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Rate-induced tipping from periodic attractors: partial tipping and connecting orbits
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We consider how breakdown of the quasistatic approximation for attractors can lead

to rate-induced tipping, where a qualitative change in tracking/tipping behaviour of

trajectories can be characterised in terms of a critical rate. Associated with rate-

induced tipping (where tracking of a branch of quasistatic attractors breaks down)

we find a new phenomenon for attractors that are not simply equilibria: partial

tipping of the pullback attractor where certain phases of the periodic attractor tip and

others track the quasistatic attractor. For a specific model system with a parameter

shift between two asymptotically autonomous systems with periodic attractors we

characterise thresholds of rate-induced tipping to partial and total tipping. We show

these thresholds can be found in terms of certain periodic-to-periodic (PtoP) and

periodic-to-equilibrium (PtoE) connections that we determine using Lin’s method

for an augmented system.
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Rate-induced tipping is a mechanism where reaching a critical rate of change

(rather than a critical value) of a parameter leads to a sudden change in a

system’s attracting behaviour1. Although there have been several studies of

this mechanism for systems with equilibrium attractors, rate-induced tipping

from more general attractors (including periodic orbits) is less well understood.

We tackle this problem for parameter shift systems2 by considering properties

of forward limits of local pullback attractors, with respect to changes in the

rate of the parameter shift. One of the key observations of this paper is that

the system may undergo partial tipping before reaching full tipping: partial

tipping occurs when some orbits still track the quasistatic attractor whilst others

tip. We also show that the distinction between partial and full tipping can in

some circumstances be related to the presence of global connecting orbits in an

extended system, and we compute these thresholds using Lin’s method.

I. INTRODUCTION

Motivated by studies of climate3–5, ecological6,7, financial8,9 and biological systems10, the

importance of tipping points in understanding sudden changes has been a focus of increas-

ing interest in the last few years. Although there is no agreed definition, a tipping point

occurs when a system has a sudden, irreversible change in output in response to a small

change in input. This change can be associated with a bifurcation (B-tipping), external

noise (N-tipping) that can change the stability of multistable system, or with a critical rate

(R-tipping) when a system fails to track a continuously changing quasistatic attractor1,6.

Whilst N- and B-tipping are relatively well studied, rate-induced tipping (R-tipping) has

only recently been identified1,11 as a distinct mechanism that can cause tipping in a system

where there is no bifurcation or noise involved but where the system is nonautonomous (i.e.

not only the solutions but the system itself varies with time). Since then, a number of

papers have studied R-tipping and related effects either using the theory of fast-slow dy-

namical systems12,13 or notions from nonautonomous stability theory2,14,15. In particular, it

has been suggested that local pullback attractors (where typical initial conditions are cho-

sen from some open region in the distant past) provide a suitable setting to describe such
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transitions2. Further studies have attempted to provide early warning indicators for this

type of tipping points16–18.

Ashwin, Perryman, and Wieczorek 2 propose a framework for R-tipping for nonau-

tonomous systems that limit to different autonomous systems in the past and future. They

call these parameter shift systems and propose that R-tipping is associated with a change

in properties of a pullback attractor for the associated nonautonomous system. They relate

properties of the pullback attractor to those of the quasistatic system at fixed parameters.

Most studies2,13,16 have so far only considered R-tipping from pullback attractors that limit

to equilibria: this paper generalizes this framework to include cases where the quasistatic

attractor is not necessarily an equilibrium. In doing so we find new phenomenon - the

appearance of partial tipping where the phase of the orbit can influence whether it “tips”

or not, for some open region in parameter space. For a particular example system (9) we

investigate partial tipping - see Figure 1. We relate different types of tipping and bound-

aries between them to the presence of periodic-to-periodic (PtoP) or periodic-to-equilibrium

(PtoE) connections for an extended system, implementing Lin’s method to numerically

locate boundaries between types of tipping in this example.

The paper is organised as follows: Section II examines backward limits of quite general

nonautonomous invariant sets in the setting of parameter shifts with rate dependence, and

considers the relation between (local) pullback attractors of the nonautonomous system and

attractors for the quasistatic system. Theorem II.2 shows the backward limit of a local

pullback attractor limits to an attractor for the past limit system. Section III uses these

local pullback attractors to investigate rate-induced tipping for parameter shifts where the

quasistatic attractors may be periodic. We define R-tipping in terms of forward limits of

pullback attractors and in Theorem III.1 extend previous results2 for equilibrium attractors

to the case of more general branches of attractors. Section IV studies a specific example of

tipping from a branch of periodic orbits, where we demonstrate the different types of tipping

are present. For this example (see Figure 1) we show that the thresholds of R-tipping can

be determined using a numerical implementation of Lin’s method for computing connecting

orbits. We conclude with a discussion of the results in Section V.

3



-15 -7 0 7 15

0

2

4

6

8

(a)

0 2 4 6 8

0

2

4

6

8

(b)

-15 -7 0 7 15

0

2

4

6

8

(c)

0 2 4 6 8

0

2

4

6

8

(d)

-15 -7 0 7 15

0

2

4

6

8

(e)

0 2 4 6 8

0

2

4

6

8

(f)

Figure 1: The x components of two typical trajectories (a,c,e) plotted against t and (b,d,f)

against Λ for system (9) with a = 0.1, b = 1, ω = 3 and λmax = 8. The black dashed lines

show minimum and maximum values of the basin of attraction of a periodic quasistatic

attractor. The rates are (a,b) r = 0.1 showing tracking of the quasistatic attractor, (c,d)

r = 0.1344 showing evidence of partial tipping (some trajectories escape, some do not) and

(e,f) r = 0.2 showing evidence of total tipping (all trajectories escape).

