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a b s t r a c t

We aim to tackle the challenge of generating unstructured high-order meshes of complex three-
dimensional bodies, which remains a significant bottleneck in the wider adoption of high-order methods.
In particular we show that by adopting a variational approach to the generation process, many of the
current popular high-order generation methods can be encompassed under a single unifying framework.
This allows us to compare the effectiveness of these methods and to assess the quality of the meshes
they produce in a systematic fashion. We present a detailed overview of the theory and formulation of
the variational framework, and we highlight how such formulation can be effectively exploited to yield a
highly-efficient parallel implementation. The effectiveness of this approach is examined by considering
a number of two- and three-dimensional examples, where we show how the proposed approach can be
used for both mesh quality optimisation and untangling of invalid high-order meshes.

© 2017 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
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1. Introduction

High-order methods are rapidly increasing in popularity due
to their favourable numerical characteristics and ability to more
effectively use modern computing hardware than traditional low-
order methods. There has beenmuch development of the underly-
ing solvers, which give the ability to simulate fluid flows, acoustic
phenomena and many other physical processes. However, these
solvers ultimately rely on the partitioning of a domain into ele-
ments which, at high polynomial orders, must be: coarse in order
to take advantage of the high-order nature of the method; curved
to align with the underlying geometry; and valid, so that they do
not self-intersect. The lack of development in this area has meant
that this is a significant bottleneck in the more widespread use
of these methods [1,2]. This is particularly applicable to industrial
cases, where complex three-dimensional geometries representing
(for example) cars and planes are clearly of significant interest. For
these methods to become more popular outside of academia, this
bottleneck clearly needs to be addressed.

Research in this area has mostly centred around a posteriori
approaches, whereby a coarse linear mesh is deformed to accom-
modate the curvature at the boundary, and is the focus of this
study. The challenge in this approach is to determine a method
through which this curvature can be incorporated into the interior
of the domain. Without this, the mesh is at best of a low qual-
ity, and at worst, will self-intersect, rendering it unsuitable for
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solver-based calculations. Existing work in a posteriori generation
has broadly centred around two lines of investigation. The first
of these focuses around the concept of solid body deformation,
whereby the mesh is treated as a solid body which is deformed
to incorporate curvature at the boundary. The work in this theme
has focused around determining which model is ‘best’, either in
terms of optimal quality or computational efficiency. Somemodels
investigated include linear elasticity by Xie et al. [3] and Hartmann
& Leicht [4], non-linear hyperelasticity by Persson & Peraire [5] and
more recently by Poya et al. [6], thermo-elasticity by some of the
authors of this work [7] and theWinslow equations by Fortunato &
Persson [8]. The second theme follows a different route, whereby
themesh is equippedwith an associated functional that denotes its
energy. A non-linear optimisation problem is then solved in order
to minimise this functional and yield a valid mesh. Again, most
studies in this area have focused around this choice of functional,
which include scaled Jacobian distortion metrics by Dey et al. [9],
spring analogies for surface deformation by Sherwin & Peiró [10],
unconstrained optimisation of the Jacobian by Toulorge et al. [11]
and anumber of articles byRoca and collaborators based on a shape
distortion metric, e.g. [12–14].

However, what has so far remained unexplored in this area is
the connections between these two themes. In the linear mesh
generation community, for example in work by Garanzha [15] and
Huang & Russell [16], it is known that through the calculus of
variations, the elliptic partial differential equations defining these
elasticity models can be recast into the minimisation of a energy
functional, which takes as its arguments the mesh displacement
and its derivatives. However, the use of this approach in high-order

https://doi.org/10.1016/j.cad.2017.10.004
0010-4485/© 2017 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.cad.2017.10.004
http://www.elsevier.com/locate/cad
http://www.elsevier.com/locate/cad
http://creativecommons.org/licenses/by/4.0/
mailto:d.moxey@exeter.ac.uk
https://doi.org/10.1016/j.cad.2017.10.004
http://creativecommons.org/licenses/by/4.0/


Please cite this article in press as: Turner M., et al. Curvilinear mesh generation using a variational framework. Computer-Aided Design (2017),
https://doi.org/10.1016/j.cad.2017.10.004.

2 M. Turner et al. / Computer-Aided Design ( ) –

mesh generation has remainedmostly unnoticed, asides from brief
remarks in work by Sastry et al. [17].

The purpose of the present study is to examine the connections
between these two existing mesh generation themes, by both
recasting solid body models in a variational setting and examining
other functionals already noted above in the literature. We will
show that this approach has several benefits. It first allows us to
examine each of the models in a common setting and investigate
the relative benefits of each model in turn. Additionally, from a
standpoint of robustness, the use of an energy functional that is
convex or polyconvex, as investigated by Huang & Russell [16] and
Garanzha [18], gives mathematical guarantees of a minimum that
may be found using a numerical optimisation procedure. Finally,
we note that early work in the 1970s by Felippa [19], who inves-
tigated direct energy minimisation methods for mesh generation,
concluded that this method is promising but computational power
was, at the time, a significant limiting factor in the success of this
approach. In the following sections, we will show that modern
computing hardware, combined with a suitable choice of numeri-
cal optimisation to exploit the denser structure that arises through
a high-order discretisation, allows us to overcome this problem.
The results we present here highlight that the variational setting
allows us to construct a highly efficient and robust parallel frame-
work for high-ordermesh generation, permitting the generation of
very complex three-dimensional meshes in the order of minutes.

Finally, we note that the groundwork for this study has been
outlined in an earlier proceeding [20]. In this article we signifi-
cantly expand the scope of the work by investigating several addi-
tional contributions. These are: the incorporation of optimisation
procedures based on analytic gradients andHessian regularisation;
the implementation of an improved regularisationmethod used to
untangle meshes and a detailed discussion of its properties; the
extension of the method to permit the mesh nodes connected to
the CAD geometry to slide along the curves and across the surfaces
on the boundary; and, finally, the inclusion of a wider range of
examples, including hybrid prismatic–tetrahedral boundary layer
meshes and very high-order quadrilateral meshes.

The paper is structured as follows. Section 2 outlines the formu-
lation of the problem in terms of a solid mechanics analogy. The
four energy functionals that we will investigate in this work are
introduced in Section 2.1, which overlap with a large number of
studies based around high-order mesh generation, and we discuss
a regularisation strategy to untangle invalid meshes in Section 2.2.
Section 3 describes details of the practical implementation needed
in this variational setting. This includes the discretisation and non-
linear optimisation in Sections 3.2 and 3.3, parallelisation strate-
gies in Section 3.4 and allowing surface elements to slide across
the CAD geometry in Section 3.5. Section 4 provides a brief analysis
of the behaviour of the functional, guiding the choice of some
numerical options. Section 5 then examines the application of this
method to a number of two- and three-dimensional problems,
describing the meshes obtained by each method, the number of
iterations and computational time needed for convergence. We
finalise the paper in Section 6 with a brief overview and outlook
to future work and improvements.

2. Background and formulation

We begin with a brief mathematical overview of the setup
of the variational formulation. The ultimate goal is to define an
energy functional that will be optimised in order to produce a
valid high-order mesh. We therefore first require a coarse mesh
ΩI =

⋃Nel
e=1Ω

e
I of Nel straight-sided elements. The generation of

this coarse grid is beyond the scope of this article but is discussed
further in, e.g. Ref. [21]. We equip each element of ΩI with a high-
order polynomial finite element basis, based on standard Lagrange

Fig. 1. Notation for mappings used throughout the paper: a triangular element is
used for illustration purposes, but the notation is general and applicable to other
element types. On the left we map a standard (reference) element Ωst onto the
straight-sided element Ωe

I through the mapping φI : Ωst → Ωe
I and onto the

curvilinear element φe
: Ωst → Ωe . The deformation mapping φ : Ωe

I → Ωe

is then defined through the composition φ = φe
M ◦ φ−1I .

interpolant basis functions. This gives an initial representation of
the domain and serves as the initial configuration for the vari-
ational setup. In common with previous approaches [11,14], we
define themapping between a straight-sidedmeshΩI and a curvi-
linear mesh Ω , which we subsequently denote by φ : ΩI → Ω .
We refer to each element Ωe

I as the ‘ideal’ element as it represents
the best quality attainable without the introduction of curvature.

The mapping φ is constructed by considering each element
Ωe

I separately. We refer to the diagram in Fig. 1, wherein we
consider a triangular element and denote the coordinates inside
each element as ξ ∈ Ωst, x ∈ Ωe and y ∈ Ωe

I . These mappings
are constructed in an isoparametric fashion, so that the nodes ξn

that define the Lagrange basis functions on the standard element
map to yn under φI and xn under φM . We note that other element
types, such as quadrilaterals in two dimensions and tetrahedra,
triangular prisms, pyramids and hexahedra in three dimensions,
may use exactly the same definitions as above.

The energy functional is then defined as the integral

E(∇φ) =
∫

ΩI

W (∇φ) dy, (1)

where W depends on the deformation gradient tensor

∇φ(y) =
∂φ

∂y
; [∇φ(y)]ij =

∂φi

∂yj
,

and its determinant J = det∇φ, which we hereafter refer to as the
Jacobian. In the following section we describe the different forms
of the energy that we investigate in this article.

