
Abstract — Mobile Crowdsourcing Systems (MCS) are important 

sources of information for the positioning services in IoT such as 

gathering location information through employing citizens to 

participate in data collection. Although MCS have attracted 

significant research and development efforts, there are salient 

open issues and challenges in security and privacy for MCS, which 

is an essential factor for its success. This paper proposes an 

integrated strategy named DTCS to enhance data trustworthiness 

and defend against the internal threats for mobile crowdsourcing. 

The DTCS integrates effective methods including an evaluation 

scheme for the attribute relevancy and familiarity of participants, 

a trust relationship establishment method, a group division 

strategy based on attributes and metagraph, and a core-selecting 

based incentive mechanism. The simulation results show that the 

DTCS improves the performance of the crowdsourcing strategy 

compared to the state-of-the-art including the TSCM and PPPCM. 

The DTCS can effectively defend against internal conflicting 

behaviour attacks and collusion attacks to enhance data 

trustworthiness for mobile crowdsourcing. 

 
Index Terms — Internet-of-Things, Mobile crowdsourcing, 

Data trustworthiness, Mechanism design 

I. INTRODUCTION 

NTERNET-of-Things (IoT), which use pervasive 

interconnected smart objects operating together to reach 

common goals, have become particularly popular with the rapid 

development of advanced low-cost sensors, wireless 

communications and networking technologies [1-3]. IoT 

technologies can effectively improve the intelligence of the 

positioning services, promote the interactions between the 

human and the environment, enhance the reliability, resilience, 

operational efficiency, and energy efficiency of smart city 

services [4-7]. 

Mobile crowdsourcing systems (MCS) are important sources 

of information for the positioning services in IoT such as 

gathering location related sensing data by employing ordinary 

citizens to participate in data collection [8, 9]. MCS has become 

very popular as the number of mobile devices equipped with 

sensors (including handsets, tablets, electronic devices, etc.) 
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shows dramatic growth [10-12]. MCS relies on individual 

participants to collect data from their activities and surrounding 

environments, and then upload the data to the application server 

via any available networking facility. The application server 

will process all data reported by the participants, extract the 

information in which queriers are interested, and forward such 

information to the queriers [13]. MCS has been successfully 

adopted to enable many new IoT applications, ranging from 

highway congestion detection to social trend understanding and 

positioning services [14]. 

Although MCS has attracted significant research and 

development efforts, there are salient open issues and 

challenges in security and privacy for MCS, which is an 

essential factor for the success of the burgeoning MCS for 

positioning services [15-18]. Since MCS allows any voluntary 

participant to contribute data, the application server is exposed 

to erroneous or even malicious data. Moreover, malicious 

participants may deliberately contribute bad data. In order to 

avoid making decisions based on the analysis of uncertain and 

imprecise data, it is crucial to maintain a high level of data 

trustworthiness, which is defined by a number of factors 

including data origin, collection and processing methods, such 

as trusted infrastructure and facility [13, 19].  

Meanwhile, security has often had a low priority for vendors 

of IoT devices and this has led to a situation where IoT is filled 

with security vulnerabilities in practice. Hence, mobile 

crowdsourcing based positioning services are often exposed to 

security attacks [3] targeting at data confidentiality, privacy and 

data trustworthiness. Data trustworthiness shows how much the 

data used are trusted, authentic and protected from 

unauthorized access and modification, which ensures data to be 

accurate, complete and up-do-date. There are many security 

challenges in data trustworthiness such as denial-of-service, 

credential stealing, remote code injection, data integrity attacks, 

internal attacks, and supply chain attacks [19, 20]. 

Consequently, the availability, confidentiality, and integrity of 

both the original data and the analytics data are threatened by 

these attacks, e.g., the degraded availability of the mobile 

crowdsourcing based positioning services, the compromised 

confidentiality of the data and analytics, and the violated 

integrity of the data and analytics. 

As an effort to tackle the aforementioned challenges, this 

paper focuses on the aspect of data trustworthiness to enhance 

security and privacy-preserving for mobile crowdsourcing 

based positioning services in IoT through designing a new Data 

Trustworthiness enhanced Crowdsourcing Strategy (DTCS). 

The major contributions of this work include the following: 
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 We propose a data trustworthiness enhanced crowdsourcing 

strategy to defend against the internal threats for mobile 

crowdsourcing based positioning services. 