II. PARAMETER SHIFT SYSTEMS

Consider the dynamical system generated by the following nonautonomous differential

equation

ẋ = f(x,Λ(rt)) (1)

where x ∈ Rn, t, r ∈ R and f is at least C1 in both arguments. We fix λ− < λ+ and call a

smooth function a parameter shift2 from λ− to λ+ if it varies between these limiting values,

more precisely if it is a function Λ : R → (λ−, λ+) such that:

• limτ→±∞Λ(τ) = λ±

• limτ→±∞ dΛ/dτ = 0.
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We denote the solution (also called the solution cocycle) of the nonautonomous system (1)

with x(s) = x0 by Φ(t, s, x0) := x(t) (Note that Φ depends on r and Λ but we will suppress

this dependence in most cases). There is an associated autonomous system for (1), namely

ẋ = f(x, λ) (2)

where λ is constant and denote the solution flow of (2) by φλ(t, x). Ashwin, Perryman,

and Wieczorek 2 consider cases where the only attractors of (2) are equilibria; we allow the

system to have more general attractors. As in Ashwin, Perryman, and Wieczorek 2 , we aim

to understand attraction properties of (1) with reference to properties of attractors (2).

More precisely, we define backward and forward limits of the pullback attractor of (1) and

relate these to attractors for the limiting cases

ẋ = f(x, λ±). (3)

We refer to (3) in the case λ− as the past limit system and in the case λ+ as the future limit

system.

A. Bifurcations of the autonomous system

Recall that a compact φλ-invariant subset M ⊂ Rn is asymptotically stable if it satisfies:

• For all ǫ > 0 there exists a δ = δ(ǫ) > 0 such that

d(φλ(t, y),M) < ǫ for all t > 0 for all y ∈ Nδ(M).

• There exists an η > 0 such that

lim
t→∞

d(φλ(t, y),M) = 0 for all y ∈ Nη(M),

where d(X, Y ) := supx∈X infy∈Y ‖x − y‖ is the Hausdorff semi-distance between two non-

empty compact subsets X and Y of Rn, the distance from a point x to a set Y is given by

d(x, Y ) := d({x}, Y ), and the η-neighbourhood of M is defined

Nη(M) := {x ∈ R
n : d(x,M) < η}.

The Hausdorff distance19 between two nonempty compact subsets X and Y of Rn is defined

dH (X, Y ) := max {d (X, Y ) , d (Y,X)} .
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We say a connected compact invariant set M ⊂ Rn is an exponentially stable attractor i for

φλ if there are µ > 0, η > 0 and C ≥ 1 such that

d(φλ(t, x),M) ≤ Ce−µtd(x,M) (4)

for all x ∈ Nη(M) and t > 0. Note this implies that M is asymptotically stable.

Let us denote the set of all exponentially stable attractors by Xstab: this includes hy-

perbolic attracting equilibria and periodic orbits: we call Xstab \ Xstab the set of bifurcation

points. A continuous set valued function A(Λ(τ)), where A(Λ(τ)) ∈ Xstab, for all τ ∈ R, is

called a stable path. If there exists a choice of µ, η, C (independent of λ) such that (4) holds

then we say the path is uniformly stable. A uniformly stable path is called stable branch.

Note that a path can include several stable branches joined at bifurcation points, however

in this paper we restrict to stable branches.

The example in Section IV only has branches of attractors of (2) that are periodic orbits

and equilibria but unless indicated, the remaining results hold for branches of more general

attractors.

B. Local pullback attractors and backward limits

We recall some concepts from the nonautonomous (set valued) theory of dynamical

systems19. A set-valued function of t ∈ R (family of nonempty subsets of Rn) is called

a nonautonomous set and written A = {At}t∈R with At ⊂ Rn the fibre. We use the upper

limit of a sequence of sets21 to define the limiting behaviour of A. Note there is also a lower

limit21,22, but the upper limit captures the asymptotic behaviour in a maximal sense.

For a nonautonomous set A = {At}t∈R the upper forward limit A+∞ and the upper

backward limit A−∞ are defined as:

A+∞ := lim sup
t→∞

At =
⋂

τ>0

⋃

t≥τ

At

A−∞ := lim sup
t→−∞

At =
⋂

τ>0

⋃

t≤−τ

At.

i See Hartman and Eugene 20, Definition 5.34 for globally exponentially stable equilibrium
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A nonautonomous set A = {At}t∈R with At ⊂ Rn is called invariant for (1) if Φ(t, s, As) = At

for all t, s. A nonautonomous set is called compact, bounded etc if At is compact, bounded

etc for all t ∈ R.

Note that for general nonautonomous systems, A±∞ may be at least as complex as an

invariant set for an autonomous system (e.g. it may have fractional dimension, or indeed

empty). However, for the parameter shift systems that we consider those limits that can be

linked to the behaviour of past and future limit systems as follows. The first result shows

that if there are past (future) limit systems then the backward limit A−∞ (forward limit

A+∞) is invariant for the limit system that we define to be φ± := φλ±
.

Lemma II.1. For a parameter shift from λ− to λ+ and a nonautonomous invariant set A
with fibre At, if A±∞ is bounded then we have

φ±(s, A±∞) = A±∞

for all s.

Proof. We prove in detail for the past limit case: the future limit proof follows similarly.

Let us denote Uτ :=
⋃

t≤τ At so that A−∞ =
⋂

τ<0Uτ . Note that

Uτ ′ ⊂ Uτ and Φ(τ, τ ′, Uτ ′) = Uτ

for any τ ′ < τ , where the first containment follows from the definition of U , and the second

from the invariance of At under the cocycle. In particular, the second statement can be

written

dH(Φ(τ
′, τ ′ − T, Uτ ′−T ), Uτ ′) = 0

for any τ ′ and T > 0. Pick any compact and convex set K that contains a neighbourhood

of A−∞. Applying Lemma 5.1(i) of Rasmussen 23 , means that for any T > 0 and ǫ > 0 there

is a τ0 < −T such that

‖Φ(τ ′ + t, τ ′, x)− φ−(t, x)‖ < ǫ

for all τ ′ < τ0, 0 ≤ t ≤ T and x ∈ K.