2.1. Forms of the energy functional

This section outlines a key contribution of this work, where we
show that many of the existing curvilinear mesh generationmeth-
ods can be unified in a variational setting through the definition
of an energy functional. More importantly, a judicious choice of an
energy functional that satisfies the convexity requirements of Ball’s
existence theory [22] guarantees the existence of a minimiser. We
therefore seek to employ energy functionals that are polyconvex. A
discussion of the properties of such functionals and how to verify
them, together with examples of their use in mesh generation can
be consulted in section 6.2 of the book by Huang and Russell [16].
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Further information of polyconvex energy functionals, their prop-
erties and applications to finite elasticity can be found, for instance,
in the articles [23,24] and references therein. Similar ideas are also
being explored in image registration [25].

2.1.1. Linear elasticity energy
A number of articles have examined the use of a linear elastic

analogy in the context of high-ordermesh generation [26,4,3]. This
takes the form of an elliptic PDE

∇ · (λtr(E)I + µE) = −f

where E = 1
2 (∇u+∇u

⊤), u = x− y is the displacement from the
straight-sided mesh configuration and λ and µ are the Lamé con-
stants. Following common engineering practice, we work instead
with Young’s modulus, E = µ(3λ + 2µ)/(λ + µ), and Poisson’s
ratio, ν = 1

2λ/(λ+ µ). Under these assumptions, a constant value
of E is just a scaling factor of the body forces and the energy is
a function of ν only. The Poisson’s ratio is representative of the
compressibility of the material with a value ν = 1

2 corresponding
to an incompressible material. We further assume that there are
no body forces so that f = 0 and displacements are prescribed at
the boundary to close the problem.

In the previous references, the standard approach is to adopt
the usual Galerkin finite element discretisation, by defining trial
and test functions that are polynomial expansions on each element
and continuous between elements, applying integration by parts,
and finally solving a linear systemof equations involving a stiffness
matrix to yield the displacements. However, we may alternatively
view the above PDE as the Euler–Lagrange equation of the func-
tional (1), whereW is given by

W =
1
2
λ[tr(E)]2 + µ E : E,

where the double product or Frobenius product of two tensors is
defined as A : B = tr(A⊤B). The calculus of variations shows
that the minimisation of the functional yields the same solution
as obtained through the PDE. We note that while the above form
of W does lead to the linear elasticity formulation for small defor-
mations, but it does not satisfy the growth condition thatW →∞
when J → 0+, which is required to prevent the inversion of the
mesh [27]. By defining κ > 0 as the bulk modulus, a modified
version of this energy that performs better for large compressive
strains, i.e. when J → 0+, is

W =
κ

2
(ln J)2 + µ E : E. (2)

2.1.2. Isotropic hyperelasticity energy
We consider a nonlinear hyperelastic formulation that aligns

with the work described in Refs. [5] and [6]. If the material is
isotropic, so that the constitutive behaviour is identical in any
direction, then the energy must be a function of the invariants of
the right Cauchy–Green tensor, C , only [28], where in this setting
C = ∇φ⊤∇φ. This is written as W (C (y), y) = W (IC1 , IC2 , IC3 , y)
where the invariants of C are

IC1 = tr(C ) = ∇φ : ∇φ ; IC2 = tr(CC ) = tr(C⊤C ) = C : C ;
IC3 = det(C ) = J2.

A simple case of isotropic hyperelasticmaterial is the compressible
neo-Hookean material, as considered in Ref. [5], and its strain
energy is given by

W =
µ

2
(IC1 − 3)− µ ln J +

λ

2
(ln J)2

where λ andµ are thematerial constants, whichwe select as in the
linear elasticity above.

2.1.3. Winslow equation energy
The Winslow equations are second-order non-linear elliptic

partial differential equations which are obtained by enforcing the
computational coordinates to be harmonic. These have long been
used in the smoothing of linear meshes and have recently been
used in the application of optimisation and untangling of high-
order meshes [8]. They can be recast into a variational format
by again viewing them as the Euler–Lagrange equation of the
functional (1) with

W =
∥∇φ∥2f

J
(3)

as shown, for example, in Ref. [29]. Here ∥F∥f =
√
tr(FF⊤) =

√
F : F denotes the Frobenius norm induced by the inner product.

2.1.4. Energy as a measure of distortion
The final functional we consider here is a shape distortion

measure that has been used in both linear [30] and curvilinear
[12–14] mesh generation. We define (1) using

W =
∥∇φ∥2f

d|J|2/d
(4)

where d is the dimension of the mesh. An interesting point, which
to the best of our knowledge has not been noted elsewhere in the
literature, is the similarity between this distortionmeasure and the
Winslow functional. Whilst the denominator of Eq. (4) ensures a
different result for 3D meshes, we note that in the presence of a
positive Jacobian in 2D, Eqs. (3) and (4) differ by only a factor of
1/2 and are therefore equivalent for the purpose of optimisation.

2.2. Mesh untangling via Jacobian regularisation

Each of the functionals used to describe the energy of deforma-
tion behave asymptotically around J = 0, so that W → ∞ and
E→∞ as J → 0+. This is a desirable and expected propertywhich
prevents the mesh from inverting. The solid mechanics analogy
would be that this behaviour prevents the interpenetration of
matter. However, all of these functionals have various undesirable
properties when J < 0, not least of which is that the elasticity
analogies are undefined due to the presence of the term ln(J).
Therefore, they are unsuitable for any problem where the initial
mesh configuration is invalid, or equivalently, if during the optimi-
sation of the functional, an invalid state is examined. To overcome
this limitation, we replace J in the formulae above with a regu-
larised version JR previously employed for linear meshes [15,31]
and high-order studies [13]. This takes the form

JR =
1
2

(
J +

√
4δ2 + J2

)
(5)

where δ is a small regularisation parameter. In the case of invalid
elements, JR becomes very small but positive, meaning that quan-
tities such as ln(JR) remain well defined. Additionally, the use of
this regularisation alters the profiles of the energy functionals such
that their behaviour shifts from being asymptotic to something
similar to exponential and thus very large in the presence of invalid
or marginally valid elements. This drives the optimisation process
to move nodes in the mesh away from small or negative Jacobian
regions since they possess very large energies, and correcting the
mesh if it were to start to become invalid.

Selecting an appropriate δ requires careful examination, since
it can dramatically change the profile of JR for invalid or near-
invalid elements. In studying various cases, we have found that
maintaining a small δ even when elements are valid tend to give
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the best performance in untangling invalid meshes and optimising
quality. We select

δ =

{√
10−8 + 0.04(Jmin)2, if Jmin < 0

10−4, otherwise

in which Jmin refers to the minimum value of the Jacobian1 in the
mesh. This choice follows the strategy employed by Garanzha [15],
but replaces the use of a machine epsilon with a small constant.

We note that the Jacobian regularisation is designed to assist in
dealing with invalid and very nearly-invalid elements. For exam-
ple, if J = 10−4 then with our selected parameters, JR = 1.618 ×
10−4; with J = 10−3, we have that JR = 1.009 × 10−3; and at J =
10−2, JR is essentially identical for the purposes of optimisation. The
resulting meshes obtained through this optimisation are therefore
nearly identical in the validity regions, even for reasonably low-
quality elements.

3. Implementation of the framework

After outlining the variational framework and the energy func-
tionals to be investigated, we consider the practical numerical
implementation in the optimisation of the functional (1). For large
meshes comprising millions of moving nodes, we require both
an efficient nonlinear optimisation method, alongside a robust
calculation of the elemental contributions to the functional. We
outline these details in this section, alongside a simple parallelisa-
tion strategy that can be used tomitigate the overall computational
cost on many-core machines.

We note that the implementation described here is part of a
new high-order meshing tool, NekMesh [21], which is contained in
the open-source Nektar++ spectral/hp element framework [32].

3.1. Evaluation of the functional on a single element

The functional E(∇φ) in Eq. (1) is defined across the domainΩI .
Given the elemental composition of the mesh, we may therefore
naturally break this down into a summation of elemental contri-
butions, so that

E(∇φ) =
Nel∑
e=1

∫
Ωe

I

W (∇φ) dy.

Practically, we now require a discretisation of the mapping φ on
each element, and integration rules which allow us to numerically
calculate the integral above. We therefore opt to employ the map-
ping φ−1I , as shown in Fig. 1, so that these requirements can be
fulfilled by using the standard element Ωst. This then allows us to
define φ as the composition φM ◦ φ−1I . The summation above may
therefore be written as

E(∇φ) =
Nel∑
e=1

∫
Ωst

W
[
∇φM (ξ)∇φ−1I (φI (ξ))

]
det(∇φI ) dξ. (6)

We now need to construct ∇φ−1I (y) and ∇φM (ξ) on a given ele-
ment, which we describe in the following sections.

3.1.1. Ideal mapping
ThemappingφI (y)may bewritten analytically as a combination

of linear finite element shape functions, whichmakes its construc-
tion straightforward. For example, the mapping for a triangle with
vertices v1, v2 and v3 is given by

φI (ξ) = (v2
− v1)ξ1 + (v3

− v1)ξ2
+ 1⇒ ∇φI =

[
v2
− v1 v3

− v1
]
.

1 Evaluated at the integration points, see Section 3.2.3.

We note that this expression is independent of ξ, which is also the
case for tetrahedra in three dimensions. The inverse of themapping
can therefore be computed once for each element.

