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In a recent review of philosophical research on mathemati-
cal explanation, Mancosu (2015) explicates two major
accounts of mathematical explanation within mathematics.
One is Steiner’s (1978) notion of explanatory proofs; the
other is Kitcher’s (1981, 1989) idea of explanatory unifica-
tion. Steiner’s model has been employed in the field of
mathematics education research. When elaborating the func-
tions of proof, mathematics education researchers have
generally referred to Steiner’s principle of distinguishing
explanatory proofs from non-explanatory ones. Hanna
(1990), for example, referred to Steiner’s idea when intro-
ducing the explanatory function of proof.

In this article, we focus on the other major model,
Kitcher’s explanatory unification. Kitcher’s model has been
relatively neglected in mathematics education, and Hanna
(2018) states that “Kitcher’s model may not be as relevant to
mathematics education as it might appear [...] because it is
difficult to assign to unification per se [...] any degree of
explanatory power in the cognitive sense” (p. 9). However,
our premise in this article is that if Kitcher’s idea of explana-
tory unification is regarded as being mainly related to
unification, rather than to explanation [1], his idea is rele-
vant to mathematics education, for two reasons. First, given
that Kitcher proposed his model to provide insight into how
scientists (including mathematicians) advance their
research, introducing Kitcher’s explanatory unification into
school mathematics (especially in the teaching of proof and
proving) is worthwhile because one of the goals of mathe-
matics teaching is “for students to engage in an authentic
way with proving as this activity is practiced in the mathe-
matical community” (Stylianides, Stylianides & Weber,
2017, p. 247). Second, with unification being a process
where one synthesises scattered facts into a coherent whole,
such synthesis is not only recognised as advanced mathe-
matical thinking (Dreyfus, 1991; Tall, 1991), but also
classified as higher-order thinking in Bloom’s taxonomy of
educational objectives (Bloom, Engelhart, Furst, Hill, &
Krathwohl, 1956); hence, the introduction of Kitcher’s
explanatory unification into school mathematics might offer
learning opportunities for cultivating students’ mathematical
and higher-order thinking.

Despite the significance of Kitcher’s model, it is only
recently that mathematics education research has begun to
pay attention to his idea of explanatory unification (Hanna,
2018; Raman-Sundstrom & Ohman, 2015; Stylianides,
Sandefur & Watson, 2016). Furthermore, as existing stud-
ies do not illustrate explanatory unification, it is quite
difficult to grasp the form of this activity in the context of
school mathematics. In this article, we examine a classroom
episode in a secondary school in order to address the ques-

tion: What does explanatory unification by proofs look like
in the context of school mathematics?

Kitcher’s idea of explanatory unification
Kitcher (1989), in reviewing major accounts of scientific
explanation, argues that a theory of explanation should show
how scientific explanation advances human understanding
and how disputes in past and present science can be com-
prehended and arbitrated. Kitcher takes mathematics into
consideration, arguing that “mathematical knowledge is
similar to other parts of scientific knowledge, and there is no
basis for a methodological division between mathematics
and the natural sciences” (Kitcher, 1989, p. 423). He also
adds “the fact that the unification approach provides an
account of explanation [...] in mathematics stands to its
credit” (p. 437).

To explain the central ideas of Kitcher’s explanatory uni-
fication, we begin with his illustration from the history of
mathematics: the development of research on the solvabil-
ity of equations. Ways to solve linear, quadratic, and some
high-order equations have been known for quite some time.
Indeed, the root formula for each class of equations up to
and including degree four was recognised by at least the
end of the 18th century. Nevertheless, rather than consider-
ing these four classes of equations separately,
mathematicians desired to know systematically why these
equations allow their roots to be expressed as rational func-
tions of the coefficients. Insight into the structure underlying
equations was provided partially by Lagrange’s considera-
tion of permutations of the roots of equations and ultimately
by the development of Galois theory. Thanks to Galois,
mathematicians acquired a fundamental criterion for judging
whether the roots of equations can be expressed as rational
functions of the coefficients, and this criterion can be
applied to unify the four individual classes.

