kutta-Verner schemes of 5th and 6th order which showed
the ADM to be more accurate [33]. Using the ADM with 4 terms and compar-
ing it to the classical RK method displayed errors of the same order for both
methods tested on different linear and non-linear equations [31].
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1.2 Contribution of this Work

Besides the standard stability and convergence requirements, a viable time step-
ping scheme in productive simulations has to fulfill two important properties:
accurate solutions even for larger time step sizes and, related to larger time step
sizes, a wall-clock time as small as possible. Considering the ADM, previous work
has mainly focused on its accuracy. Our focus is on a reduction of the wall-clock
time. This reduction can be achieved by (a) large time steps and by (b) speeding
up the time stepping method by exploiting additional degrees of parallelism in
the time dimension. Both parts are less investigated so far regarding the ADM
as a time stepping method and this is the main focus of this work. By comparing
the ADM to the RK method we investigate whether the discrete ADM is a viable
method regarding real-world scenarios and if it is competitive to other existing
time stepping methods.

In Sect. 2 we present a short introduction to the viscous Burgers equation.
This is followed by the comparison of the Runge-Kutta and discrete Adomian
decomposition methods in Sect. 3, where the discrete ADM is also described in
more detail. The additional degrees of parallelism of the ADM are then discussed
in Sect. 4, followed by results of the numerical studies in Sect. 5 and conclusions
in Sect. 6.

2 Burgers’ Equation

The Navier-Stokes equations (NSE) are the fundamental equations of many com-
putational fluid dynamics (CFD) problems [34]. In their incompressible form
they read

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ ν∇2u +

1

ρ
F , (1)

∇ · u = 0 ,

where u denotes the velocity, p the pressure, ρ the density, ν the kinematic
viscosity, and F the external forces.

The viscous Burgers equation, which was introduced by Bateman [11] and
extensively studied by Burgers, e.g. [12], can be derived from (1). To gain Burg-
ers’ equation, we drop the internal sources −∇p/ρ and external sources F/ρ
leaving us with

∂u

∂t
+ (u · ∇)u = ν∇2u .

This simplification of the NSE still contains the non-linearity, which is one of the
terms of interest when it comes to developing numerical schemes for the NSE.

For a better presentation of our results, we use the one dimensional formu-
lation

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
. (2)
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3 Comparison of Time Integration Methods

In this section, we compare the Runge-Kutta method to the discrete Adomian
decomposition method and provide a more detailed description of both methods.

3.1 Runge-Kutta Method

In our comparison we use the well-known explicit Runge-Kutta method (RK)
[29] and employ schemes of order p = 1, . . . , 4. The RK method solving du/dt =
f(t, u) reads

un+1 = un +∆t

s∑
i=1

biki,

k1 = f(tn, un),

ki = f

tn + ci∆t, un +∆t

i−1∑
j=1

aijkj

 , for i = 2, . . . , s,

where un denotes the approximation of u(t0+n∆t), and the coefficients a, b, c are
specific to the used s-stage RK scheme. These coefficients are usually arranged
in a Butcher tableau [13]

0

c2 a21
...

...
. . .

cs as1 · · · as,s−1
b1 · · · bs−1 bs

.

For an s-stage RK method of order p, s ≥ p holds and if p ≥ 5, then s > p [14].
From this follows, that as many or more function evaluations are necessary per
time step as the order of the scheme is.

Since the RK method is of explicit nature it has a limited stability region.
The time step is bounded by the condition that the physical propagation of
information has to be equal to, or slower than the propagation of information on
the discretized grid. This is reflected in the CFL condition [18]. With the Burgers
equation the fastest propagation of information can either be by advection or
diffusion making the maximal time step width proportional to ∆tmax ∝ ∆x or
∆tmax ∝ ∆x2, respectively.

