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Abstract

During the lifetime of Sun-like or low-mass stars a significant amount of angular momentum is removed through
magnetized stellar winds. This process is often assumed to be governed by the dipolar component of the magnetic
field. However, observed magnetic fields can host strong quadrupolar and/or octupolar components, which may
influence the resulting spin-down torque on the star. In Paper I, we used the MHD code PLUTO to compute
steady-state solutions for stellar winds containing a mixture of dipole and quadrupole geometries. We showed the
combined winds to be more complex than a simple sum of winds with these individual components. This work
follows the same method as Paper I, including the octupole geometry, which not only increases the field
complexity but also, more fundamentally, looks for the first time at combining the same symmetry family of fields,
with the field polarity of the dipole and octupole geometries reversing over the equator (unlike the symmetric
quadrupole). We show, as in Paper I, that the lowest-order component typically dominates the spin-down torque.
Specifically, the dipole component is the most significant in governing the spin-down torque for mixed geometries
and under most conditions for real stars. We present a general torque formulation that includes the effects of
complex, mixed fields, which predicts the torque for all the simulations to within 20% precision, and the majority
to within ≈5%. This can be used as an input for rotational evolution calculations in cases where the individual
magnetic components are known.
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1. Introduction

Cool stars are observed to host global magnetic fields that
are embedded within their outer convection zones (Reiners
2012). Stellar magnetism is driven by an internal dynamo that
is controlled by the convection and stellar rotation rate, the
exact physics of which is still not fully understood (see review
by Brun & Browning 2017). As observed for the Sun, plasma
escapes the stellar surface, interacting with this magnetic field
and forming a magnetized stellar wind that permeates the
environment surrounding the star (Cranmer et al. 2017). Young
main-sequence stars show a large spread in rotation rates for a
given mass. As a given star ages on the main sequence, their
stellar wind removes angular momentum, slowing the rotation
of the star (Schatzman 1962; Weber & Davis 1967; Mestel
1968). This in turn reduces the strength of the magnetic
dynamo process, feeding back into the strength of the applied
stellar wind torque. This relationship leads to a convergence of
the spin rates toward a tight mass–rotation relationship at late
ages, as stars with faster rotation incur larger spin-down torques
and vice versa for slow rotators. This is observed to produce a
simple relation between rotation period and stellar age
(Ω*∝t−0.5; Skumanich 1972), which is approximately
followed, on average (Soderblom 1983), over long timescales.

With the growing number of observed rotation periods
(Irwin & Bouvier 2009; Agüeros et al. 2011; Meibom
et al. 2011; McQuillan et al. 2013; Bouvier et al. 2014;
Stauffer et al. 2016; Davenport 2017), an increased effort has
been channeled into correctly modeling the spin-down process
(e.g., Reiners & Mohanty 2012; Gallet & Bouvier 2013; Van
Saders & Pinsonneault 2013; Brown 2014; Gallet & Bouvier
2015; Matt et al. 2015; Amard et al. 2016; Blackman &

Owen 2016; See et al. 2017a), as it is able to test our
understanding of basic stellar physics and also date observed
stellar populations.
The process of generating stellar ages from rotation is referred

to as gyrochronology, whereby a cluster’s age can be estimated
from the distribution of observed rotation periods (Barnes 2003;
Meibom et al. 2009; Barnes 2010; Delorme et al. 2011;
Van Saders & Pinsonneault 2013). This requires an accurate
prescription of the spin-down torques experienced by stars as a
result of their stellar wind, along with their internal structure
and properties of the stellar dynamo. Based on results from
magnetohydrodynamic (MHD) simulations, parameterized
relations for the stellar wind torque are formulated using the
stellar magnetic field strength, mass-loss rate, and basic stellar
parameters (Mestel 1984; Kawaler 1988; Matt & Pudritz 2008;
Ud-Doula et al. 2009; Pinto et al. 2011; Matt et al. 2012;
Réville et al. 2015). The present work focuses on improving
the modeled torque on these stars due to their magnetized
stellar winds, by including the effects of combined magnetic
geometries.
Magnetic field detections from stars, other than the Sun,

were reported over 30 yr ago via Zeeman broadening
observations (Robinson et al. 1980; Gray 1984; Marcy 1984),
a technique that has since been used on a multitude of stars
(e.g., Saar 1990; Johns-Krull & Valenti 2000). This technique,
however, only allows for an average line-of-sight estimate of
the unsigned magnetic flux and provides no information about
the geometry of the stellar magnetic field (see review by
Reiners 2012). More recently, the use of Zeeman Doppler
Imaging (ZDI), a tomographic technique capable of providing
information about the photospheric magnetic field of a given
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star, enables the observed field to be broken down into
individual spherical harmonic contributions (e.g., Hussain et al.
2002; Donati et al. 2006, 2008; Morin et al. 2008a, 2008b; Petit
et al. 2008; Fares et al. 2009; Morgenthaler et al. 2011;
Jeffers et al. 2014; Vidotto et al. 2014; See et al. 2015, 2016,
2017b; Folsom et al. 2016; Hébrard et al. 2016; Saikia et al.
2016; Kochukhov et al. 2017). This allows the 3D magnetic
geometry to be recovered, typically using a combination of field
extrapolation and MHD modeling (e.g., Cohen et al. 2011;
Vidotto et al. 2011; Alvarado-Gómez et al. 2016; do Nascimento
et al. 2016; Garraffo et al. 2016b; Nicholson et al. 2016; Réville
et al. 2016).

Pre-main-sequence stars, observed with ZDI, show a variety
of multipolar components, typically dependent on the internal
structure of the host star (Gregory et al. 2012; Hussain &
Alecian 2013). Many of these objects show an overall dipolar
geometry with an accompanying octupole component (e.g.,
Donati et al. 2007; Gregory et al. 2012). The addition of dipole
and octupole fields has been explored analytically, for these
stars, and is shown to impact the disk truncation radius along
with the topology and field strength of accretion funnels
(Gregory & Donati 2011; Gregory et al. 2016). For main-
sequence stellar winds, the behavior of combined magnetic
geometries has yet to be systematically explored. Our closest
star, the Sun, hosts a significant quadrupolar contribution
during the solar activity cycle maximum that dominates the
large-scale magnetic field geometry along with a small dipole
component (DeRosa et al. 2012; Brun et al. 2013). The impact
of these mixed geometry fields on the spin-down torque
generated from magnetized stellar winds remains uncertain.

It is known that the magnetic field stored in the lowest-order
geometries, e.g., dipole, quadrupole, and octupole, has the
slowest radial decay and therefore governs the strength of the
magnetic field at the Alfvén surface (and thus its size and
shape). With the cylindrical extent of the Alfvén surface being
directly related to the efficiency of the magnetic braking
mechanism, it is this global field strength and geometry that are
required to compute accurate braking torques in MHD
simulations (Réville et al. 2015, 2016). However, the effect
of the higher-order components on the acceleration of the wind
close in to the star may not be non-negligible (Cranmer & Van
Ballegooijen 2005; Cohen et al. 2009). Additionally, the small-
scale surface features described by these higher-order geome-
tries (e.g., starspots and active regions) will play a vital role in
modulating the chromospheric activity (e.g., Testa et al. 2004;
Aschwanden 2006; Güdel 2007; Garraffo et al. 2013), which is
often assumed to be decoupled from the open-field regions
producing the stellar wind. Models such as the AWESOM (van
der Holst et al. 2014) include this energy dissipation in the
lower corona and are able to match observed solar parameters
well. Work by Pantolmos & Matt (2017) shows how this
additional acceleration can be accounted for globally within
their semianalytic formulations.

Previous works have aimed to understand the impact of more
complex magnetic geometries on the rotational evolution of
Sun-like stars. Holzwarth (2005) examined the effect of
nonuniform flux distributions on the magnetic braking torque,
investigating the latitudinal dependence of the stellar wind
produced within their MHD simulations. Similarly, Garraffo
et al. (2016a) included magnetic spots at differing latitudes
and examined the resulting changes to mass-loss rate and
spin-down torque. The effectiveness of the magnetic braking

from a stellar wind is found to be reduced for higher-order
magnetic geometries (Garraffo et al. 2015). This is explained
in Réville et al. (2015) as a reduction to the average Alfvén
radius, which acts mathematically as a lever arm for the applied
braking torque. Finley & Matt (2017, hereafter Paper I)
continue this work by discussing the morphology and braking
torque generated from combined dipolar and quadrupolar field
geometries using ideal MHD simulations of thermally driven
stellar winds. In this current work, we continue this mixed-field
investigation by including combinations with an octupole
component.
Section 2 introduces the simulations and the numerical

methods used, along with our parameterization of the magnetic
field geometries and derived simulation properties. Section 3
explores the resulting relationship of the average Alfvén radius
with increasing magnetic field strength for pure fields, as well
as generic combinations of axisymmetric dipole, quadrupole, or
octupole geometries. Section 4 uses the decay of the unsigned
magnetic flux with distance to explain observed behaviors in
our Alfvén radii relations; analysis of the open magnetic flux in
our wind solutions follows with a singular relation for
predicting the average Alfvén radius based on the open flux.
Conclusions and thoughts for future work can be found in
Section 5.

