2D materials integrated in Si$_3$N$_4$ photonics platform

Joaquin Faneca, Benjamin T. Hogan, E. Torres Alonso, Monica Craciun, Anna Baldycheva
2D materials integrated in Si$_3$N$_4$ photonics platform

Joaquin Faneca1,2, Benjamin T. Hogan1,2, E. Torres Alonso1, Monica Craciun1 and Anna Baldycheva1

1University of Exeter, College of Engineering Mathematics and Physical Sciences, Exeter, EX4 4QF, UK
2EPSRC Centre for Doctoral Training in Electromagnetic Metamaterials University of Exeter, EX4 4QL, UK

ABSTRACT

In this paper, we discuss a back-end CMOS fabrication process for the large-scale integration of 2D materials on SOI (silicon-on-insulator) platform and present a complete theoretical study of the change in the effective refractive index of 2D materials-enabled silicon nitride waveguide structures. The chemical vapour deposition (CVD) and liquid exfoliation fabrication methods are described for the fabrication of graphene, WS$_2$ and MoS$_2$ thin films. Finite-difference frequency-domain (FDFD) approach and the Transfer Matrix Method were used in order to mathematically describe these structures. The introduction of thin films of 2D material onto Si$_3$N$_4$ waveguide structures allows manipulation of the optical characteristics to a high degree of precision by varying the Fermi-level through the engineering of the number of atomically thin layers or by electrical tuning, for example. Based on the proposed tuning approach, designs of graphene, WS$_2$ and MoS$_2$ enabled Si$_3$N$_4$ micro-ring structures are presented for the visible and NIR range, which demonstrate versatility and desirable properties for a wide range of applications, such as bio-chemical sensing and optical communications.

1. INTRODUCTION

Integrated silicon nitride (Si$_3$N$_4$) structures are a very promising platform for the development of waveguides and micro-rings due to their low nonlinearity1 and the transparency that they possess in the infrared and visible ranges2,3. Si$_3$N$_4$ waveguides have been widely employed for light propagation in the near infrared and visible ranges of the electromagnetic spectrum. Si waveguides provide more confined modes than the Si$_3$N$_4$, possibly leading to more compact devices. However, Si$_3$N$_4$, as a deposited material is more cost effective and provides more freedom in the positioning of the 2D material sheets4.

Light modulation is crucial in optical communications interconnects and WDM (wavelength division multiplexers). High performance light modulation solutions are becoming technologically indispensable. The emergence of 2D materials' technology to achieve ultrafast, low-loss, and broadband optical signal processing in simple configurations looks set to greatly enhance light modulation devices. In this paper we discuss large-scale integration of 2D materials as graphene or transition metal dichalcogenides (TMDs) such as MoS$_2$ and WS$_2$ on a 4-inch wafer Si photonics platform.

In this work we discuss the different methods for the large-scale integration of 2D materials, while the individual thickness control of each flake can be performed using the back-end laser thinning fabrication approach reported recently5,6. The obtained results demonstrate potential for realisation of truly reconfigurable electronic-photonic devices with a wide range of applications such as biosensors, neuroscience, wavelength division multiplexing and modulators for optical communication interconnects7.

2. INTEGRATION OF 2D MATERIALS ON Si$_3$N$_4$ PHOTONICS PLATFORM

Several methods have been developed by which 2D materials can be exfoliated, each with their own advantages and disadvantages. Firstly, a mechanical cleavage method can be used (the so-called ‘sticky-tape’ method) where layers are separated by coupling one layer to a sticky surface and mechanically peeling it away from the bulk.8 This method produces...
very pure materials with few defects induced and can also give relatively large areas of material coverage. However, this method has poor scalability and production of large quantities of 2D material is extremely time intensive. Alternatively, a vapour deposition method can be used where a 2D material is grown directly on a substrate from vaporized precursor molecules at very high temperatures. This method can produce large areas of 2D material and can be scaled to produce large quantities. However, there are numerous sources for the introduction of defects in the material including substrate induced defects and impurities in the vapours used amongst others, the material must be transferred from the substrate after deposition which can be problematic, and the production cost and time are prohibitive to adoption at larger scales. Adoption of 2D materials in novel device applications, is often limited by challenges surrounding the scalability, cost of production processes or limited quality of materials produced. In this work, two different deposition methods have been explored:

2.1 Liquid Exfoliation deposition: In liquid phase exfoliation, a bulk material is dispersed in a solvent and then the individual constituent layers are broken apart. In the standard liquid phase exfoliation processes, which is demonstrated in Figure 1, the bulk material layers are broken apart using ultrasonication, where high frequency sound waves are transmitted through the solution. The sound waves induce the formation of bubbles and cavities between layers which break the layers apart as they expand. However, they also cause additional intralayer strains in the material which cause cleavage of the particles, reducing the size of the particles obtained after exfoliation. The use of intercalating surfactants to weaken the interlayer forces before exfoliation can greatly increase the yield of the exfoliation, but the subsequent removal of the surfactant is liable to damage the quality of the exfoliated product. Other than ultrasonication, other methods have been developed for liquid phase exfoliation, including strong acid induced oxidation reactions causing cleavage and freezing of water intercalated layered structures where expansion of water as it freezes causes interlayer cleavage. Following on from the exfoliation, particles of specific sizes can be isolated through high speed centrifugation of the dispersion, solvent induced selective sedimentation or by pH-assisted selective sedimentation amongst others. Fractionation then allows selection of a suitable range of particle sizes depending on the application, with homogeneous distributions of particle sizes, and the resultant homogeneous distributions of similarly sized particles.

Figure 1: a) A dispersion of bulk material. b) Schematic of the liquid phase exfoliation of bulk layered materials to low- or two-dimensional particles. (bulk material) c) ultrasonication is used to exfoliate down to smaller flake sizes. d) Centrifugation then aggregates the largest particles, with the smallest remaining suspended in the solution. e) Fractionation then allows the selection of aliquots containing f) the resultant homogeneous distributions of similarly sized particles.
2.2 CVD (Chemical vapour deposition) technique graphene deposition. The CVD technique is based on diffusing gaseous carbon into the nickel substrate, and then forcing it to precipitate out by cooling the nickel. The thickness and crystalline ordering of the precipitated carbon is controlled by the cooling rate and by the concentration of carbon dissolved in the nickel. This concentration is in turn controlled by the type and concentration of the carbonaceous gas, and the thickness of the nickel layer. After chemically etching the nickel, the graphene membrane detaches and can be transferred to another substrate. This direct CVD synthesis provides high quality layers of graphene without intensive mechanical or chemical treatments.

2.3 Back-end CMOS fabrication process for the large-scale integration of 2D materials on SOI (Silicon-on-insulator) platform. In this paper, the fabrication methods discussed above were used to integrate 2D material thin films on Si$_3$N$_4$ photonic wafers. In the first step, e-beam lithography followed by inductively coupled plasma reactive ion etching (JLS RIE) was used to fabricate waveguide and micro-ring devices from a 150nm-thick Si$_3$N$_4$ layer, supported on a SiO$_2$ bottom cladding layer of 2 μm (Figure 2 (a)). We used a TI PRIME adhesion promoter and MaN 2403 e-beam resist to allow patterns to be designed using a NBL e-beam system, followed by post exposure bake for 90 seconds at 90°C to reflow the resist surface and reduce sidewall roughness. The etching was performed with a CHF$_3$/O$_2$ reactive gas mixture. 2D materials thin films were deposited using back-end processes. Above the Si$_3$N$_4$ photonic layer, a 1μm thick photoresist was produced via spin-coating. This was followed by patterning using a laser writing method with a precision of 0.6μm and wet etching of defined structures and trenches within the photoresist layer, down to the photonic layer [Fig. 2(b-c)]. With the photoresist removed from the required areas, CVD or liquid exfoliated 2D materials were transferred onto the top of the wafer [Fig 2(d)]. After removal of the photoresist mask, final individual devices with specific, micron-size structures of 2D materials- as desired and designed- were achieved [Fig. 2(e-f)].

Fig 2. Back-end CMOS fabrication process flow. (a) SOI wafer with photonic microchips. (b) Photoresist deposition on the photonics wafer. (c) Development of micro-trenches and other structures within the photoresist layer, down to the photonic waveguide layer. (d) Wafer scale transfer of 2D material thin film. (e) SOI photonic wafer with integrated 2D materials into the photonic circuits after photoresist removal.
3 2D MATERIALS ENABLED PASSIVE PHOTONIC STRUCTURES IN THE VISIBLE RANGE

The thickness of the different 2D materials deposited on top of the different Si₃N₄ structures can be controlled. A complete study of how the width and the thickness of the different 2D materials can affect the TE mode which propagates along a standard silicon nitride waveguide with the dimensions of width \(W_{wg} = 1.2 \, \mu m \) and thickness \(h_{wg} = 0.3 \, \mu m \) is discussed [Fig.3] giving rise to the possibilities for different 2D materials modulators and filters.