3.2 Discrete Adomian Decomposition Method

Next, we describe the discrete Adomian decomposition method (DADM). For
this purpose, we first provide an overview of the Adomian decomposition method,
before we explain its discretized version. Finally, we apply the DADM to the
Burgers equation.
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Adomian Decomposition Method The basis of the DADM is the Adomian
decomposition method which was developed by Adomian in the ’80s and ’90s,
e.g. [6]. The main idea is to decompose the non-linearities of equations into a
series of Adomian polynomials. With the ADM it is possible to calculate the
analytical solution or, if this is not possible, to gain an approximation with
a fast convergence to the actual solution. This is possible as no discretization
(in case of the analytical version described here), linearization, or perturbation
theory has to be applied to the non-linear term [3, 4, 6, 7].

Following the notation in [5] the method is in general applied to an equation
F(u) = g, where F is a (non-)linear operator. This operator can be decomposed
in its linear and non-linear parts L+R and N , respectively. Here, L denotes an
easily invertible operator of highest order and R comprises the remaining linear
parts. Using this notation we get

Lu+Ru+N (u) = g . (3)

Let the inverse of L be L−1. Solving (3) for Lu and applying the inverse yields

L−1Lu = L−1g − L−1Ru− L−1N (u) . (4)

The left hand side of this equation can be evaluated to L−1Lu = u+ C, where
C are the integration constants given either by initial or boundary conditions.

The idea of the ADM is now to expand the unknown into the series u =∑∞
i=0 ui and write the non-linearity as N (u) =

∑∞
i=0Ai, where the Ai are

the Adomian polynomials. With the series representation we can identify u0 =
L−1g − C. Now, we can write (4) as

∞∑
i=0

ui = u0 − L−1R
∞∑
i=0

ui − L−1
∞∑
i=0

Ai . (5)

Therefore, we have the recursive relation

u1 = −L−1Ru0 − L−1A0

u2 = −L−1Ru1 − L−1A1

... (6)

ui+1 = −L−1Rui − L−1Ai
...

for the ui of the expansion series.
The Adomian polynomials can formally be written as

Ai(u0, u1, . . . , ui) =
1

i !

 di

dλi
N

 ∞∑
j=0

λjuj


λ=0

, (7)
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(see [1, 3, 4, 6, 16]). We notice that Ai is only dependent on u0, u1, . . . , ui and
other independent variables. This is important for the discussion of the paral-
lelization in Sect. 4. In the end, the formulation of the Ai can be interpreted as
a generalization of the Taylor series in the neighborhood of the function u0

N (u) =

∞∑
i=0

Ai =

∞∑
i=0

1

i !
(u− u0)

iN (i) (u0) .

Discretization of the Adomian Decomposition Method Using the ADM
numerically requires a truncation to a finite series. As stated in [15, 21, 26] this
truncation leads to a small convergence radius of the ADM. In [35] this small
convergence radius was circumvented by applying the ADM as a time stepping
scheme iteratively on a discretized spatial domain. Since our ansatz is applying
discretization in space and time as-well, we adapt the name discrete Adomian
decomposition method.

The truncated version of the decomposition (5) to approximate the solution
reads

∞∑
i=0

ui ≈
p∑
i=0

ui = u0 − L−1R
p−1∑
i=0

ui − L−1
p−1∑
i=0

Ai ,

where p denotes the order of the approximation. The truncated version can be
used as a time stepping scheme, by repeatedly applying the ADM with a stable
time step size ∆t. The starting point of each new time step is given by the result
of the previous time step. We denote the approximation at time tn = t0 + n∆t
by ûn. With this we can define the time stepping scheme of order p as

ûn+1 = ûn +

p∑
i=1

ui . (8)

For one time step of this scheme p evaluations of the linear operator are necessary
and the non-linearity has to be evaluated in the order of O(p2) times because of
(7).

DADM Applied to Burgers’ Equation We compare the DADM with the
RK method applied to the Burgers equation. For the Burgers equation (2) we
can identify Lu = ∂u/∂t, Ru = −ν∂2u/∂x2 and N (u) = u∂u/∂x. Using this
and having (8) in mind the recursion (6) reads

u0 = ûn

u1 = −∆t
1

(Ru0 +A0)

u2 = −∆t
2

(Ru1 +A1) (9)

...

up = − ∆t

(p− 1)
(Rup−1 +Ap−1) .
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Here, we utilized L−1 =
∫ tn+1

tn
· dt and ûn being independent on t. Equation (7)

can be written as

Ai =

i∑
j=0

uj
∂ui−j
∂x

(10)

in this context.