 The DTCS innovatively integrates four methods to achieve 

its aim: an evaluation scheme for participants’ attribute 

relevancy and familiarity, a trust relationship 

establishment method between persons and groups, a group 

division strategy bases on attributes and metagraph, and a 

core-selecting based incentive mechanism. 

  Simulation experiments demonstrate that the DTCS 

improves the performance of the crowdsourcing strategy 

compared to the state-of-the-art including the TSCM [21] and 

PPPCM [8] strategies. The DTCS can effectively defend 

against internal conflicting behaviour attacks and collusion 

attacks to enhance data trustworthiness for MCS. 

The remainder of this paper is organized as follows. Section 

II presents a brief review of related work, Section III describes 

the system and adversary models, Section IV introduces the 

implementation details of the DTCS, Section V presents the 

performance evaluation of the DTCS. Finally, Section VI 

concludes the paper. 

II. RELATED WORK 

Data trustworthiness for IoT enabled MCS systems has 

become a research hotspot that attracts many interests [8,21-27]. 

For example, Kantarci et al. [21] proposed a reputation based 

Sensing-as-a-Service scheme to ensure data trustworthiness in 

crowdsourcing management for MCS systems. Cao et al. [23] 

proposed a Trust-based Data Usage architecture including 

trust-based data sharing system, data semantic and abstraction 

models, and a data transparency and accountability enhancing 

mechanism. Palaghias et al. [24] presented an opportunistic 

sensing system to reliably derive and quantify trust 

relationships for MCS systems by combining the extracted 

real-world social graph. Huang et al. [25] proposed a reputation 

system based on the Gompertz function to compute reputation 

scores of devices to measure the trustworthiness of the 

contributed sensing data for MCS systems. Wang et al. [26] 

proposed ARTSense, a framework to solve the problem of 

“trust without identity” in MCS network to achieves the 

anonymity and security requirements by combining the 

privacy-preserving provenance model, a data trust assessment 

scheme with an anonymous reputation management protocol. 

Zhang et al. [8] proposed a participant coordination framework, 

which includes a cooperative data aggregation, an incentive 

distribution method, and a punishment mechanism to both 

protect participant privacy and ensure the trustworthiness of the 

collected data. Both Li [22] and Liu [27] proposed 

privacy-preserving schemes that use the homomorphic 

encryption to protect the trustworthiness of the crowdsourced 

data for a mobile crowdsourcing based location system. Gong 
et al. [28] identified fundamental tradeoffs among utility, 

privacy, and efficiency in MCS and proposed a flexible 

optimization framework to collect reliable data and provide 

privacy protection. Zhang et al. [29] proposed a secure and 

dependable auction mechanisms for MCS to defend against 

dishonest bidders in the sensing process and to incentivize 

participants to provide trustworthy crowdsourced data. 

In the existing research on data trustworthiness, many studies 

assumed that the authenticated participants are trustworthy, 

thus ignoring the internal security threats such as internal 

conflicting behavior attacks launched by an internal participant 

with a legal identity giving dishonest opinions to frame up good 

parties and/or boost trust values of malicious peers. Meanwhile, 

most existing data trustworthiness enhanced mechanisms for 

MCS in IoT didn’t consider the collusion attack that represents 

the real-world nature of MCS in IoT. Consequently, it is an 

open problem and a challenging task to design a new strategy to 

prevent internal attacks to enhance the data trustworthiness for 

MCS. 

III. SYSTEM AND ADVERSARY MODELS  

A. System Model 

Different MCS applications may have different system 

models. To make it more general, in this paper we consider a 

typical MCS system architecture in IoT, which has three stages: 

sensing, learning and mining, disseminating [13, 30]. In the 

sensing stage, before the owner of a mobile device can 

participate in an MCS application, he/she first needs to 

download the corresponding application to become a 

participant. For a certain query, the application server informs 

all participants about their sensing tasks. In the learning and 

mining stage, there are two possible data collection models. In 

the first model, participants play an active role by deciding 

when to report data. In the second model, reporting occurs 

whenever the state of the mobile device satisfies the tasks’ 

requirements. Therefore, the sensed data are uploaded to the 

application server through wireless networks. The application 

server then processes the sensed data to extract the desired 

information. In the disseminating stage, the results are 

formatted into suitable forms and made available to queriers. 