A similar approach can be adopted for other element types. For
example, a quadrilateral with vertices v1, . . . , v4 in anti-clockwise
ordering is described by the mapping

φI (ξ) =
1− ξ1

2
1− ξ2

2
v1
+

1+ ξ1

2
1− ξ2

2
v2
+

1+ ξ1

2
1+ ξ2

2
v3

+
1− ξ1

2
1+ ξ2

2
v3.

with derivative

∇φI (y)

=
1
4

[
(ξ2 − 1)v1

+ (1− ξ2)v2
+ (1+ ξ2)v3

− (1+ ξ2)v3

(ξ1 − 1)v1
− (1+ ξ1)v2

+ (1+ ξ1)v3
− (1+ ξ2)v3

]⊤
.

In this case we have a clear dependence on ξ and thus the inverse
mapping will depend on y. In this case, the derivative must be
evaluated at chosen points {ξ̃q}Qq=0 within the standard element
that correspond to points {ỹq

}
Q
q=1 within ΩI , and then each 2 × 2

or 3× 3 matrix (depending on the dimension of the element) that
represents ∇φI (ξn) is inverted to construct ∇φ−1I (ỹq). The choice
of these points aligns with the quadrature points we select to eval-
uate the integral inside Eq. (6), which we discuss in Section 3.2.3.

3.1.2. Curvilinear mapping
For φM we select the usual isoparametric mapping that is

common to nodal spectral element discretisations, which maps
N nodes ξn from the standard element to nodes xn inside the
curvilinear element. We note that N depends on both the element
type and polynomial order; for example a triangle at polynomial
order P has N = 1

2 (P + 1)(P + 2). Combined with the Lagrange
polynomial interpolants ℓn this yields the expansion

φM (ξ) =
N∑

n=1

xnℓn(ξ).

We now require two sets of points inside Ωst. The first is the set
{ξn}Nn=1 which defines the Lagrange interpolants, so that ℓm(ξn) =
δnm, yielding an isoparametric mapping such that φM (ξi) = xi.
For triangles and tetrahedra, we select the α-optimised points that
are discussed in the book [33]. Hexahedra and quadrilaterals use
tensor products of one-dimensional Gauss–Lobatto quadratures.
Finally, prisms use a tensor product of the triangular α-optimised
points and the Gauss–Lobatto points. Under these choices, the
nodal points between any adjacent elements are guaranteed to
align. We do not consider pyramidal elements in this work.

The second set of points is the set {ξ̃q}Qq=1, on which we will
evaluate the integrals in Eq. (6) and ∇φ−1I . It is important to high-
light that in general, Q ̸= N and that ξn and ξ̃q are not collocated.
However, the selection of these points is important since they will
impact both the accuracy of the evaluation of relevant quantities
and the computational efficiency of the scheme.

Following the usual approaches that are outlined in greater
detail in Refs. [33] or [34] for example, we may define an N × N
discrete derivative operator Dj for each coordinate direction j, so
that for Ξ = [ξ1, . . . , ξN ]⊤,

Dj(φM )i(Ξ) =
∂(φM )i

∂ξj
(Ξ)

where φM = [(φM )1, (φM )2, (φM )3] in three dimensions. The
derivatives at the integration points Ξ̃ = [ξ̃1, . . . , ξ̃Q ], are evalu-
ated by combining the derivative operatorwith anQ×N operatorI
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Fig. 2. Colouring scheme of 10 colours used to partition the mesh into sub-regions
for parallel computing. Black vertices denote fixed (boundary) vertices that are not
optimised and arrows show the elements that each vertex is connected to. Vertices
that share the same colour can be optimised in parallel. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

which performs a polynomial interpolation from functions defined
on ξp to ξ̃q so that

∂(φM )i
∂ξj

(Ξ̃) = IDj(φM )i(Ξ).

Computational savings can bemade by pre-computing the product
of I andDj for use in the following optimisation procedure.

3.2. Local optimisation procedure

As the energy functional is now defined and a method for its
evaluation on a single element prescribed, we turn to the non-
linear optimisation process that is required to minimise the defor-
mation energy based on the selection of the integrandW in Eq. (1).
In general, we wish to solve the minimisation problem

find min
φ

E(φ) = min
φ

∫
ΩI

W (∇φ) dy. (7)

We note that, implicitly, φM and therefore φ depend on the set of
nodes that defines the curvilinearmesh,which are denoted byN =
[n1, . . . , nNnodes ] and each ni represents the coordinates of a node
in the mesh. The optimisation of this problem therefore begins
with an initial selection of the nodes, N0, in which we take the
linear mesh and impose the curvature of the boundary, regardless
of whether this causes self-intersections.

We then require a numerical optimisation strategy to iteratively
update N towards lower energy configurations, i.e. N k

→ N k+1

such that Ek
→ Ek+1 where Ek+1

< Ek. To achieve this, we
choose to adopt a gradient- and Hessian-based method as this can
provide superior convergence properties. Following Ref. [14] and
later works, we also adopt an optimisation method which is based
on a relaxation strategy. In a ‘standard’ optimisation we would
compute derivatives in a global fashion to highlight the effects
of moving a node on all other nodes of the mesh. However, this
requires the solution of a large matrix system. In the relaxation
approach, we instead solve a cheaper local optimisation problem
for each node ni

∈ N which takes the form

find min
φ

Ei(∇φ) =
∑
e⊂i

∫
Ωe

I

W (∇φ) dy. (8)

Here, e ⊂ i denotes the subset of elements influenced by a change
in the position of node i. For example, Fig. 2 shows that if we adjust
the position of nodes lying on the interior quadrilateral edges,

we only need to consider the evaluation of a functional that is
connected to either two or four elements as denoted by the arrows,
and any interior nodes only need to be considered on a single
element. The minimisation of (7) can then be considered as that
of a non-linearly related set of energies, each of which belongs to a
node and is evaluated using a subset of elements in the mesh. We
note that these problems are far more computationally tractable:
they are highly compact and memory efficient, amenable to par-
allelisation and have simpler expressions for gradient and Hessian
terms. However they come at the cost of increased iteration counts
over the global approach and can potentially become more prone
to becoming stuck in local minima of the functional.

3.2.1. Numerical optimisation techniques
The optimisation of each Ei sub-problem, i.e. to find the min-

imum of Ei, is described in algorithm 1 , which is split into two
procedures. The LocalOptimisation procedure performs a stan-
dard gradient descent, where the search direction is improved
through use of a Newton-based gradient and Hessian of Ei(∇φ).
This is coupled with a reverse line search, using one of two Wolfe
conditions, with standard choices for the various parameters used
to perform the line search [35]. We note that the second Wolfe
condition, in which the gradient is re-evaluated at each iteration
of the line search, is omitted, as we have found that the significant
additional cost of gradient calculation does not yield any great
improvement in robustness.

We now briefly discuss the choice of optimisation procedure.
The convexity property of the functionals used in this articlemeans
that the Hessian of second derivatives is a symmetric positive
definite (SPD) matrix, and therefore a truncated Newton type
optimiser is the clear choice of method, as the algorithm will be
able to exploit properties such as a superior rate of convergence.
However, we do note that the SPD property is dependent on
two conditions. Firstly, if the functional or its derivatives are not
calculated to a sufficient degree of accuracy, we may encounter
either very small or negative eigenvalues in the resulting matrix,
which may significant impact on the choice of search direction.
We investigate this further in Section 4. Barring this however, as
noted by Garanzha [18], the use of regularisation compromises
the convexity property of the functional. Indeed we see that as J
becomes small and JR begins to deviate significantly from J , the
eigenvalues of the Hessian become very small or negative, and the
matrix is quite commonly indefinite. In these cases, an indefinite
Hessian will still frequently yield a new node position with lower
energy. It also results in more ‘reset’ nodes in which no minima
are found, as well as generally slower convergence speeds due
to more functional evaluations arising from smaller values of the
step-length parameter, α, in the line search.

We therefore opt to employ a commonly used Hessian regulari-
sation technique,whereby theHessian is altered if it contains small
positive or any negative eigenvalues. Note that this is different to
the Jacobian regularisation discussed in Section 2.2, in which the
functional is altered mathematically: this technique is purely a
numerical improvement. TheHessian regularisation takes the form

H =
{
H + (β − λmin)I, λmin < β,

H, otherwise,

where we select β = 10−6 and λmin is the minimum eigenvalue
of H . The use of this regularisation forces the Hessian to become
SPD and we have found greatly increases convergence speed and
robustness. We observe that when untangling a mesh, the Hessian
regularisation will be used almost exclusively within invalid ele-
ments in the early iterations. Once the mesh is sufficiently valid,
i.e. when all Jacobians are positive and far from zero, where the Ja-
cobian regularisation has no effect, the Hessian regularisation is no
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Algorithm 1 Solve the local optimisation problem for node ni using functional defined byW . Returns new node location.
procedure LocalOptimisation(W , ni)

A← set of elements connected to ni

E,G(E),H(E)← EvaluateFunctional(W , ni, A) ▷ evaluate functional, derivatives and Hessian
Gtol ← 10−10 ▷ tolerance for zero gradient
if ∥G(E)∥ < Gtol then

return ▷ nodes with zero gradient already optimal
end if
m← ni

▷ temporary storage
λ←minimum eigenvalue of H
if λ < 10−6 then

H(E)← H(E)+ (10−6 − λ)I ▷ Hessian regularisation
end if
sk ←−H(E)−1G(E) ▷ search direction for descent
α, αtol, c1 ← 1, 10−10, 10−3 ▷ tolerances for line search
p← s⊤k G(E)
while α > αtol do ▷ reverse line search

ni
← m+ αsk ▷move node in the descent direction

F← EvaluateFunctional(W ,m, A) ▷ evaluation functional only, note this is with modified node position
ifF ≤ E+ c1αp then ▷ using Wolfe condition

return ni
▷ new minimum found

end if
α← 1

2α

end while
returnm ▷ unable to optimise, reset node

end procedure
procedure EvaluateFunctional(W , n, A)