Pick a sufficiently negative τ̃ < 0 that Uτ̃ ⊂ K and fix any T > 0. For every ǫ > 0 there

is an τ0(ǫ) < min(−T, τ̃ ) such that

‖Φ(τ ′, τ ′ − T, x)− φ−(T, x)‖ < ǫ
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for all τ ′ < τ0(ǫ) and x ∈ Uτ ′−T . This implies that

dH(φ−(T, Uτ ′−T ),Φ(τ
′, τ ′ − T, Uτ ′−T )) < 2ǫ

for any τ ′ < τ0(ǫ). Applying the triangle inequality

dH(φ−(T, Uτ ′−T ), Uτ ′) ≤ dH(φ−(T, Uτ ′−T ),Φ(τ
′, τ ′ − T, Uτ ′−T )) + dH(Φ(τ

′, τ ′ − T, Uτ ′−T ), Uτ ′)

implies that for all τ ′ < τ0(ǫ) we have

dH(φ−(T, Uτ ′−T ), Uτ ′) ≤ 2ǫ

in particular for x ∈ A−∞ and fixed T > 0 implies φ(T, x) ∈ A−∞. Allowing T to vary gives

the proof for all T > 0: note that φ(T, .) is a diffeomorphism and hence the result holds for

all T .

The next definition generalizes Definition 2.3 in Ashwin, Perryman, and Wieczorek 2 .

Definition II.1. Suppose that A = {At}t∈R is a compact Φ-invariant nonautonomous set.

We say A is a (local) pullback attractor that attracts U if there exists a bounded open set

U containing the upper backward limit of A that satisfies

lim
s→−∞

d(Φ(t, s, U), At) = 0

for all t ∈ R.

The following result generalizes Theorem 2.2 in Ashwin, Perryman, and Wieczorek 2 - it

gives a sufficient condition that there is a local pullback attractor whose backward limit is

contained within an attractor of the past limit system.

Theorem II.2. Suppose that A− is an asymptotically stable attractor for the past limit

system φ−. Then there is local pullback attractor of (1) whose (upper) backward limit is

contained in A−.

We delay the proof of Theorem II.2 to give two lemmas that will be used in the proof.

Lemma II.3. Assume that A− is an asymptotically stable attractor for the past limit system

φ−. Then there is η̃ > 0 such that for all η ∈ (0, η̃] and all δ > 0 there exist τ > 0 and τ̃ > 0

such that Φ(t, s,Nη(A−)) ⊂ Nδ(A−), for all t and s such that s < t− τ̃ and t < −τ .
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Proof. Asymptotic stability of A− means that there is a η̃ > 0 such that for any 0 < η < η̃

we have

lim
s→∞

d(φ−(s,Nη(A−)), A−) = 0.

This means that for any δ > 0 there is τ̃ > 0 such that d(φ−(k,Nη(A−)), A−) < δ/2 for all

k > τ̃ . By Rasmussen 22 Lemma 5.1, for any δ > 0 and k > τ̃ there is τ > 0 such that

dH(Φ(u, u− k,Nη(A−)), φ−(k,Nη(A−))) < δ/2

for all u < −τ . The triangle inequality of Hausdorff semi-distance implies

d (Φ(u, u− k,Nη(A−)), A−) ≤ d (Φ(u, u− k,Nη(A−)), φ−(k,Nη(A−)))

+ d (φ−(k,Nη(A−), A−) < δ/2 + δ/2 = δ.

for all u and k such that u < −τ and u− k < u− τ̃ , which completes the proof.

We define A[Λ,r,A−] := {A[Λ,r,A−]
t }t∈R where:

A
[Λ,r,A−]
t :=

⋂

τ>0

⋃

s≤−τ

Φ (t, s,Nη(A−)) (5)

for all t ∈ R (recall that Φ is the solution of (1) and so depends on r and Λ).

Lemma II.4. Assume that A− is asymptotically stable attractor for the past limit system

φλ−
. Then the nonautonomous set (5) is independent of η for all η ∈ (0, η̃].

Proof. Consider any η and η′ in (0, η̃] and assume η′ < η w.l.o.g and define

At =
⋂

τ>0

⋃

s≤−τ

Φ (t, s,Nη(A−)),

A′
t =

⋂

τ>0

⋃

s≤−τ

Φ (t, s,Nη′(A−)).

Since Nη′(A−) ⊂ Nη(A−) we have

⋂

τ>0

⋃

s≤−τ

Φ (t, s,Nη′(A−)) ⊂
⋂

τ>0

⋃

s≤−τ

Φ (t, s,Nη(A−))

which means A′
t ⊂ At. We also have to show that At ⊂ A′

t. By Lemma II.3 there exist τ ,

τ̃ > 0, such that Φ(k, s,Nη(A−)) ⊂ Nη′(A−), for all s < k − τ̃ and k < −τ .

9



Now, for all t ∈ R

Φ (t, k,Φ (k, s,Nη(A−))) ⊂ Φ (t, k,Nη′(A−)) ,

Φ (t, s,Nη(A−)) ⊂ Φ (t, k,Nη′(A−)) ,
⋂

τ>0

⋃

s<−τ−τ̃

Φ (t, s,Nη(A−)) ⊂
⋂

τ>0

⋃

k<−τ

Φ (t, k,Nη′(A−)),

At ⊂ A′
t.

Therefore At = A′
t for all t ∈ R and so A[Λ,r,A−] is independent of choice of η̃ > η > 0.

Proof. (For Theorem II.2) See Appendix A for a detailed proof.

By Lemma II.1, A
[Λ,r,A−]
−∞ is invariant for the past limit system, if A− is minimal (for

example, if it is an equilibrium or periodic orbit) then A
[Λ,r,A−]
−∞ = A−. We believe that

A
[Λ,r,A−]
−∞ = A− in more general cases but are not clear whether additional hypotheses are

needed to prove this. However, we note that, as pointed out by an anonymous referee,

the proof of Theorem II.2 can be obtained by adapting Rasmussen 23, Theorem 2.35 and

Corollary 2.36 to this setting.

