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1 Abstract

Melham [10] conjectures 21 identities, all of which are analogous to Jacobi’s two-square theorem.
Melham mentions that a small number of these have already been proved in various ways by Hirschhorn
[5], Sun [13], and Dickson [3] (combined with work from Adiga, Cooper, and Han [1]). In this paper
we offer a straightforward method to proving all of them.

2 Introduction

Fermat’s two-square theorem says an odd prime, p, can be expressed as the sum of two squares if and
only if p is congruent to 1 modulo 4. Jacobi expanded on this with Jacobi’s two-square theorem, which
tells us the number of distinct ways we can represent such a prime as the sum of two squares. Jacobi’s
theorem tells us the number of ways is four times the difference between the number of divisors of p
congruent to 1 and the number of divisors congruent to 3 modulo 4 [6]. Instead of sums of squares,
Melham’s identities give the number of representations of a number (not just a prime) as the sum of
multiples of triangular, pentagonal, or heptagonal numbers.

Define

G3(q) :=
∞∑
n=0

q
n(n+1)

2 , G5(q) :=

∞∑
n=−∞

q
n(3n−1)

2 , G7(q) :=

∞∑
n=−∞

q
n(5n−3)

2 ,

the generating functions of the triangular, pentagonal, and heptagonal numbers. Melham’s identities
(equations (6) to (25), which we refer to using the same numbers for simplicity, in his original paper
[10]) are all of the form

Gk(q
α)Gk(q

β) = an explicit q-series

where k = 3, 5 or 7, α, β ∈ N, and q = e2πiτ , with τ in the upper half plane, H. For example, his
identity (6) is

G3(q)G3(q5) =

∞∑
n=0

[
q3n + q7n+1

1− q20n+5
− q13n+9 + q17n+12

1− q20n+15

]
.

The method we shall use relies on the theory of modular forms. We provide a brief description
here, but for a more thorough reading, the reader should look to such sources as [2], [9], [11]. Other
authors have attempted to prove these identities with alternative methods, from straight forward
q-series manipulations to utilising binary quadratic forms. Alas, while some have been proven (the
author believes around 6), the methods used have not been broad or powerful enough to prove more
than a few. Our method is to show (in Section 3) that the LHS (raised to an even power) of each
identity is a type of theta function, a modular form over a certain congruence subgroup. We then
show in Section 4 that the RHS (raised to the same even power) is also a modular form for the same
weight over this subgroup, by showing that it can be written in terms of the Weierstrass zeta function.
It is then a simple case of checking a small number of coefficients to show that each identity satisfies
Sturm’s bound (described further in Section 7), and thus that both sides must be equivalent up to a
constant, which we will show is 1.

A congruence subgroup, Γ, of SL2(Z) is a subgroup of SL2(Z) that contains

Γ(N) := Ker
(
SL2(Z)→ SL2 (Z/NZ)

)
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where Γ(N) is called the principal congruence subgroup. The smallest such N is the level of Γ. Three
such particular congruence subgroups of interest are:

Γ0(N) :=

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡
(
∗ ∗
0 ∗

)
(mod N)

}
,

Γ0(N) :=

(
0 1
1 0

)
Γ0(N)

(
0 1
1 0

)
=

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡
(
∗ 0
∗ ∗

)
(mod N)

}
,

Γ1(N) :=

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡
(

1 ∗
0 1

)
(mod N)

}
,

where ∗ represents any number. All three groups have level N . Now define H to be the complex upper

half plane. Let A =

(
a b
c d

)
∈ SL2(R), and for a complex function f , define

f |A(z) := (cz + d)−kf

(
az + b

cz + d

)
.

A function f is a modular form of weight k, with k a positive integer, over a congruence subgroup Γ
if f is holomorphic on H, f |γ remains bounded as =(z)→∞ for any γ ∈ SL2(Z), and verifies, for all
γ ∈ Γ,

f |γ = f.

3 The LHS as Theta Functions

We begin this section by defining a lattice in Rn as done in [8, p. 149]. A lattice in Rn is a subgroup
of Rn of the form

Γ = Zv1 + Zv2 + · · ·+ Zvn,
where {v1, v2, . . . , vn} is a linearly independent set of vectors in Rn. Take the inner product of two
elements to be the normal dot product, and denote the inner product of an element x with itself as x2.
An integral lattice is a lattice where the inner product of any two elements in the lattice is integral.
An even lattice is an integral lattice where the inner product of an element with itself (or norm) is
always even. The dual lattice, denoted Λ∗, of a lattice Λ, is the lattice of vectors having integral inner
products with all the elements of Λ. Define the discriminant of a lattice to be disc(Λ) = |Λ∗/Λ|.
Finally, the level of a lattice Λ is the minimum N ∈ N with Nx2 even for all x ∈ Λ∗ [4, p. 91].

Ebeling [4, p. 86] defines a generalised theta function for a lattice Λ ⊂ Rn, a point z ∈ Rn, the
variable τ ∈ H, and a spherical polynomial P of degree r, as

ϑz+Λ,P (τ) :=
∑

x∈z+Λ

P (x)eπiτx
2

=
∑

x∈z+Λ

P (x)q
x2

2 .

We have no need to discuss spherical polynomials, for our matters it is sufficient to state that the
constant polynomial P (x) = 1 is spherical, of degree 0. We take P (x) = 1 from here on, and will drop
it from our notation.

Lemma 3.1. Let Λ ⊂ Rn (n even), be an even lattice of level N , ρ ∈ Λ∗, A =

(
a b
c d

)
∈ Γ0(N).

Then for odd d > 0, c 6= 0,

ϑρ+Λ(Aτ) = (cτ + d)
n
2

(
∆

d

)
eπiabρ

2
ϑaρ+Λ(τ)

with ∆ := (−1)
n
2 disc(Λ),

(
∆
d

)
the Jacobi symbol, and for c = 0,

ϑρ+Λ(Aτ) = eπiabρ
2
ϑaρ+Λ(τ).
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Proof. The proof of this is Corollary 3.1 combined with the remarks before Theorem 3.2 of [4, pp. 92-
94].

Now, as ρ ∈ Λ∗, ρ2 ∈ Q. Let ρ2 = u
v , with gcd(u, v) = 1. We have

ϑ2v
ρ+Λ|A = e2πiabuϑ2v

aρ+Λ = ϑ2v
aρ+Λ.

We now take n = 2, and consider lattices in R2.

3.1 Triangular Numbers, G3(q)

Let Λ =

〈( √
2α
0

)
,

(
0√
2β

)〉
, with α, β integers. Then Λ is even, and has dual

Λ∗ =

〈(
1√
2α

0

)
,

(
0
1√
2β

)〉
.

Calculating the level N , of Λ is straightforward, and gives N = 4 · lcm(α, β). Let ρ =

( √
α
2√
β
2

)
∈ Λ∗.

We have, with q = e2πiτ ,

ϑρ+Λ(τ) =
∑
n,m∈Z

qαn
2+αn+α

4
+βm2+βm+β

4

= q
α+β
4

∑
n,m∈Z

q2α
n(n+1)

2
+2β

m(m+1)
2 .

Hence
ϑρ+Λ

(τ
2

)
= q

α+β
8

∑
n∈Z

qα
n(n+1)

2

∑
m∈Z

qβ
m(m+1)

2 ,

so
1

4
q−

α+β
8 ϑρ+Λ

(τ
2

)
= G3(qα)G3(qβ).

Now, it is easy to see that ρ+ Λ = aρ+ Λ whenever a ≡ 1 (mod 2). Further, as N is clearly even, for

A =

(
a b
c d

)
∈ Γ0(N) we can see that a must be odd. Now, ρ2 = α+β

2 , hence ϑρ+Λ(τ)2v is a weight

2v modular form for Γ0(N) where v = 1 if α+β is even, and v = 2 if α+β is odd. Therefore ϑρ+Λ( τ2 )2v

is a weight 2v modular form for Γ′ =

(
1 0
0 1

2

)
Γ0(N)

(
1 0
0 2

)
. We see for A ∈ Γ′, A =

(
a b
c d

)
,

we have b ≡ 0 (mod 2), and c ≡ 0 (mod N
2 ). In other words,

Γ′ =

{
A =

(
a b
c d

)
∈ Γ0

(
N

2

)
: b even

}
= Γ0

(
N

2

)
∩ Γ0(2).

Hence we can conclude that (
q
α+β
8 G3(qα)G3(qβ)

)2v

is a modular form for Γ′ as well.
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3.2 Pentagonal Numbers, G5(q)

Let Λ =

〈( √
6α
0

)
,

(
0√
6β

)〉
, with α, β integers. Then Λ is even, and has dual

Λ∗ =

〈(
1√
6α

0

)
,

(
0
1√
6β

)〉
.

The level of Λ is N = 12 · lcm(α, β). Let ρ =

(
−
√

α
6

−
√

β
6

)
∈ Λ∗. We find

q−
α+β
24 ϑρ+Λ

(τ
2

)
= G5(qα)G5(qβ).

Again, it is easy to see that ρ+ Λ = aρ+ Λ whenever a ≡ 1 (mod 6). When a ≡ −1 (mod 6) we see
aρ+ Λ = −(ρ+ Λ), but as we are taking the norm of each shifted lattice point this is acceptable also.

Further, as N is clearly even, for A =

(
a b
c d

)
∈ Γ0(N) we can see that a must be odd and coprime

to 3.

Now, ρ2 = −α+β
6 , hence ϑρ+Λ(τ)2v is a weight 2v modular form for the congruence subgroup

Γ′ = {A =

(
a b
c d

)
∈ Γ0(N) : a ≡ ±1 (mod 6)} where

v =


1 α+ β ≡ 0 (mod 6)

6 α+ β ≡ ±1 (mod 6)

3 α+ β ≡ ±2 (mod 6)

2 α+ β ≡ 3 (mod 6).

Therefore ϑρ+Λ( τ2 )2v is a weight 2v modular form for Γ′′ =

(
1 0
0 1

2

)
Γ′
(

1 0
0 2

)
. We see for A ∈ Γ′′,

A =

(
a b
c d

)
, we have b ≡ 0 (mod 2), and c ≡ 0 (mod N

2 ). Recalling that 12 - N , we therefore have,

Γ′′ =

{
A =

(
a b
c d

)
∈ Γ0

(
N

2

)
: b even, a ≡ ±1 (mod 6)

}
= Γ0

(
N

2

)
∩ Γ0(2)

as 1 = ad− bc ≡ d (mod 6). Hence we can conclude that(
q
α+β
24 G5(qα)G5(qβ)

)2v

is a modular form for Γ′′ as well.