E,G(E),H(E)← 0, 0, 0 ▷ E is functional, G(E)[·] is gradient vector, H(E)[·, ·] is Hessian matrix
for each type of element in A do ▷ e.g. triangle, quad

x← coordinates of all elements of this type ▷ x is a matrix of coordinates for these elements
for each coordinate direction d do
∇xd ← Dtype

d xd ▷ compute deformation tensor in direction d using dgemm
end for
for each element Ω do

for each evaluation point and weight ξ̃i, wi inside Ω do
w← wi detφI (ξ̃i) ▷ ideal mapping determinant weighted by quadrature weight
E← E+W (∇x) · w ▷ evaluate functional using regularised Jacobian if required
if not calculating gradient and Hessian then

continue
end if
for each coordinate direction j do

G(E)[j] ← G(E)[j] + ∂njW (∇x) · w ▷ analytic gradient evaluation
for each coordinate direction k do

H(E)[j, k] ← H(E)[j, k] + ∂njnkW (∇x) · w ▷ analytic Hessian evaluation
end for

end for
end for

end for
end for

end procedure

longer used by the optimisation algorithm because the convexity
property has been restored.

We also note that, since the Hessian matrix is small – of size
either 2× 2 or 3× 3 depending on the dimension of the problem –
analytic expressions exist to calculate the minimum eigenvalue
without the need for common linear algebra packages such as
LAPACK. This is therefore a relatively cheap route to improving the
robustness of the numerical optimisation.

3.2.2. Functional, gradient and Hessian evaluation
The LocalOptimisation procedure uses a separate Evaluate-

Functional routine to evaluate the functional, as well as its gra-
dient and Hessian, during the line search. A very important point
to note is that these derivatives are evaluated not with respect to

the usual Cartesian coordinate directions, but instead with respect
to the position of the node ni. In our previous work [20], we evalu-
ated these terms using a finite-difference approximation, where a
stencil was used to approximate the gradient terms. Whilst this
is very flexible, as it only requires the evaluation of W at each
point of the stencil, it introduces additional parameters in terms
of the physical size of the stencil to use. It is also computationally
expensive, particularly in three dimensionswhere 13 stencil points
are required to calculate a first-order approximation.

In this work, we have derived a series of analytic expressions
for the gradient and Hessian in order to reduce the computational
cost and improve robustness. A detailed derivation of these terms
is long and detracts from the present discussion. For completeness
however we have included a detailed derivation of these terms in
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B. These analytic expressions have been validated by comparing
against the values obtained via the finite-difference approxima-
tion.

A final point to note regarding the evaluation of the gradient
terms φM (ξ) is that this operation may be greatly increased in
speed using useful insights from previous work [36]. If we amal-
gamate the coordinates of all of these elements into one matrix,
then φM (ξ) can be calculated using either two or three matrix–
matrix multiplications, depending on the dimension of the prob-
lem, where the left-hand matrix is the combined derivative and
interpolation operator Di. We may therefore utilise an optimised
BLAS call such as dgemm, which will give significantly higher per-
formance but only at larger polynomial orders. We have found
that in the presence of lower order elements, where matrix sizes
are far smaller, BLAS can be far less efficient than hand-written
loops. In this caseweuse the librarylibxsmm [37], which performs
just-in-time compilation for small matrix–matrix multiplications
to execute optimised hand-written kernels. We have found that
this yields a significant performance improvement of up to around
25% for these problems.

3.2.3. Quadrature rules
One of the key aspects of the evaluation of elemental contri-

butions is the quadrature rule used to approximate the integral
of the functional across each element, which in earlier sections
is denoted by the set {ξ̃}Qq=0. Our initial efforts used high-order
nodes conforming to an α-optimised set of points on triangles and
tetrahedra [33]. Whilst this is a commonly used distribution and
has beenused in the optimisation of the shapedistortion functional
in Ref. [13], our experience has been that this distribution is prone
to introducing instability as part of the nonlinear optimisation.

Closer observation shows that, atmost polynomial orders, these
distributions have negative quadrature weights at the vertices of
the element. The presence of negative weights can induce in-
stability in instances when a mesh node is moved to a position
that results in a very high elemental deformation. This yields an
abnormally large value of the functional at the element vertex
which, when multiplied by a negative weight, results in a large
negative value. In the summation over all quadrature points, this
can then result in a very large negative value of the functional,
which causes the optimiser to locate a new minimum where one
does not exist.

A potential solution is the use of a larger number of quadrature
points, i.e. a significant increase in Q , to evaluate the gradient of
the deformation tensor and functional, as is performed in e.g. [13].
Although the quadrature weights are still negative at the vertices
of the triangle, there is a greater clustering of quadrature points in
these areas. This means that the large gradient of the deformation
can be accurately resolved, thereby preserving positivity of the
integral. Our testing showed that whilst this yielded additional
stability it did come at a greatly increased computational cost.

To overcome both the cost and stability issueswe propose using
an alternative set of quadrature points for triangles, tetrahedra
and prismatic elements. We use quadrature rules proposed by
Witherden and Vincent [38], which are symmetric, interior to the
standard element, but crucially have positive quadrature weights
for all elements at all orders. These point distribution sets also
have lower numbers of points which can achieve the same level
of accuracy in integration. Therefore we no longer need to over-
integrate to such a large extent, resulting in a lower computational
cost whilst preserving the robustness of the method. This choice
however is far from unique: there are many such quadrature rules
in the literature which may also yield similar properties [39].
Finally, we note that for quadrilaterals and hexahedra, we opt to
use Gauss–Lobatto points which are readily computed and have
positive weights. Prismatic elements inherit both properties from
the tensor product of triangular and Gauss–Lobatto points. We
discuss the level of over-integration required in Section 4.

3.3. Global optimisation

Finally, we discuss the last part of the optimisation procedure:
iterating over each of the local optimisation problem to converge
to a global minimum, which is described in algorithm 2 . The first
stage is straightforward: we compile a list N of the nodes to be
optimised. Whilst nodes on the boundary may remain fixed (and
thus be omitted from this list), they may also be allowed to move
across the surface of the mesh, which we describe in the following
section.

In terms of the optimisation process, one step of the Glob-
alOptimiseprocedure iterates over all local optimisationproblems,
which results in a decrease of the global functional value. These
steps then continue until a convergence criterion has beenmet.We
set a strong convergence criterion such that ∥N k+1

−N k
∥∞/L < ε,

so that the mesh is optimised once no node has moved more than
a small fraction, ε, of a characteristic length, L, of the problem. We
use ε = 10−6 as a guideline for convergence. However other con-
vergence criteria, such as a lower bound on the minimum Jacobian
in the mesh, may be set if this is a more important outcome.

3.4. Parallelisation

A significant issue in the use ofmesh optimisation and deforma-
tion strategies is that of efficient runtime. Simply put, the practical
usefulness of the method relies in the end-user being able to run
the optimisation procedure ‘quickly’, ideally in no more than a
few minutes. To address the issue of high associated cost of the
global optimisation, we briefly outline a parallelisation strategy to
decrease execution time.

One of the main motivations and advantages of using a nonlin-
ear optimisation based on a relaxation strategy is that it can effec-
tively align to the requirements of modern computing hardware
in order to decrease the optimisation runtime. To illustrate this,
consider two nodes ni and nj, which are connected to groups of
elements e ⊂ i and f ⊂ j. Thenwe observe that, by definition of the
corresponding local functionals Ei and Ej which have support only
on these element groups, the LocalOptimisation procedure for ni

and nj can be executed concurrently on Ei and Ej if the elemental
sets

⋃
e⊂iΩ

e and
⋃

f⊂jΩ
f do not intersect.

From a practical perspective, we need to solve two problems:
determining sets of local optimisations that can be run in parallel,
and choosing a parallelisation framework. To solve the first prob-
lem, we adopt a straightforward node colouring scheme, similar to
that used in graph partitioning. In this setting, we assign colours
to nodes such that if two nodes have the same colour, then their
associated local optimisation problem can be run in parallel. An
example of the node colouring scheme applied to a small sample
mesh is shown in Fig. 2. The precise algorithm for node colouring is
outlined in the ColourNodes routine, which implements a simple
node colouring strategy to sort all nodes in the mesh that are
not fixed into subsets which are disjoint from any other subsets,
allowing each local optimisation to be run independently.

Given the node colourings, we tackle the solution of the second
problem, i.e. the choice of a parallelisation framework, through the
use of a pthread model. We note that this therefore precludes
the use of distributed parallelism, as is commonly enabled through
the use of MPI. However, in the use case we envision, most users
will be constrained to a singleworkstation, and therefore threading
provides an approach to exploit the shared memory of this setting
without additional complexity of distributed parallelisation. In
addition, the strategy is well suited for implementation in GPU
architectures.

