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Abstract. A boundary crisis occurs when a chaotic attractor outgrows
its basin of attraction and suddenly disappears. As previously reported,
the locus of a boundary crisis is organised by homo- or heteroclinic tan-
gencies between the stable and unstable manifolds of saddle periodic
orbits. In two parameters, such tangencies lead to curves, but the locus
of boundary crisis along those curves exhibits gaps or channels, in which
other non-chaotic attractors persist. These attractors are stable peri-
odic orbits which themselves can undergo a cascade of period-doubling
bifurcations culminating in multi-component chaotic attractors. The
canonical diffeomorphic two-dimensional Hénon map exhibits such pe-
riodic channels, which are structured in a particular ordered way: each
channel is bounded on one side by a saddle-node bifurcation and on the
other by a period-doubling cascade to chaos; furthermore, all channels
seem to have the same orientation, with the saddle-node bifurcation
always on the same side. We investigate the locus of boundary crisis in
the Ikeda map, which models the dynamics of energy levels in a laser
ring cavity. We find that the Ikeda map features periodic channels with
a richer and more general organisation than for the Hénon map. Using
numerical continuation, we investigate how the periodic channels de-
pend on a third parameter and characterise how they split into multiple
channels with different properties.

1 Introduction

Boundary crisis was first studied in [27] as a new bifurcation for chaotic dynamical
systems. It is mediated by a homo- or heteroclinic tangency between global stable
and unstable manifolds of fixed points or periodic orbits and results in the sudden
disappearance of a chaotic attractor as it touches the boundary of its own basin of
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attraction. While the locus of homo- or heteroclinic tangency is generally a smooth
curve in a two-parameter plane, the locus of boundary crisis is not smooth [6,16,17].
Indeed, the effect of a tangency between global (un)stable manifolds can be differ-
ent, particularly when the attractor is not chaotic, and other phenomena may re-
sult, such as interior crisis, when a multi-component chaotic attractor merges into
a larger chaotic attractor that consists of fewer or only one component [7], or basin
boundary metamorphosis, where the basin boundary associated with the attractor
changes from smooth to fractal [8,9]. Gallas, Grebogi and Yorke [6] discussed how
the nature of the crisis bifucation along a two-parameter tangency locus changes at
a so-called double-crisis vertex, where another curve of homoclinic or heteroclinic
tangencies between manifolds of a different periodic orbit intersects. In [16,17], it
was shown that the nature of the crisis bifurcation on a tangency locus also changes
at points where the tangency locus crosses a curve of saddle-node bifurcations. The
intersecting curve of saddle-node bifurcations gives rise to a periodic channel that
constitutes an actual gap in the locus of boundary crisis. Periodic channels are the
two-parameter versions of the well-known periodic windows in one-parameter bifur-
cation diagrams of systems with chaotic attractors such as the logistic map [3] or
the Hénon map [10,23]. Hence, one should expect that there may be infinitely many
periodic channels, which means that we cannot speak of a curve of boundary crisis
bifurcation.
Despite the fact that boundary crisis is not a robust phenomenon in a two-

parameter setting, numerical brute-force iterative methods and actual physical ex-
periments will still highlight its existence [1,14,21,22,28]. The gaps in the locus of
boundary crisis will typically only be visible at increasingly finer scales of parame-
ter variations [6,16,17]. However, the basin of attraction of the attractor that exists
in such a periodic window may be quite large. Hence, particularly in the study of
boundary crisis, where the attractor is supposed to disappear, the periodic channels
can be very important in determining parameter regimes that can be regarded as
safe. Therefore, it is of interest to study the organisation of periodic channels and
how they depend on parameters.
Periodic windows and, therefore, periodic channels in the Hénon map [10,23] are