2. Simulation Method and Numerical Setup

As in Paper I, we use the PLUTO MHD code (Mignone et al.
2007; Mignone 2009) with a spherical geometry to compute
2.5D (two dimensions, r, θ, and three vector components, r, θ,
and f) steady-state wind solutions for a range of magnetic
geometries.
The full set of ideal MHD equations are solved, including the

energy equation and a closing equation of state. The internal
energy density ò is given by ρò=p/(γ−1), where γ is the
ratio of specific heats. This general set of equations is capable
of capturing nonadiabatic processes, such as shocks; however,
the solutions found for our steady-state winds generally do not
contain these. For a gas composed of protons and electrons γ
should take a value of 5/3; however, we decrease this value to
1.05 in order to reproduce the observed near-isothermal nature
of the solar corona (Steinolfson & Hundhausen 1988) and a
terminal speed consistent with the solar wind. This is done,
such that on large scales the wind follows the polytropic
approximation, i.e., the wind pressure and density are related as
p∝ργ (Parker 1965; Keppens & Goedbloed 1999). The
reduced value of γ has the effect of artificially heating the wind
as it expands, without an explicit heating term in our equations.
We adopt the numerics used in Paper I, except that we

modify the radial discretization of the computational mesh.
Instead of a geometrically stretched radial grid as before, we
now employ a stepping (dr) that grows logarithmically. The
domain extent remains unchanged, from one stellar radius (R*)
to 60 R*, containing Nr×Nθ=256×512 grid cells. This
modification produces a more consistent aspect ratio between
dr and rdθ over the whole domain, which marginally increases
our numerical accuracy and stability.
Characteristic speeds such as the surface escape speed and

Keplerian speed, vesc and vkep, and the equatorial rotation
speed, vrot, along with the surface adiabatic sound speed, cs,

2
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and Alfvén speed, vA, are given as follows:

*
*

= = ( )v
GM

R
v

2
2 , 1esc kep

where G is the gravitational constant, R* is the stellar radius,
and M* is the stellar mass;

* *= W ( )v R , 2rot

where Ω* is the angular stellar rotation rate (which is assumed
to be in solid-body rotation);

*

*

g
r

= ( )c
p

, 3s

where γ is the polytropic index and p* and ρ* are the gas
pressure and mass density at the stellar surface, respectively;
and

*

*
pr

= ( )v
B

4
, 4A

where B* is the characteristic polar magnetic field strength (see
Section 2.1).

We set an initial wind speed within the domain using a
spherically symmetric Parker wind solution (Parker 1965), with
the ratio of the surface sound speed to the escape speed cs/vesc
setting the base wind temperature in such a way as to represent
a group of solutions for differing gravitational field strengths.
The same normalization is applied to the surface magnetic field
strength with vA/vesc, and the surface rotation rate using
f=vrot/vkep, such that each wind solution represents a family
of solutions that can be applied to a range of stellar masses. The
same system of input parameters is used by many previous
authors (e.g., Matt & Pudritz 2008; Matt et al. 2012; Réville
et al. 2015; Pantolmos & Matt 2017). For this study we fix the
wind temperature and stellar rotation at the values tabulated in
Table 1.

A background field corresponding to our chosen potential
magnetic field configuration (see Section 2.1) is imposed over
the initial wind solution, and then all quantities are evolved to a
steady-state solution by the PLUTO code. The boundary
conditions are enforced, as in Paper I, at the inner radial
boundary (stellar surface), which are appropriate to give a self-
consistent wind solution for a rotating magnetized star. A fixed
surface magnetic geometry is therefore maintained along with
solid-body rotation.

The use of a polytropic wind produces solutions that are far
more isotropic than observed for the Sun (Vidotto et al. 2009).
The velocity structure of the solar wind is known to be largely
bimodal, having a slow and fast component that originate under
different circumstances (Fisk et al. 1998; Feldman et al. 2005;
Riley et al. 2006). This work and previous studies using a
polytropic assumption aim to model the globally averaged
wind, which can be more generally applied to the variety of

observed stellar masses and rotation periods. More complex
wind driving and heating physics are needed in order to
reproduce the observed velocity structure of the solar wind;
however, they are far harder to generalize for other stars
(Cranmer et al. 2007; Pinto et al. 2016).

2.1. Magnetic Field Configurations

The magnetic geometries considered in this work include
dipole, quadrupole, and octupole combinations, with different
field strengths and in some cases relative orientations. As in
Paper I, we describe the mixing of different field geometries
using the ratio of the polar field strength in a given component
to the total field strength. Care is taken to parameterize the field
combinations due to the behavior of the two equatorially
antisymmetric components, dipole and octupole, at the poles.
We generalize the ratio defined within Paper I for each

component such that

*

* * *

*
*

 =
+ +

=
=

= = =

=

∣ ∣ ∣ ∣ ∣ ∣
( )B

B B B

B

B
, 5x

l x

l l l

l x

1 2 3

where in this work l is the principle spherical harmonic number
and x can be 1, 2, or 3 for dipole, quadrupole, or octupole fields.
The polar field strength of a given component is written as *

=B l x,
and the * * * *= + += = =∣ ∣ ∣ ∣ ∣ ∣B B B Bl l l1 2 3 is a characteristic
field strength. The polar field strengths in the denominator are
given with absolute values because we are interested in the
characteristic strength of the combined components, which are
the same for aligned and anti-aligned fields. Therefore, summing
the absolute value of the ratios produces unity,

å =
=

∣ ∣ ( )1, 6
l

l
1

3

which allows the individual values of  ,dip quad, and oct

(  º ,1 2 and3) to range from 1 to −1 (north pole positive or
negative), with the absolute total remaining constant. We define
the magnetic field components using these ratios and the
Legendre polynomials Plm, which for the axisymmetric (m= 0)
field components can be written as

*
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=

+
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The northern polar magnetic field strengths for each component
are given by

* * * * * *  = = == = = ( )B B B B B B, , , 9l l l1
dip

2
quad

3
oct

The relative orientation of the magnetic components is
controlled throughout this work by setting the dipole and
quadrupole fields ( *

=B l 1 and *
=B l 2) to be positive at the northern

stellar pole. The octupole component ( *
=B l 3) is then combined

with the dipolar and quadruplar components using either a
positive or negative strength on the north pole, which we define
as the aligned and anti-aligned cases, respectively.
The addition of dipole and quadrupole components was

explored in Paper I. We showed the fields to add in one
hemisphere and subtract in the other. Similar to the dipole, the
octupole component belongs in the “primary” symmetry

Table 1
Fixed Simulation Parameters

Parameter Value Description

γ 1.05 Polytropic index
cs/vesc 0.25 Surface sound speed/escape speed
f 4.46E-03 Fraction of breakup rotation

3
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family, having antisymmetric field polarity about the equator
(McFadden et al. 1991). The addition of any primary
geometries with any “secondary” family quadrupole (equato-
rially symmetric) would be expected to behave qualitatively
similarly. A different behavior is expected from the addition of
the two primary geometries (dipole–octupole). Here the field
addition and subtraction are primarily governed by the relative
orientations of the field with respect to one another. Aligned
fields will combine constructively over the pole and subtract
from one another in the equatorial region. Anti-aligned primary
fields, conversely, will subtract on the pole and add over the
equator.

Including the results from Paper I, this work includes
combinations of all the possible permutations of the axisym-
metric dipole, quadrupole, and octupole magnetic geometries.
Table 2 contains a complete list of stellar parameters for the
cases computed within this work. Parameters for the dipole–
quadrupole combined field cases are available in Table 1 of
Paper I. It is noted that in the course of the current work the
pure dipolar and quadrupole cases are resimulated; see Table 2.