The participants are connected to the access point through the 

smartphone and senses the required data. The end users or 

queriers request data through tasks and then utilize the 

information acquired by participants. The MCS operator 

distributes tasks to participants who meet the requirements of 

applications.  

B. Adversary Model 

This paper focuses on the internal security threats [31, 32] 

that can affect data trustworthiness to mobile crowdsourcing 

based positioning service in IoT. The internal threats are 

launched by an inside attacker who is a legal and certified 

participant. The internal attacks may compromise certain 

participants and gain full control of them. Once participants are 

compromised, the attacker can gain access to all stored 

information, including public and private keys. The attacker 

could also reprogram the captured participants to behave in a 

malicious manner. Therefore, the traditional encryption and 

authentication techniques may no longer be effective. The 



specific internal attacks considered in this paper are below [3]: 

 Conflicting behavior attack: The attackers can transmit 

partially trustful information (e.g., correct IP address) and 

partially incorrect information (e.g., fake positions). Attackers 

can also provide erroneous recommended opinions for their 

own benefits. 

 Collusion attack: Attackers collude to provide false 

information and give misleading judgments. 

IV. DATA TRUSTWORTHINESS ENHANCED 

CROWDSOURCING STRATEGY (DTCS) 

In this section, we elaborate on the proposed data 

trustworthiness enhanced crowdsourcing strategy (DTCS), 

which integrates the trust relationship evaluation [31-33] with 

the mechanism design [34, 35], metagraph theory [36, 37], user 

group division technologies [38] to improve the accuracy of the 

trust relationship evaluation, defend against internal attacks and 

enhance data trustworthiness for mobile crowdsourcing based 

positioning services in IoT. In the rest of the paper, the term 

“participant”, “mobile device” and the term “user” are used 

interchangeably.  

In DTCS, sensing data are classified into different categories 

based on the sensitivity level (SL) of data. In this work, the 

sensitivity level of sensing data is decided by the data owner, 

fixed and divided into five grades from 1 to 5. The higher is the 

sensitivity level of data, the greater is the need for the 

confidentiality and privacy protection. Also, we use metagraph 

[36, 37], a graphical data structure for representing a collection 

of directed set-to-set mappings, to divide all participants into 

different groups according to the participants’ attribute 

relevancy and familiarity. Moreover, each participant will 

execute an incentive mechanism before it makes a behaviour 

decision. The details of the DTCS are described as follows. 

Attribute and Metagraph based Participant Group Division 

Scheme (AMPGD) 

In AMPGD, we firstly evaluate the attribute relevancy and 

familiarity (ARF) among participants, and then divide all the 

participants into different groups based on the ARF evaluation 

results. 

We assume each participant has an attribute set ATTR = 

{attr1, attr2, …, attrk}, the attribute set of a participant may 

include location, gender, age, major, hobby and so on. The 

attribute relevancy and familiarity of participant j toward 

participant i ( )i, jARF  evaluation can be done as follows. 
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where w is the threshold of the attribute intersection’s scale. 

ATTR  is the attribute set used in this interaction, ATTRint

i
 

and ATTRint

j  are the attribute set used in the intth interaction 

between participants i and j, respectively. n is the total number 

of the interactions between participants i and j. ( )i: jR  is the 

reputation of j toward i stored in the local reputation database of 

i. is the time factor that determine how much the interaction 

time affect 
( )i: jR . We then formally define the as: 

: , *
n ni j T T                                   (2) 

where
nT is the density of the historical interaction until time Tn 

and : , ni j T is the weight factor, which determines how much the 

distribution of the interactions affects the 
( )i: jR  at time Tn. 

: , ni j T  and 
nT  can be computed as follows. 
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where 
slN  is the number of times the historical accessing 

behaviors or interactions are confirmed on the sensitivity level 

sl. m and n are the number of time slots and cycle T respectively, 

e.g., in this paper, T is equal to 10 seconds, m is 5, so one time 

slot equals 2 seconds. 

Based on the attribute relevancy and familiarity evaluation 

results, all the participants will be divided into different groups 

by using the metagraph theory, and the different possible kinds 

of trust relations between persons and groups will be built as 

follows. 