structured in a special way: The two-parameter channel arises from a curve SNk
of saddle-node bifurcations that creates a saddle and sink of a particular period k;
this is the base period of the channel. The period-k sink subsequently undergoes a
cascade of period-doubling bifurcations until a chaotic attractor emerges that consists
of k disjoint components. The basin of this chaotic attractor is formed by the stable
manifold of the period-k saddle, and one branch of its unstable manifold accumulates
onto the period-k attractor. The channel ends when the stable and unstable manifolds
of the period-k saddle become tangent; this can give rise to an interior crisis after
which the original chaotic attractor re-emerges, or a boundary crisis that destroys the
k-component chaotic attractor. Using terminology from [7], we call this a periodic
channel of subduction-crisis type. All periodic channels for the Hénon map are of
subduction-crisis type and the order in which the sequence of bifurcations occurs is
always the same, that is, if the left boundary for one of the periodic channels is formed
by a curve of saddle-node bifurcation, then all left boundaries of the periodic channels
are saddle-node bifurcations [16,17].
In this paper we investigate parameter dependence of periodic channels for the

particular example of the Ikeda map [12,13]. This map describes the behaviour of the
complex-field amplitude of a continuous laser signal as it recirculates through a di-
electric nonlinear medium in a ring cavity, which is formed by four reflective mirrors.
Light with constant amplitude and frequency is injected by the laser into the ring cav-
ity and some of the energy is absorbed by the nonlinear medium. We use a simplified
model of this process, which is derived in [11] by assuming that saturable absorption
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is negligible; in real form, the Ikeda map is then given by the diffeomorphism

(
x
y

)
�→
(
a
0

)
+R

(
cosϑ − sinϑ
sinϑ cosϑ

) (
x
y

)
, where ϑ = φ− p

1 + x2 + y2
. (1)

We view a and 0 ≤ R ≤ 1 as the main parameters, which represent the amplitude
of the light from the laser and the scaled reflectivity of the mirrors, respectively. The
parameters φ and p are detuning parameters due to the cavity and nonlinear medium,
respectively. In certain parameter regimes, the Ikeda map exhibits a chaotic attractor
that coexists with a stable fixed point. The basic bifurcation structure that creates
the chaotic attractor is a period-doubling sequence to chaos. The chaotic attractor
is destroyed by a homoclinic tangency bifurcation between the global stable and
unstable manifolds of the saddle fixed point, or a heteroclinic tangency bifurcation
between the global stable and unstable manifolds of two saddle periodic orbits with
periods six and two, respectively [6]. However, as was also already reported in [6],
the precise region of existence of the chaotic attractor is more complicated due to
the existence of many periodic channels, which also protrude into the regime where
the stable fixed point is the only attractor.
We studied periodic channels for the Ikeda map (1) in detail in [19], where

we kept φ = 0.4 and p = 6.0 fixed. We found that the periodic channels in the
(a,R)-plane of the Ikeda map (1) are not necessarily of subduction-crisis type [19],
which makes the overall structure of its crisis loci richer than that of the Hénon map.
In [19], we found periodic channels bounded on both sides by curves of saddle-node
bifurcation, which we call subduction-subduction channels. Furthermore, there exist
pairs of subduction-crisis channels of the same base period for which the ordering of
the bifurcations in one of the channels occurs in a reversed ‘crisis-subduction’ manner.
Both types of channels seem related to the so-called bounded or paired cascades of
period-doubling bifurcations discussed in [24,25], which are created or destroyed in
pairs that correspond to the same base period. Most importantly, as shown in [24],
bounded cascades are not robust.
Our hypothesis is that variation of a third parameter for the Ikeda map will,

therefore, cause the creation or destruction of periodic channels, namely, those of
subduction-subduction or paired subduction-crisis type. In this paper, we use φ as this
third parameter and study how the organisation of crisis loci and periodic channels in
the (a,R)-plane changes as φ decreases. Here, we focus on periodic channels with base
period five, which provide a good overview of the possible cases that can be expected.
Since the creation and destruction of the period-doubling cascades is already discussed
at length in [24,25], we are primarily interested in the effective splitting of a channel,
caused by the creation of an additional locus of boundary crisis.
We complement the brute-force iteration methods that identify the loci of bound-

