Title: When increasing population density can promote the evolution of metabolic cooperation

Running title: High population density can promote cooperation

Authors: Richard J. Lindsay*, Bogna J. Pawlowska*, Ivana Gudelj

Affiliation: University of Exeter, United Kingdom.

Corresponding Author: Prof. Ivana Gudelj,
University of Exeter
School of Bioscience
Geoffrey Pope Building
Exeter, EX4 4QD.
I.Gudelj@exeter.ac.uk
Tel: +44 (0)1392725840
Fax: +44 (0)1392263434

*These authors contributed equally to this work.

Conflict of interest: The authors declare no conflict of interest

Funding: Richard J. Lindsay and Ivana Gudelj: European Research Council no. 647292

Subject category: Microbial population and community ecology
Abstract

Microbial cooperation drives ecological and epidemiological processes and is affected by the ecology and demography of populations. Population density influences the selection for cooperation, with spatial structure and the type of social dilemma, namely public-goods production or self-restraint, shaping the outcome. While existing theories predict that in spatially structured environments increasing population density can select either for or against cooperation, experimental studies with both public-goods production and self-restraint systems have only ever shown that increasing population density favours cheats. We suggest that the disparity between theory and empirical studies results from experimental procedures not capturing environmental conditions predicted by existing theories to influence the outcome. Our study resolves this issue and provides the first experimental evidence that high population density can favour cooperation in spatially structured environments for both self-restraint and public-goods production systems. Moreover, using a multi-trait mathematical model supported by laboratory experiments we extend this result to systems where the self-restraint and public-goods social dilemmas interact. We thus provide a systematic understanding of how the strength of interaction between the two social dilemmas and the degree of spatial structure within an environment affect selection for cooperation. These findings help to close the current gap between theory and experiments.

Introduction

Microorganisms engage in an impressive array of cooperative behaviours (Crespi 2001) that drive ecosystem and epidemiological processes including nutrient recycling (Kaiser et al 2015), antibiotic resistance (Lee et al 2010) and disease virulence (Crespi et al 2014, Griffin et al 2004, Lindsay et al 2016). These social interactions are shaped by the ecology and demography of populations with population density known to affect selection for cooperation (Chen et al 2014, Datta et al 2013, Dobay et al 2014, Greig and Travisano 2004, MacLean and Gudelj 2006, Ross-Gillespie et al 2009). Whether high population density favours cooperation can depend on the spatial structure of the environment (Dobay et al 2014, MacLean and Gudelj 2006) and the type of social dilemma faced
In particular, two types of social dilemmas have been considered: public-good production and self-restraint. Public-goods are extracellular factors used to perform a range of functions including nutrient acquisition, biofilm formation and quorum sensing (West et al 2007). They are costly to produce and benefit individuals in the locality. Therefore, public-goods are prone to exploitation by cheats who do not contribute to their production, but can still reap the rewards. Self-restraint cooperation arises from a metabolic trade-off between growth rate and efficiency, whereby fast growth is consequently less efficient than slow growth (Pfeiffer et al 2001). Efficient use of common resources conforms to the classical definition of a cooperative trait; it is beneficial to the group because more biomass is produced per unit of resource, but costly to individuals because they reproduce at a slower rate. This is prone to exploitation by cheats that use resources quickly but inefficiently for their own rapid multiplication, at the expense of the total population yield (MacLean and Gudelj 2006).

The relationship between population density and cooperation is not yet fully understood with theory and empirical studies in disagreement. Theory suggests that high population density could favour either cooperators or cheats. For self-restraint cooperation it is argued that selection depends on the biological details of the system because density alters numerous factors including the resource availability per individual, the variation in resource concentrations as they are consumed, and how beneficial cooperation is (Ross-Gillespie et al 2009). For public-goods systems, it is postulated that high population density could favour cheats because in dense populations cheats are `physically closer’ to cooperators and can thus exploit them more effectively (Ross-Gillespie et al 2009).

However it is also suggested that high cell density could favour cooperators if cells diffuse slower than the public-goods they produce (Dobay et al 2014), or the environment is sufficiently spatially structured (Lion and Gandon 2009, Lion 2010).

Until now empirical studies have only been able to demonstrate that in structured environments high population density favours cheats both in self-restraint (MacLean and Gudelj 2006) and public-good (Celiker and Gore 2012, Chen et al 2014, Datta et al 2013, Greig and Travisano 2004, Kümmerli et al 2009, Ross-Gillespie et al 2009) cooperative systems. Moreover, contrary to the predictions in (Dobay...
et al 2014) experiments with motile (Ross-Gillespie et al 2009) and non-motile (Greig and Travisano 2004) cell populations producing public-goods both report the same outcome that high density favours cheats, even when cells diffuse slower than the public-goods.

Could the discrepancies between theoretical and empirical studies result from experimental procedures not capturing the extent of environmental variation that is predicted to affect the outcome (Dobay et al 2014, Ross-Gillespie et al 2009)? To address this, we conducted a series of microbial laboratory experiments using a model cooperative system with *Saccharomyces cerevisiae* which exhibits both public-good (Gore et al 2009) and self-restraint cooperation (MacLean and Gudelj 2006). We manipulated factors suggested by theoretical models to underpin the relationship between population density and cooperation, these are: the relative cost and benefits of cooperation (Dobay et al 2014, Ross-Gillespie et al 2009), the physical proximity of cells to each other (Ross-Gillespie et al 2009) and the diffusion of public-goods and cells (Dobay et al 2014). For the first time we provided experimental evidence supporting theoretical predictions that high population densities could favour cooperation in spatially structured environments in both self-restraint (Ross-Gillespie et al 2009) and public-goods cooperative systems (Dobay et al 2014).