First, for any participant p the trust relationship between p 

and p’ (TR(p, p’)), and p and group g (TR(p, g)) will be 

computed as follows. 

a) Trust relationship between p and p’ when p has a direct 

interaction with p’, ( , )

direct

p pTR  , can be computed as follow. 
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where i is the minimum sensitivity level requirement. slSI , slTI  

denote the number of successful and total interaction with 

sensitivity level sl, respectively.   is the weight factor that 

determine how much the sensitivity level sl of the interaction 

affect ( , )

direct

p pTR  . 
t  is the rate between the number of interaction 

with the sensitivity level higher than the current required 

sensitivity level i and the total number of interaction with all 

sensitivity levels. jIA  represents the number of times that the 

sensitivity level of historical interaction is confirmed as j, and 

slotN  denotes the number of the time slots. 



b) The trust relationship between p and group g when p has a 

direct interaction with g, 
( , )

direct

p gTR , can be computed as follow. 
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where 
( , )

indirect

p pTR  is the indirect trust relationship between p and 

p’ when p has not a direct link with p’. m1 and m2 are the 

number of participants in group g that have direct and indirect 

interaction with p respectively. 
1 and

2 are the weight factors 

that determine how much the direct and indirect interaction 

affect the 
( , )

direct

p gTR . 

c) Let  DirR 1idir - rec i n   be the direct 

recommenders set. The direct recommenders who has the direct 

interaction with p’ and has the direct trust relationship 

evaluation result about the p’. Indirect trust relationship 

between p and p’ when p has not a direct interaction with p’, 

( , )

indirect

p pTR  , can be computed as follow. 
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where 
maxsl is the maximal security level of the recommender 

in DirR. 

d) Let  DirRG 1idir - recg i m  be the direct 

recommender group set. The direct recommender group gi who 

has the direct interaction with g and has the direct trust 

relationship evaluation result about g. Indirect trust relationship 

between p and group g when p has not a direct interaction with 

g, ( , )

indirect

p gTR , can be computed as follow. 
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where slj  is the average sensitivity level of group gi. maxsl is the 

maximal security level of the recommender group in DirRG. 

Secondly, the attribute and metagraph theory based group 

division are considered as follows. 

a) A metagraph ,S X E  is built as a graphical construct 

specified by its generating set X (participant set and attribute set) 

and a set of edges E defined on the generating set (trust 

relationship set). 

b) Generating set X represents participants and their attribute 

in their corresponding groups. Edges between two metagraph 

nodes (participants or groups) indicate the existence of trust 

relationship between them. 

c) Each edge has a label e = <Ve,We>∈ E, which is a couple 

of values <t; c>: the first component is the trust relationship 

value of metagraph node Ve (participants or groups Ve) toward 

node We (participants or groups We) while the second 

component is the quality of the trust relationship value 

assignment (i.e. a confidence value), both of these components 

are in the range [0, 1]. 

d) Each participant might possess different positions within a 

group, which is denoted as participant membership degree 

PMD. The higher a PMD in the group, the more likely the 

behavior of the participant will be based on the standards and 

norms of the group. Let g  be the group, the PMD of a 

member p in g is defined as follows. 
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e) A participant p belongs to a group g if the following 

condition is satisfied. 
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where  and   are the threshold of the attribute relevancy and 

familiarity, and trust relationship respectively. 

f) A high trust relationship value means that the trustee has 

gained a good feedback, whereas a confidence value close to 1 

indicates that the trustor estimates the correlated trust 

relationship value with precision. 

As an example, consider the metagraph ,S X E   in 

Figure 1. The sets X is  1 2 3 4 5 6 7, , , , , ,X x x x x x x x  and the set 

of edges is  1 2 3 4, , ,E e e e e . In Fig. 2, the edge 
1e between 

groups G1 and G2 is labeled as < 0.7, 0.6>. It shows that there 

exists a trust relationship between group G1 and group G2 and 

the trust relationship value of group G1 to group G2 is 0.7, and 

it is estimated with precision 0.6. 

 

 
 

Fig. 1.  An example of attribute and metagraph theory based group division. 

Core-Selecting based Incentive Mechanism (CSIM) 

This section presents the Core-Selecting based Incentive 

Mechanism (CSIM), which integrates the auction game into 



mobile crowdsourcing system to guarantee the reliability of the 

gathered crowdsourcing information through motivating all 

participants to provide true crowdsourcing information. The 

CSIM can also effectively defend against the internal collusion 

conflicting behavior and cheating attacks through 

implementing effective rewards and punishment mechanism.  

  Before introducing the CSIM, we present the mathematical 

descriptions as follows. 

