
Predicting financial market crashes using ghost singularities

Damian Smug1a, Peter Ashwin1b and Didier Sornette2,3

1 Centre for Systems, Dynamics and Control, Department of Mathematics, Harrison Building, University of Exeter, Exeter
EX4 4QF, United Kingdom

2 ETH Zurich, Department of Management, Technology and Economics, Scheuchzerstrasse 7, CH-8092 Zurich
3 Swiss Finance Institute, c/o University of Geneva, 40 blvd. Du Pont d’Arve, CH 1211 Geneva 4, Switzerland

13th July 2017

Abstract. We analyse the behaviour of a non-linear model of coupled stock and bond prices exhibiting
periodically collapsing bubbles. By using the formalism of dynamical system theory, we explain what drives
the bubbles and how foreshocks or aftershocks are generated. A dynamical phase space representation of
that system coupled with standard multiplicative noise rationalises the log-periodic power law singularity
pattern documented in many historical financial bubbles. The notion of ‘ghosts of finite-time singularities’
is introduced and used to estimate the end of an evolving bubble, using finite-time singularities of an
approximate normal form near the bifurcation point. We test the forecasting skill of this method on
different stochastic price realisations and compare with Monte Carlo simulations of the full system.
Remarkably, the approximate normal form is significantly more precise and less biased. Moreover, the
method of ghosts of singularities is less sensitive to the noise realisation, thus providing more robust
forecasts.
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1 Introduction

Forecasting market behaviour has been a topic of general
interest for hundreds of years. At the same time, given
the complexity of financial markets, mathematical models
have been limited to explore in a rather fragmented way
some of the many mechanisms and dynamics at play in
the real world. For instance, there are models exploring
the impact of the dynamics between traders (see e.g. [1–
6]), other models attempt to capture the effects of feed-
backs between financial information and investment stra-
tegies using various stochastic non-linear processes (see
e.g. [7–10]). These references can be conceptually linked
to the pioneering work of [11–16] describing the dynami-
cal behaviour of heterogeneous markets with many trader
types using dynamical system concepts, including limit
cycles as the large type limit of interaction agents, bi-
furcation routes to instability and strange attractors in
evolutionary financial market models. This variety sugge-
sts that the concepts and methods of complex dynamical
systems could be useful in the area of financial markets.
A certain type of non-linearity is of particular interest
due to its large impact in generating what are arguably
the most visible deviations from normally (quasi-)efficient
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financial markets, namely financial bubbles. During finan-
cial bubbles, positive feedback mechanisms give rise to the
so-called super-exponential acceleration of prices [17–20],
followed by the burst of the bubble in large drawdowns
[21–23], i.e. crashes. A parsimonious representation of this
super-exponential dynamics takes the form of finite-time
singularity models [24–28].

In the present paper, we revisit the model of coupled
stock and bond prices introduced by [10], which exhibits
periodically collapsing bubbles in a certain domain of the
parameter space. We extract the underlying finite-time
singularities and use the associated trajectories to develop
a method to predict the bubble collapses. First, we develop
our formalism and technique to provide credible predicti-
ons of the stock price falls in the deterministic case. We
then test the method in a stochastic extension of the mo-
del. Using the theory of dynamical systems, we introduce
the notion of ghosts of finite-time singularities.

The concept of ghosts of singularities emerges from
studying stable periodic solutions in the neighbourhood
of a saddle-node bifurcation. We realised that, even if the
trajectory close to the saddle-node point can be well ap-
proximated by a truncated normal form, further away, the
differences might become infinitely large (for instance, if
the periodic orbit stays bounded and the normal form ap-
proximation exhibits a blow up in finite time), but the pe-
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riod can still be well estimated. In general, we will use the
notion of ghosts of finite-time singularities to describe the
rapid changes in periodic solutions, for which the trunca-
ted normal form leads to real finite-time singularities that
are not observable in the original system. A key insight
is that, even if we cannot approximate the exact shape
of the periodic function, we are able to obtain another
piece of information that is almost as important – its pe-
riodicity. We show that the knowledge about the period of
oscillations can indeed help forecast the time of a crash.

The article is constructed as follows. In Section 2, we
explain the construction of the model we investigate, build
basic intuitions on the bubbles and crashes for the de-
terministic and stochastic versions and justify dynami-
cally several stylized facts observed in financial markets.
In Section 3, we introduce the notion of a ghost of a finite-
time singularity for a simple non-linear ODE and test its
predictive power on the deterministic system of coupled
stocks and bonds. Moreover, we present the comparison of
the predictive performance of our methodology compared
with the standard unconditional Monte Carlo approach in
the stochastically extended system. Section 4 concludes.

2 Non-linear dynamical system of stocks and
bonds

In this section, we recall the dynamical system of [10] and
provide dynamical explanations for a variety of market
events. We also point out the existing bifurcations and how
the system responds to parameter shifts. The latter will
be quantified in the neighbourhood of bifurcation lines.
The system is extended into a version with multiplicative
noise to model stochastic price fluctuations.

2.1 Definition of the dynamical system

A dynamical system of a coupled pair of one bond and
one asset is introduced in [10]:{

ẋ = x− x2 · e−bxz

ż = z − z2 · e−gx
. (1)

The system is designed from a self-financing portfolio
and links the price of an asset/stock (x) with the price of
a bond (z), the latter quantifying the cost of borrowing.
As can be observed later, the amplitude of variations of z
is too large to be directly interpreted as a real bond price
and one can treat z as the investors confidence for further
growth of stock market. Although qualitatively the bond
price is positively correlated with the confidence, for this
paper we keep to an analysis of the model presented in
[10] and leave its generalization to future work.

Parameter b > 0 stands for the sensitivity of the fun-
damental asset price on past asset and bond prices, and
parameter g < 0 is the sensitivity of the fundamental bond
price to past asset prices. The scheme of feedback loops

Fig. 1: Schematic diagram showing the feedback loops go-
verning the prices x(t) and z(t) for the model (1) of [10].
An increasing bond price means mechanically a lower in-
terest rate and thus a lower borrowing cost, which favours
further stock price increase (term e−bxz with b > 0). A
large stock price leads to a reaction of the central bank
to increase the interest rates and thus decrease the bond
price (term e−gx with g < 0). A larger stock price is also
assumed to feedback positively on itself (term e−bxz with
b > 0).

governing the equilibria of these two variables is presen-
ted in Fig. 1 and is more thoroughly explained by [10].
One can think of the terms e−bxz and e−gx as quantifying
the amplitudes of the forces that tend to push the prices
back to their fundamental values. Depending on the pa-
rameters in system (1), three different scenarios can be
observed for the same initial conditions: convergence to a
stable fixed point, divergence to infinity (only for g > 0) or
convergence to a stable periodic orbit. In the following, we
classify the different bifurcations exhibited by system (1),
making more precise and extending the analysis of [10].
We shall focus on the non-linear periodic orbits as their
properties make them reasonable candidates to represent
bubbles and crashes in real financial markets.

Definition of bubbles: We shall call ‘bubble’ each
transient part of a periodic orbit during which the price
x accelerates in a super-exponential fashion, and which
is followed by a fast correction. In the deterministic ver-
sion (1) of the model, these bubble regimes occur only
for certain periodic orbits. The bubbles are thus occur-
ring periodically, hence the title of ‘periodically collapsing
bubbles’ in [10].

2.2 Bifurcations of fixed points and periodic orbits

In a macroscopic view of the two parameter plane for the
system (1), one can observe two lines of bifurcations of
fixed points – saddle-node and Hopf [10], which are pre-
sented in Fig. 2A. However, taking a closer look at the
region where these two lines meet, it turns out that it is
not a single point, but a set of points where bifurcations of
codimension-two occur. From an economic point of view,
this means that a very small change in the market con-
ditions can change the system from a stable one to one
that exhibits regular crashes. Of course, these boundaries
between different regimes will be smoothed out somewhat
when a stochastic component is added (see e.g. [29]), as we
also show below. Appendix A provides the exact values for
the points where bifurcation lines meet (Bogdanov-Takens
and cusp points). After tracking certain bifurcation paths
varying b with fixed g, one can see that the bubbles are
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not necessarily born from a Hopf bifurcation, but arise
after ‘having’ at first an infinite period. Two cases must
thus be considered:

1. The saddle is always present. The periodic orbit grows
until it hits the saddle and the homoclinic connecting
orbit appears (see Fig. 8.12. in [30]). For one parameter
value, the stable and unstable separatrix of the saddle
are connected. To refer to this situation, we will use
the abbreviation HX.

2. The other possibility is that a periodic orbit is born
from a collision of a saddle and a node, which makes
both equilibria disappear. The set of parameters for
which the collisions occur forms a saddle-node invari-
ant circle (denoted SNIC).

