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Highlights: 

 

 Patients with CECS are shorter and take relatively longer strides than 

controls. 

 Kinematic differences are found at the ankle, but not at more proximal joints. 

 These differences may play an important role in the development of CECS. 

 

Abstract 

Chronic exertional compartment syndrome is a significant problem in military 

populations that may be caused by specific military activities. This study aimed to 

investigate the kinematic and kinetic differences in military cases with chronic 

exertional compartment syndrome and asymptomatic controls. 

20 males with symptoms of chronic exertional compartment syndrome of the anterior 

compartment and 20 asymptomatic controls were studied. Three-dimensional lower 

limb kinematics and kinetics were compared during walking and marching. 

Cases were significantly shorter in stature and took a relatively longer stride in 

relation to leg length than controls. All kinematic differences identified were at the 

ankle. Cases demonstrated increased ankle plantarflexion from mid-stance to toe-off. 

Cases also demonstrated less ankle inversion at the end of stance and early swing 

phases. Lower ankle inversion moments were observed during mid-stance.  

The anthropometric and biomechanical differences demonstrated provide a plausible 

mechanism for the development of chronic exertional compartment syndrome in this 
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population. The shorter stature in combination with the relatively longer stride length 

observed in cases may result in an increased demand on the anterior compartment 

musculature during ambulation. The results of this study, together with clinical 

insights and the literature suggest that the suppression of the walk-to-run stimulus 

during group marches may play a significant role in the development of chronic 

exertional compartment syndrome within a military population. The differences in 

joint angles and moments also suggest an impairment of the muscular control of 

ankle joint function, such as a reduced effectiveness of tibialis anterior. It is unclear 

whether this is a cause or consequence of chronic exertional compartment 

syndrome.  

Keywords: exercise-induced leg pain; chronic exertional compartment syndrome; 

biomechanics; anthropometry; military training.  

Funding: This research did not receive any specific grant from funding agencies in 

the public, commercial, or not-for-profit sectors. 

Introduction 

Chronic exertional compartment syndrome of the leg was first described in 1956 [1]. 

It is an overuse condition presenting as pain in the lower limb, associated with the 

muscles contained within the myofascial compartments of the shank. The anterior 

compartment is most frequently affected [2]. While numerous studies have 

attempted to understand the pathophysiology of CECS [3-6], few studies have 

identified potential risk factors. Chronic exertional compartment syndrome poses a 

significant clinical burden in the military making this population suitable for 

investigating these potential factors [7].  
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The North Atlantic Treaty Organization (NATO) recently identified walking and 

marching as key common tasks performed in recent and current military missions 

[8]. As such these activities are also commonly performed during military training. 

These tasks have also previously been associated with CECS [7,9,10]. The exact 

definition of a march varies; however it typically requires a fast walking gait with a 

set stride length and cadence to allow the movement of a group of individuals at a 

set pace. Personnel often undertake organised group marches that prepare them for 

deployment and the completion of the annual fitness tests that, for example in the 

Army and Royal Marines, require 2-3 hours of marching at 1.8m/s [11,12].  A large 

proportion of military training also involves walking between other planned activities 

[13,14].  

Chronic exertional compartment syndrome has been defined as a condition where 

elevated intramuscular compartment pressure (IMCP) during exercise impedes local 

blood flow leading to ischaemia and impaired neuromuscular function within the 

compartment [15,16]. Recent evidence has reported improved diagnostic criteria 

over existing methods for CECS using continuous IMCP measurement during exercise 

[17].  

IMCP can be increased through changes in compartment compliance, compartment 

fluid content or muscle activity [3,18,19]. Recent evidence has shown that in CECS, 

IMCP is elevated above that of controls immediately on standing at rest [17]. This 

suggests that there is an increased stiffness of a passive structure, presumably the 

fascia, which results in reduced compartment compliance. This divergence is 

amplified during a symptom-provoking exercise challenge  [17].  