As cooperative traits frequently interact (Brown and Taylor 2009, Harrison and Buckling 2009, Lindsay et al 2016, MacLean et al 2010, Ross-Gillespie et al 2015) we next asked whether high population density can favour cooperation in systems where the self-restraint and public-goods social dilemmas interact. To this end we developed a multi-trait mathematical model, manipulated the strength of interactions between the two social traits and showed that high population density can still favour cooperation. Moreover, our model predicted that decreasing the influence of self-restraint over public-goods production will increase the range of environmental structures where high population density favours cooperation. We provided a mechanistic explanation for this outcome, suggesting that the cost of inefficient metabolism arising in the presence of the self-restraint dilemma outweighs the benefit of public-good cooperation in environments with low spatial structure where public-goods are more accessible to cheats. However, reducing the strength of the self-restraint dilemma will reverse the cost/benefit relationship in favour of cooperation. This was verified experimentally.
Our work provides the first empirical evidence that high population density can favour cooperation in spatially structured environments in both single and multi-trait cooperative systems and we provide an explanation as to why this result has so far been elusive.

Materials and methods

The experimental system

To secure nutrients microbes can cooperatively secrete enzymes, termed public goods, that break down complex sugars into simple sugars that are easier to digest (Schweizer and Dickinson 2004, Talbot 2010). Public-good cooperation in S. cerevisiae arises from the production of invertase to externally hydrolyse sucrose into glucose and fructose, the preferential carbon sources (Schweizer and Dickinson 2004).

Once simple sugars are available in the environment, microbes are constrained by a metabolic trade-off between growth rate and efficiency (Pfeiffer et al 2001), which is at the core of the self-restraint social dilemma. In S. cerevisiae, the rate at which resources are taken up alters whether they are catabolised by rapid, low yielding fermentation or slower, more efficient respiration (Otterstedt et al 2004, Postma et al 1989).

There is an inevitable interaction between public-good and self-restraint cooperation during invertase-mediated metabolism of sucrose by S. cerevisiae (MacLean et al 2010). This occurs because when invertase secreting cells externally hydrolyse sucrose, they form local spikes in monosaccharide concentrations. Cells exposed to high resources concentrations metabolise them relatively less efficiently than when exposed to lower concentrations (Postma et al 1989, Weusthuis et al 1994), such as in the regions of cells that do not produce invertase. This forms the basis of self-restraint cooperation. Therefore, varying resource supply can control the strength of interaction between self-restraint and public-goods dilemmas. When resources are scarce, the rate-efficiency trade-off is weak (Weusthuis et al 1994, MacLean et al 2010) and public-good production is expected to be the
dominant constraint on growth. However, when resources are abundant, inefficient metabolism from high uptake rates will constrain growth (MacLean et al 2010).

Mathematical model

A mathematical model was developed to examine the relationship between population density and the interaction between self-restraint and public goods cooperation. The model was based on the established mathematical framework developed previously (MacLean et al 2010) with spatial interactions represented by a system of reaction-diffusion equations (For more details see Supplementary Text).

Experimentally manipulating spatial structure of the environment

We established the lowest level of structure in shaken liquid cultures (Figure 1a). Note that while for self-restraint systems shaken liquid cultures represent spatially unstructured environments (MacLean and Gudelj 2006), for public-goods systems spatial structure is not completely absent. This is because invertase producers get preferential access to the public-good (Gore et al 2009) and form small clumps when dividing (Koschwanez et al 2011). An intermediate level of structure was established with initially mixed subpopulations on agar plates, and a high level was established with segregated subpopulations on agar plates (Figure 1a).

Strains

Strains of S. cerevisiae were those used previously to test public-good cooperation (Celiker and Gore 2012, Gore et al 2009) (from J. Gore, MIT). The invertase producing strain (cooperator, BY4741, SUC2) constitutively expresses yEYFP by the TEF1 promoter. The non-invertase producing strain (JG210C, cheat, Δsuc2::kanMX4) expresses tdTomato by the PGK1 promoter.

Strains to test self-restraint cooperation were those used previously (MacLean and Gudelj 2006) (from P. Dahl, University of Gothenburg). CEN.PK2-1C has wild-type hexose transport capabilities and is a
self-restraint cheat. Whereas TM6*, a mutant that has a single synthetic hexose transporter, is a self-
restraint cooperator. The strains are distinguishable by fluorescence with CEN.PK2-1C constitutively
expressing GFP and TM6* expressing mCherry, both by the TEF1 promoter, inserted into the URA3
locus. TM6* was also used as a public-good cooperator with reduced hexose uptake ability (Figure
3d), but with a GFP marker.

To test the influence of interacting cooperative traits, in addition to competing BY4741 and JG210C
(Figure 4b-c), a non-invertase producing mutant of TM6* (Δsuc2::kanMX4) (Supplementary Figure
S2) was generated in the mCherry-expressing background to compete with TM6* (GFP) (Figure 4d-
f).

Details of strains are summarised in Table 1. Strains used in each competition are also indicated on
Figures.

Competition experiments

To experimentally test the influence of population density on the selection of cooperation in different
environmental conditions, competition experiments were conducted in each environment with three
different initial population densities. The nature of the relationship between cooperator fitness and
density was assessed for each environment. The initial frequency of cooperators (f, given in figure
legends) was equivalent for different spatial structures and resources concentrations tested, except
when specifically testing the effect of changes in frequency on the relationship between density and
cooperation (Supplementary Figure S5).