3.3 Comparison of DADM and RK

Both methods investigated in this comparison are explicit methods, which can be
formulated with different orders of accuracy. We introduce the notation DADMp
and RKp, where p denotes the order of the method. For the purpose of read-
ability, we also introduce the notation N (x(u), y(u)) = x(u)∂y(u)/∂x for the
non-linearity.

First Order We compare DADM1 with the explicit Euler method, which is
equivalent with RK1. Writing out DADM1 yields

ûn+1 = ûn +

1∑
i=1

ui = ûn −∆t (Rûn +N (ûn, ûn)) ,

and using the same operator notation for RK1, we get

un+1 = un −∆t (Run +N (un, un)) .

As we can see, both methods are exactly the same.

Second Order Writing ûn+1 as a function of ûn for DADM2 yields

ûn+1 = ûn +

2∑
i=1

ui

= ûn −∆t (Rûn +N (ûn, ûn))

+
∆t2

2

(
R2ûn +RN (ûn, ûn) +N (Rûn +N (ûn, ûn) , ûn)

+N (ûn,Rûn +N (ûn, ûn))) .

We can see, that this is the 2nd order exact representation of the generalized
Taylor series developed around the function ûn, as expected with the ADM.

The RK2 method, which is the midpoint method, can also be written without
intermediate stages

un+1 = un −∆t (Run +N (un, un))

+
∆t2

2

(
R2un +RN (un, un) +N (Run +N (un, un) , un)

+N (un,Run +N (un, un)))

+
∆t3

4
(N (N (un) ,Run) +N (Run,N (un, un))

+N (N (un) ,N (un)) +N (Run,Run)) .
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u0 u1 u2 u3 u4

A0 A1 A2 A3 A4

Fig. 1. Data dependencies indicated by the arrows for the first four Adomian poly-
nomials Ai are shown to underline the fact that each polynomial is dependent on all
previously calculated velocities ui

In this formulation we recognize all terms of DADM2. In addition, there are
some terms of 3rd order. These terms do not represent the third order terms
of the generalized Taylor series and, therefore, impact the error but not the
convergence order of the numerical scheme.

Higher Order Higher order methods show a comparable picture as the 2nd

order methods. The DADMp is, as intended, always accurate up to order p
regarding the generalized Taylor series. RKp is based on the same terms as
DADMp, but also has additional terms of orders higher than p.

Similar solutions are expected due to this from the numerical schemes. The
remaining question is, whether the additional terms are beneficial for the stability
(maximal stable time step width).

4 Degrees of Parallelism

The goal of this work is to investigate whether DADM is a viable method and
competitive to other time steppers like RK. For this purpose, we have already
compared both methods in Sect. 3. There, we found that both methods are very
similar, but need different numbers of function evaluations. One could argue
that the large amount of evaluations of the non-linear term in DADM makes
this method less efficient than RK.

Taking a closer look at the data dependencies of the calculation of the Ado-
mian polynomials, we can recognize (see also Sect. 3.2) that these are a sum over
already calculated variables, sketched in Fig. 1. We can use this to parallelize the
calculation of the terms in (7), respectively (10).

To our best knowledge, these additional degrees of parallelism were not stud-
ied in the literature so far. A strictly sequential evaluation of a p-stage DADM,
leads to O(p) function evaluations plus

∑p
n=1 n = 1

2p(p+ 1) = O(p2) additional
evaluations of the non-linear term following (9) and (10). However, each stage
leads to additional independent terms which increases the degree of parallelism
for higher stages over the sum. Assuming that the evaluations of each term in
the stage are computationally more expensive compared to the reduction over
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Table 1. This table shows distribution of workload on multi-core system. The left most
column indicates the necessary communication. The columns headed by Pi denote the
processors and show the values on the processor. In the last column the dependencies
and calculations are given. Here, the calculation for the first three velocities is shown
to demonstrate the idea

