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Abstract 

 

Conservation managers worldwide are increasingly faced with the challenges of 

managing and protecting fragmented landscapes, largely as a consequence of 

human activities. Over recent decades, ecological theory has made a significant 

contribution to the development of landscape-scale conservation and practice. 

However, recommendations accounting for what is practically achievable in the 

modern-day landscape are currently lacking, while criteria for conservation 

planning and prioritisation continue to neglect the role of habitat networks at the 

required spatial scale for the long-term persistence of biodiversity. In this thesis, 

I test and apply ideas surrounding the complexities of managing and conserving 

species in a landscape context, using a suite of bird species endemic to papyrus 

(Cyperus papyrus) swamps in East and Central Africa as a model system. In the 

face of large-scale habitat loss and degradation, practical measures that account 

for the fragmented nature of this system, the needs of multiple specialist species, 

and the reliance on this habitat by local people, are urgently required. I first review 

the concepts originating from reserve design theory to provide a decision-making 

framework for those involved in landscape-scale conservation amid 21st century 

challenges to biodiversity, highlighting the key principles to be considered for 

informed choices to be made. Second, I show that the needs of local people can 

be compatible with conservation planning in the tropics, and may play an 

important part in maintaining habitat quality for species residing in historically 

disturbed landscapes. Third, I develop a novel framework to make an explicit link 

between metapopulation dynamics and conservation planning. Despite 

differences in the patch-level dynamics of individual species, areas of habitat 

where populations of multiple species are resistant to extinction, and resilient 

because of high chances of (re)colonization can be identified, highlighting where 

resources could be invested to ensure species have the capacity to respond to 

future change. Finally, I simulate the metapopulation dynamics of the papyrus-

endemic birds to demonstrate that the optimal conservation strategy for the long-

term persistence of all species residing in a network depends on the 

characteristics of individual species, and the total area that can be protected. 

Overall, this thesis develops and tests the ecological theory used in spatial 

conservation planning, emphasising the importance of habitat disturbance and 

interspecific ecological differences for the effective management of habitat 
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networks. The results increase the evidence base for the conservation of wetland 

birds in Africa, as well as for species residing in fragmented landscapes more 

generally.  
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Chapter 1:  

General introduction 

 

 

Habitat destruction and degradation from human activities (Newbold et al. 2015) 

are among the greatest threats to biodiversity worldwide (WWF 2014, 2016). The 

destruction of habitat comprises both habitat loss (a decrease in the amount of 

habitat available) and habitat fragmentation (a change in the configuration of 

habitat) (Fahrig 2002, 2003; Liao et al. 2013); thus, specialized species with 

localized habitat distributions are particularly sensitive to the spatial changes in 

habitat experienced across the landscape (Devictor, Julliard & Jiguet 2008). 

Among the international agreements established to combat these threats, the 

Convention on Biological Diversity (CBD), established at the United Nations 

Conference on Environment and Development in 1992, was arguably one of the 

most fundamental steps towards the conservation of global biodiversity (Gaston 

& Spicer 2004). Habitat extent and condition were used as indicators for the 2010 

Biodiversity Targets (Butchart et al. 2010), agreed during the 6th Conference of 

the Parties (The Hague, 2002). Following failure to achieve these goals (CBD 

2010), at the tenth meeting of the Conference of the Parties, countries were called 

upon to implement the 2011-2020 Strategic Plan for Biodiversity, including the 

current Aichi Biodiversity Targets (CBD 2011). Among these targets, the need to 

significantly slow habitat loss and reduce degradation continues to be 

acknowledged (target 5), alongside another 19 targets under 5 strategic goals, 

based around recognising the causes of biodiversity declines, reducing threats, 

and improving the status of biodiversity by 2020. However, current progress 

towards these targets is slow, suggesting that attaining the desired results by 

2020 is unlikely (Tittensor et al. 2014), while the conservation funding available 

to meet the set goals is inadequate (McCarthy et al. 2012). Thus, strategic 

conservation planning is paramount to ensure resources are used wisely, and 

encourage the most chance of success for global biodiversity this time around.  
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Conservation planning and prioritisation   

  

Protected areas are regarded as the backbone for conservation management 

(Watson et al. 2014), aiming to be representative of biodiversity, and ensure its 

long-term persistence (Margules & Pressey 2000). These are recognised as an 

integral part of in situ conservation (Article 8 of the text of the CBD) and form part 

of the Aichi targets; aiming to increase the coverage of these areas to 17% of 

terrestrial and inland water, and 10% of coastal marine areas by 2020 (CBD 

2011). Various priority sites have also been established in an attempt to ensure 

that resources are invested in the most important areas, focusing on hotspots 

with high species richness, endemism, pristine habitat or levels of threat, such as 

Centres of Plant Diversity (WWF & IUCN 1994-1997), Key Biodiversity Areas 

(Eken et al. 2004), Biodiversity Hotspots (Myers et al. 2000) and Major Tropical 

Wilderness Areas (Mittermeier et al. 1998). In theory these priority sites can be 

used to assist with the designation of protected areas, though arguably have had 

little success in encouraging conservation implementation (Brooks et al. 2006). 

However, following an increase in the level of fragmentation occurring across 

landscapes, combined with added pressures from climate change, pollution and 

invasive species (Millennium Ecosystem Assessment 2005), the implications of 

site-based approaches to conservation, i.e. focusing on the protection of a 

particular place (Coppolillo et al. 2004), have become apparent. Rather than 

managing and preserving sites in isolation, it is now widely recognised that 

conservation should focus on networks of habitat for the persistence of 

biodiversity (Lawton et al. 2010). 

 

Landscape-scale conservation 

 

Theoretical work has vastly enhanced our understanding of the response of 

species to the spatial configuration of habitat and, in turn, played a pivotal part in 

guiding the conservation management of fragmented landscapes and reserve 

design at landscape scales (Diamond 1975). The theory of island biogeography 

(MacArthur & Wilson 1967) built on the species-area and species-isolation 

relationships (Hanski 1994a), stating that the number of species an island can 

hold is a function of its size and distance from a mainland population. The theory 
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of metapopulation dynamics developed these concepts further; the processes of 

extinction and colonization are still central to this theory, but there is no mainland 

population, and all patches (or “islands”) show constant turnover (Hanski & Gilpin 

1991). 

 

Originally defined by Levins (1969) as a “population of populations”, a 

metapopulation consists of a set of local populations that are vulnerable to 

extinction through stochastic events (Thomas 1994), but the balance of extinction 

and recolonization means that the metapopulation as a whole can still persist 

(Figure 1.1). Interest in modelling the metapopulation dynamics of species has 

increased substantially over the past few decades, following the demand for 

managing plant and animal populations in fragmented landscapes (Hanski & 

Gilpin 1991), alongside the development of models that can be applied to real 

metapopulations (Hanski & Gilpin 1991; Hanski 1999a; Ovaskainen & Hanski 

2001), and with readily available ecological field data (Hanski 1994b). To reside 

as a classical metapopulation, a species must exist in spatially distinct habitat 

patches, all local populations must be at risk of extinction, patches should not be 

too isolated to prevent (re)colonization, and dynamics should be sufficiently 

asynchronous so that simultaneous extinction is unlikely (Hanski et al. 1995a). 

Metapopulation models have been applied to a variety of taxa (see Hanski & 

Thomas 1994) and shown their potential to identify key areas for investment 

(Hanski et al. 1996), predict the response of species to changes in their 

environment (Hanski & Thomas 1994; Lindenmayer, McCarthy & Pope 1999; 

Moilanen 2004), and note threshold levels of fragmentation for persistence 

(Bulman et al. 2007). Based on the assumptions associated with the rate of 

colonization and extinction for most spatially-realistic metapopulation models 

(Figure 1.1), metapopulation theory  has played a key part in informing the design 

of ecological networks, and the importance of habitat size, quality and levels of 

connectivity for species persistence across the landscape (e.g. Lawton et al. 

2010).  
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Figure 1.1. Simplified illustration of a ‘real’ metapopulation: occupied (dark green) 

and unoccupied patches (light green) surrounded by unsuitable habitat (grey). 

Arrows signify the colonization of unoccupied habitat and crosses indicate 

extinction events at occupied patches. In spatially-realistic metapopulation 

models, the rate of colonization is often modelled as a function of the distance to 

occupied patches, and the rate of extinction as a function of population size 

derived from patch area (Hanski 1994b), or can be scaled with habitat quality 

(Thomas et al. 2001; Franken & Hik 2004). 

 

Practical considerations for conserving landscapes 

 

Site-based approaches to conservation traditionally adopted the top-down 

management model that typically excluded people (Hutton, Adams & 

Murombedzi 2005). However, with a growing human population (WWF 2016) and 

demand for land (Defries, Foley & Asner 2004), conservation at the landscape-

scale inevitably involves people. The invariable link between biodiversity 

conservation and human wellbeing is now generally recognised; the Millennium 

Ecosystem Assessment (2005) was based on a framework involving the dynamic 

interaction between people and the status of the ecosystem, while the CBD also 

agrees that human wellbeing and ecosystem management should be integrated 

Unoccupied patch 

Occupied patch 

Extinction 

Dispersal 
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(Berkes 2007). However, the compatibility of biodiversity conservation and 

human welfare is still questioned (Wilkie et al. 2006), and they remain viewed as 

separate entities. Conservation management is designed to enhance habitat 

quality in a bid to support bigger populations of species (Hodgson et al. 2011b). 

Often this involves strict limits on the disturbance caused by people (Hodgson et 

al. 2009b), but fails to explore the extent to which maintaining habitat quality for 

biodiversity may explicitly involve people. International agreements recognise 

that the requirements of resources by local communities should be respected 

(CBD 2011), thus such needs should be fully considered and incorporated into 

conservation thinking and planning.    

 

Wetland conservation 

 

Wetland habitats and ecosystems typify many of the threats to biodiversity and 

challenges facing conservation biologists today. Evidence suggests that wetlands 

are declining at a particularly rapid rate, with 64-71% lost globally since 1900 AD 

(Davidson 2014). Agricultural conversion is the greatest threat (Junk et al. 2013), 

driven primarily by high population growth, lack of food security among the rural 

poor, poor governance (Mitchell 2013), and ill-defined property rights (Adger & 

Luttrell 2000).  As a result, recent assessments suggest that freshwater species 

(including those of wetlands) are more threatened than terrestrial species (WWF 

2016). Wetlands are well known for their biodiversity (Russi et al. 2013), 

especially in the tropics (Gopal, Junk & Davis 2000). But as a result of their high 

productivity (Kansiime, Saunders & Loiselle 2007), large populations of people, 

predominantly the rural poor (Mitchell 2013), are dependent on the ecosystem 

services and resources they provide (see references in Hartter & Ryan 2010). 

This mutual dependency between biodiversity and people in wetlands exemplifies 

the need to manage and preserve ecosystems in a way that minimises the trade-

off between poverty and conservation (Senaratna Sellamuttu, de Silva & Nguyen-

Khoa 2011). However, very few studies have investigated how this might be 

achieved in practical terms, enabling the involvement of local communities, as 

opposed to exclusion (Morrison et al. 2012). 
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The conservation of wetlands is primarily based on the preservation of important 

sites (Amezaga, Santamaría & Green 2002). International wetland policy is 

largely driven by the Ramsar Convention (Iran, 1971) (Junk et al. 2013), with an 

overarching purpose of ensuring “the conservation and wise use of wetlands 

through local and national actions and international cooperation, as a contribution 

towards achieving sustainable development throughout the world” 

(http://www.ramsar.org/). The benefit of wetlands for both people and nature is 

recognised through the ‘wise use’ philosophy, though does not guarantee that 

sustainable management will be effective in participating countries (van Dam et 

al. 2011). As part of becoming a signatory to this convention, parties are required 

to designate at least one site for the list of wetlands of international importance 

(Ramsar sites), based on criteria such as hosting rare or unique wetland types, 

populations of important species or ecological communities, or high numbers of 

water birds, fish or other taxa (Ramsar Convention Secretariat 2010). As with 

other site-based approaches, designation considers wetlands in relative isolation 

(Amezaga, Santamaría & Green 2002). However, wetlands are a naturally 

fragmented habitat, becoming increasingly so (Hartter & Southworth 2009), and 

are degraded in size and quality as a result of the threats placed on them (Hartter 

& Ryan 2010). Not only are wetlands connected hydrologically (Amezaga & 

Santamaría 2000), their discrete fragmented nature means that many of the 

species residing in these habitats would fulfil metapopulation criteria (see above), 

and conservation management would benefit from a consideration of 

metapopulation dynamics.   

 

In this thesis, I study the metapopulation dynamics of specialist birds of papyrus 

swamps in East Africa as a model system, to understand the implications and 

applications of metapopulation biology for landscape-scale conservation. 
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Papyrus swamps 

 

Figure 1.2. Papyrus (Cyperus papyrus):  a) Papyrus swamp (Kagoma) at Lake 

Bunyonyi, south-west Uganda; b) Distribution across Africa (IUCN 2017a; 

displayed using ArcGIS v 10.2.2). 

 

Papyrus (Cyperus papyrus) is a fast-growing freshwater sedge  typically reaching 

4-5m in height, either rooted in waterlogged substrate along deep river valleys 

and lake edges (Figure 1.2a), or detached from the ground to form floating mats 

a 

b 
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(Kipkemboi & van Dam 2016). It grows to form patchy, widespread networks of 

swamps (Owino & Ryan 2006), individually ranging from very large (tens of km’s 

in length) to very small in size (<1ha) (Southworth et al. 2010; Jacob et al. 2014). 

These wetlands are distributed across large parts of Africa (Figure 1.2b), from 

sea level to over 2000 masl (metres above sea level) (Jones & Muthuri 1985). 

Particularly high densities of papyrus are found across equatorial regions that 

make up its native range (Figure 1.2b), predominantly the upper Nile and Congo 

basins, with the most extensive tracts of swamp situated in the Sudd, South 

Sudan (Kipkemboi & van Dam 2016), while it has been introduced to parts of 

West Africa (Figure 1.2b), the Mediterranean, USA and India (see Terer, Triest & 

Muasya 2012). Although formally widespread in the Nile Delta until the early 

1700’s, only traces remain in this area following regulated flooding regimes and 

human activities (Kipkemboi & van Dam 2016).   

 

As a result of the high productivity of papyrus compared to other emergent 

macrophytes (Terer et al. 2012), primarily due to the C4 photosynthetic pathway 

(Boar, Harper & Adams 1999), papyrus swamps support the livelihoods of 

millions of people through the provision of a variety of ecosystem services. 

Amongst these are the ability to purify water, act as flood barriers, provide 

sediment traps, offer grazing habitat for livestock, assist with climate regulation 

through carbon storage and high rates of evapotranspiration, and provide a 

habitat for fish that can be sold locally, or provide a vital source of protein for the 

rural poor (Maclean et al. 2003c; d; van Dam et al. 2011; Terer et al. 2012; Triest, 

Sierens & Terer 2014; Ryken et al. 2015; Kipkemboi & van Dam 2016). People 

have also been reliant on papyrus as a natural resource for several millennia. 

First used to make paper by the Ancient Egyptians (Terer, Triest & Muasya 2012; 

Gaudet 2014), papyrus continues to supply the raw materials required for making 

handicrafts, building features such as thatched roofs, fences and outbuildings, 

and as a source of fuel (Maclean et al. 2003d; Terer et al. 2012; Figure 1.3). But 

combined with its importance for people, papyrus also hosts a unique biodiversity. 

Approximately 187 species of various biota have been documented in papyrus 

swamps (see Kipkemboi & van Dam 2016) including various mammals, such as 

the rare sitatunga antelope (Tragelaphus spekii) and hippopotamus 

(Hippopotamus amphibious), as well as numerous fish, reptiles, amphibians 

(Kipkemboi & van Dam 2016), and multiple bird species (Maclean et al. 2003a). 
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a b 

Although the diversity of papyrus swamps is low in comparison to other tropical 

ecosystems (Dirzo & Raven 2003), they support unique species ranging from 

various arthropods (Sutton & Hudson 1981), dragonflies (Clausnitzer et al. 2012), 

and a group of endemic passerines (Britton 1978) (see below).  

 

 

 

 

 

 

 

Figure 1.3. Example of 

papyrus resource use: a) 

handicrafts for sale at local 

market; b) small outbuilding 

constructed from papyrus; c) 

papyrus bundles used for 

thatching roofs or fences. 

 

Threats & protection  

 

As with wetlands around the world, papyrus swamps have been suffering from 

high rates of drainage and destruction over the past few decades (van Dam et al. 

2011; Figure 1.4). Human population growth and an associated shortage of land 

force people to drain swamps (permanently or temporarily [Maclean, Boar & Lugo 

2011]) to gain access to space on which to farm crops (Carswell 2002), while 

entire swamp networks have been drained for commercial purposes (Maclean, 

Boar & Lugo 2011; Figure 1.4a). Over recent years, large intact areas of wetland, 

such as Yala swamp in Kenya and Lake Kyoga in Uganda, have been threatened 

by further plans for rice farming operations (Maclean, Bird & Hassall 2014). 

Climate change will likely exacerbate such threats, with uncertainty in rain-fed 

agriculture potentially leading to further localised drainage of swamp land 
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(Kipkemboi & van Dam 2016), and alterered hydrological regimes can impact the 

regeneration and resilience of papyrus stems during periods of drought (Triest, 

Sierens & Terer 2014). Moreover, a lack of a legislative framework to guide 

sustainable use has led to the overexploitation of this resource (Kipkemboi & van 

Dam 2016; Figure 1.4b); potentially facilitated by lower water levels in the future 

(van Dam et al. 2014). High population densities of people in rural parts of Africa 

derive their income from these swamps on a subsistence scale (Maclean et al. 

2003c), with the poorest people in society estimated to receive the most benefit 

from harvesting this resource (Maclean et al. 2003d). Research has highlighted 

that the economic value of wetlands themselves is higher than that obtained from 

wetland conversion (van Dam et al. 2014). Maclean et al. (2003c), for example, 

quantified the conversion of swamps for cultivation in an area of south-west 

Uganda to be US $21-181/ha, compared to US $1226 – 1615/ha for low intensity 

use from harvesting and fishing (Maclean, Boar & Lugo 2011). As a result, the 

loss and degradation of papyrus impacts the lives of local people, not only 

through a loss of ecosystem services, but from the goods extracted from the 

swamps themselves, and the economic value they provide. However, policies 

designed to regulate use are scarce and poorly enforced (Maclean, Boar & Lugo 

2011), and need to recognise the balance between the functioning of wetlands 

and their use for people’s livelihoods (Osumba, Okeyo-Owuor & Raburu 2010). 

From the 47 African countries that are signatories to the Ramsar Convention, 28 

have papyrus swamps (van Dam et al. 2014). Some of these are Ramsar sites 

(van Dam et al. 2014), though most lack any conservation or protection status 

(Kipkemboi & van Dam 2016). 
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Figure 1.4. Threats to 

papyrus swamps:  

a) Wetland drainage for 

agricultural conversion, 

Kabale district;  

b) Large harvested area, 

Kacoco swamp, Lake 

Bunyonyi; Uganda 

 

 

 

 

 

 

 

 

Papyrus-endemic passerines 

 

Papyrus swamps are home to a group of generalist bird species that regularly 

use these wetlands (Maclean et al. 2003a), but also host a group of passerines 

which are endemic or near-endemic to this habitat (Britton 1978; Vande weghe 

1981). These specialist species are distributed across parts of East and Central 

Africa; listed as “Lake Victoria biome species”, with ranges restricted to swamps 

and marshes within the Lake Victoria basin (Byaruhanga, Kasoma & Pomeroy 

2001), although a small isolated population of white-winged swamp-warbler 

(Bradypterus carpalis) is also found in north-west Zambia (Maclean, Bird & 

Hassall 2014). Following recent taxonomic assessments, papyrus yellow warbler 

(Calamonastides gracilirostris) has recently moved from the genus Chloropeta, 

and the population located in Zambia, bordering with south-east Democratic 

Republic of Congo (DRC), split to the Zambian yellow warbler (Calamonastides 

bensoni) (del Hoyo & Collar 2016). The population of this species in a remote part 

a 

b 
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of western Kenya has also been questioned due to the documented differences 

in appearance, biometrics and vocalization from the population in 

Uganda/Rwanda (Maclean et al. 2003b), though currently remains as one 

species.  

 

As a result of the threat placed on the habitat on which they depend, papyrus-

endemic passerines have been described as some of the most threatened and 

inadequately protected in the region (see references in Maclean et al. 2006). 

Currently papyrus yellow warbler is listed as Vulnerable on the IUCN 

(International Union for the Conservation of Nature) Red List because it has 

declined rapidly and continues to decline owing to extensive habitat loss, while 

papyrus gonolek (Laniarius mufumbiri) is Near Threatened because it is 

estimated to be in moderate decline from papyrus drainage and degradation 

(IUCN 2017b). Nevertheless, recent evidence suggests that all papyrus-endemic 

species are declining at an even faster rate than their habitat, primarily as a result 

of the geographical overlap with areas subjected to the most agricultural 

conversion, and fragmentation effects (Maclean, Bird & Hassall 2014).  

 

Despite the evident threats placed on these birds, they have been subject to little 

investigation. The impacts of landscape alteration on their populations remain 

relatively unknown (Maclean et al. 2006), but given the dependence on this 

resource by local people, investigating the habitat requirements of these species 

and the extent to which their conservation conflicts with sustaining human 

livelihoods, is crucial. Very few papyrus swamps in East Africa are protected 

(Fanshawe & Bennun 1991; Kipkemboi & van Dam 2016). Some are designated 

as Ramsar sites, and/or Important Bird and Biodiversity Areas (IBAs) based on 

the presence of these globally threatened (Criterion A1) and biome-restricted 

(Criterion A3) papyrus-endemic birds (Fishpool & Evans 2001). Although there is 

recognition that networks of priority sites, such as IBAs, should be extended 

(Maclean, Bird & Hassall 2014), the data available for such designations is 

scarce, and has not yet considered the consequences of a naturally fragmented 

habitat for conservation. To date, patch-level and regional dynamics of these 

species have not been formally tested, and could have important implications for 

where resources are channelled (Maclean, Wilson & Hassall 2011). Spatial 

aggregations of these species have been recorded (Maclean et al. 2006), and 
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they are known to move infrequently between patches (Britton 1978), though the 

impact of fragmentation on their dispersal has been recognised (Owino & Oyugi 

2008). Combined with the knowledge that these species reside in distinct habitat 

patches, and dynamics do not appear to be synchronous (Maclean et al. 2006), 

a metapopulation framework is appropriate to explore the dynamic processes 

operating (Hanski et al. 1995a), and determine the importance and 

consequences of considering networks of habitat, rather than investing in sites in 

isolation, as is common in wetland conservation (see above).   

 

Ugandan wetland policy  

 

Uganda has been described as “mainstreaming” the way for wetland 

conservation in East Africa through specific wetland policies and designated 

conservation agendas (Mitchell 2013). Wetland conversion was officially banned 

in 1986 (Wetlands Inspectorate Division 2001), and a National Wetlands 

Programme developed in 1989, to ensure the sustainable use of resources and 

protection where needed (Huising 2002). After becoming a signatory to the 

Ramsar convention, Uganda was the first country in Africa and the second in the 

world, to establish a National Wetlands Policy (1995), which prohibits any activity 

that excludes water from wetlands (see references in Hartter & Ryan 2010). The 

Ministry of Water, Lands and the Environment prepared a Wetland Sector 

Strategic Plan from 2001-2010, which aimed to provide direction and an action 

plan for those involved in wetland management and conservation (Wetlands 

Inspectorate Division 2001). The National Environmental Management Authority 

(NEMA) is the government body responsible for all environmental issues in 

Uganda, and officially protects all permanent wetlands in the country (Hartter & 

Ryan 2010). However, following the development of a national decentralization 

policy in 1995, rights and responsibilities were devolved to the local level (Hartter 

& Ryan 2010). The Constitution (1995) and Local Governments Act (1997) gave 

power to the Local Councils to manage resources, and ultimately led people to 

recognise wetlands as significant components for their livelihoods rather than the 

“wastelands” they were once made out to be (Hartter & Ryan 2010). 
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Despite the development of numerous policies and government agencies 

assigned to help manage wetlands in Uganda, coordination and implementation 

has proved difficult (see references in van Dam et al. 2011; Pomeroy, Tushabe 

& Loh 2017). Confusion over property rights remains (Wetlands Inspectorate 

Division 2001; Maclean et al. 2003c), alongside competing interests and an 

underestimation of importance in some parts of the region (van Dam et al. 2011). 

Given population pressure and a scarcity of land, wetlands continue to be 

cultivated (Huising 2002) and exploited at unsustainable levels (Chapman et al. 

2001). Many seasonal wetlands remain unprotected, while only 1% of wetlands 

are estimated to fall within protected area boundaries (Pomeroy, Tushabe & Loh 

2017). Unprotected wetlands are commonly viewed as unclaimed or unused, and 

local people often adhere to the “use it or lose it viewpoint (Hartter & Ryan 2010)”, 

leading to the continued cultivation present today. As a signatory to the CBD, 

Uganda has an obligation to reduce the loss and degradation of natural habitats 

by 2020, and reduce the threatened status of its species (CBD 2011). However, 

weak implementation of the National Wetlands Policy combined with a distinct 

lack of resources, has cast doubt over the ability of Uganda to meet these 

biodiversity targets (Pomeroy, Tushabe & Loh 2017).  

 

Thesis aims and objectives 

 

The overarching aim of this PhD is to test and apply theory associated with 

landscape-scale conservation in fragmented habitats, using papyrus endemic 

birds in East Africa as a model system. In turn, I hope that this work will enhance 

the evidence-base for ensuring conservation resources are targeted most 

effectively across today’s landscapes, whilst assisting with conservation 

prioritisation for wetland birds in Africa, and species residing in fragmented 

habitats globally. The main objectives of this work are to: 

 

i. Review existing theory associated with landscape-scale conservation 

to assist with modern-day conservation prioritisation   

ii. Examine the extent to which the needs of local people are compatible 

with conservation planning 
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iii. Investigate the importance of the spatial configuration of wetland 

patches for species’ persistence, and determine the implication of this 

for multi-species conservation prioritisation 

iv. Explore approaches associated with conservation planning to design 

effective protected networks for multiple species 

 

Study system 

Study site 

 

Research was carried out in a network of papyrus swamps surrounding Lake 

Bunyonyi, south-west Uganda (Figure 1.5). This is a steep sided lake, located 

approximately 1950 masl  (Denny 1973). Agriculture has been practiced here for 

centuries and is the main economic activity for local people, growing a range of 

crops including cabbages, sweet potatoes, peas, beans, sorghum, Irish potatoes 

and maize (Kizza et al. 2017). It can rain throughout the year in this region, though 

it rains less between December – January and July – August (Maclean et al. 

2003d), and the mean annual temperature is estimated to be 16.1°C (Kizza et al. 

2017). The shoreline extends for approximately 114km (Denny 1973) and is 

fringed by a narrow band of vegetation, including papyrus. Larger wetlands are 

found in sheltered lake inlets and grow along deep valleys, dominated by papyrus 

and other types of emergent vegetation, including Phragmites, Typha and 

Cladium spp. (Denny 1973). Rates of wetland loss in the south-west of Uganda 

are amongst the highest in the region (Huising 2002; Maclean, Wilson & Hassall 

2011), although habitat loss at Lake Bunyonyi is mostly associated with edge 

encroachment (Maclean et al. 2003d). Wetland soils are regarded as more fertile 

and provide a crucial source of water during the dry season (Kizza et al. 2017). 

At this time, the elevated farmed land dries up, forcing people to retreat to swamp 

areas to grow crops (Maclean et al. 2003d). Lake Bunyonyi is estimated to be 

approximately 40m deep and compared to other lakes across East Africa (e.g. 

Boar et al. 1999), the water level remains stable here all year round (Denny 

1973). Due to the depth of the lake and thus large volume of water, water 

availability and polluted drinking water are not issues experienced by rural people 

residing within proximity to the lake (Maclean et al. 2003d). As a result, papyrus 

swamps in this area are limited in their value to provide service benefits such as 
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trapping sediment, purifying water and providing a habitat for fish (Maclean et al. 

2003c). The main service provided by the swamps to local people here is the 

provision of raw materials, which are harvested and used to make personal items, 

such as sleeping mats, or is sold locally at markets as a source of income (see 

Chapter 3). Tourism at the lake has escalated over recent years, increasing the 

demand for papyrus and other wetland vegetation to fence campsites, and thatch 

roofs for holiday cottages (S. Katungi pers. comm).  
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Figure 1.5. Map of the study area: a) Lake Bunyonyi with wetland areas surveyed; 

b) Uganda (  shows location of study site); c) Location of Uganda in Africa. 

Displayed using ArcGIS v 10.2.2. 
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Study species  

 

Relatively high densities of five species of papyrus-endemic passerines are found 

in wetlands surrounding Lake Bunyonyi: greater swamp-warbler (Acrocephalus 

rufescens), white-winged swamp-warbler, Carruthers's cisticola (Cisticola 

carruthersi), papyrus yellow warbler, and papyrus canary (Crithagra koliensis1) 

(Maclean, Bird & Hassall 2014; Figure 1.6). Global distributions for all species 

include parts of  Burundi, DRC, Kenya, Rwanda, Tanzania and Uganda (IUCN 

2017b). Although greater swamp-warbler resides within various wetland types 

distributed across sub-Saharan Africa (BirdLife International 2017a), race foxi is 

primarily confined to papyrus within this part of region (Vande weghe 1981). 

Papyrus gonolek does not occupy swamps above 1680 masl (Maclean et al. 

2006), thus are absent from wetlands in the study area. Currently all species, with 

the exception of papyrus yellow warbler, are listed as Least Concern (Table 1.1). 

However, data available on population size and trends is limited (Table 1.1), and 

assuming an ongoing decline in the extent of habitat across East Africa, these 

species could warrant uplisting to threatened status in the future (Criterion A2c; 

Maclean, Bird & Hassall 2014).  

 

The suite of papyrus-endemic birds studied are described as insectivorous, 

although papyrus canary is often seen feeding outside of swamps in nearby crops 

(Britton 1971). Britton (1978) observed evidence of vertical zonation, particularly 

with those warbler species most similar in size (white-winged swamp-warbler and 

greater swamp-warbler; ~18-29g) during a mist-net study in western Kenya. 

White-winged swamp-warbler evidently forages lowest in the papyrus, while 

papyrus canary is mostly associated with the upper canopy level (Vande weghe 

1981). Breeding and moulting corresponds most closely with rainfall and 

subsequent food availability following the rainy seasons (Britton 1978). Papyrus 

yellow warbler and Carruthers’s cisticola are known to reside in broader wetland 

vegetation types at higher altitudes, often when closely associated with papyrus 

(Vande weghe 1981). Papyrus yellow warbler is restricted to papyrus in drier 

parts of its range, while Carruthers’s cisticola is confined to papyrus primarily at 

lower altitudes, where it experiences competition with winding cisticola (Cisticola 

                                            
1 Recently moved from the genus Serinus (del Hoyo & Collar 2016) 
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marginatus) (Vande weghe 1981). Within the study region, Carruthers’s cisticola 

can also inhabit wetland areas adjacent to some larger swamps around the lake 

which have recently been cleared for agriculture (Figure 1.5).  

  

 

Figure 1.6. Papyrus-endemic birds studied: a) greater swamp-warbler 

(Acrocephalus rufescens); b) white-winged swamp-warbler (Bradypterus 

carpalis); c) papyrus yellow warbler (Calamonastides gracilirostris); d) 

Carruthers's cisticola (Cisticola carruthersi); e) papyrus canary (Crithagra 

koliensis) (del Hoyo & Collar 2016). 

 

a b 

e 

d c 
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Table 1.1. Summary table of Red List category and population data available for 

the study species, obtained from IUCN (2017b) and Maclean, Bird & Hassall 

(2014). 

Species Red List 

category 

Criterion Extent of 

occurrence 

(km2)* 

Number of 

adults† 

Population 

trend 

Greater 

swamp-

warbler‡ 

LC NA 12,300,000 Unknown Stable 

White-winged 

swamp-warbler 

LC NA 809,000 3,289,029 Decreasing 

Papyrus  

yellow warbler 

VU A2c + 

A3c+ A4c 

(past and 

future 

rapid 

population 

decline) 

235,000 90,151 Decreasing 

Carruthers’s 

cisticola 

LC NA 307,000 370,225 Decreasing 

Papyrus 

canary 

LC NA 261,000 415,192 Decreasing 

*IUCN (2017b); †best estimate from Maclean, Bird & Hassall (2014); ‡Refers to global 

Acrocephalus rufescens population as data for race foxi only are not available; LC = Least 

Concern, VU = Vulnerable 

 

Currently one site at Lake Bunyonyi, Nyamuriro Swamp, has been designated as 

an IBA due to holding a significant component of these biome-restricted species 

(Criterion A3), and significant numbers of a globally threatened species: the 

papyrus yellow warbler (Criterion A1) (BirdLife International 2017b). Despite this, 

Nyamuriro is not included in any national or international protected area 

categories (NatureUganda 2010). Meanwhile, previous work by Maclean et al. 

(2014) recommends the network of IBA’s in the Kigezi district are extended, since 

the swamps in this region are among the most important for populations of 

papyrus yellow warbler. Data to support such assessments is currently lacking; 

the following work will help provide the basis for future designations.   
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Thesis structure 

 

This thesis comprises of six chapters. Chapters 2-5 are written as distinct 

research papers; Chapters 2 and 3 are published in peer-reviewed journals (see 

Publications above), while Chapters 4 and 5 are written in preparation for 

submission.  