Competition experiments were conducted in defined media (DM: 6.9 g/l Yeast Nitrogen Base w/o
amino acids, 790 mg/l complete supplement mixture (Formedium, UK) with varying specified
concentrations of glucose (for self-restraint cooperation) or sucrose (for public-good and interacting
cooperative traits) and 16 g/l agar where applicable.
Strains were initially grown in 5 ml YPD (10 g/l yeast extract, 20 g/l peptone, 20 g/l glucose) shaken overnight at 30˚C. Cells were washed twice and resuspended in 5 ml DM lacking sugar. Spatially structured competitions (intermediate and high) were performed on 9 cm diameter Petri dishes containing 25 ml DM. Cells were inoculated onto agar plates in patches of 20 µl in a 4x5 array (Figure 1a) as described previously (MacLean et al 2010). See Supplementary Figure S1 for details. Plates were sealed with parafilm to minimise evaporation and incubated at 30˚C for 7 d to allow resources to diffuse and be consumed. Cells were collected by flooding the plates with 5 ml PBS and colonies were gently scraped from the agar into suspension and appropriately diluted for flow cytometry to distinguish strain densities as detailed below. Each plate was considered a single replicate.

Low structure competitions were performed in DM, omitting agar, within a 48-well suspension culture microplate (Bio-One Greiner) (640 µl per well). Cultures were incubated at 30 °C in a FLUOstar Omega microplate reader (BMG Labtech) with shaking at 700 r.p.m. for periods to allow population growth to reach approximately stationary phase based on OD_{620nm} readings. This was for 48 h for all competitions, except for those with low density and resources (96 h) and using TM6* (72 h) where growth rate was low owing to the Allee effect (Dai et al 2012) and metabolic constraints (Otterstedt et al 2004).

Rate-efficiency trade-off tests were performed the same way for 72 h, with an initial density of 2 x 10^5 cells.well^{-1}. Population density was calibrated to OD for this system according to (Dai et al 2012). For our spectrophotometer, OD_5 = 0.064, OD_{max} = 3.3. For liquid cultures, each well was considered a replicate. Flow cytometry was used to establish the initial and final densities of the strains. This was performed with a Guava easyCyte HT System using Guava InCyte software (Merck Millipore). Populations were diluted in PBS (pH 7.4) to a density of 10^4 – 5x10^5 cell.ml^{-1}. Density was established by measuring events gated on FSC and SSC. Cooperator and cheat cells were gated based on fluorescence (Supplementary Figure S3). Relative fitness was calculated based on the ratio of Malthusian growth parameters (Lenski et al 1991), as done previously when assessing the density-dependent nature of cooperator fitness (Greig and Travisano, 2004), with relative fitness = 1 denoting equal fitness (see Supplementary text for details).
Data analysis

Statistical tests were performed using R version 3.1.1. We assess the nature and strength of the relationship between density \((x)\) and cooperator fitness \((y)\) using linear models. Linear models were calculated and plotted using the “MASS” package (version 7.3-35) and plotted (black line) ± s.e. (shaded regions). Monotonic models were used to capture changes in selection across the range of initial densities tested. Monotonic models were fitted in the form \(y = x\) or \(y = e^x\) with the better model fit shown based on AIC values with coefficient estimates \((\beta)\) reported. Though not optimal fits, these were used for simplicity to readily distinguish switches in the selection for cooperation. The initial density was log\(_{10}\) transformed for the assumptions of the parametric statistical test.

Comparisons of the strength of association between density and fitness between levels of structuring and resource concentrations (Figure 1) were performed with a GLM with density and structure or resource concentration as explanatory variables with an interaction term between the two. Non-monotonic relationships were examined with quadratic terms, and assessed for best fit based on AIC values, with linear models using density as factor to assess relative fitness differences.

Results

Self-restraint cooperation

Previous experimental studies found that density-dependent selection for self-restraint cooperation is positive in spatially unstructured yet negative in structured environments (MacLean and Gudelj 2006). While our experiments agree for shaken liquid environments (Figure 1b), in structured environments we found the opposite (Figure 1c-d), namely that high population density favours cooperation. Why is our result different to that in (MacLean and Gudelj 2006)? The difference comes from the way spatial structure is represented experimentally. In (MacLean and Gudelj 2006), unshaken liquid cultures were used to represent a spatially structured environment while our experiments were conducted on agar plates (Figure 1a).
We found that the extent to which increasing density selects for cooperation reduces as spatial structuring increases (Figure 1c-d). This result arises, as suggested (Ross-Gillespie et al 2009), because spatial structuring alters the relative magnitude of benefits gained through cooperation. In our system, resources become heterogeneously distributed when the population is spatially structured because self-restraint cooperators and cheats have disparate resource consumption rates (Otterstedt et al 2004). These resource gradients alter the pay-offs of self-restraint cooperation through the rate-efficiency trade-off and/or the antagonistic metabolic by-products generated by self-restraint cheats (MacLean and Gudelj 2006, Weusthuis et al 1994). To test this, we repeated competitions when spatial structuring was high, but we altered the cost-to-benefit ratio of self-restraint cooperation by reducing the resource concentration (Supplementary Figure S4). When glucose concentration lowered, from 111.01 to 13.88 mM, positive density-dependence of self-restraint cooperator fitness remained, however the strength of this relationship was lessened (Figure 1e). When reduced further (to 2.78 mM), self-restraint cooperator fitness was negatively density-dependent (Figure 1f).