![Fig 3. Schematic of different 2D materials flakes dimensions, using different 2D materials width (a) and thickness (b) on the top of a standard Si₃N₄ waveguide of \(W_{wg} = 1.2 \, \mu m \) width and \(h_{wg} = 0.3 \, \mu m \) thick.](image)

3.1 Graphene

Graphene, a single layer of graphite, was the first experimentally demonstrated two-dimensional material. Graphene has been extensively studied due to its unique mechanical, thermal, electronic and optical properties. The linear structure of the dispersion leads to the universal optical conductance of the interband transition\(^{30}\), which has been experimentally confirmed\(^{31}\). Single-layer graphene absorbs 2.3% of perpendicularly incident light within the infrared-to-visible spectral range. The absorption coefficient is precisely defined by \(\alpha = 2 \, \text{cm}^{-1} \), the fine-structure constant.

The special behaviour of graphene is due to its 2D structure that confines electrons in one atomic layer, and also due to the low density of states (DOS) near the Dirac points, which causes the Fermi energy to shift significantly with variation of the carrier density\(^{32}\). For example, a Fermi level up to 0.9 eV has been experimentally demonstrated using the electrostatic field gating technique\(^{33}\). The tuneable bandgap of graphene offers great opportunities and flexibility for infrared and visible light manipulation.

A parametric sweep in thickness and width has been studied. By changing the dimensions of the flakes deposited on top of the waveguides, a change in the effective refractive index is observed, and consequently a modulation of the signal. In [Fig. 4(a-b)] the alteration of the effective refractive index in the visible range is plotted. As can be seen, graphene shows a continuous change in the effective refractive index as a function of both parameters. The absorption coefficient in the graphene goes from being a transparent material with no absorption up to 0.016 and the real part of the refractive index changes \(4 \times 10^{-3} \). The proposed designs are based on coupled micro-resonator structures, using the Transfer Matrix Method developed by Yariv\(^{34}\) we calculated the drop-port transmission spectra of a micro-ring-resonator-based add–drop filter. For a radius \(R = 6 \, \mu m \), \(\alpha = 2 \, \text{cm}^{-1} \), and coupling coefficient \(\kappa = 0.4 \), when the thickness of the graphene is equal to 1 nm and the width to 50 nm, the effective refractive index is \(n_{eff} = 1.856 + 1.2 \cdot 10^{-4}i \) corresponding to a resonant wavelength of 0.7 \(\mu m \).

Increasing the thickness up to 8nm and the width up to 1.2\(\mu m \) of the graphene flake, an effective refractive index of 1.86+0.016i is given and a resonant wavelength of 0.716 \(\mu m \) is found [Fig. 4(c)]. Hence, modifying the thickness and width...
of the graphene flakes deposited on the top of waveguides, a 0.23% shift in the resonance of the micro-ring resonator structure [Fig. 4(d)] is achieved.

![Graphene flake 1nm thick 50 nm wide](image)

![Graphene flake 8 nm thick 1.2 μm wide](image)

![Real part of the effective refractive index](image)

![Imaginary part of the effective refractive index](image)

![Schematic of add-drop filter](image)

Fig. 4 (a) Real part of the effective refractive index for different widths and thicknesses of graphene. (b) Imaginary part of the effective refractive index for different width and thicknesses of graphene. (c) drop-port transmission spectra of a micro-ring-resonator-based add–drop filter with a radius R = 6.0026 μm, α = 2 cm⁻¹, and coupling coefficients κ = 0.4 for a graphene flake of 1 nm thick and 50 nm wide (black line) and for a graphene flake of 1.2 μm wide (covering all the waveguide) and 8 nm thick (red line). (d) Add-drop filter schematic for graphene flakes.

3.2 Transition Metal Dichalcogenides (TMDs)

2D TMDs are atomically thin semiconductors of the type MX₂, where M is a transition metal atom and X is a chalcogen (group 16) atom. Typically, TMDs have bandgaps ranging from 1 to 2.5 eV, corresponding to near-infrared or visible frequencies. One of the most important properties of these materials is the transition from an indirect to a direct bandgap that occurs when the material thickness decreases from multilayer to monolayer. This evolution of the band structure results from changed confinement effects and the negation of the interaction with neighbouring layers. Unlike the universal optical
conductance in graphene, the semiconducting TMD may exhibit multiple absorption peaks from ultraviolet to near infrared frequencies due to excitonic and inter-band transitions.

