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4 Modular Forms

1 Abstract

Melham [10] conjectures 21 identities, all of which are analogous to Jacobi’s two-square theorem.
Melham mentions that a small number of these have already been proved in various ways by Hirschhorn
[5], Sun [13], and Dickson [3] (combined with work from Adiga, Cooper, and Han [1]). In this paper
we offer a straightforward method to proving all of them.

2 Introduction

Fermat’s two-square theorem says an odd prime, p, can be expressed as the sum of two squares if and
only if p is congruent to 1 modulo 4. Jacobi expanded on this with Jacobi’s two-square theorem, which
tells us the number of distinct ways we can represent such a prime as the sum of two squares. Jacobi’s
theorem tells us the number of ways is four times the difference between the number of divisors of p
congruent to 1 and the number of divisors congruent to 3 modulo 4 [6]. Instead of sums of squares,
Melham’s identities give the number of representations of a number (not just a prime) as the sum of
multiples of triangular, pentagonal, or heptagonal numbers.

Define

o o0 o0
n(n+1) n(3n—1) n(5n—3)
Ga@=a > , G@=Y ¢ 2 , GCila:=> a 7 ,
n=0

n=—oo n=—oo

the generating functions of the triangular, pentagonal, and heptagonal numbers. Melham’s identities
(equations (6) to (25), which we refer to using the same numbers for simplicity, in his original paper
[10]) are all of the form

Gr(q®)Gr(¢”) = an explicit g-series

where k = 3,5 0r 7, o, € N, and ¢ = €?™7, with 7 in the upper half plane, H. For example, his
identity (6) is
o0 3n Tn+1 13n+9 17n+12
5y " +q q +4q
G3(0)Ga(a”) = ) { 1= Q0n45 1 — Q0n+i5

n=0

The method we shall use relies on the theory of modular forms. We provide a brief description
here, but for a more thorough reading, the reader should look to such sources as [2], [9], [11]. Other
authors have attempted to prove these identities with alternative methods, from straight forward
g-series manipulations to utilising binary quadratic forms. Alas, while some have been proven (the
author believes around 6), the methods used have not been broad or powerful enough to prove more
than a few. Our method is to show (in Section 3) that the LHS (raised to an even power) of each
identity is a type of theta function, a modular form over a certain congruence subgroup. We then
show in Section 4 that the RHS (raised to the same even power) is also a modular form for the same
weight over this subgroup, by showing that it can be written in terms of the Weierstrass zeta function.
It is then a simple case of checking a small number of coefficients to show that each identity satisfies
Sturm’s bound (described further in Section 7), and thus that both sides must be equivalent up to a
constant, which we will show is 1.

A congruence subgroup, T, of SLo(Z) is a subgroup of SLy(Z) that contains

T(N) := Ker(SLQ(Z) — SL, (Z/NZ))
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where I'(N) is called the principal congruence subgroup. The smallest such N is the level of T'. Three
such particular congruence subgroups of interest are:

mm:{(i Z)eSLg(Z):(Z Z)z<3 I) (modN)},
e (2 (2 3)-(2 D)oo (2 1)=(12) )
mm:—{(i 2>GSL2(Z):(Z 2)z<(1) 1‘) (modN)},

where * represents any number. All three groups have level N. Now define H to be the complex upper

half plane. Let A = < (CI 2 ) € SLy(R), and for a complex function f, define

Fla(e) = ez +d) ™ f (12) |

A function f is a modular form of weight k, with k a positive integer, over a congruence subgroup I"
if f is holomorphic on H, f|, remains bounded as J(z) — oo for any v € SLy(Z), and verifies, for all
vel,

fly=1T.

3 The LHS as Theta Functions

We begin this section by defining a lattice in R™ as done in [8, p. 149]. A lattice in R™ is a subgroup
of R™ of the form
I'=72v1 4+ Zvs + - - - + Zwy,

where {v1,v9,...,v,} is a linearly independent set of vectors in R™. Take the inner product of two
elements to be the normal dot product, and denote the inner product of an element z with itself as z2.
An integral lattice is a lattice where the inner product of any two elements in the lattice is integral.
An even lattice is an integral lattice where the inner product of an element with itself (or norm) is
always even. The dual lattice, denoted A*, of a lattice A, is the lattice of vectors having integral inner
products with all the elements of A. Define the discriminant of a lattice to be disc(A) = |A*/A|.
Finally, the level of a lattice A is the minimum N € N with N2 even for all z € A* [4, p. 91].