III. TRACKING AND RATE-INDUCED TIPPING OF PULLBACK

ATTRACTORS

Theorem II.2 highlights that the backward limit of a pullback attractor for the parameter

shift system (1) is related to an attractor of the past limit system. Whether the forward

limit of the pullback attractors is related to an attractor of the future limit system, is a

more subtle question that depends on choice of rate r > 0:

Definition III.1. Suppose that (A(λ), λ) ⊂ Xstab is a branch of attractors that are expo-

nentially stable for λ ∈ [λ−, λ+]. Define A± := A(λ±) and consider the pullback attractor

A[r,Λ,A−] with past limit A− = A(λ−).

• We say there is (end-point) tracking for the system (1) from A− for some Λ and r > 0

if

A
[Λ,r,A−]
+∞ ⊂ A+.

• We say there is partial tipping if

(A+)
c ∩ A

[Λ,r,A−]
+∞ 6= ∅, and A+ ∩A

[Λ,r,A−]
+∞ 6= ∅.

10



• We say there is total tipping if

A+ ∩ A
[Λ,r,A−]
+∞ = ∅.

• We say there is tipping for the system if there is partial or total tipping, i.e. if

A
[Λ,r,A−]
+∞ 6⊂ A+.

• For a given A− and Λ there will be partition of the positive half axis into disjoint

subsets where there is tracking, partial tipping or total tipping. If rc is in the closure

of two of these sets we say it is a critical rate or threshold for rate-induced tipping.

• It is possible to have an isolated value of the rate r0 that gives partial tipping but that

separates two subsets of r > 0 where the system has end-point tracking. In this case

we say the system has invisible tipping.

By analogy with Ashwin, Perryman, and Wieczorek 2, Theorem 2.4 we expect for suffi-

ciently small r > 0 that the pullback attractor will track (i.e. remain close to) the branch

A(λ). This is expressed more precisely in the following result.

Theorem III.1. Suppose that (A(λ), λ) ⊂ Xstab is a branch of attractors that is uniformly

stable for λ ∈ [λ−, λ+] and suppose Λ is a parameter shift. Define A± = A(λ±) and the

pullback attractor A[r,Λ,A−] with fibres A
[r,Λ,A−]
t as in (5). Then for all ǫ > 0 there exists a

δ > 0 such that

d
(

A
[Λ,r,A−]
t , A(Λ(rt)

)

< ǫ

for all 0 < r < δ and t ∈ R. Moreover, there is a δ > 0 such that there is tracking for all

0 < r < δ.

Proof. Since A(λ) is uniformly stable for all λ ∈ [λ−, λ+] then there exist µ > 0, η > 0 and

C ≥ 1 (which we fix from hereon in the proof) such that

d (φλ(t, x), A(λ)) < Ce−µtd (x,A(λ)) (6)

for all x ∈ Nη (A(λ)) and t > 0.

Pick any 0 < ǫ < η, consider any t ∈ R and λ = Λ(rt). By (6) d (φλ (s, x) , A(λ)) <

ǫe−µs/3, for all x ∈ Nǫ/C (A(Λ(rt))) and s > 0. In particular, we can pick s > 0 independent

of t such that e−µs = 1/C and so

φλ

(

s,Nǫ/C (A(λ))
)

⊂ Nǫ/(3C) (A(λ)) .

11



By the continuity of Φ, for all s > 0 and t ∈ R there exits δ1 > 0 such that for all

0 < r < δ1 and x ∈ Nǫ(A(λ))

‖φλ(s, x)− Φ(t+ s, t, x)‖ < ǫ/(3C).

Again by the continuity of A(λ) there exist δ2 > 0 such that for all t ∈ R and 0 < r < δ2

dH (A(Λ(r(t+ s))), A(λ)) < ǫ/(3C).

Now set δ = min {δ1, δ2}, then for all x ∈ Nǫ/C (A(λ)), t ∈ R and 0 < r < δ,

d (Φ (t+ s, t, x) , A (Λ (r(t+ s))))

<d (Φ(t+ s, t, x), φλ(s, x)) + d (φλ(s, x), A(λ))

+ d (A(λ), A(Λ(r(t+ s)))

≤‖φλ(s, x)− Φ(t + s, t, x)‖+ d (φλ(s, x), A(λ))

+ dH (A (Λ(r(t+ s))) , A(λ))

<ǫ/(3C) + ǫ/(3C) + ǫ/(3C) = ǫ/C

which follows from the triangle inequality for Hausdorff semi-distance, d(u, v) = ‖u− v‖ for

all u, v ∈ Rn and d (A,B) ≤ dH (A,B) for all A, B compact subsets of Rn. This means that

for all 0 < r < δ and t ∈ R there is an s > 0 such that

Φ(t+ s, t,Nǫ/C(A(Λ(rt))) ⊂ Nǫ/C(A(Λ(r(t+ s))).

By Theorem II.2, A
[Λ,r,A−]
−∞ ⊂ A− which means for all ǫ > 0 there is an τ > 0 such that

d(A
[Λ,r,A−]
t , A(Λ(rt))) < ǫ/C for all t < −τ . Therefore, for all 0 < ǫ < η there exists a δ > 0

such that for all 0 < r < δ and t ∈ R we have

d
(

A
[Λ,r,A−]
t , A(Λ(rt))

)

< ǫ/3C.

To prove the second part of the theorem, we define

Cτ =
⋃

s>τ

A
[Λ,r,A−]
s .

Note that Cu ⊂ Cτ for any u > τ andA
[Λ,r,A−]
+∞ =

⋂

τ>0Cτ . Moreover we have dH(Cτ , A
[Λ,r,A−]
+∞ ) →

0 as τ → ∞.
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From before, for any ǫ > 0 and t ∈ R there is δ > 0 such that

d(A
[Λ,r,A−]
t , A(Λ(rt))) < ǫ/2C

for all 0 < r < δ.

Now from the fact that dH(A(Λ(rt)), A+) → 0 as t → ∞ and the definition of Cτ , we

have d(Cτ , A+) → 0 as τ → ∞. Hence, by the triangle inequality of Hausdorff semi-distance

d(A
[Λ,r,A−]
+∞ , A+) = 0.