The above illustration captures one characteristic of
Kitcher’s idea of scientific explanation: Kitcher’s focus is
not on an individual argument for a single statement (e.g., a
proof for a statement about cubic equations), but rather on
clusters of arguments for multiple statements (e.g., a cluster
of proofs for statements about equations up to and includ-
ing degree four) [2]. Actually, he contends that “science
supplies us with explanations whose worth cannot be appre-
ciated by considering them one-by-one but only by seeing
how they form part of a systematic picture of the order of
nature” (p. 430). In this sense, Kitcher’s account can be
regarded as a model for unification of multiple statements
rather than a model for explanation of a single statement
such as Steiner’s notion of explanatory proofs.
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In summary, the following statement by Kitcher illustrates
very clearly his view of explanatory unification [3]:

Understanding the phenomena is not simply a matter of
reducing the “fundamental incomprehensibilities” but
of seeing connections, common patterns, in what ini-
tially appeared to be different situations. Here the
switch in conception from premise-conclusion pairs to
derivations proves vital. Science advances our under-
standing of nature by showing us how to derive
descriptions of many phenomena, using the same pat-
terns of derivation again and again, and, in
demonstrating this, it teaches us how to reduce the
number of types of facts we have to accept as ultimate.
(Kitcher, 1989, p. 432)

We apply this notion of explanatory unification to the con-
text of proving in school mathematics and define explanatory
unification of statements by clusters of proofs as follows: a
cluster of proofs can be regarded as providing explanatory
unification of statements if: EU1) there initially appeared to
be different sets of statements and proofs, EU2) one con-
structs the cluster of proofs through seeing a connection in
these sets and showing the statements by using the same proof
pattern repeatedly, EU3) the cluster of proofs can reduce the
number of facts that one has to use. In what follows, we illus-
trate how explanatory unification can be used to deepen
understanding of students’ proving processes by analysing an
episode from a secondary school mathematics classroom.

A classroom episode

We examine an episode from a classroom consisting of 39
eighth-grade students (13-14 years old) in a Japanese lower
secondary school affiliated with a national university. The
students tackled a series of tasks involving the properties of
‘star polygons’ over four 50-minute lessons. These lessons
were originally designed as proof lessons rather than a way
of examining Kitcher’s idea of explanatory unification. In
fact, we were not aware of his idea before designing the
lessons. It was through our subsequent analysis of the
lessons that we came to realise that Kitcher’s model might
be helpful for understanding students’ thinking process.

The fourth author of this article implemented the lessons
in his classroom. While he was not specifically aware of
Kitcher’s research at that time, he was an expert teacher with
16 years’ teaching experiences across several schools and
with the knowledge that the star polygon tasks would pro-
vide a very useful learning experience for students.

The mathematical capabilities of the students were above
average for Japan. For data analysis, we used the video
records of the lessons, the transcripts of the records, the stu-
dents’ worksheets, and field notes taken by the first author.
We used these data to examine how the students proved the
different statements that they produced. In particular, we
identified two different proof clusters for the problem and
found that one of those was able to unify the different state-
ments more generally and hence satisfied our criteria for
explanatory unification proposed as EU1-3 above. In the
following sections, we first describe what happened in the
classroom and then show how a proof produced by a stu-
dent was used to prove the different statements shared in
the lessons. The transcripts have been translated from the
original Japanese by the authors. All students’ names are
pseudonyms.

Introduction of star pentagon

In the first lesson, the students tackled a task that involved
finding the sum of the interior angles of a star pentagon.
After individual work and small-group discussion, several
solutions were shared in whole-class discussion (e.g., Fig-
ures la-c) [4]. A student, Misaki, proved that the sum of
the interior angles of a star pentagon, shown in Figure 1a,
was 180° by considering a concave quadrilateral ACEP and
a triangle BDP. She showed that ZAPE =a + ¢ + e using
the property of concave quadrilaterals, something which had
been proved in an earlier lesson, and ZAPB = b + d using
the property of the interior angles and exterior angles of tri-
angles. Regarding Figure 1b, another student, Aoi, showed
that ZDFG = a + ¢ and ZDGF = b + e by considering trian-
gles ACF and BGE, respectively, and, by focusing on
triangle DFG, demonstrated the same conclusion as Misaki.
After that, a third student, Riko, presented her idea on the
blackboard (Figure 1c) [5].

Figure 1.  Star pentagons.
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Riko There are five triangles including Za ~ ZLe.
180° x 5 = 900°. The sum of the exterior
angles of the pentagon is 360° x 2 = 720°.
900° - 720° = 180°.

Riko’s idea was complicated for the other students, but
they gradually came to understand it through whole-class
discussion facilitated by the class teacher as follows:

Teacher It was difficult to understand [Riko's proof]. 1
want other students to clarify. Can anybody
understand her proof?