For each node colour, we assemble a list of local optimisation
problems that can be viewed as a ‘task’. We then start a number
of threads, corresponding to the core count of the CPU being run,
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Algorithm 2 Solve the global optimisation problem for all nodes N with the functional defined byW .
procedure ColourNodes(N )

while N is not empty do
M ← any uncoloured nodes in N
Create a new colour c
while M is not empty do

Select a node n ∈ M , colour nwith c
Let A← be the set of elements connected to node n
Remove n and all nodes in A fromM

end while
end while
return colours for each node

end procedure
procedure GlobalOptimise(N ,W )

call ColourNodes(N )
M ← [0, . . . , 0]Nn=1 ▷will store updated configurations from local optimisation
while ∥N −M∥∞ > 10−6 do

for each colour c do
for each node n with colour c do in parallel

mi
← LocalOptimisation(W , n) ▷ store new node position

end for
end for

end while
end procedure

and use a thread manager to run each ‘task’ in the parallel for
loop of the GlobalOptimise routine. This is particularly efficient,
since the node colouring guarantees that there are no inter-task
dependencies. Each of the compute threads can therefore run
concurrently with virtually no locks or mutexes, maximising use
of the hardware. The effectiveness of this parallelisation, and in
particular the strong scaling of the method, will be demonstrated
in the results section.

3.5. Surface mesh optimisation

In the discussion so far, we have considered the boundarymesh
vertices and high-order nodes to be fixed, which closes the system
and forms a well-posed problem. However, in complex geometric
examples it is quite possible that the surface mesh can have a
low quality or even invalid configuration. Frequently this arises
because of poor or complex parametrisation in the CAD, which
is difficult to overcome a priori in the surface mesh generation
process. If this is the case, fixing the nodes connected to the surface
during optimisation will constrain the mesh to such a degree that
the resultingmeshmay be sub-optimal or invalid. This is especially
concerning in the case of an invalid surface mesh, as it will prevent
the mesh from ever becoming valid. To overcome this, should the
CAD description of the geometry be available, the optimisation
framework is capable of ‘sliding’ the surface mesh nodes to an
optimised location while keeping them bound to their respective
CAD parents. This follows the same themes established in earlier
work by Sherwin & Peiró [10] and Ruiz-Gironés et al. [40].

We allow the surface mesh to slide by considering mesh nodes
which exist on aCADvertex to be fixed, in order to close the system.
Nodes which belong to CAD curves are able to move in their one-
dimensional parametric space, denoted by x = r(t). Similarly,
nodes on CAD surfaces are able to move in their two-dimensional
parametric spaces x = r(u) = r(u, v). To take this parametrisation
into account in the optimisation process, the LocalOptimisation
procedure must be adapted for nodes connected to CAD curve and
surface nodes. Specifically, instead ofmoving the three coordinates
of the node position ni, our variables become the curve and surface
parameters t and (u, v) respectively. Through an application of the

chain rule, the gradient and Hessian which are required during the
optimisation routine are given by

∂E(∇φ)
∂t

=
∂E(∇φ)

∂ni ·
∂ni

∂t
,

∂2E(∇φ)
∂t2

=
∂E(∇φ)

∂ni ·
∂2ni

∂t2
+

(
∂ni

∂t

)⊤
·
∂2E(∇φ)

∂ni2
·
∂ni

∂t
,

for curves, and

∂E(∇φ)
∂u

=
∂E(∇φ)

∂ni ·
∂ni

∂u
,

∂2E(∇φ)
∂u2 =

(
∂ni

∂u

)⊤
·
∂2E(∇φ)

∂ni2
·
∂ni

∂u
+

∂E(∇φ)
∂ni ·

∂2ni

∂u2 .

We note that the derivatives in the parametric spaces that are
required in the above expressions, such as ∂tni, are provided by
the CAD engine: in our case, OpenCASCADE. We must also ensure
that the parametric coordinates do not move to a position outside
of their bounding box that defines the surface. With the exception
of these two issues however, the core of the optimisation process
remains the exactly the same as that used for the free-to-move
nodes.

4. Analysis of the functional evaluation

In order to gain insight into the behaviour of the functional,
both in terms of determining an appropriate integration order and
of understanding how it will behave under optimisation, in Fig. 3
we examine the evaluation of the hyperelastic energy for a second
order quadrilateral, which is centred at the origin and has sides of
unit length. This is shown by the black box in these figures. We fix
all the nodes of the quadrilateral, asides from the single interior
degree of freedom located in the centre of the element. This node
is moved to positions (x, y) ∈ [−1, 1]2, where at each position we
evaluate: the functional, E(∇φ); the magnitude of the gradient of
the functional, ∥∂nE(∇φ)∥ under the L2 norm; theminimumeigen-
value of the Hessian matrix ∂2

nE(∇φ); and an estimate of the over-
integration required to evaluate the functional. These quantities
are depicted as coloured contour plots in Fig. 3a, 3b, 3c and 3d,
respectively. Finally, the white region in the centre of the element
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(a) Contours of E(∇φ). (b) Magnitude of functional gradient.

(c) Minimum eigenvalue of Hessian. (d) Minimum polynomial order required for integration.

Fig. 3. A quantitative analysis of the hyperelastic functional for a second-order quadrilateral.

highlights the level set minξ∈Ω J(ξ) = 0. This therefore highlights
the region of validity of the element, so that if the interior node
remains within this region, the element is valid, whilst outside
it becomes invalid. We additionally recall that the choice of the
quadrature points {ξ̃q}Qq=1 is different from the nodal points {ξ}Nn=1
used to define the basis functions of the element. In this second
order quadrilateral, we useN = 9 nodal points and are left to select
appropriate quadrature.

We first discuss Fig. 3a, 3b and 3c, which are all generated by
using a very high 40th order integration, namely Q = 1, 681, using
Gauss–Lobatto quadrature rules. This ensures that these terms are
all computed to a very high degree of precision. Fig. 3a clearly
shows the effect of the Jacobian regularisation discussed in Sec-
tion 2.2, which causes a rapid increase in the value of the functional
as the node approaches the edge of the region of validity. We also
see that the functional possesses a minimum at the centre of the
element, as is to be expected for this straight-sided quadrilateral.
The gradient in Fig. 3b shows largemagnitudes in the corners of the
validity regions, where the regularisation increases to its largest
values, but will clearly drive optimisation towards the centre of
the element as intended. Finally, the minimum eigenvalues of the
Hessian depicted in Fig. 3c showa smooth profile apart fromabrupt
maxima in the corners of the limit of validity. Further analysis
of the data showed that the vast majority of the region had a
very small value, thereforeHessian regularisationwould have been

used if the optimisation was conducted. We also saw regions of
negative eigenvalues in the corners of the element.

Fig. 3d is perhaps the most useful illustration of this analysis
process, as it attempts to estimate the amount of over-integration
required to accurately calculate the value of the functional. The
methodology for this figure is therefore slightly different. We let
Eq(∇φ) denote the evaluation of the functional using a polynomial
order q + 2, and then compute a vector [E0

, . . . ,E38
], so that

the functional is calculated at every polynomial order between 2
and 40. To estimate the ‘true’ value of the functional, we take the
average value of E34 through E38; i.e.

E(∇φ) ≈
1
5

38∑
q=34

Eq(∇φ).

The contour in Fig. 3d then denotes the minimum value of q such
that the relative error between E and Eq is less than 2%.We observe
in the figure that over-integration between q = 0 (i.e. integration
at order 2) and q = 10 (i.e. integration at order 12) is present in
this case, with the highest orders of integration required where
the element is just outside the region of validity. We posit that
locationswhere larger values of q are required correspond to larger
gradient of the functional, where the energy abruptly increases due
to the regularisation. Based on the analysis of this figure, we notice
that selecting amoderate over-integration of around q = 6 is quite
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(a) Original mesh.

(b) Hyperelastic optimisation. (c) Distortion optimisation.

Fig. 4. The optimisation of an initially-invalid two-dimensional example mesh.

acceptable for most cases, providing a good balance between com-
putational efficiency and the accuracy of integration. We therefore
select this order of integration for the results in the following
section. Overall, we find that this choice is reasonably robust,
although in some cases elements that are marginally invalid fail
to untangle. We believe that this is due to the error in integration
that we see here. Whilst this can be mitigated by using a higher
order quadrature, this comes at greatly increased computational
cost. The use of an adaptive quadrature could reduce this cost, but
we leave this point to future work.

5. Examples of application

This section outlines the application of the variational frame-
work to some two- and three-dimensional examples. We consider
the generation of triangular, quadrilateral, tetrahedral and pris-
maticmeshes and combinations thereof.We beginwith a brief dis-
cussion of howwe compare the relative qualities of each . We note
that all of the tests below have been performed in parallel using
the same 24-core machine, consisting of two Intel(R) Xeon(R) CPU
E5-2697v2 processors running at 2.7 GHz. Further information on
themeshes presented in this section and theirmain characteristics,
and the performance of the variational algorithm can be found in
the table included in Appendix A.