Ebeling [4, p. 86] defines a generalised theta function for a lattice A C R™, a point z € R™, the
variable 7 € H, and a spherical polynomial P of degree r, as

Dunp(r)i= 3 P@e™ = 37 Pl

rEZ+A rE2+A

We have no need to discuss spherical polynomials, for our matters it is sufficient to state that the
constant polynomial P(x) = 1 is spherical, of degree 0. We take P(x) = 1 from here on, and will drop
it from our notation.

Lemma 3.1. Let A C R"™ (n even), be an even lattice of level N, p € A*, A = < Z 2 > € I'g(N).
Then for odd d > 0, ¢ # 0,

n A )
Dpea(Ar) = (er + d)’? (d) eriab®y L\ (r)

with A = (—1)2 disc(A), (%) the Jacobi symbol, and for ¢ =0,

Dpin(AT) = €™, (7).



6 Modular Forms

Proof. The proof of this is Corollary 3.1 combined with the remarks before Theorem 3.2 of [4, pp. 92-
94]. O

Now, as p € A*, p* € Q. Let p* = %, with ged(u,v) = 1. We have

27nabu79

,0+A‘ ap+A — ﬂaerA

We now take n = 2, and consider lattices in R?.

3.1 Triangular Numbers, G3(q)

Let A = <( 20 ) , ( 0 )>, with «, 8 integers. Then A is even, and has dual

e

Calculating the level N, of A is straightforward, and gives N = 4 -lem(a, ). Let p = ( ) e A~

@ o]

[\S)

27r'rr

We have, with g = e

ﬂp—l—A Z qom 2tan+2 +,8m2+ﬂm+ﬁ
n,me”L
a+p (n+1) (m+1)
=q 4 Z q2a%+2/8%.
n,me%
Hence o (i)
nn m(m
o () =" S Y
nez MmEZ
SO

1 atpB

105 Ve (5) = Gala)Gala”).
Now, it is easy to see that p+ A = ap + A whenever a = 1 (mod 2). Further, as N is clearly even, for
A= ( Z Z > € I'g(N) we can see that a must be odd. Now, p? = a—gﬁ, hence ¥, (1) is a weight
2v modular form for I'g(N) where v = 1 if a+ 3 is even, and v = 2 if a+ 8 is odd. Therefore ¥,44 (%)
is a weight 2v modular form for IV = < (1] 2 )FO(N) < (1) g > We see for AeT’, A= ( Z 2 ),
we have b = 0 (mod 2), and ¢ =0 (mod ). In other words,

r’:{A:(Z Z)el“()(];f) : beven}zro<]§>mr0(2).

Hence we can conclude that

is a modular form for IV as well.
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3.2 Pentagonal Numbers, G5(q)

Let A = << Oax ) , ( 0 >>, with «, 8 integers. Then A is even, and has dual

)

The level of A is N =12 - lem(a, 8). Let p = ( ) € A*. We find

%%

6

a+8

q_j§p+A<2) G5(¢™)G5(q”).

Again, it is easy to see that p+ A = ap + A whenever a = 1 (mod 6). When a = —1 (mod 6) we see
ap+ A =—(p+ A), but as we are taking the norm of each shifted lattice point this is acceptable also.

Further, as N is clearly even, for A = ( Z 3 > € I'p(IV) we can see that a must be odd and coprime
to 3.
Now, p? = — 6 , hence ¥,14(7)?" is a weight 2v modular form for the congruence subgroup

F’:{A:(z >€F0 : a ==l (mod 6)} where

1 a+5=0 (mod6)

6 a+p=+1 (modH6)

v =
3 a+f =42 (mod 6)
2 a+p=3 (mod6).

Therefore 9,44 (%)% is a weight 2v modular form for I = ( (1) 0 ) I < (1) (2) > We see for A € T,
3

d

F”:{A:(Z S)EI’(](];]) : beven,azil(m0d6)}:F0(];r>ﬂF0(2)

as 1 = ad — bc = d (mod 6). Hence we can conclude that

A= ( Z b ), we have b = 0 (mod 2), and ¢ = 0 (mod £). Recalling that 12 { N, we therefore have,

(" as(a)G50"))

is a modular form for I'” as well.