2.2. Derived Stellar Wind Properties

The simulations produce steady-state solutions for density, ρ,
pressure, p, velocity, v, and magnetic field strength, B, for each
stellar wind case. From these results, the behavior of the spin-
down torque is ascertained. The torque on the star, τ, due to the
loss of angular momentum in the stellar wind is calculated as

òt r= L · ( )v Ad , 10
A

where the angular momentum flux, given by FAM=Λρv
(Keppens & Goedbloed 2000), is integrated over spherical
shells of area A (outside the closed-field regions). Λ is given by

q q
r

L = -f
f⎛

⎝⎜
⎞
⎠⎟( )

∣ ∣
·

( )
B

v B
r r v

B
, sin . 11

p

p p

2

Similarly, the mass-loss rate from our wind solutions is
calculated as

ò r=˙ · ( )v AM d . 12
A

An average Alfvén radius is then defined, in terms of the
torque, mass-loss rate Ṁ , and rotation rate Ω*:

*

t
á ñ º

W˙ ( )R
M

, 13A

In this formulation, *á ñR RA is defined as a dimensionless
efficiency factor, by which the magnetized wind carries angular
momentum from the star, i.e., a larger average Alfvén radius
produces a larger torque for a fixed rotation rate and mass-loss
rate,

* *
*

t = W
á ñ⎛

⎝⎜
⎞
⎠⎟˙ ( )M R

R

R
. 142 A

2

In ideal MHD, á ñRA is associated with a cylindrical Alfvén
radius, which acts like a “lever arm” for the spin-down torque
on the star.

The methodology of this work follows closely that of
Paper I, in which we produce semianalytic formulations for
á ñRA in terms of the wind magnetization, ϒ, as defined in

previous works (Matt & Pudritz 2008; Matt et al. 2012; Réville
et al. 2015; Pantolmos & Matt 2017),

* *¡ = ˙ ( )B R

Mv
, 15

2 2

esc

where B* is now the characteristic polar field, which is split
among the different geometries using the ratios dip, quad,
and oct. The values of ϒ produced from the steady-state
solutions are indirectly controlled by increasing the value of
vA/vesc. This increases the polar magnetic field strength for a
given density normalization. The mass-loss rate is similarly
uncontrolled and evolves to steady state, depending mostly on
our choice of Parker wind parameters, but is also adjusted self-
consistently by the magnetic field. The values of ϒ are
tabulated in Table 2, along with l values, magnetic field
strengths given by vA/vesc, and the average Alfvén radii for
each case simulated. Results for combined dipole–quadrupole
cases are available in Table 1 of Paper I. Figure 1 shows the
parameter space of simulations with their value of ϒ against the
different ratios for either quadrupole–octupole or dipole–
octupole cases, with the lower-order geometry ratio labeling
the cases (quad and dip, respectively).

3. Wind Solutions and áRAñ Scaling Relations

3.1. Single Geometry Winds

For single magnetic geometries, increasing the complexity of
the field decreases the effectiveness of the magnetic braking
process by reducing the average Alfvén radius (braking lever
arm) for a given field strength (Garraffo et al. 2015). The
impact of changing field geometries on the scaling of the
Alfvén radius for thermally driven winds was shown by Réville
et al. (2015) for the dipole, quadrupole, and octupole
geometries. We repeat the result of Réville et al. (2015) for a
slightly hotter coronal temperature wind, cs=0.25 in our
cases, compared to cs=0.222. This temperature more reason-
ably approximates the solar wind terminal velocity, typically
resulting in a wind speed of ≈500 km s−1 at 1 au for solar
parameters. For each magnetic geometry, we simulate eight
different field strengths, changing the input value of vA/vesc as
tabulated in Table 2 (cases 1–24).
Each wind solution gives a value for the Alfvén radius, á ñRA ,

and the wind magnetization, ϒ. These values are represented in
Figure 2 as colored circles, and their scaling can be described
using the Alfvén radius relation from Matt & Pudritz (2008),
with three precise power-law relations for the different
magnetic geometries, as found previously in the work of
Réville et al. (2015):

*

á ñ
= ¡ ( )R

R
K , 16mA

s s

where Ks and ms are fit parameters for this relation, which
utilizes the surface field strength. Best-fit parameters for each
geometry are tabulated in Table 3.
With increasing l values, the higher-order geometries

produce increasingly shallow slopes with wind magnetization,
such that they approach a purely hydrodynamical lever arm,
i.e., the wind carries away angular momentum corresponding to
the surface rotation alone, with the torque efficiency equal to
the average cylindrical radius of the stellar surface from the

4
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Table 2
Input Parameters and Results from Simulations with One and Two Magnetic Components

Case   ∣ ∣dip quad oct vA/vesc *á ñR RA ϒ ϒopen á ñ( )v R vA esc Case   ∣ ∣dip quad oct vA/vesc *á ñR RA ϒ ϒopen á ñ( )v R vA esc

1 ∣ ∣1.0 0.0 0.0 0.5 5.0 185 1460 0.22 65 ∣ ∣0.5 0.0 0.5 0.5 3.8 203 648 0.17
2 ∣ ∣1.0 0.0 0.0 1.0 6.9 735 3540 0.29 66 ∣ ∣0.5 0.0 0.5 1.0 4.9 705 1380 0.22
3 ∣ ∣1.0 0.0 0.0 1.5 8.5 1790 6440 0.34 67 ∣ ∣0.5 0.0 0.5 1.5 5.8 1580 2300 0.26
4 ∣ ∣1.0 0.0 0.0 2.0 9.9 3380 9710 0.37 68 ∣ ∣0.5 0.0 0.5 2.0 6.7 2860 3420 0.29
5 ∣ ∣1.0 0.0 0.0 3.0 12.3 8330 17100 0.42 69 ∣ ∣0.5 0.0 0.5 3.0 8.3 6830 6300 0.34
6 ∣ ∣1.0 0.0 0.0 6.0 17.5 36500 43200 0.49 70 ∣ ∣0.5 0.0 0.5 6.0 11.7 29800 16200 0.42
7 ∣ ∣1.0 0.0 0.0 12.0 22.6 134000 85300 0.54 71 ∣ ∣0.5 0.0 0.5 12.0 15.1 110000 33800 0.49
8 ∣ ∣1.0 0.0 0.0 20.0 28.1 353000 156000 0.60 72 ∣ ∣0.5 0.0 0.5 20.0 18.7 299000 61000 0.50
9 ∣ ∣0.0 1.0 0.0 0.5 3.4 179 409 0.14 73 ∣ ∣0.3 0.0 0.7 0.5 3.4 159 451 0.12
10 ∣ ∣0.0 1.0 0.0 1.0 4.0 689 733 0.18 74 ∣ ∣0.3 0.0 0.7 1.0 4.3 607 977 0.20

(This table is available in its entirety in machine-readable form.)
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rotation axis, *á ñ = ( )R R 2 3A
1 2 (Mestel 1968). Any significant

magnetic braking in Sun-like stars will therefore be predomi-
nantly mediated by the lowest-order components.

3.2. Combined Magnetic Geometries

Based on work performed in Paper I, we anticipate the
behavior of the average Alfvén radius for magnetic field
geometries that contain, dipole, quadrupole, and octupole
components. The dipole component, having the slowest radial
decay, is expected to govern the field strength at large
distances, then the field should scale like the quadrupole at
intermediate distances, and finally, close to the star, the field
should scale like the octupole geometry. The Alfvén radius
formulation therefore takes the form of a twice-broken power

law,

*



 

  

á ñ
=

¡

+ ¡

+ + ¡

⎧
⎨⎪

⎩⎪

[ ]
[(∣ ∣ ∣ ∣) ]

[(∣ ∣ ∣ ∣ ∣ ∣) ]
( )

R

R

K

K

K

max

,

,

,

17

m

m

m

A
s,dip dip

2

s,quad dip quad
2

s,oct dip quad oct
2

s,dip

s,quad

s,oct

which approximates the simulated values of the average Alfvén
radius. Note that   + + =∣ ∣ ∣ ∣ ∣ ∣ 1dip quad oct , such that the
final scaling depends purely on the total ϒ.
Here we present simulation results from combinations of

each field, sampling a range of mixing fractions and field
strengths. These are used to validate this semianalytic
prescription for predicting the spin-down torque on a star,
due to a given combination of axisymmetric magnetic fields.

3.2.1. Dipole Combined with Quadrupole

The regime of dipole and quadrupole combined geometries
is presented in Paper I. We briefly reiterate the results here,
displaying values from that study in Figure 3.
These fields belong to different symmetry families, primary

and secondary. As such, their addition creates a globally
asymmetric field about the equator, with the north pole in
this case being stronger than the south. The relative fraction
of the two components alters the location of the current

Figure 1. The two parameter spaces first examined in this work, quadrupole–octupole (left) and dipole–octupole (right), shown in terms of ϒ and eitherquad ordip

(Equation (5)), respectively. Each point represents a simulation using the PLUTO code, with the color of each point labeling them throughout this work, depending on
their relative combination of field components. The black solid lines represent ϒcrit for each combination, where the break in the Alfvén radius scaling is found (see
equation (19)). In both two component parameter spaces, the average Alfvén radius scales as a pure octupole (bottom left) for low wind magnetisations and high
octupole fraction. Then scales with the lowest-order component, either dipole or quadrupole (upper right).

Figure 2. Average Alfvén radius vs. the wind magnetization, ϒ (Equation (15)),
in our simulations with single geometries (circles). Different scaling relations are
shown for each pure geometry (solid lines). Higher l order geometries produce
a smaller Alfvén radius and thus smaller spin-down torque for a given polar
field strength and mass-loss rate. A similar result was first shown by Réville
et al. (2015).