5.1. Quality metric

In order to evaluate the effectiveness of the variational frame-
work, we must determine an element-wise quality measure on
which to make our conclusions. A common choice in the literature
is the scaled Jacobian of themappingφM . It is defined for an element
Ωe as

Jes =
minξ∈Ωst J

e
φM

(ξ)

maxξ∈Ωst J
e
φM

(ξ)
∀Ωe
⊂ Ω

where JφM = det
(
∇φM (ξ)|Ωe

)
. This definition determines the

quality of an element by the ratio of theminimum tomaximumde-
terminant of themapping∇φM foundwithin an element. However
within the context of this work, this measure has a key drawback:
we are optimising themeshes according themapping∇φ, whereas

this quality metric is analysing the mapping φM . We therefore opt
to use the scaled Jacobian of the mapping φ; that is, the definition
of J that is used throughout Section 2. The quality element Q e that
we use to analyse meshes is therefore defined to be

Q e
=

minξ

[
det(∇φM (ξ)) det(∇φ−1I (ξ))

]
maxξ

[
det(∇φM (ξ)) det(∇φ−1I (ξ))

] ∀Ωe
⊂ Ω.

We further define the overall quality of the mesh by considering
the minimummetric over the mesh, defined as

Q = min
1≤e≤Nel

Q e.

These quality metrics lie in the range (−∞, 1] and from a physical
viewpoint make the assumption that, an ‘ideal’ element should be
as close to straight-sided as possible. Results near Q e

= 1 are
considered to be the highest quality, as this suggests smoothness
of the Jacobian, and any elementwithQ e < 0 is an invalid element.

The key difference between Jes and Q e is that Q e provides a
measurement of the deformation between the straight-sided and
curvilinear element. This makes no difference in the case of trian-
gular and tetrahedral elements (asides from a multiplicative con-
stant) since ∇φI is a linear mapping. However, in other elements
possessing quadrilateral faces, it is possible to have deformation
in even a straight sided or planar element due to φI being a
quadratic mapping. This new quality metric is therefore general
and applicable to any element type, thus allowing us to fairly assess
the quality of hybrid meshes.

5.2. Simple two-dimensional demonstration case

Fig. 4 illustrates the intention of the variational framework,
which is to introduce domain interior deformation to improve
the quality of a curvilinear mesh and correct invalid elements.
In this case, the mesh is initially invalid with Q = −0.24. This
invalidity has been corrected through the regularisation adopted in
Section 2.2, and the mesh further improved based on the hypere-
lastic and distortion functionals. In each of the figures, we visualise
the quality distribution Q e of each element. In this very simple
case, an initial mesh of nine triangles, two of which are invalid,
are untangled to produce the valid meshes shown in Fig. 4b and 4c
showing the ability of the proposed framework to correct invalid
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(a) Initial configuration. (b) Optimisation using hyperelastic. (c) Optimisation using distortion.

Fig. 5. Optimisation of 10th order quadrilateral mesh showing the initial configuration and optimisation using the hyperelastic and distortion functionals.

elements. The results demonstrate that elasticity functionals pro-
duce a higher quality of the final mesh. Although these are simple
meshes, this is an outcomewewill see repeated in the forthcoming
examples.

5.3. Very high-order mesh

Fig. 5 shows the optimisation of a two-dimensional quadrilat-
eral mesh of 10th order, in order to demonstrate that the frame-
work is still capable of optimising and correctingmesheswhere the
polynomial order is very high. In terms ofmesh quality, we observe
much the same result as in Fig. 4. In this case, we use an integration
of the functional using a 20th order quadrature rule. As noted in
the previous section, we find that it is almost always necessary
to integrate at a higher order than the mesh itself for the sake of
accuracy. In particular, when the mesh is being untangled we find
that for the majority of cases it is necessary to integrate at least
6 orders higher than the mesh order. For quadrilateral and hex-
ahedral elements the generation of the suitable quadrature rules
at very high orders, as outlined the previous section, is reasonably
easy and cheap, and it can be done at runtime for arbitrary orders.
However this is not the case for elements with triangular faces,
and such quadrature rules have to be pre-computed and stored.
The only reason why we do not go higher than fourth order for
triangular and tetrahedral meshes in this work is simply we do
not currently have suitable integration rules above 10th order. This
example of a quadrilateral mesh shows that the method works for
very high order approximations in such meshes.

5.4. Cube sphere case

As an example of a three-dimensional geometry, Fig. 6 shows
slices through a 4th order tetrahedral mesh of a simple cube geom-
etry, in which a sphere is removed from the centre of the cube.
In this the case the mesh begins valid, and the objective of the
variational framework is purely improvement of the mesh quality.
Again, visually, the meshes optimised by different functionals look
very similar and differences can only be drawn when comparing
the quality of the elements.

For a more quantitative analysis, we visualise the mesh quality
as a function of the global optimisation iteration count in Fig. 7 . On
the left we see the residual, measured as the infinity norm of the
movement of a node from one iteration to the next. The Winslow
anddistortion functionals converge to their resultmuch faster than
the elasticitymethods. The linear elasticity appears to not converge
as smoothly as the other functionals, which we believe is due to
the order of integration being used. We note that in the definition
of the linear elasticity functional, shown in Eq. (2) involves the
term E : E = ∥∇φ⊤∇φ − I∥2f . This results in the integration of a

polynomial of order 4P , whereas other functionals only involve the
calculation of ∥∇φ∥2f , giving a polynomial of order 2P . For each of
the other functionals, the over-integration we define in Section 4,
this appears to be completely sufficient; however the use of E : E
means that the linear elasticity requires a higher integration rule.
Indeed when operating on smaller 2D meshes we find that the
linear elastic functional recovers a smooth convergence profile.
This means that in most cases, especially in 3D, the increased cost
of using a sufficiently accurate integration for the linear elastic
makes it more computationally expensive compared to the other
functionals.

One additional note is that the figure on the right, where we
visualise the mesh quality Q as a function of iteration, highlights
that very few iterations of the global optimisation are required
in order to significantly improve the quality of the mesh. The
residual properties are therefore not necessarily that important
in the context of mesh optimisation, since because the quality
does not improve much beyond the first few iterations. It also
establishes the rating of the functionals in terms of the quality of
mesh produced: elasticity functionals appear to generate higher
quality meshes than the distortion and Winslow functionals.

5.5. Parallel efficiency

To assess the effectiveness of the simple node colouring par-
allelisation strategy outlined in algorithm 2 , we first show the
results of a strong scaling simulation, wherein the mesh remains
unchanged between simulations whilst increasing the number of
threads from 1 to 24 that run in the parallel execution phase of the
algorithm. A simple test mesh of a sphere inside a cube has been
constructed, the geometry of which can be seen in Fig. 6. However
we use a far denser mesh in this example, constructing an initial
mesh containing 32928 tetrahedra at polynomial order P = 4.
This yields an optimisation problem with approximately 1 million
degrees of freedom. We discard setup costs and node colouring,
since this portion of the algorithm is not parallelised, and examine
the time taken to perform 10 iterations of the global optimisation
procedure. Utilising the hyperelastic functional, this results in a
mesh quality increase from Q = 0.2 to Q = 0.65,

The timings for this can be seen in Fig. 8, where the ideal scaling
is visualised as a black line.We observe an scaling of 70% efficiency
between 1 and 24 cores (runtimes 326.5 s and 20.0 s respectively),
which is excellent given the size of the problem and the simple
node colouring strategy used. It is likely that this can be improved
further using a more optimal colouring strategy. However for this
work the efficiency has substantially reduced the runtime of the
optimisation process in an effective manner.
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(a) Original configuration.

(b) Optimisation using the hyperelastic analogy. (c) Optimisation using the distortion metric.

Fig. 6. Optimisation of 4th order sphere mesh from the initial configuration using the hyperelastic and distortion functionals.

Fig. 7. Shows the displacement residual and quality, Q , of the cube sphere mesh for each functional.

5.6. DLR F6

Wenow consider amore complex geometry in order to demon-
strate the effectiveness of the framework on test cases of interest
to the aeronautics industry, by examining a mesh of a DLR F6
geometry. The initial coarse mesh, which comprises of approxi-
mately 100,000 tetrahedra, can be seen in the top left position of
Fig. 9, where we show the elements that are of quality Q e < 0.5.
This case also has a number of invalid elements, which can be
seen in the top right figure. This inset shows the distribution of

Q e, in which a number of invalid elements can be seen having
quality less than 0. We again use the hyperelastic functional to
both untangle and optimise themesh, which results in a significant
overall improvement in element quality. The resulting distribution
is seen in the bottom right figure, where a noticeable shift towards
Q e
= 1 can be observed. A few very poor quality tetrahedra

remain,which can be seen in the bottom left of the figure. These are
solely due to the initial linear mesh, which in this region contains
a number of flat elements, which in turn limits the capability of
the framework. This highlights need for further improvement in
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Fig. 8. Parallel scalability of a sphere test case consisting of 32,928 tetrahedra with
324,364 free nodes at P = 4.

linear mesh generation for high-order generation. An interesting
additional point to note is that the hyperelastic functional was the
only one able to untangle the mesh from the initial invalid con-
figuration. We posit that further investigation into the integration
order is required to further understand this phenomenon.

5.7. CAD sliding

Fig. 10 highlights the effects of the CAD sliding outlined in
Section 5.7. In this example, we take a flat surface and place a semi-
sphere onto it. This generates an initial curved mesh, visualised

on the left hand side, which possesses 8 invalid elements. Taking
a closer look at the initial mesh, it is very clear that the surface
mesh induces an invalidity where the sphere meets the flat plane.
The ability to slide the element edges along the flat plane and
additionally the surface of the sphere is therefore required in order
to have any chance of generating a validmesh. The optimisedmesh
on the right-hand side shows how the deformation is incorporated
into the surface edges, deforming them appropriately in order to
produce a valid and very high-quality mesh, as can be see from the
quality metric.