3.3 Heptagonal Numbers, G7(q)

B v 10« 0 . . .
Let A = << 0 \ 108 , with «, 8 integers. Then A is even, and has dual
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. —3V/1o .
The level of A is N =20 -lem(a, 5). Let p = 5 | € A" We find
3/

_9(at+p) T

¢ 0 Uppa (5) = G7(¢")G1(d”).

Once more, we have p + A = ap + A whenever a = 1 (mod 10). Further, as N is clearly even, for

A= ( Z Z > € I'g(IV) we can see that a must be odd.

Now, p? = al—JBB, hence 9,44 (7)%" is a weight 2v modular form for the congruence subgroup
I'={A= < z 2 > eTo(N) : a=1 (mod10)} where

1 a+p8=0 (mod 10)
10 a+p8==+1 (mod 10)
5 a+p=+2 (mod 10)
10 a+B=+43 (mod 10)
a+ =44 (mod 10)
a+pB=5 (mod 10).

0 1 0 2

Therefore 9,44 (5)?" is a weight 2v modular form for I = ( L0 ) I < L0 > We see for A € T,
2

A= ( Z 2 >, we have b = 0 (mod 2), and ¢ = 0 (mod ). In other words,

I = {A = ( Z 2 > €Ty (];7) : beven, a=+l (mod 10)} =Ty (g) NT°(2) NT4(10).

4 The RHS as the Weierstrass Zeta Function

The Weierstrass zeta function is a function that naturally leads to an Eisenstein series of weight 1 [2,
p. 138]. We write it as Z to avoid confusion, and define it as

1 1 1 z
Zp(2) =~ —+ =
A(2) Z+%<2_w+w+w2>
w#0
w#z

for a 2 dimensional lattice A := w1 Z ® weZ, and z € C. This function is not quite periodic, but rather
with each step along the lattice increases by a lattice constant, 71 (A) or n2(A), defined by:

M(A) == Za(z +wi) — Za(z)  and  mp(A) = Za(z +wa) — Za(2).

If we assume without loss of generality that <& <z—;> > 0 then these lattice constants satisfy the

Legendre relation,
n2(A)wi — m (A)wg = 2mi.

We can thus define a periodic function, Z} , for u,v € R, and A; :=Z + 77, as follows,

Zx (ut +v) := Zp, (ur +v) —uni(Ar) — vna(As).
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For some scalar m, and writing Z(z | w1,ws) := Z(2) as is common, we see

1 1 1 mz 1 1 1 1 z
Zms [manman) = o+ 5 (o) = [+ (o a o)

wemMA wEA
w#0 w#0
w#EM2Z wH#z

1
= —7 .
— (2 | wi,w2)

Applying this to Z(z | 1,7) = Za, (z) transformed by a matrix in SLy(Z) we find

Z<z|1,a7+b> = (er+d)Z(2(ct+d) | cT +d,at +b)
ct+d

=(ct+d)Z(z(ct+d) | 1,7)

as < Z 2 ) € SLy(Z). We define

frs(T) =2 <TT];_S | 1,T> .

! ar +b _ 5 i s4r ar +b HaT—i—b
" \er+d) N et +d “er+d

=(ecr+d)Z <]17 (s(ct+d)+r(ar+0)) |1, 7’)

Hence

= (CT + d)far+cs,bT+ds(T)'

2miT

Diamond and Shurman [2, p. 138] further state that the Weierstrass zeta function, with ¢ := e*™'7,
can be expressed as

1 +e?7riz oo |: 27z —2miz

. e q € q
ZAT (Z) = HQ(AT)Z - 7”1 — e2miz — 2mi Z 1— 627rizqn - 1— 672Trizqn

We consider the holomorphic function of 7,

pe ar +b _ ar +b\ ani(Ar) + bnpa(Ar)
AN )TN N

which we call an Eisenstein series of weight 1.