Table 3
Single Component Fit Parameters to Equation (16)

Topology (l) Ks ms

Dipole (1) 1.53±0.03 0.229±0.002
Quadrupole (2) 1.70±0.02 0.134±0.002
Octupole (3) 1.80±0.01 0.087±0.001

Note. Fit values deviate slightly from those presented in Paper I owing to the
more accurate numerical results found with logarithmic grid spacing, used here.
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sheet/streamers, which appear to resemble the dominant global
geometry.

It is shown in Paper I that the quadrupole component has a
faster radial decay than the dipole, and therefore at large
distances only the dipole component of the field influences the
location of the Alfvén radius. Closer to the star, the total field
decays radially like the quadrupole, with the dipole component
adding its strength, so near to the star the Alfvén radius scaling
depends on the total field strength. Therefore, we developed a
broken power law to describe the behavior of the average
Alfvén radius scaling with wind magnetization, which uses the
maximum of either the quadrupole slope using the total field
strength, as if the combined field decays like a quadrupole
(solid blue line), or the dipolar slope using only the dipole
component (shown in color-coded dashed lines). The dipole
component of the wind magnetization is formulated as

*
*

* * ¡ = = ¡
=⎛

⎝⎜
⎞
⎠⎟ ˙ ( )B

B

B R

Mv
. 18

l

dip

1 2 2 2

esc
dip
2

Mathematically, Equation (17) becomes the broken power law
from Paper I when  = 0oct ,
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where the octupolar relation is ignored, and
 + =∣ ∣ ∣ ∣ 1dip quad . Here ϒcrit describes the intercept of the
dipole component and quadrupole slopes,
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Equation (17) further expands the reasoning above to include
any field combination of the axisymmetric dipole, quadrupole,
and octupole. The following sections test this formulation
against simulated combined geometry winds.

3.2.2. Quadrupole Combined with Octupole

Stellar magnetic fields containing both a quadrupole and
octupole field component present another example of primary
and secondary family fields in combination. As with the
axisymmetric dipole–quadrupole addition, the relative orienta-
tion of the two components simply determines which regions of
magnetic field experience addition and subtraction about the
equator, so that the torque and mass-loss rate do not depend on
their relative orientation. Compared with the dipole component,
both fields are less effective in generating a magnetic lever arm
to brake rotation at a given value of ϒ.
We test the validity of Equation (17), setting  = 0dip and

systematically varying the value of quad, with the octupole
fraction composing the remaining field,  = -1oct quad.
Five mixed case values are selected ( = 0.8, 0.5,quad
0.3, 0.2, 0.1) that parameterize the mixing of the two
geometries. Steady-state wind solutions are displayed in
Figure 4, showing, as with dipole–quadrupole addition, the
equatorially asymmetric fields produced. With increasing polar
field strength, the streamers are observed to shift toward the
lowest-order geometry morphology (quadrupolar in this case),
as was shown for the dipole in Paper I.
The average Alfvén radii and wind magnetization are shown

in Figure 5. The behavior of á ñRA is quantitatively similar to
that of the dipole–quadrupole addition, where combined field
cases are scattered between the two pure geometry scaling
relations. The range of available á ñRA values between the pure
quadrupole and octupole scaling relations (solid blue and
green, respectively) is reduced compared to the previous
dipole–quadrupole, due to the weaker dependence of the
Alfvén radius with wind magnetization.
As required by Equation (17), with no dipolar component,

we introduce the quadrupole component of ϒ as

*
*

* * ¡ = = ¡
=⎛

⎝⎜
⎞
⎠⎟ ˙ ( )B

B

B R

Mv
, 21

l

quad

2 2 2 2

esc
quad
2

and the second relation in Equation (17) takes the form

*

á ñ
= ¡[ ] ( )R

R
K , 22mA

s,quad quad s,quad

where Ks,quad and ms,quad are determined from the pure
geometry scaling (see Table 3).
The quadrupole component of the wind magnetization is

plotted for different quad values in Figure 5, showing an
identical behavior to the dipole component in the dipole–
quadrupole combined fields. The ϒquad formulation is shown in
Figure 6, with the solid blue line described by Equation (22).
This agrees with a large proportion of the wind solutions, with
deviations due to a switch of regime onto the octupole relation,
the third relation in Equation (17),

* 
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shown with a solid green line in Figure 5 and dashed color-
coded lines in Figure 6. As with the dipole–quadrupole
addition, a broken power law can be formulated taking the
maximum of either the octupole scaling or the quadrupole
component scaling, for a given quad value. For the
cases simulated, we find a deviation from this broken power

Figure 3. Average Alfvén radius scaling with wind magnetization, ϒ, for the
different combinations of dipole and quadrupole, from the study in Paper I
(circles). Solid lines show scaling for pure dipole and quadrupole. The
deviation from single power laws shows how the combination of dipole and
quadrupole fields modifies the Alfvén radius scaling, compared to single
geometries. The scaling predicted by only considering the fractional dipole
component is plotted with multiple dashed colored lines corresponding to the
different dip values. This shows that *á ñR RA scales with the dipole
component only, unless the quadrupole is dominant at a distance of ≈RA.
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law of no greater than 5%, with most cases showing a closer
agreement.

3.2.3. Dipole Combined with Octupole

Unlike the previous field combinations, both the dipole and
octupole belong to the primary symmetry family, and thus their
addition produces two distinct field topologies for aligned or
anti-aligned fields. Again, we test Equation (17), now with
 = 0quad . The field combinations are parameterized using the
ratio of dipolar field to total field strength, dip, with the
remaining field in the octupolar component  = -1oct dip.
The ratio of dipolar field is varied ( = 0.5, 0.3, 0.2, 0.1dip ).
Additionally, we repeat these ratios for both aligned and anti-
aligned fields. This produces eight distinct field geometries that
cover a range of mixed dipole–octupole fields.

Figure 7 displays the behavior of both aligned and anti-
aligned cases with increasing field strength. The combination
of dipolar and octupolar fields produces a complex field
topology that is alignment dependent and impacts the local
flow properties of the stellar wind. The symmetric property of
the global field is maintained about the equator. Aligned
combinations have magnetic field addition over the poles,
which increases the Alfvén speed, producing a larger Alfvén
radius over the poles. However, the fields subtract over the

equator, which reduces the size of the Alfvén radius over the
equator; see the top panel of Figure 4. The bottom panel shows
anti-aligned mixed cases to exhibit the opposite behavior, with
a larger equatorial Alfvén radius and a reduction to the size of
the Alfvén surface at higher latitudes. The torque-averaged
Alfvén radius is shown by the gray dashed lines in each case,
representing the cylindrical Alfvén radius á ñRA . For the
simulations in this work, the anti-aligned cases produce a
larger lever arm compared with their aligned counterparts, with
a few exceptions. In general, the increased Alfvén radius at the
equator for the anti-aligned fields is more effective at increasing
the torque-averaged Alfvén radius compared with the larger
high-latitude Alfvén radius in the aligned field cases.
The locations of the current sheets are shown in Figure 7

using red dashed lines. As noted with the dipole–quadrupole
addition in Paper I, the global dipolar geometry is restored with
increasing fractions of the dipole component or increased field
strength for a given mixed geometry. The latter is shown in
Figure 7 for both aligned and anti-aligned cases. With
increased field strength, a single dipolar streamer begins to
be recovered over the equator. A key difference between the
two field alignments is the asymptotic location of the three
streamers. In the case of an aligned octupole component,
increasing the total field strength for a given ratio forces the
streamers toward the equator, at which point they begin to

Figure 4. Steady-state solutions for the quadrupole–octupole combined geometry cases 44, 45, and 46, showing a progression from weaker to stronger magnetization
(ϒ) from left to right. The color background represents the poloidal speed normalized by the Keplerian speed (e.g., ≈400 km s−1 for solar parameters). Dead zones are
therefore in black. Thin white lines trace the magnetic field, with red dashed lines highlighting the field polarity reversals (i.e., where Br = 0). Alfvén and sonic
surfaces are indicated with thick blue and black lines, respectively, with the fast and slow magnetosonic surfaces represented as dot-dashed and dashed white lines.
Vertical gray dashed lines show the average Alfvén radius á ñRA (Equation (13), representing the torque efficiency, scales with the size of the Alfvén surface). The
asymmetry of the global magnetic field about the equator is shown, with a qualitatively similar behavior to the dipole–quadrupole simulations in Paper I.
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merge into the dipolar streamer. With an anti-aligned octupole
component, the opposite is found, with the high-latitude
streamers forced toward the poles and onto the rotation axis.
It is unclear whether this effect is significant itself in
influencing the global torque.