We note that, other than the small expense of querying the
surface metric via the CAD interface, the computational cost of
optimising the position of nodes on the surface is not significantly
higher than the cost moving the interior nodes within the domain.
Combined with the fact that surface nodes represent a small pro-
portion of the nodes to be optimised, we find that the use of CAD
sliding does not cause a disproportionate increase in computational
expense.

5.8. Boeing reduced landing gear

In our final example, we show results for optimisation of an-
other well-known complex geometric example: the Boeing re-
duced landing gear. In this case, we have created a hybrid mesh
containing a prismatic boundary layer, filled with tetrahedra in
the interior. The purpose of the prism layers is to capture the
wall-normal flow physics, where very large gradients of the flow
velocities occur close to the surface. Since this region contains very
high shear, the prismatic elements should substantially decrease
in thickness near the wall so that they become highly stretched

Fig. 9. Untangling and optimisation of the DLR F6 geometry. The left figures show the mesh before and after optimisation. On the right we show the distribution of the
quality metric Q e before and after optimisation with the hyperelastic functional.
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Fig. 10. Cross-section of a semi-sphere case highlighting the sliding of CAD curves along the surface. The left-hand image shows the initial mesh and the right-hand figure
shows the optimised mesh. Note that the colour of the surface triangles is not related to mesh quality.

relative to the tangential surface direction. This poses a substan-
tial challenge for curved boundary layer generation. If we apply
curvature to a standard linear boundary layer mesh, it is all but
guaranteed for all but the most simple geometries that there will
be a large number of invalid elements. Given that there is very little
space available to accommodate the curvature of the boundary,
correcting these boundary layer elements becomes very difficult.
Further, the number of elements to optimise also increases sub-
stantially, thus increasing the computational cost of the method.

As has been noted in previous work it is far more practical
and robust for high-order meshing to generate a single ‘macro’
isotropic prism at the geometric boundary, in which the curvature
of the surface can be readily applied, and then use a method of
isoparametric splitting to produce the anisotropic elements [41].
Adopting this approach here,we first generate a linear hybridmesh
combining tetrahedral elements and triangular prismatic ‘macro’
elements, introduce the boundary curvature and then apply the
variational optimisation to optimise the quality of the mesh. We
then finish the mesh by applying isoparametric splitting to obtain
the desired boundary-layer thickness.

Fig. 11 shows the ‘macro’ mesh before and after optimisation,
for which we have used the hyperelastic functional since this has
been shown to produce the highest quality meshes. We also depict
the final mesh created after the macro layer has been split. For
the purposes of clarity, the tetrahedra have been removed. Overall
the figure illustrates that whilst the initial configuration before
optimisation is of a reasonable quality, there are a number of
lower-quality elements on the shoulders of the tyres. The quality
in this area, as well as throughout the mesh generally, is then
improved in optimisation across all of the elements shown. The
figure also provides evidence that this approach produces a high
quality mesh after splitting the prismatic layers.

To quantify the increase in element quality, we show a number
of element quality histograms for this case in Fig. 12. Firstly, the
overall distribution from the initial configuration seen in Fig. 12a
improves substantially under optimisation, as shown in Fig. 12b,
where we can observe a clear shift to the right. However, we note
that this optimisation was conducted with a material constant of
ν = 0.45, whichmeans that the elastic solidwhich is being relaxed
is very stiff. Fig. 12c shows that reducing ν to 0.4 leads to a mesh
that, whilst being improved over the initial configuration, is overall
of a lower quality compared to ν = 0.45. This observation aligns
well with the results reported in Ref. [6], where meshes generated
using values of ν close to the incompressibility limit lead to higher

quality elements. Curiously, we observe that both the distortion
and Winslow functionals lead to a decreased quality of the mesh,
as shown in Fig. 12d for the distortion functional.

We stress that the use of the isoparametric splitting of the
macro layer is a necessity when generating high-order anisotropic
boundary layers. We have found in practice that, when using the
variational framework on anisotropic elements, the optimisation
algorithm would very regularly fail to find a new minimum. The
reason for this behaviour is that the sensitivity of the functional
to nodal location is very strong due to the highly stretched shape
of the prismatic elements, and this leads to the very large gra-
dients that we observe in the optimisation process. As discussed
in Section 4, when the gradient is large, high-degree quadrature
is required and the Q = P + 6 rule is not sufficient. While an
adaptive or very high-order integration would allow for the opti-
misation of anisotropic elements, it is simply not required when
using the isoparametric splitting, meaning that this approach is
computationally more viable. While other examples of a posteriori
high-order mesh generation have shown the ability to correct
anisotropic elements, they regularly report the need for greatly
increased iteration count in the solution of either their PDEs or op-
timisation processes. We therefore postulate that this is counter-
part of what we see with failed optimisation.

6. Conclusions

We have presented a parallel implementation of a variational
framework for curvilinear mesh generation through the optimisa-
tion of valid and correction of invalid meshes. We have formulated
the problem of generating a high-order mesh as that of finding
a mapping from a straight-sided mesh to a curvilinear mesh that
conforms to the boundary of the domain. We recast the problem
of finding this mapping as a variational problem where the curvi-
linear mesh is obtained as the minimum of a functional with nodal
mesh displacements constrained at the boundary. Interpretation
of the functional as a deformation energy permits its analysis
through the theory of solid mechanics and take advantage of the
physical insights and theoretical results provided by that theory.
Of particular interest here are the conditions that a functional
must satisfy to ensure the existence of a minimum and the various
constitutive equations proposed for the energy functional tomodel
a variety of material deformations. However, it should be stressed
that the functionals for mesh generation do not necessarily have
to be physically meaningful. For instance, during the untangling of
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(a) Pre-optimisation.

(b) Post-optimisation. (c) After isoparametric splitting.

Fig. 11. Hybrid prismatic–tetrahedral mesh of the Boeing reduced landing gear configuration before (a) and after (b) optimisation, and after the isoparametric splitting is
applied (c). Note that the colour of the surface triangles is not related to mesh quality. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

invalid meshes, the Jacobian could be negative thus violating the
principle of non-interpenetrability of matter.

The variational formulation provides a general framework for
finding the mapping that offers a number of benefits. We have
been able to devise energy functionals for themajority ofmapping-
based high-order mesh generation methods proposed in the lit-
erature to date. Further, we have shown the equivalence of the
Winslow method with the minimisation of the shape distortion
measure in two dimensions. Numerical experiments also show
their behaviour and performance to be very similar in three-
dimensional cases. This framework permits a modular imple-
mentation of these methods since implementing a new one only
requires to change modules defining the energy functional and its
derivatives. It has also allowed us to perform comparisons of the
performance of the variousmethods.We have found that elasticity
methods produce better quality meshes, but require more itera-
tions to converge than the Winslow or shape distortion methods.

A further contribution of the paper is the development of a very
efficient Hessian-based optimisation algorithm, using a relaxation
technique during the iteration that, through a partitioning of the
domain via colouring, lends itself to a parallel implementationwith
excellent scalability. We have observed 70% efficiency between 1

and 24 2.7 GHz cores in a mesh with 324,364 nodes that could be
optimised in just 20 s. The optimisation algorithm has also been
extended with the inclusion of Jacobian and Hessian regularisa-
tion to deal with tangled meshes with negative Jacobians. Finally,
we allow nodes to move, or ‘‘slide’’, on the curves and surfaces
which represent the boundary of the domain. These curves and
surfaces are represented by CAD entities defined in their respective
parametric spaces. This requires the expressions of the gradients
and Hessians in the optimisation process to be evaluated with
respect to the parametric coordinates. The ability of the method to
deal with nodes sliding on the CAD entities was illustrated using
some practical examples. Finally, the examples presented in the
results section have demonstrated that the method is able to deal
with complex geometries and optimise very sizeable meshes very
efficiently.

This framework is sufficiently general and flexible to incorpo-
rate element quality control by modifying the functional to be op-
timised. We envisage that this can be done either by incorporating
thermal stress terms, as proposed in previous work [7], within
the energy functional or, alternatively, through the use of monitor
functions, as advocated in Ref. [16]. These modified versions of the
energy functional could be used for the generation of anisotropic
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(a) Initial mesh configuration. (b) After optimisation with ν = 0.45.

(c) Optimisation with ν = 0.4. (d) Optimisation wtih distortion metric.

Fig. 12. Element quality histograms of the Boeing reduced landing gear configuration for initial configuration and various optimisation settings.

mesheswhere the solution field is highly stretched as, for instance,
in boundary layers and wakes.
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Appendix A. Algorithmic performance

Table A.1 contains details of the meshes employed, the main
algorithmic parameters, and the performance of the proposed vari-
ational method for the examples presented in Section 5.

Appendix B. Analytic derivatives

Wederive analytic expressions for the energy functionals in this
appendix. We recall that the following nomenclature, depicted in
Fig. 1, is used in Section 2:

• The standard element is Ωst with coordinates ξ ∈ Ωst. This
has N nodal points which we denote by ξi.
• The curvilinear element is Ωe with coordinates x ∈ Ωe. The

nodes of the element are xi.

• The ideal element is Ωe
I with coordinates y ∈ Ωe

I and nodes
y i.

We then consider the mappings:

• φM : Ωst → Ωe which maps the reference element to the
curvilinear element;
• φI : Ωst → Ωe

I which maps the reference element to the
ideal element; and
• φ : Ωe

I → Ωe which maps the ideal element to the
curvilinear element, and can be viewed as the composition
φM ◦ φ−1I .