 

Chapter 2 reviews the widespread existing theory associated with conservation 

planning in fragmented landscapes, incorporating new perspectives that were not 

conventionally considered following the origin of reserve design. We consider the 

trade-offs between the four axes of reserve design (bigger, better, more and more 

joined sites), and collate the extensive literature available to provide a simplified 

framework for prioritising among the key strategies, when faced with modern-day 

challenges. This chapter provides the backbone for the remaining parts of the 

thesis; detailing the theory that is later applied and tested using my study system.  

 

Chapter 3 investigates the compatibility of habitat quality and local livelihoods. 

Specifically, this chapter determines the threat placed on biodiversity from human 

habitat use, examining the physical aspects of swamps that drive the densities of 

papyrus passerines. The outcomes of this chapter are incorporated as measures 

of habitat quality in Chapter 5.  

 

Chapter 4 explores the factors influencing the persistence of multiple species 

occupying the same habitats, in line with traditional theory. I use a novel 

framework in the context of metapopulation theory to quantify the resistance and 

resilience of populations to extinction, based on their probability of survival and 

reestablishment. This enhances our understanding of why species occupy 

particular habitat patches, the extent to which these differ between species, and 

how these dynamic processes can be used to prioritise resources for 

conservation with consideration of the need to adapt and respond to future 

change. This chapter uses knowledge of turnover at the patch-level over the 

short-term, to develop metapopulation models for the network as a whole in 

Chapter 5. 
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Chapter 5 investigates the optimal conservation strategy for ensuring the long-

term persistence of specialist species’. I use metapopulation models to predict 

the response of the study species to the range of conservation planning 

approaches reviewed in Chapter 2, and examine the potential to design effective 

networks for multiple species with overlapping habitat requirements. 

 

Chapter 6 collates the outputs from Chapters 2-5, highlighting the implications of 

this work for the conservation of wetland birds in East Africa, as well as the wider 

applications for species residing in fragmented landscapes more generally. I 

suggest future directions as a result of this research, and emphasize the 

contribution made to the field of landscape-scale conservation planning and 

prioritisation. 
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Chapter 2:  

Old concepts, new challenges: adapting landscape-

scale conservation to the 21st century 

 

 

Donaldson, L., Wilson, R.J., & Maclean, I.M.D. (2017) Biodiversity & 

Conservation, 26, 527–552. 

 

Abstract  

 

Landscape-scale approaches to conservation stem largely from the classic ideas 

of reserve design: encouraging bigger and more sites, enhancing connectivity 

among sites, and improving habitat quality. Trade-offs are imposed between 

these four strategies by the limited resources and opportunities available for 

conservation programmes, including the establishment and management of 

protected areas, and wildlife-friendly farming and forestry. Although debate 

regarding trade-offs between the size, number, connectivity and quality of 

protected areas was prevalent in the 1970s-1990s, the implications of the same 

trade-offs for ongoing conservation responses to threats from accelerating 

environmental change have rarely been addressed. Here, we reassess the 

implications of reserve design theory for landscape-scale conservation, and 

present a blueprint to help practitioners to prioritise among the four strategies. 

We consider the new perspectives placed on landscape-scale conservation 

programmes by 21st century pressures including climate change, invasive 

species and the need to marry food security with biodiversity conservation. A 

framework of the situations under which available theory and evidence 

recommend that each of the four strategies be prioritized is provided, seeking to 

increase the clarity required for urgent conservation decision-making.  



Chapter 2 

 

38 

 

Introduction 

 

After failing to meet the 2010 Convention on Biological Biodiversity (CBD) targets 

(Butchart et al. 2010), the global community has been offered a second chance 

to halt biodiversity declines by 2020 through the CBD’s Aichi targets (CBD 2011). 

Current financial resources available to meet these targets are insufficient 

(McCarthy et al. 2012) and in consequence there is urgent need for conservation 

planners and practioners to have sufficient information to select and employ 

efficient, cost-effective actions (Williams, ReVelle & Levin 2005). Nevertheless, 

there is much debate regarding the most effective means for adapting 

conservation to accelerating environmental change (Hodgson et al. 2009b), 

leading to an extensive literature that presents some apparently conflicting 

messages to those involved in conservation planning and decision-making.  

 

Classical approaches to increase the effectiveness of protected area designation 

and management have drawn upon the theories of island biogeography 

(MacArthur & Wilson 1967) and metapopulation dynamics (Levins 1969; Hanski 

& Gilpin 1991; Hanski 1999a). In these approaches, the four main trade-offs 

among the size, number, quality and connectivity of protected areas can be 

summarised by Diamond’s (1975) outline of geometric principles for the design 

of nature reserves (Figure 2.1). Since the 1990s, however, conservation actions 

have evolved from a primarily reserve-based approach to give greater 

consideration to landscape-scale processes (Opdam & Wascher 2004; Watts et 

al. 2010), partly because climate change and increased habitat fragmentation 

have led to increasingly dynamic patterns of colonization and extinction (Heller & 

Zavaleta 2009). Landscape-level conservation initiatives include the Pan-

European Ecological Network (Jongman et al. 2011) and “greenways” in the USA 

(Ahern 2004). In England, the recent “Making Space for Nature” report (Lawton 

et al. 2010) summarized the recommendations of a now substantial scientific 

literature to increase the effectiveness of protected area networks in fragmented 

landscapes in four simple words: “more, bigger, better and joined”. The report 

recommended, in a priority hierarchy: 1) improving the quality of habitat, 2) 

increasing the size and 3) number of sites, and 4) enhancing connectivity among 

sites for conservation. In the UK, these recommendations are incorporated into 

biodiversity policy (Department for Environment, Food and Rural Affairs (DEFRA) 
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2011) and increasingly inform planning and management by conservation 

agencies and organisations working to maintain and restore habitats in the UK’s 

highly fragmented landscapes.   

 

Figure 2.1. 

Suggested 

geometric 

principles for 

nature reserve 

design derived 

from Diamond 

(1975). In all 

cases, species 

extinction rate 

would be 

expected to be 

lower on the left 

(better) than on 

the right (worse).  

 

 

 

 

 

 

 

 

 

 

 

 

 

The Lawton et al. (2010) report provides valuable recommendations regarding 

the UK’s network of protected sites, but global variation in land-use history, levels 

of fragmentation and biogeographic context drive a need to determine more 
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widely for conservation practitioners the circumstances under which increasing 

the area, number, connectivity and quality of conservation sites is most effective.  

Published research seldom tackles trade-offs among all 4 approaches together 

to assist with the transition from theory to practical application (but see Hodgson 

et al. 2011a). Moreover, since the origin of the principles of reserve design, the 

challenges faced by biodiversity have evolved from emphasis on land use change 

in the 20th century (Sala et al. 2000), to include a rapid rise in impact from climate 

change, invasive species and pollution, alongside continuing pressures from 

overexploitation in the 21st century (Millennium Ecosystem Assessment 2005; 

Urban 2015). The ability of the natural environment to provide ecosystem 

services is declining as a result of increasingly degraded habitats (Millennium 

Ecosystem Assessment 2005) which, coupled with increasing human 

populations, impacts the ability to marry food security with conservation. These 

pressing issues necessitate a shift in focus from the simplistic interpretation of 

what was originally thought to be best; effectively factoring new challenges into 

decision making from a reemphasis of original ideas, to modifying classical theory 

to adapt to a world of accelerating environmental change. To our knowledge, 

research to date has not addressed these challenges alongside their impact on 

assumptions from classical reserve design.  

 

Here, we synthesize concepts associated with landscape-scale approaches to 

conservation, and offer a practical blueprint for effective decision making, 

highlighting how our priorities change in the context of 21st century challenges 

including climate change, the spread of invasive species and food security, which 

were largely unforeseen when the original approaches were devised (Table 2.1). 

We present the four axes of reserve design in the order of decreasing importance 

as proposed by Lawton et al. (2010), but consider trade-offs first associated with 

habitat quality, then between size and number of reserves, and finally consider 

the importance of connectivity and how to achieve it. The nexus between 

conservation theory and modern-day application is invariably tangled by 

complexities and practicalities. We aim to provide conservation decision-makers 

with the information they need to make informed choices on the most effective 

action given, and plot a path through some of this tangle. 
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Table 2.1. Overview of the main considerations and summary of evidence from key supporting references associated with the 

most effective strategy between better, bigger, more and more-connected sites. 

Consideration Recommended 

strategy 

Summary of evidence 

Goal Multiple spp. Heterogeneity Greater species diversity with habitat variety (Rosenzweig 1995) e.g. (see Benton 

et al. 2003; Báldi 2008)  

Bigger Species Area Relationship states that larger sites hold more species (MacArthur & 

Wilson 1967; Diamond 1975) through habitat diversity, area per se, concentration 

of resources, edge effects (Connor & McCoy 2001) e.g. (Brückmann, Krauss & 

Steffan-Dewenter 2010) 

More sites High rates of immigration (Fahrig 2003) and wide variety of habitat (Dover & Settele 

2009; Oliver et al. 2010), supporting a range of species 

More connected Both area and isolation influences the number of species a site can hold (Diamond 

1975) e.g. plants (Damschen et al. 2006), butterflies (Brückmann, Krauss & 

Steffan-Dewenter 2010) 

Single 

sp. 

 

Habitat 

preference 

Interior Bigger Less edge; higher area: edge ratio (Bender, Contreras & Fahrig 1998) 

Edge Homogeneity Availability for colonization (Thomas et al. 2012) 

More sites Edge effects (Bender, Contreras & Fahrig 1998) 

More connected Corridors provide high edge: area ratio (Haddad 1999; Haddad & Tewksbury 2005) 

Specialist Homogeneity Specific habitat requirements (Ye, Skidmore & Wang 2013) e.g. birds (Root 1998; 

Devictor, Julliard & Jiguet 2008), butterflies (Dennis et al. 2013)   

Bigger Matrix habitat not suitable, negatively affected by habitat fragmentation, avoid edge 

(see Brückmann et al. 2010); e.g. butterflies (Dover & Settele 2009; Brückmann, 

Krauss & Steffan-Dewenter 2010) and plants (Dover & Settele 2009) 

More connected Less likely to occur in matrix than generalists (Brückmann, Krauss & Steffan-

Dewenter 2010) e.g. butterflies (Haddad 1999; Brückmann, Krauss & Steffan-
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Consideration Recommended 

strategy 

Summary of evidence 

Dewenter 2010; Dennis et al. 2013) and plants (Brückmann, Krauss & Steffan-

Dewenter 2010) 

Generalist Heterogeneity Less sensitive to quality (Ye, Skidmore & Wang 2013) e.g. birds (Devictor, Julliard 

& Jiguet 2008), butterflies (Oliver et al. 2010)  

More sites Occur in matrix, occupy smaller isolated patches (Dennis et al. 2013) 

Less connected More likely to exist in matrix between sites (Lees & Peres 2009; Brückmann, 

Krauss & Steffan-Dewenter 2010) 

Habitat 

requirements 

Migratory Heterogeneity Buffers variation in resources through time (Benton, Vickery & Wilson 2003) 

More sites Move between sites to meet habitat requirements (Bender, Contreras & Fahrig 

1998) 

More connected Move between sites to meet habitat requirements (Benton, Vickery & Wilson 2003; 

Donald & Evans 2006) 

Range size Large Bigger Less prone to extinction in larger sites (Di Minin et al. 2013) and less at risk from 

human-wildlife conflict (Abele & Connor 1979; Woodroffe & Ginsberg 1998) 

More connected Enable movement between sites (Rosenberg, Noon & Meslow 1997; Donald & 

Evans 2006; Lawton et al. 2010) and increase recolonization rates (Di Minin et al. 

2013) 

Small Heterogeneity More vulnerable to environmental change, buffers these effects (Oliver et al. 2010) 

More sites Smaller sites are sufficient for range requirements (Abele & Connor 1979) 

Body size Large Bigger Larger bodied species have larger range sizes (Abele & Connor 1979; Cardillo et 

al. 2005) 

Small More sites Smaller range sizes thus smaller sites are sufficient (Abele & Connor 1979; Cardillo 

et al. 2005) 

Dispersal 

capability 

High More sites Capacity to move between sites (Nicol & Possingham 2010) 

Less connected Links would have limited worth (Bennett 2003) 
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Consideration Recommended 

strategy 

Summary of evidence 

Intermediate Bigger Lower mortality rate associated with less emigration and failure to locate site 

(Thomas 2000) 

More connected Assist with locating patches (Thomas 2000), especially matrix restoration (Donald 

& Evans 2006) 

Very poor/ 

sedentary 

Homogeneity Require good quality habitat (Ye, Skidmore & Wang 2013) 

Bigger Less need for movement (Öckinger & Smith 2006; Nicol & Possingham 2010) 

More connected Assist with dispersal, providing within dispersal range (Doerr, Barrett & Doerr 2011) 

Dispersal 

mode 

Animal-

borne 

More connected Assists with animal movement (Brudvig et al. 2009)  

Wind-borne More sites More edge to reach non-target habitat (Brudvig et al. 2009) 

Less connectivity Unaffected by direct connectivity (Brudvig et al. 2009) 

Population 

viability 

High More sites Metapopulation persistence (higher turnover of local extinction and recolonization) 

(Drechsler & Wissel 1998) 

More connected Persistence of metapopulation (Drechsler & Wissel 1998) 

Low Homogeneity  Higher population growth (Thomas et al. 2001; Griffen & Drake 2008; Ye, Skidmore 

& Wang 2013)  

Bigger  Greater population carrying capacity (Griffen & Drake 2008) 

Landscape 

attributesa 

 

Fragmented Heterogeneity Less vulnerable to climate change and extreme events in fragmented landscapes  

(Opdam & Wascher 2004)  

More sites Species will be more adapted to live in fragments (Schnell et al. 2013) 

More connected Movement between habitats is important (Isaak et al. 2007; Dennis et al. 2013) 

Continuous Bigger Species are poorly adapted to live in small fragments (Schnell et al. 2013) 
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Consideration Recommended 

strategy 

Summary of evidence 

Climate 

variability 

(risk of 

disease/ 

environmental 

disturbance) 

and 

vulnerability 

to climate 

changea 

High variability + low 

vulnerability 

Heterogeneity Buffers stochastic extinctions from environmental disturbance (Opdam & Wascher 

2004; Hopkins et al. 2007; Piha et al. 2007; Dover & Settele 2009), stabilizes 

populations (Oliver et al. 2010) 

More sites Spreads risk of extinction (Groeneveld 2005; Dover & Settele 2009; Oliver et al. 

2010) and encourages recolonization through “stepping stone” habitat (Schnell et 

al. 2013) 

Less connected Spreads risk of extinction and reduce impact (Simberloff & Cox 1987; Williams, 

ReVelle & Levin 2005) 

Low variability + high 

vulnerability 

Homogeneity  Location for colonization and thus range shift (Hodgson et al. 2011a; Thomas et al. 

2012)  

Bigger Larger source populations to facilitate range shift (Hodgson et al. 2009b, 2011a) 

More sites Promote rapid movement through stepping stone habitat (Hodgson et al. 2012; 

Magris et al. 2014) 

More connected  Higher probability of colonization and thus range shift (Heller & Zavaleta 2009; 

Hodgson et al. 2012; Lawson et al. 2012) 

Low variability + low 

vulnerability 

Homogeneity Strong patch quality-occupancy relationship in static habitat (Hodgson, Moilanen & 

Thomas 2009) 

More connected Strong connectivity-occupancy relationship in static habitat (Hodgson, Moilanen & 

Thomas 2009) 

Economics & 

ownershipa 

Limited funds Homogeneity Protect currently intact environments, restoring habitat is financially expensive and 

time consuming (Possingham, Bode & Klein 2015)  

Bigger Lower unit/area management costs (Simberloff & Abele 1976; Radchuk, 

Wallisdevries & Schtickzelle 2012) since rely on natural processes (Lawton et al. 

2010) and require low maintenance (Williams, ReVelle & Levin 2005) 
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Consideration Recommended 

strategy 

Summary of evidence 

More connected Balance costs associated with Single Large or Several Small (SLOSS) sites with 

corridors between network of small refuges (Simberloff & Abele 1976); and cost 

effective to use existing natural connections or man-made structures (Lawton et al. 

2010) 

Surrounding land ownership More sites Enlarging sites not possible (Dover & Settele 2009; Doerr, Barrett & Doerr 2011)  

More connected Discourage species use of neighboring habitat (Hartter & Southworth 2009) 

No surrounding land 

ownership 

Bigger Encourage protection of more space for nature (Dover & Settele 2009) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

________________________ 

a Evidence for the strategy to adopt amid new challenges not conventionally considered 



Chapter 2 

 

46 

 

Quality in a changing world 

 

Enhancing habitat quality has traditionally been a crux of reserve-based 

conservation (New et al. 1995). Numerous studies demonstrate that improved 

habitat quality reduces the amount of habitat needed to sustain populations of 

species (Lawton et al. 2010) and following the shift in focus to reserve 

configuration and connectivity promoted by metapopulation biology, many others 

highlight the role of habitat quality in enhancing metapopulation persistence in 

fragmented landscapes (e.g. Verboom et al. 1991; Thomas et al. 2000; 2001; 

Fleishman et al. 2002; Resetarits and Binckley 2013). In the face of climate 

change, improving habitat quality through better in situ management is now 

generally regarded as the most important step for biodiversity conservation 

(Lawton et al. 2010; Hodgson et al. 2011a; Resetarits & Binckley 2013; 

Greenwood et al. 2016). Enhancing quality can also effectively enhance 

connectivity by  increasing the number of potential dispersers (Hodgson et al. 

2009b), and promote the ability of species to shift in response to a warming 

climate (Hodgson et al. 2009b, 2011a; Lawson et al. 2013). Simply preserving 

intact habitat, as opposed to enhancing its quality can also be an effective 

approach when time and money is serverly limited (Possingham, Bode & Klein 

2015). 

 

Homogeneity or heterogeneity? 

 

Two broad approaches have been suggested as means of enhancing quality:  

providing more optimal habitat (homogeneity) or increasing heterogeneity, 

generally achieved through restoration of existing degraded habitat, or managing 

intact areas. The existing trade-offs between these two approaches have seldom 

been recognised, yet influence the outcome and overall effectiveness of 

management. Studies have demonstrated the positive influence of creating more 

optimal habitat on population size (Thomas et al. 2001; Ye, Skidmore & Wang 

2013), dispersal success (Ye, Skidmore & Wang 2013), and population growth 

(Griffen & Drake 2008). In turn, providing more optimal habitat can influence 

extinction and colonization rates (Thomas et al. 2001, 2012; Fleishman et al. 

2002; Franken & Hik 2004; Lawton et al. 2010; Resetarits & Binckley 2013; Ye, 

Skidmore & Wang 2013), providing source populations and habitats for 
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colonization, which enhance the capacity of species to shift with climate change 

(Thomas et al. 2012). In contrast, greater habitat heterogeneity buffers the effect 

of environmental fluctuation compared to homogenous habitats, encouraging 

population stability (Opdam & Wascher 2004). Since the frequency of extreme 

climate events is likely to increase (IPCC 2007), the buffering effects of habitat 

heterogeneity could now be important for climate change adaptation (Piha et al. 

2007; Maclean et al 2015). Moreover, irrespective of changes in the frequency of 

extreme events, the suitability of various habitat types for species is likely to 

change with climatic change. Thus providing greater habitat variety is viewed as 

a particularly effective adaptation strategy, over and above homogeneity, within 

a dynamic environment (Oliver et al. 2010).  

 

Given these contrasting approaches towards in situ management and supporting 

evidence for each method particularly in the face of environmental change, 

evidence and understanding of the circumstances under which approach to follow 

is key. This decision partly depends on whether the primary conservation 

objective is single species conservation versus the protection of multiple species. 

Although many conservation programmes and the direct outcomes through which 

their success is measured tend to be single-species oriented, contingent on 

funding and/or legislation, an underlying assumption is that these measures will 

benefit other species or the community as a whole through umbrella or focal 

species effects (Bennett et al. 2015). The habitat characteristics that signify high 

quality are likely to be species-specific (Mortelliti, Amori & Boitani 2010) and so 

for individual species conservation programmes, habitats with high quality 

resources geared towards the focal species represent the preferred approach. 

However, this is only true in more stable environments (Johnson 2007), or by 

ensuring that habitat management itself offsets climatic changes (Greenwood et 

al. 2016). If the stated goal is to conserve multiple species, enhancing 

heterogeneity, and thus habitat variety, is likely to be more effective (Oliver et al. 

2010). Field mosaics, for example, have been shown to benefit various species 

of birds and invertebrates, and the loss of heterogeneity through agricultural 

intensification is one of the reasons for biodiversity declines on farmland (see 

Benton et al. 2003). Amid the modern-day landscape, however, an increase in 

habitat variety can also lead to an increase in species richness of invasive 

species (Pyšek, Jarošík & Kučera 2002) which can result in undesirable effects 
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on the community structure of native species (Levine et al. 2003). It should also 

be recognised that optimal quality can promote range shifts for other (non-focal) 

species and thus could still form part of multiple species conservation in the face 

of climate change (Lawson et al. 2013), and can be a benefical approach even if 

a particular focal species is replaced by non-target species as ranges move 

(Hodgson et al. 2009b). 

 

Alternatively, if concentrating efforts on a single species, the requirements of that 

species and location within its geographic range are important. Specialist species 

are often more threatened than generalist species, more sensitive to within-patch 

variation in quality, and thus benefit from more homogeneous environments 

(Devictor, Julliard & Jiguet 2008; Ye, Skidmore & Wang 2013). Nevertheless, if 

specialist species also have small geographic ranges and restricted populations, 

they are more vulnerable to environmental change (e.g. Davey et al. 2012) and 

could benefit from the buffering effects of habitat heterogeneity (Oliver et al. 

2010), as has been shown to be the case for birds (e.g. Root 1998) and species 

of British butterflies (Dennis et al. 2013). For those with different habitat 

requirements at varying stages of their lifecycle, habitat variability may be 

beneficial or essential (Johnson 2007; Oliver et al. 2010); though in this context, 

heterogeneity can be considered a component of optimal habitat quality.  

 

In terms of location, the position of a species in its range and within the landscape 

influences levels of exposure to temporal fluctuations in conditions and resource 

availability that can be buffered by spatial heterogeneity (Opdam & Wascher 

2004; Dover & Settele 2009). Populations at the edge of species’ ranges or in 

anthropogenically fragmented landscapes typically occupy smaller and more 

isolated areas of habitat. If dispersal between populations and 

rescue/recolonization are inhibited (Opdam & Wascher 2004), then promoting 

persistence through enhanced local habitat heterogeneity may be particularly 

pertinent (Lawton et al. 2010). Nevertheless, prevailing conditions at the edges 

of species’ geographic ranges are expected to represent the environmental limits 

at which populations can persist, so ensuring some optimal areas of habitat are 

present both in reserves (Thomas et al. 2001) and at the edge of the species 

range to allow for recolonization (Thomas et al. 2012), is essential. Finally, for 

species residing in fragmented landscapes consisting of networks of smaller 
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patches (Moilanen & Hanski 1998), the effects of habitat quality on colonization 

and extinction may be less important than area and isolation.  In this case, the 

creation of bigger, more connected sites will be more effective than simply 

improving patch quality.  

 

Space for nature 

 

Traditionally the theories of island biogeography (MacArthur & Wilson 1967; 

Simberloff & Abele 1976) and metapopulation dynamics (Moilanen & Hanski 

1998; Hanski 1999a) emphasize the role of habitat area in influencing local 

population viability, and have contributed to the prioritization of larger reserves 

over smaller ones in conservation planning (Williams, ReVelle & Levin 2005; 

Lawton et al. 2010). Nevertheless, there is conflicting evidence suggesting that 

several small reserves may be more effective than a single large one of 

equivalent total area (see Ovaskainen 2002). The “SLOSS” (Single Large or 

Several Small) debate between these two perspectives originated in the 1970s 

and remains contentious despite numerous attempts at resolution (Tjørve 2010).  

In the current context of challenges now faced by biodiversity, each strategy 

continues to offer different pros and cons depending on the challenge in question.  

 

Larger sites have classically been favoured for their greater carrying capacities  

(Hanski 1999a) and consequently, are less vulnerable to extinction from 

environmental and demographic stochasticity (Diamond 1975; Huxel & Hastings 

1999; Franken & Hik 2004; Griffen & Drake 2008). Since climate change is 

coupled with an increase in extreme weather events (IPCC 2007), buffering the 

impact of this with larger population sizes is an effective strategy. In the ringlet 

butterfly (Aphantopus hyperantus), for example, larger sites were  less sensitive 

to droughts and promoted faster population recovery (Oliver, Brereton & Roy 

2013). Larger sites also offer a reduced risk of inbreeding (Groeneveld 2005) and 

loss of genetic variability due to drift (Jarvinen 1982), potentially increasing 

intrinsic adaptability to environmental change (see Merilä 2012). The main appeal 

for larger sites within modern-day landscape-scale conservation, however, is the 

capacity to enhance range shift. Large source populations in reserves enhance 

colonization of surrounding habitat, supporting metapopulation persistence in 

highly fragmented landscapes (Wilson et al. 2002; Lawson et al. 2012), thus 
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facilitate range shifts in the face of climate change (Hodgson et al. 2011b). 

Moreover, large sites have been advocated for their ability to support greater 

species richness (e.g. Connor & McCoy 2001; Lees & Peres 2006; Hartter & 

Southworth 2009; Lawton et al. 2010; Dennis et al. 2013) and may enhance the 

capacity of natural areas to provide ecosystem services such as pollination  

(Kremen et al. 2004; Palmer et al. 2004; Klein et al. 2007). 

 

Nevertheless, contrary to classical theory, creating bigger sites is not consistently 

effective when accounting for modern-day challenges to biodiversity. Landscapes 

are becoming increasingly threatened with large correlated environmental 

disturbances (Huxel & Hastings 1999) and exposed to frequent disease 

epidemics (Jarvinen 1982), under which the presence of a large continuous block 

of habitat can increase extinction risk and reduce the chance of recolonization 

from surrounding populations (Groeneveld 2005; Schnell et al. 2013). Whilst 

large protected area size can reduce propagule pressure from invasive species 

because of a reduced perimeter:area ratio (Hulme et al. 2014), effective 

monitoring and control of invasive species can be more difficult to achieve in 

larger protected areas (Foxcroft et al. 2013). There are also social and cultural 

constraints to the designation of protected areas that were not considered by 

original solutions to the SLOSS debate (Williams, ReVelle & Levin 2005), such 

that increasing habitat area for conservation is often not possible within modern 

landscapes (Doerr, Barrett & Doerr 2011).  

 

In contrast, immigration rates to multiple smaller conservation sites can often be 

higher (Fahrig 2003), the landscape-scale risk of extinction lower (Hartley & Kunin 

2003; Groeneveld 2005; Nicol & Possingham 2010) and the variety of habitat 

greater (Dover & Settele 2009; Oliver et al. 2010). Consequently, landscapes with 

several smaller sites can hold more species than a single large site (Simberloff & 

Abele 1976; Groeneveld 2005; Báldi 2008; Rybicki & Hanski 2013), but could be 

missing habitat specialist or interior species with large body size (Cardillo et al. 

2005) or resource and area requirements (e.g. Oertli et al. 2002; Ye et al. 2013). 

Whether or not conservation managers are directly focusing on single or multiple 

species, recognition of the dynamic responses of populations and 

metapopulations to environmental change calls for the siting of reserves to 

support the persistence of species rather than simply the representation of as 
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many as possible (see Margules and Pressey 2000; Kukkala and Moilanen 2013). 

Planning tools have been developed to examine how the area and configuration 

of reserves can optimise both persistence and the complementarity of species 

protected (e.g. Moilanen et al. 2005).  

 

In terms of specific implications of accelerating environmental change for the 

SLOSS debate, studies frequently fail to specify the extent to which invasive 

species contribute to the increased richness of landscapes with multiple smaller 

sites (Pyšek, Jarošík & Kučera 2002). However, providing an increased number 

of so-called “stepping stone” habitats or protected areas can enhance the speed 

of colonization of new landscapes, increasing the ability of species to track 

climate change (Hodgson et al. 2012), both in terrestrial (Lawson et al. 2012) and 

potentially marine environments (Magris et al. 2014). 

 

Bigger or more? 

 

In reality, many factors influence whether one large or several small reserves are 

more effective for achieving conservation goals (Soul & Simberloff 1986), so a 

more useful question for conservation decision-making concerns the 

circumstances in which each approach is favoured (Williams, ReVelle & Levin 

2005; Tjørve 2010). If the aim is to protect multiple species, both approaches can 

enhance species richness as described above, with the expectation that the lower 

the proportional overlap in species among sites, the more effective is a multi-

reserve approach (Connor & McCoy 2001; Tjørve 2010). However, the dynamic 

and transient responses of species distributions to rapid environmental change 

add some new provisos to this general guideline. For example, a greater number 

of species are expected to suffer delayed extinctions following habitat loss in 

landscapes with smaller rather than larger reserves (Kuussaari et al. 2009) and 

under climate change, one must also factor in the location of these sites and 

whether they remain climatically suitable for their focal species (Hodgson, 

Moilanen & Thomas 2009; Hodgson et al. 2009a). Where sites are forecast to 

remain climatically suitable, large reserves will benefit species with poor dispersal 

capability (Hodgson, Moilanen & Thomas 2009; Hodgson et al. 2009a). 

Conversely, for species with high dispersal rates, it is recommended to focus on 

patch number initially before increasing area (Nicol & Possingham 2010), 
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enabling species to utilise the “stepping-stones” and shift in response to warming 

temperatures (Hodgson et al. 2012). 

 

In the context of increasing extreme weather events, the distinction between the 

benefit of large reserves for habitat-interior species and small patches for edge 

species is exacerbated (Bender, Contreras & Fahrig 1998). Edge species are 

often more vulnerable to climate variability, especially when confined to small 

fragments of remaining habitat exposed to extreme weather events (e.g. Powell 

and Wehnelt 2003). Though larger reserves can be viewed as disadvantageous 

for species residing in ecotones or edge habitats (Bender, Contreras & Fahrig 

1998), this is only a limitation in reserves consisting mainly of homogeneous 

habitat. Larger sites do tend to offer high levels of heterogeneity (Connor & 

McCoy 2001), accommodating pockets of habitat which can create the desired 

“edges” for these species within the reserve itself.  

 

For species such as the many amphibians that are vulnerable to increasingly 

common disease epidemics amid a warming climate (Harvell et al. 2002; Pounds 

et al. 2006), more, smaller sites could provide local refuges from disease. 

Similarly, more sites are effective for species susceptible to environmental 

catastrophes as the risk of extinction is spread over several locations 

(Groeneveld 2005) and increases the chance of recolonization from nearby sites 

(Schnell et al. 2013). Nevertheless, threshold effects could render smaller sites 

too small to act as sources for range shifts, especially for those species with 

highly fragmented distributions or narrow geographic ranges (Pimm et al. 2014). 

When reserves are too small, wide-ranging species such as carnivores can leave 

the sites, heightening both human-wildlife conflict and carnivore mortality 

(Woodroffe & Ginsberg 1998). Species which congregate in relatively small areas 

at varying stages of their lifecycle (e.g. see BirdLife International 2008), however, 

could benefit from the presence of several smaller reserves provided they are 

situated in locations corresponding to resources favouring aggregation. The 

importance of the spatial context and surroundings of sites also appear to be 

more important than site area for exposure to invasive species, since sites 

surrounded by protected landscapes can have fewer invasive species than those 

amongst areas with varying land-uses (Pyšek, Jarošík & Kučera 2002).  
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Much attention surrounding the SLOSS debate has focused on the biological 

benefits of each strategy (see Space for Nature above). But in cases where there 

are no clear biological grounds on which method is likely to be best, how should 

we determine what is most practical? The economic aspects associated with the 

contrasting methods were conventionally not considered by theory (Groeneveld 

2005), yet adopting cost-effective approaches is fundamental to meet ambitious 

biodiversity targets with limited funding (McCarthy et al. 2012) whether working 

on a fixed budget to capture as much biodiversity as possible (maximum 

coverage), or aiming to conserve a set amount of biodiversity for the minimum 

cost (minimum set) (Albuquerque & Beier 2015). Creating large sites could be 

more economical in terms of creation and management (Williams, ReVelle & 

Levin 2005) as they start to rely on natural processes (Lawton et al. 2010) 

compared to managing smaller, individual sites. Overexploitation of species and 

habitats is a continuing challenge for biodiversity (Millennium Ecosystem 

Assessment 2005), thus the costs and feasibility of reserve protection against 

these threats will inevitably affect decisions. While the costs of internal monitoring 

(e.g. through transect surveys) of large sites versus small sites of equivalent area 

are comparable, notably less external surveillance is required for fewer, large 

sites with  lower perimeter lengths (Ayres, Bodmber & Mittermeier 1991) and may 

be less at risk from poaching events (Di Minin et al. 2013). Enhancing the 

provision of ecosystem services promotes the ability of the environment to 

enhance human health and well-being, and lowers exposure to anthropogenic 

disturbances (Mitchell et al. 2015). But despite the expectation of greater diversity 

in large sites, whether large sites can enhance ecosystem function and the 

delivery of these services, relative to multiple smaller sites, remains equivocal.  