 Bidders: let N = {1, 2, …, n} denote the set of all bidders 

(crowdsourcing service participants); 

 Auctioneers: the owner of crowdsourcing positioning service 

in IoT (crowdsourcing service initiator); 

 Crowdsourcing services: let M = {1, 2, …, m} denote the set 

of crowdsourcing services, where m >= 1; S is the subset of 

services set, where S M . Here we assume the auctioneer 

divides his own resources into m units and the bidders bid for 

some units’ resources and pay after receiving the confirmation 

from the auctioneer. 

1) Utility Function 

The utility of the bidder i is defined as 

otherwise

( ) ( ) if wins

0               

i i
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b S p S i
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                            (12) 

where ( )ib S  is the revenue of the bidder i with service subset S , 

and ( )ip S  is the payment of bidder i when it wins the service 

subset S . The payment charged by the auctioneer to the 

winning bidder i can be computed as 

     ( ) / ( )i ip S W N i W N b S                        (13) 

where ( /{ })W N i
 
is the result of solving the Winner 

Determination Problem (WDP) in auction game [35, 36] using 

bids from all bidders except i, and the last term is the sum of the 

winning bids by all bidders except i. The WDP is defined as 

     max i i

i N S M
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where ( )ix S is the indicator variable: ( ) 1ix S   if bidder i wins 

in an auction and 0 otherwise. The first constraints represent the 

use of XOR bids [35], to make an individual bidder’s bids 

mutually exclusive. 

2) The core of the auction 

In the CSIM, the “core” is the set of allocations whose 

imputed payoffs are core imputations and we define the core 

function in the CSIM as follows, and formally motivate the use 

of core-selecting auctions. 

,

( , ) { 0 | ( ) ( )}i j

i N S M
j S

Core N W u u W N and u W S
  



             (16) 

An auction outcome is in core if no group of participants 

(including the auctioneer) are motivated to secede to settle for 

their own solution. 

3) Effectiveness of CSIM 

The proposed CSIM satisfies the following property that 

indicates its effectiveness. 

Property: A core outcome is Pareto optimal if there is no 

other core outcome that can improve at least one bidder’s utility 

without reducing any other bidder in a subset S N . The 

property ensures that there exists no incentive for bidders to 

form the collusion. 

Proof: Assume there exists a collusion 'N N . The bidder i 

that belongs to the collusion tries to earn profit '

iu . Combining 

Eqs. (12) (14) (16), we have: 
' ( ') ( ') ( ' { }) ( ') 2 ( ')i i i iu b S p S W N i W N p S             (17) 

where the bidder tries to earn more profit and the sum of profit 

is fixed by (16), and then there is, 

( ' { }) ( ') ( { }) ( )W N i W N W N i W N                     (18) 

Based on the payment rules in (13), there is 

( ') ( )i ip S p S                                      (19) 

Therefore, we have '

i iu u , which means that the bidder i 

has no profit gain by joining any collusion. 

Data Trustworthiness enhanced Crowdsourcing Strategy 

The process of the data trustworthiness enhanced 

crowdsourcing strategy (DTCS) is shown in Figure 2 and the 

details are described as follows, where the red lines represent 

the security and privacy demands, black lines represent the 

actions by initiators, and blue lines represent the actions by 

participants. 

 

Initiator  evaluates 
participants’ ARF

 Groups division based 
on ARF

Build trust between 
persons and groups

Initiator broadcasts 
service request in P

Participants execute 
CSIM and make 

decisions 

Participants or groups 
feedback the 
information

Initiator executes  
positioning service

 Trust relationship 
updated and stored 

Attribute and 
Metagraph based 

Group Division

Build participant  
candidate set P 

Security and privacy 
demands 

 
Fig. 2.  The DTCS system structure. 

 

First, crowdsourcing service initiator executes the attribute 

and metagraph based participant group division scheme 

(AMPGD) to evaluate its neighbor participants’ ARF and 

divides all the neighbor participants into different groups based 

on the attribute relevancy and familiarity evaluation results.  

Second, crowdsourcing service initiator builds the different 

possible kinds of trust relationship between persons and groups, 

and then selects the participant or participant group according 

to the security and privacy preserving demands of the 

crowdsourcing positioning service based on the established 

trust relationship.  

Third, crowdsourcing service initiator broadcast the 

crowdsourcing positioning service request to the selected 

crowdsourcing service participants.  