41 E,pn when a# 0 (mod N)

If we have a # 0(N) we can expand the denominators, so we take 0 < a < N and using the fact that

e2miz — 2mi(FE) — 2mifE 2mig q%d’v (with {y = e as always), simplify, using the Legendre
relation:
. (aT+b ar +b 14+ gV | g¥ R g g
ZAT< N )=772(A7)< N )—maiY—%mZ o o
1—gn(y 1= avGat 1—q¢ N(Nq

_am (Ar) 4 bnz(Ar)
N
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=n2(A;) (][\)]—][\)]> +%(T?72(AT) —m(A;)) —mi <1—|—22q1\r bm)

o o
. m(atnN) m(=a+nN)
—27‘(’22 Z [q N ?Vm —q N Cme}

n=1m=1
omia e — (zatni)
. e . M bm . m(s=+4n) bm u —bm
=N e — 27 mgl qN (N —2mi ngl mE1 [q NN — g CN }

= 2m <]C\lr - — — Z [Z qN(a+nN Cbm ZqN( a+nN)C—bm]>

m=1 Ln=0

=2mi ;—;—Zqﬁl Z (y — Z C;]M] 1= Eqp,n (7).

s|r s|r
s=a (N) s=—a (N)
>0 s>0

Hence we have replaced Z§ with E,p n, to make our choices of a, b, N explicit. Let M = < ZL 2 ) €

SLy(Z). Then by our earlier result involving the transformation of f; (7),

Eo g.N|M = EaatcBbatds,N-

The first two indices can be reduced modulo N, hence we see that F,; y remains invariant under
transformation by I'(N).

42 E,pn when a =0 (mod N)

For the case a = 0 (mod N) we start with

Z* =m(A) <a7+b> L ALSS —2m§: VR NG | am(A) +bm(A)
N 1—gvQ} 1= qvGqr 1—q NP N

we have a = tN, with t € Z. We consider ¢t = 0, i.e. a = 0, and notice that the result will hold for
any a = 0 (mod N) due to periodicity.

. b—bY 1+<N_ ("
g ‘”Q(A)< N) =, o Z[ 1— g —czybqn]

— 11+C§)V _27”;2 {Cmb mn C—mqun]
_CN m=1n=1
L1+ NN~ gom [pmb _ oo
=2 <_2 1—cév_;;q [C "=y bD
:27”@ T 1_1 > {Czi/t _ngSt:| >
N t=1 st
5>0
:2m<;+cb1 . —Z Z qn [CNT—CNZT]) = Eopn(T)
rils:Sh%N)
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4.3 Defining F, . n for a,c # O(N)

Now we consider the following linear combination, for 0 < a < N,

1 1 N-1
I — be
o a,c,N(T) o ; CN a,b,N(T)
N—1 N-1 )
—bc [ @ 1 —be r br o =br
et DY ey ¥ osd- ¥ el
b=0 = r=1 slr slr
s=a (N) s=—a (N)
s>0 >0
a 1 N-1 ) N— (7 ) -1 (7 )
_(N_2> CN”"’—Z[ Dby T Y aF Y Gy ]
b=0 r=1 s|r b=0 s|r b=0
s=a (N) s=—a (N)
>0 >0
a 1 N-1 0o
_ —be
D R
s=a (N) s=—a (N)
Z=c (N) f=—c (N)
>0 >0
a 1 - t t
— —b st st
(DY a (- v )
b=0 s=a (N) s=—a (N)
t=c (N) t=—c (N)
5,t>0 s,t>0

So if we pick ¢ such that N 1 ¢, the sum on the left disappears, and we have

Fa,c,N(T):—QmN< Z qsﬁt— Z q%>

s=a (N) s=—a (N)
t=c (N) t=—c (N)
s,t>0 s,t>0
For simplicity we define
* st st 1
a,c,N(T) = qN — Z qN = _mFa,c,N(T)‘
s=a (N) s=—a (N)
t=c (N) t=—c (N)
s,t>0 5,t>0
We write )
Ka,c,N = qnN
s=a (N)
t=c (N)
5,t>0

so that F;c’N = Ko N—K_q—c,n. Suppose ged(a, N) = d > 1. If we take the sum over ¢ = r (mod %)
of the F ; eN for some r, we observe

Z F;,C,N = Z Ka,c,N - Z K_Q7C7N

0<c<N 0<c<N 0<c<N

e=r (¥) e=r () e=—r ()
o K%ﬂ”?% K %’7T7%
_ *
~ iy

Of course, if § = —r (mod %) then this is 0.
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5 The ldentities

In this section we use what we have covered in the previous sections to rearrange the identities
conjectured by Melham to find equivalent identities which can then be easily proven.