Nonetheless, with continuing land-use change leading to an increasingly 

fragmented landscape, there are frequently situations where it is physically not 

possible to create large sites due to surrounding land ownership or social and/or 

cultural costs of using a particular space (Williams et al. 2005). Moreover, people 

are altering their behaviour in response to climate change (Chapman et al. 2014), 

shifting agricultural regimes, modifying transport routes and building coastal 

defences, for example (see Segan et al. 2015). These indirect impacts of climate 

change can create additional barriers to creating large sites for conservation. In 

such cases, setting aside more, smaller sites for wildlife or opting for another 

strategy altogether, is often the only option.  
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Exploiting connectivity  

 

Site isolation plays a fundamental role in the theories of island biogeography and 

metapopulation biology by determining colonization rates (MacArthur & Wilson 

1967; Moilanen & Hanski 1998) and the Rescue Effect (Brown & Kodric-brown 

1977). As human land conversion has greatly increased habitat isolation (Bennett 

2003; Nicol & Possingham 2010), connectivity is often promoted to counteract 

biodiversity loss associated with habitat degradation (Williams, ReVelle & Levin 

2005; Donald & Evans 2006; Lees & Peres 2008). Connectivity is now also 

fundamental to facilitate species range shifts in response to climatic change 

(Lawson et al. 2012, 2013; Thomas et al. 2012) and is thus commonly 

recommended for climate change adaptation (Heller & Zavaleta 2009).  

 

But in today’s landscapes, increasing impacts from invasive species, pollution, 

disease and extreme weather events (Millennium Ecosystem Assessment 2005) 

present possible counterarguments for enhancing connectivity, given evidence 

that greater connectivity can lead to more rapid spread of catastrophic events 

(e.g. Laine 2004) and invasive species (Simberloff & Cox 1987; Dover & Settele 

2009). Recent research has demonstrated that the deformed wing virus epidemic 

in the European honeybee Apis mellifera, is driven by movement of pollinator 

populations and spread of the mite Varroa destructor, and greater functional 

connectivity (i.e. the behavioural  response of an organism to landscape features 

[Tischendorf and Fahrig 2000])  for the vectors of the disease therefore enhance 

its potential to spread to other wild pollinators (Wilfert et al. 2016). As a result, 

large distances between sites and regulated movement are now necessary to 

reduce the spread of disease, invasive species, predators, and the impacts of 

environmental events such as fire or hurricanes (Williams et al. 2005). Networks 

of sites that are well connected in terms of the dispersal capabilities of target 

species, but remain fragmented with respect to the transmission of disease 

(Huxel and Hastings 1999; Hartley and Kunin 2003; Williams et al. 2005) or 

susceptibility to regionally correlated environmental variation, would represent 

win-win situations, although providing the information required to define this 

optimal level of aggregation is challenging (Williams et al. 2005).   
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Connectivity has traditionally focused on habitat corridors, which can include 

natural or man-made linear features such as rivers, canals, hedgerows and 

railway embankments (Lawton et al. 2010). Managing the matrix between sites 

is often advocated as a means of making the space between pockets of protected 

areas amid intense land use more permeable to allow for species movement 

(Lees & Peres 2009). In addition, increasing the number of sites and aggregating 

them within the dispersal distance of focal species enhances movement, though 

could reduce opportunities for range expansion if not adequately spaced (Magris 

et al. 2014). More recently, research has begun to highlight the role of the other 

strategies associated with reserve design for enhancing connectivity. Local 

population dynamics in addition to distance between patches are essential for 

determining functional connectivity (i.e. potential rates of immigration). Habitat 

area and quality increase the size and stability of source populations for dispersal 

and hence rates of immigration to other patches (Hodgson et al. 2009b). Recent 

research has shown that stable abundance trends are more important than 

dispersal ability in influencing rates of range expansion in British butterflies (Mair 

et al. 2014), and reproductive rates of wetland vertebrates had more influence on 

immigration rates than species mobility (Quesnelle, Lindsay & Fahrig 2014). Thus 

promoting population growth through maintaining habitat quality and size is 

essential, and directing efforts exclusively to structural connectivity (focusing on 

the physical structure of the landscape [Tischendorf and Fahrig 2000]) is only 

beneficial under specific circumstances.  

 

The primary purpose of enhanced connectivity (both functional and structural) is 

to augment species movement between sites, which is becoming increasingly 

more important across landscapes as range shifts are forced by climate change. 

Therefore, the value of increased structural connectivity alone depends on 

whether persistence or range expansion are limited by the dispersal ability of 

species relative to the existing configuration of habitats (Moilanen & Hanski 

1998). The most dispersive species may not benefit from increased connectivity 

(Bennett 2003), but highly sedentary species may only benefit if connectivity is 

increased within the dispersal range of the species concerned (e.g. Doerr et al. 

2011; Johst et al. 2011). With ongoing fragmentation, distances between habitats 

can exceed dispersal capacity for many species (Dennis et al. 2013). As a result, 

guidelines to identify the level of isolation of sites relative to species dispersal 
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capacity at which enhanced connectivity most benefits regional persistence, 

would help to increase the effectiveness of landscape-scale conservation (Lees 

& Peres 2009). Such approaches could benefit the species with intermediate 

dispersal capabilities that have declined more than either the most sedentary or 

mobile species (Thomas 2000). When considering the level and capability of 

dispersal, it is also necessary to consider how dispersal mode differs within and 

between taxa (Hodgson et al. 2011a). Animal-dispersed plants, for example, can 

increase following the introduction of corridors for animals, whereas wind-borne 

dispersers may be unaffected (Brudvig et al. 2009). 

 

Finding the space to make sites bigger across the modern human-dominated 

landscape is becoming increasingly problematic. As a result, enhancing 

connectivity may be essential for species requiring access to the resources 

needed (Benton, Vickery & Wilson 2003), especially those with varying needs at 

various stages of their lifecycles (Fahrig 2003) or with seasonal food 

requirements (Donald & Evans 2006), and may also encourage animals to reside 

within appropriate habitats, reducing human-wildlife conflict (Hartter & 

Southworth 2009). Establishing corridors between sites can be expensive 

(Dennis et al. 2013), in which case utilising man-made structures or existing 

natural connections is a plausible solution. Managing matrix habitat may be 

needed when a location offers a fragmented network of protected areas 

surrounded by intense land use. In return, this not only provides species with an 

increased capacity to shift, it enhances the ability of the environment to provide 

a range of ecosystem services such as pollination, human well-being and air 

quality. Nevertheless, in areas vulnerable to spatially autocorrelated contagion-

like extinction pressures (Channell & Lomolino 2000), connectivity should be 

avoided; instead, opting for widely separated reserves will be more effective 

(Hartley & Kunin 2003). 

 

Interplay between approaches 

 

In reality, it is clearly not a straightforward case of selecting one approach; opting 

for a particular strategy can impact the ability to achieve, or even the requirement 

for another. Previous work has focused on the effect of habitat quality and area 

in enhancing functional connectivity between sites (e.g. Hodgson et al. 2009c; 
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Hodgson et al. 2011a but see also Doerr et al. 2011), thus choosing to develop 

quality or area can be an effective option for improving connectivity if required. 

Authors have also alluded to the fact that focusing on quality can mean there is 

less need to create new areas for wildlife (Lawton et al. 2010), though improving 

connectivity directly will ensure that species can actually reach these high quality 

habitats (Root 1998). In any case, enlarging sites reduces the need for 

connectivity (Rosenberg, Noon & Meslow 1997; Haddad 1999; Dennis et al. 

2013) as these areas start to act as stand-alone reserves (Williams, ReVelle & 

Levin 2005), providing they reside in climatically suitable or stable areas, and also 

tend to offer the benefits of habitat heterogeneity when areas are sufficiently large 

to host a broad range of habitats. Likewise, the creation of corridors can 

effectively increase the size of the site (Benton, Vickery & Wilson 2003; Noel et 

al. 2006; Lawson et al. 2013) and so remains a useful alternative when the 

creation of big sites is not an option. But where the designated area of land for 

conservation purposes is limited in size within conservation planning, the creation 

of  corridors could mean that the area of the sites themselves would have to be 

smaller to meet the overall area on offer (Rosenberg, Noon & Meslow 1997). 

Should more, smaller sites prove to be the best option, these areas can 

themselves act as stepping stones, promoting connectivity (Hodgson et al. 

2009b) and simultaneously offering habitat heterogeneity (Dover & Settele 2009). 

Although if these sites are separated to protect against climatic disturbance, this 

could negatively affect the ability to suitably enhance connectivity and facilitate 

range shift if required (Magris et al. 2014).   

 

Moving forward 

 

Although context-dependent, formulating a series of generic rules would provide 

a much needed starting point to assist conservation practitioners involved in 

decision-making regarding the planning and management of protected areas 

amid future threats. Given the current and future constraints imposed on 

biodiversity and the acute shortage of funding for effective conservation, it is not 

always possible to implement the creation of bigger, better and more joined sites 

for conservation and difficult choices between these strategies will often need to 

be made. With increasing land-use change, for example, creating bigger sites is 

rarely possible within fragmented landscapes, whilst restoring increasingly 
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degraded habitat through in situ management can be expensive and time 

consuming (Possingham, Bode & Klein 2015). Responding to an increase in 

invasive species, pollution and disease requires protection and management to 

be undertaken in widely spaced locations, bearing in mind the trajectories of 

climate change and routes species may follow as they shift their distributions in 

response (Loarie et al. 2009; Early & Sax 2011). It is now widely accepted that 

conservation strategies should account for climate change (Jones et al. 2016) 

and the inevitable need to adapt to changing temperatures, cope with 

environmental extremes and shift in response to climatic changes. In this case, 

focusing on habitat quality is the most effective strategy (Greenwood et al. 2016) 

but specifically how to approach this depends on a series of factors. Bigger sites 

and multiple smaller sites each offer benefits for climate change adaptation, whilst 

the functional connectivity required for this challenge can be improved through a 

focus on other strategies which encourage stable abundance. Indirect impacts 

associated with climate change have seldom been recognised in the literature 

(Chapman et al. 2014) but can further complicate the ability to adopt particularly 

strategies, or the overall effectiveness of those employed. With the potential of 

people to shift agricultural practices, for example, utilising numerous smaller sites 

may enable people to exploit areas of land in between, as opposed to entering 

those areas designated for wildlife (Bradley et al. 2012).  

 

The literature associated with conservation planning has vastly progressed since 

the origin of reserve design theory presented by Diamond (1975). Many of the 

ideas proposed by classical theory still apply in the context of modern-day 

pressures, such as the ability of larger sites to deal with stochasticity as a result 

of high carrying capacities, and enhance the colonization of surrounding habitat 

from large source populations. Other recommendations become even more 

important when we factor in rapid environmental change, such as the provision 

of source populations provided by optimal habitat for species’ range shifts, the 

buffering effect supplied by large populations within larger sites, and the reduced 

extinction risk of multiple smaller sites from correlated environmental events. 

Meanwhile, there are evidently cases where ideas from conventional theory no 

longer apply. Single large sites are prone to extinction from increasing 

environmental disturbances, counteracting the traditional desire to maintain 

structural connectivity between sites, alongside the fact that it is simply not 
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possible in today’s landscapes to create single large sites for nature where levels 

of biodiversity may be high, and often coincide with high human populations. 

 

Decision-making framework 

 

In essence, the most effective strategy in the context of 21st century pressures 

depends on circumstance, but by considering the goals of conservation and the 

characteristics of biota for which conservation is needed, it is possible to make 

informed choices about which strategy is likely to be best (Table 2.1). 

Nevertheless, practical considerations such as financial costs, reserve protection 

(day to day and in the future) and site monitoring are also important and are 

seldom considered in studies of reserve design (Groeneveld 2005). From the 

resulting recommendations shown in Table 2.1, size and connectivity represent 

the most prominent strategies amongst the considerations highlighted. However, 

it is noteworthy that this may not consistently be the case, particularly when 

focusing on issues associated with modern-day conservation including economic 

constraints, extent of habitat fragmentation, vulnerability to climate change and 

risk of disease and environmental disturbance. Upon adopting a particular 

conservation strategy, there are evidently multiple valid options for a particular 

situation (Table 2.1). Our review of the literature suggests that, amid 21st century 

challenges, habitat quality and area should be the priority (as in Hodgson et al. 

2009c; Lawton et al. 2010); enhancing, amongst other things, the ability of 

species to shift in a changing climate, cope with environmental extremes and 

promote species richness and population viability. This offers the additional 

advantage of being more cost-effective than focusing on connectivity between 

sites, especially when protecting currently intact habitat. The exception to this 

rule is within existing fragmented landscapes, where area and connectivity 

become more important than quality (Moilanen & Hanski 1998). Since enhancing 

the quality and/or quantity of sites offer many of the benefits associated with 

connectivity, encouraging connectivity alone is only supported in a few 

circumstances. Despite this, more connectivity is generally considered better 

than isolation, aside from populations exposed to spatially contagious threats 

such as disease epidemics, but at low risk from climate change and hence not 

expected to require the ability to shift their range at least over the short-term.  
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The principles of this framework can effectively be used to provide solutions to 

21st century issues (Box 1) where conservation continues to struggle to find 

answers to complex debates; highlighting the role of scientific theory in modern 

day conservation planning. 

 

Box 1: 

Decision making in the real world: a case study of land spare versus land share  

 

Alongside threats from habitat change, climate change and invasive species, one 

of the greatest threats to global biodiversity is the need to balance the increasing 

demand for food security with conservation (Green et al. 2005; Donald & Evans 

2006; Fischer et al. 2008; Edwards et al. 2010; Balmford, Green & Phalan 2012). 

Land sparing involves the preservation of natural areas for wildlife, segregated 

from a smaller area of land for intensive agriculture, while land sharing, or wildlife-

friendly farming, involves the spatial co-occurrence of agriculture and 

conservation (Phalan et al. 2011; Tscharntke et al. 2012; Grau, Kuemmerle & 

Macchi 2013). Land sharing has been encouraged, particularly in Europe, with 

the support of agri-environment payments through the Common Agricultural 

Policy and various other certification schemes worldwide. These include the 

Conservation Reserve Program in the USA (Green et al. 2005; Kleijn et al. 2011; 

Hulme et al. 2013) and the Australian Landcare Program (Kleijn et al. 2011); 

aiming to cover the net losses that occur from avoiding more intensive farming 

methods (Lawton 2010), and provide support to those farmers who opt to make 

environmental improvements to their land (Donald & Evans 2006).  

 

The land share, land spare debate epitomises the difficult choices faced in 

landscape-scale conservation planning: on one hand, a high quality (relatively 

homogenous) but smaller area of spared land for wildlife; on the other, lower 

quality but larger areas of heterogeneous habitat shared with farming (Green et 

al. 2005; Fischer et al. 2008; Adams 2012; Balmford, Green & Phalan 2012). As 

with the trade-offs associated with reserve design, both approaches have 

strengths and weaknesses (Edwards et al. 2010). Land sharing can enhance and 

restore connectivity by creating softer barriers to dispersal between areas of more 

natural habitat (Donald & Evans 2006; Fischer et al. 2008; Heller & Zavaleta 

2009; Dover & Settele 2009). Sharing also encourages the creation of new wildlife 



Chapter 2 

 

61 

 

sites (Donald & Evans 2006; Dover & Settele 2009; Lawton et al. 2010) although 

more land, potentially previously intact, must be cultivated to balance the fact that 

overall yield is low (Green et al. 2005; Balmford, Green & Phalan 2012; Hulme et 

al. 2013; Chandler et al. 2013). Nevertheless, this may mean that more land is 

protected in some way (Balmford, Green & Phalan 2012). In contrast, land 

sparing can boost species populations (e.g. Phalan et al. 2011), particularly those 

of greatest conservation concern (Hulme et al. 2013), and thus assist with climate 

change adaptation through abundant source populations. It can also increase 

overall species richness (Edwards et al. 2010; Chandler et al. 2013) due to more 

native habitat (Hulme et al. 2013) and because many wild species cannot survive 

in even the most wildlife friendly farmland (Tscharntke et al. 2012). However, 

some species are specifically adapted to agricultural landscapes (Benton, 

Vickery & Wilson 2003), particularly in landscapes with a long-history of 

disturbance (Donaldson et al. 2016). Land sparing usually produces higher yields 

(Grau, Kuemmerle & Macchi 2013), potentially reducing deforestation rates since 

there is less pressure to log other areas to meet demand (see Green et al. 2005) 

and more recently reported to save on greenhouse gas emissions as a result of 

less land conversion to meet demand for agriculture (Balmford, Green & Phalan 

2012).  

 

Amongst the confounding benefits discussed extensively in the literature, our 

decision-making framework can be used to demonstrate how theory associated 

with reserve design can help provide solution to this intensive debate (Table 2.2). 

The homogeneous quality associated with spared land provides benefits to 

specialist species, boosts populations of species vulnerable to climate warming, 

and provides smaller sites suitable for stationary animals with small range sizes. 

Providing more, smaller sites can also enhance the capacity for range shift across 

the landscape in response to climatic change. Meanwhile, land sharing generally 

enhances connectivity between sites, offering benefits to migratory species and 

those with low dispersal capabilities and/or large range sizes, but equally may 

spread the risk of extinction from correlated weather events and disease. 

Providing the landscape remains relatively fragmented with respect to these 

risks, the heterogeneity associated with land sharing can help buffer the effects 

of variable environmental disturbances. Land sharing is also an appealing option 

in areas where wildlife and low intensity forms of agriculture have coexisted for 
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long periods of time, such as parts of Europe (Fischer et al. 2008; Hodgson et al. 

2010), where species are tolerant to disturbance from such activities (Grau, 

Kuemmerle & Macchi 2013). Conversely, in areas with high potential agricultural 

activity that do not  coincide with those of high biodiversity value, it is possible to 

zonate land and opt for a land sparing approach (Hodgson et al. 2010). However, 

with environmental change, crop suitability may also shift (Bradley et al. 2012) 

leading people to encroach on spared land. In this sense, suitable areas for 

people to farm with climate change could be equally as important as providing 

suitable areas for species’ ranges to shift, or alternatively opt for a land sharing 

approach where both have the potential to move. Finally, this challenge highlights 

the importance of practical considerations (Table 2.2), with site ownership, 

planning and governance being amongst the most fundamental factors leading 

to the most appropriate option available.  
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Table 2.2. The prevalent factors derived from a range of scientific studies associated with the theory of reserve design 

influencing solutions to the land spare, land share debate.  

Factor Land 

sparea  

Land 

shareb  

Justification Reference(s) 

Species 

traits 

Habitat 

preference 

Specialist 
  

Land sparing provides higher quality, natural habitat suitable 

for specialists, whilst generalists can exist in lower quality 

habitats  

Green et al. 2005; 

Devictor et al. 2008; 

Fischer et al. 2008; 

Hulme et al. 2013; Ye 

et al. 2013 

Generalist 

  

Habitat 

requirements  

Migratory   Some species require a variety of habitats (heterogeneity), 

continuity (connectivity) and/or large areas to complete life 

cycle 

Donald & Evans 2006; 

Johnson 2007; Fischer 

et al. 2008 
Stationary 

  

Human 

disturbance 

Sensitive   Land sparing involves less disturbance to wildlife since area 

is spared for them 

Green et al. 2005; 

Grau et al. 2013 Tolerant   

Range size Small   Land sparing involves a smaller area of high quality land 

designated for wildlife, while land sharing settles for a lower 

quality but much larger area of land for wildlife 

Phalan et al. 2011; 

Hulme et al. 2013 Large 
  

Dispersal 

capability 

High 
  

Land sharing enhances connectivity through soft barriers to 

dispersal between areas of natural habitat  

Donald & Evans 2006; 

Fischer et al. 2008; 

Heller & Zavaleta 

2009; Dover & Settele 

2009 

Low 

  

Population 

viability 

High   Land sparing can boost species populations e.g. Phalan et al. 2011 

Low   
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Factor Land 

sparea  

Land 

shareb  

Justification Reference(s) 

Threats Climatic 

change 

 

High 

vulnerability, 

low 

variability 

  

Higher quality spared land can provide source populations for 

climate adaptation and assist with capacity for range shift  

Phalan et al. 2011 

High 

variability, 

low 

vulnerability 

  

Sharing is associated with a heterogeneous landscape, thus 

buffers environmental disturbances (providing landscape 

remains relatively fragmented to spread extinction risk) 

Fischer et al. 2008 

Practical Ownership Multiple   Land sparing is not possible with multiple owners Adams 2012 

Single   

Planning Strong   Land sparing requires a strong and effective planning 

approach to be successful and not detrimental to wildlife.  

Adams 2012 

Weak   

Governance Strong   Land sparing is difficult to implement in countries with weak 

governance, requires strict policy mechanisms to be effective 

and ensure areas farmed are restricted 

Edwards et al. 2010; 

Hodgson et al. 2010; 

Adams 2012 

Weak 
  

 

 

 

 

 

 

____________________ 

a Typically offers homogeneous, smaller, less connected sites 
b Generally composed of heterogeneous, larger, more connected habitat
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Conclusion 

 

As threats to biodiversity and competing demands for land increase, the effective 

targeting of conservation resources is increasingly urgent. While many authors 

have concluded that simple concrete rules for reserve design do not exist, the 

knowledge base is extensive. The very broadness and complexity of the literature 

regarding reserve design has come to represent a challenge to those adopting 

measures to promote landscape-scale conservation, and new threats to 

biodiversity conservation demand a reevaluation of classical ideas for reserve 

design. We have synthesised and explored existing knowledge to provide 

updated, generic guidance to decision makers engaged in landscape-scale 

conservation planning and practice in the context of levels of environmental 

change and biotic consequences that were not envisaged only decades ago. 

Ambitious global biodiversity targets are set and funding for conservation is 

notoriously limited. By providing an evidence-based framework that summarises 

the circumstances under which each strategy is best, we hope to provide 

increased clarity to inform urgent, cost effective modern-day conservation 

decision-making.  
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Chapter 3: 

Subsistence use of papyrus is compatible with wetland 

bird conservation 

 

 

Updated from: Donaldson, L., Woodhead, A.J., Wilson, R.J. & Maclean, I.M.D. 

(2016) Biological Conservation, 201, 414–422 

 

Abstract 

 

Conservationists have historically advocated measures that limit human 

disturbance. Nevertheless, natural disturbances are important components of 

many ecosystems and their associated species are often adapted to such 

regimes. In consequence, conservation managers frequently simulate natural 

disturbance, particularly in temperate forest systems. This practice is less 

widespread and seldom studied in tropical regions, where biodiversity 

conservation and human activities are often thought to conflict. However, many 

tropical systems have been subject to natural and anthropogenic disturbance 

over evolutionary timescales, and disturbance may therefore benefit the species 

they host. Determining whether this is true is especially important in tropical 

wetlands, where human activities are essential for sustaining local livelihoods. 

Here we investigate the impacts of disturbance from human resource use on 

habitat–specialist bird species endemic to papyrus swamps in East and Central 

Africa. Bird densities were estimated using point counts and related to levels of 

human activity using physical characteristics of wetland vegetation as a proxy for 

disturbance. All species were tolerant to some degree of disturbance, with 

particular species occurring at highest density in intensely disturbed habitat. 

Species were generally more tolerant to disturbance in larger swamps. Our 

results suggest that low-intensity use of papyrus wetlands by people is 

compatible with the conservation of specialist bird species, and highlight the 

potential benefits of traditional human activities to conserve biodiversity in the 

tropics.
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Introduction 

 

Habitat degradation is one of the greatest threats to biodiversity (WWF 2014) and 

restoring habitat is frequently the focus of conservation management (Hodgson 

et al. 2011a). To this end, conservationists have advocated measures that limit 

disturbances caused by human activity, adopting the view that the needs and 

actions of people often conflict with the objectives of biological conservation 

(Brown 2002). The classic “fences and fines” approach dominated much of the 

20th century but has been criticized for its failure to account for the interests of 

communities by impeding the use of natural resources (Hutton, Adams & 

Murombedzi 2005). This is particularly problematic in developing countries 

(Barrett et al. 2001), where people's livelihoods are closely linked to natural 

resource use (Khadka & Nepal 2010). In consequence, conservation now often 

adopts a more community-based approach, which strengthens the link between 

conservation and human needs (Adams & Infield 2003). These participatory 

methods incorporate a variety of incentives to make conservation more 

favourable to local communities (Spiteri & Nepalz 2006). Nevertheless, 

community-based conservation schemes often restrict resource use (Lele et al. 

2010), commonly with financial incentives (Barrett et al. 2001) and as such, 

maintain the premise that human activities are detrimental to biodiversity. 

 

Many ecosystems have, however, been modified over very long periods of time. 

Thus, human disturbances potentially play a role in maintaining biodiversity 

(Hobbs & Huenneke 1992), with many species having evolved under natural 

disturbance regimes prior to the influence of humans (Lindenmayer et al. 2008). 

The role of disturbance is recognised and incorporated into management 

programmes in various temperate systems (Bengtsson et al. 2000; Seymour, 

White & DeMaynadier 2002). Forests, for example, were prehistorically grazed 

by megaherbivores, and subsequently by domestic animals following the regional 

extinction of large grazers (Bengtsson et al. 2000). Human-based disturbances 

which create early successional habitat, are used by forest managers to simulate 

natural forms of disturbance (Bengtsson et al. 2000; Seymour, White & 

DeMaynadier 2002; Lashley et al. 2014). The extent to which disturbance is 

important for maintaining biodiversity has seldom been studied or considered in 

tropical areas; home to high levels of global biodiversity (Hillebrand 2004), yet a 
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rapidly growing human population and extreme poverty place increasing 

pressures on tropical societies, habitats and species (Hutton & Leader-Williams 

2003; Spiteri & Nepalz 2006). Therefore, it is crucial to understand the extent to 

which populations of species can be sustained in human-modified landscapes 

and how specific land-use practices influence biodiversity (Chazdon et al. 2009). 

 

Tropical wetland systems encapsulate the potential conflicts and synergies 

between human exploitation of natural resources and conservation; vital for 

human wellbeing (Senaratna Sellamuttu, de Silva & Nguyen-Khoa 2011) and the 

alleviation of poverty, as well as hosting a rich biodiversity (Russi et al. 2013). In 

East Africa, papyrus (Cyperus papyrus) swamps support the livelihoods of 

millions of people through the provision of ecosystem goods and services (van 

Dam et al. 2014) including water, food, medicinal herbs, fishing and grazing 

habitat for livestock (Terer, Triest & Muasya 2012). Papyrus is frequently 

harvested and used for roof and fence construction, and to craft items such as 

baskets, trays, sleeping mats and ropes, which provide basic resources and a 

vital source of income for rural poor communities living in close proximity to 

swamps (Maclean et al. 2003d). These swamps also host a unique biodiversity 

including a suite of generalist species of birds (Maclean et al. 2003a), alongside 

several species of specialist passerines (Britton 1978; Vande weghe 1981). In 

common with wetlands worldwide, papyrus swamps are increasingly threatened 

by habitat loss from drainage and encroachment for agriculture (Maclean, Wilson 

& Hassall 2011). As a result, population estimates of papyrus passerines suggest 

that they are decreasing in numbers, undergoing even greater declines than the 

habitat on which they depend (Maclean, Bird & Hassall 2014). 

 

Disturbance from human activities in papyrus swamps has been considered 

detrimental to biodiversity and, in consequence, legislation in East Africa tends 

to impose restrictions on harvesting by local people (Wetlands Inspectorate 

Division 2001; Hartter & Ryan 2010). However, these restrictions can alienate 

local stakeholders and risk the success of further conservation efforts (Terer et 

al. 2012). Disturbance from subsistence use, including harvesting for materials 

and burning from smoking bees out of hives to extract honey or hunting game or 

fish (Maclean et al. 2006), has been ongoing for over a millennium (Terer, Triest 

& Muasya 2012), and papyrus swamps have been exposed to natural forms of 
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disturbance from fire and large herbivore grazing prior to human settlement 

(Taylor 1990). Following the regional extinction of large herbivores, people are 

likely to have replaced the role of these natural forms of disturbance in 

maintaining a more open habitat through harvesting and burning (Maclean et al. 

2006). As with forest systems, this history of disturbance could have implications 

for the way wetlands in sub-Saharan Africa should be managed. 

 

Here, we investigate the effects of disturbance on a suite of habitat–specialist 

species as an exemplar of the potential impacts of subsistence resource use, 

from direct cutting and burning, by local people on biodiversity in the tropics. 

Specifically, we quantify the effects of varying levels of disturbance on the relative 

densities of specialist bird species in an area of south-west Uganda. Habitat 

specialists are typically more sensitive to disturbance (Devictor, Julliard & Jiguet 

2008). In consequence, if the densities of these birds are not negatively affected 

by disturbance, resource extraction to support local livelihoods is unlikely to be 

detrimental to birdlife, potentially to wildlife in general, and the long-term provision 

of ecosystem services. We conclude by discussing the implications of our findings 

for the conservation management of tropical wetlands and other habitats. 

 

Material and methods 

Study site 

 

The study was conducted between May and June 2014 at Lake Bunyonyi, south-

west Uganda (01°17′S 29°55′E), to coincide with post-rainy season breeding 

(Britton 1978). In this area, papyrus swamps persist along the lake shore and in 

valley bottoms, surrounded by heavily cultivated land. This region is subject to 

particularly high levels of disturbance from harvesting and burning as a result of 

increasingly high human populations (Maclean, Wilson & Hassall 2011) and 

levels of poverty (Gable, Lofgren & Rodarte 2015), as well as hosting among the 

highest densities of papyrus endemic passerines (Maclean, Wilson & Hassall 

2011). At Lake Bunyonyi, papyrus is most commonly harvested and sold in 

bundles to use as a source of fuel, for thatching roofs, constructing fences and 

occasionally creating small out-buildings (see Maclean et al. 2003d). Thin strips 

of papyrus are also cut and used on a smaller scale to make a variety of 
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handcrafts used for domestic purposes, or sold locally, increasingly to tourists 

(Maclean et al. 2003d). Small-scale burning in this area is largely caused by 

fishermen in an attempt to catch eels, which are marketed locally or used to feed 

families (J. Ruhakana pers. comm). Occasionally, burning can be initiated 

accidently in an attempt to smoke bees out of hives while harvesting honey, often 

situated in the swamp interior distant from local communities (Maclean et al. 

2006). These subsistence-based activities are more frequent during the dry 

season in Uganda, when income from crop production declines (Maclean et al. 

2003d). 

 

Study species 

 

Research concentrated on five specialist species of passerines most closely 

associated with papyrus in the study area, which have global distributions centred 

around East and Central Africa (Maclean, Bird & Hassall 2014). White-winged 

swamp-warbler (Bradypterus carpalis), greater swamp-warbler (Acrocephalus 

rufescens) and papyrus canary (Crithagra koliensis) are entirely confined to 

papyrus, although papyrus canary often forages in adjacent cropland (Vande 

weghe 1981). Papyrus yellow warbler (Calamonastides gracilirostris) and 

Carruthers's cisticola (Cisticola carruthersi) are primarily confined to papyrus, but 

can inhabit wetlands dominated by other types of vegetation, namely Typha and 

Miscanthidium spp. (Vande weghe 1981). Carruthers's cisticola was also found 

to inhabit wetland recently converted to agriculture in this study. All species are 

currently listed as Least Concern on the International Union for Conservation of 

Nature (IUCN) Red List, with the exception of papyrus yellow warbler, which is 

classified as Vulnerable due to a small and fragmented population, suspected to 

be in decline owing to the exploitation of its habitat (IUCN 2015). 

  

Point count survey 

 

105 point count surveys were conducted by the same observer between 7 am 

and 11:30 am, when the birds were most vocal. Swamps surveyed ranged in size 

from approximately 0.01 ha to 996 ha and covered the length of the lake (~ 35.6 

km) (Figure 3.1). A 1- to 2-min adjustment time was used prior to survey to 
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minimise disturbance caused by arrival on-site. Numbers of focal bird species 

were identified visually or aurally within a 15-min period and the distance of each 

individual from the point of survey recorded within distance bands (0–19 m, 20–

49 m, 50–99 m, 100–199 m). Each point covered a circular area with a 200 m 

radius, the location of which was recorded on GPS in the UTM (Universal 

Transverse Mercator) projection system. Counts were conducted from the edge 

of swamps often on higher land, offering an effective vantage point of both the 

edge and interior. Wetlands surveyed varied in size (mean size: papyrus swamp 

= 6.3 ha; broad wetland = 30.8 ha), thus multiple counts were conducted at 

opposing sides of large wetlands (diameter > 400 m) to enhance coverage and 

avoid potential survey bias towards swamp edge. Given the length of survey 

period and variation in area of swamp surveyed, data collected per count 

represent a relative, not absolute, indicator of species' abundance at each point 

(see Maclean et al. 2011; Maclean et al. 2014, for population assessments across 

the region). 

 

 

Figure 3.1. Point count locations (▲) around Lake Bunyonyi (lake shaded dark 

grey). Inset: location of the study site ( ) in south-west Uganda. Basemap credit: 
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Esri, HERE, DeLorme, MapmyIndia, © OpenStreetMap contributors, and the GIS 

user community. 