Shun I think, triangles including angles a, b, ¢, d,
and e mean dividing the star pentagon into a
pentagon and triangles. [...] I think she [Riko]
considered the pointy triangles in the tops, and
she thought that the sum of the interior angles
of the five [triangles] was 900.

Teacher Riko, is it OK? [Riko nodded.] Next, she
wrote “The sum of the exterior angles of the
triangle [The teacher misspoke here; Riko
wrote ‘pentagon’] is 360° x 2 = 720°”. Can
anyone also understand what this means?

Takumi The sum of the exterior angles of the pentagon
is 360, but this is only this part [the black-
marked angles in Figure Ic]. In order to
include the opposite one [the white-marked
angles in Figure 1c], multiply 360 by 2. [... ]
And the whole sum is 720°.

Teacher Lastly, why did she subtract 720 from 900?
Can anyone clarify?

Shota:  Well, 900° was shown initially, but this is the
sum of the interior angles of the whole trian-
gles. After that, 720° was obtained from the
sum of the exterior angles of the pentagon,
and these are angles subtracted from the whole
triangles. [... ] Then, we can find the angles
from a to e, and thus the answer.

As can be seen in the above exchange, Riko first obtained
the sum of the interior angles of the five ‘outside triangles’.
However, these angles include extra angles that can be
divided into the black- and white-marked angles in Figure
1c, each of which are equal to the sum of the exterior angles
of the ‘inside pentagon’. Hence, she calculated ‘180° x 5 -
360° x 2’ and thus proved that the sum of the interior angles
of a star pentagon is 180°.

Investigations of ‘star-even polygons’

After investigating interior angles of the star pentagon in the
first lesson, the teacher began the second lesson by inviting
the students to work on increasing the number of the vertices
of the polygon. Here, to provide a starting point for the stu-
dents, a star polygon was defined as a polygon constructed
by connecting vertices with skipping the adjacent vertex.
Through drawing various star polygons using this definition,
the students noticed that star polygons where the numbers of
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Figure 2. Star hexagon and octagon.

the vertices were odd (hereafter, star-odd polygons) could be
drawn in one stroke, whereas star polygons where the num-
bers of the vertices were even (star-even polygons) could not,
but could be drawn by a combination of two polygons.

At this point the teacher focused the students’ attention on
star-even polygons (Figure 2), and the students proved that
the sum of the interior angles of a star hexagon was 360°
because a star hexagon consisted of two triangles (180° x 2).
Similarly, they used the interior angle sum theorem of poly-
gons, 180° x (n - 2), to prove that the sums of the interior
angles of a star octagon and a star decagon were 720°
(= 360° x 2) and 1080° (= 540° x 2), respectively.

Investigations of star-odd polygons

In the third lesson, the teacher used a table similar to Table
1 to summarise the results obtained in the first and second
lessons. The students were invited to consider the table and
they conjectured that the sums of the interior angles of a
star heptagon and a star nonagon would be 540° and 900°,
respectively. Then, the students individually or collabora-
tively attempted to prove these conjectures. In the
subsequent whole-class discussion, two solutions to the star
heptagon case were shared (Figures 3a and 3b).

Table 1. Summary of the first and second lessons.
The number of vertices 5 6 7 8 9 10 ...
The sum of interior angles 180° 360° ? 720° 7 1080° ...

In Figure 3a, student Kenta divided the star heptagon into
star pentagon ABCFG and triangles BDF and CEG and cal-
culated ‘180° + 180° x 2 = 540°’. Regarding Figure 3b,
Kaito described his idea as follows:

Kaito  lapplied [...] the same method that Riko used
for a star pentagon. Seven triangles including
all vertices [...] and all of the sums of the inte-
rior angles. Then, I used the property of the
sum of exterior angles in order to remove
angles that were not the angles of the vertices.
[...]1 got 1260° as the sum of the interior
angles of the seven [outside triangles], and
720° is extra angles, so the answer is 540°.

Teacher Well, Kaito, what do you mean by the property
of exterior angles?

Kaito  The sum of the exterior angles of any polygon
is 360°. [...] The triangles include extra angles,
and all of them are the exterior angles. There
are two sets of the exterior angles, so I multi-
plied 360° by 2.