Biomechanical factors have been considered to play a role in the development of 

CECS for a long time [20,21]; however these have never been directly studied. We 
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therefore aimed to examine potential biomechanical differences during walking and 

marching between cases and controls to provide evidence regarding the role of 

biomechanical factors in the aetiology of this condition. The anterior compartment 

musculature is responsible for movements at the ankle; these angles and moments 

were therefore of prime interest. As this was the first study to examine the 

biomechanics of CECS patients we also explored the angular and moment data of 

joints further up the kinetic chain. These more proximal joints have also been the 

subject of recent biomechanical interventions for CECS [21-23]. 

Materials and methods 

20 male cases (PT) with bilateral symptoms consistent with CECS of the anterior 

compartment of the leg and 20 asymptomatic controls (CON) participated following 

informed consent. The diagnosis of CECS was established from typical symptoms, 

with clinical examination and MRI excluding other pathologies. All participants were 

recruited from the UK armed forces with significant experience of marching. Cases 

were recruited from the XXXXX clinic at the XXXXX. Ethical approval was granted by 

the MOD Research Ethics Committee.  

The inclusion criteria were: Male; Aged 18-40 (representing the typical age-range of 

UK military service personnel); BMI<35; and, no true leg length discrepancy >2cm. 

Cases required the following: symptoms of exercise-induced leg pain consistent with 

a diagnosis of anterior compartment CECS; a negative MRI of the affected limb(s) 

and lumbar spine; no diagnosis other than CECS more likely; absence of multiple 

lower limb pathologies; and, no previous lower limb surgery.  Cases had higher IMCP 

than controls (114±32mmHg vs 68.7±22mmHg) and reported pain (scale: 0-10) in 

the anterior compartment of 5.1±2.6 within 10 minutes of loaded marching as 

previously reported [17]. Controls were included when they were able to run for a 



6 
 

minimum of 20 minutes and had: no lower limb pain in the previous 12 months; no 

current pain at any site, including during exercise activities; and no reliance on 

orthotics.   

Measurements of leg length, height and body mass were performed using a tape 

measure, stadiometer (SECA, UK) and medical grade scales (SECA, UK) respectively. 

The same operator, using the same landmarks and techniques assessed all subjects. 

Motion capture 

Fifteen body segments (feet, shank, thigh, pelvis, trunk, head, upper arm, forearm 

and hand) were defined using retro-reflective markers placed on specific anatomical 

landmarks by the same operator. The head, upper arm, forearm and hand were not 

analysed as part of this study. Data were collected using a 10 camera (4xT160, 

4xT40-S, 2xT10) 3D motion analysis system (Vicon MX system, Oxford Metrics Ltd., 

Oxford, England) at a sampling frequency of 120 Hz. Ground reaction forces were 

collected using three force plates (AMTI, OR-6, USA) at a sampling frequency of 

1200 Hz. 

Following a static calibration trial, participants performed traverses of the laboratory 

while walking and marching until a minimum of 10 complete cycles for each leg had 

been captured [24]. Following familiarisation, participants were asked to walk at their 

natural pace (expected speed c.1.4m/s) and march ‘as if they were doing their 

military fitness test’ (expected speed c.1.8m/s). They were then asked to adjust their 

speed between trials if they were outside (±0.1m/s) of the expected pace.  

Shod and barefoot trials were captured resulting in a total of 4 conditions: walk and 

march; and, shod and barefoot. Participants wore military issue training shoes (Silver 

Shadow, Hi-Tec™) for collection of shod trials over the force plates. Training shoes 
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were chosen for testing over military boots primarily to allow direct marker 

placement on the ankle malleoli. Participants were discouraged from targeting the 

force plates. A recorded trial was deemed suitable if it had minimal marker dropout, 

full clean contact of the foot within the boundary of the force plates (minimum 5 

clean strikes for each side) and no major gait inconsistency on the part of the 

subject as judged by an observer, e.g. stopping or stumbling.  