 

Disturbance estimation 

 

For the purpose of this study, we concentrate on human disturbance from recent 

and past harvesting of papyrus wetlands, together with occasional recent 

burning. As stands of papyrus first regrow following disturbance, culm width 

decreases and density increases (Muthuri, Jones & Imbamba 1989; Maclean et 

al. 2006; Terer, Triest & Muasya 2012). Thus, disturbance can be efficiently 

measured visually, using physical characteristics as a reliable indicator of 

disturbance levels. Based on this, five vegetation categories were created and 

used as proxies for disturbance (Table 3.1). The dominant form of disturbance in 

our study area was harvesting. A small amount of recent burning was also 

recorded (within ~ 5% of point counts), which was combined with harvesting to 

represent high intensity disturbance. Regeneration is similar following each of 

these disturbances within our study site, since the water level remains relatively 

stable at Lake Bunyonyi (Denny 1972) and regrowth occurs primarily from 

rhizomes rather than seeds (Terer, Triest & Muasya 2012). Some areas consisted 

of very low densities of papyrus mixed among other types of vegetation, largely 

due to water levels and soil conditions at particular sites (see Lind and Visser 

1962; Kansiime et al. 2007). These areas were taken to represent undisturbed 

but suitable habitat, and allowed us to explore aspects associated with physical 

habitat characteristics. Sketch maps were drawn to scale on the day of survey, 

noting the proportion of vegetation types within the survey area. GPS readings 

and satellite imagery were used to record vegetation boundaries and 

approximate coverage of each vegetation type. Maps were later digitized in ESRI 

ArcGIS v 10.1 and R v 3.0.2 (R Core Team 2013) was used to calculate the 

proportion of each vegetation type surveyed per point count. The perimeter and 

area of each swamp surveyed were obtained using ArcGIS 10.1, and circularity 

calculated (4πarea/perimeter2) to provide an indication of patch shape. 
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Table 3.1. Vegetation classifications and physical characteristics used to indicate disturbance. 

Vegetation 

category and 

symbol 

Description History of 

disturbance 

Age Typical 

height 

(cm) 

Density Culm 

thickness 

Senescence? Intensity of 

disturbance 

Recently 

disturbed (RD) 

Cleared (harvested), 

burnt, regrown immature 

papyrus1, agricultural 

wetland2 

Recent 

(weeks-

months) 

0-6 

months 

0-200 None/ 

very low 

None/ 

very thin 

No High 

Past 

disturbance 

(PD) 

Mature papyrus regrown 

following disturbance  

Past (>6 

months)  

>6 

months- 

1 year 

>200 High Thin No Intermediate 

Mature 

moderately 

disturbed (MD) 

Mature papyrus previously 

disturbed and fully 

regrown to maturity 

Past (1- 1.5 

years) 

>1 year >200 Moderate Thick Some Moderate/ low 

Mature 

undisturbed 

(ND) 

Mature papyrus, not likely 

to be disturbed, any 

disturbance over 1.5 years 

ago 

None/ >1.5 

years 

>1.5 

years 

>200 Low Thick Yes Low 

Mixed 

vegetation 

papyrus (MP) 

Mixed wetland vegetation 

containing >40% 

papyrus1, poor growing 

conditions for papyrus 

None >1 year 50-200 Low Thin Some Low 

1Includes wetland dominated by other wetland types for two of the study species also found in these areas (Carruthers’s cisticola and papyrus yellow 

warbler) (Maclean et al. 2006) 

 2Applicable to Carruthers’s cisticola only 
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Data analyses 

Detectability functions 

 

Measures of abundance obtained from point count sampling depend on the 

detectability of species within the radius surveyed; accounted for using distance 

sampling techniques. As most counts were conducted from the edge of swamps, 

the area surveyed and distance of swamp from the observer within the circular 

radius differed between counts. In effect, this alters the assumption that 

detectability from the observer will be equal across all point counts (Thomas et 

al. 2010). To combat this, detectability functions for each species were calculated 

in Distance 6.2 (Thomas et al. 2010), using the distance of each individual 

recorded from the observer, and these functions used to provide weighted 

estimates of the swamp surveyed by each point count. Ultimately this provided a 

“detectability-weighted” area surveyed, which was included in subsequent 

analysis as a measure of sampling effort per point count. 

 

To confirm that detection ability did not vary between vegetation types, we 

ensured that the distance from the observer did not differ among habitat types, 

then included habitat types as covariates in Distance 6.2 using the Multiple 

Covariate Distance Sampling (MCDS) extension (Marques & Buckland 2003). 

The inclusion of these effects consistently resulted in a less parsimonious model, 

indicating that height and density of vegetation was unimportant for the detection 

of the focal species, likely because most birds were recorded aurally rather than 

visually. 

 

Statistical analyses 

 

Generalized linear mixed effects models (GLMMs) were used to determine the 

effect of disturbance and vegetation type on species' density. Models were fitted 

using the “glmmADMB” package in R (Bolker et al. 2012) with a negative binomial 

error structure and log link function. The proportions of four distinct categories of 

disturbance within the survey area were included as fixed-effects; RD (recently 

disturbed), PD (past disturbance), ND (non-disturbed), MP (mixed 

papyrus/vegetation) (Table 3.1). To reduce multicollinearity (Dormann et al. 
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2013), MD (moderately disturbed) was removed due to correlation with ND for 

papyrus vegetation (Spearman coefficient = − 0.67) and broader wetland 

categories (Spearman coefficient = − 0.50 [PYW]; − 0.45 [CC]). As MD is 

intermediate between mature undisturbed papyrus and papyrus intensely 

disturbed in the past, removing this category enabled us to closely examine the 

effect of intense compared to no disturbance and explore our research aim. Prior 

to doing so, we ran additional models including this term, confirming that this 

intermediate category of disturbance was not important. Squared terms for each 

disturbance category were included as explanatory variables to account for the 

possibility of non-linear responses. Interactions of each disturbance category with 

the overall area of the wetland (log-transformed to improve normality) and 

wetland shape (circularity) were included as the study species are known to 

respond to patch area and edge (Maclean et al. 2006) and may, therefore, be 

more tolerant of disturbance in larger and/or more circular swamps. To account 

for the possibility of spatial autocorrelation and pseudoreplication, two random 

effects (region and wetland) were included in the models. A cluster analysis was 

performed on the location of point counts, and used to designate each point count 

to one of seven “regions” of the lake. All except two of the study species were 

found in all regions. To ensure the results obtained were not attributable to 

differences between regions, we repeated analysis including only those regions 

where the species were found. In each case, the results were qualitatively similar. 

Wetland ID was included as a second nested random effect, as repeated point 

counts were conducted in separate parts of some larger wetlands. 

 

Effects were analysed using multi-model inference (Burnham & Anderson 2002). 

A global model containing the four disturbance categories, their interactions with 

area and circularity and squared terms as explanatory variables, was created for 

each species. Abundance was included as the response variable and the 

detectability-weighted area used as an offset in each model, allowing us to 

explore the effects of vegetation type on species density as opposed to 

abundance. All variables were zero-centred and z-score standardised prior to 

inclusion in models. The “MuMIn” package (Barton 2014) was used to produce 

all possible combinations of the global model, ranked by their Akaike Information 

Criterion adjusted for small sample size (AICc). A set of best models was created 

for each species, consisting of all those with ΔAICc ≤ 2 from the top-ranked model 
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(Burnham & Anderson 2002). Model averaging was used to identify key variables 

likely to be affecting relative abundance and account for model uncertainty 

(Burnham & Anderson 2002; Johnson & Omland 2004). The relative importance 

(RI) of each parameter was calculated as the proportion of models in the top 

model set with that term included. Since the interactions between patch geometry 

and vegetation type within the top model set may alter the strength and directional 

effects of terms alone, analysis was repeated with full models excluding the 

interactions, and confirmed that the overall qualitative conclusions held 

regardless of the inclusion of two-way interactions. 

 

Results 

Survey data 

 

A total of 105 point count surveys were conducted from 80 papyrus and 57 broad 

wetland swamps (Table 3.2). The number of point counts in which each species 

was recorded ranged from 22 (21%) in 12 patches for papyrus yellow warbler, to 

87 (82.9%) in 69 patches for greater swamp-warbler. Although greater swamp-

warbler was the most frequently encountered species, Carruthers's cisticola was 

the most abundant, with a total of 198 individuals recorded. Papyrus yellow 

warbler was the least common, with 28 individual observations. 
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Table 3.2. Summary of point count data collected (n = 105). Greater swamp-

warbler (GSW), white-winged swamp-warbler (WWW) and papyrus canary (PC) 

are entirely confined to papyrus, thus wetland patches for these species consist 

only of papyrus swamps. Carruthers's cisticola (CC) and papyrus yellow warbler 

(PYW) occupy wetlands dominated by both papyrus and other types of 

vegetation. 

Species Total 

wetland 

patches 

surveyed 

Point 

counts 

with 

species 

present 

Wetland 

patches 

with 

species 

present 

Highest 

count 

per 

survey 

Total 

individuals 

recorded 

GSW 80 87 (82.9%) 69 (86.3%) 9 187 

WWW 80 47 (44.8%) 33 (41.3%) 10 121 

PC 80 25 (23.8%) 22 (27.5%) 7 69 

CC 57 48 (45.7%) 19 (33.3%) 19 198 

PYW 57 22 (21.0%) 12 (21.1%) 3 28 

 

 

Factors affecting population density 

 

The number of plausible models (ΔAICc ≤ 2) ranged from two for Carruthers's 

cisticola, to five for papyrus yellow warbler (Table A1). All species showed effects 

of patch geometry, habitat requirements and disturbance on population density, 

though the direction and magnitude of their response differed between species. 

 

Patch geometry 

 

Patch area was contained in the top model set for all species (Table A2). 

Averaging of the top model set showed that the density of all but one species was 

positively affected by the overall size of the wetland, with higher densities in larger 

patches (Figure 3.2a). Only the greater swamp-warbler was negatively influenced 

by area, occurring at higher densities in smaller swamps (Figure 3.2a). 

 

Wetland shape was also important for the majority of the study species. Patch 

circularity was in the top model set for all species, excluding papyrus canary 
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(Table A2). Model averaging the top model set revealed that patch shape was 

most important for white-winged swamp-warbler and the broad wetland species 

(papyrus yellow warbler and Carruthers's cisticola), with these species occurring 

at higher densities in patches with a higher area: edge ratio (Figure 3.2a). 

 

Habitat requirements 

 

Wetland composition was an important habitat requirement for all of the study 

species, for which papyrus mixed with other wetland vegetation (MP) was 

contained in the top model set (Table A2). MP negatively affected the density of 

all three papyrus-restricted passerines (Figure 3.2b). This effect was non-linear 

for white-winged swamp-warbler for which densities were only adversely affected 

when swamps contained high proportions of this category. The effect of MP 

interacted with circularity for greater swamp-warbler, with effects reversed in 

more circular swamps (Figure 3.2b), and interacted with patch size for papyrus 

canary, where the effect was only apparent in smaller swamps (Figure 3.2b). The 

density of Carruthers's cisticola, a broader wetland species, was slightly higher 

in swamps dominated by MP, particularly in more circular swamps (Figure 3.2b). 

Papyrus yellow warbler was the least affected by this category, occurring at only 

slightly higher densities in areas with low amounts of MP (Figure 3.2b) with an RI 

of 0.13 (Table A2). 
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Figure 3.2. Effect sizes of model averaged coefficients (ΔAICc ≤ 2) of explanatory 

variables from analysis of varying vegetation types on density for each species, 
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displayed by category of interest: MP (mixed papyrus/vegetation), RD (recently 

disturbed papyrus/vegetation), ND (undisturbed papyrus); terms marked with “2” 

represent squared term of that variable; GSW (greater swamp-warbler), WWW 

(white-winged swamp-warbler), PC (papyrus canary), CC (Carruthers's cisticola), 

PYW (papyrus yellow warbler). Bars represent the magnitude and direction of 

coefficients; area = log area of swamp; * significant effects where confidence 

intervals do not overlap with 0 (P < 0.05, 0.01, 0.001 represented by 1, 2 and 3 

asterisks, respectively); “:” interactions with geometric variables; ‡ contains 

wetland dominated by other types of wetland vegetation for species which also 

inhabit this habitat type; † species also found in wetlands dominated by other 

vegetation types. See Table A2 for full model averaged output. 

 

 

Effects of disturbance 

 

Most species were positively affected by the amount of intensely disturbed habitat 

within the survey area and were largely unaffected by the presence of large 

proportions of intermediate disturbance (Figure A1). Low intensity disturbance 

within the survey area also did not strongly influence the density of most species, 

and those showing a positive relationship to undisturbed papyrus displayed a 

relatively weak response (Figure A1). Considering all factors together, the overall 

importance of disturbance differed between species, often influenced by 

interactions with patch geometry: 

 

i. High intensity 

 

The amount of recently disturbed wetland (RD) within the survey area appeared 

in the top model set for three of the study species (Table A2). This effect was 

positive for greater swamp-warbler and white-winged swamp-warbler, but with an 

RI of 0.24 and 1, respectively. Model-averaged results suggested that white-

winged swamp-warbler occurred at significantly higher densities in areas with a 

high proportion of RD (Figure 3.2c). Papyrus yellow warbler showed a slight 

negative response to the amount of RD (Figure 3.2c). However, this effect was 

non-linear due to the presence of the squared term within the top model set 
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(Table A2), thus RD only began to negatively affect this species when there were 

large proportions of it within the survey area. Moreover, the direction of this effect 

depended on the size of the wetland (Figure 3.2c); in large swamps, large 

proportions of RD increased the density of papyrus yellow warbler. 

 

ii. Intermediate intensity 

 

The proportion of wetland disturbed in the past and regrown (PD) was the least 

important variable considered; only included in the top model set for papyrus 

yellow warbler (Table A2). Nevertheless, this term had an RI of 0.21 and was not 

found to be important when averaging across all models in the top model set 

(Table A2). As a result, all species tended to be relatively unaffected by 

intermediate intensities of disturbance. 

 

iii. Low intensity 

 

Undisturbed papyrus (ND) was in the top model set for three of the species, but 

unimportant for the two remaining species (Table A2). Model averaged results 

showed that the proportion of this category marginally influenced the number of 

papyrus canary (Figure 3.2d; Table A2), and had a weak positive effect on the 

number of white-winged swamp-warbler within the survey area (Figure 3.2d), with 

slightly higher densities in areas with large amounts of ND. This effect was 

negative for the density of Carruthers's cisticola, but as the squared term was 

also found to be important (Table A2), the effect was non-linear, with lower 

densities of this species in areas with intermediate levels of ND. Nevertheless, 

the direction of this effect depended on the circularity of the patch (Figure 3.2d); 

higher densities of Carruthers's cisticola occurred in areas with large proportions 

of ND in more circular patches. 

 

Discussion 

 

Restricting disturbance from human activities is problematic in tropical areas 

where people rely heavily on natural resources for their livelihoods (Hutton & 
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Leader-Williams 2003), and fails to consider the potential role of disturbance in 

maintaining biodiversity. Investigating the effects of disturbance from habitat use 

on papyrus-restricted avifauna, we have shown that this group of species is 

tolerant to some degree of disturbance and some species even benefit from it. 

Demonstrating that subsistence resource use can be compatible with 

conservation in wetland systems has the potential to increase the capacity of 

biodiversity conservation in tropical regions to meet the needs of both people and 

wildlife. 

 

Impacts of disturbance in tropical wetlands 

 

Habitat specialist species are thought to be the most sensitive to changes in their 

habitat (Ntongani & Andrew 2013), and thus papyrus-specialist passerines have 

been considered vulnerable to disturbance from human use (see Maclean et al. 

2003a). However, the relative density of papyrus passerines within the survey 

area was most affected by the composition of wetland and overall size of 

swamps, as opposed to the level of disturbance. Should these species be 

adversely affected by disturbance, densities would be negatively impacted by 

recently disturbed and/or papyrus regrown following disturbance and positively 

affected by the presence of undisturbed habitat. On the contrary, papyrus 

disturbed in the past and regrown was not important for the density of any of the 

study species, highlighting that none of the species has a preference for or 

against papyrus that has been cut and regrown. Meanwhile, only two species 

(papyrus yellow warbler and white-winged swamp-warbler) responded to the 

amount of wetland that had been recently disturbed by cutting or burning and, 

consistent with occurrence data collected from large swamps across the south-

west of Uganda (Maclean et al. 2006), actually appeared to benefit from cleared 

areas of papyrus. Given that these species are insectivorous (Britton 1978), 

creating open cut areas allows insects to thrive and enhances the availability of 

foraging for these birds. These two species also tended to prefer more circular 

swamps, favouring the swamp interior over the swamp edge. Open areas within 

the swamp could offer foraging sites that are sheltered and more secure from 

predators (Britton 1978). On the other hand, greater swamp-warbler preferred 

smaller swamps with more edge, potentially as a result of interspecific 
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competition from the higher densities of the other species within larger swamps, 

and papyrus canary is known to feed on nearby crops (Britton 1971), perhaps 

explaining why these species appeared largely unaffected by foraging 

opportunities created by disturbance within swamps. 

 

Allowing some undisturbed papyrus to remain is, however, evidently important. 

Papyrus yellow warbler only benefitted from intensely disturbed papyrus within 

larger swamps, which typically had higher proportions of undisturbed wetland, 

with a negative effect of intense disturbance in smaller swamps. Similarly, the 

density of white-winged swamp-warbler was higher in areas with large 

proportions of recently disturbed and undisturbed papyrus, suggesting it 

preferred areas with a mixture of both. The species'  that appeared to benefit from 

the presence of large proportions of undisturbed papyrus, Carruthers's cisticola 

and papyrus canary, were arguably the most sensitive to disturbance. Owino and 

Oyugi (2008) reported that papyrus canary was sensitive to disturbance in a 

sample of swamps in western Kenya. Yet in the current study, each of these 

species were largely unaffected by both disturbed categories, suggesting that 

they do tolerate disturbance, providing there is some undisturbed habitat within 

which to nest (Britton 1978). 

 

Species residing within papyrus swamps are likely to have evolved under a long 

history of disturbance and therefore, in common with temperate forest species, 

may have adapted to such pressures over time (Hobbs & Huenneke 1992; 

Bengtsson et al. 2000; O’Reilly et al. 2006). Alternatively, those most resilient to 

disturbance pressures remain in wetlands today (Balmford 1996). Swamps were 

prehistorically grazed by large herbivores such as hippopotamus (Hippopotamus 

amphibious) and exposed to natural fires (Maclean et al. 2006). Consistent with 

ideas from the Vera hypothesis (Vera 2000) and in common with temperate 

forests (see Bengtsson et al. 2000), these herbivores are likely to have 

maintained a more open landscape and prevented swamps from being closed, 

dense habitat. While the history of swamp use is undocumented in Uganda, 

pollen data from wetlands in the west of the country reveal evidence of human 

activity dating back to ca. 2200 years B.P. (Hamilton, Taylor & Vogel 1986; Taylor 

1990). By creating large open cut areas of papyrus within the swamp, traditional 

human activities such as harvesting essentially mimic the disturbance caused by 
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large herbivores while trampling (e.g. McCarthy, Ellery & Bloem 1998) and 

grazing (Boar 2006). Although most large herbivores have been lost from the 

region over the last 70 years, human activities ultimately replace the role of these 

animals in creating early successional habitat. Adopting ideas from the 

management of temperate systems, this has strong implications for the 

conservation management of wetlands in tropical East Africa. 

 

Contrary to traditional assumptions, the results of our study suggest that the 

conservation of papyrus-dwelling passerines need not involve the complete 

restriction of natural resource use by local communities. Though our study 

employed proxy measures of disturbance, previous studies investigating the 

effects of intense forms of disturbance on papyrus birds elsewhere in East Africa 

also suggested levels of tolerance to low-intensity disturbance (e.g. Maclean et 

al. 2006; Owino and Oyugi 2008). Policy guidelines in Uganda largely recognise 

that papyrus extraction is a traditional activity important for the livelihoods of local 

people (Wetlands Inspectorate Division 2001). Yet where conservation is 

concerned, the principles from the “fences and fines” approach still prevail 

(Barrett et al. 2001), advocating that use should be restricted or prohibited 

(Hartter & Ryan 2010). However, providing swamps remain large and some 

undisturbed wetland remains, low intensity subsistence use can continue without 

detriment to the species dependent on it. Wetland size is often not considered 

within existing legislation, yet the number of interactions between vegetation 

category and geometry in our study highlight the need to factor wetland size or 

shape into policy guidelines, with evidence for greater avian tolerance to swamp 

structure or disturbance in larger swamps. When swamps are smaller in size, 

simply maintaining broad types of wetland vegetation will not suffice. Pure 

papyrus, as opposed to papyrus mixed among broader wetland vegetation, is 

important for maintaining densities of these study species, who likely require the 

relatively taller stands of papyrus for feeding and nesting (Owino & Oyugi 2008). 

 

Taken together, our results support the annual rotational harvesting 

recommendation of Terer et al. (2012b) to maintain the biomass regeneration of 

papyrus following repeated destruction (Owino & Ryan 2007), ensure its 

availability for subsequent generations and enable sections of undisturbed 

papyrus to persist year-round for biodiversity. Papyrus has an exceptionally fast 



Chapter 3 

 

86 

 

regeneration time, with complete regrowth within approximately 6 months of 

disturbance (Muthuri, Jones & Imbamba 1989). In turn, the species dependent 

on this habitat need only tolerate a short period of time when sections of their 

habitat have been cleared. Governance in Uganda has taken a decentralized 

approach whereby wetland management is often controlled in a hierarchy from 

district to village level (Maclean, Boar & Lugo 2011) which, within our study area, 

allows swamp users to cooperate to ensure sufficient resources remain for others 

nearby (Maclean et al. 2003d) and permits regrowth of alternate harvested areas 

between years. Application of these self-regulation methods across East Africa 

could be key both for continued subsistence resource use and the persistence of 

wetland specialist birds (Shiferaw 2006; Maclean, Boar & Lugo 2011). 

 

Habitat loss is currently one of the main threats to papyrus in south-west Uganda 

(Maclean, Bird & Hassall 2014) leading to the removal of swamps, the reduced 

overall size of wetlands and an increased level of fragmentation across the 

landscape (Fahrig 2003; Owino & Ryan 2007). We have highlighted that densities 

of each species, with one exception, are higher within larger swamps and, in 

consequence, the drainage of larger swamps will have a disproportionately 

adverse effect on regional populations. Low intensity subsistence use of papyrus, 

on the other hand, results in temporary disturbance to the swamp as opposed to 

permanent removal following reclamation for crop production (Boar 2006). While 

swamp drainage for agriculture will continue to have a damaging effect on 

biodiversity, resource extraction is less problematic and can even be beneficial. 

Thus, subsistence harvesting can persist within larger swamps where species 

are tolerant of such disturbances, while use should be discouraged from smaller 

swamps where the impacts have the potential to be more detrimental. Previous 

work demonstrates that sustainable use of this kind can be more profitable for 

people, since the net present value of harvested papyrus and fish far exceeds 

that of crops obtained from drained swamp land (Maclean et al. 2003c). 

 

Implications for conservation 

 

Conservation in the tropics often views the needs of people as a trade-off with 

those of biodiversity. Although it is now generally accepted that conservation 
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should involve communities, with the Convention on Biological Diversity (CBD) 

encouraging this approach (Berkes 2007), restrictions on natural resource use 

still prevail. The United Nations (UN) recognises the need to achieve a balance 

between poverty reduction and ecosystem conservation (Senaratna Sellamuttu, 

de Silva & Nguyen-Khoa 2011), yet managing systems to meet demand without 

detriment to biodiversity conservation is a challenge (Senaratna Sellamuttu, de 

Silva & Nguyen-Khoa 2011) that has been the focus of little investigation. 

 

Using evidence from papyrus avifauna, we have shown that conservation in 

tropical wetlands need not require complete exclusion of human resource use. 

As with temperate forest systems, traditional human activities can mimic former 

natural forms of disturbance, creating open areas of habitat which may benefit 

biodiversity. Future work is needed to establish the applicability of this conclusion 

to other wetlands in East Africa and more widely. The productivity and regrowth 

of other wetland vegetation can be similar to that of papyrus (Muthuri, Jones & 

Imbamba 1989) and other macrophytes experience comparable forms of 

disturbance because of the socio-economic uses they provide (Terer, Triest & 

Muasya 2012). Hence, the possible effects of disturbance on both local 

livelihoods and conservation in other wetlands merits further research. 

 

The long history of human activity is well-documented across Africa (Hamilton, 

Taylor & Vogel 1986) and other tropical regions (e.g. Heckenberger et al. 2003). 

Given the potential to mimic decreasing natural disturbances, conservation in the 

tropics, particularly of other wetlands, will benefit from acknowledging that human 

activities can play a role in maintaining biodiversity. Rather than promoting 

alternative livelihoods as a means to promote biodiversity conservation (Brown 

2002), emphasis could be placed on understanding and documenting the past 

history of disturbance in tropical habitats and the impacts of low-intensity natural 

resource use on biodiversity, without the a priori assumption that all disturbance 

is detrimental. Due to the need to support rural livelihoods, “conservation through 

use” (Brown 2002) may in some instances prove to be of direct benefit to 

biodiversity, rather than a separate poverty-alleviation objective. Strong 

consideration for local livelihoods is also likely to lead to greater support for 

conservation (Spiteri & Nepalz 2006), helping to minimise conflict between 
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people and biodiversity conservation (Senaratna Sellamuttu, de Silva & Nguyen-

Khoa 2011). 

 

Conclusion 

 

This study highlights the potential to combine subsistence resource use and 

conservation management in tropical wetland systems. Using papyrus swamps 

as a case study, we demonstrate that specialist species can tolerate disturbance, 

possibly as a result of the historic disturbance of papyrus, even prior to 

inhabitation by humans. Striving to conserve wetlands and the biodiversity 

dependent on them does not necessarily involve the complete restriction of 

people who rely on the resources they provide. Instead, the disturbance that 

results from such activities may be of benefit to biodiversity and can be 

incorporated into the conservation management of tropical systems such as 

wetlands, creating a win–win situation for both wildlife and people.
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Chapter 4:  

Quantifying resistance and resilience to extinction for 

the conservation prioritisation of papyrus-endemic 

birds 

 

 

Abstract 

 

Limited conservation resources and ambitious biodiversity targets necessitate 

effective and efficient conservation planning. Traditional approaches to this often 

focus on reducing the extinction risk of species at designated sites. However, with 

increasing levels of habitat fragmentation from land use change, and pressures 

from climate change and overexploitation, the surrounding landscape context will 

likely play a key role in encouraging the persistence of species populations. In 

the context of metapopulation theory, we present a framework for quantifying the 

resistance and resilience of populations, depending on their probability of survival 

(resistance) or of reestablishment (resilience) following localized extinction 

events. We explore the application of this framework to guide the conservation of 

a group of bird species endemic to papyrus (Cyperus papyrus) swamps in East 

and Central Africa, which are threatened from habitat loss and degradation and 

currently receive little protection. Using occupancy data collected over two years 

from a network of wetlands in south-west Uganda, we determine the local and 

landscape factors that influence local extinction and colonization for each 

species, and map the predicted levels of turnover across the network, in order to 

draw inferences about the locations which contribute most to regional resistance 

and resilience for all species combined. Slight variation in the factors driving 

extinction and colonization led to varying spatial patterns of site-level resistance 

and resilience between species. Despite this, locations with the highest 

resistance and/or resilience overlapped for multiple species in several parts of 

the landscape, highlighting where efforts could be focused to enhance the 

capacity of species to adapt and respond to future change. Overall, we 

emphasize the ability of this landscape-scale perspective to aid decision-making 
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associated with conservation planning and prioritisation for multiple species 

residing in overlapping, fragmented landscapes.  

 

Introduction 

 

Global biodiversity is declining at an unprecedented rate (Newbold et al. 2015), 

yet the resources available to counteract this loss are finite and insufficient to 

ensure that ambitious global biodiversity targets are met (McCarthy et al. 2012). 

Establishing protected areas, defined by the Convention of Biological Diversity 

(CBD) as geographic locations that are “designated or regulated and managed 

to achieve specific conservation objectives", is one of the main approaches for 

the safeguarding of biodiversity. The importance of these sites is recognised 

globally, with signatories to the CBD aiming to safeguard 17% of terrestrial land 

and inland water by 2020 as part of the Aichi Biodiversity Targets (CBD 2011). 

Priority sites such as Important Bird and Biodiversity Areas (IBA’s) (Fishpool & 

Evans 2001) and Alliance for Zero Extinction Sites (Ricketts et al. 2005), have 

been developed to ensure efforts are directed towards the most important 

locations for biodiversity. The designation and management of such areas is 

focused around boosting populations at individual sites to secure survival 

(Geldmann et al. 2013). However, landscapes are becoming increasingly 

fragmented as a result of changing land use practice (Newbold et al. 2015), while 

pressures are growing from climate change (Urban 2015) and overexploitation 

(Millennium Ecosystem Asessment 2005; WWF 2014). As a result, species may 

not remain within individual designated sites indefinitely, and the surrounding 

landscape context will likely play a key role for the regional persistence of 

species. 

 

The theories of island biogeography and metapopulation dynamics have been 

influential for reserve design  and management (Diamond 1975; Hanski 1994a; 

Akcakaya, Mills & Doncaster 2007). The principles associated with these theories 

state that long-term persistence is dependent on balancing the processes of local 

extinction and colonization within sites across the landscape (Hanski 1998a). In 

general, small and/or low quality sites are at risk of extinction as a result of small 

populations, while poorly connected sites are unlikely to be recolonized should 
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extinction occur (MacArthur & Wilson 1967; Hanski 1999a; Thomas et al. 2001). 

These concepts have been pivotal for site-based design and more recently the 

establishment of landscape-scale conservation initiatives (see Donaldson, 

Wilson & Maclean 2017), though deciding which sites to invest in is complex 

(Hannah 2008) and remains the focus of much research (Whytock et al. 2017). 

Although it was originally suggested that various species respond similarly to the 

local and landscape effects driving the processes of extinction and colonization 

(Hanski 1994a), this remains untested in a variety of taxa (Whytock et al. 2017). 

Considering the rapid rates of habitat loss and degradation worldwide, combined 

with limited budgets to combat such threats, finding efficient ways to identify and 

protect the key sites that sustain multiple species is paramount.  

 

In essence, the factors influencing the importance of an individual site for the 

regional or landscape-scale conservation of a species can be partitioned into: a) 

the resistance of the local population to extinction (Lawler 2009; Lake 2013), and 

hence the chances that the population persists through unfavourable periods or 

is able to act as a source for the (re)colonization of other sites; and b) the 

resilience of the population to disturbance (Holling 1973; Lake 2013) (also termed 

“recovery” [Hodgson et al. 2015]), which in the context of metapopulation 

dynamics, can refer to the chances that a site will be recolonized following local 

extinction. Quantifying resistance and resilience from this perspective could 

prove a useful tool for conservation planning, ensuring that sites designated for 

conservation are not only robust to change, but have the capacity to bounce back 

from change should local extinction occur (Lawler 2009; Nimmo et al. 2015). To 

make use of this framework and ultimately identify areas in which to invest 

conservation effort, an understanding of the factors that lead to resistance and 

resilience is required. Thus far, the extent to which the factors driving these 

respective site attributes differ within and between species has seldom been 

recognised, yet would provide valuable insight into the habitat characteristics and 

configuration that best ensures the regional persistence of multiple species 

(Nimmo et al. 2015). 

 

We present a novel framework for determining landscape-scale resistance and 

resilience for a group of bird species endemic to papyrus (Cyperus papyrus) 

swamps in East and Central Africa. Papyrus is a highly fragmented habitat that 
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has been experiencing rapid loss and degradation over recent decades, primarily 

from drainage and encroachment for commercial and subsistence agriculture 

(Maclean, Wilson & Hassall 2011; van Dam et al. 2014). This has led to the 

decline in populations of specialist bird species (Maclean, Bird & Hassall 2014) 

and the inclusion of some of these species on the IUCN Red List (IUCN 2017b). 

Papyrus swamps are recognised as a regional conservation priority but as yet 

receive little protection (Fanshawe & Bennun 1991; Kipkemboi & van Dam 2016), 

and evidence for where protected areas should be designated is scarce. Current 

approaches toward the safeguarding of biodiversity within these swamps are 

based on conventional methods; sites hosting high numbers of birds, for example, 

are regarded as priority areas for conservation (Maclean, Wilson & Hassall 2011). 

However, this fails to recognise either the resistance of individual sites, their 

resilience to unfavourable environmental extremes or changes to management, 

and their sensitivity to the persistence of other sites within the larger network. 

Papyrus swamps are exposed to frequent disturbances (Maclean et al. 2003a, 

2006), seasonal drainage (Zsuffa et al. 2014), and will likely be subject to altered 

hydrology as the climate changes (Terer et al. 2012). As a result, safeguarding a 

network of sites, where occupied sites can act as source populations for those 

subject to periodic or stochastic extinction (Akcakaya, Mills & Doncaster 2007), 

will help ensure populations can bounce back from disturbances that lead to 

localized population declines or extinctions. With multiple species utilising the 

same landscape, an understanding of the main factors that influence the 

population establishment and survival of each species, and the implications of 

any notable differences between species, is required for the identification of 

important sites.  

 

Here, we use occupancy data for five species of papyrus-endemic passerines 

collected from a network of swamps in south-west Uganda, to determine the local 

and landscape effects that influence extinction and colonization for each species. 

We then map the predicted probabilities of survival and colonization for each 

patch across the network, and use this to draw inferences about the locations 

and landscapes which contribute most to regional resistance and resilience for 

each species, and whether there is spatial congruence in these among species. 

We conclude by compiling this information for all the study species, to establish 

the potential for investing in sites that are likely to ensure resistance and 
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resilience for specialist species in the network, and discuss the potential wider 

application of this framework for conservation planning and prioritisation.    