As can be seen, Kaito proved that the sum of the interior
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Figure 3. Star heptagons and nonagon.

angles of a star heptagon is 540° by adopting Riko’s
approach to the star pentagon in the first lesson (Figure 1c).
Kaito focused on the sum of the interior angles of the seven
‘outside triangles’ and found that the extra angles consisted
of two sets of the exterior angles of the ‘inside heptagon’.
Then, he concluded his answer by calculating ‘180° x 7 (out-
side triangles) - 360° x 2 (the two sets of exterior angles)’.

Another student, Miwa, suggested that the same approach
could be applied to the case of star nonagons and proved that
the sum of the interior angles of a star nonagon is 900° by
calculating ‘180° x 9 (outside triangles) - 360° x 2 (the two
sets of exterior angles)’ (Figure 3c).

Star-even polygons revisited for unification

As the students’ approach to star-even polygons (in the sec-
ond lesson) was different to their approach to star-odd
polygons (in the third lesson), the teacher began the fourth
lesson by encouraging the students to look back at their
investigations regarding star-even polygons. He posed the
question of whether Riko’s approach (Figure 1c) could be
applied to the case of star-even polygons. The students indi-
vidually or collaboratively worked on this task by taking star
hexagons and octagons as examples. They then shared their
ideas in a whole-class discussion.

Student Daiki, for instance, expressed his idea regarding
the star octagon case as follows (Figure 4b):

Daiki A star octagon consists of eight stars, oops,
eight triangles and a single octagon. [...]
Because the interior angles of a triangle add
to 180° and there are eight, 1440°. Because the
sum of the exterior angles of the decagon [He
misspoke, meaning ‘octagon’] is 360 times 2
and 720, and because the angles, except for the
top vertices of the triangles, are extra sides and
angles, I subtracted the sum of the exterior
angles from 1440, and got 720°.

In his account, Daiki employed Riko’s approach shared in
the first and third lessons and proved that the sum of the inte-
rior angles of a star octagon is 720°. Thus, with the
encouragement of the teacher, the students found that the
approach to star-odd polygons was also applicable to star-
even polygons and thereby unified their approaches to these
two types of star polygons.

After this, student Masaru reflected on what they had done
since the first lesson and commented that there was a general
pattern; when the number of the vertices of a star polygon
increases by one, the sum of the interior angles increases by
180°. The teacher responded to this observation by inviting
other students to explain why this pattern was true. After indi-
vidual work and small-group discussion, student Kenta wrote
his ideas on the blackboard to share with the class:

Figure 4. Star hexagon and octagon revisited.
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The number of triangles of a star polygon is equal to the
number of vertices. The sum [of the interior angles of
a star polygon] can be found by ‘the sum of the inte-
rior angles of the triangles - two sets of the sum of the
exterior angles’. Because the two sets of the sum of
the exterior angles are always constant, [the sum of the
interior angles of a star polygon] increases by the inte-
rior angles of the triangles.

This shows genuine cognitive progress whereby the stu-
dent explained why the general pattern—the sum of the
interior angles of a star polygon increases by 180° if the
number of the vertices increases by one—is true, based on
the increase in the number of outside triangles and the con-
stancy of the sum of exterior angles in any polygons.
Subsequently another student, Aoi, agreed with Kenta’s idea
and shared her algebraic formula y = 180x - 720 = 180(x - 4)
(where y is the sum of the interior angles of a star polygon
and x is the number of the vertices of the star polygon).

Discussion

In the classroom episode described in this article, the stu-
dents constructed various proofs for different statements;
this included the sum of the interior angles of a star pentagon
is 180°, the sum of the interior angles of a star hexagon is
360°, and so on. These students’ proofs can be divided into
two clusters in terms of the sequence of the lessons. The first
cluster of proofs consists of those constructed up to the third
lesson, in which the students performed analysis according
to two cases, whether the number of the vertices of a star
polygon was even (Figure 2) or odd (Figures 3b-c). In this
analysis star-odd polygons and star-even polygons were
considered to be different cases and hence not unified. A uni-
fication was subsequently achieved by the second cluster of
proofs, namely the proofs constructed in the first, second
and fourth lessons, in which the students employed Riko’s
original approach to the star pentagon (Figure 1c) for not
only star-odd polygons (Figures 3b-c), but also star-even
polygons (Figures 4a-b).