Which finishes the proof.

Although Theorem III.1 means that a pullback attractor will track a branch of “suffi-

ciently stable” attractors for the nonautonomous system for small enough rates, there is no

guarantee this holds for larger rates. Rate-induced tipping occurs precisely when tracking

fails to occur.

IV. AN EXAMPLE WITH PARTIAL AND TOTAL RATE-INDUCED

TIPPING

In this section we consider an example where there is a branch of periodic attractors,

and find cases of partial and total tipping. More precisely, consider the following (nonau-

tonomous) system:

ż = F (z − Λ(rt)) (7)

where z = x + iy ∈ C, the parameter shift Λ(τ) = λmax (tanh(τλmax/2) + 1) /2 limits to

0 in the past and λmax in the future, and F (z) is defined by

F (z) = (a+ iω)z − b|z|2z + |z|4z (8)

for a, b, ω, r and λmax ∈ R, r, λmax > 0: we set b = 1 in what follows. Note that ż = F (z)

can be thought of a normal form for a Bautin bifurcation, where a Hopf bifurcation changes

criticality at b = 0. One can view the system autonomously as:

ż = F (z − Λ)

Λ̇ = rΛ(λmax − Λ)







(9)
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Previous works1,24 has used parameter shift of a subcritical Hopf normal form to investi-

gate rate-induced tipping. Figure 1 illustrates numerically that the dynamics of this system

may show tracking, and both partial or total tipping from a branch of periodic orbits.

For r = 0 and any fixed Λ there are bifurcation points at a = 0 and a = 0.25, that

are Hopf and saddle-node bifurcations of periodic orbits respectively. For 0 < a < 0.25

the system has an unstable equilibrium point Z(λ) := λ + 0i, as well as both stable and

unstable periodic orbit. We denote the radius of the unstable periodic orbit by Ru :=

(1+
√
1− 4a)/2 and the radius of the stable periodic orbit by Rs := (1−

√
1− 4a)/2. Note

that the stable periodic orbit is Γs(λ) := {‖z − λ‖2 = Rs} and the unstable periodic orbit

is Γu(λ) := {‖z − λ‖2 = Ru}.
For a solution of (9) and r > 0 there are two stationary values of Λ: λ− = 0 and

λ+ = λmax. Hence in general there are six invariant sets associated with those two limiting

values, and we denote them by Z−,Γ
s
− and Γu

− associated with Λ = λ− = 0 and Z+,Γ
s
+ and

Γu
+ associated with Λ = λ+ = λmax. Theorem III.1 implies that the upper forward limit of

the pullback attractor A[Λ,r,Γu
−] is the attracting periodic orbit Γs

+ of the future limit systems,

for all small enough r. However, there can be up to three critical rates of r for all fixed

values of the parameters a, ω, λmax that can give partial, total and even invisible tipping.

A. Pullback attractors, tipping, and invariant manifolds

Writing W u(X) to denote the unstable and W s(X) the stable manifold of the hyperbolic

invariant setX . Moreover, we denote the tangent space ofW s,u(X) at the point p ∈ W s,u(X)

by TpW
s,u(X). Note that, W s(Γu

+) forms the basin boundary of Γs
+, and the branch of stable

periodic orbits is uniformly stable.

The various cases of tracking and tipping can be understood in terms of the unstable

manifolds of these invariant sets25. More precisely, the pullback attractor of (7) consists of

sections of W u(Γs
−) for (9) and we can classify the tracking/tipping as follows:

• If Γs
+ ⊂ W u(Γs

−) then there is end-point tracking of the branch of periodic solutions

Γs(Λ(rt)).

• If [Γs
+]

c ∩ W u(Γs
−) 6= ∅ then there is tipping: if in addition Γs

+ ∩ W u(Γs
−) = ∅ then

there is total tipping for this r, otherwise it is partial tipping.

14



• This means that, if there is total tipping or tracking then

W u(Γs
−) ∩W s(Γu

+) = ∅.

while if

W u(Γs
−) ∩W s(Γu

+) 6= ∅.

and the intersection is transverse then there is partial tipping.

• Hence, if r is a threshold between tracking and partial tipping or between partial and

total tipping then

W u(Γs
−) ∩W s(Γu

+) 6= ∅

with non-transverse intersection along a unique trajectory, more precisely this means

that at a typical point p ∈ W u(Γs
−) ∩W s(Γu

+) we have

dim
(

TpW
u(Γs

−) ∩ TpW
s(Γu

+)
)

= 2. (10)

• If r such that

W u(Γs
−) ∩W s(Z+) 6= ∅

then this is generically an isolated point in r, and hence a invisible tipping.

Figure 3 illustrates some examples of numerical approximations showing trajectories and

the relation between the stable manifold of the unstable equilibrium and unstable periodic

orbit and the pullback attractors.

B. Rate-induced tipping as bifurcations of PtoP and PtoE connections

As outlined above, it is possible to find thresholds of rate-induced tipping by considering

certain PtoP and PtoE heteroclinic connections, analogous to Perryman 24, Proposition 4.1.

An efficient way of doing this is Lin’s method26 that involves solving three point boundary

value problems with suitable boundary conditions that give the desired connection: see for

example27–29 for details. We outline our numerical implementation of Lin’s method more

details are included in Appendix B. Throughout we fix b = 1, ω = 3 and λmax = 8.

Zhang, Krauskopf, and Kirk 29 give a systematic method to find a PtoP connection

where the intersection between the tangent space of the unstable and the stable manifold

15



Figure 2: Numerical approximations of the pullback attractor A[Λ,r,Γs
−] ( for system (9) )

for a = 0.1, r = 0.1, b = 1, λmax = 8 and ω = 3. The graph of the pullback attractor (inner

dark tube) over Λ is W u(Γs
−). In this case r is chosen small enough that there is tracking

of the periodic attractor according to Theorem III.1. The outer grey tube shows W s(Γu
+)

whilst the inner black line is W s(X+). The red circles indicate Γu
±, the green circles

indicate Γs
± and the red points indicate Z±.

is one dimensional. However, for our critical rates even though the PtoP connection is one-

dimensional, the intersection of the tangent spaces is of dimension two, and solving Zhang,

Krauskopf, and Kirk 29, equations (6) - (11) give criteria for codimension-zero connections.