P0 P1 P2 P3
Calculations &
dependencies

Bcast u0

A0 A0 A0 A0 A0 = (u0 · ∇)u0

u1 u1 u1 u1 u1 = −∆t(ν∇2u0 +A0)

Reduce u0∇ · u1 u1∇ · u0

A1 A1 A1 A1 A1 =
∑1

i=0(ui · ∇)u1−i

u2 u2 u2 u2 u2 = −∆t/2(ν∇2u1 +A1)

Reduce u0∇ · u2 u1∇ · u1 u2∇ · u0

A2 A2 A2 A2 A2 =
∑2

i=0(ui · ∇)u2−i

u3 u3 u3 u3 u3 = −∆t/3(ν∇2u2 +A2)

the sum, this reduces the runtime complexity to O(p). In Table 1 the workload
distribution on a multi-core system is depicted. In addition to the distribution,
we highlight the required data dependencies, hence the communication.

We would also like to point out that some terms of (10) can already be com-
puted at an earlier stage, e.g. the term u1∇·u1 belonging to A2 can be evaluated
at the time the terms for A1 are evaluated. Hence, a formulation as a directed
acyclic graph (DAG) scheduling problem could lead to further improvements
regarding the wall-clock time and the required computational resources.

5 Numerical Studies

The numerical studies described in this section are used to expand the compari-
son of RKp and DADMp. We start with a description of the benchmark used for
the studies. With this benchmark scenario we compare the maximal time step
size and the convergence order of both schemes.

5.1 Spatial Discretization

As the interest of our study is the comparison of the time stepping methods, we
apply spectral methods for the discretization of our spatial domain. With this
we are able to minimize the errors induced by the spatial discretization of the
equation.

The method of choice is the periodic Fourier basis, e.g. [19]. This basis allows
to evaluate linear operators element-wise in spectral space, hence without loss



10 Andreas Schmitt, Martin Schreiber, and Michael Schäfer
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Fig. 2. Snapshots of the analytical solution to the viscous Burgers equation for the
velocity over the spatial domain with ν = 0.01

of accuracy. Therefore, the error of this operation is in the order of machine
precision, if the function can be represented exactly in spectral space with the
given number of modes.

Non-linear operators are evaluated in a pseudo-spectral fashion [10, 23] in
physical space to reduce the complexity of the calculation, which would be given
with the necessary convolution of all spectral series. A standard anti-aliasing
technique is used to filter the spurious modes created in physical space by the
pseudo-spectral calculation, e.g. [30].

5.2 Benchmark Scenario

For our benchmark the spatial domain is initialized at t = t0 with a one di-
mensional sinus wave as shown in Fig. 2. The space time domain, on which the
benchmark is run, is x, t ∈ [0, 1]2. Even with an initial distribution as simple as
this, it would not be very easy to apply the ADM numerically without a spatial
discretization. This is due to the convergence radius requiring multiple steps of
the ADM and the intermediate solutions are not easily differentiable.

As the focus of the Adomian decomposition is the non-linearity, we use a
viscosity of ν = 0.01, which reduces the influence of the diffusion compared to
the advection. With this choice the snapshots in Fig. 2 show that both parts
have a visible influence on the solution. The spatial domain is discretized with
a grid spacing of ∆x = 1/256, which corresponds to N = 170 spectral modes.
For the comparison of the convergence order, we run the schemes with time step
widths of ∆t = {1.25× 10−4, 2.5× 10−4, 5× 10−4}. All errors are the difference
between the numerical and analytical solution, which is given by the Hopf-Cole
transformation [17, 25].
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Fig. 3. Maximal time step ∆tmax for converged calculations in time interval t ∈ [0, 1]
for RK (solid) and DADM (dashed) plotted over the order of the method

5.3 Stable Time Step Size Limitations

Since one of the possibilities to reduce the calculation time is to use large time
step sizes, it is of interest to investigate the largest possible time step size with
both methods. Therefore, we compare the maximal stable time step ∆tmax for
different orders of the DADM and RK method applied to the benchmark. The
maximal stable time step for this investigation is the ∆t with which a solution at
the final time t = 1 was found without significant deviations from the analytical
solution. The calculations were done with schemes of the orders p = {1, . . . , 4}
for RK and with schemes of the order p = {1, . . . , 15} for DADM. ∆tmax was
determined with up to three significant digits.