3.3 Heptagonal Numbers, G7(q)

Let Λ =

〈( √
10α
0

)
,

(
0√
10β

)〉
, with α, β integers. Then Λ is even, and has dual

Λ∗ =

〈(
1√
10α

0

)
,

(
0
1√
10β

)〉
.



8 Modular Forms

The level of Λ is N = 20 · lcm(α, β). Let ρ =

(
−3
√

α
10

−3
√

β
10

)
∈ Λ∗. We find

q−
9(α+β)

40 ϑρ+Λ

(τ
2

)
= G7(qα)G7(qβ).

Once more, we have ρ + Λ = aρ + Λ whenever a ≡ 1 (mod 10). Further, as N is clearly even, for

A =

(
a b
c d

)
∈ Γ0(N) we can see that a must be odd.

Now, ρ2 = α+β
10 , hence ϑρ+Λ(τ)2v is a weight 2v modular form for the congruence subgroup

Γ′ = {A =

(
a b
c d

)
∈ Γ0(N) : a ≡ 1 (mod 10)} where

v =



1 α+ β ≡ 0 (mod 10)

10 α+ β ≡ ±1 (mod 10)

5 α+ β ≡ ±2 (mod 10)

10 α+ β ≡ ±3 (mod 10)

5 α+ β ≡ ±4 (mod 10)

2 α+ β ≡ 5 (mod 10).

Therefore ϑρ+Λ( τ2 )2v is a weight 2v modular form for Γ′′ =

(
1 0
0 1

2

)
Γ′
(

1 0
0 2

)
. We see for A ∈ Γ′′,

A =

(
a b
c d

)
, we have b ≡ 0 (mod 2), and c ≡ 0 (mod N

2 ). In other words,

Γ′′ =

{
A =

(
a b
c d

)
∈ Γ0

(
N

2

)
: b even, a ≡ ±1 (mod 10)

}
= Γ0

(
N

2

)
∩ Γ0(2) ∩ Γ1(10).

4 The RHS as the Weierstrass Zeta Function

The Weierstrass zeta function is a function that naturally leads to an Eisenstein series of weight 1 [2,
p. 138]. We write it as Z to avoid confusion, and define it as

ZΛ(z) :=
1

z
+
∑
w∈Λ
w 6=0
w 6=z

(
1

z − w
+

1

w
+

z

w2

)

for a 2 dimensional lattice Λ := ω1Z⊕ω2Z, and z ∈ C. This function is not quite periodic, but rather
with each step along the lattice increases by a lattice constant, η1(Λ) or η2(Λ), defined by:

η1(Λ) := ZΛ(z + ω1)− ZΛ(z) and η2(Λ) := ZΛ(z + ω2)− ZΛ(z).

If we assume without loss of generality that =
(
ω1
ω2

)
> 0 then these lattice constants satisfy the

Legendre relation,
η2(Λ)ω1 − η1(Λ)ω2 = 2πi.

We can thus define a periodic function, Z∗Λτ , for u, v ∈ R, and Λτ := Z + τZ, as follows,

Z∗Λτ (uτ + v) := ZΛτ (uτ + v)− uη1(Λτ )− vη2(Λτ ).
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For some scalar m, and writing Z(z | ω1, ω2) := ZΛ(z) as is common, we see

Z(mz | mω1,mω2) =
1

mz
+
∑
w∈mΛ
w 6=0
w 6=mz

(
1

mz − w
+

1

w
+
mz

w2

)
=

1

m

1

z
+
∑
w∈Λ
w 6=0
w 6=z

(
1

z − w
+

1

w
+

z

w2

)
=

1

m
Z(z | ω1, ω2).

Applying this to Z(z | 1, τ) = ZΛτ (z) transformed by a matrix in SL2(Z) we find

Z

(
z | 1, aτ + b

cτ + d

)
= (cτ + d)Z(z(cτ + d) | cτ + d, aτ + b)

= (cτ + d)Z(z(cτ + d) | 1, τ)

as

(
a b
c d

)
∈ SL2(Z). We define

fr,s(τ) := Z

(
rτ + s

N
| 1, τ

)
.

Hence

fr,s

(
aτ + b

cτ + d

)
= Z

(
1

N

(
s+ r

(
aτ + b

cτ + d

))
| 1, aτ + b

cτ + d

)
= (cτ + d)Z

(
1

N
(s(cτ + d) + r(aτ + b)) | 1, τ

)
= (cτ + d)far+cs,br+ds(τ).

Diamond and Shurman [2, p. 138] further state that the Weierstrass zeta function, with q := e2πiτ ,
can be expressed as

ZΛτ (z) = η2(Λτ )z − πi1 + e2πiz

1− e2πiz
− 2πi

∞∑
n=1

[
e2πizqn

1− e2πizqn
− e−2πizqn

1− e−2πizqn

]
.

We consider the holomorphic function of τ ,

Z∗Λτ

(
aτ + b

N

)
= ZΛτ

(
aτ + b

N

)
− aη1(Λτ ) + bη2(Λτ )

N

which we call an Eisenstein series of weight 1.

4.1 Ea,b,N when a 6≡ 0 (mod N)

If we have a 6≡ 0(N) we can expand the denominators, so we take 0 < a < N and using the fact that

e2πiz = e2πi(aτ+bN ) = e2πiaτ
N e2πi b

N = q
a
N ζbN (with ζN := e

2πi
N as always), simplify, using the Legendre

relation:

Z∗Λτ

(
aτ + b

N

)
= η2(Λτ )

(
aτ + b

N

)
− πi

1 + q
a
N ζbN

1− q
a
N ζbN

− 2πi
∞∑
n=1

[
q
a
N ζbNq

n

1− q
a
N ζbNq

n
−

q−
a
N ζ−bN qn

1− q−
a
N ζ−bN qn

]

−aη1(Λτ ) + bη2(Λτ )

N
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= η2(Λτ )

(
b

N
− b

N

)
+
a

N
(τη2(Λτ )− η1(Λτ ))− πi

(
1 + 2

∞∑
m=1

q
am
N ζbmN

)

−2πi

∞∑
n=1

∞∑
m=1

[
q
m(a+nN)

N ζbmN − q
m(−a+nN)

N ζ−bmN

]

=
2πia

N
− πi− 2πi

∞∑
m=1

q
am
N ζbmN − 2πi

∞∑
n=1

∞∑
m=1

[
qm( a

N
+n)ζbmN − q

m(−a+nN)
N ζ−bmN

]

= 2πi

(
a

N
− 1

2
−
∞∑
m=1

[ ∞∑
n=0

q
m
N

(a+nN)ζbmN −
∞∑
n=1

q
m
N

(−a+nN)ζ−bmN

])

= 2πi


a

N
− 1

2
−
∞∑
r=1

q
r
N

[ ∑
s|r

s≡a (N)
s>0

ζ
br
s
N −

∑
s|r

s≡−a (N)
s>0

ζ
− br
s

N

] := Ea,b,N (τ).

Hence we have replaced Z∗Λτ with Ea,b,N , to make our choices of a, b,N explicit. Let M =

(
a b
c d

)
∈

SL2(Z). Then by our earlier result involving the transformation of fr,s(τ),

Eα,β,N |M = Eaα+cβ,bα+dβ,N .

The first two indices can be reduced modulo N , hence we see that Ea,b,N remains invariant under
transformation by Γ(N).

4.2 Ea,b,N when a ≡ 0 (mod N)

For the case a ≡ 0 (mod N) we start with

Z∗ = η2(Λ)

(
aτ + b

N

)
− πi

1 + q
a
N ζbN

1− q
a
N ζbN

− 2πi
∞∑
n=1

[
q
a
N ζbNq

n

1− q
a
N ζbNq

n
−

q−
a
N ζ−bN qn

1− q−
a
N ζ−bN qn

]
− aη1(Λ) + bη2(Λ)

N

we have a = tN , with t ∈ Z. We consider t = 0, i.e. a = 0, and notice that the result will hold for
any a ≡ 0 (mod N) due to periodicity.

Z∗ = η2(Λ)

(
b− b
N

)
− πi

1 + ζbN
1− ζbN

− 2πi
∞∑
n=1

[
ζbNq

n

1− ζbNqn
−

ζ−bN qn

1− ζ−bN qn

]

= −πi
1 + ζbN
1− ζbN

− 2πi

∞∑
m=1

∞∑
n=1

[
ζmbN qmn − ζ−mbN qmn

]

= 2πi

(
−1

2
·

1 + ζbN
1− ζbN

−
∞∑
m=1

∞∑
n=1

qnm
[
ζmbN − ζ−mbN

])

= 2πi

(
1

2
+

1

ζbN − 1
−
∞∑
t=1

∑
s|t
s>0

qt
[
ζ
bt
s
N − ζ

− bt
s

N

])

= 2πi

(
1

2
+

1

ζbN − 1
−
∞∑
r=1

∑
s|r

s≡0 (N)
s>0

q
r
N

[
ζ
br
s
N − ζ

− br
s

N

])
:= E0,b,N (τ).
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4.3 Defining Fa,c,N for a, c 6≡ 0(N)

Now we consider the following linear combination, for 0 < a < N ,

1

2πi
Fa,c,N (τ) :=

1

2πi

N−1∑
b=0

ζ−bcN Ea,b,N (τ)

=
N−1∑
b=0

ζ−bcN

(
a

N
− 1

2

)
−
N−1∑
b=0

ζ−bcN

∞∑
r=1

[ ∑
s|r

s≡a (N)
s>0

q
r
N ζ

br
s
N −

∑
s|r

s≡−a (N)
s>0

q
r
N ζ

−br
s

N

]

=

(
a

N
− 1

2

)N−1∑
b=0

ζ−bcN −
∞∑
r=1

[ ∑
s|r

s≡a (N)
s>0

q
r
N

N−1∑
b=0

ζ
b( rs−c)
N −

∑
s|r

s≡−a (N)
s>0

q
r
N

N−1∑
b=0

ζ
b(− rs−c)
N

]

=

(
a

N
− 1

2

)N−1∑
b=0

ζ−bcN −
∞∑
r=1

[ ∑
s|r

s≡a (N)
r
s
≡c (N)
s>0

q
r
NN −

∑
s|r

s≡−a (N)
r
s
≡−c (N)
s>0

q
r
NN

]

=

(
a

N
− 1

2

)N−1∑
b=0

ζ−bcN −N

( ∑
s≡a (N)
t≡c (N)
s,t>0

q
st
N −

∑
s≡−a (N)
t≡−c (N)
s,t>0

q
st
N

)
.

So if we pick c such that N - c, the sum on the left disappears, and we have

Fa,c,N (τ) = −2πiN

( ∑
s≡a (N)
t≡c (N)
s,t>0

q
st
N −

∑
s≡−a (N)
t≡−c (N)
s,t>0

q
st
N

)
.