The HX bifurcation line was tracked in the two-parameter
plane by following an orbit of large period, whereas the
SNIC coincides with a saddle-node branch. In Fig. 2B,
both lines are indicated.

In order to show how changes of parameter affect the
stability of the fixed points and of the periodic orbits,
Fig. 3 presents a set of bifurcation diagrams where chosen
paths for different values of g are shown to determine the
bifurcation order. The selected parameter values exhaust
all the possible situations. Note that the periodic orbits
always emerge if either a saddle collides with a stable node
or via a Hopf bifurcation.

2.3 Analysis of scaling laws governing the period and
amplitude of the bubbles

A numerical study of the period and amplitude of bub-
bles in the vicinity of certain singularity lines is presented
in [10]. Here, we present analytical validations of those
results.

Period of the bubbles. In the bifurcation diagram
3B, there are two disjoint intervals where bubbles occur.
As defined in Section 2.1, a necessary condition for a bub-
ble to occur is the presence of a periodic orbit (in the
deterministic version (1) of the dynamical system). We
find that oscillations are born in Hopf bifurcation and re-
main until a HX bifurcation, then they appear again in
a SNIC. These two situations are governed by different
scaling laws:

1. approaching HX (see [32]):

fhx(b) = c · ln |b− bhx| , (2)

2. approaching SNIC (Example 4.3.1 in [33]):

fsnic(b) = c · |b− bsnic|−1/2 . (3)

In the second case, adding higher order terms may give
better fits. Fig. 4 shows good agreements with the best
fits of these functions using the L2 norm.

Amplitude. In Appendix B, we provide a short ana-
lytical study proving that the amplitude of bubbles for
g → 0− is governed by a scaling proportional to 1/|g|,

which supports the numerical results of [10]. The main
argument relies on the scaling law 1/|g| governing the po-
sition of the saddle fixed point, which provides a lower
bound for the amplitude of the peak of a bubble. Further-
more, for g → 0−, the ratio of the bubble amplitude to
the position of the saddle appears to converge to a con-
stant between 1 and 2, which suggests the same scaling
law holds for the bubble amplitude.

2.4 Stochastic dynamical system of stocks and bonds

In order to investigate the extent to which the classifica-
tion of the different regimes of the deterministic system
(1) informs us on the behaviours of prices in the presence
of a stochastic component, and how the concept of ghosts
of finite-time singularities presented below applies to the
noisy situation, we first present numerical illustrations of a
stochastic differential equations (SDE) version of (1) with
multiplicative noise. Specifically, we study the following
SDEs {

dx = (x− x2 · e−bxz)dt+ σx x dW
(1)
t

dz = (z − z2 · e−gx)dt+ σz z dW
(2)
t .

(4)

The two new terms σx x dW
(1)
t and σz z dW

(2)
t correspond

to the standard multiplicative proportional stochastic com-
ponents of financial price models. For b, g → +∞, the two
non-linear terms vanish, and the system (4) reduces to two
standard geometric Brownian motions (GBM). Neverthe-
less, in the system we analyse, the natural value of g re-
sides in the interval (−∞, 0). Making |g| small (g → 0−)
corresponds to decreasing the sensitivity of bond price on
stocks. Further growth of g above 0 means that the sensi-
tivity is actually inverted and g → +∞ should be under-
stood as not large sensitivity, but an inverted way with
which the stocks have an impact on the bonds. Moreover,
g → +∞ =⇒ z → +∞ which implies that e−bxz → 0.
Then, for larger times the stock price decouples from the
bond price and even for small fixed positive values of b
the GBM for x can be recovered. It is important to no-
tice, that both b→∞ and b = 0 lead to such decoupling,
but in the latter case x is bounded since the deterministic
part is a pure logistic equation in x. The z dependence
for b > 0 thus amounts to decreasing the impact of the
bound, in other words, increases the bound for the price
x.

Here, the volatilities σx and σz are constant and the

two Wiener processes dW
(1)
t and dW

(2)
t are correlated

with a constant correlation coefficient of 0.5. This value is
justified as, according to [34], correlations between post-
war returns in stock and bond prices were around 0.4 in
the U.S. and around 0.6 in the U.K. However, during bub-
bles and crashes, correlations tend to vary a lot [35–37],
hence it would be interesting to investigate the impact of
regime switches in the amplitude of the correlation coeffi-
cient. We leave this for a future work.

In our simulations, we analyse the stochastic dynamics
close to the saddle-node bifurcation at an arbitrarily cho-
sen point b = 0.42 and g = −0.04. We use the empirical



4 Damian Smug, Peter Ashwin, Didier Sornette: Predicting financial market crashes using ghost singularities

(A)

0.3 0.4 0.5 0.6

b

-0.15

-0.1

-0.05

0

0.05

0.1

g

Fold bifurcation
Hopf bifurcation
Bounded/unbounded behaviour

(B)

0.44 0.45 0.46 0.47 0.48

b

-0.078

-0.076

-0.074

-0.072

-0.07

-0.068

-0.066

g

g
1

g
2

g
3

g
4

g
5

Fold
Hopf
HX
SNIC
BT
Cusp

Fig. 2: (A) Two-parameter bifurcation diagram, (B) zoom-in on the marked rectangle in Fig. 2A. The dotted lines
represent certain bifurcation paths, which are shown in Fig. 3. BT means Bogdanov-Takens point. Bifurcations are
computed using XPPAUT [31].
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Fig. 3: One parameter bifurcation diagrams for fixed g < 0, (A) g = −0.067, periodic orbits appear when a saddle
collides with a sink, (B) g = −0.071, periodic orbits appear via a Hopf bifurcation, exist until a homoclinic bifurcation
occurs and then appear again when a saddle collides with a sink (further analysis of the periods for that situation is
presented in Section 2.3), (C) g = −0.072, periodic orbits emerge from a Hopf bifurcation point, which occurs between
two fold bifurcations, (D) g = −0.074, the fold bifurcations are approaching each other, (E) g = −0.076, only the Hopf
bifurcation remains, from which periodic orbits appear.
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Fig. 4: Analysis of the orbit periods for g2 = −0.071 as in Fig. 3B. (A) Scenario 1 of approaching HX (left series of
dots) and scenario 2 of approaching SNIC (right series of dots fitted by expression (3)); (B) Scenario 1 of approaching
HX: logarithmic transformation of the distance from the bifurcation point approximated by a linear function.

evidence that the daily standard deviation for stock prices
(resp. bond prices) is of the order of a few percent, say 3%
(resp. a few basis point, i.e. a few hundreds of a percent,
say 0.05%). Taking the reduced time unit of our model
to correspond to approximately three months of the real
world, this yields that reasonable values of σx should lie
in the interval [0.2, 0.6] and of σz in the interval [0, 0.01].

The values of σx could be retrieved in another way
as well. Assuming that the typical standard deviation in
the GBM model of stock prices with daily time units is
approximately of order 10−4 (say 0.0004) and one time
unit in our model is around 100 days, rescaling the vari-
ance proportionally to the time we obtain the new value
of σ̄ =

√
100 ·0.0004 = 0.004 and the GBM can be written

in the new time units as dp = µpdt+σ̄pdWt. If we take the
drift coefficient µ to be of order 1% in 100 days (around
3% in a year), we obtain dp = 0.01 ·pdt+ 0.004 ·pdWt and
the proportion for stock price σ̄

µ = 0.4 is the same as in

the model (4) with σx

1 = 0.4.

We leave for another work the problem of a rigorous
calibration of the model to real data, as it will require spe-
cially adapted maximum likelihood methods, generalised
methods of moments and/or Kalman filtering.

Fig. 5 shows four trajectories obtained by numerical in-
tegration of (4) for different levels of noise (different values
of σx and σz). The first observation is that the stochastic
system also exhibits recurring bubbles with qualitatively
similar shapes to the deterministic case. However, rather
than being precisely periodic, one can observe some va-
riability in the waiting times between them. This can be
rationalised by viewing stochastic innovations as providing
effective changes of initial conditions along the price paths.
Stochasticity also introduces randomness in the amplitude
of the bubbles, some being smaller and others larger than
in the deterministic periodic case. Another interesting ob-
servation is that, as the noise amplitude increases, bubbles
are accompanied by ‘foreshocks’ and ‘aftershocks’, namely
significant price activities before and after a main price
peak. These qualitative observations will be explained tho-
roughly in Section 2.5.

2.5 Dynamical bubble – genesis

In order to rationalise the qualitative properties illustrated
in Fig. 5, let us study an arising bubble in phase space
instead of in the time domain. The way a bubble grows
or deflates can be driven by a variety of forces that can
be investigated conveniently in phase space. The phase
diagrams of Fig. 6B and Fig. 6D present the crucial drivers
of bubbles, which are now listed.