Therefore, as suggested by theory (Ross-Gillespie et al 2009), we found that the relationship between self-restraint cooperator fitness and population density depended on biological details of the system, such as the relative pay-offs of self-restraint cooperation. This can be altered through spatial structuring, which alters the available resource concentrations and hence the incentives to cheat. To demonstrate this, we conducted competitions with low and intermediate levels of spatial structure and low resources (2.78 mM). Unlike with high resource levels (111 mM), we found regions of both positive and negative density-dependence of self-restraint cooperator fitness (Figure 1g-h). This illustrates how the biological parameters dictate the way in which density influences the selection for self-restraint cooperation (Ross-Gillespie et al 2009) and how resource concentration and spatial structure interact to dictate cooperator success.

Public-good cooperation

In agreement with previous experimental studies with this *S.cerevisiae* system, we found that for intermediate resource concentrations (29.2 mM sucrose) public-good cooperator fitness was
negatively density-dependent when the level of spatial structuring was low (Figure 2a) (Chen et al 2014, Datta et al 2013) and intermediate (Figure 2b) (Greig and Travisano 2004), a relationship that is predicted by our mathematical model (Figure 2c, Supplementary Information). These findings also agree with bacterial public-goods systems (Kümmerli et al 2009, Ross-Gillespie et al 2009).

However, theory suggests that the relationship between density and public-good cooperator fitness depends on the degree of diffusion of public-goods and cells (Dobay et al 2014). To examine this, we introduced a higher degree of spatial structuring (Figure 1a, high structure), and hence altered the distances between strains over which public-goods diffuse. In that case, we found public-good cooperator fitness was positively density-dependent (Figure 2d), in agreement with previous theory (Dobay et al 2014) and predictions made by our mathematical model (Figure 2e).

Why can high population densities favour public-good cooperation? We reason that the higher the density of public-good cooperators, the quicker they will consume the resources made available from public-good production. In our highly-structured environment the available hexose is sufficiently scarce and heterogeneously distributed. Therefore, at higher densities cooperators will consume a larger proportion of the resources before they diffuse away to become accessible to cheats, as suggested previously (Dobay et al 2014, Koschwanez et al 2011). Our model illustrated this effect where in a highly-structured environment with sufficiently low resources, the overall amount of hexose captured by public-good cheats was higher at low density (Figure 3a) than at high density (Figure 3b).

To experimentally test this prediction we repeated competitions between public-good cooperators and cheats in the same highly spatially structured environment. However, this time we replaced the public-good cooperator (Wt S. cerevisiae possesses at least 20 hexose transporter genes (Wieczorke et al 1999)) with a public-good cooperator, TM6*, which has just a single hexose transporter and therefore its maximal hexose uptake rate is only about 10 % of the Wt (Otterstedt et al 2004). This meant that TM6* was less able to take advantage of the high-density conditions to capture the liberated hexose from sucrose before it diffuses away. Competitions with the TM6* public-good
cooperator and Wt public-good cheat (JG210C) were performed on 1.46 mM sucrose to reduce the
influence of the rate-efficiency trade-off (Otterstedt et al 2004) because at sufficiently low sucrose
concentrations the rate-efficiency trade-off is diminished (Weusthuis et al 1994) (Supplementary
Figure S6a-b). Unlike with the wild-type hexose transporter strain (Figure 3c), the fitness of the TM6*
public-good cooperator was negatively density-dependent (Figure 3d). This outcome was also
captured by our model when we reduced the maximal hexose uptake rate of the public-good
cooperaor to 10% of the wildtype (Figure 3e-f). This switch from positive to negative density-
dependence experimentally verifies that in structured environments as population density increases,
public-goods cooperators have an increased capacity to capture hexose liberated from sucrose.

Interacting effects between density, spatial structure, and the rate-efficiency trade-off
on the evolution of public-good cooperation

How is the relationship between population density and public-good cooperation influenced by a
second social trait, namely self-restraint, given that these traits can interact (MacLean et al 2010)? To
explore this we conducted numerical simulations of our multi-trait model (Supplementary
Information) in environments with varying degree of spatial structure and resource concentration
(Figure 4a). The latter alters the strength of self-restraint dilemma (MacLean et al 2010) whereby low
resource enviroments reduce the strength of the rate-efficiency trade-off, which underpins self-
restraint cooperation.

Our model predicted that whether density favours public-good cooperation depends both on the
spatial structure and resource concentration of that environment (Figure 4a). We predicted that
reducing the resource concentration could increase the range of spatial structures where increasing
population density favours public-good cooperation (Figure 4a columns C-G versus H-K). At higher
resource concentrations, public-good cooperators incur a cost of inefficient metabolism because of
local spikes in hexose concentration that are formed as they hydrolyse sucrose (MacLean et al 2010).
This cost outweighs the relative benefit of public-good cooperation when spatial structure is lower
(Figure 4a, H1:K6), as in that scenario public-goods are more accessible to cheats. However, reducing
the strength of the self-restraint dilemma by reducing resources, will diminish the cost of inefficient metabolism incurred by public-good cooperators because the hexose concentration spikes formed will be less pronounced (MacLean et al 2010). Therefore, in these environments increasing density will favour public-good cooperators even when spatial structure is low (Figure 4a, C1:G6) because of an enhanced ability to capture resources before they diffuse away (Figure 3a-b).