3.2.1 WS$_2$

In the case of WS$_2$, the effective refractive index for a 1nm thick and 50 nm wide flake is $n_{\text{eff}} = 1.855 + 2.255 \times 10^{-5}i$ corresponding to a resonant wavelength of 0.7 μm. Increasing the thickness and the width of the flake up to 8nm and 1.2 μm respectively, the change in the real part of the effective refractive determined for the studied range is 0.023 [Fig. 5(a)]. The imaginary part increases to 3×10^{-3} [Fig. 5(b)], a resonant wavelength of 0.698 μm is found corresponding to a 0.13% shift in the resonance of the add-drop filter. [Fig. 5(c)]. Using micro-ring resonators [Fig. 5(d)] with R=6μm, quality factors (Q) of the order of $10^2 - 10^3$ are achieved. Increasing the radius of the micro-ring a reduction in the scattering losses is obtained and an increase of at least two orders of magnitude in the quality factor, up to $10^5 - 10^6$ for radii on the order of 50 μm, can be obtained.

![Fig. 5](https://www.spiedigitallibrary.org/conference-proceedings-of-spie)

Fig. 5 (a) Real part of the effective refractive index for different WS$_2$ widths and thicknesses. (b) Imaginary part of the effective refractive index for different WS$_2$ widths and thicknesses. (c) drop-port transmission spectra of a micro-ring-resonator-based add–drop filter with a radius R = 6.0058 μm, $\alpha = 2$ cm$^{-1}$, and coupling coefficients $\kappa = 0.4$ for a WS$_2$ flake of 1 nm thick and 50 nm wide (black line) and for a graphene flake of 1.2 μm wide (covering all the top waveguide) and 8 nm thick (blue line). (d) Add-drop filter schematic for WS$_2$ flakes.
3.2.2 MoS$_2$

In the case of using MoS$_2$, the effective refractive index for a 1 nm thick and 50 nm wide flake is $n_{eff} = 1.851 + 5.4 \cdot 10^{-5}$ corresponding to a resonant wavelength of 0.7 μm for a 6.0188 μm radius. Increasing the thickness and the width of the flake up to 3.8 nm and 1.2 μm respectively, the change in the real part of the effective refractive for the studied range is 0.041 [Fig. 6(a)]. The imaginary part increases to $1 \cdot 10^{-2}$ [Fig 6(b)], a resonant wavelength at 0.7015 μm is found for this value, corresponding to a 0.21% shift in the resonance of the add-drop filter [Fig. 6(c-d)].

![Graphs and images showing real and imaginary parts of the effective refractive index for MoS$_2$ flakes of different widths and thicknesses, along with a drop-port transmission spectrum and a schematic of an add-drop filter.](https://www.spiedigitallibrary.org/conference-proceedings-of-spie)
4 2D MATERIALS ENABLED TUNEABLE STRUCTURES FOR OPTICAL COMMUNICATION APPLICATIONS

For a complete study of tuneable devices at optical communications wavelengths, the optical properties of graphene should be defined. One of the most important properties of graphene is its gate-variable optical conductivity. The graphene conductivity can be tuned by applying drive voltages which will change the carrier density of graphene and, consequently, the Fermi level. The dependence of graphene's optical conductivity on inter- and intra-band transitions has been analytically derived at 0K and at 300K. The complex optical conductivity depends on the angular frequency ω, chemical potential μ, charge particle scattering rate being τ the relaxation time $\Gamma = \tau^{-1}$ and finally T is the temperature. The dynamic optical conductance response of graphene can be derived from the Kubo formula:

$$\sigma_{total}(w, \mu, \Gamma, T) = \sigma_{intra} + \sigma_{inter}' + i\sigma_{inter}''$$ \hfill (1)

The intra-band conductivity σ_{intra} has the Drude form

$$\sigma_{intra} = \frac{\sigma_0 A \mu}{\pi} \frac{1}{\hbar \tau_{1}^{-1} - i\hbar \omega}$$ \hfill (2)

where $\sigma_0 = \frac{\pi e^2}{2h} = 60.8 \mu s$ is the universal optical conductance and τ_{1}^{-1} is the relaxation rate associated with intra-band transitions. The inter-band contribution has the form:

$$\sigma_{inter}' = \sigma_0(1 + \frac{1}{\pi} \arctan \frac{h \omega - 2 \mu}{h \tau_{2}^{-1}} - \frac{1}{\pi} \arctan \frac{h \omega + 2 \mu}{h \tau_{2}^{-1}})$$ \hfill (3)

and

$$\sigma_{inter}'' = -\frac{\sigma_0}{2\pi} \ln \frac{(2\mu + h \omega)^2 + \hbar^2 \tau_{2}^{-2}}{(2\mu - h \omega)^2 + \hbar^2 \tau_{2}^{-2}}$$ \hfill (4)