– Nullclines (the curves where either ẋ = 0 or ż =
0) and their intersection – unstable fixed point. As
the nullcline for x (red curve) is the most important
for the stock price dynamics, to ensure the clarity of
the graphical representation, the nullcline for z is not
included. When the trajectory lies close to the nullcline
for x, the dynamics of the stock price becomes almost
entirely driven by the stochastic component. Close to
the equilibrium fixed point (red dot) or their ghosts
(x ≈ 0, z ≈ 0.9), the deterministic trend of the bond
price disappears as well.

– Deterministic bubble path to which the stochas-
tic trajectories are attracted (blue bold curve). The
system evolves clockwise and the density of dots re-
presents the inverse of the speed of the representative
point (one dot is plotted every fixed time period). For
small x, the price changes happen at a much slower
pace than for higher values of x and the largest speed
is reached when x collapses in what can be termed as
a crash.

– Other sample deterministic trajectories help un-
derstanding the future evolution of the system. Every
trajectory spirals clockwise, some of them prematurely
abort the bubble, whereas other trajectories approach
the bubble much further from the equilibrium ghost
point and will be instantly directed to take the loop
around.

These terms are useful in explaining what really drives the
development of each specific bubble. In the presence of
noise, there are various patterns occurring in the system,
which in turn capture several stylized facts observed in
real financial markets. Let us focus on the three main sta-
ges of the development of a bubble. The numbers in curly
brackets stand for certain situations presented in Fig. 6.
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Fig. 5: Sample bubbles generated with system (4) with various noise level for the same realisations of the random

increments dW
(1)
t and dW

(2)
t . The parameters are b = 0.42, g = −0.04, Corr(W

(1)
t ,W

(2)
t ) = 50%, initial conditions:

x0 = 2, z0 = 0.3, (A) σx = 0.0, σz = 0.00, (B) σx = 0.2, σz = 0.01, (C) σx = 0.4, σz = 0.01, (D) σx = 0.6, σz = 0.01.

Foreshocks. When a bubble begins, stochastic fluc-
tuations can push the trajectory above or below its un-
derlying deterministic version. If x happens to be pushed
down intensively in a small time period, the dynamics
may be driven back and terminate the bubble, leading
to the abortion of the main loop – see point {7} in Figs.
6C and 6D. The shape of the deterministic vector field
shows that, for smaller values of x, the burgeoning bubble
trajectory can be pushed back to the ghost fixed point
(x = 0, z = 0.9) with relatively smaller levels of noise
(the bubble aborts). For other trajectories tracking the
deterministic bold blue line, much larger levels of noise
are needed to push the price along such a detour, unless
the system approaches the end of bubble or the unstable
equilibrium when the deterministic force will gradually
make x decrease.

On the other hand, the dynamics of x can withdraw
partially, spiral out and create another bubble again {2}.
The latter situation can occur several times {2,4} before
the main crash {6} happens. Moreover, the higher the
level of x, the quicker the progression along the under-
lying deterministic bubble path. As x increases, the price
trajectory becomes influenced by underlying deterministic
trajectories spiralling out that changes in shape, compa-
red to the phase space region for smaller x’s. The higher
x is, the smaller can be a partial detour away from the de-
terministic trajectory. As the noise is multiplicative, the
same Wiener increments give larger variations of x as the
dynamics evolves, so that more structures can be observed
along the bubble growth. Faster evolution leads to a de-
crease in the time intervals between the consecutive price
peaks. When price peaks are observed in phase space for
x = 10, x = 20 and x = 30, in time space the latter two
will be closer to each other than the first two.

All those factors add up and lead to the birth of smal-
ler structures with accelerating periodicity preceding the
end of the bubble and the start of the main crash. These

patterns are reminiscent of those observed in real financial
bubbles, in particular the joint acceleration of price and
of price oscillations captured by the log-periodic power
law singularity model [24, 38–40]. To support this obser-
vation we produce Lomb-periodograms (Fig. 7) of the tra-
jectories presented in Fig. 6 (for more information on log-
periodicity see [41–43]). The spectral analysis is performed
on the residuals R(t) of the logarithmic series ln(x(t)) as a
function of the variable ln(tc−t) optimised for the highest
peak in the Lomb-periodogram with respect to tc. The re-
siduals are obtained through a transformation given in
equation (18) from [38]:

R(t) =
ln(x(t))−A−B(tc − t)β

C(tc − t)β
(5)

with A = 10, B = 1.0, C = 0.76, β = 0.10 for the series
presented in Fig. 7A and A = 4.5, B = 1.0, C = 0.34,
β = 0.44 for the series presented in Fig. 7B. In both dia-
grams one can spot a clear peak characterising the most
common log frequencies which suggests the presence of
log-periodicity.

The peaks presented in Fig. 7 at frequencies around
0.1− 0.3 correspond to remains of the slow trend over the
whole time interval of analysis. The peaks at f1 ≈ 0.9 in
Fig. 7A and f2 ≈ 1.3 in Fig. 7B are the signal associated
with genuine log-periodicity. The corresponding angular
frequencies are ω1 = 2πf1 ≈ 5.7 and ω2 = 2πf2 ≈ 8.2,
whereas the preferred scaling ratios are λ1 := e1/f1 ≈
3.0 in the first case and λ2 := e1/f2 ≈ 2.2 in the second
one. λ1 and λ2 quantify the ratio between the shrinking
intervals defined by successive price peaks. The results are
not sensitive to the method for selecting the critical time
tc. Picking tc close to the maximum of the price results
in basically the same position of the second peak close to
f = 1, only the size of the peak changes somewhat.

It is important to mention how our findings relate to
actual empirical results. As a benchmark we take the re-
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search presented in [43]. It is an interesting observation to
note that the series shown in Fig. 7A visually very well
matches most of the real data based Lomb-periodograms
from [43]. The scaling we obtained in the first case is ho-
wever slightly larger – 3.0 compared to 2.0. We expect
that varying the parameters b and σx can influence the
log-frequency of the foreshocks. The first parameter go-
verns the periodicity of the bubbles (see equations 2 and
3) whereas the second one should be large enough for the
foreshocks to appear (as presented in Fig. 5), however, we
leave detailed testing of this hypothesis for further work.
In the second Lomb-periodogram (Fig. 7B), one can ob-
serve two major peaks – it means that the low frequencies
in residuals were not perfectly removed. This series can be
compared to the outlying NASDAQ100 in Fig. 11 from the
aforementioned paper. In fact, the frequency of the peak
corresponding to the log-periodicity well matches the data
presented in [43] – 2.2 versus 2.0.

Main crash. The stochastic component modulates
the growth of the amplitude of each bubble. Small excur-
sions outwards of a deterministic bubble speed up the evo-
lution and are multiplied by the non-linear forces (see the
furthest right part of the deterministic trajectory). This
can lead to a rapid crash without any preliminary small
corrections. On the other hand, if the trajectory gets pus-
hed inwards by stochastic innovations, it enters the region
with a smaller influence from the underlying deterministic
dynamics, which can then generate aftershocks.

Aftershocks. The aftershocks are purely noisy struc-
tures occurring close to the unstable fixed point. The tra-
jectory can wobble around the nullcline or an equilibrium
point for an extended period of time. This could be inter-
preted as a market hesitating on whether to accept that
the price has peaked and is due for a correction or a crash,
or rather developing some wishful thinking that this is just
a temporary consolidation before a new rally starts. Ad-
ding noise also in the bond price dynamics can lead to
augmenting the variety of consecutive aftershocks.

3 Ghosts of finite-time singularities – from
derivation to application

This section develops a notion that allows us to provide
analytical approximations to the dynamics of stochasti-
cally recurrent bubbles described by the SDEs (4). We
also provide a guide on how one can use this framework
to predict crashes.

3.1 Introductory example

We start with an example explaining what we call ghosts
of finite-time singularities. We present a study of an ODE
known as the theta model for a spiking neuron (equation
(3.6) in [44]). We consider the following simplified system
with one parameter λ:

θ̇ = 1− cos(θ) + λ . (6)

The solution of the equation (6) with λ > 0 can be found
explicitly, choosing a continuous branch of arctan for:

θ(t) = 2 arctan

(√
λ2 + 2λ

λ+ 2
tan

(
t

√
λ2

4
+
λ

2
+ const.

))
(7)

where the constant term is determined by the initial con-
dition. On the other hand, one can look for the normal
form of the saddle-node bifurcation, which is ẋ = x2 + λ.
Such a form is easily obtained by a Taylor expansion of
the cosine function,

cos(θ) = 1− θ2

2
+O(θ4) , (8)

and the ODE (6) can be approximated by

θ̇ =
θ2

2
+ λ (9)

with the explicit solution

θ(t) =
√

2λ tan

(
t

√
λ

2
+ const.