The pelvis and thigh segments were defined according to Wu [25], the shank 

segments were defined according to Peters [26] and tracked using the marker 

cluster recommended by Manal [27], the foot segments were a modified version of 

the foot flat option defined according to Pratt [28]. The thorax was defined according 

to Gutierrez [29]. An additional foot segment was created for the calculation of joint 

moments based on a modified Helen Hayes set [30]. This segment is considered 

better suited for inverse dynamics calculations as it follows the dissection positions of 

Dempster [31]. It is defined with the proximal point at the ankle joint centre and 

removes the foot flat offset used in the kinematic foot. Internal moments were 

calculated for each lower limb joint. 

Data processing and statistical analysis 

Gaps smaller than 14 frames in the raw marker data were interpolated using a 3rd 

order least squares fit [32]. In the case of larger gaps the whole segment was 

excluded from analysis at these time points. The marker data was then filtered using 

a 6 Hz low pass bidirectional Butterworth filter [33]. Force plate data were filtered 

using a 50 Hz low pass Butterworth filter [34]. Gait data were normalised to body 

size as recommended by Hof [35] and Pierrynowski [36] (Table 1). 

Kinematic and kinetic data were normalized to 100% of the gait cycle and stance 

phase respectively. This resulted in 101 individual time points for each movement 
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plane where heel strike occurs at time points 0 and 100. Bootstrapped t-tests on 

each individual normalised time point were carried out to identify regions within the 

gait cycle that were significantly different [37]. Reference values for peak joint 

angles, and time to peak for sagittal lower limb angles are presented as 

supplementary data. 

An attempt was made to control for speed a priori, however technical failure of light 

gates meant that this was not completely successful. Consequently, speeds were 

higher and more variable between participants than intended. Military training 

typically involves walking and marching at a fixed pace. ANCOVA was therefore used 

to control for speed in the temporal-spatial data. Multiple ANCOVAs were also carried 

out to cross-check that controlling for the variations in speed would not alter the 

interpretation of the original analysis of gait curves. Independent t-tests were carried 

out to compare height, body mass and speed. Alpha for all analyses was set to 0.05. 

SPSS (v18; SPSS Inc, USA) and Matlab (v2014a; MathWorks, USA) were used for all 

analyses.  

Results 

Cases ranged in age between 21-40 years (mean=27.5 years, sd=4.9 years); 

controls between 19-40 years (mean=28.3 years, sd=7.4 years). No pain was 

reported by cases or controls during testing demonstrating sufficient rest was 

provided between traverses. Cases (mean height 1.71m; sd 0.13) were significantly 

shorter (p=0.002) than controls (1.81m; 0.06) although there were no differences in 

weight or height-to-leg length ratio. 
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Kinematics 

The mean (sd) speed was 1.8 (0.2) m/s for walking and 2.1 (0.2) m/s for marching. 

Cases were 0.08-0.14m/s faster than controls; although this difference was only 

significant for barefoot walking (p=0.02). There were no differences in normalised 

step time, stance time or swing time. A significantly longer stride length (relative to 

leg length) was observed for cases in the shod condition only (Table 2). 

Toe-off occurred between 58-60% of the gait cycle for both the walking and 

marching conditions. The position of toe-off is therefore marked at 59% on all gait 

curves. Each kinematic and kinetic variable is presented graphically (Figure 1) 

highlighting regions of data that differ significantly (p<0.05) between the two 

groups. 

Significantly greater ankle plantarflexion was measured in cases from mid-stance to 

toe-off with a maximum difference of 6.3° at 55% of the gait cycle (Tables 3 and 4). 

When the effect of speed was controlled for (using the ANCOVA) the difference 

observed was less (maximum difference 5.5° at 52% of the gait cycle) but the 

relationship to the gait cycle described above remained. 