ary crisis for the Ikeda map (1) in the (a,R)-plane with continuation methods that
compute the loci of saddle-node and period-doubling bifurcation, as well as loci of
homoclinic or heteroclinic tangencies between global stable and unstable manifolds
of fixed points or periodic orbits. These loci were computed with the continuation
package Cl matcont [4].
The presentation is organised as follows. In the next section, we present the local

bifurcation structure near the period-five channels in the (a,R)-plane for four different
values of φ. We describe the nature of the period-five channels and show how they
depend on φ. In Section 3, we investigate how the locus of boundary crisis is involved
in the splitting of a period-five channel. We end with a discussion in Section 4.
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Fig. 1. Loci of saddle-node (grey) and period-doubling bifurcation (black) in the (a,R)-
plane for the Ikeda map (1) with p = 6.0; the detuning φ decreases from φ = 0.4, φ = 0.3,
φ = 0.25 to φ = 0.2 in panels (a)–(d), respectively. In the grey region, the only attractor
is a stable fixed point; this region is bounded, in part, by the curve HC1 (thick black) of
homoclinic tangency between the stable and unstable manifolds of a saddle fixed point. Also
indicated are curves SN5 and SN10 of saddle-node bifurcation and PD5 and PD10 of period-
doubling bifurcation with base periods five and ten, respectively. The grey and black dots
are cusp points and degenerate period-doubling points, respectively.

2 Parameter-dependence of period-five channels

Under normal operating conditions, the dynamics of the laser ring cavity is trivial,
that is, the Ikeda map (1) has a single attractor that is a fixed point corresponding
to coherent light of fixed complex-field amplitude. However, if the amplitude a > 0
of the incoming light is small enough and the reflectivity 0 ≤ R ≤ 1 of the mirrors
large enough, then other behaviour may occur, including chaos [5]. Figure 1 shows a
small part of this region that focusses on the period-five channels in the (a,R)-plane.
Here p = 6.0 is fixed, but φ is varied from φ = 0.4, φ = 0.3, φ = 0.25 to φ = 0.2 in
panels (a)–(d), respectively. The grey-shaded regions correspond to parameter values
for which the fixed point is the only attractor. For other parameter values, a second
attractor co-exists, which may be chaotic. The lower boundary of the region with
trivial dynamics is primarily formed by a locus HC1 of homoclinic tangency between
the stable and unstable manifolds of a saddle fixed point. Where HC1 is indeed bound-
ing the region of trivial dynamics, the homoclinic tangency bifurcation corresponds
to a boundary crisis at which the chaotic attractor, which consists of a single com-
ponent, suddenly disappears. The grey region of trivial dynamics is interspersed by
periodic channels, several of which can easily be discerned, particularly in Figure 1a.
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Fig. 2. Bifurcation diagram of the period-five base orbit for R = 0.935 and the same values
φ = 0.4, φ = 0.3, φ = 0.25 and φ = 0.2 in panels (a)–(d) as in Figure 1, respectively. In each
panel, a varies over a range that includes the width of the left period-five channel in the
corresponding panels of Figure 1. The value of x of only one of the points in the period-five
orbit is shown on the vertical axis, and two points are shown if the orbit has period ten.
Stable solutions are black and unstable solutions are grey; the bifurcations are labelled as in
Figure 1 with saddle-node and period-doubling points marked as dots and stars, respectively.

Two of these periodic channels have base period five and associated curves SN5 and
SN10 of saddle-node bifurcation and PD5 and PD10 of period-doubling bifurcation of
the period-five and -ten orbits in these channels are drawn and labelled as well; see
also Figure 4, which shows a higher-resolution computation of the finer detail close
to these channels in the parameter regime above HC1.
Previous work investigating the organisation of solutions in the (a,R)-plane have