)
. (10)

This solution exhibits a singular behaviour for the times
tn such that tn

√
λ/2 + const. = (2n+ 1)π/2 becomes an

odd multiple of π/2. In contrast, the exact solution (7)
does not have such a divergence, with θ remaining finite
at all times. Rather than showing a divergence at these ti-
mes tn, θ jumps from positive to negative. Close to these

times tn but not too close such that tan
(
t
√
λ/2 + const.

)
is sufficiently smaller than 1 so that one can expand the
arctan to equal its argument, and neglecting terms of or-
der λ2 compared to λ and terms of order λ compared to 1,
then the exact solution (7) reduces to the solution (10) of
the approximating normal form. This shows that the ap-
proximate solution shadows the true trajectory very close
to the singular times tn. We refer to the jump-like beha-
viour of the true dynamics as the ghost of the singularity
exhibited by the underlying normal form approximating
it.

In equation (10), the constant term plays an important
role. If the initial condition in the original system (6) is
not directly observable (for instance it might be out of
the stable periodic orbit), the constant term in (10) can
be used to obtain reliable estimates of the time of the next
singularity.

We assume that λ > 0, hence the system exhibits a
periodic behaviour as in Fig. 8. From equations (7) and
(10), it is a simple calculation to obtain the periods, which
are not identical due to the differences in the argument of
the tangent function. But, the smaller the absolute value
of λ, the smaller is the difference in periodicity and the
more accurate the predictions obtained from the normal
form approximation (9) of the full system (6). We conclude
that the approximation of the true solution leads to a good
estimation of the period even if its amplitude does not
match that of the original system. This result can be used
to make predictions on the future state of the system with
no need for simulations.
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Fig. 6: Schematic representation showing different phases and outcomes of stochastic bubbles for (4) with b = 0.42,
g = −0.04, σx = 0.6, σz = 0.0. The bold blue line represents a deterministic stable orbit with blue dots at fixed
time intervals. (A) and (B) Foreshocks {1/2} and {3/4} preceding the main crash {5/6} are clearly visible. The time
intervals between the consecutive local peaks and corrections decrease as a result of at least two factors: first, until
around z = 0.2, the price x accelerates making it prone to take a time consuming detour for smaller x {2} that becomes
less impactful compared to when x is larger {4}. (C) and (D) The noise can push the dynamics to enter the region
where deterministic forces drag trajectories back to the region of small x, thus aborting the bubble {7} before it fully
develops. The same kind of behaviour for higher x levels can shorten the life of a bubble in the regime close to the
unstable fixed point where the price dynamics can oscillate temporarily before the main crash {8}.
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Fig. 7: Lomb-periodograms for the trajectories presented in Fig. 6. The selection of tc is done through scanning
different possible values between the maximum of the timeseries until the end of sample and then by picking the one
giving the highest peak in the Lomb-periodogram. (A) The optimised tc = 3.46, which is in the middle of the deflating
bubble, (B) the optimised tc = 13.26, which is the top of the bubble. In the second case the sample was shortened so
it begins at time 11.5, when the bubble starts to develop.
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Fig. 8: Example of ghosts of finite-time singularities and real finite-time singularities. (A) Schematic bifurcation
diagram of the flow of system (6). For λ < 0, there are two equilibria – one stable (black) and one unstable (white),
for λ = 0, a saddle-node bifurcation occurs and for λ > 0 (if we allow discontinuities in the solutions), one can observe
periodic orbits between −π and π. In the two-dimensional case, discontinuities are not necessary to obtain a periodic
behaviour. Panels (B) and (C) show the sample solutions for systems (6) and (9). The blue curve is the original
accurate solution of the full dynamics, where no finite-singularity occurs. The red one is the approximation based
on the saddle-node normal form. In the solution based on normal form, there are finite-time singularities whereas, in
the original one, bubbles and crashes are bounded. The jump behaviour exhibited by the exact solution of the full
system is called the ghost of the singularity associated with the normal form approximation. Parameter values are:
(B) λ = 0.01 and (C) λ = 0.2.

3.2 Analytical derivation of the ghosts of finite-time
singularities in the system of stocks and bonds

Building in the insights of the previous section, we now
calculate the extended centre manifold of the system (1)
in the parameter regime with bubbles and will use it to
approximate the solutions of the full system. The detailed
analysis is presented in Appendix C and leads to the final

form

x̄app(t) = A+B tan(C(t−D)) +E tan2(C(t−D)) , (11)

where the higher order term might be dropped, hence for
simplicity we also consider expression

xapp(t) = A+B tan(C(t−D)) . (12)
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The calculation gives explicitly all parameters but one –
D. This parameterD cannot be computed in the same way
as the others, since the (movable) singularities of xapp(t)
are at positions that strictly depend on the initial condi-
tion of the system [45]. The approximation suggested by
[10], which reads

x̂app(t) =
c1

(tΛ − t)β
exp

{
c2

(tΛ − t)α

}
, (13)

features super-exponential and finite-time singularity pro-
perties, just as (11) and (12). The most important achie-
vement coming from all the aforementioned approximati-
ons is that they can be used to predict the time of a crash
as being at or close to the time of the singularity. For x̂app
given by (13), it would be directly tΛ, whereas for x̄app
and xapp, additional calculations are required. Knowing
that tan(π2 + kπ) = ∞, the estimated crash time tc are
determined by the condition C(tc −D) = π

2 + kπ, which
gives

tc = inf

{
π/2 + kπ

C
+D > t2 : k ∈ N

}
, (14)

where t2 is the end of the given sample used to predict a
crash.

In order to provide greater flexibility in the fitting
scheme and to approach the fact that the trajectories have
a tendency to progress very slowly for low values of x,
we allow in the fitting procedures vertical correction, i.e.
parameter A will be fitted as well. Fig. 9 illustrates the
application of the ghosts of finite-time singularities in the
deterministic system (1). It demonstrates that the singu-
lar dynamics (12) provides remarkably accurate predicti-
ons of the ghost of the singularity, i.e., of the peak of the
real bubble dynamics.

3.3 Selection of the optimal window length

Before one applies the above results, there is one more pa-
rameter to determine – the window length w of the time
series to which the function (12) is fitted. It is impor-
tant to realise that one should not use the whole price
history, but only the rather recent one when the price
starts to acceleration and the bubble starts to develop.
Before that, the price is close to its ghost equilibrium fixed
point and is mostly exhibiting a random walk. Moreover,
as the function (12) exhibits periodic finite-time singu-
larities, when one wants to predict the next singularity,
including the previous one in the analysis will be highly
disruptive to the search algorithm (in our case: Levenberg-
Marquardt). The simple solution to avoid such situation
is to bound the window length, for instance to 70% of the
fitted function’s period and to check several initial guesses
picking the one with the least mean square error or the
smallest predicted time of a crash following the final (i.e.
‘present’) time t2 of the sample. In our computation, the
second criterion is used, as our objective is to predict the
singular time tp of the bubble collapse.

On the other hand, the window length cannot be too
small as even a tiny perturbation would cause tp to vary
significantly and the outcome would not be reliable any-
more. In order to avoid any a priori bias, we propose to
scan both window lengths w and end of sample time t2
on 100 randomly generated bubbles. Afterwards, for each

time window, the prediction error is quantified as
|tp−tc|
|t2−tc| ,

with the top and bottom 10% cases being put aside to
remove outliers and ensure robust results, and the rest is
averaged. The procedure maps one prediction error value
to each pair (w, t2). Fig. 10 presents the final results.

Based on Fig. 10, for the following simulations pre-
sented in the next Section 3.4, we will use window size
w = 10 for σx = 0.2 and w = 15 for σx = 0.4. For these
selected values of w, the prediction errors are the smallest
over the widest range of window size w and window ends
t2, making the results robust.

3.4 Application of ghosts of finite-time singularities

When all parameters are estimated, we can finally deter-
mine how the methodology of ghosts of finite-time singu-
larities can work in practice. Firstly, we generate a single
trajectory from the SDE model (4) with a sufficiently long
price history preceding a crash. The variable x is shown
as the grey line in Fig. 11 with its scale given on the left
hand side vertical axis. The knowledge of the model para-
meters, as determined in Appendix C, gives explicitly the
period and the slope of the tangent function (12) used to
approximate the emerging bubbles.

Then, based on the considerations presented in Section 3.3,
the size of the sliding window of analysis is chosen. For
σx = 0.2, it is w = 10, hence the first prediction (or cali-
bration) is done at time t2 = 10, which allows us to take
into account the history in the window t ∈ [0, 10]. This
initial window is shown as a bold grey line close the hori-
zontal axis in Fig. 11. The corresponding predicted crash
time tp(t2 = 10, w = 10) is indicated by the first black ‘x’
marker (with its scale given on the right hand side vertical
axis). Thereafter, the calibration window is shifted, while
keeping its size fixed, which mimics the passing of time as
the bubble develops and we accumulate data to perform
real-time forecasts, while removing data of the far away
past. Implementing this procedure gives us the evolution
of tp as a function of ‘present’ time t2, offered as a fo-
recast for the real time tc of the crash. We continue the
procedure until t2 approaches close to the true tc.