Fourth, each participant receiving the request executes the 

CSIM (the default behavior mode is cooperation, i.e., provide 

truth information), and decide which behavior it will take to 

respond the request. 

Finally, after the service, the crowdsourcing service initiator 

re-evaluate and update the trust relationship with the 

crowdsourcing participant according to the provided 

information. 

The details of the crowdsourcing service execution process 

in IoT are shown in the algorithm 1. 
______________________________________________________________  

Algorithm 1: DTCS 

_______________________________________________________________ 

1. Begin 

2.   The crowdsourcing service initiator evaluate neighbor participants’ ARF; 

3.    If the participants’ ARF belong to different level then 

4.         Initiator divides the neighbor participants into different groups; 

5.    Else  

6.         All the neighbor participants are in a same group. 

7.    End if 

8.   If there is more than one group then  

9.      { 

10.         Initiator builds the trust relationship between persons in a same group; 

11.         Initiator builds the trust relationship between a person and a group; 

12.         Initiator builds the trust relationship between persons in two groups; 

13.         Initiator builds the trust relationship between two different groups; 

14.      } 

15.    Else  

16.        Initiator builds the trust relationship between persons in the same group; 

17.    End if 

18.    If minimum (TR (p, p’))> Threshold then 

19.        Put g into the participant set P; 

20.    End if 

21.    If TR (p, p’) > Threshold then 

22.        Put p’ into the participant set P; 

23.    End if 

24.    If P is not empty, then 

25.      { 

26.         Initiator broadcast the crowdsourcing positioning service request in P; 

27.         Initiator waits for the feedback; 

28.      } 

29.    End if 

30.    Any participant receiving the request executes the CSIM and make a   

decision which behavior it will take. 

31.    Participants or participant groups feedback the information to the initiator; 

32.    Initiator converges the feedback information and executes the 

crowdsourcing positioning service; 

33.    Initiator re-evaluate and update the trust relationship;   

34.    End 

_______________________________________________________________ 

V. PERFORMANCE EVALUATION 

In this section, we developed a Java-based simulator to 

implement the proposed strategy DTCS and compare it with 

TSCM [21] and PPPCM [8] because they are the similar and 

latest related crowdsourcing strategies. The following 

performance metrics are evaluated when internal conflicting 

behaviour attacks and collusion attacks are present. 

  In the simulation tests, we evaluate three strategies in a 

1000 × 1000 region (m2) where 1000 participants are uniformly 

distributed as the crowd during a 30-min event. We assume that 

a certain number of participants is malicious, intending to 

provide disinformation. Moreover, good participant always 

sends correct sensing reports but an adversary does not 

necessarily always send false sensing reports. 

The security parameters 
1 ,

2 ,
1 ,

2 ,
1 ,

2 are 0.6, 0.4, 

0.4, 0.6, 0.6, 0.4, which are empirical values obtained from 

multiple simulation experiments. 
1 and

2  are the weight 

factors in (7) used to determine how much the direct and 

indirect interaction affect the 
( , )

direct

p gTR . 
1 and

2 are the weight 

factors in (10) used to determine how much the attribute 

relevancy and familiarity of the participant and the trust 

relationship affect the participant membership degree (PMD). 

1 and
2  are the weight factors in (10) used to determine how 

much the direct and indirect trust relationship between two 

participants affect the integrated trust relationship of them. 

Because Utility rate of the crowdsourcing strategy (URCS), 

Disinformation ratio (DIR) and Trustworthy participant 

selection rate (TPSR) are three important and frequently used 

metrics to evaluate the feasibility and availability of the 

crowdsourcing strategy, they are chosen as the metrics in the 

performance evaluation when internal when internal conflicting 

behavior attacks and collusion attacks are present. These 

performance metrics are defined below. 

 URCS: The Utility of the crowdsourcing strategy (i.e., the 

accuracy of decision and efficiency of the crowdsourcing 

strategy according to the crowdsourced information).  

 DIR: The rate of the disinformation information to the total 

crowdsourced information.  

 TPSR: The rate of the trustworthy cooperative 

crowdsourcing participants to the total number of selected 

crowdsourcing participants. 

All experiments depicted in the following figures had been 

repeated at least 100 times (more for the random selection 

method), and the average values are taken as the final results. 