To find the critical rates of transition to partial and to total tipping we solve the adjoint

variational equation (AVE) along the connection to allow us to test (10).

Let us denote the system (9) by

ẇ = G(w;µ) (11)

where w(t) = (x(t), y(t),Λ(t)) ∈ R3, z(t) = x(t) + iy(t), µ = (a, r) ∈ R2 and G : R5 → R3 is

the vector field of the system. The adjoint variational equation of a solution w(t) of (11) at

the parameter value µ0 is given by26:

u̇ = −Gu(w, µ0)
tru (12)

16



(a) (b)

(c) (d)

Figure 3: Numerical approximations of the pullback attractor as in Figure 2 but for

different examples of tipping. (a) r = 0.13321 at the threshold of partial tipping: there is a

single connection (yellow) in W u(Γs
−) ∩W s(Γu

+) with non-transverse intersection. (b)

r = 0.15 in the region of partial tipping: some of the trajectories in blue on the pullback

attractor track while others escape. (c) r = 0.198422, showing existence of a PtoE

connection (black). (d) r = 0.201226 showing total tipping.

with solution u(t), where Gu(w, µ0) is the Jacobian matrix of the function G(., µ0) over w

and Atr is the transpose of the matrix A. Let us assume that T > 0 is a (sufficiently large)

integration time, g1(ϑ) ∈ Γs
−, g2(ϕ) ∈ Γu

+, γ
±
s,c,u give the stable/center/unstable eigendirec-

tions of Γs
−, Γ

u
− respectively for 0 < ϑ, ϕ < 2π, and v1,2u are the unstable eigenvectors of

Z+. We can write the BVPs of the relevant connections as the following:

We locate and continue a PtoE connection W u(Γs
−) ∩ W s(X+) 6= ∅ (corresponding to

17



invisible tipping) by choosing a section Λ = λmax/2 and a Lin basis vector ℓ and solving

ẇ−(s) = TG(w−(s);µ),

ẇ+(s) = TG(w+(s);µ),
(13)

on 0 < s < 1 with T > 0 sufficiently large and boundary conditions

0 =
〈

w−(0)− g1(ϑ), γ
−
s (ϑ)

〉

, 0 =
〈

w−(0)− g1(ϑ), γ
−
c (ϑ)

〉

,

0 =
〈

w+(1)− Z+, v1u
〉

, 0 =
〈

w+(1)− Z+, v2u
〉

,

0 =
〈

w−(1)− (0, 0, λmax/2), (0, 0, 1)
〉

, ξℓ = w+(0)− w−(1).

(14)

We locate a codimension zero PtoP connection in W u(Γs
−)∩W s(Γu

+) by similarly choosing

a section Λ = λmax/2 and solving

ẇ−(s) = TG(w−(s);µ)

ẇ+(s) = TG(w+(s);µ),
(15)

on 0 < s < 1 for some sufficiently large T > 0 with boundary conditions

0 =
〈

w−(0)− g1(ϑ), γ
−
s (ϑ)

〉

, 0 =
〈

w−(0)− g1(ϑ), γ
−
c (ϑ)

〉

,

0 =
〈

w−(1)− g2(ϕ), γ
+
u (ϕ)

〉

, 0 =
〈

w−(1)− g2(ϕ), γ
+
c (ϕ)

〉

,

0 =
〈

w−(1)− (0, 0, λmax/2), (0, 0, 1)
〉

, ξℓ = w+(0)− w−(1).

(16)

This can be extended to find the codimension one PtoP connection (corresponding to a

boundary between partial tipping and either tracking or total tipping) by solving (15,16)

and in addition the adjoint variational equation

u̇−(s) = −TGu(w
−(s), µ)tru−(s)

u̇+(s) = −TGu(w
+(s), µ)tru+(s)

(17)

with boundary conditions

0 =
〈

u−(0), γ−
u (ϑ)

〉

, 0 =
〈

u−(0), γ−
c (ϑ)

〉

,

0 =
〈

u+(1), γ+
s (ϕ)

〉

, 0 =
〈

u+(1), γ+
c (ϕ)

〉

,

0 = u−(1)− u+(0), 1 =
〈

u−(1), (1, 0, 0)
〉

.

(18)

More details are in Appendix B: note that ξ is a parameter that is determined by solving

the BVP: one can think of ξ(r, a) : R2 → R as a function whose zeros give the desired

connections.
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Figure 4: The two parameter plane of system (9) showing regions of different

tracking/tipping behaviour (a) is calculated by directly approximating a collection of

initial conditions on the pullback attractor and determining their fate under the dynamics

of the system and shows six regions where the system has qualitatively different behaviour

(see Figure 5). The curves in (b) are calculated using Lin’s method and show the locations

of these transitions: r1,2 are the thresholds of partial and total tipping respectively and r0

gives PtoE connection causing a invisible tipping for 0 < a < 0.0157. In (c) they are

superimposed.

Solving the system (15,16,17,18) allows one to determine and continue the codimension-

one PtoP connections that give the thresholds of partial and total tipping. As initial solution

we solve the codimension-zero problem (15,16) and continuing it along r to arrive at a fold

where the codimension-one connection exists. Figure 4 illustrates (a, r)-parameter plan for

(9) in the case b = 1, ω = 3 and λmax = 8 calculated by Lin’s method and compares it

with a direct shooting algorithm described in Appendix C. Figure 5 shows the behaviour of

(9) in each different region of the parameter plan by looking at a section of the manifolds

W u(Γs
−), W

s(Γu
+) and W s(Z+).