The forecasts obtained by using the tangent function
(12) are compared with those of the following Monte Carlo
scheme using the exact equations (4). We integrate 500
trajectories with the known exact parameters and initia-
ted in the current state (xt, zt), and record the time tMC,i

p

(i = 1, ..., 500) of the first crash that appears in each tra-
jectory. Operationally, we define a crash by the occurrence
of a maximum of a bubble that rose above 50% and then
collapsed to a value below 20% of the underlying determi-
nistic stable bubble that would exist for the same para-
meter values. For the selected level of noise, this criterion
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Fig. 9: Sample application of the ghosts of finite-time singularities in the deterministic system (1) for parameters
b = 0.42 and g = −0.04. (A) Presentation of one fit (thin red line) for a small sample set representing current knowledge
up to ‘present time’ t2 = 8 (bold red) compared with the true price trajectory (grey). The predicted time of the crash
(i.e. where the finite-time singularity occurs in (12) – indicated by the dashed black line) is very close to the peak
of the bubble and therefore provides an accurate forecast. (B) Time tp of the predicted crash (red) as a function of
the ‘present’ time t until which we assume we have knowledge of the price dynamics, compared with the exact crash
time tc. We apply here a sliding window of arbitrary length w = 3. Section 3.3 explains the methodology that we
follow to choose the optimal window length. When the bubble starts to grow rapidly (around t = 30), the predicted
crash time tc decreases towards the present time t and, as t increases, tp remains close to t as can be seen by the line
tp = t (solid black). The price acceleration thus tends to induce the calibration to believe that the crash is looming,
exaggerating the imminence of the danger. (C) Accuracy of crash prediction measured by 1 − |tc − tp|/|tc − t2|. The
prediction accuracy is remarkably high already very far from the crash, and does not improve significantly over most
of the lifetime of the bubble. However, when time passes 30, the accuracy deteriorates dramatically. It is caused by
the fact that the predictions are based on the normal form truncation close to equilibrium. This is not the case after
time 30 when the system grows exponentially. In other words, the prediction system develops a myopic optical illusion
when approaching close to the end of the bubble. (D) Mean Square Error for the fitted function (12). When the bubble
starts to rise rapidly, the MSE increases very quickly, confirming the lost of reliability of the prediction.

has been found to be very reliable. Then, the forecast tMC
p

is the median value of the all crash times tMC,i
p over this

population of 500 price trajectories (green line in Fig. 11).
The ensemble tMC,i

p (i = 1, ..., 500) also allows us to give
the inter-quartile interval of confidence (the light green
band in Fig. 11).

To determine the influence of the amplitude of the
noise process on the quality of the forecasts, we present
two different outcomes for the same noise value σx = 0.2
(Fig. 11A-B) and one for σx = 0.4 (Fig. 11C). It is no-
teworthy that these diagrams differ significantly. In the
first case (Fig. 11A), the price trajectory happens to be
very regular, and the predictions are found to be very
accurate over a large time interval. For the second price
realisation (Fig. 11B) that exhibits stochastic foreshocks,
the forecasts are more unstable, as a result of the influ-
ence of disjoint local attractors in the parameter space.
The disappearance of one of them with the lowest tp leads
visually to a discontinuous transition towards a different
state around time t = 17. On the other hand, the forecasts
are definitely closer to the true tc than the Monte Carlo

scheme. One can also note that the forecasts become ex-
cellent when t2 passes the value 20 beyond which the price
starts its characteristic bubble acceleration.

For the higher level of noise (Fig. 11C), two regimes
can be observed. First, tp steadily increases as a function
of t2. Then, around t2 = 20, one can observe a quick de-
creasing phase, which is caused by a sudden escalation of
the variable x. This suggests that the method of ghosts of
finite-time singularities provides a cautious approach as it
quickly reacts to variable changes while being on the con-
servative side with tp in general smaller than the true tc.
In contrast, the Monte Carlo forecast errs towards larger
values up to t2 = 20 and then converges quickly to the
correct value.

In summary, it is remarkable that the method of ghosts
of singularities provides in general a better forecast than
the full integration of the true dynamical stochastic equa-
tion. By reducing the complexity and focusing on the key
ingredient underlying the forecast skill, namely the time to
the bubble, the method of ghosts of singularities seems to
be less sensitive to idiosyncratic noise realisations, thus
providing more robust forecasts. This can be interpre-
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Fig. 10: Dependence of the prediction error
|tc−tp|
|tc−t2| as a function of window size w and end t2 of window. (A) For

σx = 0.2, the optimal window length is around 10. (B) For σx = 0.4, the optimal window length is around 15. The

parameters of the model are b = 0.42, g = −0.04, σz = 0.01, δ(W
(1)
t ,W

(2)
t ) = 50%. For both selected window sizes,

the error just before the time of a crash tc does not significantly differ in comparison to larger w’s and, moreover,
the smaller w is, the faster the system responds to new information. There is thus a trade-off between responsive
adaptation of the fits and error size.

ted as a kind of effective coarse-graining of the dynami-
cal equations, a process that, when done intelligently, has
been shown in the past to improve predictability [46–49].

4 Conclusions

Revisiting the non-linear model of coupled stock and bond
prices exhibiting periodically collapsing bubbles recently
proposed by [10], we have been able to prove and docu-
ment a number of novel important properties. We have
extended the previous analysis of [10] concerning the clas-
sification of a rich set of bifurcations in the two-parameter
space of this model, organised by codimension-two cusp
and Bogdanov-Takens points. We have also confirmed ana-
lytically the numerical results concerning the bubble am-
plitude scaling as 1/|g| as a function of the parameter g
quantifying the sensitivity of the fundamental bond price
to past asset prices, when it approaches 0 from below.
Moreover, following [33], we have shown that there are
two bifurcation paths along which a periodic orbit has its
period diverging, which are associated with two different
scaling laws: depending on the distance ∆ = |p−pbif | from
the bifurcation line, the period diverges as | ln∆| for an

homoclinic bifurcation or as ∆−
1
2 for a saddle-node inva-

riant circle, which are both present in the studied system.
Using a detailed phase space representation and spectral

analysis, we have been able to characterise the forces con-
trolling the bubble growth and deflation in the presence

of stochastic multiplicative noise. We found that the cha-
racteristics of the acceleration of the dynamics in phase
space and the shape of the deterministic vector field are
two major causes of the price patterns resembling the log-
periodic power law singularity structures observed in real
financial prices.

Finally, we have provided an analysis to show how dra-
matic shifts in such a system can be predicted. By expan-
ding the system in the neighbourhood of the saddle-node
bifurcation, we obtained a function that approximates an
arising bubble. This function exhibits finite-time singu-
larities and, therefore, it cannot be used to predict the
precise system state far from the equilibrium trajectory.
Nevertheless, its periodicity still matches well that of the
original system. This property gives a simple tool to pre-
dict when the system is going to crash. We have shown by
considering a few realisations of the stochastic price pro-
cess how the idiosyncratic occurrence of noise innovations
and increasing volatility impact the performance of the
predictions. We have introduced the notion of ‘ghosts of
finite-time singularities’, based on a normal form approxi-
mating the true dynamics and which exhibits a finite-time
singularity while the true system does not. But it turns out
that the time of the peak of the bubble in the true system
is very well approximated by the singularity time of the
approximating normal form. Hence, the peak of the bubble
can be viewed as a kind of ‘ghost’ of the finite-time sin-
gularity expressed in the approximating normal form. We
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Fig. 11: Test of the methodology using the ghosts of finite-time singularities in comparison with Monte Carlo forecas-
ting method. (A) and (B) correspond to two different realizations of the price process for σx = 0.2 and σz = 0.01, (C)
corresponds to one realisation generated with σx = 0.4 and σz = 0.01. The stochastic price trajectory is plotted (grey
line) with its scale given on the left hand side vertical axis. The scale of the crash time predictions is given by the
right hand side vertical axis. The symbols ‘x’ stand for the predicted time tp, using the history from time t− w until
time t to perform the calibration with the singular model. The criteria used to select the window size w for different
noise amplitudes are given in Section 3.3.

have shown that this concept is very useful to predict the
time of crashes by estimating the remaining time to the
end of an evolving bubble, using the approximated normal
form valid close to a bifurcation point. We have tested the
forecasting skill of the method of ‘ghosts of finite-time
singularities’ on different stochastic price realisations, in
comparison with the full integration of the true dynami-
cal stochastic equation. Remarkably, we have found that
the former is significantly more precise and less biased
than the construction of many scenarios built on the full
integration of the exact stochastic differential equations.
The mechanism underlying this augmented performance
has been argued to result from a reduction of complexity
that focuses on the key ingredient underlying the forecast
skill, namely a ghost singular behaviour, which leads to a
smaller sensitivity to idiosyncratic noise realisations, thus
providing more robust forecasts.