 

Methods 

Study system 

 

Papyrus swamps host a suite of endemic passerines with distributions largely 

focused around parts of East and Central Africa (Maclean, Bird & Hassall 2014). 

This study focused on 5 papyrus species: white-winged swamp-warbler 

(Bradypterus carpalis), greater swamp-warbler (Acrocephalus rufescens) (race 

foxi), papyrus canary (Crithagra koliensis), papyrus yellow warbler 

(Calamonastides gracilirostris) and Carruthers's cisticola (Cisticola carruthersi). 

All species are primarily restricted to papyrus, although papyrus yellow warbler 

and Carruthers’s cisticola are also known to inhabit wetland dominated by other 

vegetation types, namely Miscanthidium and Typha spp., when closely 

associated with papyrus (Vande weghe 1981). Previous work has shown that 

white-winged swamp-warbler, Carruthers’s cisticola and papyrus yellow warbler 

preferentially inhabit the wetland interior, while the remaining two species are 

more often associated with swamp edge (Britton 1978; Donaldson et al. 2016). 

The species are also likely to differ in dispersal propensity (see below and 

Chapter 5).  

 

Data collection 

 

Data was collected over 2 consecutive years (2014-2015) across a network of 

papyrus swamps surrounding Lake Bunyonyi, Uganda (01o17’S 29o55’E). High 

densities of papyrus are found in this area, growing along deep valley bottoms 

and along the lake edge. The presence of some of the papyrus-specialist birds 

has led to the designation of an IBA at the far north of the lake (BirdLife 

International 2017b), while others have been proposed (Maclean, Bird & Hassall 

2014). All patches of papyrus swamp within the network were located using 

topographical maps (Department of Land and Surveys, Entebbe), satellite 

imagery (Google Earth), local knowledge, and examination from motorboat and 

on foot. For the purpose of this study, following preliminary observations, a habitat 
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patch was defined as wetland approximately >20 m long and >5 m wide suitable 

for breeding birds, separated by >10 m from other patches. Swamps dominated 

by other wetland types (here termed “broader wetland vegetation”) were included 

in the study for the two species inhabiting this habitat type. Carruthers’s cisticola 

was also found in areas of wetland recently converted to agriculture in this area 

(Donaldson et al. 2016). Shoreline fringing patches were surveyed for the 

presence of greater swamp-warbler and papyrus canary, as preliminary 

observations over the 2 years confirmed that only these species were ever 

located within this patch type.  

 

Between 2014 and 2015, 232 papyrus swamps, 287 shoreline fringing papyrus 

patches and 177 broad wetland patches (including papyrus) were surveyed. All 

patches were visited at least once per year by the same observer during the main 

breeding season (May – August), and the presence or absence of each species 

recorded. Surveys were conducted between ~06.45 and ~13.45 when the birds 

are most vocal, using intermittent playback to aid detection. Time spent surveying 

varied with patch size, ranging from a minimum of 5 minutes for small, low quality 

shoreline fringing patches, to a maximum of 7 hours 15 minutes for large broad 

wetland patches (see Table B1 in Appendix B). All of the study species are highly 

vocal, and almost always readily detectable within short periods of visiting the site 

(Maclean et al. 2006). However, to provide more formal evidence of this, we 

examined relationships between likelihood of detection and survey effort 

(Appendix B), which highlight that the probability of incorrectly recording a 

species as absent when present during an average survey, was relatively small 

(Figure B1).  

 

On the day of survey, coordinates were recorded from the edge of swamps in the 

UTM projection system using a handheld GPS unit (Garmin GPSMAP 64, 

Lenexa, KS), and sketch maps of the swamp were drawn to scale using 

topographical maps. Four distinct vegetation categories were assigned based on 

vegetation height and composition (Table 4.1, and see Muthuri et al. 1989; 

Maclean et al. 2006; Terer et al. 2012; Donaldson et al. 2016) and the proportion 

of each estimated at each site. All maps were digitized in ArcGIS v 10.1 (RGDC 

2005 UTM 35S) and used to estimate patch size, circularity (defined using the 

formula 4πarea/perimeter2) and nearest edge distances between patches. 
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Table 4.1. Vegetation categories defined for papyrus swamp and broad wetland†. See Donaldson et al. (2016) for further details. 

Vegetation 

category 

Description Age Density Typical 

height 

Culm 

thickness 

Senescence? 

Disturbed 

wetland  

Cleared (harvested, burnt), 

immature and/or regrown 

papyrus†, agricultural wetland‡ 

0-1 year None 

(cleared)-high 

(regrown) 

Low (0-2m) 

to high (> 

2m) 

Thin None 

Moderately 

disturbed 

wetland  

Mature papyrus previously 

disturbed and fully regrown to 

maturity 

>1 year  

 

Moderate High (>2m) Thick Some 

Undisturbed 

wetland 

Mature papyrus, not likely to be 

disturbed, any disturbance over 

1.5 years ago 

>1.5 years  Low High (>2m) Thick Yes 

Mixed 

vegetation 

wetland  

Mixed wetland vegetation 

containing >40% papyrus†, poor 

growing conditions for papyrus 

>1 year Low Low (0-2m) Thin Some 

†Includes wetland dominated by other wetland types for two species also found in these areas (Carruthers’s cisticola and papyrus yellow warbler) 

(Maclean et al. 2006); ‡Applicable to Carruthers’s cisticola only 
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Analyses 

 

Two sets of analyses were undertaken to investigate the potential drivers of patch 

i) colonization (determining “resilience”) and ii) survival (as a proxy for 

“resistance”). All analyses were performed in R version 3.3.1 (R Core Team 2016) 

using generalized linear models with a binomial error distribution and logit link 

function. The response variable was the presence or absence of each species in 

year 2 (2015). Models of colonization were conducted on patches in which the 

species was absent (0) in year 1 (2014), and either present (1) or absent (0) from 

those patches in year 2. Models of extinction were based on patches where the 

species was present (1) in year 1, and either absent (0) or present (1) in year 2. 

 

Explanatory variables in both sets of analyses involved local and landscape 

factors from data collected in 2015. Relative patch size was similar between years 

(R2=1.0; Table C1) and as the relative proportion of disturbed habitat per patch 

differed over the study period (papyrus: R2=0.3, broad wetland: R2=0.2; Table 

C1), using habitat data collected in year 2 enabled us to most accurately capture 

the change in occupancy that occurred over the one year examined. Local 

variables analysed were patch size (ha), patch circularity and the proportion of 3 

distinct vegetation categories: disturbed wetland, undisturbed wetland, and mixed 

wetland vegetation (Table 4.1). To avoid over-fitting models, which would result 

if the sum of all categories is always one, moderately disturbed wetland was 

excluded from the analysis (see also Donaldson et al. 2016). Landscape 

variables comprised a measure of the functional connectivity of patch i as 

described by (Hanski 1994b): 

 

𝑆𝑖(𝑡) =  ∑ 𝑝𝑗𝑒𝑥𝑝 (−𝛼𝑑𝑖𝑗)𝐴𝑗
𝑏 

[1] 

where 𝑝𝑗 is the occupancy of patch j in year 1 (t), α is a parameter that defines 

the dispersal kernel, dij is the nearest edge distance of the focal patch i to other 

patches j, Aj is the carrying capacity of patch j, usually approximated by area (but 

see below) and b is a scaling function for patch emigration (i≠j). The parameter α 

was estimated for each species using the Markov Chain Monte Carlo technique 
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available in SPOMSIM (Moilanen 2004) (see Chapter 5 for details): greater 

swamp-warbler = 0.204, papyrus canary = 0.190, Carruthers’s cisticola = 0.070, 

white-winged swamp-warbler = 0.021, papyrus yellow warbler = 0.001. In 

metapopulation models, Aj is typically defined as patch area, as a proxy for 

population size (Ozgul et al. 2006). However, as shown in Donaldson et al. 

(2016), the density of birds at each site varies depending on a variety of other 

factors in addition to patch size. Thus, the density of all species was predicted at 

each site using the model averaged coefficients obtained in Donaldson et al. 

(2016) from point count survey data (see Appendix A), and weighted by 

multiplying by patch size as an estimate of the relative population size for each 

species within each patch (Aj). The parameter b was set to 1, assuming that 

emigration is proportional to abundance. 

 

Exploratory analysis was conducted to determine the importance of intermediate 

levels of each vegetation type. Models containing each individual vegetation 

category (disturbed wetland, undisturbed papyrus and mixed vegetation) as 

linear predictors were tested against models that also contained each predictor 

as a squared term. The squared terms were subsequently retained in the global 

model when the Akaike Information Criterion (AIC) value obtained from the model 

including this term was lower than without (Burnham & Anderson 2002). The 

MuMIN package in R (Barton 2014) was used to create all possible combinations 

of the global model, including any relevant squared terms for the survival and 

colonization datasets (Table C2). Models were ranked by AICc (AIC adjusted for 

small sample size) and a set of models within ΔAICc ≤ 2 of the top model created 

for each species (Burnham & Anderson 2002). Model averaging was performed 

across all models within the top ranked set to obtain parameter estimates, and 

the relative importance (RI) of each term within the top set was recorded 

(Burnham & Anderson 2002; Johnson & Omland 2004). Full model averaged 

coefficients were used to predict the probability of colonization and survival of 

each patch across the network, based on patch data collected from the 2015 

survey. Semi-variograms of the residuals from the predicted vs observed values 

for each dataset were created using the geoR package in R (Ribeiro Jr & Diggle 

2001), confirming that there was no evidence of spatial structure in our models 

(Figure C1). 
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In order to identify if each patch was most prone to experiencing colonization, 

extinction, or both, we categorized all patches based on their predicted levels of 

colonization and extinction over a period of one year. The possible space within 

the colonization/survival axes was divided into four quadrants for illustrative 

purposes (Figure 4.1).  Patches with a higher probability of colonization can be 

classed as more “resilient” than those with a lower chance of colonization, while 

patches with a relatively high probability of survival represent sites with a higher 

level of “resistance” than those with a high chance of local extinction (Figure 4.1). 

At present, patches with a relatively high chance of both survival (if occupied) and 

recolonization (if unoccupied), can be considered “supported” by metapopulation 

dynamics in these systems, and both resistant and resilient to extinction. 

Conversely, patches with a low chance of both survival (if occupied) and 

recolonization (if unoccupied), can be considered “marginal” (Lawson et al. 2012) 

(Figure 4.1). All patches and their corresponding status were mapped across the 

network to recognise areas of importance for regional persistence.  

 

Finally, the capacity to conserve multiple species was determined using 

overlapping maps of resistance and resilience for each species. The number of 

species within each of the predicted categories for a given patch was mapped 

across the network of papyrus patches. Since multiple papyrus patches were 

often located within larger broad wetland sites, the predictions for the two broad 

wetland species (papyrus yellow warbler and Carruthers’s cisticola) for a given 

wetland were allocated to those papyrus patches within that particular swamp, in 

order for the networks for all species to be directly comparable. Similarly, 

shoreline fringing patches were marked as “marginal” for the 3 species that did 

not utilise these patches, on the overlapping plots only.  



Chapter 4 

 

99 

 

 

 

Figure 4.1. Categories based on predicted levels of colonization and extinction 

using 0.5 probability. Categories are shown in bold and descriptions provided in 

italics.  

 

Results  

Survey data 

 

The number of colonized patches ranged from 3 for white-winged swamp-warbler 

to 69 for greater swamp-warbler, and the number of local extinction events 

ranged from 3 for papyrus yellow warbler and 4 for Carruthers’s cisticola, to 63 

for greater swamp-warbler (Table 4.2; Figure C2).  
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Table 4.2. Presence-absence survey data for suitable patches for each species 

from 2014–2015: greater swamp-warbler (GSW), papyrus canary (PC), white-

winged swamp-warbler (WWW), Carruthers’s cisticola (CC), papyrus yellow 

warbler (PYW). 

Species Patches 

surveyed 

Colonized  Survived   Extinct Vacant 

GSW 519* 69 206 63 181 

PC 519* 44 40 16 419 

WWW 232 3 41 12 176 

CC 160†‡ 8 31 4 117 

PYW 177† 10 17 3 147 

*Includes shoreline fringing patches; †Includes broad wetland vegetation; ‡ Includes agricultural 

wetland 

 

Patch survival and colonization for papyrus endemic birds 

 

The number of models within the top model set (ΔAICc ≤ 2) for the colonization 

analysis was 13 for greater swamp-warbler, 5 for white-winged swamp-warbler, 

9 for papyrus canary, 3 for Carruthers’s cisticola and 5 for papyrus yellow warbler. 

All species were more likely to colonize large swamps (RI = 1; see Table C3 for 

all output for colonization analyses described), though patch size was not classed 

as significant1 for white-winged swamp-warbler (RI=0.34). Probability of 

colonization was higher within more connected patches for greater swamp-

warbler (RI=1) and Carruthers’s cisticola (RI=1), but this term was not found in 

the top model set for white-winged swamp-warbler or papyrus yellow warbler, 

and did not significantly influence colonization for papyrus canary (RI=0.28). More 

circular patches were more likely to be colonized by Carruthers’s cisticola (RI=1), 

and white-winged swamp-warbler (RI=1), but not by papyrus canary (RI=0.71), 

greater swamp-warbler (RI=0.15) or papyrus yellow warbler (RI=0.12). For all 

species studied, patch colonization was not significantly influenced by the 

proportion of disturbed or undisturbed wetland. Both variables were found in a 

small number of models within the top set, but did not have high relative 

importance, with the exception of papyrus canary (undisturbed vegetation; RI=1), 

                                            
1 95% confidence intervals do not cross 0. 
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and were not found to be significant after averaging the top model set (Table C3). 

The probability of colonization was positively affected by the proportion of mixed 

papyrus vegetation for white-winged swamp-warbler only (RI=1). 

 

The top set for the survival analysis included 10 models for greater swamp-

warbler, 4 for white-winged swamp-warbler and papyrus yellow warbler, and 2 for 

papyrus canary and Carruthers’s cisticola. All species were more likely to survive 

in large patches, although this was not significant for Carruthers’s cisticola (RI=1) 

or papyrus yellow warbler (RI=0.87; see Table C4 for all output for survival 

analyses described). Population survival was also more likely in less circular 

patches for greater swamp-warbler (RI=1), and in more circular patches for white-

winged swamp-warbler (RI=1). As with colonization, the level of disturbance 

within the patch did not significantly impact the chance of survival for any of the 

species. Disturbed wetland was only in the top set for greater swamp-warbler (RI 

0.42) and papyrus yellow warbler (RI = 0.28), while undisturbed wetland was in 

the top model set for greater swamp-warbler (RI = 0.93), white-winged swamp-

warbler (RI = 0.19) and papyrus yellow warbler (RI = 0.3). The proportion of mixed 

papyrus within a patch negatively influenced the chance of survival for 3 of the 

species, shown to be marginally significant for papyrus canary (RI = 1), but not 

significant for greater swamp-warbler (RI = 1) or white-winged swamp-warbler (RI 

= 0.17). Finally, the probability of survival within a patch was not influenced by 

connectivity for any of the species (greater swamp-warbler: RI = 0.26; papyrus 

canary: RI=0.28; white-winged swamp-warbler: RI=0.22; Carruthers’s cisticola: 

RI = 0.55). 

 

Predicted turnover across networks 

 

The probability of survival and colonization for each species within each patch 

was predicted across the swamp network, and the position of each patch in the 

space defined by the survival and colonization probability axes was recorded 

(Figure 4.2a-e). The proportion of patches in the network that exceeded 0.5 for 

survival and colonization, ranged from 39.5% of patches for greater swamp-

warbler (Figure 4.2a), to just 0.4% for white-winged swamp-warbler (Figure 4.2c). 

These were distributed throughout the network for all species, though strongholds 
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were apparent in the far north and south of the lake for greater swamp-warbler, 

while the only “supported” patch for white-winged swamp-warbler was located in 

the centre. In contrast, all species were predicted to have a very high number of 

“marginal” patches which had a limited probability of colonization and extinction, 

thus were relatively less resistant and resilient. This ranged from 31.8% of the 

network for greater swamp-warbler (Figure 4.2a), to 76.8% of the network for 

papyrus yellow warbler (Figure 4.2d). These were well spread throughout the 

network, most notably along the central edges of the lake.  

 

Comparing the two limited categories, considerably more patches were limited 

primarily by colonization (low resilience) than survival (low resistance). No 

patches for white-winged swamp-warbler (Figure 4.2c) or papyrus yellow warbler 

(Figure 4.2d) were limited by survival, while just 0.6% of patches for Carruthers’s 

cisticola (Figure 4.2e), 1.2% for papyrus canary (Figure 4.2b) and 1.7% for 

greater swamp-warbler (Figure 4.2a) were limited by survival alone. Meanwhile, 

the percentage of patches limited by colonization ranged from 2.5% for 

Carruthers’s cisticola (Figure 4.2e) to 40.8% for papyrus canary (Figure 4.2b). 

Survival limited patches were often located close to supported patches for all 

species. Colonization limited patches, on the other hand, appeared to be focused 

around the centre of the network for greater swamp-warbler (Figure 4.2a) and 

papyrus canary (Figure 4.2b), clustered towards the north and south of the lake 

for papyrus yellow warbler (Figure 4.2d), and spread throughout the network for 

white-winged swamp-warbler (Figure 4.2c). 



Chapter 4 

 

103 

 

 

Resilient 

Probability of survival 

P
ro

b
a

b
ili

ty
 o

f 
c
o
lo

n
iz

a
ti
o

n
 

Resistant 

Resistant 

Resilient 

Probability of survival 

P
ro

b
a

b
ili

ty
 o

f 
c
o
lo

n
iz

a
ti
o

n
 

a) Greater swamp-warbler 

b) Papyrus canary 



Chapter 4 

 

104 

 

 

Resistant 

Resilient 

Probability of survival 

P
ro

b
a

b
ili

ty
 o

f 
c
o
lo

n
iz

a
ti
o

n
 

Resistant 

Resilient 

Probability of survival 

P
ro

b
a

b
ili

ty
 o

f 
c
o
lo

n
iz

a
ti
o

n
 

d) Papyrus yellow warbler 
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c) White-winged swamp-warbler 
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Figure 4.2. Maps of predicted probabilities of colonization to and survival in each 

patch for the five study species (a-e) at Lake Bunyonyi, Uganda. Points show the 

centre coordinates of each patch, coloured by the strength of relationship 

between survival and colonization (blue = high probability of colonization, low 

survival; red = high probability of survival, low colonization; purple = high 

probability of colonization and survival; black = low probability of colonization and 

survival). Inset: predicted categories for each patch (% of suitable patches for 

that species in a given category, see Figure 4.1 for details). Suitable wetland is 

shown in grey. Occupancy data over 2014-2015 is displayed in Figure C2.    

 

Resistant 

Resilient 

Probability of survival 

P
ro

b
a

b
ili

ty
 o

f 
c
o
lo

n
iz

a
ti
o

n
 

e) Carruthers’s cisticola 
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Overlapping priorities 

 

Mapping the predicted categories for all species together (Figure 4.3a-f) 

illustrated that the most overlap between all five species existed between patches 

with a high probability of survival (including high and low probabilities of 

colonization) (Figure 4.3c), and patches with <0.5 probability of both colonization 

and survival (Figure 4.3b). Survival limited patches, on the other hand, 

intersected the least (Figure 4.3f).   

 

9.1% of patches had a high probability of survival for all five species (Figure 4.3c), 

while patches with a high probability of colonization intersected for up to 4 species 

in 6.2% of the network (Figure 4.3e). These were situated along the length of the 

lake, with some clusters around the larger swamps at the north and south of the 

study area; corresponding closely to those sites which had a high probability of 

both colonization and survival for 4 of the study species (13.5% of the network) 

(Figure 4.3a). Patches limited by colonization only overlapped for up to 3 species 

(Figure 4.3d), with 0.6% patches predicted for 3 species and 16% for 2 species. 

Survival limited patches did not coincide for any of the study species, instead 

displaying that 2.9% of the patches within the network at Lake Bunyonyi were 

limited by survival for one species only (Figure 4.3f). 9.6% of patches had a low 

probability of colonization and survival for all five species (Figure 4.3b). These 

patches were located around the edge of the lake, consisting primarily of the 

fringing shoreline patches.            
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Figure 4.3. Maps displaying the predicted categories and level of overlap for all 

species across the network at Lake Bunyonyi, Uganda, based on 0.5 probability 

(see Methods): (a) supported (high survival and colonization), (b) marginal (low 

survival and colonization), (c) high survival (with high and low colonization), (d) 
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colonization limited (high survival, low colonization), (e) high colonization (with 

high and low survival), (f) survival limited (high colonization, low survival). Key: 0 

= no species within corresponding category, 1+ = number of species within 

corresponding predicted category for specified patch. See Figure 4.1 for 

explanation of categories.  

 

Discussion 

  

The results of this study demonstrate that, despite variation in the local and 

landscape characteristics driving the processes of population survival and 

reestablishment between species sharing the same habitat type, several parts of 

the landscape are important for the resistance and resilience of all species. This 

is a promising result for the conservation prioritisation of papyrus-endemic birds; 

highlighting where efforts should be focused to assist with securing persistence 

across species, with consideration of the need to ensure species are able to 

adapt and respond to future change.   

 

Regional persistence of multiple species 

 

Enhancing persistence is one of the key objectives associated with the 

establishment of protected sites (Margules & Pressey 2000). To achieve this goal, 

conservation planning often focuses on ensuring population survival, yet 

understanding the processes that affect colonization is also important for the 

recovery of populations faced with extinction (Davies et al. 2005). Within 

fragmented landscapes, the persistence of a metapopulation is dependent on the 

balance of rates of extinction and colonization (Hanski & Gilpin 1991). 

Understanding the drivers of these processes is a significant step in conservation 

planning (Franzén & Nilsson 2010; Robles & Ciudad 2012), enabling the 

identification of the parts of the landscape which host particular species (Hodgson 

et al. 2011b). However, the importance of different local and landscape 

characteristics remain unknown for numerous species (Whytock et al. 2017), 

leading to uncertainty regarding the variation that exists for multiple species 

occupying the landscape (Hodgson et al. 2009b). Should different approaches 

give rise to drastically different outcomes (Brooks et al. 2006), for example, 
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developing conservation strategies that are suitable for all in need would be 

considerably more challenging.   

  

The response of population survival and establishment to habitat and landscape 

characteristics does vary among specialist species of passerines residing in a 

network of papyrus swamps. Although within the same guild, variation exists 

between the ecological characteristics of these species, such as habitat 

preferences (Vande weghe 1981) and capacity for dispersal. Local extinction is 

most closely linked with local variables (Lawson et al. 2012), particularly patch 

size and quality, because of their influence on carrying capacities and the size of 

source populations (Hanski 1999a; Thomas et al. 2001). In line with this, all 

species were less likely to become extinct in larger swamps, while aspects 

associated with habitat quality for these species (Chapter 3; Donaldson et al. 

2016) were often found to be predictors for survival. White-winged swamp-

warbler, for example, had a lower chance of extinction in more circular swamps, 

while greater swamp-warbler, an edge species (Britton 1978; Donaldson et al. 

2016), had a higher probability of survival in swamps with a higher edge: area 

ratio. Further, the three species most closely associated with papyrus were less 

likely to occur in mixed papyrus (Donaldson et al. 2016), whereas the likelihood 

of occurrence of the broader wetland species was not impacted by this habitat 

type.  

 

In contrast to survival, colonization is often linked with landscape variables, 

namely connectivity (Hanski et al. 1996), driven by the distance between patches, 

matrix habitat, dispersal ability and the number of potential dispersers (Dorp & 

Opdam 1987). Previous work by Maclean et al. (2006) found no correlation 

between patch occupancy and proximity to neighbouring swamps, though the 

range of distances examined were far greater than in the present study, and it is 

likely that the majority of isolated swamps lay beyond the dispersal distance of 

the species studied. Connectivity influenced colonization for those with relatively 

lower levels of dispersal (Carruthers’s cisticola and greater swamp-warbler; see 

Chapter 5), while in species with higher dispersal capabilities, or which are known 

to feed outside of swamps (e.g. papyrus canary) (Britton 1971), colonization 

probability was largely unaffected by levels of connectivity at the scale of this 

study. Enhancing connectivity is often assumed to be a fundamental element of 
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conservation planning, without any prior investigation (Hodgson et al. 2009b). 

However, our results caution against simply focusing on connectivity for the 

benefit of all species.  Over recent years, the role of area and quality in driving 

the process of colonization has been recognised (Franzén & Nilsson 2010; 

Glorvigen, Andreassen & Ims 2013; Bohenek et al. 2017). Large patches are 

considered more likely to be detected by the disperser (Vos, Ter Braak & 

Nieuwenhuizen 2000), and can be actively selected by active compared to 

passive dispersers (Glorvigen, Andreassen & Ims 2013), which could explain why 

the majority of species here were more likely to colonize larger swamps. Patch 

quality is also a significant influencer of habitat selection (Robles & Ciudad 2012; 

Glorvigen, Andreassen & Ims 2013), hence why many of the habitat factors 

known to influence quality (Donaldson et al. 2016) were also in the top set for 

colonization in this study.  

 

Resistance vs resilience across a network 

 

Despite developments from metapopulation theory, there is still a tendency in 

conservation planning to focus efforts on individual sites. Recognition of multiple 

sites is rarely explicitly considered (Gaston et al. 2008), yet allowing the 

landscape to function as a network is crucial in order to support biodiversity over 

the long-term (Lawton et al. 2010). In modern landscapes, where habitat 

fragmentation is the norm (Tilman et al. 2017), ensuring that populations are both 

resistant and resilient to extinction is axiomatic (Lawler 2009; Hodgson, 

McDonald & Hosken 2015). By recognising the mechanisms that drive these 

aspects, planners can identify the most important parts of the landscape (Nimmo 

et al. 2015), and note what is likely to be restricting the ability of a species to 

persist now, or how species could respond to changing land use in the future 

(Opdam et al. 1995).  

 

Applying this resistance-resilience framework to papyrus-endemic birds, we 

found that the highest proportion of patches both resistant and resilient to change 

were predicted in species for which colonization was influenced by connectivity 

as well as patch size. In contrast, most of the sites within the network were limited 

in their ability to be colonized by all species. Specialist species are often assumed 
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to possess poor abilities to colonize sites, compared to more generalist species 

(see references in Davies et al. 2005). Indeed, the species most closely 

associated with papyrus had more colonization-limited patches within their 

network than the broad wetland species, which generally had more habitat 

available to colonize. In turn, any future changes to the habitat of these species 

that cause extinction within parts of the network, such as seasonal drainage or 

wide-scale habitat disturbance (Maclean et al. 2003a; Zsuffa et al. 2014), could 

be catastrophic for their regional populations. With no flow of individuals from 

outside these sites, these patches effectively act as sink populations (Pulliam 

1988) which may fail to exist over the long-term (Hansen & Rotella 2002). Since 

most species rely on large patches for colonization, as landscape fragmentation 

and loss continues to increase (Tilman et al. 2017), levels of resilience will 

continue to decline, while the need for it will simultaneously increase (Hanski & 

Gilpin 1991; Whytock et al. 2017). This is especially a concern for white-winged 

swamp-warbler, which had virtually no patches that would likely be colonized 

following an extinction event. The turnover data available for this species is 

relatively scarce; either the result of an unusually poor year for this species (and 

thus an underestimation of true turnover rates), or because this species disperses 

across the landscape only very occasionally. The scale of habitat loss may 

already have led to levels of habitat fragmentation that this species is struggling 

to deal with in this landscape (e.g. Maclean, Wilson & Hassall 2011), with the 

potential for “extinction debt”, where further modifications of occupied sites may 

lead to eventual extinction in the future (Kuussaari et al. 2009).  

  

Prioritising conservation effort 

 

Strategic conservation planning is vital to ensure that the limited time and money 

available for conservation is channelled most effectively (Brooks et al. 2006). 

Numerous methods have been developed to assist with this process (Margules 

& Pressey 2000), but the uncertainty surrounding where to invest remains (see 

references in Whytock et al. 2017). Alongside guaranteeing the persistence of 

individual species, protected sites also strive to be representative of biodiversity 

as a whole (Margules & Pressey 2000). Thus, not only are we faced with the 

challenge of ensuring sites are resistant and resilient to change, but we must 
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apply this approach to multiple species residing in the same landscape (Darwall 

& Vié 2005). Further, it must be recognised that many landscapes around the 

world struggle to implement the strict management procedures that are often part 

of protected area guidelines in more developed regions. Wetlands in East Africa 

suffer from lack of cohesion in policy and the failure of parties to adhere to any 

guidance in place, while management is often determined by the actions of local 

communities (Kipkemboi & van Dam 2016). Therefore, placing priority on limiting 

habitat loss (van Dam et al. 2014) and ensuring that important sites for 

biodiversity are offered at least some protection, is a more achievable and 

realistic goal. 

 

Mapping the probability of survival and colonization for multiple papyrus 

passerines at Lake Bunyonyi highlights that, as it stands, a number of swamps 

are relatively resistant for all species. Although high levels of resistance across 

the landscape for all species is reassuring, fewer sites coincidently offered 

resilience for all five species, due largely to the limited colonization ability of white-

winged swamp-warbler. In practice, this variation emphasizes that conserving 

networks with multi-species resilience is a key challenge for conservation 

management. Despite this, most of the larger swamps surrounding the lake are 

both resistant and resilient for the remaining study species, indicating where 

conservation efforts could be focused. Sites designated for conservation 

purposes rarely assess if they are achieving their desired goals of species 

persistence and representativeness (Margules & Pressey 2000). In this case, 

Nyamuriro swamp IBA at the north of the lake does appear to capture a series of 

the most important sites for the papyrus endemic birds. Not only does it secure 

the intended high levels of survival of those populations residing there, but due 

to the inclusion of some small fragments within the designated IBA boundaries, 

the resilience of this site overall is high. Further proposals for an IBA have been 

suggested for Mugandu/Mukahungye swamp at the far south-west of the lake. 

Based on our framework, this designation is justified to assist with the overall 

persistence of papyrus-endemic birds. Similarly, there are numerous sites for 

which survival and establishment are low for all the study species, and therefore 

are unlikely to be resistant nor resilient. It is impractical to conserve all swamps 

for biodiversity in this region (Maclean, Bird & Hassall 2014), and given the limited 

resources and challenges of enforcing existing wetland policy (Kipkemboi & van 



Chapter 4 

 

113 
 

Dam 2016), such sites could potentially be regarded as lower priority for 

conservation (Lawson et al. 2012). However, this would necessitate observation 

of the consequences for the species in the network as a whole; examining the 

role of these neglected patches in gene flow between populations (Gibbs 2001), 

for example, as well as ensuring that the remaining sites are adequately managed 

and monitored, and maintain their levels of resilience.  

 

The need to manage for and enhance resilience for the future persistence of 

systems is increasingly recognised (Hodgson, McDonald & Hosken 2015), 

though exactly how to implement and measure this remains a challenge (Nimmo 

et al. 2015). Examining the limitations of a site is useful in order to highlight how 

we could enhance current restrictions faced by species (Gaston et al. 2008). In 

comparison to sites with high survival and/or colonization probability, patches 

limited by each of these processes displays very little overlap between species. 

As a result, focusing efforts on improving either of these aspects is unlikely to 

yield results for all species collectively, and resources would have to be spread 

thinly to reverse the limitations for all. Among these species, the factors 

influencing both survival and colonization are reasonably consistent, such as the 

emphasis on patch size and shape. Thus, aiming to enhance either of these 

aspects is likely to improve the ability of these patches to survive and/or be 

colonized should extinction occur. It is commonly proposed that areas with the 

highest projected turnover and lowest likelihood of persistence should be 

targeted (Hole et al. 2009; Lawson et al. 2012). However, in systems where the 

drivers of these processes diverge slightly, deciding if it is best to improve any 

limitations (Etienne & Heesterbeek 2001; Robles & Ciudad 2012), or maintain the 

current status (Hodgson et al. 2009b), will largely depend on the amount of 

resources available for investment (Hodgson et al. 2011b), and the scope for 

improvement (Margules & Pressey 2000). For example, restoration is commonly 

proposed as a means of enhancing these processes (Bulman et al. 2007) and 

could assist with improving the conservation status of threatened species by 2020 

(CBD 2011), though the extent to which the impacts of creating habitat relate to 

the loss of habitat has recently been questioned (Whytock et al. 2017). Restoring 

wetlands has been suggested as a mechanism to reverse the devastation caused 

to papyrus swamps over the past few decades (Morrison et al. 2012; Kiwango et 

al. 2013); enabling the continued provision of ecosystem services to local 
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communities (van Dam et al. 2011), as well as benefiting the wildlife reliant on it. 

However, much of the drained land has been converted to cropland (Carswell 

2002; Terer et al. 2012) and reversing this will likely impose high social and 

economic costs for those depending on these areas for their livelihoods. Global 

human population growth is expected to be highest across parts of sub-Saharan 

Africa (see references in Tilman et al 2017), so maintaining food security is the 

prime objective for the rural poor (Shiferaw 2006).  