For simplicity we define

F ∗a,c,N (τ) :=
∑

s≡a (N)
t≡c (N)
s,t>0

q
st
N −

∑
s≡−a (N)
t≡−c (N)
s,t>0

q
st
N = − 1

2πiN
Fa,c,N (τ).

We write
Ka,c,N =

∑
s≡a (N)
t≡c (N)
s,t>0

q
st
N

so that F ∗a,c,N = Ka,c,N−K−a,−c,N . Suppose gcd(a,N) = d > 1. If we take the sum over c ≡ r
(
mod N

d

)
of the F ∗a,c,N for some r, we observe∑

0<c<N
c≡r (Nd )

F ∗a,c,N =
∑

0<c<N
c≡r (Nd )

Ka,c,N −
∑

0<c<N
c≡−r (Nd )

K−a,c,N

= Ka
d
,r,N

d
−K−a

d
,−r,N

d

= F ∗a
d
,r,N

d

.

Of course, if a
d ≡ −r

(
mod N

d

)
then this is 0.
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5 The Identities

In this section we use what we have covered in the previous sections to rearrange the identities
conjectured by Melham to find equivalent identities which can then be easily proven.

5.1 Triangular Numbers

5.1.1 Identity (6)

As mentioned before, Melham’s identity 6 is

G3(q)G3(q5) =
∞∑
n=0

[
q3n + q7n+1

1− q20n+5
− q13n+9 + q17n+12

1− q20n+15

]
.

We expand the denominators in the RHS to give

∞∑
n=0

∞∑
m=0

[
q3n+(20n+5)m + q7n+1+(20n+5)m − q13n+9+(20n+15)m − q17n+12+(20n+15)m

]

=
∞∑
n=0

∞∑
m=0

[
q

(20n+5)(20m+3)
20

− 3
4 + q

(20n+5)(20m+7)
20

− 3
4 − q

(20n+15)(20m+13)
20

− 3
4 − q

(20n+15)(20m+17)
20

− 3
4

]

= q−
3
4

( ∑
a,b>0

a≡5 (20)
b≡3 (20)

q
ab
20 −

∑
a,b>0

a≡−5 (20)
b≡−3 (20)

q
ab
20 +

∑
a,b>0

a≡5 (20)
b≡7 (20)

q
ab
20 −

∑
a,b>0

a≡−5 (20)
b≡−7 (20)

q
ab
20

)

= q−
3
4
(
F ∗5,3,20 + F ∗5,7,20

)
.

While it may be desirable to include all of Melham’s original identities here, the author would like to
stress that some of them are very long, and adding them would increase the length of this work by
around 10 pages. Instead, we expand the denominators in the RHS for all identities and include the
form

Gk(q
α)Gk(q

β) = q
− α+β

8(k−2)

∑
(ai,ci)

F ∗ai,ci,4(k−2),

for each of the identities instead, simplifying and shortening. We note by our earlier result that∑
0<c<20
c≡3 (4)

F ∗5,c,20 = F ∗1,3,4 = K1,3,4 −K3,1,4 = 0.

Hence
F ∗5,3,20 + F ∗5,7,20 = −F ∗5,11,20 − F ∗5,19,20

as
F ∗5,15,20 = 0.

Noting that 1, 4 are quadratic residues modulo 5, where as 2, 3 are not, we see the RHS is equal to,

where
(
c
p

)
denotes the Legendre symbol,

−q
− 3

4

2

∑
0<c<20
c≡3 (4)

( c
5

)
F ∗5,c,20,
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equivalently,

q−
3
4

2

∑
0<c<20
c≡1 (4)

( c
5

)
F ∗15,c,20

= − q
− 3

4

80πi

19∑
b=0

E15,b,20

∑
0<c<20
c≡1 (4)

( c
5

)
ζ−bc20 .

Here we have used the fact that

F ∗a,c,N = − 1

2πiN

N−1∑
b=0

ζ−bcN Ea,b,N .

We will encounter sums of the form ∑
0<c<N
c≡α (β)

(
c

p

)
ζ−bcN

frequently. To deal with these we use a small lemma.

Lemma 5.1. For α, β, p ∈ N, α < β, and N = βp, (β, p) = 1, p an odd prime, and let γ ≡ β−1

modulo p. We have

∑
0<c<N
c≡α (β)

(
c

p

)
ζ−bcN =

ζ
αb(γβ−1)
N

(
bγ
p

)√
p p ≡ 1 (mod 4)

−ζαb(γβ−1)
N

(
bγ
p

)
i
√
p p ≡ 3 (mod 4)

Proof. We have

S =
∑

0<c<N
c≡α (β)

(
c

p

)
ζ−bcN =

⌊
N−α
β

⌋∑
k=0

(
α+ kβ

p

)
ζ
−b(α+kβ)
N = ζ−bαN

⌊
N−α
β

⌋∑
k=0

(
α+ kβ

p

)
ζ−bkp .

As α < β we have
⌊
N−α
β

⌋
= p− 1. Since k 7→ α+ kβ is a bijection modulo p, letting n = α+ kβ, we

have k ≡ (n− α)γ (mod p), so

S = ζ−αbN

p−1∑
n=0

(
n

p

)
ζ−b(n−α)γ
p = ζ−αbN ζbαγp

p−1∑
n=0

(
n

p

)
ζ−bγnN = ζ

αb(γβ−1)
N

p−1∑
n=0

(
n

p

)
ζ−bγnN .

This is a Gauss sum. Gauss proved [7] that

p−1∑
n=0

(
n

p

)
ζ−bnp =


(
b
p

)√
p p ≡ 1 (mod 4)

−
(
b
p

)
i
√
p p ≡ 3 (mod 4)

for p an odd prime. We can therefore conclude with the statement of the lemma.

Now, returning to the RHS of identity (6), we have∑
0<c<20
c≡1 (4)

( c
5

)
ζ−bc20 =

(
b

5

)√
5.
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Hence we see the RHS is

−
√

5

80πi
q−

3
4

19∑
b=0

(
b

5

)
ζ15b

20 E15,b,20(τ).

From before, we have
1

4
q−

α+β
8 ϑρ+Γ

(τ
2

)
= G3(qα)G3(qβ)

with Γ =

〈( √
2α
0

)
,

(
0√
2β

)〉
, with ρ =

( √
α
2√
β
2

)
∈ Γ∗. Hence identity (6) is equivalent to

ϑρ+Γ

(τ
2

)
= −

√
5

20πi

19∑
b=0

(
b

5

)
ζ15b

20 E15,b,20(τ).

Raising both sides to the power of 2, as α+ β = 1 + 5 = 6 is even, we see the LHS is a modular form
for the congruence subgroup Γ0 (10)∩Γ0(2), as detailed before in section 3. Thus we aim to show that
the RHS (ignoring the constant term),

H(τ) :=

(
19∑
b=0

(
b

5

)
ζ15b

20 E15,b,20

)2

is also a modular form for this subgroup. We will see to this matter in the next section, but first we
have the other identities to transform into a similar form.

5.1.2 Identity (7)

Melham states the following:

G3(q)G3(q6) =

∞∑
n=0

[
q7n

1− q24n+3
+

q5n+1

1− q24n+9
− q19n+11

1− q24n+15
− q17n+14

1− q24n+21

]
.

We expand the denominators in the RHS to give

∞∑
n=0

∞∑
m=0

[
q7n+(24n+3)m + q5n+1+(24n+9)m − q19n+11+(24n+15)m − q17n+14+(24n+21)m

]

=
∞∑
n=0

∞∑
m=0

[
q

(24n+3)(24m+7)
24

− 7
8 + q

(24n+9)(24m+5)
24

− 7
8 − q

(24n+15)(24m+19)
24

− 7
8 − q

(24n+21)(24m+17)
24

− 7
8

]

= q−
7
8

( ∑
a,b>0

a≡3 (24)
b≡7 (24)

q
ab
24 −

∑
a,b>0

a≡−3 (24)
b≡−7 (24)

q
ab
24 +

∑
a,b>0

a≡9 (24)
b≡5 (24)

q
ab
24 −

∑
a,b>0

a≡−9 (24)
b≡−5 (24)

q
ab
24

)

= q−
7
8
(
F ∗3,7,24 + F ∗9,5,24

)
.

As ∑
0<c<24
c≡7 (8)

F ∗3,c,24 = 3F ∗1,7,8 = 0

and ∑
0<c<24
c≡5 (8)

F ∗9,c,24 = 3F ∗3,5,8 = 0,
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we obtain
F ∗3,7,24 + F ∗9,5,24 = −F ∗3,15,24 − F ∗3,23,24 − F ∗9,13,24 − F ∗9,21,24.

Noticing that F ∗3,15,24 + F ∗9,21,24 = 0, we have

F ∗3,7,24 + F ∗9,5,24 = −F ∗3,23,24 − F ∗9,13,24

hence the RHS is equal to

q−
7
8

2

 ∑
0<c<24
c≡7 (8)

( c
3

)
F ∗3,c,24 −

∑
0<c<24
c≡5 (8)

( c
3

)
F ∗9,c,24

 .

In the pursuit of consistency, we would like the second sum to run over c ≡ 3 (mod 8). We have

−
∑

0<c<24
c≡5 (8)

( c
3

)
F ∗9,c,24 =

∑
0<c<24
c≡5 (8)

( c
3

)
F ∗15,−c,24 =

∑
0<c<24
−c≡5 (8)

(
−c
3

)
F ∗15,c,24 = −

∑
0<c<24
c≡3 (8)

( c
3

)
F ∗15,c,24

as
(−1

3

)
= −1. Therefore the RHS becomes

q−
7
8

2

 ∑
0<c<24
c≡7 (8)

( c
3

)
F ∗3,c,24 −

∑
0<c<24
c≡3 (8)

( c
3

)
F ∗15,c,24



=

√
3

96π
q−

7
8

23∑
b=0

(
b

3

)(
ζ9b

24E3,b,24 − ζ21b
24 E15,b,24

)
by our previous lemma. Thus identity 7 is equivalent to

ϑρ+Γ

(τ
2

)
=

√
3

24π

23∑
b=0

(
b

3

)(
ζ9b

24E3,b,24 − ζ21b
24 E15,b,24

)
and we know, as α+ β = 1 + 6 = 7 is odd, that

ϑρ+Γ

(τ
2

)4

is a modular form for Γ0 (12) ∩ Γ0(2). Thus we would like to show that the RHS,

H(τ) =

(
23∑
b=0

(
b

3

)(
ζ9b

24E3,b,24 − ζ21b
24 E15,b,24

))4

is also a modular form for this subgroup. As all the following identities transform in a similar way,
the details have mostly been suppressed from here on.