In Fig. 3 the upper two curves show the results for the mentioned settings.
Considering the schemes of order p = {1, . . . , 4}, we can observe that both RK
and DADM show very similar maximal stable time step sizes. For the even
orders DADM allows time steps which are approximately 3% larger than those
with RK. With an increasing order slightly larger time steps are possible. This
trend continues for DADM for the other tested orders p = {5, . . . , 15}.

The two bottom curves in Fig. 3 were calculated with N = 341 spectral
modes. The smaller ∆tmax is expected, because both schemes are of explicit
nature and their time step size is bounded by the CFL condition. Increasing the
number of spatial discretization points by a factor of two in this case leads to a
reduction of the maximal stable time step width by a factor of four. From this
we can deduce that the time step width is bounded by the diffusive information
transport. In this case the relation ∆tmax ∝ ∆x2 holds.

From these results we can conclude that there seems to be no striking dif-
ference between RK and DADM considering ∆tmax. Therefore, applying the
parallelization described in Sect. 4 can make DADM competitive against RK for
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Fig. 4. Maximal absolute error at t = 1 plotted over the number of time steps for RK
and DADM of order p = 1, . . . , 3. Additionally, slopes of order p = 1, . . . , 3 are shown
to validate the order of the methods

high order methods, as there is no disadvantage in time to solution regarding
the time step width.

5.4 Convergence Order

In addition to the maximal time step size, we take a look at the errors produced
by the schemes to investigate the assumption made in Sect. 3.3, where we stated
that the additional higher order terms of RK will reduce the error compared to
DADM. Here, we compare the errors for the orders p = 1, . . . , 3 of both schemes
and show that the schemes converge with the given order.

In Fig. 4 the maximal absolute error at the final time t = 1 is shown for
the three different time step widths of the benchmark. As expected from the
comparison in Sect. 3.3, the first order methods have exactly the same error and
converge according to their order. The errors of DADM2 are slightly larger than
those of RK2. The difference is a result of the additional terms of higher order
which appear in RK2. Both schemes converge with 2nd order accuracy. For the
third order schemes we get a comparable picture. Although both methods reach
the expected order, the DADM3 produces larger errors than the RK3. Taking
all three orders into account, we can see that the error difference increases with
increasing order.

From a serial point of view this and having comparable maximal time step
sizes suggests to prefer the RK method over the DADM. With the discussed
parallelization DADM is still viable. For smaller orders the error difference is
not significant. In case of the higher orders increasing the order from p to p+ 1
for the DADM needs still as many function evaluations as RK for p ≥ 5 and
even less for p ≥ 7 [14].
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6 Conclusion and Discussion

In this work, we have discussed how the Adomian decomposition method (ADM)
can be applied as an explicit time stepping scheme. We were able to extract addi-
tional degrees of parallelism within this method to reduce the runtime complexity
from O(n2) to O(n).

This reduction makes the ADM a viable competitor to the Runge-Kutta (RK)
method for high-order schemes. In this case the number of function evaluations
which have to be computed in serial is smaller for the ADM than for the RK
method. A comparison based on numerical studies has shown that both methods
have comparable maximal time step widths. The larger errors of the ADM in
the high orders can be circumvented by increasing the order of the ADM from p
to p+ 1. This still leaves the ADM with less function evaluations done in serial
than the RK method of order p. This increase of order is easy to accomplish,
as it is straight forward to obtain higher order ADM methods. These results
support the statement, that the ADM can be a viable time stepping method.