 

Conclusion 

 

This chapter shows how an understanding of the mechanisms that lead to the 

survival and establishment of populations can be used to offer insight into the 

levels of resistance and resilience for multiple species residing across 

fragmented landscapes. Although slight differences in the response to various 

habitat characteristics existed between species, mapping the predicted dynamics 

of these species does show that there are multiple sites likely to be resistant and 

resilient to extinction for all species combined. Incorporating this landscape-scale 

resistance-resilience framework into conservation planning can help inform the 

allocation of valuable resources and identify the extent to which current protected 

sites are effective, with consideration of the growing need for biodiversity to 

respond and recover to future change.  
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Chapter 5:  

Designing effective protected area networks for 

multiple species: a case study using endemic wetland 

birds in East Africa 

 

 

Abstract 

 

For networks of protected areas to be effective at maintaining metapopulation 

persistence, theory emphasizes that sites should be of sufficient quality, quantity 

and size, and arranged in a well-connected network. But with limited conservation 

resources and a landscape increasingly dominated by land use change, 

achieving all of these is impractical, so that decisions on which strategies to adopt 

need to be made. Individual species are often used as surrogates for other 

species, assuming the community as a whole will benefit. However, the extent to 

which the dynamics of multiple species residing in protected area networks differ, 

and the implications of this for network design, is rarely considered, and remains 

to be explicitly tested for species with overlapping habitat requirements. We 

explore a range of conservation planning approaches to design networks for 

multiple species, using a suite of passerines endemic to papyrus swamps in East 

and Central Africa. We parameterise metapopulation models for 5 papyrus-

specialist species that reside in an area of south-west Uganda and possess 

subtle ecological differences including dispersal ability, habitat preference and 

population carrying capacity. The optimal approach in terms of prioritising size, 

number, quality or connectivity of habitat to achieve metapopulation persistence 

differed depending on the metapopulation structure and ecological characteristics 

of the species in question. The rank order of strategies also varied with the overall 

wetland area available, and depended on the desired threshold for persistence. 

However, for the majority of species, an approach based on prioritising habitat 

quality (local population density) achieved the highest levels of persistence and 

overall population size for equivalent land area conserved. In contrast, 

connectivity showed greater overlap among species than habitat quality, thus the 

most effective strategy to conserve multiple species in the same network 
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prioritised habitat connectivity. Overall this study cautions against using the 

requirements of single species for the conservation of multiple species; stressing 

the need to consider the individual characteristics of species utilising the same 

habitat networks in conservation planning, but demonstrates the potential utility 

of prioritising protected sites based on the spatial connectivity of habitat patches, 

if aiming to conserve multiple species with differing or uncertain habitat 

requirements.    

 

Introduction 

 

Biodiversity is declining rapidly, with climate change, habitat loss and degradation 

amongst the key drivers of these declines (Butchart et al. 2010). Protected areas 

are often regarded as the backbone of conservation (Nagendra et al. 2013; 

Kukkala et al. 2016) and form part of the Aichi Biodiversity Targets to improve the 

status of biodiversity by 2020 (CBD 2011). Conservationists also identify priority 

sites for investment, such as Biodiversity Hotspots (Myers et al. 2000) and Key 

Biodiversity Areas (Eken et al. 2004). Despite the development of specified 

criteria for the designation of such sites (e.g. Fishpool and Evans 2001; Dudley 

2008), the spatial configuration of habitats is not explicitly considered. 

Nonetheless, two prominent theories in spatial ecology, those of island 

biogeography and metapopulation dynamics, both indicate that the occurrence 

and abundance of species is related to the size and isolation of habitat patches 

(MacArthur & Wilson 1967; Hanski 1999a).  

 

The principles proposed by these theories have been pivotal for the development 

of landscape-scale conservation over recent decades (Donaldson, Wilson & 

Maclean 2017), and the increasing recognition of the importance for biodiversity 

conservation of networks of protected areas (Butchart et al. 2012). 

Metapopulation theory predicts that colonization probability increases in more 

connected patches, while local extinction rates decrease in larger, higher quality 

patches (Hanski 1991, 1994b; Moilanen & Hanski 1998). Thus, protected area 

networks are recommended to consist of large, high quality, well connected sites 

(Lawton et al. 2010) to ensure long-term persistence. But with limited resources 

for conservation (McCarthy et al. 2012) and a landscape increasingly dominated 
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by changing land use practice (Foley et al. 2005), achieving all of these is often 

impractical, and trade-offs may need to be made between site size, quality and 

connectivity (Donaldson, Wilson & Maclean 2017).  

 

Metapopulation models have been fundamental for guiding conservation in 

fragmented landscapes (Wahlberg, Moilanen & Hanski 1996; Hanski 1999b; 

Hoyle & James 2005). Key to their application is the ability to highlight the most 

beneficial management strategy for the long-term survival of a species (Hanski 

et al. 1996; Gutierrez 2005; Akcakaya, Mills & Doncaster 2007), including the 

impact of enhancing the size, number or quality of patches for persistence 

(Hanski & Thomas 1994). However, empirical tests of a metapopulation approach 

to landscape-scale conservation often consider the effects on single species 

alone (Etienne 2004) rather than the influence of a given strategy on multiple 

species. Yet protected area networks strive to represent all species (CBD 2011), 

thus chosen strategies should not negatively impact co-occurring species 

(Gutiérrez et al. 2001) and instead balance the needs for all (Lawson et al. 2012). 

Importantly, species often possess different habitat requirements (Howard et al. 

2000) and ecological characteristics, such as dispersal (Thomas 2000). As a 

result, dynamic responses to habitat availability differ between species 

(Glorvigen, Andreassen & Ims 2013), which must be carefully accounted for in 

conservation planning. 

 

Using a suite of specialist passerines endemic to papyrus (Cyperus papyrus) 

swamps in East and Central Africa, we assess the effectiveness of five strategies 

for prioritising areas for conservation: protecting (1) large patches, (2) several 

small patches, (3) high quality patches, (4) well-connected patches, and (5) the 

single largest patch. Papyrus is a naturally fragmented habitat because of its 

limitation to wetland areas, and sites have become increasingly isolated as a 

result of drainage and the encroachment of intensive land-use (Hartter & Ryan 

2010; Maclean, Wilson & Hassall 2011). Birds restricted to this habitat are in 

decline (Maclean, Bird & Hassall 2014), but the resources available for 

conservation in sub-Saharan Africa are severely limited (Howard et al. 2000), 

necessitating clear guidance to ensure efficient use. Previous work highlights the 

importance of habitat networks for sustaining populations of papyrus-endemic 

birds, at least over the short-term (see Chapter 4), and the need for a 



Chapter 5 

 

118 
 

consideration of metapopulation dynamics (Chapter 4; Maclean, Wilson & 

Hassall 2011). But although these species have overlapping distributions, they 

possess different specific habitat requirements (Donaldson et al. 2016) and life 

history traits (Vande weghe 1981). It is not yet known how conservation 

recommendations differ when the needs for all species are collectively 

considered, which could have important implications for how resources in the 

region are utilised. In light of this, we parameterise metapopulation models for a 

suite of papyrus-endemic passerines using occupancy data collected from a 

network of swamps in south-west Uganda. We perform a series of simulations to 

estimate how each species responds to prioritizing networks based on size, 

quality and connectivity, and determine aspects of their ecology which could be 

driving their response patterns, highlighting key principles to be considered. 

Outcomes are compared between species to demonstrate the suitability of a 

single-species metapopulation method for the conservation of multiple species, 

and determine the feasibility of an optimal planning solution that can meet the 

needs of all. 

 

Methods 

Study system 

 

Papyrus swamps dominate wetlands across Africa (Beentje 2017), but have been 

experiencing rapid rates of loss and degradation over the past few decades 

(Maclean, Wilson & Hassall 2011). At Lake Bunyonyi, Uganda (01o17’S; 

29o55’E), high densities of papyrus grow along the lake edge and deep valley 

bottoms (Denny 1972). The volcanically-active nature of the region, and resulting 

steep topography, has led to the formation of an isolated network of swamps, 

where water level remains stable year-round (Denny 1972), minimising 

fluctuations in patch size and making it an ideal system to model metapopulation 

dynamics. Relatively high numbers of five species of papyrus-endemic 

passerines are found in this area: white-winged swamp-warbler (Bradypterus 

carpalis), greater swamp-warbler (Acrocephalus rufescens) (race foxi), papyrus 

canary (Crithagra koliensis), papyrus yellow warbler (Calamonastides 

gracilirostris) and Carruthers's cisticola (Cisticola carruthersi). All are primarily 

restricted to papyrus, though previous work has highlighted differences in various 
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ecological characteristics, such as feeding preferences (Britton 1971) and 

behavioural attributes (Britton 1978), as well as variation in responses to habitat 

structure (Maclean et al. 2003a, 2006; Donaldson et al. 2016). Key amongst 

these is the preference of greater swamp-warbler and papyrus canary to occupy 

the edge of swamps, while the remaining three species are more commonly 

associated with the wetland interior (Britton 1978; Donaldson et al. 2016). Also, 

the specific wetland sites in which these species are found differ; papyrus yellow 

warbler and Carruthers’s cisticola can inhabit broader wetland vegetation types, 

especially when associated with papyrus (Maclean et al. 2006), and Carruthers’s 

cisticola has also been recorded in wetland recently converted to agriculture 

(Donaldson et al. 2016). Taken together, these species provide a useful exemplar 

to explore the characteristics that drive interspecific differences in dynamics, and 

their consequences for multi-species conservation recommendations.  

 

Distribution survey 

 

The study site was visited over 2 consecutive years (2014 and 2015) to allow for 

model parameterisation (see below). All patches of papyrus surrounding the lake 

were identified in 2014 using a combination of 1:50,000 topographical maps 

(obtained from the Department of Land and Surveys, Entebbe), satellite imagery 

(Google Earth), local knowledge, and close examination of shoreline and valley 

bottoms from motorboat and on foot (see Figure 1.5 in Chapter 1). In total, 519 

discrete patches of papyrus vegetation were identified and mapped (but see 

Parameter estimation below). Papyrus yellow warbler and Carruthers’s cisticola 

were also recorded within broader wetland vegetation (see also Maclean et al. 

2006; Donaldson et al. 2016), thus these wetlands were included in the study for 

these species only. Shoreline fringing patches were surveyed for the presence of 

greater swamp-warbler and papyrus canary, since the remaining 3 species were 

never found to occupy this patch-type over the 2 years of survey. Following 

preliminary observations, a discrete patch was defined as a body of 

papyrus/wetland over 20 m long and 5 m wide suitable for nesting, separated 

from another wetland patch by approximately 10 m. As patches around Lake 

Bunyonyi are primarily surrounded by either cultivated farmland or the body of 
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the lake, all habitat between patches was classed as “unsuitable” for the purpose 

of this study. 

 

Presence-absence surveys were conducted between May-August over 2014 and 

2015, when the birds are breeding following the rainy season (Britton 1978). 

Intermittent playback was used to aid with detection since the nature of this 

habitat results in records of these species being primarily by sound rather than 

sight (Maclean et al. 2006). Each patch was visited between ~06.45 and ~13.45 

when birds are most vocal, and the presence or absence of each study species 

was noted. Swamps were surveyed from the edge of swamps, often on higher 

land which offers a more effective vantage point for seeing and/or hearing birds 

compared with the dense and largely inaccessible papyrus interior. Survey time 

varied by patch size, from a minimum of 5 minutes for small, low quality sites, to 

a maximum of 7 hours 15 minutes for large swamps (see Table B1 in Appendix 

B). Previous work has highlighted the rapid detection of these species upon 

arrival at a site (Maclean et al. 2006). However, to ensure that survey effort was 

sufficient to ensure low likelihood of false absences (Moilanen 2002), we 

conducted additional analyses to examine the relationship between the 

probability of detection and survey effort (see Chapter 4 and Appendix B). At the 

point of survey, GPS points were taken from the edge of swamps (UTM 35S using 

GARMIN GPSMAP 64, Lenexa, KS), and used alongside sketch maps drawn to 

scale with topographical maps to mark the boundary of each patch. 5 vegetation 

categories were created relating to the physical characteristics of swamps (see 

Table 3.1 in Chapter 3 [Donaldson et al. 2016] for details), and the proportion of 

each of these categories within each swamp was recorded. All maps were 

digitized in Arc GIS v 10.1 in the RGDC 2005 UTM 35S projection system, and 

area and perimeter calculated for each patch.  

 

Patch quality 

 

Estimates of patch quality were based on the relative density of each species 

(Hoyle & James 2005). Fifteen minute point count surveys were conducted 

across a subset of swamps during May-June 2014, and used alongside our 

vegetation categories and swamp size and shape, to determine the most 
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important factors influencing the densities of the study species (see Donaldson 

et al. 2016 and Chapter 3 for details). The model average coefficients relating to 

patch geometry and/or the proportion of particular vegetation categories (see 

Appendix A), were used to predict the density of each species in each patch 

during 2014 and 2015, and estimate relative population sizes for each species 

across the study site. Densities were capped at the lowest and highest observed 

densities for each species (greater swamp-warbler [GSW]: 0.16/ha and 6.78/ha; 

papyrus canary [PC]: 0.16/ha and 21.75/ha; white-winged swamp-warbler 

[WWW]: 0.18/ha and 2.55/ha; Carruthers’s cisticola [CC]: 0.16/ha and 2.08/ha; 

papyrus yellow warbler [PYW]: 0.08/ha and 0.67/ha) since predictions were made 

outwith the data range (Conn, Johnson & Boveng 2015), and to ensure that 

habitat mapped as suitable was available for colonization (Wilson et al 2009).     

 

Metapopulation model 

 

Stochastic Patch Occupancy Models (SPOMs) are a class of simplified 

metapopulation models which utilise readily available field data (Etienne et al 

2004). The key feature is that local dynamics are omitted and only patch 

occupancy is modelled (Moilanen 2004), with the assumption that discrete habitat 

patches exist in a matrix of unsuitable habitat, and the probability of patch 

occupancy is determined by extinction and colonization events (Ozgul et al. 

2006). The Incidence Function Model (IFM) described by Hanski (1994b) is the 

best known (Etienne, Ter Braak & Vos 2004) and most commonly used SPOM 

(Moilanen 2004).  

 

Here, we use SPOMSIM software (Moilanen 2004) which is based on the IFM 

and specifically designed for SPOM parameter estimation and simulation. The 

dispersal kernel is defined as: 

 

𝐷(𝑑𝑖𝑗 , ∝) = exp(−𝛼𝑑𝑖𝑗) 

          [1] 

where dij is the distance between patches i and j (i≠j) and α defines a negative 

exponential distribution of dispersal distances (1/α = average dispersal distance) 
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(Hanski 1994b; Moilanen 2004). Connectivity (Si(t)) defines the probability of 

colonization of an empty patch (Moilanen 2004), set as: 

 

𝑆𝑖(𝑡) =  ∑ 𝑝𝑗exp (−𝛼𝑑𝑖𝑗)𝐴𝑗
𝑏 

           [2] 

where 𝑝𝑗 is the occupancy of patch j in year t, Aj is the population carrying capacity 

of patch j, usually taken as patch area (ha) but can be modified by patch quality 

(Hanski & Ovaskainen 2000; Thomas et al. 2001), and parameter b scales 

emigration with carrying capacity. The probability of colonization (Ci) of an empty 

patch i is: 

 

𝐶𝑖 (𝑡) =
[𝑆𝑖(𝑡)]2

[𝑆𝑖(𝑡)]2 +  𝑦2
 

[3] 

where Si(t) is the connectivity of patch i at time t, and y is a parameter determining 

the relationship between colonization probability and connectivity (Wilson, Davies 

& Thomas 2009). The extinction probability (Ei) of an occupied patch is defined 

as: 

 

𝐸𝑖 =  
𝜇

𝐴𝑖
𝑥 

[4] 

where Ai is the carrying capacity of patch i, µ is a parameter that defines the 

probability of extinction of a patch and x defines the scaling of extinction risk with 

patch area (Hanski 1998b). Owing to the rescue effect lowering the extinction risk 

of well-connected patches (Ozgul et al. 2006), the intrinsic rate of extinction (Ei) 

here has been replaced by an extinction rate adjusted for this rescue effect 

(Moilanen 2004): 

 

𝐸𝑖(𝑡) =  𝐸𝑖(1 −  𝐶𝑖(𝑡)) 

[5] 
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Parameter estimation 

 

The survey data collected over 2 years provided information on turnover, used 

for parameter estimation (Moilanen & Hanski 1998; Moilanen, Smith & Hanski 

1998; Moilanen 1999). Using consecutive years of data close in time ensures that 

the habitat area has not altered considerably between years (Wilson, Davies & 

Thomas 2009).  

 

In SPOMs, patch area is usually used as a substitute for population size (Hanski 

1994b), primarily due to the greater availability of these data compared with 

population estimates (Ozgul et al. 2006). As shown in Donaldson et al. (2016) 

(Chapter 3), the density of papyrus passerines differs between patches, 

depending on patch geometry and/or vegetative composition (Appendix A). Thus, 

the predicted densities for each site (see Patch quality above), were multiplied by 

patch area to give an estimated relative abundance for each species per site 

(Hanski 1994b; Hoyle & James 2005; Bulman et al. 2007). This replaced all 

values of Ai described above. Given the non-circular nature of patches in this 

network (Donaldson et al. 2016), dij represented nearest edge distances 

calculated in ArcGIS.  

 

The Markov Chain Monte Carlo (MCMC) method (Moilanen 1999) was used to 

estimate parameters α, y, x and e (Moilanen 2004), assuming that the 2 

snapshots of data used were at a stochastic steady state (Moilanen 1999) and 

there was no colonization from outside the network. Though it is difficult to 

guarantee that patch networks are at equilibrium (Hanski et al. 1995b), there was 

a balance between the number of extinction and colonization events over the 2 

years, consistent with a possible steady-state (Hanski 1999a; Franken & Hik 

2004). Parameter b was set at 1, assuming that emigration from a patch is 

proportional to abundance. All patches below the minimum observed occupied 

patch area from the 2 years of field observations were removed, since these 

patches were likely too small to be occupied by that species (GSW 0.004ha; 

WWW 0.044ha; PC 0.01ha; PYW 0.134ha; CC 0.36ha). 19200 iterations were 

performed for each estimation (as specified by high effort level in SPOMSIM), 

repeated at least 3 times with the same starting parameters to check for 
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convergence (Moilanen 2004). The parameter set with the lowest AIC value was 

selected for use in model simulations.  

 

Model simulations  

  

A series of metapopulation simulations were carried out in SPOMSIM to identify 

differences in population persistence between four distinct approaches 

associated with reserve design: preferentially conserving either bigger, a greater 

number, better (higher quality ~ population density), or more connected sites. For 

comparison between approaches, results are shown with respect to a given total 

area of habitat conserved. Metapopulation dynamics were simulated using the 

parameters from the most parsimonious model for each species, run for 100 

iterations over 100 years, starting with the 2015 occupancy and using habitat data 

collected during the 2015 survey. The average probability of persistence after 

100 years was recorded (the proportion of simulations where the metapopulation 

persisted after this time) and plotted against the total area of habitat available 

across the network, to enable us to directly compare persistence with an 

equivalent investment of resources for conservation. To approximate the 

minimum viable metapopulation (Hanski, Moilanen & Gyllenberg 1996), an 

arbitrary threshold of 95% likelihood of persistence after 100 years was used  

(Shaffer 1981; Shaffer & Samson 1985). The relative population size after 100 

years was estimated using the average proportion of occupied area after the time 

period, since area within our models represented population size (see Parameter 

estimation above).  The scenarios were as follows: 

 

i. Protecting large patches 

 

Simulations began with the 2 largest patches available in the network for each 

species, and patches were sequentially introduced to the network by size (largest 

first) until 100% persistence over 100 years was attained. In some cases, the 

area of the two largest patches was high compared to the minimum areas 

conserved in the other approaches. Thus, in order to calculate the area required 

for persistence at a smaller total habitat area, these were reduced in size until the 

metapopulation became extinct, holding density constant. Ultimately this allowed 
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us to compare the persistence of the various approaches at equivalent levels of 

habitat.   

 

ii. Protecting a large number of small patches 

 

Patches were ordered by size (smallest first) and initial simulations were run with 

a network of 10% of the network’s smallest patches for each species, sequentially 

including patches (and hence the total area) until persistence of 100% over 100 

years was attained.  

 

iii. Protecting high quality patches 

 

To establish the importance of high quality patches, those with the highest density 

for that species, irrespective of patch size, were included in the network and then 

added in order of progressively declining quality until a persistence over 100 

years was attained. Since densities were capped at the observed upper limit (see 

above), a set of patches with the initial highest density had equal values. As with 

(i.), to determine metapopulation persistence prior to this, this set of patches was 

reduced in size until the metapopulation became extinct, retaining the initial 

capped density values throughout.  

 

iv. Protecting most connected patches 

 

Connectivity values for all patches within the network were calculated based on 

a simplified version of the full connectivity formula used for simulations [2]: 

 

𝑆𝑖(𝑡) =  ∑(−𝛼𝑑𝑖𝑗) 

[6] 

This accounts for the distance between patches and the dispersal capabilities of 

each species, but assumes that all patches within the network are occupied and 

equal in size. This enabled us to establish the patches with the highest 

connectivity values when all patches were present, and to start our simulations 

with these patches. Removing the lower connectivity patches from the initial 

starting conditions did not alter the rank order of connectivity of patches. Hence 
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this approach allowed us to determine the importance of connectivity during our 

simulation scenarios with various combinations of patches, while avoiding 

intractable circularity in the modelling process, which would result if there was 

dependence on occupancy and abundance in other patches. Patches were 

added into the network from most to least connected, until full metapopulation 

persistence was reached. Again, to calculate total wetland area required for levels 

of persistence prior to the two most connected patches, these remaining patches 

were reduced in size, keeping density levels constant (as in i. and iii. above), until 

persistence declined to 0.  

 

v. Protecting single biggest patch 

 

Metapopulation dynamics in SPOMSIM can only be modelled with a minimum of 

2 patches. Thus, the probability of survival of the single biggest patch in the 

network was calculated manually using [4]. Population size was estimated using 

the initial population size (at time 0) multiplied by the survival rate after 100 years. 

As with (i.), (iii.) and (iv.), this patch was reduced in size and the simulations re-

run with density held constant, to determine (and compare) the probability of 

persistence and estimate the population size at lower habitat amounts.   

 

Following the simulations, the amount of wetland habitat required per strategy to 

reach the 95% likelihood of persistence for all five species was recorded. The 

amount of habitat required for each species to exceed this was first noted for 

each strategy, and the minimum amount of habitat required overall (across all 

species) was subsequently used to estimate the amount of wetland required for 

a given strategy to ensure all papyrus-endemics persist over the long-term. 

Considering that there was a degree of overlap between the optimal networks for 

each species within each strategy, the amount of habitat required in total to 

protect the individual networks was also calculated. In situations where optimal 

networks consisted of papyrus patches (for the papyrus-only species) and 

broader wetland patches (for the broad wetland species), the area including the 

broader wetland was used.  
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Regional stochasticity 

 

Regional stochasticity refers to correlated extinctions caused by environmental 

events, such as disease or weather (Hanski 1991), which can strongly influence 

estimates of metapopulation persistence (e.g. Poos & Jackson 2012). Estimating 

this in metapopulations directly requires data from multiple years (Moilanen 

1999), thus models were parameterized excluding this. Moderate-high levels 

(0.2) of regional stochasticity were subsequently introduced during model 

simulations (Ozgul et al. 2006; Poos & Jackson 2012); specified to be 

synchronous across the network for there was no evidence of differing weather 

patterns across the study site (Moilanen, Smith & Hanski 1998; Moilanen 2004). 

To test the sensitivity of our simulations to the inclusion of stochasticity, all 

scenarios were repeated without regional stochasticity and confirmed that all 

qualitative conclusions from this study, concerning the rank order of strategies 

and relative (approximate) areas required for persistence, still hold (Figure D1).  

 

Results  

Species-specific data 

 

After the removal of patches below the minimum observed area for each species, 

the number of suitable habitat patches ranged from 77 for Carruthers’s cisticola 

to 518 for greater swamp-warbler (Table 5.1). Consistent with the observed 

capped areas (see Methods), the mean patch size available within the network 

was smallest for greater swamp-warbler and papyrus canary, while the suitable 

patches for papyrus yellow warbler and Carruthers’s cisticola were the largest in 

size (Table 5.1). The predicted densities across the network highlighted that 

papyrus yellow warbler and papyrus canary had the lowest densities at this study 

site, while greater swamp-warbler occurred at relatively higher densities (Table 

5.1). Considering the suitable habitat available and the predicted density levels 

at each site, the relative carrying capacity of papyrus canary was the lowest of 

the five study species, followed by greater swamp-warbler and papyrus yellow 

warbler (Table 5.1). White-winged swamp-warbler and Carruthers’s cisticola, on 

the other hand, had the highest population carrying capacities across Lake 

Bunyonyi (Table 5.1). 
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Table 5.1. Survey data collected over 2014-2015 for all study species: greater swamp-warbler (GSW), papyrus canary (PC), 

Carruthers’s cisticola (CC), white-winged swamp-warbler (WWW), papyrus yellow warbler (PYW).  

Species Suitable 

patches 

Habitat 

(ha) 

Mean 

patch size 

(ha) (SD) 

Mean 

patch 

distance 

(km) (SD) 

Max 

density 

(per ha) 

Relative 

carrying 

capacity 

Occupied 2014-15 

2014 2015 Ext Col 

GSW 518* 550.7 1.06 (8.21) 10.7 (7.3) 0.042 355 269 

(51.9%) 

275 

(53.1%) 

63 

(23%) 

69 

(25%) 

PC 495* 550.6 1.11 (8.4) 11.5 (7.7) 0.00005 188 56 

(11.3%) 

84 

(17.0%) 

16 

(29%) 

44 

(52%) 

CC 77†‡ 1829.8 23.76 (119.21) 11.4 (7.4) 0.00176 1320 35 

(45.5%) 

39 

(50.6%) 

4 

(11%) 

8 

(21%) 

WWW 197 537.1 2.73 (13.17) 12.2 (8.0) 0.0394 638 53 

(26.9%) 

44 

(22.3%) 

12 

(23%) 

3 

(7%) 

PYW 138† 1068.0 7.74 (31.54) 10.8 (6.8) 0.0001 330 20 

(14.5%) 

27 

(19.6%) 

3 

(15%) 

10 

(37%) 

Habitat (ha) is the total available suitable habitat across the network per species. Mean patch distance is the average distance between all occupied 

patches across the 2 years of survey. Max density is the maximum predicted density for each species. Relative carrying capacity represents the predicted 

maximum possible population size for each species, based on ∑ (patch area* patch density). The percentage of occupied patches in 2014 and 2015 (from 

the total number of patches), and newly extinct (“Ext”) and colonized (“Col”) patches in 2015 (from the total number of populations in 2014 and 2015 

respectively), are shown in brackets. *Includes shoreline fringing patches; †Includes broader wetland vegetation; ‡Includes agricultural wetland. 
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Differences were also apparent in the proportion of swamps occupied by each 

species, and observed turnover between years. Papyrus canary and papyrus 

yellow warbler occupied the lowest proportion of patches (11.3% and 14.5% in 

2014 respectively), while greater swamp-warbler and Carruthers’s cisticola 

occupied the most wetland sites (53.1% and 50.6% in 2015 respectively) (Table 

5.1). In 2015, the proportion of newly colonized swamps was the highest for 

papyrus canary (52%) and the lowest for white-winged swamp-warbler (7%) 

(Table 5.1). In comparison, the proportion of locally extinct swamps in the network 

since 2014 were similar between species, ranging from 11% of total patches for 

Carruthers’s cisticola, to 29% for papyrus canary (Table 5.1).  

 

Metapopulation parameters estimated for each species showed variation among 

colonization probability (y), the scaling of extinction risk with population carrying 

capacity (x) and dispersal (α) (Table 5.2). Papyrus canary and greater swamp-

warbler had the lowest estimated dispersal abilities, Carruthers’s cisticola and 

white-winged swamp-warbler were capable of intermediate levels of dispersal, 

while papyrus yellow warbler could disperse the furthest (Table 5.2). During the 

MCMC runs, parameters for greater swamp-warbler and papyrus canary settled 

at local minima (Table 5.2). Thus, estimates were calculated at least 3 times 

(Table D1) and confirmed similar values were obtained, although this prevented 

estimation of 95% confidence intervals for these species. 
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Table 5.2. Metapopulation parameter values (α, y, µ, x) for the best model (lowest AIC) for all study species: greater swamp-

warbler (GSW), papyrus canary (PC), Carruthers’s cisticola (CC), white-winged swamp-warbler (WWW), papyrus yellow 

warbler (PYW). α is the dispersal parameter, y relates to colonization probability, µ and x refer to extinction risk (see Methods 

for details). 95% confidence intervals shown in brackets for species where these could be calculated.  

Species  α y µ x Dispersal ability 

GSW 0.204 226.017  0.012  0.864  Low 

PC 0.190  185.753  0.012  0.935  Low 

CC 0.070  

(0.000-0.151) 

1998.430  

(1164.079-5417.371) 

0.061  

(0.037-0.072) 

0.734  

(0.523-1.031) 

Intermediate 

WWW 0.021  

(0.003-0.051) 

5512.051  

(3399.745-8138.029) 

0.059  

(0.059-0.059) 

0.488  

(0.361-0.509) 

Intermediate 

PYW 0.001  

(0.000-0.021) 

1446.647  

(1192.023-1984.177) 

0.041  

(0.041-0.067) 

1.340  

(0.720-2.579) 

High 
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Simulations 

 

i. Metapopulation persistence 

 

Levels of persistence varied depending on the network structure conserved (see 

Simulations i. to v. in Methods), and the total area of wetland available across the 

lake for the five study species (Figure 5.1a-e). With equivalently low amounts of 

habitat, focusing on the largest and/or higher quality swamps with approximately 

4-8ha of wetland made it possible to achieve ≥50% probability of persistence for 

those with the lowest predicted carrying capacities: greater swamp-warbler, 

papyrus canary and papyrus yellow warbler (Figure 5.1a, 5.1b, 5.1e; Table 5.1). 

In comparison, levels of persistence for Carruthers’s cisticola and white-winged 

swamp-warbler were low at equivalent habitat levels, regardless of the strategy 

used (Figure 5.1c; 5.1d). No species were estimated to persist within a network 

of smaller swamps when levels of habitat were low, while prioritising connectivity 

resulted in low persistence for greater swamp-warbler, papyrus canary and white-

winged swamp-warbler, which were located in relatively small sites within this 

network (Figure 5.1a, 5.1b, 5.1d; Table 5.1). 

 

With more wetland available across the network, investing in the highest quality 

patches for each species was the most consistent strategy for achieving 95% 

probability of persistence. Retaining a high-quality habitat network gave similar 

results to protecting large sites for papyrus canary (Figure 5.1b) and papyrus 

yellow warbler (Figure 5.1e), the species’ with low population densities (Table 

5.1), and was similar to conserving more connected sites for white-winged 

swamp-warbler (Figure 5.1d), which had the lowest observed turnover (Table 

5.1). Investing in numerous smaller sites was the least favourable option for most 

species, requiring a large amount of habitat before 95% persistence was reached 

(ranging from ~82 ha for greater swamp-warbler, to ~400 ha for papyrus yellow 

warbler). Those with higher carrying capacities but a low population turnover, 

Carruthers’s cisticola and white-winged swamp-warbler (Table 5.1), were an 

exception to this; investing in a few large sites required the most amount of habitat 

to ensure a 95% chance of persistence for these species (>300 ha) (Figure 5.1c; 

5.1d), beyond protecting a series of smaller sites. However, investing in the single 
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largest site for white-winged swamp-warbler never reached the 95% likelihood of 

persistence (Figure 5.1d), and the single largest wetland in the overall network 

for Carruthers’s cisticola must remain intact for this species to stay beyond the 

95% threshold (Figure 5.1c). Meanwhile for the most dispersive species, papyrus 

yellow warbler (Table 5.2), a large amount of habitat was needed before 

connectivity (~250 ha) or a network of small sites (~400 ha) exceeded 95% 

probability of persistence (Figure 5.1e).  

 

ii. Enhancing population size 

 

Compared with persistence, the relative population size of all species increased 

consistently with area for all strategies (Figure 5.1f-j). Only papyrus yellow 

warbler showed a reasonably steady population size for bigger and higher quality 

networks, before abundance started to decline more rapidly once wetland area 

declined below ~600 ha and ~400 ha respectively. The population size differed 

depending on the conservation strategy for most species (Figure 5.1g-j), with the 

exception of greater swamp-warbler, where all strategies generated a reasonably 

consistent abundance (Figure 5.1f). The greatest differences among strategies 

were shown for the broader wetland species which inhabit larger patches within 

the network (Table 5.1): Carruthers’s cisticola and papyrus yellow warbler. 

Protecting large and high quality patches generated a higher population size than 

smaller and more connected sites for these species, at least until the maximum 

amount of wetland in the network was reached (Figure 5.1h; 5.1j). In contrast, 

connectivity was a beneficial strategy, alongside large and high quality networks, 

for achieving high populations of the least dispersive species (Table 5.2) which 

utilise networks of smaller patches (Table 5.1): papyrus canary and greater 

swamp-warbler, particularly when only a small amount of papyrus was available 

(Figure 5.1g; 5.1f). The optimal strategy for achieving high population size 

differed depending on the amount of habitat available for white-winged swamp-

warbler only (Figure 5.1i). This species was predicted to reside at relatively high 

densities (Table 5.1), thus benefited more from high quality sites compared to the 

other options when a small amount of papyrus was available. However, as habitat 

increased, preserving a few larger sites enhanced the population size more than 

the other strategies.  
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Figure 5.1. Output from metapopulation simulations for all study species: 

protecting the single largest, biggest (2+), smallest, most connected and highest 

quality patches in the current network.  a-e display the mean proportion of 

replicates that persisted after 100 years, and f-j show the mean relative 

population size after 100 years, against the total area of suitable wetland habitat 

available across the network (a-e are plotted on the log+1 scale for clarity). Solid 

lines show simulation results from habitat configuration as it was in 2015, dashed 

lines represent results from scenarios modelled by reducing area to allow for a 

comparison between strategies at equivalent levels of habitat (see Model 

simulations in Methods for full explanation). All simulation results shown here 

include regional stochasticity (see Figure D1 for equivalent simulations without 

regional stochasticity).  