5.1.3 Identity (8)

Melham states the following:

G3(q2)G3(q3) =
∞∑
n=0

[
q5n

1− q24n+3
+

q7n+2

1− q24n+9
− q17n+10

1− q24n+15
− q19n+16

1− q24n+21

]
.
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As before, we find the RHS is equal to

q−
5
8
(
F ∗3,5,24 + F ∗9,7,24

)
and therefore the identity is equivalent to

ϑρ+Γ

(τ
2

)
=

√
3

24π

23∑
b=0

(
b

3

)(
ζ21b

24 E9,b,24 − ζ9b
24E21,b,24

)
.

Hence we need to show that

H(τ) :=

(
23∑
b=0

(
b

3

)(
ζ21b

24 E9,b,24 − ζ9b
24E21,b,24

))4

is modular for Γ0 (12) ∩ Γ0(2).

5.1.4 Identity (9)

Melham states the following:

G3(q)G3(q10) =
∞∑
n=0

[
q11n + q19n+1

1− q40n+5
− q17n+5 + q33n+11

1− q40n+15
+
q7n+3 + q23n+13

1− q40n+25
− q21n+17 + q29n+24

1− q40n+35

]
.

By our earlier method, the RHS is

q−
11
8
(
F ∗5,11,40 + F ∗5,19,40 + F ∗25,7,40 + F ∗25,23,40

)
and so the identity becomes

ϑρ+Γ

(τ
2

)
=

√
5

40πi

39∑
b=0

(
b

5

)(
ζ5b

40E5,b,40 − ζ25b
40 E25,b,40

)
.

Hence we need to show that

H(τ) :=

(
39∑
b=0

(
b

5

)(
ζ5b

40E5,b,40 − ζ25b
40 E25,b,40

))4

is modular for Γ0 (20) ∩ Γ0(2).

5.1.5 Identity (10)

Using our earlier method, the identity is equivalent to

G3(q2)G3(q5) = q−
7
8
(
F ∗5,7,40 + F ∗5,23,40 + F ∗25,11,40 + F ∗25,19,40

)
and

ϑρ+Γ

(τ
2

)
=

√
5

40πi

39∑
b=0

(
b

5

)(
ζ5b

40E25,b,40 − ζ25b
40 E5,b,40

)
.

So

H(τ) :=

(
39∑
b=0

(
b

5

)(
ζ5b

40E25,b,40 − ζ25b
40 E5,b,40

))4

.
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5.1.6 Identity (11)

Again we use our earlier method and find the identity is equivalent to

G3(q)G3(q13) = q−
7
4
(
F ∗13,7,52 + F ∗13,11,52 + F ∗13,15,52 + F ∗13,19,52 + F ∗13,31,52 + F ∗13,47,52

)
.

So

H(τ) :=

(
51∑
b=0

(
b

13

)
ζ39b

52 E39,b,52

)2

.

5.1.7 Identity (12)

Again we use our earlier method and find the identity is equivalent to

G3(q)G3(q22) = q−
23
8
(
F ∗11,15,88 + F ∗11,23,88 + F ∗11,31,88 + F ∗11,47,88 + F ∗11,71,88

+F ∗55,11,88 + F ∗55,19,88 + F ∗55,35,88 + F ∗55,43,88 + F ∗55,51,88 + F ∗55,83,88

)
.

So

H(τ) :=

(
87∑
b=0

(
b

11

)(
ζ33b

88 E11,b,88 − ζ77b
88 E55,b,88

))4

.

5.1.8 Identity (13)

This identity is slightly resistant to our previous method, and requires a little more effort. Recalling
that Ka,c,N −K−a,−c,N = − 1

2πiNFa,c,N , we also define F ∗a,c,N := − 1
2πiNFa,c,N . As before, we expand

the denominators, and find the identity is equivalent to

G3(q2)G3(q11) = q−
13
8

(
−K11,5,88 −K11,37,88 −K11,45,88 −K11,53,88 −K11,69,88

−K77,3,88 −K77,11,88 −K77,27,88 −K77,59,88 −K77,67,88 −K77,75,88

+K33,15,88 +K33,23,88 +K33,31,88 +K33,47,88 +K33,71,88

+K55,1,88 +K55,9,88 +K55,25,88 +K55,33,88 +K55,49,88 +K55,81,88

)
.

Now, noting that we can write −K−a,−c,N = F ∗a,c,N −Ka,c,N , and also Ka,c,N = F ∗a,c,N +K−a,−c,N we

have this being equivalent to, multiplying by q
13
8 for simplicity,

q
13
8 G3(q2)G3(q11) = −K11,5,88 −K11,37,88 −K11,45,88 −K11,53,88 −K11,69,88

+(F ∗11,85,88 −K11,85,88) + (F ∗11,77,88 −K11,77,88) + (F ∗11,61,88 −K11,61,88) + (F ∗11,29,88 −K11,29,88)

+(F ∗11,21,88 −K11,21,88) + (F ∗11,13,88 −K11,13,88)

+(F ∗33,15,88 +K55,73,88) + (F ∗33,23,88 +K55,65,88) + (F ∗33,31,88 +K55,57,88) + (F ∗33,47,88 +K55,41,88)

+(F ∗33,71,88 +K55,17,88)

+K55,1,88 +K55,9,88 +K55,25,88 +K55,33,88 +K55,49,88 +K55,81,88
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= F ∗11,85,88 + F ∗11,77,88 + F ∗11,61,88 + F ∗11,29,88 + F ∗11,21,88 + F ∗11,13,88

+F ∗33,15,88 + F ∗33,23,88 + F ∗33,31,88 + F ∗33,47,88 + F ∗33,71,88

−K11,5,88 −K11,13,88 −K11,21,88 −K11,29,88 −K11,37,88 −K11,45,88 −K11,53,88 −K11,61,88

−K11,69,88 −K11,77,88 −K11,85,88

+K55,1,88 +K55,9,88 +K55,17,88 +K55,25,88 +K55,33,88 +K55,41,88 +K55,49,88 +K55,57,88

+K55,65,88 +K55,73,88 +K55,81,88

= F ∗11,85,88 + F ∗11,77,88 + F ∗11,61,88 + F ∗11,29,88 + F ∗11,21,88 + F ∗11,13,88 + F ∗33,15,88

+F ∗33,23,88 + F ∗33,31,88 + F ∗33,47,88 + F ∗33,71,88 −
10∑
r=0

K11,5+8r,88 +
10∑
r=0

K55,1+8r,88

= F ∗11,85,88 + F ∗11,77,88 + F ∗11,61,88 + F ∗11,29,88 + F ∗11,21,88 + F ∗11,13,88 + F ∗33,15,88

+F ∗33,23,88 + F ∗33,31,88 + F ∗33,47,88 + F ∗33,71,88 −K1,5,8 +K5,1,8

= F ∗11,85,88 + F ∗11,77,88 + F ∗11,61,88 + F ∗11,29,88 + F ∗11,21,88 + F ∗11,13,88 + F ∗33,15,88

+F ∗33,23,88 + F ∗33,31,88 + F ∗33,47,88 + F ∗33,71,88.

Hence identity (13) is equivalent to

G3(q2)G3(q11) = q−
13
8

(
F ∗11,13,88 + F ∗11,21,88 + F ∗11,29,88 + F ∗11,61,88 + F ∗11,85,88

+F ∗33,15,88 + F ∗33,23,88 + F ∗33,31,88 + F ∗33,47,88 + F ∗33,71,88

)

=
1

2
q−

13
8

 ∑
0<c<88
c≡7 (8)

( c
11

)
F ∗33,c,88 −

∑
0<c<88
c≡3 (8)

( c
11

)
F ∗77,c,88


as −1 is not a quadratic residue modulo 11. This is therefore the same as

G3(q2)G3(q11) =

√
11

352π
q−

13
8

87∑
b=0

(
b

11

)(
ζ33b

88 E33,b,88 − ζ77b
88 E77,b,88

)
which becomes

ϑρ+Γ

(τ
2

)
=

√
11

88π

87∑
b=0

(
b

11

)(
ζ33b

88 E33,b,88 − ζ77b
88 E77,b,88

)
.

Hence

H(τ) :=

(
87∑
b=0

(
b

11

)(
ζ33b

88 E33,b,88 − ζ77b
88 E77,b,88

))4

.

5.1.9 Identity (14)

We find, using our earlier method, that the identity is equivalent to

G3(q)G3(q37) = q−
19
4

(
F ∗37,15,148 + F ∗37,19,148 + F ∗37,23,148 + F ∗37,31,148 + F ∗37,35,148

+F ∗37,39,148 + F ∗37,43,148 + F ∗37,51,148 + F ∗37,55,148 + F ∗37,59,148 + F ∗37,79,148 + F ∗37,87,148

+F ∗37,91,148 + F ∗37,103,148 + F ∗37,119,148 + F ∗37,131,148 + F ∗37,135,148 + F ∗37,143,148

)
so

H(τ) :=

(
147∑
b=0

(
b

37

)
ζ111b

148 E111,b,148

)2

.
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5.1.10 Identity (15)

Using the same approach of Identity (13), we find the identity to be equivalent to

G3(q)G3(q58) = q−
59
8

(
F ∗29,35,232 + F ∗29,51,232 + F ∗29,59,232 + F ∗29,67,232 + F ∗29,83,232 + F ∗29,91,232

+F ∗29,107,232 + F ∗29,115,232 + F ∗29,123,232 + F ∗29,139,232 + F ∗29,179,232 + F ∗29,187,232

+F ∗29,203,232 + F ∗29,219,232 + F ∗29,227,232

+F ∗145,15,232 + F ∗145,31,232 + F ∗145,39,232 + F ∗145,47,232 + F ∗145,55,232 + F ∗145,79,232 + F ∗145,87,232 + F ∗145,95,232

+F ∗145,119,232 + F ∗145,127,232 + F ∗145,135,232 + F ∗145,143,232 + F ∗145,159,232 + F ∗145,191,232 + F ∗145,215,232

)
(1)

=
1

2
q−

59
8

 ∑
0<c<232
c≡3 (8)

( c
29

)
F ∗29,c,232 −

∑
0<c<232
c≡7 (8)

( c
29

)
F ∗145,c,232

 (2)

=

√
29

928πi
q−

59
8

231∑
b=0

(
b

29

)(
ζ29b

232E29,b,232 − ζ145b
232 E145,b,232

)
.