5.1 Triangular Numbers
5.1.1 Identity (6)

As mentioned before, Melham’s identity 6 is

> 3n Tn+1 13n+9 17n+12
5\ Q" +q q +4q
Gs3(q)Gs(q°) = Z [ 1 — ¢20n+5 1= q20n+15 ]

n=0

We expand the denominators in the RHS to give

o0 o0
Z Z |:q3n+(20n+5)m 4 TR0 ES)m _ 1309+(20n+15)m _ q17n+12+(20n+15)m]

n=0m=0

> X (20n+5)(20m+3) 3 (20n+5)(20m+7) 3 (20n+15)(20m+13) 3 (20n+15)(20m+17) 3
:ZZ q 20 _4_|-q 20 _4_q 20 _4_q 20 T4

n=0m=0

:qi( q% — Z q% + q% — Z q%)
a,b>0

a,b>0 a,b>0 a,b>0
a=5 (20) a=-5 (20) a=5 (20) a=—5 (20)
b=3 (20) b=-3 (20) =7 (20) b=—T7 (20)

_3 * *
=q 1 (F5,3,20 + F5,7,20) .
While it may be desirable to include all of Melham’s original identities here, the author would like to
stress that some of them are very long, and adding them would increase the length of this work by

around 10 pages. Instead, we expand the denominators in the RHS for all identities and include the
form

__o+B «
Gr(¢®*)Gr(¢?) = ¢ 56D Z Fy, i ak—2)>
(as,c:)

for each of the identities instead, simplifying and shortening. We note by our earlier result that

* *
E F5eo0=Figs=Kiza—Kz14=0.

0<c<20
c=3 (4)
Hence
* * _ * *
F5,3,20 + F5,7,20 = _F5,11,20 - F5,19,20
as

* J—
F5 1520 = 0.

Noting that 1,4 are quadratic residues modulo 5, where as 2,3 are not, we see the RHS is equal to,
4

where (5) denotes the Legendre symbol,

3
q 4 C *
5 F5 ¢ 20

A

)
A
wo

*)
=S

(
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equivalently,

c *
5 Z (3)F15,c,20

0<e<20
c=1 (4)

alw

q

19

3
= go;zg 15,,20 Z

0<e<20
c=1 (4)

Here we have used the fact that

* 1 - —b
Foen = TN bz_% (N Eapn

We will encounter sums of the form

(& _
> (5
0<e<N p
c=a (B)
frequently. To deal with these we use a small lemma.
Lemma 5.1. For a,3,p € N, a < 3, and N = p, (3,p) = 1, p an odd prime, and let v = 37!
modulo p. We have

by _
(e {5 e =ty
0<c<(N) p a(w (%) p =3 (mod 4)
c=a (B

Proof. We have

LN;aJ {N;aJ
k (a _ k _
g— Z <C) o = Z <a+ 5) CN (a+kB) — b Z (a+ B) Cpbk
0:<c<(g) p k=0 p k=0 p

As a < 8 we have L%J = p— 1. Since k — «a + kS is a bijection modulo p, letting n = a + k3, we
have k = (n — )y (mod p), so

p—1

p—1
S = C;[ab Z <Z> Cp*b("*a)ﬁ’ — C&abc ay Z ( ) —le ]0\4]17(75—1) Z (Z) C]:/bvn-
n=0

n=0
This is a Gauss sum. Gauss proved [7] that

IO P R

o \P %) iv/b p=3 (mod 4)

for p an odd prime. We can therefore conclude with the statement of the lemma. O

Now, returning to the RHS of identity (6), we have
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Hence we see the RHS is

\/g s 19 b
Y2 4h > <) (20" E15,6,20(7).

From before, we have
1 _ot8 T o
10T Upir (5) = Gala™)Gale”)

with I’ = << V20 ) , ( 0 >>, with p = ( \/g ) € I'*. Hence identity (6) is equivalent to
2

19
T \/5 b 15b
Vpyr (5) = 20 E <5> Co0 Ers.p,20(T).

b=0

Raising both sides to the power of 2, as a+ 8 =1+ 5 = 6 is even, we see the LHS is a modular form
for the congruence subgroup I'g (10) NTY(2), as detailed before in section 3. Thus we aim to show that
the RHS (ignoring the constant term),

9 2
H(r) := (Z <5) C%ngm,b,zo)

b=0

is also a modular form for this subgroup. We will see to this matter in the next section, but first we
have the other identities to transform into a similar form.