Using Equation (17), with no quadrupolar component, we
anticipate that the dipolar component (first relation) will be the
most significant in governing the global torque. Figures 8 and 9
show the dipole–octupole cases following the expected
behavior, as observed for dipole–quadrupole and quadrupole–
octupole combinations. We see that the average Alfvén radius
follows either the dipole component scaling (ϒdip) or the
octupole scaling relation,

* 
á ñ

= ¡ = ¡[ ] [ ] ( )R

R
K

K
. 24m

m
mA

s,oct
s,oct

dip
2 dips,oct
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However, as evident in both figures, there is a deviation from
this scaling, with the strongest variations belonging to low-dip

cases. Anti-aligned cases follow the behavior expected from
Paper I with a much higher precision than the anti-aligned
cases. Figure 9 shows the dipole scaling to overpredict the
aligned cases compared with the anti-aligned cases. This occurs
because Equation (17) is a simplified picture of the actual
dynamics within our simulations, and as such, it does not
encapsulate all of the physical effects. The trends are still
obvious for both aligned and anti-aligned cases, and the scatter
simply represents a reduction to the precision of our
formulation.

Despite this deviation from predicted values, Figure 9 shows
the dipole component again to be the most significant in
governing the global torque. With a more complex (higher l)
secondary component, the dipole dominates the Alfvén radius
scaling at a much lower wind magnetization, when compared
with the dipole–quadrupole combinations. For the dipole–
octupole cases simulated, the dipole component dominates the
majority of the simulated cases. For our dipole and octupole
mixed fields the transition between regimes occurs at

ϒdip≈100, such that the á ñRA for fields with  = 0.1dip , or
higher, and a physically realistic wind magnetization will all be
governed by the dipole component.

3.2.4. Combined Dipole, Quadrupole, and Octupole Fields

In addition to the quadrupole–octupole and dipole–octupole
combinations presented previously, we also perform a small set
of simulations containing all three components. Their stellar
wind parameters and results are tabulated in Table 4. We select
a regime where the dipole does not dominate ( = 0.1dip ), to
observe the interplay of the additional quadrupole and octupole
components. We also utilize cases 89–96 and 121–128 from
this work and cases 51–60 from Paper I, all of which sample
varying fractions of quadrupole and octupole with a fixed
 = 0.1dip . These are compared against the three-component
cases, 129–160.
Equation (17) is adopted, now using all three components,

such that the results from these simulations are expected to
scale in magnetization like a twice-broken power law. As
noted with the dipole–octupole addition, the inclusion of an
octupolar component introduces behaviors that will not be
accounted for by this formulation, i.e., Equation (17) is
independent of field alignments, etc. We aim to characterize
this unaccounted-for physics in terms of an available
precision on the use of Equation (17). The simulated Alfvén
radii are compared against their predicted values in
Figure 10, along with the other simulations from this work
(shown in white). The three-component field combinations
have a small dipolar component; therefore, the dipolar
scaling of the average Alfvén radius is rarely the dominant
term in Equation (17). The different values of quadrupolar
and octupolar field that compose the remaining field strength
govern the average Alfvén radius scaling for the majority of
this parameter space. From Figure 10, the approximate

Figure 6. Average Alfvén radius vs. the quadrupolar component of the wind
magnetization, ϒquad, for cases with mixed quadrupole and octupole
components (circles). The solid blue line shows the prediction based on the
quadrupole component only (Equation (22)). The dashed lines show the
octupolar scaling (Equation (23)). A broken power law composed of
the quadrupolar component and the octupolar scaling (quad dependent)
can be constructed similarly to work done in Paper I. The quadrupolar
geometry dominates the scaling, for all of the quad values simulated here, at

*á ñ »R R 9A . The point at which the quadrupolar geometry dominates
for a given quad value can be approximated by considering the strength
of the two fields at the Alfvén radii, i.e., the radial distance when the
strength of the quadrupole matches or exceeds that of the octu-
pole * = -( )( )B B r R1quad oct quad quad .

Figure 5. Average Alfvén radius vs. wind magnetization, ϒ, for the different
combinations of quadrupole and octupole, in a similar format to Figure 3.
Color-coded dashed lines relate to the prediction considering only the
quadrupolar component of the field for each quad. The combinations shown
here behave in a similar manner to dipole–quadrupole combined fields, in a
sense that the lower-order field (with the lowest l) governs the Alfvén radius for
large wind magnetizations, ϒ, and the higher-order field (large l) controlling the
low magnetization scaling.
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Figure 7. Steady-state solutions for the dipole–octupole combined geometries with aligned fields (top row; cases 93, 94, and 95) and anti-aligned fields (bottom row;
cases 124, 125, and 126). The format and lines are the same as in Figure 4. The aligned cases have field adding near the poles and subtracting near the equator, where
the opposite is true for the anti-aligned cases. The difference in how these two cases combine results in a different shape of the Alfvén surface. Also, for the same
magnetization (ϒ), the anti-aligned cases, in general, systematically produce a larger torque efficiency (á ñRA ; vertical dashed gray lines). This is due to these cases
having a stronger field at low latitudes, where the angular momentum loss is more efficient.
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formulation agrees well with the simulated values, with the
largest discrepancies emerging at smaller radii and for anti-
aligned cases; see the residual plot below. A 10% divergence
from our prediction (dashed lines in both the top and bottom
panels of Figure 10) is shown to roughly approximate the
effects not taken into account by the simple scaling, with the
largest deviation to 18.3%.

Equation (17) is observed to have increasing accuracy as
the Alfvén radii become larger in Figure 10; this is due to the
increasing dominance of the dipolar component at large
distances. Quantifying the scatter in our residual, we
approximate the distribution of deviations as Gaussian and

calculate a standard deviation of 5.1%, when evaluating all
160 of our simulated cases. Considering the 32 three-
component cases, the standard deviation remains of the same
order of 5.2%, indicating that the formulation maintains
precision with the inclusion of all three antisymmetric
components. The largest deviations from the predicted values
belong to the dipole–octupole simulations, and these are
observed within Figures 8 and 9. In both figures, as well as
the residual, the predicted values are shown to underestimate
the simulated values, for small average Alfvén radii, but with
increasing field strength they begin to overpredict. The trends
in the residual represent physics not incorporated into our
approximate formula and can be explained. The under-
estimation at first is due to the sharpness of the regime
transition from the broken-power-law representation; in
reality, there is a smoother transition that is always larger
than the break in power laws. This significantly impacts the
dipole–octupole simulations, as they most often probe this
regime, as can be seen within Figure 9. For the dipole–
octupole combinations, we propose that this transition must
be much broader to match the deviations in the residual of
Figure 10.
Equation (17) represents an approximation to the impact of

mixed geometry fields on the prediction of the average Alfvén
radius. Our mixed cases are found to be well behaved and can
all be predicted by this formulation within ≈±20% accuracy
for the most deviant; the majority lie within ≈±5% accuracy.

3.3. Analysis of Previous Mixed Fields

Réville et al. (2015) presented mixed-field simulations
containing axisymmetric dipole, quadrupole, and octupole
components, based on observations of the Sun, at maximum
and minimum of magnetic activity, along with a solar-like star
TYC-0486. To further test our formulation, we use input
parameters and results from Table 3 of Réville et al. (2015) and
predict values for the average Alfvén radii of the mixed cases
produced in their work. We use Equation (17) with the fit
constants from their lower-temperature wind ( =c v 0.222s esc )
and manipulate the given field strengths into suitablel values.
Results can be found in Table 5 and are shown in Figure 10
with red squares. The predicted values for the Alfvén radii
agree to better than 10% precision. The largest deviation, ≈8%,
is for TYC-0486, which we credit to the location of the
predicted Alfvén radius falling in between regimes, at the break
in the power law (almost governed by the dipole component
only), where the broken-power-law approximation has the
biggest error.
Recent work by Réville & Brun (2017) presented 13

thermally driven wind simulations, in 3D, for the solar wind,
using Wilcox Solar Observatory magnetograms, spanning the
years 1989–2001. These simulations use the spherical harmo-
nic coefficients derived from the magnetograms, up to l=15,
including the nonaxisymmetric modes. We predict the values
of the average Alfvén radii using Equation (17), allowing the
strength of any nonaxisymmetric component to be added in
quadrature with the axisymmetric component to produce
representative strengths for the dipole, quadrupole, and
octupole components. For example, the dipole field strength
is computed as

* = + +=
=-
=

=
=
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Figure 8. Average Alfvén radius scaling with wind magnetization, ϒ, for the
different combinations of dipole and octupole. The fields are either added
aligned at the poles (circles) or anti-aligned (stars). Dashed lines show the
dipole component scaling, color-coded to match the simulated values of dip.
The overall behavior here is similar to the previous mixed combined fields,
with the lower-order field governing the Alfvén radius for large wind
magnetizations. However, the different field alignments appear to scatter
around the ϒdip approximation, with the anti-aligned cases typically having
larger RA than the aligned cases, for the same ϒ.