We tested this prediction by competing public-good cooperators and cheats with wild-type hexose uptake in environments with intermediate and low spatial structuring, where increasing density had earlier been found to favour public-good cheats (Figure 2a-b), however this time with reduced resources. As predicted by our model (Figure 4a columns C-G), reducing resources resulted in the fitness of public-good cooperators becoming positively density-dependent in both intermediate and low levels of spatial structure (Figure 4b-c).

To verify that this direction of selection switch is caused by interactions between public-goods and self-restraint, instead of reducing the resource concentration we performed competitions between purely respiring, and hence metabolically efficient (Supplementary Figure S6a-b), invertase producers (TM6*) and non-producers (TM6* Δsuc2). Again in sufficiently structured environments, public-good cooperator fitness was positively density-dependent (Figure 4d). However unlike with the wild-type respiro-fermenting strains (Figure 2b), with intermediate levels of structure public-good cooperator fitness was positively density-dependent (Figure 4d), as predicted by our model (Supplementary Figure S7). With low structure, a non-monotonic relationship between density and public-good cooperator fitness was found (Figure 4f). This result was predicted by our model when the rate-efficiency trade-off is absent at low resource concentrations where no general statement could be made regarding density and selection for cooperation (Figure 4a).
Discussion

In this article we provided the first experimental evidence that high population density can favour microbial cooperation in spatially structured environments in both public good production and self-restraint cooperative systems as well as when the two social dilemmas interact.

Past theories have predicted that in spatially structured environments increasing population density can either select for or against self-restraint cooperation depending on the details of the system, such as how beneficial cooperation is (Ross-Gillespie et al 2009). Yet empirical studies show that high population density favours self-restraint cheats (MacLean and Gudelj 2006). Similarly, for public-goods systems theory predicts that high population density favours cheats when they are ‘physically closer’ to cooperators (Ross-Gillespie et al 2009) and favours cooperators if microbial cells diffuse slower than the public-goods (Dobay et al 2014) or the environment is sufficiently spatially structured (Lion and Gandon 2009, Lion 2010). However, empirical studies with public-good cooperative systems consistently show that high population density favours cheats (Chen et al 2014, Datta et al 2013, Greig and Travisano 2004, Kümmerli et al 2009, Ross-Gillespie et al 2009, Sanchez and Gore 2013).

We postulated that the discrepancy between theory and experiments could be due to experimental procedures not capturing the extent of environmental variation predicted to affect the outcome (Dobay et al 2014, Ross-Gillespie et al 2009). Indeed, our theoretical model also showed that whether high population density promotes cooperation depends intricately on the degree of spatial structuring as well as resource concentration in the environment (Figure 4a). However, while some empirical studies systematically vary the degree of spatial structure (Boots and Mealor 2007, Kümmerli et al 2009), more frequently spatial structure is manipulated through an initial distribution of organisms within an environment. In such cases many ‘spatially heterogeneous’ initial distributions all fall into the same category of ‘structured’ environments. For instance, microbial communities can be fragmented into subpopulations that are linked only through migration. Such metapopulation structure can be imposed experimentally by embedding populations into microtitre plates and the initial spatial distribution and
migration is controlled (Dai et al. 2013, Datta et al. 2013). Another way of manipulating spatial
structure is to inoculate agar media with numerous droplets containing microbes, forming patches of
interacting subpopulations (Lindsay et al. 2016, MacLean et al. 2010, Ross-Gillespie et al. 2009). In this
scenario, the initial spatial distribution is controlled, but the subsequent interactions between
subpopulations are not. Finally, homogeneous cultures can be inoculated: (a) onto agar media (Greig
Gestel et al. 2014); (b) into unshaken liquid cultures (Koschwanez et al. 2011, MacLean and Gudelj
2006, Rainey and Travisano 1998)) or (c) into shaken liquid cultures (Celiker and Gore 2012, Chen et
al. 2014), for certain public-goods systems where producers get preferential access to the public-good
(Gore et al. 2009). In all three cases (a-c) spatial structure self-emerges and both the initial spatial cell
distribution and the subsequent interactions between the emergent subpopulations are not controlled.

However, high population densities can impede the self-aggregation of cells (van Gestel et al. 2014).

We conducted laboratory experiments using a model cooperative system with S. cerevisiae which
exhibits both public-good (Gore et al. 2009) and self-restraint cooperation (MacLean and Gudelj
2006). We considered three levels of spatial structure and demonstrated that the relationship between
population density and cooperation depends on the degree of spatial structure as well resource
concentration within an environment (Figures 1, 2, 4). Therefore, we argue that previous experimental
studies with self-restraint (MacLean and Gudelj 2006) and public-goods (Greig and Travisano 2004,
Ross-Gillespie et al. 2009) cooperative systems found that high population density favours cheats
because they were conducted in environments with either relatively low spatial structure or high
resource concentration.