The authors are grateful for the opportunity to work within the
CRITICS Innovative Training Network. This project has recei-
ved funding from the European Unions Horizon 2020 research
and innovation programme under the Marie Sk lodowska-Curie
grant agreement No 643073. Moreover, we acknowledge useful
feedback from Jan Sieber as well as valuable comments from
two anonymous reviewers.

Author contribution statement

The manuscript was mostly prepared by the first author,
based on research directed by all the authors. All the aut-
hors have read and approved the final manuscript.

References

1. Thomas Lux. Herd behaviour, bubbles and crashes.
The Economic Journal, 105:881–896, 1995.

2. Alain Corcos, Jean-Pierre Eckmann, Andreas Malas-
pinas, Yannick Malevergne, and Didier Sornette. Imi-
tation and contrarian behavior: hyperbolic bubbles,
crashes and chaos. Quantitative Finance, 2:264–281,
2002.

3. Ahmet Omurtag and Lawrence Sirovich. Modeling
a large population of traders: Mimesis and stabi-
lity. Journal of Economic Behavior and Organization,
61(4):562–576, 2006.

4. Gian-Italo Bischi, Mauro Gallegati, Laura Gardini,
Roberto Leombruni, and Antonio Palestrini. Herd be-
havior and nonfundamental asset price fluctuations in
financial markets. Microeconomic Dynamics, 10:502–
528, 2006.



14 Damian Smug, Peter Ashwin, Didier Sornette: Predicting financial market crashes using ghost singularities

5. Fabio Tramontana, Frank Westerhoff, and Laura Gar-
dini. On the complicated price dynamics of a simple
one-dimensional discontinuous financial market mo-
del with heterogeneous interacting traders. Journal
of Economic Behavior and Organization, 74:187–205,
2010.

6. Vinod Cheriyan and Anton J Kleywegt. A dynamical
systems model of price bubbles and cycles. Quantita-
tive Finance, 16(2):309–336, 2016.

7. Didier Sornette and Jorgen Vitting Andersen. A
Nonlinear Super-Exponential Rational Model of Spe-
culative Financial Bubbles. Int. J. Mod. Phys., C
13(2):171–188, 2002.

8. Vyacheslav I. Yukalov, Didier Sornette, and E. P. Yu-
kalova. Nonlinear dynamical model of regime swit-
ching between conventions and business cycles. Jour-
nal of Economic Behavior and Organization, 70:206–
230, 2009.

9. Didier Sornette, Ryan Woodard, Wanfeng Yan, and
Wei Xing Zhou. Clarifications to questions and criti-
cisms on the Johansen-Ledoit-Sornette financial bub-
ble model. Physica A, 392:4417–4428, 2013.

10. Vyacheslav I. Yukalov, E. P. Yukalova, and Didier
Sornette. Dynamical system theory of periodically
collapsing bubbles. Eur. Phys. J. B, 88(7):179–213,
2015.

11. William A. Brock, David A. Hsieh, and Blake D. Le-
Baron. Nonlinear dynamics, chaos, and instability:
statistical theory and economic evidence. MIT press,
1991.

12. William A. Brock and Cars H. Hommes. A rational
route to randomness. Econometrica, 65(5):1059–1095,
1997.

13. William A. Brock and Cars H. Hommes. Heterogene-
ous beliefs and routes to chaos in a simple asset pricing
model. Journal of Economic dynamics and Control,
22(8):1235–1274, 1998.

14. William A. Brock and Steven N. Durlauf. Discrete
choice with social interactions. The Review of Econo-
mic Studies, 68(2):235–260, 2001.

15. William A. Brock and Steven N. Durlauf.
Interactions-based models. Handbook of econo-
metrics, 5:3297–3380, 2001.

16. William A. Brock, Cars H. Hommes, and Florian O.O.
Wagener. Evolutionary dynamics in markets with
many trader types. Journal of Mathematical Econo-
mics, 41(1):7–42, 2005.

17. Taisei Kaizoji and Didier Sornette. Market Bubbles
and Crashes. Encyclopedia of Quantitative Finance,
2008.

18. A Hüsler, Didier Sornette, and C H Hommes. Super-
exponential bubbles in lab experiments: Evidence for
anchoring over-optimistic expectations on price. Jour-
nal of Economic Behavior and Organization, 92:304–
316, 2013.

19. Matthias Leiss, Heinrich H. Nax, and Didier Sornette.
Super-Exponential Growth Expectations and the Glo-
bal Financial Crisis. Journal of Economic Dynamics
and Control, 55:1–13, 2015.

20. Didier Sornette and Peter Cauwels. Financial bubbles:
mechanisms and diagnostics. Review of Behavioral
Economics, 2(3):279–305, 2015.

21. Anders Johansen and Didier Sornette. Stock market
crashes are outliers. Eur. Phys. J. B, 143:8, 1998.

22. Anders Johansen and Didier Sornette. Large Stock
Market Price Drawdowns Are Outliers. Journal of
Risk, 4(2):69–110, 2001.

23. Anders Johansen and Didier Sornette. Shocks , Cras-
hes and Bubbles in Financial Markets. Brussels Eco-
nomic Review, 53(2):201–253, 2010.

24. Anders Johansen, Olivier Ledoit, and Didier Sornette.
Crashes as critical points. International Journal of
Theoretical and Applied Finance, 3:219–255, 2000.

25. Anders Johansen and Didier Sornette. Finite-time sin-
gularity in the dynamics of the world population, eco-
nomic and financial indices. Physica A, 294(3-4):465–
502, 2001.

26. Kayo Ide and Didier Sornette. Oscillatory finite-time
singularities in finance, population and rupture, vo-
lume 307. 2002.

27. Li Lin and Didier Sornette. Diagnostics of Rational
Expectation Financial Bubbles with Stochastic Mean-
Reverting Termination Times. The European Journal
of Finance, 19(5-6):344–365, 2013.

28. Li Lin, R. E. Ren, and Didier Sornette. The Volatility-
Confined LPPL Model: A Consistent Model of ‘Ex-
plosive’ Financial Bubbles With Mean-Reversing Re-
siduals. International Review of Financial Analysis,
33:210–225, 2014.

29. Nils Berglund and Barbara Gentz. Noise-Induced Phe-
nomena in Slow-Fast Dynamical Systems. Springer,
London, 2006.

30. Yuri A. Kuznetsov. Elements of Applied Bifurcation
Theory. Springer, New York, 1998.

31. Bard Ermentrout. Simulating, Analyzing, and Ani-
mating Dynamical Systems: A Guide to XPPAUT for
Researchers and Students. SIAM, Philadelphia, PA,
USA, 2002.

32. Pierre Gaspard. Measurement of the Instability Rate
of a Far-from-Equilibrium Steady State at an Infinite
Period Bifurcation. The Journal of Physical Chemi-
stry, 94(1), 1990.

33. Steven H. Strogatz. Nonlinear Dynamics and Chaos
With Applications to Physics, Biology, Chemistry,
and Engineering. Westview Press, Cambridge, 2000.

34. Robert J. Shiller and Andrea E. Beltratti. Stock prices
and bond yields. Journal of Monetary Economics,
30(1):25–46, 1992.

35. CNV Krishnan, Ralitsa Petkova, and Peter Ritchken.
Correlation risk. Journal of Empirical Finance,
16:353–367, 2009.

36. Kun Guo, Wei-Xing Zhou, Si-Wei Cheng, and Didier
Sornette. The US stock market leads the Federal funds
rate and Treasury bond yields. PLoS ONE, 6(8), 2011.

37. Hao Meng, Hai-Chuan Xu, Wei-Xing Zhou, and Di-
dier Sornette. Symmetric thermal optimal path and
time-dependent lead-lag relationship: novel statistical
tests and application to UK and US real-estate and



Damian Smug, Peter Ashwin, Didier Sornette: Predicting financial market crashes using ghost singularities 15

monetary policies. Quantitative Finance, 2016.
38. Anders Johansen, Didier Sornette, and Olivier Ledoit.

Predicting Financial Crashes Using Discrete Scale In-
variance. Journal of Risk, 1(4):5–32, 1999.

39. Didier Sornette. Why Stock Markets Crash. Princeton
University, Princeton, 2003.

40. Didier Sornette, Ryan Woodard, Wanfeng Yan, and
Wei Xing Zhou. Clarifications to questions and criti-
cisms on the Johansen-Ledoit-Sornette financial bub-
ble model. Physica A: Statistical Mechanics and its
Applications, 392(19):4417–4428, 2013.