Significantly less ankle inversion was observed in cases at the end of stance and 

beginning of swing with a maximum difference of 3.8° at 64% of the gait cycle. This 

difference persisted, after statistical control for the effect of speed, for almost 10% 

of the gait cycle with a maximum difference of 4.9° at 63% of the gait cycle . A 

summary of the significant differences for kinematic data is presented in Table 4. 

In view of the consistency of the results reported in Table 4, graphs of the original 

data (i.e. unadjusted for speed) are presented (Figure 1). Graphs for left-sided shod-

marching are presented as there were no differences between left and right-sided 

data.  
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Forces and joint moments 

When controlled for speed there were no consistent differences in any of the ground 

reaction forces. Consistent differences were found in the joint moments and are 

summarised in Table 4. Cases demonstrated lower ankle inversion moments during 

the majority of mid-stance; and greater ankle dorsiflexion moments during small 

sections of early stance and around the time of heel-off. Hip abductor moments were 

lower in cases during early mid-stance and during terminal stance. Representative 

graphs are presented in Figure 1.  

Discussion 

This study demonstrates a number of differences in biomechanical measurements 

between cases with CECS and asymptomatic controls. These differences were 

consistent during walking, marching, barefoot and shod gait. The shorter stature, 

with no differences in body proportions, seen in this cohort has not previously been 

discussed in a biomechanical context. This difference has not been demonstrated in 

a civilian population [38] and has only been reported in the military once [17]. The 

implications of the observed shorter stature are discussed throughout this section. 

During the completion of this study many participants reported having previously 

experienced the urge to transition to run in order to alleviate their pain. The 

transition from walking to running (WRT) has been suggested to transfer the work 

from the dorsiflexor muscles to the larger proximal muscles (such as gluteus 

maximus, rectus femoris, vastus lateralis, and vastus medialis) [40]. The speed at 

which both humans and quadrupeds begin to transition to running also appears to be 

dependent on stature; resulting in a transition at the same Froude number (c.0.5; 

speed in relation to leg length). In humans, this corresponds to a WRT speed of 

around 2m/s (the marching speed in this study) depending on leg length [41]. The 
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degree of tibialis anterior activation has been identified as a key determinant of the 

speed at which the WRT is triggered [39]. The short stature found for cases in this 

study may therefore have important implications on the requirements of tibialis 

anterior and the subsequent development of CECS.  

The muscles of the anterior compartment in healthy individuals perform close to 

maximum capacity during fast walking [40]. This is amplified in shorter individuals 

during level walking [42] and is even less advantageous during ambulation on an 

incline as greater propulsion and toe clearance are required. The shorter stature 

found for cases in this study therefore likely demands increased activation of tibialis 

anterior, that may be represented here as an increased ankle dorsiflexor moment, 

and plays a significant role in the development of CECS. Further work to test this 

hypothesis is needed. 

 The relatively longer stride of shorter personnel, when normalised to leg length, 

may reflect ingrained changes induced by military training; whereby all personnel are 

required to move at a uniform cadence and speed. In order to maintain this 

relationship, shorter personnel can only achieve this through an increase of stride 

length relative to taller peers. This is likely to be the adaptation to allow ambulation 

at a higher Froude number. Cases increase speed through an increase in ankle 

plantarflexion at toe-off, resulting in an increased stride length, rather than a change 

in cadence. Experimental data also indicates that increasing stride length at a fixed 

speed increases the stress to the dorsiflexor musculature [43]. The greater ankle 

dorsiflexion moment observed in this study further supports this theory. This 

homogenisation of gait may be a key factor in the development of CECS in the 

military population.  
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The results of the current study suggest that the homogenisation of marching gait 

also has a similar effect on the slower walking gait. The over-striding in late stance, 

which is required by shorter personnel during marching, may then become ingrained 

into everyday walking gait in this population. It is likely that due to this learned 

adaptation cases have learned to override the normal stimulus to trigger the WRT.  