Our data supports the mechanistic explanations put forward by theoretical models as to why high
population densities can favour cooperation. For self-restraint cooperation, the magnitude of benefits
gained through cooperation influences the extent to which increasing density selects for cooperation
(Ross-Gillespie et al. 2009). In our system, resources become heterogeneously distributed when the
population is spatially structured because self-restraint cooperators and cheats have disparate resource
consumption rates (Otterstedt et al. 2004). These resource gradients mean that the pay-offs of self-
restraint cooperation are altered through the rate-efficiency trade-off and/or the antagonistic metabolic

Similarly, we demonstrated that with increasing population density public-good cooperation can
either be selected for or against depending on whether the environment is sufficiently structured and
how this structure influences the amount of public-good benefit gained. Intuitively, increasing
population density increases the incentives to cheat because it increases the proximity to, and absolute
number of, public-good cooperators that can be exploited (Ross-Gillespie et al 2009). On the other
hand, increasing density also increases the amount of the public-goods that are generated, which can
be captured by cooperators before they diffuse to become available to cheats (Dobay et al 2014). The
scale of population structuring will alter the relative extent of these opposing forces, which in turn
will shape whether density selects for or against public-good cooperation. We experimentally verified
this mechanism by limiting the ability of public-good producers to obtain the generated benefits of
public-good cooperation. This predictably switched the direction of selection from increasing density
favouring public-good cooperators (Figure 3c) to favouring cheats (Figure 3d).

We also showed that high population density can favour cooperation even when the self-restraint and
public-goods social dilemmas interact (Figure 2d). This is important as cooperative traits frequently
interact (Brown and Taylor 2009, Harrison and Buckling 2009, Lindsay et al 2016, MacLean et al
2010, Ross-Gillespie et al 2015). We developed a multi-trait mathematical model and predicted that
decreasing the influence of self-restraint over public-goods production will increase the range of
environmental structures where high population density favours cooperation (Figure 4a columns C-G
versus H-K). This was verified experimentally. For example, when resources were sufficiently low,
high population density favoured cooperators in environments with low (Figure 4c), intermediate
(Figure 4b) and high (Figure 3c) spatial structure. However, for sufficiently high resource
concentrations, high population density favoured cooperators only when spatial structure was high
(Figure 2d).
We reason that at higher resource concentrations, public-goods cooperators incur a cost of inefficient metabolism. Therefore in environments with sufficiently low spatial structure where public-goods are more accessible to cheats, the cost of inefficient metabolism outweighs any personal benefit of public-goods production. Reducing the resource concentration and therefore reducing the strength of the self-restraint dilemma diminishes the cost of inefficient metabolism incurred by public-goods cooperators, tipping the balance in favour of cooperators even in environments with low spatial structure.

For certain environmental conditions our model predicts that increasing population density may favour public-good cooperators or cheats depending on the details of the system (Figure 4a, yellow panels). This is in line with empirical observations of a non-monotone relationship between population density and cooperator relative fitness (Figure 4f).

Our results are also of relevance to the study of cooperation in populations undergoing an increase in the geographical area they occupy, known as range expansion. Recent studies have found that the advantage public-good cooperators can gain at low density may enrich cooperation at the front of expanding populations (Datta et al 2013). Our results suggest that this may not be the case if the environment is sufficiently structured or has low resources. Microbes inherently exist in structured communities, whether as clonal patches such as colonies or hyphal networks (Koschwanez et al 2011, Nadell et al 2010), or they inhabit spatially structured substrates (Boddy 2000, Ettema and Wardle 2002), which may frequently be nutrient depleted (Greig and Leu 2009). In these environments, rather than being promoted at the low-density expanding front of a population, cooperation may be more resistant against an invasion of cheats in the established bulk population where density is high as the community proliferates. Conversely, this means that if public-good cheats arise through mutation they may be more likely to gain a competitive advantage in the low-density advancing front of a population during range expansion. This “allele surfing” phenomenon may facilitate the maintenance of metabolic diversity within a population (Excoffier and Ray 2008), even for potentially deleterious mutations (Travis et al 2007), until environmental conditions become more preferential for public-good cheats. This diversity could enable adaptability to environmental change, improve the outcome
of ecosystem processes (Kaiser et al 2015), and maximise population fitness (Lindsay et al 2016, MacLean et al 2010).

Acknowledgments

We would like to thank Robert Beardmore for comments and helpful discussions.

Conflict of interest

The authors declare no conflict of interest

Supplementary information is available at The ISME Journal website

References

Lindsay RJ, Kershaw MJ, Pawlowska BJ, Talbot NJ, Gudelj I (2016). Harbouring public good mutants within a pathogen population can increase both fitness and virulence. *Elife* **5**.

Figure Legends:

Figure 1. The relationship between self-restraint cooperator fitness and population density depends on the degree of spatial structuring in the environment and the extent of the rate-efficiency trade-off.