 

1) Utility rate of the crowdsourcing strategy (URCS) 

First, we investigate the utility rate of the DTCS, and compare 

it with those of the TSCM and PPPCM in an honest network 

and a hostile network when internal conflicting behavior 

attacks and collusion attacks are present, respectively. In the 

honest network, all the participants are good participants. 

While in the hostile network, the participants may be 

adversaries who give false information with a random 

probability. 

 



 
Fig. 3. Utility rate of the crowdsourcing strategies (a) in an honest network, (b) 

with conflicting behavior attacks, and (c) with collusion attacks. 

 

The comparison result of the URCS of the three 

crowdsourcing strategies in an honest network is shown in Fig. 

3 (a). The results show that in the honest network environment, 

all the three strategies have high decision accuracy because all 

the participants provide the truth information. Also, we can see 

that the URCS of the DTSC is higher than the other two 

strategies, the reason is that the DTSC divides all the 

participants into different groups by using the metagraph theory 

based on the attribute relevancy and familiarity evaluation 

results, therefore, more relevant and familiar participants will 

be selected as crowdsourcing participants that provide more 

accurate crowdsourced data, which efficiently enhances the 

accuracy of the crowdsourcing information. Moreover, the 

adoption of the user group division improves the efficiency of 

relevant and familiar participants’ selection. The two 

advantages mentioned above make the URCS of the DTSC 

higher than the TSCM and PPPCM.  

We also analyse the impact of the malicious attacks on the 

URCS of the three strategies. Comparing to the results in Fig. 3 

(a), in Fig. 3 (b) and (c) where the conflicting behaviour attack 

and collusion attack are present, the URCS of DTSC decreases 

by 7% and 12%, the URCS of PPPCM decreases by 25% and 

40%, and the URCS of TSCM decreases by 30% and 45%, 

respectively. In DTSC, the establishment of trust relations 

between persons makes possible the fine-grained reputation 

evaluation of participants and selection of trustworthy 

crowdsourcing participants. Meanwhile, the participant group 

division and the establishment of trust relations between groups 

effectively solve the reputation transferring and loss problem of 

participants during the participant movement. Furthermore, the 

core-selecting based incentive mechanism in DTSC provides 

better defending against the internal attacks than those of the 

PPPCM and TSCM through implementing effective rewards 

and punishment mechanism. The above-mentioned schemes 

make the URCS of DTSC the highest and slowest decreasing 

among the three strategies. 

2) Disinformation ratio (DIR) 

Next, we analyze the disinformation ratio (DIR) of the three 

strategies under two hostile network environments. In Fig. 4 (a) 

and (b), as expected, the DIR increases with the simulation 

rounds. It is observed that the DIR of the DTSC is the lowest 

among the three strategies. This is because that the integrated 

combination of trust relations establishment and participant 

group division improves the accuracy and efficiency of the 

participants’ reputation evaluation and solves the participants’ 

reputation transferring and loss problem, which enhances the 

reliability of the selected crowdsourcing participants and 

crowdsourced data trustworthiness and thus decreases the DIR 

of the DTSC. Moreover, the core-selecting based incentive 

mechanism proposed in DTSC motivates the selected 

participants to provide truthful information and decline to join 

any collusion attacks, which also improves the crowdsourced 

data trustworthiness and decreases the DIR of the DTSC. 

Although the other two strategies also adopt related 

technologies to improve the accuracy and reliability of the 

participants’ selection and data trustworthiness, they do not 

consider the impact of the participants’ movement on the 

accuracy and efficiency of the participants’ reputation 

evaluation. Moreover, they do not take the collusion attacks 

into account and cannot defend against the internal collusion 

attacks. Therefore, their DIR is higher than that of the DTSC. 

We also evaluate the DIR of the three strategies with 

different proportions of conflicting behavior attackers and 

collusion attackers, respectively. From the results shown in Fig. 

4 (c) and (d), we can see that DIR is dramatically affected by 

the number of malicious participants and the DIR of all the 

three strategies increase as the proportion of malicious 

participants increases. However, the DIR of the DTSC is 

relative stable and lower than those of the PPPCM and TSCM. 

Neither PPPCM or TSCM can implement the more accurate 

reputation evaluation of participants and solve the reputation 

transferring and loss problem, therefore, they cannot effectively 

identify the mobile malicious participants and choose more 

relevant trustworthy participants, which makes their DIR 

decreases faster than the DTSC. Furthermore, neither PPPCM 

or TSCM can defend against the collusion attack, therefore, 

they will receive more false information and their DIR 

decreases faster than the DTSC. 