Discomfort in the anterior compartment muscles has been reported in healthy 

individuals during fast walking [44] and pain has also been described when the WRT 

stimulus is overridden but subsides on transitioning to running or cessation of activity 

[45]. The continued excessive demand on the anterior compartment due to over-

riding of the WRT may be the trigger for the development of CECS and/or symptoms 

of CECS in this population and could account for the higher reported prevalence of 

CECS in the military. The observation that kinematic differences of the lower limb 

only occur at the ankle joint and, that kinetic differences are present at the ankle 

joint also supports the suggestion of excessive demand on the anterior 

compartment. This is also in line with the symptomatology. The lower ankle inversion 

moments in cases from mid-stance to toe-off suggests that, in CECS, tibialis anterior 

is operating at a mechanical disadvantage. This may be due to an inability to 

generate the force required for inversion, due to intrinsic weakness [46,47] or 

neuromuscular fatigue. It could also occur as a result of failure to effectively transfer 

the force generated by tibialis anterior contraction due to tendon lengthening or 

stretch. This effect could also be produced by an external barrier, such as through 

compressive footwear, to the normal stretch of the extensor retinaculum at the ankle 

during tibialis anterior contraction [48]. Reduced force transmission through the 

tibialis anterior tendon would reasonably account for the differences observed in the 

ankle angles in this study.  
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The reduced hip abductor moments observed in this study have also been identified 

in other patient populations including those with iliotibial band syndrome and knee 

osteoarthritis [49,50]. This has been suggested to be as a result of weakness of the 

hip musculature. Of note, hip joint moments are the most susceptible to errors in the 

calculation of joint moments as these are propagated up the kinetic chain [51]. The 

reasons for these differences are therefore unclear and warrant further investigation 

to determine the role of the hip abductors, if any, in this condition. 

This study provides evidence of biomechanical factors associated with CECS in males 

that are unlikely to be a protective mechanism; further investigation is required to 

confirm that these same factors apply to females. Furthermore the assessment of 

biomechanical differences in non-military populations is also required. Future work is 

also needed to investigate the activity of tibialis anterior in these populations. The 

technical issues experienced in the control of speed also could have affected the 

results. It was therefore reassuring that both the bootstrapped t-test and ANCOVA 

gave predominantly the same results. Finally, the case-control design of the current 

study identifies key aspects of gait specific to those with CECS. Acknowledging the 

limitations of this approach, the results of this study identify height, stride length and 

ankle biomechanics for potential inclusion in a prospective study. Nevertheless, this 

study is the first to describe biomechanical differences in this population, and the 

results provide new insights into this condition. 

Perspectives 

In summary, this study demonstrates differences between cases and controls, which 

are present prior to the onset of painful symptoms, in height and biomechanical 

measurements during ambulation. These data can not confirm whether the 

biomechanical differences are a cause or consequence of CECS. However, these data 
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do provide potential mechanisms underpinning the development of CECS in this 

population. The changes in joint angles and moments may indicate an impairment of 

either the muscle or tendon of tibialis anterior. The shorter height necessitates an 

increased stride length that likely results in an increased demand on tibialis anterior 

during ambulation. This disadvantage may be further amplified when individuals 

override the urge to transition to a run or when ambulating on gradients. This may 

be a vital factor in the development of CECS in the military. Shorter personnel in 

military populations will continue to be required to march at prescribed speeds to 

fulfil occupational requirements; biomechanical interventions for CECS are therefore 

unlikely to be efficacious within this population. 
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Figure 1. Differences in ankle angles (top row) during the gait cycle and ankle, 

knee and hip moments (2nd and 3rd rows) during stance phase from left shod-

marching data. Blue lines represent CON group, green PT group. Shaded areas 

represent bootstrapped 95% confidence intervals. The bar along the x-axis 

indicates those time points where all conditions were significantly (P<0.05) 
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different. The vertical line on the angle sub figures indicates the time of toe off. 

The graphs show both dorsiflexion and inversion but the movements in these 

planes are predominantly negative indicating plantarflexion and eversion 

respectively.  
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Table 1 Normalisation of gait parameters. Symbols: l0, leg length; m, body mass; 

g, acceleration due to gravity (9.81 m/s2). 