a Schematic of degrees of spatial structure used for experiments. Low is shaken liquid, intermediate is patches of mixed strains, and high is made up of patches of either cooperators or cheats (for details see Supplementary Figure S1). In a low level of spatial structuring we found a positive relationship between density and cooperator fitness \((p < 1.06 \times 10^{-12}, F_{(1,16)} = 395.1, \text{Adj } R^2 = 0.9586, \beta = 0.08962 \pm 0.00451 \text{ (s.e.), } n = 6, f = 0.3) \) (b). When competed on agar plates, the relationship was also positive for both intermediate \((p < 2.66 \times 10^{-7}, F_{(1,7)} = 365.7, \text{Adj } R^2 = 0.9785, \beta = 1.07 \pm 0.0560 \times 10^{-5} \) (s.e.), \(n = 3, f = 0.3 \)) and high structure \((p < 8.56 \times 10^{-8}, F_{(1,7)} = 508.2, \text{Adj } R^2 = 0.9845, \beta = 3.84 \pm 0.170 \times 10^{-5} \) (s.e.), \(n = 3, f = 0.3 \)), but the strength of this association reduced (from intermediate to high, interaction term: \(p < 0.0002, F_{(1,14)} = 25.11 \)). With high structure, the relationship between density and cooperator fitness depended on the resource concentration. It was positive when glucose concentration was high \((111.01 \text{ mM}) \), and remained positive with intermediate glucose \((13.88 \text{ mM}) \) \((p < 0.0004, F_{(1,7)} = 40.02, \text{Adj } R^2 = 0.8299, \beta = 0.00803 \pm 0.00127 \text{ (s.e.), } n = 3, f = 0.3) \), but the strength of this association was reduced (interaction term : \(p < 0.00276, F_{(1,14)} = 13.141 \)). However, this relationship became negative when glucose concentrations were further reduced \((2.78 \text{ mM}) \) \((p < 3.34 \times 10^{-5}, F_{(1,7)} = 87.34, \text{Adj } R^2 = 0.9152, \beta = -0.0130 \pm 0.00139 \text{ (s.e.), } n = 3, f = 0.3) \). When resources were reduced \((2.78 \text{ mM}) \) with an intermediate level of structure, we found regions of positive and negative density-dependence \((p < 5.83 \times 10^{-3}, F_{(2,6)} = 13.68, \text{Adj } R^2 = 0.7601, n = 3, f = 0.2) \) with cooperator relative fitness lower at intermediate cell densities \((\text{approx. } 10^6 \text{ cells}) \) compared to low \((\text{approx. } 10^4, \text{mean difference } \pm \text{s.e.} = 0.0871 \pm 0.0173, p < 2.37 \times 10^{-5}) \) and high \((\text{approx. } 10^8, \text{mean difference } \pm \text{s.e.} = 0.0645 \pm 0.0173, p < 9.70 \times 10^{-5}) \). With low structure, density-dependent fitness of cooperator fitness remained positive in 13.88 mM glucose \((p < 4.33 \times 10^{-8}, F_{(1,13)} = 127.5, \text{Adj } R^2 = 0.9004, \beta = 6.70 \pm 0.593 \times 10^{-4} \text{ (s.e.), } n = 5, f = 0.3) \) and regions of positive and negative density-dependence were found in 2.78 mM \((p < 1.61 \times 10^{-10}, F_{(2,12)} = 251.3, \text{Adj } R^2 = 0.9728, n = 5, f = 0.3) \), cooperator relative fitness is lower at intermediate cell
densities (approx. 3×10^4 cells) compared to low (approx. 10^3, mean difference \pm s.e. $= 0.0196 \pm 0.00709$, p $< 9.62 \times 10^{-11}$).

Figure 2. The influence of population density and spatial structuring on the selection for public-good cooperation.

The selection for public-good cooperation (BY4741 v JG210C) is negatively-density-dependent when the spatial structuring of the environment is low (a) ($p < 0.00482$, $F_{(1,10)} = 12.99$, β (\pm s.e.) $= -0.00793 \pm 0.00220$, Adj $R^2 = 0.5214$, $n = 4$, $f = 0.2$) and intermediate (b) ($p < 6.98 \times 10^{-9}$, $F_{(1, 7)} = 1047$, β (\pm s.e.) $= -5.88 \pm 0.182 \times 10^{-5}$, Adj. $R^2 = 0.992$, $n = 3$, $f = 0.2$), as predicted by model simulations (Degree of Spatial Structuring (DSS) = 0, see Supplementary Information for definition) (c), and positively-density-dependent when structure is high (d) ($p < 7.93 \times 10^{-7}$, $F_{(1, 7)} = 266.1$, β (\pm s.e.) $= 1.60 \pm 0.0981 \times 10^{-4}$, Adj. $R^2 = 0.971$, $n = 3$, $f = 0.2$) as predicted by model simulations ($DSS = 0.8$) (e). Labels indicate level of structuring and [sucrose]. Experimental repeats generated equivalent qualitative trends, which were also found to be robust to differing initial frequencies of public-good cooperators (Supplementary Figure S5). For simulations, initial density is g biomass l$^{-1}$, $S_0 = 50$, $f = 0.4$.

Figure 3. Positive density-dependence of public-good cooperator fitness in structured environments results from a higher capacity to capture public-goods.

Average hexose uptake rates (over all spatial locations) of public-good (PG) cooperators and cheats in a spatially structured environment at low population density ($N_0 = 6 \times 10^6$ g biomass l$^{-1}$) (a) and high population density ($N_0 = 6 \times 10^5$ g biomass l$^{-1}$) (b), as predicted by model simulations ($DSS = 0.7$, $n = 5$, $p = 1$, $S_0 = 5.85$). The amount of hexose captured by PG cheats is higher in low-density than high-density populations. The selection for cooperation in 1.46 mM sucrose is positively-density-dependent in highly structured environments with wild-type hexose capture ability (BY4741) ($p < 1.12 \times 10^{-5}$, $F_{(1,7)} = 121.6$, β (\pm s.e.) $= 7.57 \pm 0.686 \times 10^{-4}$, Adj. $R^2 = 0.9378$, $n = 3$, $f = 0.3$) (e), but becomes negatively-density-dependent when the capacity for public-good producers to capture the generated hexoses is reduced (TM6*) ($p < 1.29 \times 10^{-5}$, $F_{(1,7)} = 116.6$, β (\pm s.e.) $= -6.40 \pm 0.593 \times 10^{-5}$, Adj. $R^2 =$
0.9353, n = 3, f = 0.3) (d). Labels indicate level of structuring and [sucrose]. Experimental repeat can be seen in Supplementary Figure S6. Based on growth rate data from this study, with calculations and invertase activity data from (Gore et al., 2009), we estimate that the glucose capture efficiency of TM6* is 69.6 ± 0.939% of wild-type capabilities in 1.46 mM sucrose (TM6* < wild-type: p < 0.001, t = 32.3, n = 3, Welch’s two-tailed t-test). Our model predicts the same outcome for PG cooperator relative fitness in structured environments (S₀ = 1.46, DSS = 0.7, f = 0.2, initial density is g biomass.l⁻¹), with positive-density-dependence with wild-type hexose uptake (e) and negative density-dependence when hexose uptake is reduced (Vh/10) (f).