Each of these mappings is defined in the isoparametric sense, so
that for example

x = φM (ξ) =
N∑

n=1

xnℓn(ξ),

where ℓn(ξ) has the Lagrange interpolant property that ℓn(ξm) =
δnm, with δnm being the Kronecker delta. We then have that φ(ξi) =
xi; i.e. each reference nodal point ξi maps onto an associated
curvilinear point xi in an isoparametric fashion.

When running the local optimisation procedure of algorithm
1 , we select a node, say xn, which is connected to one or more
elements that neighbour the node. We then wish to evaluate the
functional

E(∇φ) =
∫

Ωe
I

W (∇φ(y)) dy

on a subset of elements that are connected via some node of the
mesh, where ∇φ denotes the Jacobian matrix

∇φ(y) = ∇φM (φ−1I (y))∇φ−1I (y).
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Table A.1
Summary of relevant statistics from simulations in Section 5: polynomial order P , integration order Q , degrees of freedom in the mesh, number of threads and iterations
taken for convergence, scaled Jacobian before and after simulation and the runtime for the optimisation procedure.

Case P Q Nel Degrees of freedom Number of threads Number of iterations minQe (start) minQe (end) Time [s]

Fig. 4 4 10 9 118 1 25 −0.45 0.72 0.11
Fig. 5 10 20 12 2,240 24 25 0.31 0.57 4.79
Fig. 6 4 10 276 6,810 24 25 0.32 0.79 4.69
Fig. 8 4 10 32,928 973,092 24 10 0.23 0.65 20.00
Fig. 9 4 10 88,545 2,673,057 24 5 −5.77 0.05 152.35
Fig. 10 4 10 294 10,061 24 25 −1.12 0.73 17.23
Fig. 11 4 10 91,545 3,089,019 24 10 0.53 0.58 345.62

For the numerical integration of the functional, we will select
evaluation points ξ̃q and associated quadratureweights onΩst, and
then map the integral back to there, so that

E(∇φ) =
∫

Ωst

W
[
∇φM (ξ)∇φ−1I (φI (ξ))

]
det(∇φI ) dξ.

The optimisation requires both the gradients and the Hessian of E
with respect to the positions of xn, i.e.

∂

∂xnm
E(∇φ) =

∫
Ωst

∂

∂xnm

{
W
[
∇φM (ξ)∇φ−1I (φI (ξ))

]
detφI (ξ)

}
dξ,

where xn = (xn1, x
n
2, x

n
3) for a three-dimensional simulation. We

then apply the product rule to see that

∂

∂xnm
E(∇φ) =

∫
Ωst

∂

∂xnm

{
W
[
∇φM (ξ)∇φ−1I (φI (ξ))

]}
detφI (ξ) dξ

+

∫
Ωst

W
[
∇φM (ξ)∇φ−1I (φI (ξ))

] ∂

∂xnm
[detφI (ξ)] dξ.

Since the original linear mesh remains fixed and thus the ideal
mapping φI remains unchanged under node displacement, there
is no dependence on the Cartesian coordinates xnm. The derivative
of detφI (ξ) is therefore zero, meaning that the second integral can
be ignored.

To evaluate the first integral however, we clearly need to con-
sider the various forms ofW . We do note that each of the function-
als considered in this article are some combination of the terms
∥∇φM∥

2
f and JR(∇φM ), where JR(∇φM ) is the regularised Jacobian

used to untangle elements, and the points of evaluation have been
omitted for clarity. Obtaining the derivatives of these terms is
accomplished as follows.

We first rewrite the Frobenius norm ∥∇φ∥2f = ∇φ : ∇φ, and
use the matrix identity

∂

∂x
(A : A) = 2

∂A
∂x
: A

to obtain
∂

∂xnm
∥∇φ∥2f = 2

∂∇φM

∂xnm
∇φ−1I : ∇φM∇φ−1I . (B.1)

Now, using the definition of the regularised Jacobian from Eq. (5)
with J = det∇φM (ξ), we apply the chain rule to obtain

∂ JR
∂xnm
=

1
2

∂ J
∂xnm

(
1+

J√
4δ2 + J2

)
=

1
2

∂ J
∂xnm

(
1+

J
2JR − J

)
. (B.2)

Both Eqs. (B.1) and (B.2) lead to terms involving the derivative of
∇φM and its determinant. Following a similar approach to [42] and
noting that we use an isoparametric projection, we have that

x = φM (ξ) =
N∑

k=1

xkℓk(ξ) ⇒ [∇φM (ξ)]ij =
N∑

k=1

xki

[
∂ℓk

∂ξj
(ξ)
]
i
.

The derivative is therefore given by[
∂

∂xnm
∇φM (ξ)

]
ij
=

N∑
k=1

δnkδim

[
∂ℓk

∂ξj
(ξ)
]
i
= δim

[
∂ℓk

∂ξj
(ξ)
]
i
.

We then require the derivative of J to finalise the derivative of JR.
To achieve this we can use the matrix identity

∂

∂x
det(A) = det(A) tr

[
A−1

∂A
∂x

]
,

which then gives us the derivative of J in terms of the calculated
quantities above. With these expressions, we can compute first-
and second-order derivatives for each of the functionals by using
standard product, chain and quotient rules. Below, we outline the
analytic first and second derivatives for the four functionals used
in this article, which have been verified by using finite difference
approximations.

Non-linear elasticity

W =
µ

2

(
∥∇φ∥2f − 3

)
− µ ln JR +

κ

2
(ln JR)2

∂

∂xnm
W = µ

(
∂∇φM

∂xnm
∇φ−1I : ∇φ

)
+

∂ J
∂xnm

1
2JR − J

(κ ln JR − µ)

∂

∂xnmxnp
W = µ

(
∂∇φM

∂xnm
∇φ−1I :

∂∇φM

∂xnp
∇φ−1I

)

+
∂ J

∂xnm

∂ J
∂xnp

1
(2JR − J)2

(
κ − J

κ ln JR − µ

2JR − J

)
.

Linear elasticity

W =
κ

2
(ln JR)+ µ

12 (∇φ⊤∇φ − I)
2
f

∂

∂xnm
W = 2µ

[
1
2

(
(∇φ−1I )⊤

(
∂∇φM

∂xnm

)⊤
∇φM∇φ−1I

+ (∇φ−1I )⊤(∇φM )⊤
∂∇φM

∂xnm
∇φ−1I

)

× :
1
2

(
(∇φ−1I )⊤(∇φM )⊤∇φM∇φ−1I − I

) ]

+
κ ln JR
2JR − J

∂ J
∂xnm

∂

∂xnmxnp
W = 2µ

[(
(∇φ−1I )⊤

(
∂∇φM

∂xnm

)⊤
∂∇φM

∂xnp
∇φ−1I

)
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× :
1
2

(
(∇φ−1I )⊤(∇φM )⊤∇φM∇φ−1I − I

) ]

+ 2µ

[
1
2

(
(∇φ−1I )⊤

(
∂∇φM

∂xnm

)⊤
∇φM∇φ−1I

+ (∇φ−1I )⊤(∇φM )⊤
∂∇φM

∂xnm
∇φ−1I

)
:

1
2

(
(∇φ−1I )⊤

(
∂∇φM

∂xnp

)⊤
∇φM∇φ−1I

+ (∇φ−1I )⊤(∇φM )⊤
∂∇φM

∂xnp
∇φ−1I

)]

+
κ

(2JR − J)2
∂ J

∂xnm

∂ J
∂xnp

(
1−

J ln JR
2JR − J

)
.

Distortion

W =
∥∇φ∥2f

n|JR|2/n

∂

∂xnm
W = 2W

⎡⎣
(

∂∇φM
∂xnm
∇φ−1I : ∇φ

)
(∇φ : ∇φ)

−
∂ J

∂xnm

1
n(2JR − J)

⎤⎦
∂

∂xnmxnp
W =

1
W

∂W
∂xnm

∂W
∂xnp
+ 2W

⎡⎣
(

∂∇φM
∂xnm
∇φ−1I :

∂∇φM
∂xnm
∇φ−1I

)
(∇φ : ∇φ)

− 2

(
∂∇φM
∂xnm
∇φ−1I : ∇φ

)(
∂∇φM
∂xnm
∇φ−1I : ∇φ

)
(∇φ : ∇φ)2

+
∂ J

∂xnm

∂ J
∂xnp

J
n(2JR − J)3

⎤⎦ .

Winslow

W =
∥∇φ∥2f

JR

∂

∂xnm
W = W

⎡⎣2
(

∂∇φM
∂xnm
∇φ−1I : ∇φ

)
(∇φ : ∇φ)

−
∂ J

∂xnm

1
(2JR − J)

⎤⎦
∂

∂xnmxnp
W =

1
W

∂W
∂xnm

∂W
∂xnp
+ 2W

⎡⎣
(

∂∇φM
∂xnm
∇φ−1I :

∂∇φM
∂xnm
∇φ−1I

)
(∇φ : ∇φ)

− 2

(
∂∇φM
∂xnm
∇φ−1I : ∇φ

)(
∂∇φM
∂xnm
∇φ−1I : ∇φ

)
(∇φ : ∇φ)2

+
∂ J

∂xnm

∂ J
∂xnp

J
2(2JR − J)3

⎤⎦ .
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