The second cluster of proofs derived from Riko’s approach
can be regarded as providing explanatory unification of state-
ments about star polygons according to our definition shown
in the earlier section. Until the third lesson, the students con-
sidered that there were two different sets of statements and
proofs; one set of statements and proofs was related to star-
even polygons, while the other set was related to star-odd
polygons. These two sets were different for the students as
they performed the aforementioned case analysis (EU1). In
the fourth lesson (involving the second proof cluster), how-
ever, the students saw a connection in these sets: every star
polygon could be regarded as consisting of an inside polygon
and outside triangles. They thereby proved the statements
about both star-odd and star-even polygons by employing
Riko’s approach repeatedly (EU2). Furthermore, three theo-
rems were used until the third lesson: the interior angle sum
theorem of polygons in star-even polygons, the interior angle
sum theorem of triangles in star-odd polygons, and the exte-
rior angle sum theorem of polygons in star-odd polygons.
By using only the second and last theorems, the second proof
cluster successfully reduced the number of facts that the stu-

dents needed to use (EU3) [6]. All of these attributes regard-
ing the second proof cluster are consistent with Kitcher’s
notion of explanatory unification [7].

Mancosu (2015) regards Steiner’s model of explanatory
proofs and Kitcher’s model of explanatory unification as
two major accounts of mathematical explanation within
mathematics. A relationship between these two models can
be seen in the classroom episode described in this article.
The students created the general statement that the sum of
the interior angles of a star polygon is 180n - 720 (where n
is the number of the vertices of the star polygon) through the
unification of different proofs. They explained why this
statement, derived from the unification, is true by using one of
the characterising properties (Steiner, 1978) of star polygons:
a star polygon can be regarded as consisting of the ‘inside
polygon’ and ‘outside triangles’. The students explained why
the sum of the interior angles of a star polygon increases by
180° if the number of the vertices increases by one, by refer-
ring to the increase in the number of outside triangles and the
constancy of the sum of exterior angles in any polygons
(Kenta’s explanation in the fourth lesson). They provided
these explanations by producing the second cluster of proofs
through explanatory unification of statements regarding indi-
vidual star polygons (e.g., pentagons, hexagons, etc.), and
encapsulating this cluster into a single comprehensive proof
dealing with star polygons in general. In summary, the rela-
tionship between explanation and unification observed in this
classroom episode is that the students devised the explanatory
proof of the general statement through the unification of the
individual statements/proofs.

As the students (e.g., Kenta and Aoi) devised and proved
a general formula for the sums of the interior angles of star
polygons, explanatory unification can be regarded as repre-
senting a specific type of generalisation. However, not all
generalisation leads to explanatory unification: it is possible
to produce generalisations without experiencing different sets
of statements and proofs and without reducing the number
of facts used (for more on the wider role of generalisation,
see Mason, 2002, and Rivera, 2013). Some forms of gener-
alisation do not meet the conditions of EU1-3, and such a
process is not related to explanatory unification.

In the introduction to this article, we referred to the advan-
tages of explanatory unification in terms of authentic
mathematical practice as well as mathematical and higher-
order thinking. The classroom episode of this article shows
another benefit of this activity, namely fostering mathemat-
ical understanding. According to the recursive theory of
mathematical understanding by Pirie and Kieren (1994),
folding back plays a vital role in deepening understanding:

When faced with a problem or question at any level,
which is not immediately solvable, one needs to fold
back to an inner level in order to extend one’s current,
inadequate understanding. This returned-to, inner level
activity, however, is not identical to the original inner
level actions; it is now informed and shaped by outer
level interests and understandings. Continuing with our
metaphor of folding, we can say that one now has a
‘thicker’ understanding at the returned-to level. This
inner level action is part of a recursive reconstruction of
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knowledge, necessary to further build outer level know-
ing. Different students will move in different ways and at
different speeds through the levels, folding back again
and again to enable them to build broader, but also more
sophisticated or deeper understanding. (Pirie & Kieren,
1994, p. 69)

This folding-back process can be observed in the class-
room episode in this article. In the fourth lesson, the students
returned to the case of star-even polygons. This reflection
was not identical to their original consideration in the second
lesson, but was shaped by a different interest that encour-
aged the students to examine whether their approach to
star-odd polygons was applicable to star-even polygons. The
students thereby recursively reconstructed their knowledge
of star-even polygons and unified star-even and star-odd
polygons. This unification enabled the students to reach a
more sophisticated level where they not only verified that
the statement—the sum of the interior angles of a star poly-
gon increases by 180° if the number of the vertices increases
by one—was true, but also understood why this statement
was true (Hanna, 1995). Furthermore, the students invented
the algebraic formula y = 180(x - 4) [8]. Thus, explanatory
unification can be an effective activity for fostering student
mathematical understanding.