Hence

H(τ) :=

(
231∑
b=0

(
b

29

)(
ζ29b

232E29,b,232 − ζ145b
232 E145,b,232

))4

5.1.11 Identity (16)

Using our earlier approach, we find identity (16) to be equivalent to

G3(q2)G3(q29) = q−
31
8

(
F ∗29,15,232 + F ∗29,31,232 + F ∗29,39,232 + F ∗29,47,232 + F ∗29,55,232 + F ∗29,79,232

+F ∗29,95,232 + F ∗29,119,232 + F ∗29,127,232 + F ∗29,135,232 + F ∗29,143,232 + F ∗29,159,232 + F ∗29,191,232 + F ∗29,215,232

+F ∗145,35,232 + F ∗145,51,232 + F ∗145,59,232 + F ∗145,67,232 + F ∗145,83,232 + F ∗145,91,232 + F ∗145,107,232

+F ∗145,115,232 + F ∗145,123,232 + F ∗145,139,232 + F ∗145,179,232 + F ∗145,187,232 + F ∗145,219,232 + F ∗145,227,232

)
and

H(τ) :=

(
231∑
b=0

(
b

29

)(
ζ145b

232 E29,b,232 − ζ29b
232E145,b,232

))4

.

5.2 Pentagonal Numbers

5.2.1 Identity (17)

Again we use our earlier approach, and find the identity is equivalent to

G5(q)G5(q5) = q−
1
4
(
F ∗15,1,60 + F ∗15,29,60 + F ∗15,41,60 + F ∗15,49,60

+F ∗45,7,60 + F ∗45,23,60 + F ∗45,43,60 + F ∗45,47,60

)
.
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This identity is a little unusual, but we notice we can write it as

G5(q)G5(q5) = q−
1
4
[
F ∗15,1,60 + F ∗15,29,60 + F ∗15,41,60 + F ∗15,49,60

−
(
F ∗15,53,60 + F ∗15,37,60 + F ∗15,17,60 + F ∗15,13,60

) ]
= q−

1
4

 ∑
0<c<60
c≡1 (12)

( c
5

)
F ∗15,c,60 +

∑
0<c<60
c≡5 (12)

( c
5

)
F ∗15,c,60



= q−
1
4

 59∑
b=0

E15,b,60

∑
0<c<60
c≡1 (12)

( c
5

)
ζ−bc60 +

59∑
b=0

E15,b,60

∑
0<c<60
c≡5 (12)

( c
5

)
ζ−bc60



= q−
1
4

59∑
b=0

E15,b,60

 ∑
0<c<60
c≡1 (12)

( c
5

)
ζ−bc60 +

∑
0<c<60
c≡5 (12)

( c
5

)
ζ−bc60


=

√
5

120πi
q−

1
4

59∑
b=0

[(
b

5

)(
ζ35b

60 + ζ55b
60

)
E15,b,60

]
.

Hence

H(τ) :=

(
59∑
b=0

(
b

5

)(
ζ35b

60 E15,b,60 − ζ5b
60E45,b,60

))2

.

5.2.2 Identity (18)

Using the approach of identity (13), we find the identity is equivalent to

G5(q)G5(q10) = q−
11
24
(
F ∗5,11,120 + F ∗5,35,120 + F ∗5,59,120

+F ∗35,53,120 + F ∗35,77,120

+F ∗65,23,120 + F ∗65,47,120

+F ∗95,41,120 + F ∗95,65,120 + F ∗95,89,120

)
.

Therefore

H(τ) :=

(
119∑
b=0

(
b

5

)(
ζ105b

120 E25,b,120 − ζ45b
120E85,b,120 + ζ105b

120 E65,b,120 − ζ45b
120E5,b,120

))12

,

recalling that our exponent comes from the requirement in section 3 for the LHS to be a modular form
on the desired subgroup.

5.2.3 Identity (19)

Using the approach of identity (13), we find the identity is equivalent to

G5(q2)G5(q5) = q−
7
24
(
F ∗5,7,120 + F ∗5,103,120

+F ∗25,11,120 + F ∗25,59,120

+F ∗65,19,120 + F ∗65,91,120

+F ∗85,23,120 + F ∗85,47,120

)
.
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So we define

H(τ) :=

(
119∑
b=0

(
b

5

)(
ζ105b

120 E5,b,120 − ζ45b
120E65,b,120 + ζ105b

120 E85,b,120 − ζ45b
120E25,b,120

))12

.

5.2.4 Identity (20)

Here we use our earlier approach, and see the identity is equivalent to

G5(q)G5(q13) = q−
7
12
(
F ∗13,7,156 + F ∗13,19,156 + F ∗13,31,156 + F ∗13,67,156 + F ∗13,115,156 + F ∗13,151,156

+F ∗65,11,156 + F ∗65,47,156 + F ∗65,59,156 + F ∗65,71,156 + F ∗65,83,156 + F ∗65,119,156

)
.

So we let

H(τ) :=

(
155∑
b=0

(
b

13

)(
ζ143b

156 E91,b,156 − ζ65b
156E13,b,156

))6

.

5.2.5 Identity (21)

Our earlier approach shows us that the identity is equivalent to

G5(q)G5(q22) = q−
23
24
(
F ∗143,35,264 + F ∗143,83,264 + F ∗143,107,264 + F ∗143,131,264 + F ∗143,227,264

+F ∗187,31,264 + F ∗187,103,264 + F ∗187,199,264 + F ∗187,223,264 + F ∗187,247,264

+F ∗209,29,264 + F ∗209,101,264 + F ∗209,149,264 + F ∗209,173,264 + F ∗209,197,264

+F ∗253,1,264 + F ∗253,25,264 + F ∗253,49,264 + F ∗253,97,264 + F ∗253,169,264

)
.

Thus

H(τ) :=

(
263∑
b=0

(
b

11

)(
ζ121b

264 E11,b,264 − ζ253b
264 E143,b,264 + ζ209b

264 E187,b,264 − ζ187b
264 E209,b,264

))12

.

5.2.6 Identity (22)

Our earlier approach shows us that the identity is equivalent to

G5(q2)G5(q11) = q−
13
24
(
F ∗11,13,264 + F ∗11,61,264 + F ∗11,85,264 + F ∗11,109,264 + F ∗11,205,264

+F ∗121,23,264 + F ∗121,47,264 + F ∗121,71,264 + F ∗121,119,264 + F ∗121,191,264

+F ∗187,29,264 + F ∗187,101,264 + F ∗187,149,264 + F ∗187,173,264 + F ∗187,197,264

+F ∗209,31,264 + F ∗209,103,264 + F ∗209,199,264 + F ∗209,223,264 + F ∗209,247,264

)
.

We therefore define

H(τ) :=

(
263∑
b=0

(
b

11

)(
ζ121b

264 E121,b,264 − ζ187b
264 E187,b,264 + ζ209b

264 E209,b,264 − ζ253b
264 E253,b,264

))12

.
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5.2.7 Identity (23)

For this identity, we must use the approach of identity (13), and find equivalence with

G5(q)G5(q37) = q−
19
12
(
F ∗37,19,444 + F ∗37,31,444 + F ∗37,43,444 + F ∗37,55,444 + F ∗37,79,444 + F ∗37,91,444

+F ∗37,103,444 + F ∗37,163,444 + F ∗37,187,444 + F ∗37,199,444 + F ∗37,235,444 + F ∗37,283,444

+F ∗37,319,444 + F ∗37,331,444 + F ∗37,355,444 + F ∗37,415,444 + F ∗37,427,444 + F ∗37,439,444

+F ∗185,23,444 + F ∗185,35,444 + F ∗185,59,444

+F ∗185,119,444 + F ∗185,131,444 + F ∗185,143,444 + F ∗185,167,444 + F ∗185,179,444 + F ∗185,191,444

+F ∗185,203,444 + F ∗185,227,444 + F ∗185,239,444 + F ∗185,251,444

+F ∗185,311,444 + F ∗185,335,444 + F ∗185,347,444 + F ∗185,383,444 + F ∗185,431,444

)
.

We therefore let

H(τ) :=

(
443∑
b=0

(
b

37

)(
ζ407b

444 E259,b,444 − ζ185b
444 E37,b,444

))6

.

5.2.8 Identity (24)

Again, we use the approach of identity (13), and find identity (24) is equivalent to

G5(q)G5(q58) = q−
59
24
(
F ∗29,35,696 + F ∗29,59,696 + F ∗29,83,696 + F ∗29,107,696 + F ∗29,179,696

+F ∗29,203,696 + F ∗29,227,696 + F ∗29,299,696 + F ∗29,323,696 + F ∗29,347,696 + F ∗29,371,696

+F ∗29,419,696 + F ∗29,515,696 + F ∗29,587,696 + F ∗29,683,696

+F ∗203,77,696 + F ∗203,101,696 + F ∗203,221,696 + F ∗203,269,696 + F ∗203,293,696

+F ∗203,317,696 + F ∗203,365,696 + F ∗203,389,696 + F ∗203,437,696 + F ∗203,461,696 + F ∗203,485,696

+F ∗203,533,696 + F ∗203,653,696 + F ∗203,677,696

+F ∗377,47,696 + F ∗377,95,696 + F ∗377,119,696 + F ∗377,143,696 + F ∗377,191,696

+F ∗377,215,696 + F ∗377,263,696 + F ∗377,287,696 + F ∗377,311,696 + F ∗377,359,696

+F ∗377,479,696 + F ∗377,503,696 + F ∗377,599,696 + F ∗377,623,696

+F ∗551,65,696 + F ∗551,161,696 + F ∗551,209,696 + F ∗551,233,696 + F ∗551,257,696 + F ∗551,281,696

+F ∗551,353,696 + F ∗551,377,696 + F ∗551,401,696 + F ∗551,473,696 + F ∗551,497,696

+F ∗551,521,696 + F ∗551,545,696 + F ∗551,593,696 + F ∗551,689,696

)
.

So we define

H(τ) :=

(
695∑
b=0

(
b

29

)(
ζ493b

696 E29,b,696 − ζ145b
696 E377,b,696 + ζ319b

696 E551,b,696 − ζ667b
696 E203,b,696

))12

.
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5.2.9 Identity (25)

Using the approach of identity (13), we see the identity is equivalent with

G5(q2)G5(q29) = q−
31
24
(
F ∗29,31,696 + F ∗29,55,696 + F ∗29,79,696 + F ∗29,127,696

+F ∗29,247,696 + F ∗29,271,696 + F ∗29,319,696 + F ∗29,367,696 + F ∗29,391,696

+F ∗29,511,696 + F ∗29,559,696 + F ∗29,583,696 + F ∗29,607,696 + F ∗29,655,696 + F ∗29,679,696

+F ∗319,77,696 + F ∗319,101,696 + F ∗319,221,696 + F ∗319,269,696 + F ∗319,293,696

+F ∗319,317,696 + F ∗319,365,696 + F ∗319,389,696

+F ∗319,437,696 + F ∗319,461,696 + F ∗319,485,696 + F ∗319,533,696 + F ∗319,653,696 + F ∗319,677,696

+F ∗493,47,696 + F ∗493,95,696 + F ∗493,119,696 + F ∗493,143,696 + F ∗493,191,696

+F ∗493,215,696 + F ∗493,263,696 + F ∗493,287,696 + F ∗493,311,696 + F ∗493,359,696

+F ∗493,479,696 + F ∗493,503,696 + F ∗493,551,696 + F ∗493,599,696 + F ∗493,623,696

+F ∗551,37,696 + F ∗551,61,696 + F ∗551,85,696 + F ∗551,133,696 + F ∗551,157,696

+F ∗551,205,696 + F ∗551,229,696 + F ∗551,253,696 + F ∗551,301,696

+F ∗551,421,696 + F ∗551,445,696 + F ∗551,541,696 + F ∗551,565,696 + F ∗551,685,696

)
.