where τ_{2}^{-1} is the relaxation rate associated with inter-band transitions. The complex dielectric function $\varepsilon(\mu)$ can be obtained from the complex optical conductivity of graphene described by

$$\varepsilon(\mu) = 1 + \frac{i\sigma(\mu)}{\omega \varepsilon_0 \delta}$$ \hfill (5)

where $\delta = 0.7 or 0.4 nm$ is the graphene thickness layer and ε_0 is the permittivity of vacuum. For further calculations, $\lambda = 1550 nm$, $T=296K$, $\tau_1 = 10 fs$ and $\tau_2 = 1.2 ps$ were chosen. In [Fig 7] The dielectric dependence with the change in the Fermi level has been plotted, a parametric sweep of the Fermi level from 0 eV up to 1eV has been studied for different graphene flake thicknesses.
When the chemical potential varies from 0.4 eV to 0.6 eV, the dielectric constant shows a significant change. In the case of 0.4 nm thick graphene, a change from \(\varepsilon(0.4\text{eV}) = 14.21 + 14.65i \) to \(\varepsilon(0.6\text{eV}) = -5.168 + 1.111i \) is observed. Using Comsol Multiphysics, the effective refractive index associated to both Fermi level values \(n_{\text{eff}}(0.4\text{eV}) = 1.5355 - 1.735 \times 10^{-3}i \) and \(n_{\text{eff}}(0.6\text{eV}) = 1.5332 - 1.289 \times 10^{-4}i \) has been calculated. In the case of a 0.7 nm thick flake, the change in the dielectric constant goes from \(\varepsilon(0.4\text{eV}) = 9.097 + 8.334i \) to \(\varepsilon(0.6\text{eV}) = -2.492 + 0.6322i \), and consequently the effective refractive index goes from \(n_{\text{eff}}(0.4\text{eV}) = 1.5356 - 1.7277 \times 10^{-3}i \) and \(n_{\text{eff}}(0.6\text{eV}) = 1.5333 - 1.2943 \times 10^{-4}i \). Using these values, a 0.148\% shift in the resonance of the add-drop filter for a 0.4 nm graphene flake is achieved [Fig. 8(a)], and 0.148\% in the case of a 0.7 nm flake [Fig. 8(b)].

![Graphene transmission spectra](https://www.spiedigitallibrary.org/conference-proceedings-of-spie/3/7/2018/Terms-of-Use)
5 CONCLUSIONS

In this paper, we have demonstrated two different methods for large-scale integration of 2D materials on silicon platform. Accurate areas of deposition have been achieved. A complete theoretical study has been developed to demonstrate how the different 2D material thicknesses can affect the effective refractive index of a TE mode of a 1.2x0.3 μm Si₃N₄ waveguide for the visible range. A finite-difference frequency-domain approach and the Transfer Matrix Method were used in order to mathematically describe different add-drop filters. Modifying the thickness and width of a WS₂ flake, a 0.13% shift in the resonance of the add-drop filter is achieved. An improvement in the resonance shift was observed having changed the material to graphene. Modifying the thickness and width of the graphene flakes deposited on the top of the waveguides up to 8 nm thick and 1.2 μm wide, a 0.23% shift in the resonance of the micro-ring resonator structure is achieved. Approximately, the same shift in resonance is achieved for MoS₂ increasing the thickness of the flake up to approximately half that of the graphene (3.8 nm) and with the same width of 1.2 μm. Finally, active, reconfigurable, graphene-based micro-ring resonators have been studied for optical communications applications in the NIR range, a parametric sweep of the Fermi level has been obtained for different thicknesses of the graphene flakes (0.4 and 0.7 nm) and a shift in the resonance of the add-drop filter of 0.148% for a modification in the Fermi level of 0.2 eV was determined, achieving a sensitivity of 1.15% for the device. The difference in the thickness of the graphene should be greater in order to obtain a significant difference in the quality factor and consequently in the sensitivity. Using liquid exfoliated graphene gives us more freedom with the thickness and consequently with the sensitivity of the devices. Nevertheless, using CVD graphene, the difference in the thickness will be negligible for the performance of the proposed devices.

ACKNOWLEDGMENTS

We acknowledge financial support from: The Engineering and Physical Sciences Research Council (EPSRC) of the United Kingdom via the EPSRC Centre for Doctoral Training in Electromagnetic Metamaterials (Grant No. EP/L015331/1) and also via Grant No. EP/N035569/1. Authors thank Mr K. Bergen for help with some simulations and figure preparation.

REFERENCES

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 3/7/2018 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