41. Didier Sornette and Anders Johansen. Significance of
log-periodic precursors to financial crashes. Quantita-
tive Finance, 1(4):452–471, 2001.

42. Wei-Xing Zhou and Didier Sornette. Non-Parametric
Analyses of Log-Periodic Precursors to Financial
Crashes. International Journal of Modern Physics C,
14(8):1107–1126, 2003.
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Appendix A: Codimension-two bifurcations

In Section 2, we mentioned certain codimension-two bi-
furcation points. One of them is the Bogdanov-Takens
point (further information can be found in Chapter 8.4
of [30]). For the Bogdanov-Takens point, the Jacobian has
a double-zero eigenvalue, hence it is possible to derive the
analytical coordinates for that point, which are the follo-
wing: 

x∗BT = e2 ≈ 7.389

z∗BT = e−
1
2 ≈ 0.6065

bBT = 2e−
3
2 ≈ 0.4463

gBT = − 1
2e
−2 ≈ −0.06767

. (15)

The second codimension-two bifurcation point is a cusp
(Chapter 8.2 in [30]). At that point, an analytical values
of its coordinates are as follows:

x∗cusp = e
1+
√

5
2 ≈ 5.043

z∗cusp = e
√

5−3
2 ≈ 0.6825

bcusp = 1+
√

5
2 e1−

√
5 ≈ 0.4701

gcusp =
√

5−3
2 e−

1+
√

5
2 ≈ −0.07574

. (16)

Appendix B: Amplitude of a bubble

In order to determine how high can a bubble rise, let us
first find a lower bound for the amplitude. Let xmax be the
maximal value of x and xeq be a non-trivial equilibrium
point – both marked in Fig. 12. Obviously, xmax > xeq.

We can obtain the parameter g depending on xeq and
b at the crosspoint of the nullclines:{

0 = xeq − x2
eq · e−bxeqz

0 = z − z2 · e−gxeq
. (17)

which yields {
xeq = ebxeqz

z = egxeq
, (18)

and thus

|g| = ln(bxeq)− ln(ln(xeq))

xeq
. (19)

As xeq →∞, |g| → 0+.
What is more,

∀ε > 0 ∃x̂ ∀xeq > x̂
c1

x1+ε
eq

6 |g| 6 c2

x1−ε
eq

, (20)

where c1 and c2 are some positive constants. We will use
the notation |g| ∼ 1

xeq
to represent this situation (20).

Translating the previous statement for xeq, we obtain

xeq ∼
1

|g|
. (21)

From the numerical calculations presented in Fig. 13, we
conclude that xmax

xeq
−−−−→
g→0−

c , (22)
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Fig. 12: Nullclines for the system (1) with marked xmax,
xeq and a sample periodic trajectory. Parameters are b =
0.5 and g = −0.01. As g → 0−, the nullcline for z shifts
to the right, so that the crosspoint with the nullcline for
x (the equilibrium point xeq) goes to infinity.
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Fig. 13: Change of the ratio of the top of bubble to
the non-trivial equilibrium point depending on g. Here
b = 0.5. One can notice extremely good approximation of
fitted curve with R2 = 0.9991.

where c ∈ [1, 2) is a constant. The data points for xmax

xeq

shown in Fig. 13 can be fitted very well by the function

xmax
xeq

(g) =
1

(− log10 |g|)α
+ 1 , (23)

where for α = 0.8328, R2 = 0.9991. It implies that c = 1.
From 21 and 23, we deduce that

xmax =
xmax
xeq

· xeq ∼ 1 · 1

|g|
=

1

|g|
. (24)

Appendix C: Centre manifold expansion for an
emerging bubble

This section provides analytical derivation of a bubble in
the vicinity of a saddle-node bifurcation. In order to find
a good approximate function of the price dynamics x(t)
of a bubble, we calculate x(t) for parameters close to the
upper saddle-node branch shown in Fig. 2A. On the upper
part of the saddle-node curve, let us take consider parame-
ters (b∗, g∗) and the corresponding non-trivial equilibrium
point (x∗, z∗). We fix b∗ and vary only parameter g, so

instead of (1), we consider the following system:{
ẋ = x− x2e−b

∗xz

ż = z − z2e−(g∗+δ)x .
(25)

Next, we move the system to the origin so that the equi-
librium point is placed at (0, 0):

X = x− x∗

Z = z − z∗

b = b∗

g = g∗ + δ

(26)

and, by taking into account the derivative dδ
dt , we obtain Ẋ

Ż

δ̇

 =

 (X + x∗)− (X + x∗)2e−b
∗(X+x∗)(Z+z∗)

(Z + z∗)− (Z + z∗)2e−(g∗+δ)(X+x∗)

0

 =

=

F (X,Z, δ)
G(X,Z, δ)

0

 .

(27)
The Jacobian in the equilibrium point is

J := J(X,Z, δ)

∣∣∣∣
(0,0,0)

=

 ∂F
∂X

∂F
∂Z 0

∂G
∂X

∂G
∂Z

∂G
∂δ

0 0 0


(0,0,0)

(∗)
=

(∗)
=

p1 p2 0
p3

p2p3
p1

p4

0 0 0

 ,

(28)

where the substitution (∗) is performed in order to sim-
plify the notations for the saddle-node equilibrium point

where the Jacobian

(
∂F
∂X

∂F
∂Z

∂G
∂X

∂G
∂Z

)
is singular. J has eigenva-

lues (λc, λs, λc) = (0,
p21+p2p3

p1
, 0) and the eigenvectors for

the two first eigenvalues are

vc1 =

−p2p11
0

 and vs =

 p1
p3
1
0

 . (29)

For the third eigenvalue λc, we need to find the generalized
eigenvector vc2

Jvc2 = vc1 =⇒ J2vc2 = Jvc1 = 0 , (30)

hence, we calculate the eigenvectors of J2 for the eigenva-
lue λc. One is of course vc1 and the other is

vc2 =

− p2p4
p21+p2p3

0
1

 . (31)

In the vector basis P := (vc1 , vs, vc2), new coordinates can
be obtained by the following transformationX

Z
δ

 = P

U
V
δ

 =

−p2p1 p1
p3
− p2p4
p21+p2p3

1 1 0
0 0 1

U
V
δ

 (32)



Damian Smug, Peter Ashwin, Didier Sornette: Predicting financial market crashes using ghost singularities 17

and on the other handU
V
δ

 = P−1

X
Z
δ

 =

=

− p1p3
p21+p2p3

p21
p21+p2p3

− p1p2p3p4
(p21+p2p3)2

p1p3
p21+p2p3

p2p3
p21+p2p3

− p1p2p3p4
(p21+p2p3)2

0 0 1


X
Z
δ

 .

(33)

Hence, in the new coordinates, the dynamical system be-
comes U̇

V̇

δ̇

 =

 dU(X,Z)
dt

dV (X,Z)
dt
0

 =

 (P−1)11Ẋ + (P−1)12Ż

(P−1)21Ẋ + (P−1)22Ż
0

 .

(34)

Using the multivariate Taylor expansion for U̇ , V̇ and δ̇
at the point (0, 0, 0), we obtain U̇

V̇

δ̇

 =

0 0 µ1

0 µ2 0
0 0 0

U
V
δ

+

+

a1U
2 + a2UV + a3Uδ + a4V

2 + a5V δ + a6δ
2

b1U
2 + b2UV + b3Uδ + b4V

2 + b5V δ + b6δ
2

0

 ,

(35)
where the coefficients µi (for i ∈ {1, 2}), ai and bi (for i ∈
{1, ..., 6}) are known. It is important to mention that the
Jacobian of the system (35) has two vanishing eigenvalues
and forms a Jordan normal form with separated centre
(Uc, δc) and stable (Vs) parts.

The flow on the stable manifold can be approximated
by

Vs(Uc, δc) = αU2
c + βUcδc + γδ2

c , (36)

hence

V̇s(Uc, δc) =
∂Vs
∂Uc

U̇c +
∂Vs
∂δc

δ̇c = (2αUc + βδc)U̇c . (37)

In order to determine α, β and γ we need to compare
coefficients in V̇s(Uc, δc) and V̇ (Uc, δc):

µ2Vs + b1U
2
c + b2UcVs + b3Ucδc + b4V

2
s +

+b5Vsδc + b6δ
2
c =

= (2αUc + βδc)(µ1δc + a1U
2
c+

+a2UcVs + a3Ucδc + a4V
2
s + a5Vsδc + a6δ

2
c )

(38)

When inserting (36) into (38), it is enough to compare
the coefficients up to quadratic terms:

U2
cU
2
cU
2
c : µ2α+ b1 = 0 =⇒ α = − b1

µ2

UcδcUcδcUcδc : µ2β + b3 = 2αµ1 =⇒ β = −2b1µ1 + b3µ2

µ2
2

δ2
cδ
2
cδ
2
c : µ2γ + b6 = βµ1 =⇒

γ = −2b1µ
2
1 + b3µ1µ2 + b6µ

2
2

µ3
2

.