So we let

H(τ) :=

(
695∑
b=0

(
b

29

)(
ζ319b

696 E667,b,696 − ζ667b
696 E319,b,696 + ζ493b

696 E145,b,696 − ζ145b
696 E493,b,696

))12

.

5.3 Heptagonal Numbers

5.3.1 Identity (26)

Our final identity, and the only one involving the heptagonal numbers, requires us to use the approach
of identity (13). It is our most complex identity in terms of length. We find identity (26) to be
equivalent to

G7(q)G7(q6) = q−
63
40

(
F ∗3,103,120 + F ∗9,21,120 + F ∗9,101,120

+F ∗21,49,120 + F ∗33,53,120 + F ∗33,93,120

+F ∗51,79,120 + F ∗57,77,120 + F ∗81,29,120 + F ∗93,73,120

)
= −1

2
q−

63
40

( ∑
0<c<120
c≡23 (40)

( c
3

)
F ∗3,c,120 −

∑
0<c<120
c≡21 (40)

( c
3

)
F ∗9,c,120 +

∑
0<c<120
c≡9 (40)

( c
3

)
F ∗21,c,120

−
∑

0<c<120
c≡13 (40)

( c
3

)
F ∗33,c,120 +

∑
0<c<120
c≡39 (40)

( c
3

)
F ∗51,c,120 −

∑
0<c<120
c≡37 (40)

( c
3

)
F ∗57,c,120

−
∑

0<c<120
c≡29 (40)

( c
3

)
F ∗81,c,120 +

∑
0<c<120
c≡33 (40)

( c
3

)
F ∗93,c,120

)
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= −1

2
q−

63
40

( ∑
0<c<120
c≡9 (40)

( c
3

)
F ∗21,c,120 −

∑
0<c<120
c≡21 (40)

( c
3

)
F ∗9,c,120

+
∑

0<c<120
c≡1 (40)

( c
3

)
F ∗69,c,120 −

∑
0<c<120
c≡29 (40)

( c
3

)
F ∗81,c,120

+
∑

0<c<120
c≡17 (40)

( c
3

)
F ∗117,c,120 −

∑
0<c<120
c≡37 (40)

( c
3

)
F ∗57,c,120

+
∑

0<c<120
c≡33 (40)

( c
3

)
F ∗93,c,120 −

∑
0<c<120
c≡13 (40)

( c
3

)
F ∗33,c,120

)

=

√
3

480π
q−

63
40

119∑
b=0

(
b

3

)(
ζ111b

120 E21,b,120 − ζ99b
120E9,b,120

+ζ39b
120E69,b,120 − ζ51b

120E81,b,120

+ζ63b
120E117,b,120 − ζ3b

120E57,b,120

+ζ87b
120E93,b,120 − ζ27b

120E33,b,120

)
.

This leads us to define

H(τ) :=

( 119∑
b=0

(
b

3

)(
ζ111b

120 E21,b,120 − ζ51b
120E81,b,120 + ζ39b

120E69,b,120 − ζ99b
120E9,b,120

+ζ63b
120E117,b,120 − ζ3b

120E57,b,120 + ζ87b
120E93,b,120 − ζ27b

120E33,b,120

))20

.

6 Identities Under Transformation by the Congruence Subgroup

For all our identities we have already shown that the LHS (as a theta function) raised to some even
power is modular for Γ′, where

Γ′ = Γ0

(
N

2

)
∩ Γ0(2),

further intersected with Γ1(10) for the heptagonal case. As we have also seen, the RHS of each
identity is an Eisenstein series, and is therefore modular with respect to Γ(N), where thankfully the
N of the LHS is equal to the N of the RHS. In order to reduce the amount of coefficients needed to
be calculated, we would like to show that the RHS (raised to the same even power as the LHS), is
also modular for Γ′. As the RHS is already modular for Γ(N), we only need to consider elements in
Γ′′ = Γ′/Γ(N). A set of generators for Γ′′ is

A =

(
1 2
0 1

)
, B =

(
1 0
N
2 1

)
, C0 = −I, C1 =

(
c1 0

0 c−1
1

)
, C2 =

(
c2 0

0 c−1
2

)
, . . .

where the Cj continue to include all cj necessary to generate (Z/NZ)∗ (noticing we have already
included −1). All identities have a RHS of the form

H(τ) =

N−1∑
β=0

(
β

p

) ∑
(ki,ai)

(−1)i+1ζkiβN Eai,β,N (τ)

2v

for some integer v, with the second sum running over the pairs (ki, ai), i = 1, 2, . . .. For our triangular
identities, there are either 1 or 2 pairs, for our pentagonal, 2 or 4 pairs. For the single heptagonal
identity, there are 8 pairs.
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6.1 Invariance Under Transformation by Matrix A

We begin this section with the following lemma.

Lemma 6.1. Let p be an odd prime, p | N . Let gcd(d,N) = g, and kg = d, Mg = N , all integers.
Then

N−1∑
b=0

(
b

p

)
ζ−dbN =

N−1∑
b=0

(
b

p

)
ζ−kbM =


0 p 6= M(
k
p

)
N
p

√
p p = M ≡ 1 (mod 4)

−
(
k
p

)
iN
p

√
p p = M ≡ 3 (mod 4).

Proof.

S =

p−1∑
b=0

(
b

p

) N
p
−1∑

r=0

ζ
−k(b+pr)
M

=

p−1∑
b=0

(
b

p

)
ζ−kbM

N
p
−1∑

r=0

ζ−kprM

=

p−1∑
b=0

(
b

p

)
ζ−kbM

N
p
−1∑

r=0

ζ−kgrN
p

.

Now,
N
p
−1∑

r=0

ζ−kgrN
p

=

{
0 kg 6≡ 0 (mod N

p )
N
p kg ≡ 0 (mod N

p ).

Clearly, gcd(k,M) = 1. Hence for some t ∈ Z,

kg ≡ 0 (mod
N

p
) ⇐⇒ k

N

M
=
N

p
t ⇐⇒ kp = Mt ⇐⇒ M | p.

So S = 0 when p 6≡ 0 (mod M), and as p an odd prime, p 6= M . When p ≡ 0 (mod M), i.e. p = M ,
we have

S =
N

p

p−1∑
b=0

(
b

p

)
ζ−kbp =


(
k
p

)
N
p

√
p p ≡ 1 (mod 4)

−
(
k
p

)
N
p i
√
p p ≡ 3 (mod 4),

which completes the proof.

To show that H(τ) is invariant under the matrix A, we recall that the Ea,b,N is an Eisenstein
series, and make use of the transformation formula noted earlier. We also write∑

j≥0

sj(α, β,N)q
j
N := Eα,β,N (τ)

so that sj(α, β,N) is the q
j
N coefficient of Eα,β,N (τ). We also spot

Ea,b+a,N (τ) = Ea,b,N (τ + 1) = 2πi


a

N
− 1

2
−
∞∑
r=1

q
r
N ζrN

[ ∑
s|r

s≡a (N)
s>0

ζ
br
s
N −

∑
s|r

s≡−a (N)
s>0

ζ
− br
s

N

]
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=
∑
j∈N

sj(α, β,N)ζjNq
j
N .

Thus

H|A =

N−1∑
β=0

(
β

p

) ∑
(ki,ai)

(−1)i+1ζkiβN Eai,β+2ai,N

2v

=

N−1∑
β=0

(
β

p

) ∑
(ki,ai)

(−1)i+1ζkiβN

∑
j≥0

sj(ai, β,N)ζ2j
N q

j
N

2v

=

∑
j≥0

ζ2j
N q

j
N

∑
(ki,ai)

(−1)i+1
N−1∑
β=0

(
β

p

)
ζkiβN sj(ai, β,N)

2v

.

By Lemma 6.1, we have
N−1∑
β=0

(
β

p

)
ζkiβN sj(ai, β,N) = 0

unless sj(ai, β,N) has a ζmβN term with (m+ ki, N) = N
p := γ, hence we need,

m = −ki + diγ

with di 6≡ 0 modulo p. As, for j > 0,

sj(ai, β,N) = −2πi

[ ∑
s|j

s≡ai (N)
s>0

ζ
βj
s
N −

∑
s|j

s≡−ai (N)
s>0

ζ
−βj

s
N

]
.

We have j = ±(ai + lN)m for some l ∈ Z, hence j ≡ ±aim (mod N). We note that for all our
identities p | ai, hence j ≡ ±aim ≡ ±ai(−ki + diγ) ≡ ±aiki (mod N).

For triangular identities of the form that have just one pair of (ai, ki), we notice that aiki ≡ N
4

modulo N . Hence ζ2j
N = ±1 for all j of non vanishing terms. These identities were raised to the power

of 2, hence H|A = H.

For triangular identities that have two pairs of (ai, ki), we see that aiki ≡ N
8 or ±3N

8 modulo N .

Hence ζ2j
N = ±i for all j of non vanishing terms. These identities were raised to the power of 4, hence

H|A = H.

For pentagonal identities that have two pairs of (ai, ki), we see that aiki ≡ 3N
4 (identity (17)) or

5N
12 (identities (20, 23)) modulo N . Hence for identity (17) ζ2j

N = −1, and for the others, ζ2j
N = ζ5

6 for
all j of non vanishing terms. Identity (17) was raised to the power of 2, and identities (20) and (23)
were raised to the power of 6, hence in both cases H|A = H.

For pentagonal identities that have four pairs of (ai, ki), we see that aiki ≡ 7N
8 or 3N

8 (identities
(18,19)) or N

24 , 11N
24 , 13N

24 , 17N
24 (identities (21, 22, 24, 25)) modulo N . Hence for identity (18, 19)

ζ2j
N = −i, and for the others, ζ2j

N = ζ12, ζ11
12 , or ζ5

12 for all j of non vanishing terms. All of these
identities were raised to the power of 12, hence in both cases H|A = H.