Figure 9. Average Alfvén radius scaling with only the dipolar component of
the wind magnetization, ϒdip, for cases with combined dipole and octupole
components. Aligned field are shown with circles, anti-aligned with stars. The
parameter space investigated here is well approximated by the dipole
component scaling relation (solid red line). Generally the aligned field cases
are shown to undershoot the dipole component approximation, while the anti-
aligned cases match the power law with similar agreement to the previous
combined geometries. The qualitative behavior is again similar to the previous
combined cases; however, due to the larger difference in radial decay of the
field, i.e., * = -( )( )B B r R1dip oct dip dip

2, the dipole dominates at much
smaller RA≈3.
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We obtained the field strengths for the dipole, quadrupole, and
octupole components of the magnetograms used in the
simulations of Réville & Brun (2017), ignoring the higher-order
field components (V. Réville 2017, private communication). The
results from this are shown in Figure 10 with magenta squares
and show a good agreement in most cases to the simulated
values. However, we note that the Alfvén radii tabulated within
Réville & Brun (2017) are geometrically averaged rather than
torque averaged, as used in this work (both scale with wind
magnetization in a similar manner). These values thus represent
the average spherical radius for the Alfvén surface in their 3D
simulations. The base wind temperature for their simulations is
also cooler ( »c v 0.234s esc ) than in our simulations. Never-
theless, Figure 10 shows good agreement with the predicted
values; we calculate a standard deviation of 8.4%. If we apply an
approximate correction to the spherical radii with a factor of 2/3
(due to the angular momentum lever arm being proportional to r
sin θ) and use torque scaling coefficients fit to the lower-
temperature wind from Pantolmos & Matt (2017), we find that
all the magenta simulations fit within the 10% precision, despite
the inclusion of the nonaxisymmetric components. This suggests
that Equation (17) can be used in cases with nonaxisymmetric
geometries in combination, but further study is required to test
more fully.

4. Analysis Based on Open Flux

4.1. Magnetic Flux Profiles

The behavior of the stellar wind torque, quantified in the
previous sections, is similar to the results found in Paper I.
Lower-order magnetic components decay more slowly with
radius than higher-order components. Thus, the lower-order
component typically dominates the dynamics of the global
torque. The higher-order component can usually be ignored,
unless it has a comparable field strength to the lower-order
component at the Alfvén radius, which requires the higher-
order field to dominate at the surface.
The radial dependence of the magnetic field is best described

by the unsigned magnetic flux. To calculate this, we evaluate
an integral of the magnetic field threading closed spherical
shells with area A; this produces the unsigned magnetic flux as
a function of radial distance,

F = ∮( ) ∣ · ∣ ( )B Ar d . 26
r

For a potential field, as used in the initial conditions, the
magnetic flux decays as a simple power law,

*
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Table 4
Input Parameters and Results from Simulations with Three Magnetic Components

Case   ∣ ∣dip quad oct vA/vesc *á ñR RA ϒ ϒopen á ñ( )v R vA esc

129 ∣ ∣0.1 0.6 0.3 0.5 3.1 181 289 1.09
130 ∣ ∣0.1 0.6 0.3 1.0 3.6 698 502 1.33
131 ∣ ∣0.1 0.6 0.3 1.5 4.0 1550 709 1.49
132 ∣ ∣0.1 0.6 0.3 2.0 4.4 2760 923 1.61
133 ∣ ∣0.1 0.6 0.3 3.0 4.9 6320 1400 1.81
134 ∣ ∣0.1 0.6 0.3 6.0 6.3 27100 3030 2.17
135 ∣ ∣0.1 0.6 0.3 12.0 7.9 111000 6430 2.65
136 ∣ ∣0.1 0.6 0.3 20.0 9.3 308000 11200 3.09
137 ∣ ∣0.1 0.6 0.6 0.5 2.7 182 194 0.97
138 ∣ ∣0.1 0.3 0.6 1.0 3.1 702 326 1.17
139 ∣ ∣0.1 0.3 0.6 1.5 3.4 1560 451 1.29
140 ∣ ∣0.1 0.3 0.6 2.0 3.7 2760 585 1.37
141 ∣ ∣0.1 0.3 0.6 3.0 4.2 6230 903 1.53
142 ∣ ∣0.1 0.3 0.6 6.0 5.5 25600 2180 1.85
143 ∣ ∣0.1 0.3 0.6 12.0 7.2 97000 4850 2.25
144 ∣ ∣0.1 0.3 0.6 20.0 8.6 246000 8560 2.61
145 -∣ ∣0.1 0.6 0.3 0.5 3.2 34 312 1.13
146 -∣ ∣0.1 0.6 0.3 1.0 3.7 119 533 1.37
147 -∣ ∣0.1 0.6 0.3 1.5 4.1 258 765 1.53
148 -∣ ∣0.1 0.6 0.3 2.0 4.5 451 1000 1.65
149 -∣ ∣0.1 0.6 0.3 3.0 5.1 1020 1500 1.85
150 -∣ ∣0.1 0.6 0.3 6.0 6.5 4450 3400 2.21
151 -∣ ∣0.1 0.6 0.3 12.0 8.2 18600 7260 2.69
152 -∣ ∣0.1 0.6 0.3 20.0 10.1 55300 13200 3.17
153 -∣ ∣0.1 0.3 0.6 0.5 3.0 4 254 1.05
154 -∣ ∣0.1 0.3 0.6 1.0 3.5 21 430 1.25
155 -∣ ∣0.1 0.3 0.6 1.5 3.9 49 607 1.37
156 -∣ ∣0.1 0.3 0.6 2.0 4.2 91 782 1.49
157 -∣ ∣0.1 0.3 0.6 3.0 4.7 214 1160 1.65
158 -∣ ∣0.1 0.3 0.6 6.0 5.9 916 2440 2.01
159 -∣ ∣0.1 0.3 0.6 12.0 7.5 3770 5360 2.41
160 -∣ ∣0.1 0.3 0.6 20.0 9.3 11300 10200 2.85
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where Φ* is the surface magnetic flux and l represents the
magnetic order of the field, increasing for more complex fields.
Thus, higher-order fields decay radially faster.

The radial profiles of the flux in our steady-state solutions are
shown with thin gray lines in Figures 11–13. Each ratio (l)
represents a different combined field geometry, with each gray
line having a different field strength. In each figure we include
the potential field solution for the flux with a solid black line,
produced by Equation (26), showing the initial magnetic field
configuration. No longer is a single power law produced;
instead, the components interact and produce a varying radial
decay. In magnetized winds, the magnetic forces balance the
thermal and ram pressures close to the star. Therefore, the

unsigned flux approximately follows the potential solution.
Farther from the star the pressure of the wind forces the
magnetic field into a nearly radial configuration, beyond which
the unsigned flux becomes constant. This constant value is
referred to as the open flux, Φopen (typically larger field strength
produces a smaller fraction of open flux to surface flux).
In the cases with quadrupole–octupole mixed fields

(Figure 11), the individual potential field quadrupole and
octupole components are indicated with thick dashed blue and
green lines, respectively. As with the previous dipole and
quadrupole addition, the broken-power-law behavior shown in
the Alfvén radius formulation is visible. The quadrupole
component often represents the most significant contribution to
the total flux, as the dipole did within Paper I. The bottom right
panel of Figure 11 shows the relative decay of all the potential
fields.
Figure 12 shows the radial magnetic flux evolution for the

dipole–octupole combinations in a similar format to Figure 11.
A quantitatively similar behavior to the dipole–quadrupole and
quadrupole–octupole combinations is shown with the anti-
aligned field geometries, seen in the bottom row. This explains
why previously the anti-aligned cases provided a better fit to
the broken-power-law approximation than the aligned cases.
For the cases with an aligned octupole component, the profile
of the flux decay is distinctly different. The smooth transition
between the two regimes of the broken power law is replaced
with a deviation from the dipole that passes below the dipole
component at first and then asymptotes back. This is caused by
the subtraction of the dipole and octupole fields over the
equator, which reduces the unsigned flux and has the largest
impact at the radial distance where the two components have
the equal and opposite field strength.
For these two-component simulations, the approximate

formulation, Equation (17), mathematically approximates the
radial decay of the magnetic field with two regimes, an
octupolar decay close in to the star followed by a sharp
transition to the lower-order geometry (dipole or quadrupole),
which ignores any influence of the octupolar field. The
formulation works well when this is a good approximation,
which is typically the case for the dipole–quadrupole,
quadrupole–octupole, and anti-aligned dipole–octupole cases.
The inflection of the magnetic flux for aligned cases creates a
discrepancy between our simplification and the physics in the
simulation; therefore, we observe a scatter in our results
between the aligned and anti-aligned cases. Our formulation is
least precise when the inflection occurs near the Alfvén radius,
causing the formula to overpredict the average Alfvén radius.
However, in Section 3.2.4 we show this to be a systematic and
measurable effect that does not impact the validity of
Equation (17).
For the three-component simulations, the behavior of the

dipole-octupolar component alignment is shown to oppose the
previous dipole–octupole addition. Equation (17) more accu-
rately approximates the mixed-field cases with an aligned
octupole component than with an anti-aligned component. To
explore this, we show the radial evolution of the magnetic flux
in Figure 13. The top panel displays the aligned cases with
increasing octupolar component and decreasing quadrupolar
component, moving to the right. The reduction of flux, or
inflection in the flux profile, due to the dipole and octupole
addition is only seen to be significant for one case, where the
octupole fraction is maximized. In the remaining cases the