 

iii. Achieving persistence of multiple species 

 

The overall amount of wetland required across the network to achieve ≥95% 

likelihood of persistence under the optimal strategy varied between species 

(Figure 5.1a-e): ~25 ha for greater swamp-warbler, ~48 ha for papyrus canary, 

~144 ha for white-winged swamp-warbler, ~61 ha for Carruthers’s cisticola and 

~31 ha for papyrus yellow warbler. Comparing the minimum required area across 

strategies to exceed the threshold for all species showed that conserving a 

network of high quality patches for each species required the least area (144 ha), 

followed by connectivity (255 ha) (Figure 5.2), driven by the required area for 

white-winged swamp-warbler and papyrus yellow warbler respectively (Figure 

5.1d; 5.1e). No single sites at Lake Bunyonyi were a sufficient size to ensure 95% 

probability of persistence of white-winged swamp-warbler over 100 years (Figure 

5.1d), and concentrating on the single biggest patch required the most amount of 

habitat to be suitable for the other species (Figure 5.2), due to the large amount 

of wetland required for a single patch to be suitable for Carruthers’s cisticola 

(Figure 5.1c).  

 

The optimal strategy overall changed when the total area required to conserve 

the optimal networks for each species were considered (Figure 5.2). The most 

connected sites overlapped between species to a greater extent than the other 

strategies, thus investing in a series of the most connected patches at Lake 
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Bunyonyi required the least amount of wetland overall (~299 ha) (Figure 5.2). 

High quality patches, on the other hand, intersected the least between species 

and required the conservation of approximately 528 ha of wetland overall to 

achieve 95% likelihood of persistence (Figure 5.2). Investing in the single largest 

site remained the least favourable strategy, for it could only ensure the 

persistence of 4 of the study species, which itself would require the protection of 

at least 812 ha at Lake Bunyonyi (Figure 5.2).   

 

 
 

 

Figure 5.2. Area required for each network considered to achieve ≥95% 

probability of persistence over 100 years for all five species: protecting the most 

connected patches, 2+ largest patches, highest quality patches, single large 

patches* and greater number of the smallest patches across the network (see 

Methods for full explanation of scenarios). Displays the smallest area required to 

predict 95% chance of persistence for the most demanding species (“Optimal 

area”) and the smallest area needed to predict 95% chance of persistence for all 

species combined (considering optimal patch overlap between species) (“Total 

Patches conserved  
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area”). *as it stands, no single large papyrus swamps are sufficient to ensure 

≥95% probability of persistence for white-winged swamp-warbler (see text for full 

explanation).  

 

Discussion 

 

The results of this study highlight that differences in the ecology of species lead 

to differences in the outcomes of commonly recommended approaches to 

protected area designation and management, while disparity in the relative 

effectiveness of approaches was also evident depending on the total area 

available for investment. For the conservation of individual species, focusing on 

habitat quality is the most effective approach. In contrast, should the aim be to 

explicitly conserve multiple species, focusing on connectivity is the most efficient 

method, due to greater congruence of well-connected patches between species. 

Thus, designing protected networks based on one species does not necessarily 

guarantee the viability of all, even for those specialist species occupying the same 

general habitat. However, with consideration of the dispersal capabilities, 

carrying capacities, turnover and habitat preferences of those species residing in 

a network, combined with knowledge on how much habitat is available for 

protection, informed decisions on where to invest resources can be made.   

 

Strategies for metapopulation persistence 

 

Managing viable metapopulations has become more commonplace than 

concentrating resources on small, isolated populations (Hanski et al. 1996). 

Guidance for creating more effective ecological networks recommends that sites 

are first made better, followed by bigger, the creation of more and finally more 

joined sites (Lawton et al. 2010). However, variation in the ecology of species 

residing in population and habitat networks evidently leads to differences in the 

most effective network for ensuring a high probability of persistence, which must 

be considered when deciding which parts of the network are most important 

(Gutierrez 2005).  

 



Chapter 5 

 

137 
 

Dispersal ability is key for the response of a species to levels of isolation (Hanski 

1999a). Costs are incurred by poor dispersers crossing unsuitable habitat, in 

terms of energy and the risk of failing to locate suitable habitat (Bonte et al. 2012), 

while those with high dispersal capabilities receive little benefit from connected 

sites for they are not restricted in their ability to reach desired areas (Bennett 

2003). This study is the first to quantitatively infer relative dispersal distances for 

papyrus endemic birds. Although we recognise that using empirical data for 

metapopulation parameter estimation can cause biased estimates (Moilanen 

2002), they do suggest variation in the capacity to disperse between species. In 

terms of probability of metapopulation persistence and overall metapopulation 

size, enhancing connectivity between sites was one of the least effective species-

based strategies for those with the highest and lowest dispersal abilities in this 

study. Meanwhile, consistent with previous work (e.g. Thomas 2000), 

connectivity was a useful strategy to assist those capable of intermediate levels 

of dispersal to utilise desirable sites within the network, at least when more habitat 

was available. Species with comparatively higher dispersal capabilities 

(Carruthers’s cisticola, white-winged swamp-warbler and papyrus yellow warbler) 

also have the freedom to choose which sites to utilise within the limits of suitable 

habitat available (Glorvigen, Andreassen & Ims 2013), hence why these species 

benefited from higher quality habitat at lower levels of area compared to the other 

options explored. Relative population sizes were notably higher within a network 

of high quality patches for these species, thus concentrating on this strategy at 

low levels of habitat had the capacity to protect more individuals within the 

available wetland, and enhance the likelihood of persistence overall (Ye, 

Skidmore & Wang 2013). Enhancing quality also has the potential to promote 

connectivity through a higher number of dispersers (Hodgson et al. 2009b), which 

could also be why connectivity itself made little difference to these species. 

Intermediate and low dispersers (greater swamp-warbler, white-winged swamp-

warbler and Carruthers’s cisticola) were also generally found to persist at higher 

densities than those with the ability to move the farthest (papyrus yellow warbler), 

which dispersed more frequently, potentially to ensure the densities within each 

patch were low, and avoid competition from others (Baguette et al. 2013). In turn, 

protecting high quality sites was consistently the best strategy for those living at 

higher densities to achieve 95% probability of persistence.    
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The preservation of large sites is often favoured by conservation managers for 

their high carrying capacity (Hanski 1999a), either because of their greater size 

or higher levels of heterogeneity (Thomas et al. 2001). The results here confirm 

that maintaining a network of bigger sites does consistently produce a higher 

population size than a network of smaller sites with the same total area. However, 

protecting larger sites is only beneficial for those with lower (regional) carrying 

capacities to boost population sizes (Griffen & Drake 2008) when levels of habitat 

are low. At equivalently low levels of habitat, for species with high regional 

carrying capacities such as Carruthers’s cisticola and white-winged swamp-

warbler, investing in high quality sites was the best option for obtaining a high 

population size, and therefore enhanced the likelihood of long-term persistence. 

Some species appeared to occupy smaller habitat patches than others in this 

study. However, these smaller patches alone were clearly unsuitable for 

persistence over the long-term when the habitat available was low, hence 

persistence was enhanced by the maintenance of large sites. Since these 

species are also capable of dispersing only short distances, smaller sites could 

act as useful stepping stones to reach large sites (Saura, Bodin & Fortin 2014), 

rather than areas that should be relied upon alone for metapopulation survival.  

 

Finally, papyrus endemics vary in their preference to occupy the edge and interior 

parts of the swamp (Britton 1971; Donaldson et al. 2016). Smaller, more 

fragmented sites exhibit more edge than larger sites (Fahrig 2003). As expected, 

interior species had notably smaller population sizes when multiple smaller sites 

were preserved, while those residing at the edge of swamps displayed a steady 

increase in population regardless of smaller or bigger sites being maintained. 

Similarly, the threshold level of persistence for edge species differed marginally 

between strategies, while for papyrus yellow warbler, a species commonly 

located within the interior of swamps, preserving smaller sites was clearly the 

least favourable option.  

 

Protected networks for multiple metapopulations  

 

Protected area networks aim to be representative of viable populations of multiple 

species (Howard et al. 2000; Margules & Pressey 2000). However, making 
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decisions beyond single species to encompass the needs of multiple species is 

a challenge for those involved (Opdam et al. 1995; Akcakaya, Mills & Doncaster 

2007). To combat this, conservation managers traditionally select ‘umbrella’ 

species, using one species with similar needs as a surrogate for another (Opdam 

et al. 1995; Akcakaya, Mills & Doncaster 2007), assuming the community as a 

whole will benefit from measures specified by individual species programmes 

(Bennett et al. 2015). Previous studies have also demonstrated the capacity of 

parameters in metapopulation models to predict dynamic patterns of other related 

species (e.g. Wahlberg et al. 1996). However, when multiple target species 

occupying the same habitat exhibit varying responses to conservation efforts, 

using the requirements of one species to meet the needs of others is problematic.   

 

The importance of quality for the survival of single species has increasingly been 

recognised (Franken & Hik 2004) and incorporated into metapopulation dynamics 

(Thomas et al. 2001), due to its role in providing high source populations for 

recolonization and preventing the network from overall extinction (Glorvigen, 

Andreassen & Ims 2013; Heinrichs, Bender & Schumaker 2016). Improving 

habitat quality through management can reduce the amount of habitat required 

overall to sustain viable populations of species (Lawton et al. 2010). Our evidence 

from papyrus avifauna supports this assumption; prioritising conservation 

measures on high quality (high population density) habitat patches produced the 

most effective results in terms of probability of persistence and estimated 

metapopulation size after 100 years (Figure 5.1). However, the elements that 

represent high quality are species-specific (Mortelliti, Amori & Boitani 2010), thus 

when the optimal quality networks for each species are merged, the amount of 

habitat required overall is higher than other planning options.  

 

Considering the optimal networks for all species together, concentrating on a few 

large or the most connected sites requires comparatively less area than 

preserving either high quality wetlands, or investing in lots of small patches 

across the network. Bigger sites offer numerous benefits, such as the availability 

of greater habitat heterogeneity that in turn, can support a wider range of species 

at one site (see Chapter 2; Donaldson, Wilson & Maclean 2017). However, 

securing or restoring sites of a sufficient size for persistence is often not possible 

in modern landscapes (Doerr, Barrett & Doerr 2011). In this case, spreading 
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resources across the network and enhancing connectivity essentially acts as a 

bigger site, offering the same likelihood of persistence over the long-term for 

multiple species, providing it is within the dispersal capabilities of those requiring 

more overall area.  In general, the assumption is that “the bigger the reserve, the 

better” (Shaffer 1981), but single patches rarely persist over the long-term unless 

they are exceptionally large relative to the species in question (Thomas, Thomas 

& Warren 1992). Consistent with this, investing in a single large site was evidently 

the least favourable strategy to achieve a viable persistence for all species. Not 

only does this require a large amount of habitat to sustain populations in its own 

right, for those with low turnover, protecting single sites was not sufficient to 

maintain a high probability of persistence.  

 

Conservation implications 

 

It is well documented that the more habitat available, the longer a regional  

population can persist (Heinrichs, Bender & Schumaker 2016). Indeed, our 

results confirm that the persistence and population size of all species can be 

maintained at adequate levels regardless of the conservation strategy when the 

habitat across the network is plentiful. In such situations, species-specific 

management is not necessarily required (Tilman et al. 2017), and networks 

should instead be situated and designed with consideration of more practical 

constraints, such as ownership and finances (see references in Donaldson, 

Wilson & Maclean 2017). However, it is evident that the resources available for 

conservation worldwide are limited, in terms of both money (McCarthy et al. 2012) 

and space (Lawton et al. 2010). Impoverished tropical countries in particular 

struggle to meet demand for land, as well as maintain rich levels of biodiversity 

(Myers et al. 2000; Fisher & Christopher 2007), and so it is not apt or feasible to 

conserve all suitable space for wildlife (Maclean, Bird & Hassall 2014). Recent 

evidence suggests that concentrating on persistence alone could mean that we 

are underestimating how much habitat is required to prevent extinctions 

(Ceballos, Ehrlich & Dirzo 2017), and our results suggest that the area required 

for adequate persistence requires only a low population size. However, 

population declines precede extinction, thus designing protected area networks 

around persistence alone may not be enough to ensure populations are retained 
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above the levels stated on the IUCN (International Union for the Conservation of 

Nature) Red List, and may explain why protected areas often fail to enhance or 

maintain populations of targeted species (Butchart et al. 2012).  

 

In common with habitats worldwide, papyrus swamps have suffered high rates of 

degradation over the past few decades (Owino & Ryan 2006; van Dam et al. 

2014), primarily from population growth, unsustainable levels of harvesting, lack 

of legal policies and weak enforcement of any restrictions in place (van Dam et 

al. 2014; Kipkemboi & van Dam 2016). Wetland protection across East Africa is 

low (Fanshawe & Bennun 1991; Pomeroy, Tushabe & Green 1999; Kipkemboi & 

van Dam 2016), and the protection offered to the species residing within these 

wetlands, such as Important Bird and Biodiversity Areas, tend to focus on large 

sites hosting high numbers of specific species (e.g. BirdLife International 2017b). 

However, focusing on large sites in isolation is not sufficient to guarantee the 

persistence of all species, and would require an unrealistic amount of wetland to 

be protected to guarantee survival in this way. Also, with high demand for land 

across East Africa, securing large sites alone is impractical (DeFries et al. 2007) 

and restoration can be expensive and time-consuming (Possingham, Bode & 

Klein 2015). Together with this, predicted future weather events across this region 

(Doherty et al. 2010; Ponce-Reyes et al. 2017) suggest that environmental 

stochasticity should be a consideration, and investing available resources into 

single sites is risky should extinction occur (Schnell et al. 2013). Instead, papyrus-

specialists will benefit from a consideration of metapopulation dynamics, with 

investment spread across a network of appropriately sited, well-managed, large 

wetlands.  

 

Since connectivity often resulted in relatively lower population sizes for each 

species compared to larger, higher quality sites, swamps should be carefully 

managed to maintain their overall linkage, through the reduction of habitat loss 

and permitting moderate levels of disturbance (Donaldson et al. 2016). With 

habitat loss occurring at a rapid rate across parts of East Africa (Maclean, Wilson 

& Hassall 2011), securing some of the larger sites for these species now, will be 

crucial to ensure persistence of papyrus-passerines over the longer-term. In 

practical terms, participatory approaches by those on the ground will be pivotal 

(Jacob et al. 2014; Kipkemboi & van Dam 2016; Tilman et al. 2017) to ensure 
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sites are managed throughout the network. The decentralized governance 

already established in Uganda provides a key mechanism with which to 

implement this (Maclean, Boar & Lugo 2011), recognising that those living within 

proximity to swamps receive most benefit from appropriate management regimes 

(Maclean et al. 2003d).  

  

Conclusion 

 

Overall, this study demonstrates that differences in ecological characteristics can 

influence the response of species to networks prioritising bigger, higher quality, 

numerous smaller or more connected sites. Conservation managers must 

recognise these discrepancies when designing ecological networks for 

biodiversity in order to maintain or enhance long-term persistence and secure 

adequate population sizes. For single species conservation programmes, 

managing sites to maintain high quality is an effective approach. However, 

aspects that maintain quality differ between species, thus multi-species 

conservation programmes may gain from prioritising strategies that are more 

congruent between species, such as enhancing connectivity across the network. 

With this in mind, utilising surrogate species to predict the conservation outcomes 

for other species occupying the same landscape may not be sufficient, 

particularly when faced with differences between the habitat requirements of 

individual species, and the extreme habitat destruction biodiversity is faced with 

today. But by investing in the management of a few large sites and maintaining 

sufficient levels of connectivity across the landscape, the long-term persistence 

of multiple species can be sustained.    
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Chapter 6:  

General discussion 

 

 

Landscapes worldwide are becoming increasingly fragmented, primarily as a 

result of human activities (Newbold et al. 2015). Although theory has vastly 

enhanced our understanding of the response of populations to fragmentation 

(MacArthur & Wilson 1967; Hanski & Gilpin 1991; Hanski 1999a), and led to the 

development of conservation at the landscape-scale, many of the practical 

considerations paramount for conservation planning in the 21st century remain to 

be firmly tested and incorporated into decision making. Papyrus wetlands in East 

Africa have provided a useful system in which to test and apply ideas associated 

with the complexities of managing and conserving species in a realistic landscape 

context. Finances available for conservation are scarce, and conservation 

decisions ought to consider the reliance on this habitat by people, as well as 

multiple species of endemic passerines, which are declining at an even faster 

rate than the wetland itself (Maclean, Wilson & Hassall 2011). As is common with 

conservation worldwide, current conservation efforts are site-based, with little 

consideration of uncertainty in the future, and are situated among a landscape 

dominated by intense land use. In this chapter, I first review the findings from my 

thesis in relation to the objectives listed in Chapter 1, before drawing together the 

contributions of my research to the conservation of wetland birds in Africa, and 

the general implications for the conservation of fragmented landscapes. I 

conclude with suggestions for future avenues to be explored as a result of this 

research. 

 

i. New perspectives on landscape-scale conservation in the face of 21st 

century environmental pressures 

 

Theoretical work has undoubtedly enhanced our understanding of reserve design 

and landscape-scale conservation. However, the literature available on this is 

broad and impedes the ability of conservation practitioners and decision-makers 
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to make informed decisions about which strategies to adopt and when. In Chapter 

2, I reviewed the literature in the context of 21st century pressures including 

climate change, disease, pollution and invasive species (Millennium Ecosystem 

Assessment 2005), and highlighted the trade-offs that exist between the 

recommended strategies of bigger, better, more and more joined sites (Lawton 

et al. 2010). Although trade-offs have been examined previously (e.g. the SLOSS 

debate), to my knowledge, this is the first review to collectively and explicitly 

consider the trade-offs within and between the recommended strategies 

associated with reserve design. In the context of environmental change, although 

ongoing threats to biodiversity demand the protection of large and high quality 

habitats, there are rare cases when small, less-connected sites can be vital for 

persistence (e.g. for species threatened by disease outbreaks). Enhancing 

habitat quality is effective when habitat requirements are well-known and can be 

managed adequately, particularly in the light of climate change and 

environmental extremes, but evidence suggests that in fragmented landscapes, 

focusing on size and connectivity are likely to be more effective. I aimed to go 

beyond the conclusion that the optimal case-by-case solution is “context 

dependent”, and drew together existing evidence to provide an evidence-based 

framework indicating the main factors for decision-makers to consider when 

selecting among conservation strategies. Several factors that were not 

conventionally considered were incorporated, namely the configuration of the 

landscape, largely as a result of changing land-use practice, the balance between 

climate variability and vulnerability, and management practicalities, including cost 

and space. I demonstrated the potential application of this framework using the 

case-study of land spare-land share (Chapter 2); illustrating how theory 

associated with reserve design could help advance this intensive debate, and in 

my own research on papyrus-specialist birds, showed how an understanding of 

the key principles discussed could assist with landscape-scale conservation 

prioritisation within an ecological network experiencing these modern-day 

challenges (Chapter 5).  
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ii. The needs of local people are compatible with conservation planning 

 

In Chapter 2, I emphasized the value of enhancing habitat quality for conservation 

planning. Managing habitat to restore or maintain quality classically involves 

limiting anthropogenic activity (Hodgson et al. 2009b), but this presents a 

challenge in areas where people rely on the resources provided by these habitats 

for their livelihoods. In Chapter 3, I show that specialist species of birds can 

tolerate disturbance caused by local people for subsistence use, and providing it 

takes place within large swamps with some remaining undisturbed wetland, the 

population density is even enhanced in the presence of disturbance. In line with 

our hypothesis, these species have likely evolved under a long history of 

disturbance, and the inhabitation of people replaced the role of natural (non-

human) disturbances in maintaining a more open habitat (Maclean et al. 2006). 

Although these ideas have been incorporated into the management of temperate 

systems (Bengtsson et al. 2000; Seymour, White & DeMaynadier 2002), the 

principles have seldom been explored or applied in the tropics. Moreover, 

exploring the response of the same species to the spatial configuration of habitat 

in Chapter 4, suggested that disturbance was also unlikely to adversely affect the 

survival or colonization ability of species residing across habitat networks. 

Demonstrating that biodiversity can be maintained alongside the low-intensity 

human use of wetlands has real potential for minimising the conflict that exists 

between conservation management and local people.  

 

iii. Using patch-level dynamics to assess resistance and resilience to 

extinction  

 

Effective conservation planning is required to ensure that the limited resources 

for conservation are used wisely in the limited time available to reach ambitious 

global biodiversity targets. However, the conventional approaches to this focus 

on boosting populations at key sites (Coppolillo et al. 2004). This is problematic 

amid the pressures faced by ecosystems in the 21st century (Chapter 2), as 

species may not reside in single sites indefinitely, and the surrounding landscape 

plays a role in their regional persistence. In Chapter 4, I used a novel framework 

to prioritise sites based on their ability to resist extinction through high survival, 
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and be resilient to extinction through high probability of colonization, to make an 

explicit link between metapopulation dynamics and conservation planning, and 

help ensure priority sites have the capacity to cope with future change. This 

chapter identified the importance of habitat configuration for the persistence of 

the focal species, highlighting the parts of the network that were likely to be most 

important for long-term persistence across species. In line with theoretical and 

empirical evidence discussed in Chapter 2, patch size and aspects of habitat 

quality (Chapter 3) were particularly important for the survival of most species. 

However, contrary to traditional assumptions (Hanski et al. 1996), connectivity 

was not a predictor for the colonization of all species; instead, patch size and 

quality were important for the likelihood of a species to (re)colonize a patch. 

Despite subtle differences between the patch-level dynamics of the species’ 

using the habitat network studied here, mapping the predicted levels of resistance 

and resilience across the network showed that there were overlapping sites 

whereby all species have a high chance of survival, combined with the ability to 

respond and recover from change in the future.  

 

iv. Designing effective ecological networks for the conservation of multiple 

species 

 

After highlighting the key principles to be considered when deciding on the most 

effective strategy for landscape-scale conservation in Chapter 2, these ideas 

were applied to my study system in Chapter 5. Chapter 2 emphasized the 

importance of defining the conservation goal, and how distinguishing between 

multi species and individual species conservation programmes can help prioritise 

between bigger, better, more or more joined sites. Protected area networks aim 

to be representative of all species (Margules & Pressey 2000; CBD 2011), though 

data for particular species, such as rare or threatened species, are often scarce. 

In turn, the requirements of single species are often used as surrogates for wider 

aspects of biodiversity, thus assuming that the whole community will benefit from 

single species conservation (Opdam et al. 1995). However, as shown in Chapter 

4, the patch-level dynamics of individual species can differ, but the implications 

of this for the long-term persistence of species has rarely been explored.  
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In Chapter 5, I demonstrated that differences in the ecological characteristics of 

species led to differences in the recommended outcomes for protected area 

designation and management, and the optimal outcome depended on the area 

of habitat that can be protected across the network. To my knowledge, this is the 

first study to clearly illustrate how the optimal conservation strategy for long-term 

persistence and population size changes with area protected, and depending on 

the individual species considered. Consistent with the recommendations from 

Chapter 2, enhancing habitat quality was the optimal approach for the 

conservation of individual specialist species. However, because habitat quality is 

species-specific (Mortelliti, Amori & Boitani 2010), a large amount of habitat was 

required to ensure the persistence of all species. Instead, focusing on large and 

well-connected swamps required the least amount of habitat to guarantee the 

persistence of these specialist species residing across the landscape (Chapter 2; 

Chapter 5). Thus, where only incomplete knowledge is available for some 

members of a group of species sharing the same broad habitat type, targeting 

conservation measures based on overall habitat connectivity may be more 

effective than assuming that optimal quality for one species is a reliable guide for 

the others. 

 

Conservation implications 

African wetland birds  

 

Overall, the work of this PhD has enhanced the ecological knowledge of a group 

of endemic wetland birds that have been subject to little study to date. Wetlands 

have declined rapidly across sub-Saharan Africa over the past few decades 

(Maclean, Wilson & Hassall 2011), leading to the decline of all species of 

papyrus-specialist passerines, and the need for conservation protection 

(Maclean, Bird & Hassall 2014). Throughout this thesis, the potential 

consequences of the loss of wetland habitats have become clearer, and possible 

ways to protect these wetlands and their fauna from further environmental change 

have been investigated. 

 

Ensuring swamps stay sufficiently large was important for securing high densities 

of most of the study species (Chapter 3), while size and overall wetland area was 
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also important for persistence (Chapter 4; Chapter 5). Wetland shape has not 

been conventionally considered by legislation or existing guidelines, but given the 

evident role of circularity for species density (Chapter 3) and persistence (Chapter 

4), consideration should be given to where and how people are draining individual 

swamps. Previous work concluded that the value to local people obtained from 

the wetlands themselves is higher than the value of draining swamps (Maclean 

et al. 2003c). In Chapter 3, I showed that papyrus-specialists are tolerant to 

disturbance from subsistence use by local people, and Chapter 4 suggested that 

localized disturbance did not strongly influence the ability of these species to 

survive in or colonize particular sites. Since habitat loss is evidently problematic 

for both wildlife and people, while the modest use of papyrus by people can 

concurrently maintain biodiversity, the most feasible solution for wetland 

conservation in the tropics would be to involve people, and recognise the role of 

disturbance in landscapes modified over thousands of years. Guidelines should, 

however, clearly identify the importance of retaining intact areas of habitat in 

larger swamps, emphasising that widespread harvesting of papyrus culms in 

these swamps is undesirable (Chapter 3). With comparable levels of productivity  

in other wetland vegetation types following similar disturbances for socio-

economic gain (Muthuri, Jones & Imbamba 1989; Terer, Triest & Muasya 2012), 

such recommendations would likely apply across other tropical wetland systems, 

including Phragmites and Typha species (Chapter 3).  

 

Few papyrus wetlands across Africa have any conservation or protections status 

(Kipkemboi & van Dam 2016), while efforts to conserve papyrus birds are 

primarily confined to the identification of Important Bird and Biodiversity Areas 

(IBA’s) or Ramsar sites. The need to extend the current network of these sites to 

other areas important for these species has been recognised (Byaruhanga, 

Kasoma & Pomeroy 2001), but to date there has been a lack of data to support 

such designations. This is of particular importance across the study region; 

hosting high densities of papyrus, as well as being a notable stronghold for 

populations of papyrus-endemic passerines (Maclean, Bird & Hassall 2014). In 

Chapter 4, I identified several key sites at Lake Bunyonyi that are worthy of 

investment, that are not only expected to survive at least over the short-term, but 

likely have some capacity to respond to future change. Papyrus swamps are 

subject to seasonal drainage and intense forms of disturbance, while wetlands in 
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general may be vulnerable to environmental change, including infrequent and 

more severe rainfall events (Mitchell 2013), so ensuring the ability to recover (i.e. 

be recolonized) following regrowth or reflooding, will be key to ensuring the 

survival of these species. At least at Lake Bunyonyi, achieving concurrent 

resilience to extinction of all species is problematic (Chapter 4), highlighting the 

need to protect and restore particular areas of the lake in which colonization 

likelihood and hence resilience, is high. Nyamuriro IBA (01°09'49.32"S; 

29°48'40.32"E) at the north of the lake does appear to capture a series of the 

most important sites for papyrus-endemic birds but several other areas would 

warrant conservation status, including Mugandu/Mukahungye swamp at the far 

south-west (01°24'28.80"S; 29°55'32.88"E), Kaijengye at the south-east 

(01°21'38.88"S; 29°58'21.72"E), and Kyeni towards the north-east of Lake 

Bunyonyi (01°13'26.40"S; 29°52'47.64"E). Kagoma swamp at the south-west 

side of the lake (01°21'25.20"S; 29°53'46.68"E) has been offered some protection 

due the presence of sitatunga antelope (S. Katungi pers. comm), though the 

importance of this wetland for the presence and abundance of papyrus-endemic 

birds should also be acknowledged (Chapter 4; Chapter 5).    

 

One problem with current approaches to wetland conservation in general is that 

they are largely site-based (Coppolillo et al. 2004) and despite the fragmented 

nature of these habitats, tend to focus on wetlands in isolation (Amezaga, 

Santamaría & Green 2002), with criteria for designation geared towards large 

sites hosting high numbers of species (Maclean, Wilson & Hassall 2011). 

However, in Chapter 5, I show that solely focusing on even the single largest site 

did not guarantee the persistence of all papyrus-specialist passerines over the 

long-term, and would have to remain virtually intact to help guarantee persistence 

for those that could survive there. Given the rate of habitat loss and degradation 

in the region (Maclean, Wilson & Hassall 2011), combined with threat from 

environmental change and climate warming (Doherty et al. 2010; Ponce-Reyes 

et al. 2017), sites remaining at their current state over coming years is unlikely. 

On the contrary, wetland-restricted species would benefit from a consideration of 

metapopulation dynamics, and investing in a network of habitats. In reality, it is 

not feasible to protect all wetland patches in a network (Maclean, Bird & Hassall 

2014), so deciding where to invest to ensure the persistence of all species, 

depends on how much wetland you can afford (considering the economic value 
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of conserving swamps over conversion [Maclean, Boar & Lugo 2011] and 

development [Schuyt 2005]) or feasibly protect, or how much wetland habitat 

remains (Chapter 5). Since conservation ought to consider the preservation of all 

papyrus-endemic passerines, conserving networks made up of the largest and/or 

most connected sites was evidently the most efficient method under area 

constraints (Chapter 5), and would offer concurrent benefits under climate 

change, such as the facilitation of species’ range shifts (Chapter 2), and the 

persistence of populations over the long-term (Chapter 4). In practice, this would 

involve a participatory approach (Jacob et al. 2014; Tilman et al. 2017), whereby 

people across the lake coordinate to ensure drainage regulations are adhered to, 

and that they are managed sufficiently with modest resource use (Chapter 3).  

  

Fragmented landscapes 

 

Aside from the conservation recommendations associated with a suite of 

endemic African wetland birds, this thesis has advanced our understanding of 

conservation in fragmented landscapes more generally, and articulated and 

applied several considerations for those carrying out landscape-scale 

conservation. Chapter 2 stated the main factors to contemplate when deciding 

where and how to conserve ecological networks, supported by the extensive 

literature available on this topic. Key amongst the considerations, were the 

conservation goal, species’ traits, landscape configuration, and the risk of future 

environmental extremes or climate variation.  

 

In essence, the recommended strategies vary both at the site-level (Chapter 4), 

and across a network (Chapter 5). Slight variation existed between the 

requirements of individual species and multiple species at the site-level, but this 

did not significantly alter the sites prioritised for investment (Chapter 4). 

Meanwhile differences were also apparent between single and multi-species 

recommendations at the network level; emphasizing the need to carefully 

consider the conservation goal and needs of individual species collectively, when 

investing in networks of fragmented habitat (Chapter 5). Single species are often 

used as surrogates for other species in conservation (Opdam et al. 1995; 

Wahlberg, Moilanen & Hanski 1996). However, even specialists from the same 
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guild and residing in the same habitat networks can possess different dynamics, 

which in turn led to variation in the recommended optimal networks (Chapter 5). 

But with an understanding of the key ecological characteristics of the species in 

need, and knowledge of how much area can be protected, effective habitat 

networks can be designed and prioritised (Chapter 5).    

 

Throughout this thesis, the importance and desire to maintain a number of large 

sites for conservation is evident (Chapter 2-5), but when this is not possible, as 

is now the case across much of the world's landscapes, consideration of how 

much habitat is available overall (Chapter 5), combined with careful consideration 

of the goal and characteristics of species (Chapter 2; Chapter 5), can ensure 

other strategies are equally, or more effective. Maintaining sufficient high quality 

habitat is a priority, especially in the face of environmental change to promote 

range shift (Chapter 2), but consistent with the evidence discussed in Chapter 2, 

this recommendation does not hold in fragmented landscapes utilised by multiple 

species. In such circumstances, protecting large and well-connected sites is 

advisable (Chapter 5). In addition, conservation planning often assumes that 

enhancing connectivity is important, without a priori investigation (Hodgson et al. 

2009b). Chapter 4 illustrates the potential pitfalls of this assumption, and 

highlights the need to determine the consequence before investing in this 

strategy, as not all species benefit from increasing connectivity.  

 

The importance of involving and considering those who are using the landscape 

has also been emphasized here. Historically, people have not been considered 

in conservation planning (Chapter 3), but in a world dominated by land use 

change, methods that account for human interactions with the environment are 

paramount. Conservation traditionally excluded people, with protected area 

designation adopting the “fences and fines” approach (Brandon & Wells 1992), 

but this is evidently unpopular and unfeasible (Hutton, Adams & Murombedzi 

2005), especially in areas where the livelihoods of people are closely dependent 

on natural resource use. Chapter 3 reveals the potential to minimise the conflict 

between humans and wildlife, by demonstrating the role that human activities can 

play in maintaining biodiversity. 
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Future directions  

 

This thesis has greatly increased knowledge of a group of threatened bird species 

in East Africa, as well as contributing to our understanding of how their 

conservation should be prioritised. I now discuss a set of future directions that 

could help to develop the findings reported here, and overcome some of the 

potential limitations experienced.  