For the one heptagonal identity we have aiki ≡ 51 ≡ 17N
40 for all 8 pairs. Thus ζ2j

N = ζ17
20 , and as

the identity is raised to the power of 20, H|A = H.
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6.2 Invariance Under Transformation by Matrix B

To show that H(τ) is invariant under the matrix B =

(
1 0
N
2 1

)
we notice

H|B = H|B−1
1
|B2 |B1

with

B−1
1 =

(
0 1
−1 0

)
, B2 =

(
1 −N

2
0 1

)
, B1 =

(
0 −1
1 0

)
,

because B = B−1
1 B2B1. If H|B1 remains fixed under transformation by B2, then H will be fixed by

B. Therefore we just need to check that H|B1 is a sum of powers of q
2
N .

H|B1 =

N−1∑
β=0

(
β

p

) ∑
(ki,ai)

(−1)i+1ζkiβN Eβ,−ai,N

2v

=

2πi
∑

(ki,ai)

(−1)i+1
N−1∑
β=0

(
β

p

)
ζkiβN


β

N
− 1

2
−
∞∑
r=1

q
r
N

[ ∑
s|r

s≡β (N)
s>0

ζ
−air

s
N −

∑
s|r

s≡−β (N)
s>0

ζ
air

s
N

]


2v

=

S − 2πi
∑

(ki,ai)

(−1)i+1
N−1∑
β=0

(
β

p

)
ζkiβN


∞∑
r=1

q
r
N

[ ∑
s|r

s≡β (N)
s>0

ζ
−air

s
N −

∑
s|r

s≡−β (N)
s>0

ζ
air

s
N

]


2v

with S some constant. Rearranging the RHS, we get

H|B1 =

S − 2πi
∑

(ki,ai)

(−1)i+1
∞∑
r=1

q
r
N


N−1∑
β=0

∑
s|r

s≡β (N)
s>0

[(
β

p

)
ζkiβN ζ

−air
s

N

]
−
N−1∑
β=0

∑
s|r

s≡−β (N)
s>0

[(
β

p

)
ζkiβN ζ

air

s
N

]


2v

=

S − 2πi
∑

(ki,ai)

(−1)i+1
∞∑
r=1

q
r
N

∑
s|r
s>0

[(
s

p

)
ζkisN ζ

−air
s

N

]
−
∑
s|r
s>0

[(
−s
p

)
ζ−kisN ζ

air

s
N

]


2v

=

S − 2πi
∞∑
r=1

q
r
N

∑
s|r
s>0

(
s

p

) ∑
(ki,ai)

(−1)i+1

[
ζ
kis−ai rs
N −

(
−1

p

)
ζ
−kis+ai rs
N

]


2v

.

Define

G :=
∑

(ki,ai)

(−1)i+1

[
ζ
kis−ai rs
N −

(
−1

p

)
ζ
−kis+ai rs
N

]
.

We aim to show G = 0 whenever r is odd. Suppose first that p ≡ 1 (mod 4), then, as we always have
an even number of pairs of (ai, ki), and using a simple trigonometric identity,

G =
∑

(ki,ai)

(−1)i+1

[
ζ
kis−ai rs
N − ζ−kis+ai

r
s

N

]
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= 2i
∑

(ki,ai)

(−1)i+1 sin

[
2π

N

(
kis− ai

r

s

)]

= 2i
∑
odd i

(
sin

[
2π

N

(
kis− ai

r

s

)]
− sin

[
2π

N

(
ki+1s− ai+1

r

s

)])
= 4i

∑
odd i

cos
[ π
N

(
s(ki + ki+1)− r

s
(ai + ai+1)

)]
sin
[ π
N

(
s(ki − ki+1)− r

s
(ai − ai+1)

)]
.

Similarly, if p ≡ 3 (mod 4) we have

G =
∑

(ki,ai)

(−1)i+1

[
ζ
kis−ai rs
N + ζ

−kis+ai rs
N

]

= 2
∑

(ki,ai)

(−1)i+1 cos

[
2π

N

(
kis− ai

r

s

)]

= −4
∑
odd i

sin
[ π
N

(
s(ki + ki+1)− r

s
(ai + ai+1)

)]
sin
[ π
N

(
s(ki − ki+1)− r

s
(ai − ai+1)

)]
.

For identities that have p ≡ 1 (mod 4), we note that for odd i, ki − ki+1 ≡ ai − ai+1 ≡ N
2 modulo

N . Thus G vanishes when r is odd, as s and r
s must share the same parity.

For identities that have p ≡ 3 (mod 4), we are not as restricted, we can have either (for odd i)
ki − ki+1 ≡ ai − ai+1 ≡ N

2 or ki + ki+1 ≡ ai + ai+1 ≡ N
2 modulo N . For all of these identities we have

this requirement, hence G vanishes for odd r, as required.

6.3 Invariance Under Transformation by Matrices Cj

To show these identities remain fixed under matrices of the form (disregarding the subscript for now)

C =

(
c 0
0 c−1

)
modulo N , we apply the transformation formula again:

H|C =

N−1∑
β=0

(
β

p

) ∑
(ki,ai)

(−1)i+1ζkiβN Ecai,c−1β,N

2v

.

We let β′ = c−1β and find, as we must have (c,N) = 1 and p | N ,

H|C =

N−1∑
β′=0

(
cβ′

p

) ∑
(ki,ai)

(−1)i+1ζkicβ
′

N Ecai,c−1β,N

2v

=

(
c

p

)2v
N−1∑
β′=0

(
β′

p

) ∑
(ki,ai)

(−1)i+1ζkicβ
′

N Ecai,β′,N

2v

.

This will be equal to H if c acts on the pairs (ki, ai), by multiplication modulo N , by mapping each
to ±(kj , aj), with j = 1, 2, . . . and so on. To see this we consider the effect of one mapping. We allow
for each (ki, ai) to be mapped to either itself, its negative, a different (kj , aj), or the negative of that.
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If (ki, ai) is mapped to itself or (kj , aj), there are no issues. If it is mapped to the negative of one of
these we notice, using E−a,−b,N = −Ea,b,N ,

N−1∑
β=0

(
β

p

)
ζ−kiβN E−ai,β,N = −

N−1∑
β=0

(
β

p

)
ζ−kiβN Eai,−β,N

= −
(
−1

p

)N−1∑
β=0

(
β

p

)
ζkiβN Eai,β,N

= −
(
−1

p

)N−1∑
β=0

(
β

p

)
ζkiβN Eai,β,N .

If p ≡ 3 (mod 4) then the negatives cancel, and we are done. If however p ≡ 1 (mod 4), we need to
have either all the pairs (ki, ai) map to negatives, or for each pair that maps to a negative match to
a pair (kj , aj) where j has a different parity than i, which will be accounted for by the (−1)i+1 term.

For example, identity (7) has RHS

H =

(
23∑
b=0

(
b

3

)(
ζ9b

24E3,b,24 − ζ21b
24 E15,b,24

))4

.

A set of generators for (Z/24Z)∗ is 5, 7, 23. Of course 23 ≡ −1 is trivial, so we focus first on 5. We get
5 · (k1, a1) = 5 · (9, 3) = (21, 15) ≡ (k2, a2) modulo 24, and 5 · (k2, a2) = 5 · (21, 15) ≡ (9, 3) ≡ (k1, a1)
modulo 24. Thus H transforms to(

23∑
b=0

(
b

3

)(
ζ21b

24 E15,b,24 − ζ9b
24E3,b,24

))4

= H.

Similarly, for 7 we find 7 · (k1, a1) ≡ −(k1, a1) modulo 24, and 7 · (k2, a2) ≡ −(k2, a2) modulo 24. So
H transforms to (

23∑
b=0

(
b

3

)(
ζ−9b

24 E−3,b,24 − ζ−21b
24 E−15,b,24

))4

=

(
−
(
−1

3

) 23∑
b=0

(
b

3

)(
ζ9b

24E3,b,24 − ζ21b
24 E15,b,24

))4

= H.

This is shown in the tables below. Listed is the identity number, the value of N , a list of the ci
required, and the values of the pairs (ki, ai). The table then shows how the ci permute the pairs. All
permutations are in fact involutions, and we denote the fact that ci swaps (ki, ai) to (kj , aj) as simply
(i, j), whereas if ci takes (ki, ai) to −(kj , aj) and (kj , aj) to −(ki, ai), we write (i,−j). If (ki, ai) maps
to itself, or to −(ki, ai), we write (i), or (−i), respectively. Of course, −1 just takes the pair (ki, ai)
to −(ki, ai).



30 Modular Forms

Identities with 2 pairs of (ki, ai)

Id. N c1, c2, c3

(
k1

a1

) (
k2

a2

)
c1 acts c2 acts

7
24 5, 7, 23

(
9
3

) (
21
15

)
(1, 2) (1,−2)

8

(
21
9

) (
9
21

)
(1, 2) (1,−2)

9
40 3, 11, 39

(
5
5

) (
25
25

)
(1,−2) (1,−2)

10

(
5
25

) (
25
5

)
(1,−2) (1,−2)

12
88 3, 5, 87

(
33
11

) (
77
55

)
(1,−2) (1, 2)

13

(
33
33

) (
77
77

)
(1,−2) (1, 2)

15
232 3, 5, 231

(
29
29

) (
145
145

)
(1,−2) (1, 2)

16

(
145
29

) (
29
145

)
(1,−2) (1, 2)

17 60 7,13,59

(
35
15

) (
5
45

)
(1,−2) (1), (2)

20 156 7,11,155

(
143
91

) (
65
13

)
(1, 2) (−1), (−2)

23 444 5,7,443

(
407
259

) (
185
37

)
(1,−2) (1, 2)

For the three identities (6, 11, 14), that have just a single pair, it is easy to find a set of generators
that for example, maps the pair to its negative. For the single heptagonal identity, we need to avoid
matrices with first entry congruent to ±3 modulo 10. So, as N = 120 we take c0 = 119, c1 = 11,
c2 = 19, and c3 = 29. As before, c0 is immediate. We see that c1 takes (k1, a1) to −(k4, a4) and vice
versa, (k2, a2) to −(k3, a3) and vice versa, (k5, a5) to −(k8, a8) and vice versa, and (k6, a6) to −(k7, a7)
and vice versa. The value 19 swaps the pair with index 1 with the negative of the pair with index 2,
3 with −4, 5 with −6, 7 with −8. Finally, 29 swaps 1 and 4, 2 and 3, 5 and 8, 6 and 7.

7 Equivalence Using Sturm’s Bound

Let f =
∑

k∈Z αkq
k. We define ord(f) to be the smallest such n that αn 6= 0. We first state a

simplified version of Sturm’s bound [12].