used φ = 0.4 and the data shown in Figure 1a was previously discussed in [19]. Let
us first focus our attention on the left period-five channel, which is of subduction-
subduction type and bounded on both sides by curves SN5 of saddle-node bifurcation
of a period-five orbit. Figure 2a shows a bifurcation diagram with respect to a, where
R is fixed at R = 0.935, cutting across this channel at a location above the curve HC1
associated with the locus of boundary crisis. Here, each period-five orbit is indicated
by the x-coordinate of only one of its points. At either extreme of the a-range shown
in Figure 2a, the trivial fixed point (not shown) is the only attractor that co-exists
with a single saddle period-five orbit (grey). These period-five saddles are connected
via a branch of stable period-five orbits (black) arising through a pair of saddle-node
bifurcations SN5. Above HC1 the period-five channels represents an isolated region in
the (a,R)-plane for which a stable period-five orbit exists; just below HC1, the channel
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forms a periodic window for the main chaotic attractor. For values of R well below
HC1, a cusp point exists on SN5 and the general nature of the channel boundaries
change; further bifurcations that produce higher-period attractors exist in this region,
which we do not discuss further.
Figure 1b shows a similar bifurcation structure for φ = 0.3. Note that the curve

HC1 has moved up and right, and the curves SN5 are further apart. The wider period-
five channel on the left contains what we will call a finger, bounded by a curve
PD5 of period-doubling bifurcation. The corresponding bifurcation diagram along the
line R = 0.935 is shown in Figure 2b. There now exists a pair of period-doubling
bifurcations PD5 of the stable period-five orbit that give rise to a branch of stable
period-ten orbits; the two points on the period-ten orbit that merge with the point
used to indicate the period-five orbit are shown in Figure 2b. The finger inside the
period-five channel extends down as far as R ≈ 0.83. Below this minimum value of
R, though well above the cusp point on SN5, any cross-section of the channel is like
that of Figure 2a.
The bifurcation structure increases in complexity as φ is decreased further. Pan-

els (c) and (d) of Figure 1 show the situation for φ = 0.25 and φ = 0.2, where two
additional fingers have appeared inside the finger bounded by PD5. The two new
fingers are bounded by curves PD10 of period-doubling bifurcation, meaning that the
period-five channel now also contains regions where an attracting period-twenty orbit
exists. The corresponding slices at R = 0.935 are shown in Figures 2c and 2d, respec-
tively. Only periodic orbits with periods five and ten are plotted, along with the pair
SN5 of saddle-node bifurcations and the first two period-doubling bifurcations. For
both φ-values further period-doubling bifurcations occur, though we suspect that the
sequence is still finite for φ = 0.25. The discerning eye will have spotted the grey-
shaded regions above HC1 inside the fingers bounded by PD10 in Figures 1c and 1d,
which indicate that, for R > 0.935 large enough the period-doubling sequence is infi-
nite and a chaotic attractor consisting of five components co-exists with the attracting
fixed point in certain regions of the (a,R)-parameter plane.
The bifurcations inside the period-five channel as φ decreases is entirely in line

with the findings reported by Sander and Yorke [24,25]. The boundary curves SN5
correspond to the beginning and end of a paired cascade that includes increasingly
more period-doubling bifurcations as φ decreases. The higher-order nonlinearities of
the Ikeda map (1) cause the appearance of two instead of one finger that corresponds
with the second period-doubling PD10, which means that the paired cascade with
base period five now includes a split of two paired cascades with base period ten; see
also [25].
The second period-five channel in Figure 1 is also of subduction-subduction type.

This channel exhibits the splitting and merging of a different type of paired cascade
that is also discussed in [24,25]. Figure 3a1 shows a cross-section for R = 0.935 and
φ = 0.4, when the channel has its simplest form. Above the curve HC1, it is bounded
on both sides by curves SN10 of saddle-node bifurcation of a period-ten orbit that
subsequently bifurcates to the base period-five orbit in a pair of (reversed) period-
doubling bifurcations PD5 [19]. As indicated in Figure 1a, the curves SN10 end on PD5
at degenerate period-doubling bifurcation points, where the criticality of the period-
doubling changes from supercritical to subcritical. This is illustrated in Figure 3a2
with a cross-section at R = 0.82 for this same φ-value; here, both period-doubling
bifurcations PD5 are subcritical.
As φ decreases, a cusp point gives rise to a pair of saddle-node bifurcations SN5