 

First, it would be useful to take a region-wide approach, and test and apply some 

of the predictions and recommendations described to areas elsewhere in Africa. 

I have proposed that the subsistence use of papyrus is compatible with wetland 

bird conservation (Chapter 3), and I believe this would be equally likely to apply 

to other tropical habitats exposed to disturbances from megaherbivores, and 

subject to long histories of human use. However, this would merit further 

investigation, as would explicit tests of the influence of human activities on 

biodiversity, to assess the reliability of my proxy measures of disturbance 

(Chapter 3). I am the first to develop metapopulation models for papyrus-endemic 

birds (Chapter 5), but to be most useful for the conservation of these species, 

they ought to have the ability to be applied to other habitat networks (Hanski et 

al. 1996). Thus, the model predictions should be tested both at this site and 

elsewhere (Hanski 1994b), to ensure the validity of the parameters estimated, 

and assess their potential for wider application to other habitat types, for example. 

Advances in movement technology would also enable some of the parameter 

values, namely the dispersal parameter, to be quantified without reliance on 

modelling techniques (Moilanen 2002), and would also improve our 

understanding of the daily and seasonal movements of these species.   

 

Information on the extent of wetlands across Africa is currently lacking (Davidson 

2014; Kipkemboi & van Dam 2016), and up to date land cover estimates are 

urgently required to fully establish the degree of threat facing these systems. 

Specifically, investigating patterns and drivers of loss, combined with an 

understanding of how these patterns directly impact diversity, would be beneficial 

for providing potential guidelines on sustainable use. Direct and indirect effects 

of environmental change on papyrus swamps are recognised (Chapter 1), though 

the impacts of climatic variation on the distribution of papyrus wetlands, and the 
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subsequent distribution of the papyrus-endemic bird species among protected or 

priority sites, particularly following extreme weather events, merits further 

investigation. Sustainable wetland management is a topic that has been subject 

to much discussion following recognition of the importance of natural resource 

use by people, and incorporated into various international agreements (e.g. 

Smart & Canters 1991; CBD 2010), but further research is required on the 

ecology of papyrus wetlands for sustainable utilization, as well as aspects 

associated with governance and socio-economics (van Dam et al. 2014). 

Although I explored the impacts of disturbance on biodiversity in Chapter 3, and 

estimated how much habitat is required across networks for persistence in 

Chapter 5, conclusions could not be formulated on how much papyrus may be 

extracted or drained before it had detrimental effects on wildlife, especially under 

the time-frame of this research. Restoration of papyrus has been proposed over 

more recent years (Morrison et al. 2012; Kiwango et al. 2013), and parts of this 

thesis suggest this could be a fruitful approach to assist with the conservation of 

wetland birds, given the advantages of larger swamps for species persistence 

(Chapter 4; Chapter 5) and tolerance to disturbance (Chapter 3; Chapter 4). 

Research is lacking on the potential for this to balance the consequences of 

habitat loss (e.g. Whytock et al. 2017) and the response of biodiversity and 

people to this, but would be a welcome advance for the future of wetland 

conservation in the tropics.  

 

Finally, another element beyond the scope of this thesis, yet has a significant 

place in wetland conservation, is the potential to explore the social aspects of 

wetlands from a more interdisciplinary point of view. Moderate progress in this 

field has been made and has contributed to some of the ideas within this research 

(e.g. Maclean et al. 2003d; Terer et al. 2012; Zsuffa et al. 2013), but developing 

ways to involve people, assess the feasibility of participation across networks as 

well as on a local scale, and a further understanding of the driving forces that lead 

to intense degradation and loss, would be beneficial for the implementation of 

conservation strategies associated with wetlands. Understanding the adaptive 

capacity of people to climate change is key for wetland conservation (Mitchell 

2013); monitoring the impact of environmental change on the ecosystem services 

provided by papyrus swamps, and how people respond to altered regimes. 

Related to this, wetland loss and degradation across Africa is associated with a 
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lack of policy, failure to adhere to restrictions in place (Kipkemboi & van Dam 

2016), and ill-defined property rights (Adger & Luttrell 2000). Advancing our 

understanding of how and why people respond to or neglect such guidelines, 

where to target regulations for the most success, and methods to involve people 

and encourage cooperation, would be a significant step forward for wetland 

conservation across Africa. The decentralized governance in place in Uganda 

has shown promise (Maclean, Boar & Lugo 2011), and would merit application 

elsewhere on the continent.  

 

Concluding remarks 

 

Landscape-scale conservation has come to the forefront of conservation planning 

over recent decades, primarily as a result of increasing levels of fragmentation 

and the need to plan and compensate for changing environmental pressures. 

Strategic conservation planning is now more important than ever, with limited 

resources available to meet ambitious global biodiversity targets and combat 

rapid biodiversity declines before it’s too late. Clear recommendations accounting 

for what is practically achievable are lacking, while criteria for conservation 

planning and prioritisation still often fail to explicitly consider the importance of 

ecological networks at the required scale. In this thesis, I have synthesized the 

key concepts associated with reserve design to provide a framework for those 

involved in landscape-scale conservation amid 21st century pressures, and used 

a suite of endemic wetland bird species in East Africa to test some of these 

approaches to conservation. This work has made several important advances to 

both the conservation of the study system, as well as approaches for prioritising 

efforts across fragmented landscapes more generally. In the context of modern-

day pressures, trade-offs were apparent between the four axes of reserve design 

(site area, quality, number and connectivity), but with careful consideration of the 

situation at hand, informed decisions can be made. Contrary to traditional 

assumption, conservation planning does not need to exclude people, particularly 

in landscapes subject to disturbances over historic periods of time. Finally, criteria 

for designating important areas for conservation ought to consider the role of 

networks in sustaining populations over the long-term. In practical terms, my 

research has aimed to demonstrate methods to increase the efficiency of site 
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protection when there is a limited area available to be protected, particularly when 

multiple dependent species occupy the landscape and are in need of 

conservation protection. Overall, this work has contributed to the conservation 

planning process; assisting those responsible for making critical conservation 

decisions for fragmented systems, including African wetlands, to make informed 

choices on where and how to invest. With this in mind, I hope that conservation 

resources can be managed and utilised most effectively, in a bid to control the 

impending threat from habitat destruction, and ultimately help combat global 

biodiversity declines. 
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Appendix A: Chapter 3                                                    

 

Table A1. Top-ranking models (ΔAICc ≤ 2) for point counts of all five species.  

 
Formula df  logLik AICc AICc Weight Overall 

weight 

R2 

 Greater swamp-warbler  

1 Circularity:MP - circularity - area - MP 8  -168.29 354.08 0 0.53 0.05 0.05 

2 Circularity:MP - area:MP - circularity - 

area - MP 

9  -167.89 355.68 1.6 0.24 0.02 0.06 

3 Circularity:MP - circularity - area - MP + 

RD 

9  -167.9 355.69 1.61 0.24 0.02 0.06 

 White-winged swamp-warbler  

1 Circularity + area + MP + ND + RD - MP2 

- circularity:RD 

11  -96.98 218.8 0 0.32 0.02 0.19 

2 Circularity + area + MP + ND + RD - MP2  10  -98.31 218.95 0.15 0.3 0.02 0.18 

3 Circularity + area + ND + RD 8  -101.15 219.8 1 0.2 0.01 0.15 

4 Circularity + area + MP + ND + RD - MP2 

+ area:ND 

11  -97.53 219.91 1.1 0.19 0.01 0.18 

 Papyrus canary  

1 Area - MP + ND 7  -99.8 214.75 0 0.41 0.04 0.08 

2 Area - MP 6  -101.51 215.88 1.13 0.23 0.02 0.07 

3 Area - MP + ND + area:MP 8  -99.38 216.26 1.51 0.19 0.02 0.09 

4 Area - MP + ND - area:ND 8  -99.52 216.54 1.79 0.17 0.01 0.09 

 Carruthers's cisticola†  

1 Circularity + area + MP - ND + ND2 + 

circularity:MP + circularity:ND 

11  -132.22 289.28 0 0.71 0.06 0.17 

2 Circularity + area + MP + MP2 - ND + ND2 

+ circularity:MP + circularity:ND 

12  -131.86 291.12 1.84 0.29 0.02 0.18 

 Papyrus yellow warbler†  

1 Circularity + area - RD - RD2 + area:RD 9  -51.6 123.09 0 0.33 0.03 0.19 

2 Circularity + area - PD + RD - RD2 + 

area:RD 

10  -50.85 124.04 0.94 0.21 0.02 0.21 

3 Circularity + area - RD + area:RD 8  -53.27 124.05 0.96 0.21 0.02 0.16 

4 Circularity + area - MP - RD - RD2 + 

area:RD 

10  -51.29 124.92 1.83 0.13 0.01 0.2 

5 Circularity + area - RD - circularity:RD + 

area:RD 

9  -52.57 125.04 1.94 0.13 0.01 0.18 

Formula indicates the terms included in the model and the direction of their effect (±); Df=degrees 

of freedom; logLik= Log likelihood; AICc = Akaike Information Criterion corrected for small sample 
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size; ΔAICc = difference in AIC between current and top model; Weight = weight of model within 

ΔAICc 2; Overall weight = weight of model within full model set; R2 = the proportion of deviance 

explained by the fixed effects in the model by comparing to the deviance of the null model 

(intercept only model including nested random effects and offset) (deviancenull-

deviancemodel)/deviancenull). †species also found in wetlands dominated by other vegetation types; 

Area = Log (patch area) (m2); Circularity = circularity index of patch; Vegetation characteristics 

refer to proportion of each category within the survey area: MP (mixed papyrus/vegetation), RD 

(recently disturbed papyrus/mixed vegetation), PD (past disturbed papyrus), ND (undisturbed 

papyrus); terms marked with “2” represent squared term of that variable; “:” indicates interactions 

between terms. 
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Table A2. Full model averaged output for models (ΔAICc ≤ 2) for point counts of 

all five species. 

Variable Estimate Std. 

Error 

Adjusted 

SE 

z 

value 

Lower CI 

(2.5%) 

Upper CI 

(97.5%) 

Pr(>|z|) RI 

Greater swamp-warbler 

(Intercept) -9.599 0.089 0.090 106.296 -9.776 -9.422 < 2e-16 
 

Circularity -0.158 0.098 0.099 1.594 -0.353 0.036 0.111 1 

Area -0.269 0.093 0.095 2.844 -0.454 -0.084 0.004 1 

MP -0.452 0.196 0.198 2.277 -0.840 -0.063 0.023 1 

Circularity: 

MP 

0.291 0.110 0.112 2.604 0.072 0.510 0.009 1 

Area:MP -0.212 0.215 0.217 0.976 -0.638 0.214 0.329 0.24 

RD 0.063 0.070 0.071 0.890 -0.076 0.203 0.373 0.24 

White-winged swamp-warbler 

(Intercept) -12.004 1.579 1.595 7.526 -15.130 -8.878 < 2e-16 
 

Circularity 0.378 0.157 0.159 2.381 0.067 0.689 0.017 1 

Area 0.763 0.142 0.144 5.311 0.481 1.044 0.000 1 

MP 2.528 1.845 1.868 1.354 -1.133 6.189 0.176 0.8 

ND 0.269 0.116 0.117 2.291 0.039 0.499 0.022 1 

RD 0.216 0.081 0.082 2.646 0.056 0.376 0.008 1 

MP2 -10.624 8.282 8.388 1.267 -27.064 5.815 0.205 0.8 

Circularity: 

RD 

-0.225 0.128 0.130 1.733 -0.479 0.029 0.083 0.32 

Area:ND 0.189 0.149 0.151 1.251 -0.107 0.486 0.211 0.19 

Papyrus canary 

(Intercept) -11.716 0.994 1.006 11.645 -13.687 -9.744 <2e-16 
 

Area 1.222 0.579 0.585 2.088 0.075 2.368 0.037 1 

MP -2.225 1.441 1.457 1.527 -5.081 0.631 0.127 1 

ND 0.522 0.284 0.287 1.816 -0.041 1.085 0.069 0.77 

Area:MP 2.239 2.719 2.753 0.813 -3.157 7.635 0.416 0.19 

Area:ND -0.212 0.283 0.287 0.741 -0.774 0.349 0.459 0.17 

Carruthers's cisticola† 

(Intercept) -10.999 0.316 0.320 34.340 -11.626 -10.371 < 2e-16 
 

Circularity 0.759 0.304 0.308 2.466 0.156 1.362 0.014 1 

Area 1.433 0.364 0.369 3.885 0.710 2.156 0.000 1 

MP‡ 0.468 0.326 0.329 1.423 -0.177 1.113 0.155 1 

ND -1.428 0.612 0.620 2.305 -2.643 -0.214 0.021 1 

ND2 1.958 0.592 0.600 3.264 0.782 3.134 0.001 1 

Circularity: 

MP‡ 

0.415 0.193 0.196 2.117 0.031 0.798 0.034 1 
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Variable Estimate Std. 

Error 

Adjusted 

SE 

z 

value 

Lower CI 

(2.5%) 

Upper CI 

(97.5%) 

Pr(>|z|) RI 

Circularity: 

ND 

1.214 0.445 0.451 2.691 0.330 2.099 0.007 1 

MP2‡ 0.392 0.462 0.468 0.839 -0.525 1.309 0.402 0.29 

Papyrus yellow warbler† 

(Intercept) -13.329 0.621 0.628 21.226 -14.559 -12.098 < 2e-16 
 

Circularity 0.925 0.344 0.348 2.657 0.243 1.607 0.008 1 

Area 1.850 0.537 0.543 3.406 0.786 2.915 0.001 1 

RD‡ -0.674 1.341 1.354 0.498 -3.328 1.981 0.619 1 

RD2‡ -6.146 3.486 3.530 1.741 -13.066 0.773 0.082 0.67 

Area:RD‡ 2.286 1.050 1.062 2.152 0.204 4.368 0.031 1 

PD -0.969 1.249 1.265 0.766 -3.448 1.509 0.443 0.21 

MP‡ -0.145 0.185 0.187 0.773 -0.511 0.222 0.440 0.13 

Circularity: 

RD‡ 

-0.515 0.432 0.437 1.177 -1.372 0.342 0.239 0.13 

Area = Log (patch area) (m2); Circularity = circularity index of patch; Vegetation characteristics 

refer to proportion of each category within the survey area: MP (mixed papyrus/vegetation), RD 

(recently disturbed papyrus/vegetation), PD (past disturbed papyrus), ND (undisturbed papyrus); 

terms marked with “2” represent squared term of that variable; “:” indicates interactions between 

terms; CI= Confidence Intervals; RI = Relative Importance (proportion of models within the set 

with this term included); †Species also found in wetlands dominated by other vegetation types. 

‡Includes wetland dominated by other types of wetland vegetation. 
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Figure A1. Effect of proportion of high (recently disturbed papyrus/vegetation), 

medium (past disturbed papyrus) and low (undisturbed papyrus) intensity 

disturbance, from left to right respectively, on the density of all five study species. 

Derived predictions from single term models (with offset and random effects) to 

illustrate overall effects of disturbance. ±95% confidence intervals are shown in 

grey. See main text (Chapter 3) for more detailed explanations.  
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Appendix B: Likelihood of detection of papyrus-

specialist birds 

 

In order to highlight the probability of detecting each of the five study species 

during an average presence-absence survey (see Chapters 4 and 5), additional 

data was collected on the frequency of detection within a subset of swamps 

surrounding Lake Bunyonyi. Given the need to quantify habitat associations and 

distributions across all sites within the breeding season, it was not feasible to 

conduct multiple visits across all sites during this research (e.g. Mackenzie et al. 

2002; Royle et al. 2005). Alternatively, the amount of time spent at each patch 

during each presence-absence survey over the two years was recorded, and the 

probability of detection was modelled over time in a subset of sites. In turn, the 

probability of detection could be quantified: 

 

Methods 

Detection survey 

 

Patches known to be occupied by at least one of the study species were visited 

between 07:00 – 13:30; within the survey period used for data collection (see 

Methods in Chapters 4 and 5). The number of observations per minute for each 

species (visual and/or by sound) were recorded over a period ranging from 30 to 

146 minutes, from 1 - 6 randomly selected locations at a subset of swamps. Each 

observation was treated as a separate encounter, regardless of the number of 

individuals recorded (see below). Playback was used intermittently throughout, 

representing a typical survey. In total, over 29 hours of this detectability data was 

collected from 23 different points across 11 papyrus (0.08 ha~54.5 ha) and 6 

broad wetland patches (2.03 ha~311.5 ha).  

 

Analysis 

Total length of survey during the presence-absence data collection varied 

depending on the size of the patch. Thus, data collected for the detectability 

survey was separated into small (<2.1 ha) and large (>2.1 ha) patches, based on 
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the typical time spent surveying patches of these sizes. The datasets collected 

per species during each individual survey were analysed separately. To account 

for the temporal autocorrelation arising as a result of the tendency of birds to sing 

regularly for a few minutes before becoming silent again, data were analysed 

using generalized estimating equations (GEEs) with a binomial error structure in 

R package geepack (Halekoh, Højsgaard & Yan 2006). Using this approach, 

clusters of temporally-autocorrelated data points can be incorporated into the 

framework to estimate the mean probability of a bird being detected per minute. 

In turn, using standard probability propagation formulae, the likelihood of 

detection over any time interval can be estimated as follows:  

𝑃𝑡 = 1 − (1 − 𝑃1)𝑡 

where Pt is the probability of detecting the bird during time t and P1, the mean 

probability of detecting the bird per minute. In effect this offers a conservative 

approach to calculate detectability, since some of the delayed detections are 

likely to be “new” detections (i.e. a bird did newly arrive in that area of swamp) 

and detections are clustered into one minute periods, regardless of the number 

of detections within that minute. Clusters were identified using the R package 

mclust (Fraley et al. 2012), which automatically specifies the optimal number of 

clusters and assigns each data point to a cluster using a Bayesian model 

comparison. No prior was assumed. The cumulative probability was 

subsequently estimated over 120 minutes for small and large patches. The 

probabilities of detection were then plotted separately for the individual surveys 

for each species against time, and compared with the average presence-absence 

survey time for which a species was recorded as absent.  

 

Results 

Presence-absence survey data 

 

Over the 2 years of data collection, presence-absence surveys were conducted 

for an average of 20 minutes for small papyrus patches, and up to an average of 

164 minutes for large broad wetland swamps (Table B1). In small swamps, a 

species was recorded as absent following a mean of 14 minutes at patches for 

greater swamp-warbler, and a mean of up to 34 minutes for papyrus yellow 
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warbler and Carruthers’s cisticola. Meanwhile, large swamps were surveyed for 

a period of ~67 minutes for Carruthers’s cisticola before marked as absent, and 

up to a mean of 98 minutes for papyrus yellow warbler. Greater swamp-warbler 

was not recorded as absent at any of the larger swamps over the 2 years of 

survey (Table B1).  

 

Table B1. Mean survey time (minutes) spent at suitable small (<2.1 ha) and large 

(>2.1 ha) patches for all species during 2014-2015 presence-absence data 

collection. ‘All patches’ represents the mean time spent surveying all suitable 

patches for that species; ‘Absent patches’ shows the mean time spent at patches 

before that species was recorded as absent. Standard deviations are shown in 

brackets. n = total number of suitable patches surveyed within small and large 

categories. 

Species Small patches (mins) Large patches (mins) 

n All 

patches 

Absent 

patches 

n All 

patches 

Absent 

patches 

Greater 

swamp-warbler 

487 20 (15) 14 (9) 32 130 (81) N/A 

Papyrus canary 487 20 (15) 18 (13) 32 130 (81) 86 (39) 

White-winged 

swamp-warbler 

200 29 (19) 27 (17) 32 130 (81) 77 (26) 

Papyrus yellow 

warbler 

141 34 (24) 34 (24) 36 150 (91) 98 (43) 

Carruthers’s 

cisticola 

130 35 (25) 34 (25) 30 164 (95) 67 (9) 

 

Probability of detection 

 

Results suggest that most species had >95% probability of detection within the 

average time spent surveying a patch before it was marked as absent (Figure 

B1). Within smaller swamps, Carruthers’s cisticola and white-winged swamp-

warbler had the highest chance of detection within the mean survey time, while 

papyrus canary had the lowest probability of being detected during the time spent 

surveying (Figure B1a). This is likely due to the low densities of these species in 

smaller patches, being relatively less vocal, and the fact they have been known 
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to occasionally forage outside of swamps (Vande weghe 1981). Detectability 

within large swamps was notably higher, particularly within the longer time 

periods spent at these sites (Figure B1b; Table B1). The results show that the 

detectability of Carruthers’s cisticola was slightly lower in two (13%) of the 

surveys for larger swamps (Figure B1b), due to the fact that densities in these 

patches were relatively lower than some of the other sites surveyed here.   

 

Overall, these results confirm the high likelihood of detection of the study species 

within the average presence-absence survey time. We recognise that there is a 

chance of false absences for some swamps within the network, particularly in 

smaller patches where species may move through more frequently. However, the 

analysis performed here is a conservative approach, and combined with previous 

research which demonstrated that surveying for more extensive periods made 

little difference to the records of these species (Maclean et al. 2006), we can be 

confident that the chances of missing a bird in a given patch during our surveys 

was relatively low.   
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Figure B1. Probability of detection for each species within a) small patches (<2.1 

ha) and b) large patches (>2.1 ha) over 120 minutes. Solid coloured lines 

represent the probability of detection for each species during each of the 

detection surveys (n = number of detection surveys in wetland areas containing 

that species): CC = Carruthers’s cisticola (a: n=3, b: n=15), GSW= greater 

swamp-warbler (a: n=11, b: n=10), PC = papyrus canary (a: n=9, b: n=10), PYW 

= papyrus yellow warbler (a: n=3, b: n=8), WWW = white-winged swamp-warbler 

(a: n=8, b: n=11). Dashed coloured lines indicate the mean presence-absence 

survey time for patches where that species was recorded as absent over the 2 

years of survey (see also Table B1).   
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Appendix C: Chapter 4 

 

Table C1. Mean patch size (ha) and proportion of disturbed habitat in 2014 and 

2015 for all wetland patches surveyed across the study site.  

Wetland type Patch area (ha) Proportion of 

disturbed wetland 

2014 2015 2014 2015 

Papyrus 1.22 1.06 0.23 0.17 

Broad wetland  

(Papyrus yellow warbler)  

3.75 3.19 0.14 0.11 

Broad wetland 

(Carruthers’s cisticola)†  

6.58 5.73 0.14 0.10 

†Includes agricultural wetland
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Table C2. Global models for colonization and survival analysis for all species: 

greater swamp-warbler (GSW), papyrus canary (PC), white-winged swamp-

warbler (WWW), Carruthers’s cisticola (CC), papyrus yellow warbler (PYW)

  

Species Colonization Survival 

GSW log(area) + connectivity + circularity 

+ disturbed + undisturbed + mixed 

veg + disturbed2 + mixed veg2 + 

undisturbed2 

log(area) + connectivity + 

circularity + disturbed + mixed veg 

+ undisturbed + disturbed2 + mixed 

veg2 + undisturbed2 

PC log(area) + connectivity + circularity 

+ disturbed + undisturbed + mixed 

veg + undisturbed2 

log(area) + connectivity + 

circularity + disturbed + mixed veg 

+ undisturbed + disturbed2 + mixed 

veg2 

WWW log(area) + connectivity + circularity 

+ disturbed + undisturbed + mixed 

veg + disturbed2 + mixed veg2 

log(area) + connectivity + 

circularity + disturbed + mixed veg 

+ undisturbed + disturbed2 

CC log(area) + connectivity + circularity 

+ disturbed + undisturbed + mixed 

veg + mixed veg2 

log(area) + connectivity + 

circularity + mixed veg + 

undisturbed + disturbed 

PYW log(area) + connectivity + circularity 

+ disturbed + undisturbed + mixed 

veg 

log(area) + connectivity + 

circularity + disturbed + mixed veg 

+ undisturbed 

 



Appendix C 

 

171 
 

Table C3. Full model averaged output (ΔAICc ≤ 2) for colonization analysis (2014-

15).   

Species Variable Estimate Std. Error Lower CI Upper CI Significance RI 

GSW (Intercept) -1.047 0.974 -2.966 0.872  
 

 area (log) 0.732 0.179 0.380 1.083 *** 1 

 connectivity 0.044 0.010 0.025 0.062 *** 1 

 mixed papyrus -0.985 0.871 -2.696 0.727  0.78 

 
disturbed -1.152 1.097 -3.307 1.004  0.73 

 
undisturbed  0.288 1.355 -2.375 2.950  0.59 

 mixed papyrus 2 -0.409 0.837 -2.052 1.234  0.29 

 
disturbed2 -0.472 1.100 -2.632 1.688  0.26 

 undisturbed2 -0.682 1.597 -3.817 2.454  0.23 

 
circularity -0.002 0.005 -0.012 0.009  0.15 

WWW (Intercept) -10.681 4.863 -20.300 -1.093 *   

 circularity 0.099 0.054 -0.008 0.206  1 

 mixed papyrus 105.624 61.976 -16.700 227.901  1 

 mixed papyrus2 -455.681 335.511 -1120.000 206.371  1 

 
undisturbed 1.439 2.266 -3.020 5.896  0.46 

 
area (log) 0.248 0.541 -0.817 1.313  0.34 

  disturbed -0.395 2.102 -4.540 3.747  0.12 

PC (Intercept) 0.300 1.003 -1.668 2.269  
 

 area (log) 1.186 0.179 0.833 1.538 *** 1 

 
undisturbed 2.949 2.562 -2.082 7.980  1 

 undisturbed2 -4.798 2.985 -10.660 1.063  0.91 

 
mixed papyrus -1.420 1.047 -3.476 0.635  0.83 

 
circularity 0.013 0.012 -0.010 0.037  0.71 

 
disturbed -0.387 0.835 -2.025 1.252  0.31 

  connectivity 0.006 0.013 -0.021 0.032  0.28 

CC (Intercept) -10.422 4.556 -19.436 -1.408 * 
 

 area (log) 4.248 1.417 1.443 7.052 ** 1 

 connectivity 0.013 0.006 0.001 0.024 * 1 

 circularity 0.098 0.047 0.004 0.191 * 1 

 
disturbed 1.835 4.131 -6.307 9.976  0.3 

  undisturbed -0.272 1.399 -3.038 2.493  0.19 

PYW (Intercept) -2.268 0.912 -4.065 -0.472 * 
 

 area (log) 1.230 0.285 0.666 1.793 *** 1 

 
mixed papyrus -0.767 1.369 -3.461 1.927  0.39 

 
undisturbed 0.249 0.938 -1.598 2.097  0.16 

 
disturbed -0.484 2.257 -4.931 3.963  0.13 

  circularity 0.001 0.010 -0.018 0.021  0.12 
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Species: GSW = greater swamp-warbler; WWW = white-winged swamp-warbler; PC = papyrus 

canary; CC = Carruthers’s cisticola; PYW = papyrus yellow warbler.  CI = Confidence Intervals. 

Variables; RI = Relative Importance (proportion of models including this term); Levels of 

significance: *** p = 0.001, ** p = 0.01, * p =0.05, p = marginal. 2indicates squared term. 
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Table C4. Full model averaged output (ΔAICc ≤ 2) for survival analysis (2014-

15). 

Species Variable Estimate Std. Error Lower CI Upper CI Significance RI 

GSW (Intercept) 4.935 1.075 2.821 7.049 *** 
 

 area (log) 0.843 0.207 0.436 1.250 *** 1 

 circularity -0.045 0.011 -0.066 -0.024 *** 1 

 
mixed papyrus -3.143 2.161 -7.387 1.102  1 

 
undisturbed 3.848 2.551 -1.166 8.861  0.93 

 undisturbed2 -4.439 2.806 -9.953 1.075  0.87 

 
disturbed2 -3.098 2.632 -8.267 2.071  0.71 

 disturbed -1.048 1.901 -4.780 2.683  0.42 

 
mixed papyrus2 1.210 2.186 -3.083 5.504  0.36 

  connectivity 0.003 0.007 -0.011 0.016  0.26 

WWW (Intercept) -2.288 5.012 -12.255 7.678  
 

 area (log) 2.056 0.665 0.721 3.391 ** 1 

 circularity 0.062 0.034 -0.006 0.131  1 

 
connectivity 0.003 0.010 -0.016 0.023  0.22 

 
undisturbed -0.231 0.787 -1.799 1.337  0.19 

  mixed papyrus -0.340 1.398 -3.129 2.449  0.17 

PC (Intercept) 2.957 2.616 -2.268 8.181  
 

 area (log) 2.174 0.704 0.761 3.587 ** 1 

 mixed papyrus -89.115 50.256 -189.931 11.701  1 

 
mixed papyrus2 339.036 239.775 -141.995 820.066  1 

  connectivity 0.016 0.049 -0.081 0.113  0.28 

CC (Intercept) -3.527 5.522 -14.602 7.549  
 

 area (log) 2.650 1.583 -0.559 5.858  1 

 
connectivity 0.006 0.008 -0.010 0.021  0.55 

PYW (Intercept) -3.619 3.212 -10.275 3.037    

 
area (log) 2.050 1.633 -1.324 5.425  0.87 

 
undisturbed 2.860 6.942 -11.391 17.111  0.3 

 
disturbed 14.506 35.648 -58.098 87.110  0.28 

  circularity 0.010 0.043 -0.079 0.099  0.12 

Species: GSW = greater swamp-warbler; WWW = white-winged swamp-warbler; PC = papyrus 

canary; CC = Carruthers’s cisticola; PYW = papyrus yellow warbler.  CI = Confidence Intervals. 

Variables; RI = Relative Importance (proportion of models including this term): Levels of 

significance: *** p = 0.001, ** p = 0.01, * p =0.05, p = marginal. 2indicates squared term.
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Figure C1. Semi-variogram plots of the residuals from the predicted vs observed 

values for colonization (left) and extinction (right) data sets for all species. 
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Figure C2. Map of 2014-2015 

occupancy data for five study species 

(a-e) at wetland patches (green) 

surrounding Lake Bunyonyi, Uganda.  
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Figure D1. Output from metapopulation simulations for all study species without 

regional stochasticity: protecting the single largest, biggest (2+), smallest, most 

connected and highest quality patches in the current network.  a-e display the 

mean proportion of replicates that persisted after 100 years, and f-j show the 

mean relative population size after 100 years, against the total area of suitable 

wetland habitat available across the network (a-e are plotted on the log+1 scale 

for clarity). Solid lines show simulation results from habitat configuration as it was 

in 2015, dashed lines represent results from scenarios modelled by reducing area 

to allow for a comparison between strategies at equivalent levels of habitat (full 

explanation provided in Model simulations in Methods). See Figure 5.1 (Chapter 

5) for equivalent figure with regional stochasticity.  
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Table D1. Parameter estimates and lower and upper (95%) confidence intervals following repeat runs with 

same starting parameters for five species: greater swamp-warbler (GSW), papyrus canary (PC), Carruthers’s 

cisticola (CC), white-winged swamp-warbler (WWW), papyrus yellow warbler (PYW). The parameters with the 

lowest AIC selected for use in subsequent simulations are shown in bold.  

  

Species 

  

 

Run 

 

Parameters   

AIC   α     y 
 

  µ     x   

value lower upper value lower upper value lower upper value lower upper 

GSW 1 0.257 0.257 0.259 168.010 168.010 168.010 0.028 0.028 0.028 0.500 0.500 0.500 864.1 
 

2 0.204 0.204 0.204 226.017 226.017 226.017 0.012 0.012 0.012 0.864 0.864 0.864 852 
 

3 0.236 0.179 0.236 212.909 197.884 290.399 0.016 0.016 0.016 0.615 0.615 0.694 873.7 
 

4 0.124 0.100 0.131 354.309 354.309 449.176 0.025 0.025 0.032 0.439 0.439 0.500 891.6 

PC 1 0.125 0.125 0.172 278.859 226.851 278.859 0.006 0.005 0.006 1.177 1.126 1.177 465.1 
 

2 0.190 0.190 0.190 185.753 185.753 185.753 0.012 0.012 0.012 0.935 0.935 0.935 457.6 
 

3 0.187 0.187 0.187 197.122 197.122 197.122 0.004 0.004 0.004 1.083 1.032 1.129 464.8 

CC 1 0.070 0.000 0.151 1998.430 1164.079 5417.371 0.061 0.037 0.072 0.734 0.523 1.031 104.3 
 

2 0.084 0.000 0.164 1770.502 1062.212 4837.755 0.038 0.022 0.056 0.691 0.438 1.155 105.2 
 

3 0.086 0.001 0.160 1780.592 1148.651 5375.216 0.034 0.034 0.043 0.726 0.270 1.180 105.6 

WWW 1 0.018 0.006 0.052 5131.224 3639.992 8106.736 0.065 0.064 0.065 0.471 0.338 0.638 124.5 
 

2 0.021 0.003 0.051 5512.051 3399.745 8138.029 0.059 0.059 0.059 0.488 0.361 0.509 123.9 
 

3 0.008 0.005 0.060 5413.138 3242.185 8501.896 0.065 0.045 0.065 0.514 0.333 0.585 124.4 

PYW 1 0.001 0.000 0.026 1440.835 1131.181 1978.382 0.054 0.040 0.055 1.513 0.651 2.768 123.5 
 

2 0.001 0.000 0.021 1446.647 1192.023 1984.177 0.041 0.041 0.067 1.340 0.720 2.579 123.3 
 

3 0.000 0.000 0.008 1358.071 1231.682 2050.646 0.029 0.029 0.034 1.722 0.934 2.475 123.3 
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