(39)

Finally, in order to obtain the flow on the centre mani-
fold, we insert (36) with determined coefficients (39) into

U̇ (35):

U̇c = f(Uc, δc) = µ1δc + a1U
2
c + a2Uc(αU

2
c + βUcδc+

+γδ2
c ) + a3Ucδc + a4(αU2

c + βUcδc + γδ2
c )2+

+a5(αU2
c + βUcδc + γδ2

c )δc + a6δ
2
c =

= µ1δc + a6δ
2
c + γa5δ

3
c + γ2a4δ

4
c + Uc(a3δc + a2γδ

2
c+

+a5βδ
2
c + 2a4βγδ

3
c ) + U2

c (a1 + a2βδc + a5αδc+

+2a4αγδ
2
c + a4β

2δ2
c ) + U3

c (a2α+ 2a4αβδc) + U4
c a4α

2 .
(40)

In order to approximate the function describing the
time dependence of the price of an arising bubble, we in-
tegrate U̇c:

dUc
dt

= f(Uc, δc) =⇒ dUc
f(Uc, δc)

= dt =⇒∫
1

f(Uc, δc)
dUc =

∫
dt+ const.

(41)

hence ∫
1

f(Uc, δc)
dUc = t+ const. . (42)

Without dropping higher order terms, it might not be
possible to obtain Uc explicitly, hence we assume, that
δc = ε and as Uc is expected to vary faster than the para-
meter, we take Uc = Uc0

√
ε+O(ε). Then, for the function

f , we truncate all terms of order higher than O(ε), hence
f(Uc, δc) ≈ µ1δc + a1U

2
c . From equation (42), using the

simplified form of f , we obtain

1√
a1µ1δc

arctan

(√
a1

µ1δc
Uc

)
= t+ const. , (43)

which gives

Uc =

√
µ1δc
a1

tan
(
t
√
a1µ1δc + const.

)
. (44)

Inserting (44) into (36) leads to

Vs = αU2
c + βUcδc + γδ2

c =

= α

(√
µ1δc
a1

tan
(
t
√
a1µ1δc + const.

))2

+

+β

(√
µ1δc
a1

tan
(
t
√
a1µ1δc + const.

))
δc + γδ2

c =

= γδ2
c + βδ

3
2
c

√
µ1

a1
tan

(
t
√
a1µ1δc + const.

)
+

+αδc
µ1

a1
tan2

(
t
√
a1µ1δc + const.

)
.

(45)

Then, from (32), (44) and (45) one obtains
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b g A A∗ B C D E

0.4 −0.029 3.042 2.977 0.1744 0.02637 62.03 −0.5416 · 10−3

0.38 −0.0117 2.819 2.812 0.03683 0.006325 251.8 −0.8509e · 10−5

Table 1: Parameters for the best fits of the functions family (47) to the numerical solutions. Parameter A∗ replaces A
as explained in the text, which results in an extremely good alignment in the vicinity of the saddle-node equilibrium,
as shown in Fig. 14.

Figure A 95% CI of A D 95% CI of D

15A 2.991 (2.630, 3.351) 62.07 (62.01, 62.13)
15B 3.217 (3.104, 3.329) 61.78 (61.76, 61.79)
15C 2.855 (2.756, 2.953) 251.3 (251.3, 251.4)
15D 6.031 (4.799, 7.262) 251.3 (251.3, 251.4)

Table 2: Parameters for the best fit of the functions
family (48) to numerical solutions with the 95%
confidence intervals for parameters A and D. The
parameters B and C are obtained in (46). They are B =
0.1744 and C = 0.02637 for the Figs. 15A and 15B and
B = 0.03683 and C = 0.006325 for the Figs. 15C and 15D.

X = −p2

p1
Uc +

p1

p3
Vs −

p2p4

p2
1 + p2p3

δc =

=
p1

p3
γδ2
c −

p2p4

p2
1 + p2p3

δc+

+

(
p1β
√
µ1δ

3
2
c

p3
√
a1

− p2

√
µ1δc

p1
√
a1

)
tan

(
t
√
a1µ1δc + const.

)
+

+
p1αµ1δc
p3a1

tan2
(
t
√
a1µ1δc + const.

)
,

(46)
where all parameters in the above expression are known.
Finally, we need to shift back X by the position of the
equilibrium according to (26): x = X + x∗. One can write
the final result in the following simplified form

x = A+B · tan(C(t−D)) + E · tan2(C(t−D)) , (47)

for which the numerical values of the parameters are pre-
sented in Table 1. It is worth mentioning that parameter
D, which determines the initial value of the price, can be
determined by aligning the inflection point of (47) with
the inflection point of the numerical solution. It turns out
that the fit performed with the final formula (47) does not
decrease the MSE (mean-square error) drastically, unless
the formula is corrected by a vertical shift. In Table 1,
A∗ plays the role, in the shifted version, of parameter A
in the final formula (47). The shifted curve matches the
numerical solution very well, as it can be seen in Fig. 14.
Nevertheless, we have not found any justification for that
correcting procedure.

The final formula (47) provides a good fit in the neig-
hbourhood of the equilibrium point. However, far from the
equilibrium state, this function gives a sharper slope than
the following function obtained by removing the higher

order term

x = A+B · tan(C(t−D)) , (48)

which we have also tested. The parameters for the form
(48) are obtained using GraphPad Prism 7 (Nonlinear Re-
gression; least squares fitting method; quantification of
goodness-of-fit based on R square) and are presented in
Table 2. Parameters B and C are obtained directly from
the Eq. (46), only A and D need to be found by curve
fitting. The initial value of A is chosen to be close to the
value where the stock price spends the most time, whereas
the initial value of D should cause that the singularity of
tangent function would be close to the crash observed in
the trajectory. The fits and the trajectories are presented
in Fig. 15 in linear scale and Fig. 16 in logarithmic scale.
In equation ẋ = x− x2e−bxz, for large x, the second com-
ponent disappears and the slope becomes exponential. It
cannot be observed in neither (46) nor (48), but suggests
that, without the force that drags the bubble down to a
crash, the acceleration might end in finite-time singularity.

Comparison of numerical results for the approx-
imate description of the price dynamics of a bub-
ble.
Both the tangent function (48) and the formula (47) with
the additional quadratic term seem to provide good fits
to the bubble price at least sufficiently close to the equili-
brium. We compare them by calculating the mean square
error close to the original saddle-node equilibrium, which
is reported in Fig. 14. One can see that formula (47) gives
a very small error close to the equilibrium point, but the
error increases much faster than for the tangent function
(48) when going away from it. This means that, in order
to approximate the trajectory it is better to use (47) close
to the equilibrium point and then switch to (48) further
away.
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Fig. 14: Comparison of the MSE (mean square errors) for (47) and (48) as a function of the distance from the
saddle-node equilibrium, with the percentage of time that the asset price spends within that distance for (A) b = 0.4,
g = −0.029 and (B) b = 0.38, g = −0.0117. From the diagram one can deduce that application of vertical correction
can decrease the error of the fitted function significantly in some cases but not always. For more rapid bubbles in
Fig. (A) it would be strongly advised. The percentage of time that the asset price spends within a certain distance
(bottom panels of (A) and (B)) suggest that the system resides very far from an equilibrium only during a very short
period. On the other hand, this period is extremely important as it is the time when the bubbles arise and collapse.
Comparison of the blue and red curves implies that even though close to the equilibrium tan2 gives small MSE,
further on it is outperformed by the simplified function (tan) and that function with a vertical correction is used for
the predictions presented in Section 3.
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Fig. 15: Graphical comparison of the super-exponential fit performed in [10] (see Fig. 13 therein) to the fitted functions
(47), (48) and (48) with vertical correction, (A) b = 0.4, g = −0.029, t ∈ [0, 121], (B) b = 0.4, g = −0.029, t ∈ [110, 121],
(C) b = 0.38, g = −0.0117, t ∈ [0, 499.6], (D) b = 0.38, g = −0.0117, t ∈ [489, 499.6].
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Fig. 16: Graphical comparison of logarithm of the super-exponential fit performed in [10] (see Fig. 13 therein) to the
logarithm of the fitted functions (47), (48) and (48) with vertical correction, (A) b = 0.4, g = −0.029, t ∈ [0, 121], (B)
b = 0.4, g = −0.029, t ∈ [110, 121], (C) b = 0.38, g = −0.0117, t ∈ [0, 499.6], (D) b = 0.38, g = −0.0117, t ∈ [489, 499.6].
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