on the middle branch of stable period-five orbits. Figures 3b1 and 3b2 show the
same two cross-sections for φ = 0.3, that is, at R = 0.935 and R = 0.82, respectively.
For φ = 0.3, there are additional period-doubling bifurcations PD10 for the branch of
period-ten orbits that emanates from PD5; each branch exhibits one period-doubling
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Fig. 3. Bifurcation diagram of the period-five base orbit for cross-sections R = 0.935 and
R = 0.82 in rows 1 and 2, respectively. Panels (a1) and (a2) are for φ = 0.4 and panels (b1)
and (b2) for φ = 0.3. In each panel, a varies over a range that includes the width of the
right period-five channel in Figures 1a or 1b. The value of x of only one of the points in
the period-five orbit is shown on the vertical axis, and two points are shown if the orbit
has period ten. Stable solutions are black and unstable solutions are grey; the bifurcations
are labelled as in Figure 1 with saddle-node and period-doubling points marked as dots and
stars, respectively.

bifurcation soon after PD5 and a second (backward) one just before the saddle-node
bifurcation SN10, indicating the existence of two paired cascades with base period
ten, each in between SN10 on one side and PD5 on the other. These paired cascades
each generate two separate subduction-crisis channels; we note that the channels
close to SN10 are narrow in a. We observe from Figure 1b that the two curves PD5
of period-doubling bifurcations cross as R increases, which can be seen more clearly
in panels (c) and (d), where φ = 0.25 and φ = 0.2, respectively. Another way to look
at this is that, for fixed R, two channels change places in a as φ decreases and the
curves SN5 move further apart. Indeed, as shown in Figure 3b1 for R = 0.935 and
φ = 0.3, the boundaries for the period-five channels are saddle-node bifurcations SN5,
and the other boundaries are given by the limits of infinite period-doubling cascades;
we only show the first two period-doubling bifurcations PD5 and PD10. Similarly, the
channels with base period ten are bounded on one side by SN10 and on the other by
infinite cascades over narrow ranges in a. The cross-section for R = 0.82 and φ = 0.3
in Figure 3b2 is qualitatively the same as for R = 0.935 in panel (b1), but the two
saddle-node bifurcations SN5 are very close together, indicating the presence of a cusp
point for slightly smaller value of R; this cusp point lies at R ≈ 0.819 and is shown
in Figure 1b.
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3 Channel splitting due to boundary crisis

The period-five channels discussed in Section 2 are parameter-dependent versions
of paired cascades. The depth of the cascade may vary with φ, and the complexity
increases as φ decreases. As soon as φ is small enough and the paired cascade is
complete, in the sense that it contains an infinite sequence of period-doubling bifur-
cations with the limiting chaotic attractor, we may observe a splitting of the channel
for parameter values at which the chaotic attractor exhibits a boundary crisis. We
observe this phenomenon in Figure 1. For example, the grey shading in panel (d)
inside the fingers bounded by PD10 of the left period-five channel indicates that the
chaotic attractor created in the period-doubling cascade has disappeared. The period-
five channel has split into (at least) two channels: both are of classic subduction-crisis
or (the reverse) crisis-subduction type, with the left-most channel being the widest
and clearly showing the expected order of SN5 followed by PD5 and PD10, indicating
the existence of a homoclinic tangency HC5 between the (un)stable manifolds of the
saddle periodic orbit created in SN5 that bounds the channel on the right-hand side.
Figures 1b–1d illustrate that the fingers bounded by period-doubling bifurcations

are oriented such that their tips point towards decreasing R, which means that the
complexity or depth of the cascade is increasing as R increases, at least when φ is
small enough. Since the complexity of the paired cascade is ‘added at the top’ one
might conclude that the channel splitting then also originates at, say, R > 0.95 in the
(a,R)-plane. We find that, in fact, the exact opposite occurs.
The mechanism that splits a channel is illustrated in Figure 4 with a closer in-

spection of the first (left-hand) period-five channel in the (a,R)-plane for each of the
φ-values in Figure 1; the ranges for a and R vary in these panels, sometimes beyond
that of Figure 1. The grey shading for these enlargements is computed at a higher
resolution, but particularly stubborn transients persist in the region just above HC1
and near the curves SN5 and PD10, even after 10