Figure 4. The effect of population density on public-good cooperation as a function of spatial structure and strength of rate-efficiency trade-off: simulations and empirical results.

a Competitions were simulated between public-good cooperators and cheats in 88 environmental conditions (8 degrees of spatial structure in 11 resource concentrations) at three initial population densities. The outcomes of the competitions in relation to increasing population density are illustrated in the matrix (yellow panels: increasing density may favour co-operators or cheats depending on the details of the system). See Supplementary Information for details on how the outcome of numerical simulations were assessed. Labels within panels indicate the figure in this article that represents experimental support that replicates predictions from the mathematical model. Predictions of the simulation were tested experimentally (b-f; labels within plots indicate hexose uptake ability of both competitors, degree of structure and [sucrose]). **b** When the impact of the rate-efficiency trade-off is reduced by lowering resources (from 29.2 to 1.46 mM sucrose) we find public-good cooperator fitness becomes positively density-dependent with intermediate spatial structure (p < 0.0173, F₁,₇= 9.613, β ± s.e.) = 0.0215 ± 0.00694, Adj R² = 0.5185, n = 3, f = 0.2). Test for non-monotonicity is not-significant (NS, p > 0.434) (c.f. Figure 2b). **c** With low structure at 1.46 mM, public-good cooperator fitness becomes positively density-dependent (p < 2.42 x 10⁻¹⁶, F₁,₁₆= 1154, β ± s.e.) = 5.38 ± 0.158 x 10⁻⁴, Adj R² = 0.9855, n = 6, f = 0.2) (c.f. Figure 2a). **d** In competitions between exclusively respiring public-good cooperators (TM6*) and cheats (TM6* Δsuc2) with high structure,

public-good cooperator fitness was positively density-dependent \((p < 1.50 \times 10^{-6}, F_{(1,7)} = 221, \text{Adj-R}^2 = 0.9649, \beta = 0.0321 \pm 0.00216, n = 3, f = 0.3)\) like wild-type hexose transporting strains (BY4741 v JG210) (Figure 2d). However, unlike wild-type hexose transporting strains with intermediate structure (Figure 2b) this relationship remained positive \((p < 4.25 \times 10^{-6}, F_{(1,7)} = 162.4, \text{Adj-R}^2 = 0.9528, \beta = 6.07 \pm 0.476 \times 10^{-5}, n = 0.3, f = 0.3)\). These results were predicted by our model when hexose uptake rate is diminished (Supplementary Figure S7). In low structure, we found that density has a non-monotonic relationship with public-good cooperator fitness (quadratic: \(p < 5.00 \times 10^{-14}, F_{(2,15)} = 437.7, \text{Adj-R}^2 = 0.9809, n = 6, f = 0.3\)). Public-good cooperator relative fitness was lower at intermediate densities (approx. \(5 \times 10^3\)) compared with low (approx. \(10^3\) cells, mean difference \(\pm\) s.e. = \(0.107 \pm 0.00399, p < 4.64 \times 10^{-14}\)) and high density (approx. \(2.5 \times 10^6\), mean difference \(\pm\) s.e. = \(0.00923 \pm 0.00399, p < 0.0356\), linear model with density as factor).
Figure 1

Degree of Spatial Structure

Low
Intermediate
High

[Graphs showing the relationship between self-restraint cooperativeness, relative fitness, and initial density across different glucose concentrations: 2.78 mM, 13.88 mM, and 111.01 mM.]
Figure 2

(a) Public-good cooperator relative fitness vs. Log_{10} Initial density (cells.well^{-1}) for Low 29.2 mM.

(b) Public-good cooperator relative fitness vs. Log_{10} Initial density (cells.plate^{-1}) for Intermediate 29.2 mM.

(c) Public-good cooperator relative fitness vs. Log_{10} Initial density for Low 29.2 mM.

(d) Public-good cooperator relative fitness vs. Log_{10} Initial density (cells.plate^{-1}) for High 29.2 mM.

(e) Public-good cooperator relative fitness vs. Log_{10} Initial density for High 29.2 mM.
Figure 3

(a) Uptake rate per g protein vs. time [h] for PG cooperators and PG cheats.

(b) Uptake rate per g protein vs. time [h] for PG cooperators and PG cheats.

(c) Public-good cooperator relative fitness vs. Log_{10} Initial density (cells/plate^-1) for High, 1.46 mM, WT hexose uptake.

(d) Public-good cooperator relative fitness vs. Log_{10} Initial density (cells/plate^-1) for High, 1.46 mM, Reduced hexose-uptake mutant.

(e) Public-good cooperator relative fitness vs. Log_{10} Initial density (cells/plate^-1).

(f) Public-good cooperator relative fitness vs. Log_{10} Initial density (cells/plate^-1).
Increasing pop. density favours public-good cooperators.

No general statement can be made.

Simulations

Experiments

Figure 4

Log$_{10}$ Initial density (cells per well or plate)