V. DISCUSSION

In this paper we discuss the phenomena of R-tipping from periodic orbits in the setting

of parameter shift systems. We extend results of Ashwin, Perryman, and Wieczorek 2, Theo-

rems 2.2 and 2.4 for equilibrium branches of attractors and show that there exists a pullback

attractor of (1) whose upper backward limit is contained within an attractor of the past
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limit system. Under additional assumptions on the stability of the branch we show that the

pullback attractor tracks the branch for small rate r > 0. Theorem III.1 states that, for a

range of small values of r, the forward limit of the pullback attractor A
[Λ,r,A−]
∞ is the same.

However, there is no guarantee of this with large enough r. Indeed, if there is rate-induced

tipping then this is not the case.

More generally, we note that the local pullback attractor can be used to classify a number

of different types of tipping (see Definition III.1) and use the example in Section IV to

illustrate some differences. We have been able to present partial tipping, total tipping in

addition to the tracking case. In order to investigate and continue the thresholds of partial

and total tipping numerically for (9) we calculate PtoP and PtoE connections using Lin’s

method.

The integration time T in (13, 16) would need to be chosen to be proportional to 1/a

near the Hopf (a = 0) and 1/r near the fold of limit cycles (a = 0.25) to resolve the details.

Hence, any fixed T will give errors in PtoE and PtoP connections in regions close to a = 0

and 0.25. Moreover, as a → 0.25, ‖Rs − Ru‖ → 0 which means it became very difficult for

the pullback attractor A[Λ,r,Γs
−] to track the branch Γs(Λ(rt)) even for very small r > 0 (i.e

as a → 0.25, r1 → 0 as well as ‖r1 − r2‖ → 0).

The (a, r)-parameter plane (Figure 4) shows that the upper parts of regions III and IV of

partial tipping thin out for a > 0.15. We explain this as follows: the threshold of partial and

total tipping get close together because of the fold of limit cycles and the PtoE connection

curve is trapped between these. Even for relatively large rate the connection between Γs
−

and Z+ is associated with partial tracking (partial tipping).

For practical reasons, it would be very useful to find warnings of tipping points, and

“early warning indicators” have been developed in several cases (see for example5,16,18). We

mention in particular the work of Ritchie and Sieber 16 which shows that even for R-tipping

some of the most widely used early warning signals, like increase of the autocorrelation and

variance, may be useful. Extending those results and applying them on partial tipping of

attractors that are not simply equilibria is not straightforward. For example, although the

phenomenon of partial tipping is quite clear if the attractors are considered set-wise, from

individual trajectories it is not possible to determine whether there is partial or total tipping.

This is a challenging issue one has to tackle in order to develop early-warning signals for

partial tipping.
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Figure 5: A section (fixed Λ ≈ 1.257) of the manifolds W u(Γs
−) (in blue). W s(Γu

+) (in red)

and W s(Z+) (in black) showing the topological behaviours of their stable intersections for

regions I-VI shown in Figure 4a. The values of the parameters are (a) a = 0.1, r = 0.1

region I, (b) a = 0.005,r = 0.157 region II, (c) a = 0.1, r = 0.15 region III, (d) a = 0.04,

r = 0.18 region IV, (e) a = 0.2, r = 0.15 region V and finally (f) a = 0.1, r = 0.21 region

VI.

Finally, we note that dealing with non-minimal attractors (i.e attractors that have proper

sub attractors) could lead to a weak type of tracking. Weak tracking happen when the

forward limit of the pullback attractor A
[Λ,r,A−]
+∞ included as a proper subset of the attractor

of the future limit system A+. There is no possibility of weak tracking for a branch of periodic

orbit attractors, simply because of minimality of the periodic orbit and Lemma II.1. If One

consider more general branches of attractors however, this becomes a real possibility.
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Appendix A: Proof of Theorem 2.2

Proof. To show that A
[Λ,r,A−]
−∞ ⊂ A−, choose η̃ as in Lemma II.3, and pick any η ∈ (0, η̃]. By

Lemma II.4, the upper backward limit of A[Λ,r,A−] can be uniquely defined as:

A
[Λ,r,A−]
−∞ =

⋂

τ>0

⋃

t≤−τ

A
[Λ,r,A−]
t =

⋂

τ>0

⋃

t≤−τ

s<t

Φ (t, s,Nη(A−)).

By Lemma II.3, for all δ > 0 there exists τ, τ̃ > 0 such that

⋃

t≤−τ

s<t−τ̃

Φ(t, s,Nη(A−)) ⊂ Nδ(A−)

which gives

A
[Λ,r,A−]
−∞ =

⋂

τ>0

⋃

t≤−τ

s<t

A
[Λ,r,A−]
t ⊂ Nδ(A−).

Recall that holds for all δ > 0, which in turn implies that A
[Λ,r,A−]
−∞ ⊂ A− = A−.

To show that (5) is a pullback attractor, we need to show it is compact, invariant and

attracts a neighbourhood. For all t ∈ R, A
[Λ,r,A−]
t is intersection of closed sets, which implies

that it is closed. To show that it is compact, we just need to show it is bounded. By using

Lemma II.3 again, Φ(s2, s1,Nη(A−)) ⊂ Nη(A−) for all s1 < s2 − τ̃ < −τ , by the cocycle

property of Φ we get:

⋃

s<−τ

Φ(t, s,Nη(A−)) ⊂ Φ(t,−τ,Nη(A−)).

Now since Φ(t, s, .) is a diffeomorphism for all t, s ∈ R, Φ(t,−τ,Nη(A−)) is bounded,

and so
⋃

s<−τ Φ(t, s,Nη(A−)) is bounded. Hence, A
[Λ,r,A−]
t =

⋂

τ>0

⋃

s<−τ Φ(t, s,Nη(A−))

is bounded. Therefore, A
[Λ,r,A−]
t is compact for all t ∈ R.
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To prove A[Λ,r,A−] is invariant note that

Φ(t, s, A[Λ,r,A−]
s ) = Φ

(

t, s,
⋂

τ>0

⋃

k<−τ

Φ(s, k,Nη(A−))

)

=
⋂

τ>0

⋃

k<−τ

Φ (t, s,Φ(s, k,Nη(A−)))

=
⋂

τ>0

⋃

k<−τ

Φ (t, k,Nη(A−))

= A
[Λ,r,A−]
t

for all t > s (we use the property that Φ(t, s, ·) is a diffeomorphism for all t, s).