7 iterates; similarly, some anomalous
shading appears inside a white region, indicating that the co-existing attractor has
an extremely small basin. We have chosen not to resolve these numerical issues in
detail. The first two panels in Figure 4 are primarily for completeness, illustrating
that the bifurcation structure near the homoclinic tangency HC1 is, indeed, entirely
explained by the slices for fixed R = 0.935 shown in Figures 2a and 2b, respectively.
For φ = 0.4 in Figure 4a, the period-five channel is bounded by the saddle-node bi-
furcation SN5. The boundary remains unchanged for φ = 0.3, but a finger bounded
by period-doubling bifurcation PD5 has appeared inside the channel; see Figure 4b.
The splitting of the period-five channel occurs in Figures 4c and 4d, corresponding

to φ = 0.25, and φ = 0.2, respectively. At φ = 0.2, the period-five channel has split
into three channels. Note the classic subduction-crisis type of the left-most channel,
including an infinite period-doubling cascade as indicated by the successive order,
from left to right, of curves SN5, PD5, PD10, ending in a boundary crisis. The left
channel is paired with another (reversed) subduction-crisis channel with base period
five on the right, and the third channel is of crisis-crisis type with base-period ten,
located in between these two paired channels. Two period-doubling cascades, starting
with PD10 lie within this crisis-crisis channel and face the flanking base-five cascades
on each side.
The mechanism that brings about the splitting of the period-five channel is implied

by the situation shown for φ = 0.25 in Figure 4c, which illustrates a transitional phase.
For large R, the channel has split into only two channels: the channel on the right
exhibits the classic (reversed) subduction-crisis type with base period five, and the
channel on the left exhibits this same cascade starting with SN5, but interspersed
with a paired cascade of base period ten on the period-doubled branch that starts
and ends with PD10; this paired cascade is not infinite when R is large, but for values
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Fig. 4. Enlargements of the bifurcation diagram in the (a,R)-plane near the first period-five
channel for the same values φ = 0.4, φ = 0.3, φ = 0.25 and φ = 0.2 in panels (a)–(d) as in
Figure 1, respectively. As before, in the grey region, the only attractor is a stable fixed point;
the loci SN5 of saddle-node (grey), PD5 and PD10 of period-doubling (black) and HC1 of
homoclinic tangency bifurcation (thick black) are labelled accordingly; see also Figure 1.

of R just above HC1 it becomes a complete paired cascade, as indicated by the grey-
shaded finger, or better, finger nail of trivial fixed-point dynamics that protrudes up
with its tip pointing towards increasing R. As can be inferred from Figure 4, the tip
of the finger moves up in R as φ decreases.
The paired cascade starting from SN5 on either side of the original period-five

channel is expected to complete with a homoclinic tangency between the stable and
unstable manifolds of the co-existing saddle periodic orbit with the same base period
of five. Unfortunately, while we could confirm the existence of this tangency HC5, we
have been unable to continue it as a curve in the (a,R)-plane; there is a numerical
difficulty caused by the extreme stretching along the stable manifold. Figure 5 shows
a sketch of the organisation in the (a,R)-plane near the grey-shaded finger nail of
trivial fixed-point dynamics at φ = 0.25. The entire finger is bounded by a curve HC5
of homoclinic tangency bifurcation involving the global stable and unstable manifolds
of the period-five saddle that originates from SN5. The nail is created due to the
intersection of HC1 with HC5. The boundary of the grey-shaded region corresponds
to a boundary crisis, which involves a single-component chaotic attractor along HC1
and a five-component chaotic attractor along HC5. The intersection points, labelled
V±1,5, are double-crisis-vertices. In the direction of increasing a, the nature of the
homoclinic tangency HC1 changes at V