Although we did not design the lessons according to
Kitcher’s idea of explanatory unification, the episode
described in this article implies that explanatory unification
activity could not be achieved without the intentional design
of task sequences based on teachers’ knowledge of the sub-
ject matter. For example, after the star pentagon task, one
possibility for a subsequent task might be one investigating
other star polygons without dividing them into even and odd
cases. However, the teacher in this episode initially focused
the students’ attention on star-even polygons; this decision
was derived from his anticipation that the students would
notice that star polygons can be divided into two types
according to the possibility of one-stroke drawing, and from
his knowledge that it is more straightforward to examine
star-even than star-odd polygons. After the star-even poly-
gon task and then the star-odd polygon task, the teacher set
up another task revisiting star-even polygons, based on his
additional knowledge that the students’ approach to star-
odd polygons can be applied to star-even polygons. As a
result, this task sequence enabled the students to engage in
explanatory unification. The curriculum the students had
learnt seems to be another factor supporting the achievement
of this activity; the students had sufficient knowledge of the
subject matter related to the tasks, such as knowledge about
the exterior angles of a polygon. Thus, purposeful design of
task sequences (and curriculum) is essential for engaging
students in explanatory unification.

Conclusions

We believe it is worthwhile to introduce explanatory unifi-
cation activity into school mathematics and to consider how
to better support students in this activity. We do not think
that explanatory unification can be achieved in the case of
all tasks; purposeful design of task sequences is necessary.
In this sense, we agree with Sierpinska (2004) who consid-
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ers “the design, analysis and empirical testing of mathemat-
ical tasks, whether for the purposes of research or teaching,
as one of the most important responsibilities of mathemat-
ics education” (p. 10). Thus, future research should address
task design for explanatory unification. Examples of such
tasks would be those related to finding a formula for 1 + 2
+ 3 + ... + n and to the property of the sums of consecutive
natural numbers (e.g., 3+ 4 + 5and 8 + 9 + 10 + 11),
because, like the classroom episode in this article, some stu-
dents may tackle these tasks by case analysis according to
whether the number of natural numbers is odd or even. More
general direction for task design for explanatory unification
is implied in the episode in this article. The students’ activity
consisted of (1) obtaining several statements, (2) employ-
ing proof ideas to prove the statements, and (3) looking back
at their own investigations and realising that one of the proof
ideas was enough to prove the statements. Another possi-
bility for (3) is that one may devise a fresh proof idea that
can be employed for all the statements. Task sequences elic-
iting this process would enable students to experience
explanatory unification by proofs.

Notes

[1] Kitcher himself considers explanation in terms of unification, as he
states that “to explain is to fit the phenomena into a unified picture insofar
as we can” (Kitcher, 1989, p. 500).

[2] Such argument clusters are often provided by building theories (e.g.,
Galois theory and Newton’s gravitational theory).

[3] Kitcher introduces several technicalities to elaborate his theory of
explanatory unification (e.g., general argument patterns consisting of
schematic arguments, filling instructions, and classifications). However, we
do not deal with them in this article because this quote provides a suffi-
cient characterisation of explanatory unification for our purposes.

[4] All the diagrams shown in this article are taken from the students’ work-
sheets. We added the labels in Figures 1a and 3a for clarification.

[5] The transcripts have been translated from Japanese and edited for clar-
ity. Editorial omissions are shown by [...].

[6] Logically speaking, it is sufficient to accept only the interior angle sum
theorem of triangles as a basis, because this theorem can be used for deriv-
ing the other two theorems. However, the students had learnt this logical
relationship long before, and they were not conscious of it in the lessons
described in this article.

[7] We do not intend to argue that the second proof cluster gives the
absolute explanatory unification. There are other arguments that can deal
with more general star polygons (which are defined as polygons constructed
by connecting the vertices with skipping the next k vertices).

[8] This invention of the algebraic formula was achieved by the second
cluster of proofs and thus is relevant to the discovery function of proofs
(de Villiers, 1990; for a recent review of the discovery function, see
Komatsu, Tsujiyama, & Sakamaki, 2014).
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