Quantity Dimensionless number 

Length, distance (l) 
 

Time (t) 

 

Force (F) 
 

Moment (M) 
 

 

Table 2. Comparison of differences in temporal-spatial data between groups 

(*P<0.05). Differences for the left-side only are presented as there were no 

differences between left and right-sided data. N.B. All variables are normalised 

according to Hof and therefore do not have units. 

Hof-norm’d 

variable 

BF/ 

SHOD 
Condition F P 

Mean 

(CON) 

SE 

(CON) 

Mean 

(PT) 

SE 

(PT) 

Mean 

Diff 

Stride 

Length 

BF Walk 1.6 0.22 1.76 0.02 1.80 0.022 0.042 

March 2.7 0.11 1.90 0.03 1.96 0.026 0.063 

SHOD Walk 6.6 0.014* 1.79 0.02 1.86 0.018 0.068 

March 4.3 0.046* 2.00 0.03 2.08 0.026 0.076 

Step time 
BF Walk  0.06 0.80 1.52 0.01 1.51 0.013 0.005 

March 0.01 0.91 1.40 0.02 1.39 0.015 0.002 

SHOD Walk 0.03 0.88 1.61 0.01 1.61 0.011 0.003 

March 0.01 0.93 1.46 0.02 1.46 0.015 0.002 

Stance time BF Walk  1.42 0.24 1.78 0.02 1.75 0.015 0.027 

March 3.02 0.09 1.60 0.02 1.56 0.015 0.04 

SHOD Walk 0.34 0.56 1.96 0.02 1.95 0.015 0.013 

0
l

l

gl

t

0

mg

F

0
mgl

M
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March 0.48 0.49 1.72 0.02 1.71 0.016 0.016 

Swing time 
BF Walk  0.23 0.64 1.26 0.02 1.27 0.016 0.011 

March 0.72 0.40 1.20 0.02 1.22 0.020 0.024 

SHOD Walk 1.69 0.20 1.25 0.02 1.28 0.015 0.028 

March 0.54 0.47 1.20 0.02 1.21 0.019 0.020 

 

 

Table 3. Angular measurements from bootstrapped t-test data (Left shod-

marching) of maximal significant (P<0.05) differences between CON and PT. 

Angles are reported in degrees; moments are reported normalised to body mass 

and leg length (Nm/kg.LL) 

Joint 

Movement 

(% of gait cycle) 

Angle / 

moment 

Mean (sd) 

Difference 

CON PT 

Ankle 

Ankle 

Inversion (64%) Angle 6.5 (3.1) 2.7 (4.8) -3.8 

Plantarflexion (55%) Angle 1.6 (6.8) -4.7 (5.9) +6.3 

Ankle Inversion (83%) Moment 
0.034 

(0.026) 

0.012 

(0.004) 
0.022 

Ankle Dorsiflexion (81%) Moment 
0.047 

(0.009) 

0.058 

(0.008) 
-0.011 

Hip Abduction (19%) Moment 
-0.099 

(0.016) 

-0.115 

(0.024) 
0.016 

Knee Internal rotation (83%) Moment 
-0.012 

(0.005) 

-0.017 

(0.005) 
0.005 
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Table 4. Time points of significant differences (all conditions) in angular and 

moment data. 

Joint Movement Angle/Moment 
Bootstrapped 

t-test (%) 
ANCOVA (%) 

Direction 

of effect 

Ankle Inversion Angle 63-70 62-69 CON>PT 

Ankle Plantarflexion Angle 55-57 - PT>CON 

Ankle Inversion Moment 34-67 37-65 CON>PT 

Ankle Dorsiflexion Moment 6-13, 51-61 9-10, 59-61 PT>CON 

Hip Abduction Moment 19 31-39, 92-94 CON>PT 

Knee Internal rotation Moment 82-85 - CON>PT 

 

 