 

 

 

Fig. 4. Disinformation ratio of the crowdsourcing strategies (a) with conflicting 

behavior attacks, (b) with collusion attacks, and (c) with different proportions 
of conflicting behavior attackers, and (d) with different proportions of collusion 

attackers. 

 



3) Trustworthy participant selection rate (TPSR) 

Finally, we evaluate the trustworthy participant selection rate 

(TPSR) of the DTCS, and compare it with those of the TSCM 

and PPPCM. The comparison result of the TPSR of the three 

strategies in the honest network is shown in Fig. 5 (a). The 

results show that in the honest network environment, the TPSR 

of all the three strategies increases with the simulation time. In 

the honest network, all the participants will participate in 

collaboration actively and the reputation of the positive 

cooperative participants that provide more accurate and reliable 

information will increase more quickly, which enhances the 

participants’ probability to be chosen greatly and thus improve 

the TPSR. In DTSC, the trust relations establishment and 

participant group division mechanisms make the participants’ 

reputation evaluation more accurate and timely than that of the 

TSCM and PPPCM. Also, the establishment of the trust 

relations between participants and groups solves the 

participants’ reputation transferring and loss problem 

effectively, therefore, the TPSR of the DTSC is higher than 

TSCM and PPPCM.  

We also analyse the impact of the malicious attacks on the 

TPSR of the three strategies. From the results shown in Fig. 5 (b) 

and (c) where the conflicting behaviour attack and collusion 

attack are present, we can see that the TPSR of TSCM and 

PPPCM is affected by the malicious attacks more severely than 

the DTSC. Specifically, the TPSR of DTSC decreases by 

8-10%, the TPSR of PPPCM decreases by 23-25%, and the 

TPSR of TSCM decreases by 30-33%. The reason is that 

neither PPPCM or TSCM can defend against the conflicting 

behaviour attack and collusion attack effectively and thus 

cannot evaluate and update the participants’ reputation or 

identify the malicious participants accurately and timely, which 

makes the TPSR of TSCM and PPPCM lower than that of the 

DTSC. 

At the same time, we evaluate the TPSR of the three 

strategies with different proportions of conflicting behaviour 

attackers and collusion attackers, respectively. In Fig. 5 (d) and 

(e), as expected, we see that the TPSR is dramatically affected 

by the number of malicious participants and the TPSR of all the 

three strategies decrease as the proportion of malicious 

participants increases. However, with the combination of the 

trust relations establishment, participant group division and 

core-selecting based incentive mechanism, DTSC can identify 

more malicious participants than TSCM and PPPCM, and thus 

can defend against the conflicting behaviour attacks and 

collusion attacks more effectively than the TSCM and PPPCM. 

Therefore, the TPSR of the PPPCM and TSCM decreases faster 

than that of the DTSC. 

 

 

 
Fig. 5. Trustworthy participant selection rate (a) in an honest network, (b) with 
conflicting behavior attacks, (c) with collusion attacks, (d) with different 

proportions of conflicting behavior attackers, and (e) with different proportions 

of collusion attackers. 

VI. CONCLUSIONS 

This paper proposes an integrated strategy named DTCS to 

enhance data trustworthiness and defend against the internal 

threats for mobile crowdsourcing. The DTCS integrates four 

different methods including an evaluation scheme for the 

attribute relevancy and familiarity of participants, a trust 

relationship establishment method between persons and groups, 

a group division strategy bases on attributes and metagraph, 

and a core-selecting based incentive mechanism. The DTCS 

can effectively defend against internal conflicting behaviour 

attacks and collusion attacks to enhance data trustworthiness 

for mobile crowdsourcing. We have evaluated the performance 

metrics including the utility rate of the crowdsourcing strategy, 

disinformation ratio, and selection rate of trustworthy 

participant. Simulation experiments demonstrate that the DTCS 

improves the performance of the crowdsourcing strategy 

compared to the state-of-the-art including the TSCM and 

PPPCM. The DTCS can effectively defend against internal 

conflicting behaviour attacks and collusion attacks to enhance 

data trustworthiness for MCS. For the future work, we plan to 

introduce the encryption or signature based privacy preserving 

technology into the mobile crowdsourcing process to improve 

the data trustworthiness further. 
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