Figure 10. Top panel: comparison of the simulated Alfvén radii vs. the
predicted Alfvén radii using Equation (17). The line of agreement is shown
with a solid black line, and the bounds of 10% deviation from the predicted
value are shown with black dashed lines. The bottom panel shows the residual,
á ñ - á ñ á ñ( )R R RA sim A FM18 A sim, and the 10% deviation with dashed lines. Cases
129–135 and 145–152 are colored purple, and cases 137–144 and 153–160 are
colored orange, different from the color scheme of previous figures. The
quadrupole- and octupole-dominated cases with  = 0.1dip are shown with
their original coloring (blue and green, respectively). All other simulations
from this work and Paper I are shown in gray. Three red squares represent
axisymmetric mixed-field simulations from Réville et al. (2015). Thirteen
magenta squares represent 3D nonaxisymmetric simulations with lmax=15
from Réville & Brun (2017) (the average Alfvén radius is computed differently
than Equation (13)).

Table 5
Comparison of Results, *∣R RA sim, from Cases of Réville et al. (2015)

to the Prediction of Equation (17), *∣R RA FM18

Object   ∣ ∣dip quad oct ϒ
*∣R RA sim *∣R RA FM18

Sun Min - -∣ ∣0.47 0.03 0.50 812 6.7 6.74
Sun Max ∣ ∣0.13 0.73 0.14 130 3.3 3.36
TYC-0486 - -∣ ∣0.10 0.79 0.11 17600 7.7 7.10
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octupolar fraction is too small to produce a strong reduction in
the equatorial flux with the dipole, hence the well-behaved
relation between the simulated aligned cases and the predicted
average Alfvén radii in Figure 10. The poorest-fitting cases to
Equation (17) are the anti-aligned mixed cases shown in
Figure 13 with purple and orange stars. The potential field
solutions, shown with solid black lines, sit above the dashed
component slopes (most significant for cases 153–160, in
orange) showing an increased field strength due to the complex
addition of the three components in combination. This is unlike
most of the previous combined field cases, which are typically
described by either one component or the other; hence, the
predicted values differ for these cases.

This behavior is difficult to parameterize within our Alfvén
radius approximation, as it requires knowledge about the
magnetic field evolution in the wind. For this work, we simply
show why the simulations deviate from Equation (17) and
suggest that care be taken when using such formulations with
dipolar and octupolar components.

4.2. Open Flux Torque Relation

The open flux, Φopen, remains a key parameter in
describing the torque scaling for any magnetic geometry.
Réville et al. (2015) construct a semianalytic formulation for
the average Alfvén radius using the open flux wind
magnetization,

*¡ =
F

˙ ( )
R

Mv
. 28open

open
2 2

esc

The dependence of the average Alfvén radius on ϒopen is then
parameterized:

*

á ñ
= ¡[ ] ( )R

R
K , 29mA

o open o

where Ko and mo represent fit parameters to our simulations
using this open flux formulation. In Paper I, we show the
dependence of these fit parameters on magnetic geometry. We
show this again within the left panel of Figure 14. The scatter in
average Alfvén radius values for different field geometries is
reduced compared with that seen in the ϒ parameter spaces
(Figures 3, 5, and 8), such that a single power-law fit is viable,
shown with a solid black line. However, better fits are obtained
when considering each pure geometry independently, tabulated
in Table 6.
Work by Pantolmos & Matt (2017) showed how differing

wind acceleration affects the scaling relation by using
different base wind temperatures to accelerate their winds.
Different magnetic topologies produce slightly different wind
acceleration from the stellar surface out to the Alfvén radius,
due to the varying degree of super-radial expansion of the
magnetic field lines (Velli 2010; Riley & Luhmann 2012;
Réville et al. 2016). Thus, this causes the distinctly different
scaling relations in the left panel of Figure 14. Using the
averaged Alfvén speed á ñ( )v RA at the Alfvén surface, this
difference in wind acceleration can be removed (see
Pantolmos & Matt 2017), and the result is shown in the
right panel of Figure 14.

Figure 11. Unsigned magnetic flux vs. radial distance (gray lines) for all the cases with combined quadrupole and octupole components (labeled
 = -0.1 0.8quad , along with the pure quadrupole and octupole cases (labeled  = 0.0quad and 1.0). Thick dashed blue and green lines show the value
for a potential field for the quadrupole and octupole components, respectively, on their own. The total potential field flux, used as the initial condition,
Equation (26), is shown in solid black. Thin gray lines in each panel show the magnetic flux in a single steady-state solution, for different field strengths of a
given geometry. The flux within the simulations follows the potential field solution closely until the magnetic field is opened into a radial configuration with
constant flux. Gray circles indicate the location of the field opening radii Ro, as we define it in this work. The mixed field geometries decay with an octupolar
dependence until reaching the quadrupolar component, at which point the quadrupole controls the decay. This explains why the broken-power-law approximation
is a good fit to the data in most cases. For comparison, the final panel shows all of the potential (initial) field geometries and their opening radii, colored according
to their quad value.
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The semianalytic solution from Pantolmos & Matt (2017) is
given by

*

á ñ
= ¡

á ñ

⎡
⎣⎢

⎤
⎦⎥( )

( )R

R
K

v

v R
, 30

m
A

c open
esc

A

c

where Kc and mc are fit parameters to this formulation. The fit
relationship from Pantolmos & Matt (2017) and a fit to our
simulation data (Table 6) are shown with all our simulated
cases (both Paper I and this paper) in the right panel of
Figure 14.

A small geometry-dependent scatter remains in the right
panel, which is noted in Paper I. The cause of this is an
unanswered question but may relate to systematic numerical
errors due to modeling small-scale complex field geometries.
Our fit agrees well with that from Pantolmos & Matt (2017),
with a shallower slope due to the inclusion of the higher-order
geometries that show this systematic deviation from the dipole
simulations.

4.3. Field Opening Radius

As in previous works (e.g., Pantolmos & Matt 2017;
Paper I), we define an opening radius Ro using the value of
the open flux. The opening radius is defined as the radial
distance at which the potential field for a given geometry
matches the value of the open flux, i.e., Φ(Ro)=Φopen. In this
way, given the surface magnetic field geometry and the value
of Ro, the open flux in the wind is recovered, and thus the
torque can be predicted. However, producing a single relation

for predicting the opening radius, and thus the open flux, for
our simulations remains an unsolved problem.
In Figures 11–13, the opening radii for all simulations are

marked with gray circles and compared in the final panel
(colored to match the respective l value). With increasing
field strength, the simulations produce a larger average Alfvén
radius and a larger dead zone/opening radius. The Alfvén and
opening radii roughly grow together with increasing wind
magnetization, but their actual behavior is more complex. The
field complexity also has an affect on this relationship, with
more complex geometries producing smaller opening radii, as
the wind pressure is able to open the magnetic field closer to
the star.
We compare the average Alfvén radii and opening radii

within Figure 15. The simulations containing an octupolar
component, in general, show a shallower dependence, which
continues the trend from dipole to quadrupole presented in
Paper I. Interestingly, the aligned dipole–octupole fields are
shown to have reduced values of Ro for the Alfvén radii they
produce, compared to the aligned cases, which is a conse-
quence of the reduced flux from the field subtraction over the
equator. For these cases the wind pressure is able to open the
field much closer to the star, compared to the anti-aligned
cases.
The relationship between the opening radius and the lever

arm for magnetic braking torque in our wind simulations is
evidently complex and interrelated with magnetic geometry,
field strength, and mass-loss rate. The opening radius, as we
define it here, is algebraically related to the source surface
radius, rss, used within the potential field source surface (PFSS)
models. As such, the Ro scales with rss for a given field

Figure 12. Unsigned magnetic flux vs. radial distance for all the cases with combined dipole and octupole components (labeled  =  –0.5 0.9dip ), both aligned (top
row) and anti-aligned (bottom row), in a similar format to Figure 11. Thick dashed red and green lines show the value for a potential field for the dipole and octupole
components, respectively, on their own. The aligned cases have a qualitatively different behavior from the dipole–quadrupole, quadrupole–octupole, and anti-aligned
dipole–octupole cases, in that the former show a subtle inflection in the their flux vs. radius (most apparent in the solid black lines for largedip values, the three top
left panels). This is caused by the subtraction of the two fields in the equatorial region, which has a maximum effect at the radius where the two components have the
same magnitude. The net effect of this inflection in the magnetic flux is subtle, and thus our scaling relation (which does not treat the aligned and anti-aligned cases
differently) remains an acceptable approximation to all simulations. For comparison, the rightmost panel shows all of the potential (initial) field geometries and their
opening radii, colored according to their dip value, for the aligned and anti-aligned cases, respectively.
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geometry, and its behavior with increasing field strength should
be accounted for within future PFSS models.