To show that A[Λ,r,A−] attracts an open set U in pullback sense, let U = Nη(A−), t ∈ R

with η as before, and define

Bτ,t :=
⋃

k<−τ

Φ(t, k, U).

Note that A
[Λ,r,A−]
t =

⋂

τ>0Bτ,t andBs,t ⊂ Bτ,t for any τ < s. Moreover, d(Bτ,t, A
[Λ,r,A−]
t ) → 0

as τ → ∞. Using Lemma II.3 we have that

Φ(t, s, U) ⊂ Bτ,t

for all sufficiently negative s (depending on t and τ). Hence for such s

d(Φ(t, s, U), Bτ,t) = 0

Hence

lim
s→−∞

d(Φ(t, s, U), At) = 0

and thus A[Λ,r,A−] is a pullback attractor.

Appendix B: Approximating PtoP and PtoE connections using Lin’s method

We consider some Lin problems for our system where there are connections between the

saddle objects Γs
− and Γu

+ and Z+. We are looking for connections between Γs
− in the past

and Γu
+, Z+ on the future. The unstable and stable manifold, W u(Γs

−) and W s(Γu
+), W

s(Z+)

are of dimensions 2, 2 and 1 respectively. Assuming there exist a connection Q then for all

point q ∈ Q we have the following:

dim
(

TqW
u(Γs

−)
⋂

TqW
s(Γu

+)
)

= 2
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dim
(

TqW
u(Γs

−)
⋂

TqW
s(Z+)

)

= 1.

We set the Lin section Σ, which is two dimensional liner space, half way between:

Σ =
{

w ∈ R
3 :
〈

w − (0, 0, λmax/2), (0, 0, 1)
〉

= 0
}

.

The connection orbit Q intersects Σ transversely. i.e. Q = Q−
⋃

Q+ where:

Q− = {w−(t) : t ≤ 0} ⊂ W u(Γs
−) where w−(1) ∈ Σ,

Q+ = {w+(t) : t ≥ 0} ⊂ W s(Γu
−) where w+(0) ∈ Σ.

Now we define the “Lin gap” η := w−(1)− w+(0) ∈ Σ. Lin’s method require that η lies

in a fixed d ≤ dim(Σ)− 1 dimensional liner space L, which satisfy the following condition,28

dim(W− ⊕W+ ⊕ L) = dim(Σ) (B1)

where W− = Tw−(0)W
u(Γs

−)
⋂

Tw−(0)Σ and W+ = Tw+(0)W
s(Γu

+)
⋂

Tw+(0)Σ. The choice of

L could be done by considering the adjoint variational equation along the solution Q29,

however the Lin space can be chosen arbitrarily as long as (B1) is satisfied. The definitions

of Q− and Q+ as well as condition (B1) are formulated to investigate the PtoP connection

between Γs
− and Γu

+. However, it still applicable to the PtoE connection between Γs
− and

Z+ with changing Γu
+ to Z+ in each of them.

Note we also need approximations of the eigendirections for the periodic orbits: given a

periodic solution Γ = {g(t) : 0 < t < TΓ} of the system (11) with period TΓ, the eigendirec-

tions γs,c,u and Floquet multiplies βs,c,u are obtained as solutions of

γ̇s,c,u = TΓ Gu(g(s);µ)γs,c,u,

γs,c,u(1) = βs,c,u γs,c,u(0), 1 =
〈

γs,c,u(0), γs,c,u(0)
〉

.
(B2)

for 0 < s < 1.

We implement this method as follows:

• Solving the boundary value problem (B2) numerically by using the bvp5c MATLAB

solver gives the eigendirections for Γs
− and Γu

+ which can be used to formulate the

projection conditions in (14, 16, 18).

• We formulate the solution of (13, 15) as MATLAB functions that return ξ(r, a), using

the same boundary value solver. We use (0, 1, 0) as a basis for the Lin space L.
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• We consider ξ : R2 → R as smooth real valued function that by finding its zero one can

find the desired connections. We did that by using Newton-Raphson iteration with

tolerance 10−5 and defining the derivative of ξ by finite difference with step size 10−4.

• Continuing the zero set of ξ(r, a) in the (a, r)-plane by pseudo-arclength continuation

gives the curves in Figures 4b and 4c.

Appendix C: Finding the tracking/tipping regions by using shooting method

The tracking/tipping regions of (9) shown in Figure 4a and 4c are found using a shooting

method as follows:

• We start with M evenly spaced initial conditions near the periodic orbit Γs
− and

integrate (9) forward in time using the ode45 MATLAB solver. We vary M depending

on the value of r. As r increases it become difficult to determine partial tipping.

Therefore, we increase M gradually from 200 when r ≈ 0.06 to 20000 when r ≥ 0.24

to compute the partial tipping region in Figure 4a effectively.

• Considering a large T > 0, we require s ≤ Λ(t) ≤ (λmax − s) for t ∈ [−T, T ] and some

small real number s. In our computations we set s = 0.01 which effectively determines

T : for the parameter shift Λ(τ) = λmax

2

(

tanh
(

τλmax

2

)

+ 1
)

, the integration time T can

be given as T = ln
(

λmax−s
s

)

/(rλmax) (note however that this will be inadequate near

the bifurcations a = 0 and 0.25, as noted in the text).

• We determine which of the M trajectories approach Γu
+ by measuring the distance

between the end-point of each trajectory and the equilibrium point Z+.

• The stable manifold of Z+, W
s(Z+), can be computed as initial value problem of the

time reversed system (9) with initial condition (λmax, 0, λmax − s).

• The regions of tracking, partial tipping, and total tipping, and whether W s(Z+) limits

to Z− or Γu
− in the past, are used to characterize six different regions where the

behaviour of the system is qualitatively different. These regions are shown in Figure 4a

and the behaviour of the system at each of them is illustrated in Figure 5
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