Theorem 7.1. Define Γ := SL2(Z), and let f, g be modular forms on Γ′ ⊇ Γ(N) of weight k, a

positive integer. Suppose ord(f − g) > k[Γ:Γ′]
12 . Then f = g.

In other words, Sturm’s bound says that given two modular forms over the same congruence

subgroup and of the same weight, then they are equivalent if their q-expansions agree up to the q
kM
12

coefficient, where k = 2v is the weight, and M is the index of the congruence subgroup in Γ.
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Id
en

ti
ti

es
w

it
h

4
p

ai
rs

of
(k
i,
a
i)

Id
.

N
c
1
,c

2
,c

3
,c

4

( k 1 a
1

)
( k 2 a

2

)
( k 3 a

3

)
( k 4 a

4

)
c
1
a
c
ts

c
2
a
c
ts

c
3
a
c
ts

1
8

12
0

7,
1
1,

1
9
,1

19

( 10
5

25

)
( 45 85

)
( 10

5
65

)
( 45 5

)
(1
,−

3)
,(

2,
−

4)
(1
,−

2)
,(

3,
−

4)
(1
,−

4)
,(

2,
−

3)

1
9

( 10
5

5

)
( 45 65

)
( 10

5
85

)
( 45 25

)
(1
,−

3)
,(

2,
−

4)
(1
,−

2)
,(

3,
−

4)
(1
,−

4)
,(

2,
−

3)

2
1

26
4

5
,7
,1

3,
26

3

( 12
1

11

)
( 25

3
14

3)
( 20

9
18

7)
( 18

7
20

9)
(1
,−

4)
,(

2,
3)

(1
,−

3)
,(

2,
4)

(1
,2

),
(3
,−

4)

2
2

( 12
1

12
1

)
( 18

7
18

7)
( 20

9
20

9)
( 25

3
25

3)
(1
,−

2)
,(

3,
4)

(1
,−

3)
,(

2,
4)

(1
,4

),
(2
,−

3)

2
4

69
6

5
,7
,1

3,
69

5

( 49
3

29

)
( 14

5
37

7)
( 31

9
55

1)
( 66

7
20

3)
(1
,−

3)
,(

2,
−

4)
(1
,4

),
(2
,3

)
(1
,2

),
(3
,4

)

2
5

( 31
9

66
7

)
( 66

7
31

9)
( 49

3
14

5)
( 14

5
49

3)
(1
,−

3)
,(

2,
−

4)
(1
,4

),
(2
,3

)
(1
,2

),
(3
,4

)
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Recall we have defined for the triangular and pentagonal identities,

Γ′ = Γ0

(
N

2

)
∩ Γ0(2),

and for the heptagonal identity,

Γ′ = Γ0

(
N

2

)
∩ Γ0(2) ∩ Γ1(10).

We have now shown that each side of our transformed identities are modular of weight 2v for Γ′′ =
Γ′/Γ(N). We can now apply Sturm’s bound. We have [2, p. 14], for the triangular and pentagonal
cases,

M = [Γ : Γ′] = [Γ : Γ0(N)] = N
∏
p|N

(
1 +

1

p

)
as, despite the fact that Γ′ 6= Γ0(N), they have the same index in Γ. To see this, we simply notice
that Γ′ and Γ0(N) both share a common subgroup, Γ0(N)∩Γ0(2), and this common subgroup clearly
has index 2 in both. For the heptagonal case, we simply have to double M . We need to check kM

12 + 1

coefficients. Starting with identity (6), we have M = 36, and we need to check kM
12 +1 = 7 coefficients.

We use the form of

q
α+β

8(k−2)Gk(q
α)Gk(q

β) =
∑

(ai,ci)

F ∗ai,ci,4(k−2),

for ease, which as we mentioned before each identity can be written as. For identity (6), this is

q
3
4G3(q)G3(q5) = F ∗5,3,20 + F ∗5,7,20

and find both sides start with

1 + 1 · q + 0 · q2 + 1 · q3 + 0 · q4 + 1 · q5 + 2 · q6 + 0 · q7.

As the coefficients of this form agree up to the required amount for Sturm’s bound, the coefficients of
H(τ) and ϑρ+Γ

(
τ
2

)2v
must also agree up to the required amount. Hence by Sturm’s bound H(τ) =

ϑρ+Γ

(
τ
2

)2v
, and so the LHS is equivalent to the RHS up to multiplication by some constant (a root

of unity). But we’ve seen that the coefficients agree, so this constant is 1, and the identity holds. See
appendix for the code used.

For identity (7), we have M = 48, and so we need to check 17 coefficients. We check the coefficients
of the same form

q
7
8G3(q)G3(q6) = F ∗3,7,24 + F ∗9,5,24

and find both sides start with

1+1·q+0·q2+1·q3+0·q4+0·q5+2·q6+1·q7+0·q8+1·q9+1·q10+0·q11+1·q12+0·q13+0·q14+1·q15+1·q16+0·q17.

As before, this is enough to show identity (7) holds.

Our computations show that both the LHS and RHS have the same coefficients for all triangular,
pentagonal, and heptagonal identities. Notice that while we always knew both sides were modular
forms for Γ(N), using that would have made the number of coefficients required for Sturm’s Bound
much larger, hence the efforts to show both sides were modular forms for the larger congruence
subgroups.
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8 Appendix

We used a simple code in MATLAB to check the coefficients. There may very well exist a more elegant
way of doing this, but as we always had N < 1000 this was suitable for our purposes. The code first
calculates the triangular/pentagonal/heptagonal numbers up to the number required, then sums the
appropriate multiples and checks the frequency to find the coefficients of the LHS. For the RHS the
code uses the definition of Fa,c,N to calculate the coefficients using the pairs (ai, ci). Finally, these two
lists are compared, returning a value of 0 if the coefficients are the same. If the coefficients agree up
to the necessary limit, then of course the coefficients agree when raised to the power 2v.

Included below is the code used for the triangular numbers. We merely altered the first section so
it would calculate the correct number of coefficients, and the correct numbers, for the pentagonal and
heptagonal number identities.

8.1 Triangular Numbers Code

%% Script to find number of ways each number can be represented as the sum of a

%% triangular # and a multiple of a triangular #

% Numbers that cannot be represented in any such way are excluded from

% output. Output is each number with the frequency at which it can be

% expressed in the above way.

clear

% IDENTITY VALUES GO HERE

% alpha = ; beta = ; % values of alpha, beta, alpha < beta

% d = ; % power of q multiplied by N

% N = ; % value of N

% M = ; % index of subgroup

% k = ; % weight of form

% a = [ ]; c = [ ]; % values of a, c

noF = length(c); % number of F_{a,c,N}

m = k*M/12 + 1; % number of coefficients needed

n = floor( ( -1 + sqrt( 1 + 8 * m / alpha) ) / 2 ) + 1; % number of

% triangular numbers needed

tri = zeros(n, 1);

sums = zeros(n);

for i = 0 : n

tri(i+1) = i * ( i + 1 ) / 2;

end

atri = alpha .* tri;

btri = beta .* tri;

for i = 1 : n

for j = 1 : n

sums(i, j) = atri(i) + btri(j);

end

end
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out = [unique(sums),histc(sums(:),unique(sums))];

index = find(out(:, 1) < m + 1);

result = out(1 : max(index), :);

%% Working out coefficients of the RHS

Fpos = zeros(noF, m, m);

Fneg = zeros(noF, m, m);

for i = 1 : noF

for j = 1 : m + 1

for k = 1 : m + 1

Fpos(i, j, k) = ( (a(i) + (k - 1) * N) * (c(i) + (j - 1) * N) - d )/ N;

Fneg(i, j, k) = ( ( -a(i) + k * N) * ( -c(i) + j * N) - d )/ N;

end

end

end

outpos = [unique(Fpos),histc(Fpos(:),unique(Fpos))];

indexpos = find(outpos(:, 1) < m + 1);

resultpos = outpos(1 : max(indexpos), :);

outneg = [unique(Fneg),histc(Fneg(:),unique(Fneg))];

indexneg = find(outneg(:, 1) < m + 1);

resultneg = outneg(1 : max(indexneg), :);

resultF = zeros(m, 2);

k = max(length(resultpos), length(resultneg));

for i = 1 : k

if isempty(find(resultneg(:, 1) == resultpos(i, 1), 1))

resultF(i, :) = resultpos(i, :);

else

resultF(i, 1) = resultpos(i, 1);

resultF(i, 2) = resultpos(i, 2) - resultneg(find(resultneg(:, 1)

== resultpos(i, 1), 1), 2);

resultneg(find(resultneg(:, 1) == resultpos(i, 1), 1), :) = [];

end

end

resultneg(:, 2) = -resultneg(:, 2);

resultF = [resultF; resultneg];

resultF = resultF(any(resultF, 2), :);

resultF = resultF(any(resultF(:, 2), 2), :);

%% Comparing

any(any(result-resultF)) % Checking if the difference between the two results

% is zero. If zero, it will return zero.



35 Modular Forms

References

[1] C. Adiga, S. Cooper, and J. H. Han. A General Relation Between Sums of Squares and Sums of
Triangular Numbers. International Journal of Number Theory, 1:175–182, 2005.

[2] F. Diamond and J. Shurman. A First Course in Modular Forms. Springer, 2005.

[3] L. E. Dickson. Introduction to the Theory of Numbers. University of Chicago Press, 1929.
Reprinted by Dover, 1957.

[4] W. Ebeling. Lattices and Codes. Vieweg, 1994.

[5] M. Hirschhorn. Private communication.

[6] M. Hirschhorn. A Simple Proof of Jacobi’s Two-square Theorem. Ameri. Math. Monthly, 92:579–
580, 1985.

[7] K. Ireland and M. Rosen. A Classical Introduction to Modern Number Theory. 2nd ed. Springer,
1990.

[8] F. Jarvis. Algebraic Number Theory. Springer, 2014.

[9] N. Koblitz. Introduction to Elliptic Curves and Modular Forms, 2nd Edition. Springer, 1993.

[10] R. S. Melham. Analogues of Jacobi’s Two-Square Theorem: An Informal Account. Integers,
(10):83–100, 2010.

[11] J.-P. Serre. A Course in Arithmetic. Springer, 1973.

[12] J. Sturm. On the Congruence of Modular Forms. In Number Theory, D. V. Chudnovsky, G.
V. Chudnovsky, H. Cohn, and M. B. Nathanson (eds.). Lecture Notes in Mathematics, Springer
1240:275–280, 1987.

[13] Z.-H. Sun. On the Number of Representations of n by ax(x − 1)/2 + by(y − 1)/2. Journal of
Number Theory, 129:971–989, 2009.