It is mentioned, e.g. in [32], that the maximal time step width of the ADM
could be increased with Padé’s rational approximation. This might increase the
viability of the ADM as an explicit time stepping scheme further while still
allowing to exploit the additional degrees of parallelism in time.
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der mathematischen Physik. Mathematische Annalen 100, 32–74 (1928). DOI
10.1007/BF01448839

19. Durran, D.: Numerical Methods for Fluid Dynamics: With Applications to Geo-
physics. Texts in Applied Mathematics. Springer New York (2010). DOI
10.1007/978-1-4419-6412-0

20. El-Sayed, S.M., Kaya, D.: On the numerical solution of the system of two-
dimensional Burgers’ equations by the decomposition method. Applied Mathe-
matics and Computation 158(1), 101–109 (2004). DOI 10.1016/j.amc.2003.08.066

21. El-Tawil, M.A., Bahnasawi, A.A., Abdel-Naby, A.: Solving Riccati differential
equation using Adomian’s decomposition method. Applied Mathematics and Com-
putation 157(2), 503–514 (2004). DOI 10.1016/j.amc.2003.08.049

22. Gander, M.J.: 50 years of time parallel time integration. In: Multiple Shooting and
Time Domain Decomposition. Springer (2015). DOI 10.1007/978-3-319-23321-5 3

23. Gottlieb, D., Orszag, S.: Numerical Analysis of Spectral Methods: Theory and
Applications. CBMS-NSF Regional Conference Series in Applied Mathematics.
Society for Industrial and Applied Mathematics (1977)

24. Guellal, S., Grimalt, P., Cherruault, Y.: Numerical study of Lorenz’s equation by
the Adomian method. Computers & Mathematics with Applications 33(3), 25–29
(1997). DOI 10.1016/S0898-1221(96)00234-9



Degrees of parallelism within the Adomian decomposition method 15

25. Hopf, E.: The partial differential equation ut+uux = µxx. Communications on Pure
and Applied Mathematics 3(3), 201–230 (1950). DOI 10.1002/cpa.3160030302

26. Jiao, Y., Yamamoto, Y., Dang, C., Hao, Y.: An aftertreatment technique for im-
proving the accuracy of Adomian’s decomposition method. Computers & Math-
ematics with Applications 43(6), 783–798 (2002). DOI 10.1016/S0898-1221(01)
00321-2

27. Kaya, D., Yokus, A.: A numerical comparison of partial solutions in the decompo-
sition method for linear and nonlinear partial differential equations. Mathematics
and Computers in Simulation 60(6), 507–512 (2002). DOI 10.1016/S0378-4754(01)
00438-4

28. Kaya, D., Yokus, A.: A decomposition method for finding solitary and periodic so-
lutions for a coupled higher-dimensional Burgers equations. Applied Mathematics
and Computation 164(3), 857–864 (2005). DOI 10.1016/j.amc.2004.06.012

29. LeVeque, R.: Finite Difference Methods for Ordinary and Partial Differential Equa-
tions: Steady-State and Time-Dependent Problems. SIAM e-books. Society for In-
dustrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadel-
phia, PA 19104) (2007)

30. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T., et al.: Numerical
Recipes, vol. 3. cambridge University Press, cambridge (1989)

31. Shawagfeh, N., Kaya, D.: Comparing numerical methods for the solutions of sys-
tems of ordinary differential equations. Applied Mathematics Letters 17(3), 323–
328 (2004). DOI 10.1016/S0893-9659(04)90070-5

32. de Sousa Basto, M.J.F.: Adomian decomposition method, nonlinear equations and
spectral solutions of Burgers equation. Ph.D. thesis, Faculdade de Engenharia da
Universidade do Porto (2006)

33. Vadasz, P., Olek, S.: Convergence and accuracy of Adomian’s decomposition
method for the solution of Lorenz equations. International Journal of Heat and
Mass Transfer 43(10), 1715–1734 (2000). DOI 10.1016/S0017-9310(99)00260-4

34. Wesseling, P.: Principles of Computational Fluid Dynamics. Springer Series in
Computational Mathematics. Springer Berlin Heidelberg (2009)

35. Zhu, H., Shu, H., Ding, M.: Numerical solutions of two-dimensional Burgers’ equa-
tions by discrete Adomian decomposition method. Computers & Mathematics with
Applications 60(3), 840–848 (2010). DOI 10.1016/j.camwa.2010.05.031