5. Conclusions

This work presents results from 160 new MHD simulations
and 50 previously discussed simulations from Paper I, which we
use to disentangle the impacts of complex magnetic field
geometries on the spin-down torque produced by magnetized
stellar winds. Axisymmetric dipole, quadrupole, and octupole
fields are used to construct differing combined field geometries.

We systematically vary the ratios,dip,quad, andoct, of each
field geometry with a range of total field strengths. Here we
reinforce results from Paper I. With simple estimates using
realistic magnetic field topologies (obtained from ZDI observa-
tions) and representative field strengths and mass-loss rates for
main-sequence stars, the dipole component dominates the
spin-down process, irrespective of the higher-order components
(A. Finley et al. 2018, in preparation). The original formulation
from Matt et al. (2012) remains robust in most cases even for
significantly nondipolar fields. Combined with the work from
Pantolmos & Matt (2017), these formulations represent a strong

Figure 13. Unsigned magnetic flux vs. radial distance for the sample of mixed dipole, quadrupole, and octupole cases in the same format as Figure 11. All cases
shown have 10% in the dipole component. Then, from left to right, the fraction in the octupole increases from 0% to 90% (with the remaining fraction in the
quadrupole component). The top row has aligned dipole–octupole; the bottom has anti-aligned.

Figure 14. Average Alfvén radius vs. the open flux magnetization, ϒopen, Equation (28). All simulations from this study and Paper I are shown, color-coded as in the
previous figures. Left: different scaling relations (Equation (29), Table 6) are shown for each pure geometry and a combined fit. Right: open flux magnetization
divided by the average speed at the Alfvén surface á ñ( )v RA . The scatter is reduced, indicating that the different scalings in the left panel are primarily due to the effect
of magnetic geometry on the wind acceleration (as discussed in Paper I). However, there remains a small systematic trend, in that the higher-order geometry winds sit
lower for a given magnetization (seen in Paper I), which may be due to systematic numerical effects. The solid black line represents the fit to all data (see Table 6); the
dashed line represents the result from dipole wind simulations with different base wind temperatures from Pantolmos & Matt (2017).
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foundation for predicting the stellar wind torques from a variety
of cool stars with differing properties.

We show the distinctly different changes to topology from
our combined primary (dipole, octupole) and secondary
(quadrupole) symmetry family fields, “primary” being anti-
symmetric about the equator and “secondary” symmetric about
the equator (McFadden et al. 1991; DeRosa et al. 2012). The
addition of primary and secondary fields produces an
asymmetric field about the stellar equator, in contrast to the
combination of two primary fields, which maintains equatorial
symmetry. However, the latter case breaks the degeneracy of
the field alignment, producing two different topologies
dependent on the relative orientation of the combined
geometries. This is not the case for primary and secondary
field addition, i.e., dipole–quadrupole and quadrupole–octu-
pole, which produces the same global field reflected about the
equator.

The magnetic braking torque is shown, as in Paper I, to be
largely dependent on the dominant lowest-order field comp-
onent. For observed field geometries this is, in general, dipolar
in nature. We parameterize the torque from our mixed-field
simulations based on the decay of the magnetic field. The
average Alfvén radius, á ñRA , is defined to represent a lever arm,
or efficiency factor, for the torque, Equation (14). From our
simulated cases we produce an approximate formulation for the
average Alfvén radius, Equation (17), where both Ks and ms

have tabulated values from our simulations in Table 3. These
values are temperature dependent, e.g., ≈1.7 MK for a 1M☉
star. In this formulation, the octupole geometry dominates the
magnetic field close to the star; then it decays radially, leaving
the quadrupole governing the radial decay of the field; and
finally the quadrupole decays, leaving only the dipole
component of the field. In each regime the strength of the
field includes any component that is yet to decay away.

Using this formula, we are able to predict the torque in all of
our simulations to ≈20% accuracy, with the majority predicted
to within ≈5%. This is then extended to mixed-field
simulations presented in Réville et al. (2015) and Réville &
Brun (2017). The formulation presented within this work
remains an approximation, with a smoother transition from
each regime observed with the simulations. This work

represents a modification to existing torque formulations,
which accounts for combined field geometries in a very
general way. A key finding remains that the dipole component
is able to account for the majority of the magnetic braking
torque, in most cases. Thus, previous works based on the
assumption of the dipolar component being representative of
the global field are validated. It is noted here, however, that it is
the dipole component of the field and not the total field strength
that enters in the torque formulation; therefore, it is important
to decompose any observed field correctly to avoid
miscalculation.
In this study, as in the previous one, we do not include the

effects of rapid rotation or varying coronal temperatures.
Prescriptions for rotational effects on the three pure geometries
studied here are available (Matt et al. 2012; Réville et al. 2015),
along with differing coronal temperatures for dipolar geome-
tries (Pantolmos & Matt 2017). In general, differences in wind-
driving parameters and physics will introduce more deviation
from Equation (17); however, it is expected to remain valid.
Work remains in modeling the behavior of nonaxisymmetric

components on the stellar wind environments surrounding Sun-
like and low-mass stars and the associated spin-down torques.
Observed fields are shown to host a varied amount of
nonaxisymmetry (e.g., See et al. 2015). Works including more
complex coronal magnetic fields, such as the inclusion of
magnetic spots (e.g., Cohen et al. 2009; Garraffo et al. 2015),
tilted magnetospheres (e.g., Vidotto et al. 2010), and using ZDI
observations (e.g., Vidotto et al. 2011, 2014; Alvarado-Gómez
et al. 2016; Garraffo et al. 2016b; Nicholson et al. 2016;
Réville et al. 2016), have shown the impact of specific cases
but have yet to fully parameterize the variety of potential
magnetic geometries. The relative orientations of some field
combinations shown in this work have produced differences in
the braking lever arm; therefore, we expect the same to be true
for nonaxisymmetric geometries in combination. Since
Equation (17) predicts the Alfvén radii from Réville & Brun
(2017) (Section 3.3), this suggests that our approximate
formulation holds for nonaxisymmetric components (using a
quadrature addition of ±l components), but this remains to be
validated.

Thanks for helpful discussions and technical advice from
Georgios Pantolmos, Victor See, Victor Réville, Sasha Brun,
and Claudio Zanni. This project has received funding from the
European Research Council (ERC) under the European Unions
Horizon 2020 research and innovation program (grant agree-
ment no. 682393). We thank Andrea Mignone and others for
the development and maintenance of the PLUTO code. Figures
within this work are produced using the python package
matplotlib (Hunter 2007).

Table 6
Open Flux Fit Parameters to Equations (29) and (30)

Topology(l) Ko mo

Dipole (1) 0.33±0.03 0.371±0.003
Quadrupole (2) 0.63±0.02 0.281±0.003
Octupole (3) 0.85±0.03 0.227±0.004
All simulations 0.46±0.03 0.329±0.004

Kc mc

Topology independent 0.08±0.04 0.470±0.004

Figure 15. Average Alfvén radius vs. opening radius for all cases. Black
dashed lines represent RA/Ro=3.3 and 1.5, which bound all cases. The
simulations show a similar behavior to that discussed in Paper I, namely, a
geometry-dependent separation, with the octupole geometries having the
shallowest slope.
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Software: matplotlib (Hunter 2007), PLUTO (Mignone
et al. 2007; Mignone 2009).
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In the original manuscript, Figure 5 was incorrectly printed as a copy of Figure 6. This erratum shows Figure 5 as it was intended.
All tabulated data and scientific results of the paper remain unaffected.
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Figure 5. Average Alfvén radius vs. wind magnetization, ϒ, for the different
combinations of quadrupole and octupole, in a similar format as Figure 3.
Color-coded dashed lines relate to the prediction considering only the
quadrupolar component of the field for each quad. The combinations shown
here behave in a similar manner to dipole–quadrupole combined fields, in a
sense that the lower order field (with the lowest l) governs the Alfvén radius for
large wind magnetizations, ϒ, and the higher order (large l) controlling the low
magnetization scaling.
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