+
1,5 from a basin boundary metamorphosis,

where the basin boundary changes from being the stable manifold of a saddle fixed
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Fig. 5. Sketch of the organisation in the (a,R)-plane near the grey-shaded finger nail of
trivial fixed-point dynamics inside one of the fingers bounded by PD10 for φ = 0.25. The
locus HC1 is intersected by the parabola-shaped locus HC5 of homoclinic tangency between
(un)stable manifolds of a period-five saddle. The intersection points are two double-crisis ver-
tices, labelled V±1,5, that delimit a short segment along HC1 that corresponds to a boundary
crisis.

point to the stable manifold of the period-five saddle, to a boundary crisis; at V−1,5,
it changes back from a boundary crisis to a basin boundary metamorphosis. In the
direction of increasing R, the nature of the homoclinic tangency HC5 changes at V

+
1,5

from an interior crisis to a boundary crisis, and the same occurs at V−1,5.
Note that the appearance of the finger bounded by HC5 occurs inside the finger

bounded by PD10, which points in the opposite direction; see Figure 1c. One could
conclude that HC5 must, therefore, have a minimum in the (a,R)-plane, which means
that the finger is actually an oval bounded by a closed curve. However, the homoclinic
tangency HC5 is not constrained by the presence of a period-doubling bifurcation,
which stipulates the nested nature of the curves PD5 and PD10. It is our hypothesis
that HC5 behaves similar to HC1, that is, it consists of a single curve that connects
this segment of HC5 with the other two homoclinic tangeny bifurcations of the period-
five saddle that enter or leave Figure 4c through the horizontal axes at R = 0.95 and
R = 0.9. This means that HC5 must intersect each of the curves PD10 and all other
higher-period period-doubling curves, which would change the number of components
of the chaotic attractor involved in the interior crisis along HC5. The precise details
of how this is organised are left for future work.

4 Discussion

We studied the nature and organisation for the Ikeda map (1) of periodic channels
persisting in a parameter regime of predominantly trivial dynamics, where the main
chaotic attractor has been destroyed in a boundary crisis. Due to the higher-order
nonlinearity of the Ikeda map, these periodic channels are not as structured and
ordered as for the Hénon map. Rather they arise from so-called paired cascades [24,25]
associated with a particular base periodic orbit. The splitting of a channel occurs via
the completion in a paired cascade of a period-doubling sequence to chaos, culminating
in a homo- or heteroclinic tangency involving (one of) the manifolds of the base
periodic orbit that occurs inside the channel; the tangency causes a boundary crisis
of the chaotic attractor created in the period-doubling cascade.
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We found the direction of variation in R that increases the complexity of the
paired cascade to be precisely opposite from that which brings about the manifold
tangency. Hence, as φ decreases, the channel splits from the inside with a finger or
bubble of boundary crisis involving a chaotic attractor with a different number of
components that protrudes from the main boundary crisis locus. Such bubbles have
been observed before in a three-parameter study of a quasi-periodically forced Hénon
map [18], but have not previously been observed in two-dimensional maps.
In future work, we hope to tackle the numerical challenge of continuing a homo-

clinic tangency associated with a period-five orbit that has a strongly contracting
eigenvalue. It would also be of interest to identify bubbles associated with splitting of
a periodic channel for other two-dimensional systems, and perhaps for a channel with
a lower base period; we have checked the period-three channels for the Ikeda map,
where such bubbles do not seem to exist [19]. A complete understanding of this kind of
channel splitting for two-dimensional maps would certainly help in the investigation
of similar behaviour for quasi-periodically forced or other higher-dimensional sys-
tems; for example, channel splitting may well play a role in the phenomena reported
in [26,29].

HMO is grateful to Ulrike Feudel for introducing her to boundary crisis more than 20 years
ago. At the time, they tackled the harder problem of boundary crisis in quasi-periodically
forced systems. Their discovery of the ‘bubble’ in the locus of boundary crisis for the quasi-
periodically forced Hénon map, and a need to understand how such bubbles come about,
has led to this paper. Happy birthday Ulrike!
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