5.1.2 lIdentity (7)

Melham states the following:

Gs(0)Ga(¢®) = Y | —2 1

0 |: ™ 5n+1 q19n+11 q17n+14
+ - _ } |
Lo | T— @3 T ] q2indd ] indls T ] g

We expand the denominators in the RHS to give

0o o
§ : § : |:q7n+(24n+3)m + q5n+1+(24n+9)m _ 19n+114+(24n+15)m _ q17n+14+(24n+21)m:|

q
n=0m=0
0o o0
(24n+3)(24m+7) 7 (24n+9)(24m+5) 7 (24n+15)(24m+19) 7 (24n+21)(24m+17) 7
:ZZ |:q 24 8 +q 24 _s_q 24 _s_q 24 _8:|
n=0m=0

:q_g< q%z —_ Z q%} + q%z — Z qﬁ)
b>0

a, a,b>0 a,b>0 a,b>0
a=3 (24) a=—3 (24) a=9 (24) a=—9 (24)
b=7 (24) b=—7 (24) b=5 (24) b=—5 (24)

= q_% (F§,7,24 + F§,5,24) .

As
Z F§,C,24 = 3F1*,7,8 =0
0<c<24
c=T (8)
and

* . * .
E F9,0,24 - 3F3,5,8 - 07
0<c<24
c=5 (8)
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we obtain
* * * * * *
F37o0+ Fy590 = —F31504 — F393 04 — Fg 1324 — Fg 91 04-
* * _ * *
F3794+ Fy501=—F59301— Fg139

hence the RHS is equal to

00|~

q c * c *
S S (O B X (2) B
0<c<24 0<c<24
=T (8) c¢=5 (8)

In the pursuit of consistency, we would like the second sum to run over ¢ = 3 (mod 8). We have

S D= X = X (F) = 2 () o

0<c<24 0<c<24 0<c<24 0<c<24
c=5 (8) c=5 (8) —c=5 (8) c=3 (8)

as (%1) = —1. Therefore the RHS becomes

7
q s c * c *
9 Z <§> F3,c,24 - Z (g) F15,c,24
0<c<24 0<c<24
c=T (8) c=3 (8)

e 2 /b
= oS () (s - Bt Frsas)

by our previous lemma. Thus identity 7 is equivalent to

23
T V3 b
Vptr (5) iy 2 <3) <C§2E3,b,24 - CzQibEw,b,m)

and we know, as « + 3 =1+ 6 = 7 is odd, that

o ()

is a modular form for T'g (12) NT°(2). Thus we would like to show that the RHS,

23 b 4
H(t) = (Z <3> <C292E3,b,24 — CgibEls,b,m))

b=0

is also a modular form for this subgroup. As all the following identities transform in a similar way,
the details have mostly been suppressed from here on.

5.1.3 Identity (8)

Melham states the following;:

G3(¢*)Gs(q*) =)

n=0

o 5n n+2 17n+10 19n+16
q L _d g g
1— 2an+3 T 1 _ 249 T ] _ g2nt15 | ] _ g2nt2l |-
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As before, we find the RHS is equal to

_5
8

q (F§,5,24 + F5,7,24)

and therefore the identity is equivalent to

23
T \/g b b b
Vo1 (5) = 50 E <3> (C%i Eg 404 — C294E21,b,24) .

b=0

Hence we need to show that

23 1
H(r) = (Z (g) <C2241bE9,b,24 - <32E21,b,24)>

is modular for I'g (12) NT9(2).

5.1.4 Identity (9)

Melham states the following;:

0
|:q11n + q19n+1 q17n+5 + q33n+11 q7n+3 4 q23n+13 q21n+17 + q29n+24

G G 10 — — - <
3((]) 3((] ) nzz;) 1— q40n+5 1— q40n+15 + 1— q40n+25 1— q40n+55
By our earlier method, the RHS is

5 (F a0+ Frig0 + Fis a0 + Fs03.40)
q 5,11,40 5,19,40 25,7,40 25,23,40

and so the identity becomes

T\ _ V5 b 5b 25b
Uptr (5) = 10 > <5> (C4OE5,b,40 — 40 E257b,40) -

Hence we need to show that

39 1 4
H(r) = (Z <5> ((28E5,b,40 - CZE?bE%,bAo))

is modular for I'g (20) NT9(2).

5.1.5 Identity (10)

Using our earlier method, the identity is equivalent to

-z * * *
G3(q*)G3(q”) = ¢ 3 (F5,7,40 + F5 o340 + Fo511,40 + F25,19,40)

and 50
T\ _ Vb b 5b 25b
Upir <§> = 1071 ; <5> (C40E25,b,40 - (10 E5,b,4o) .
So

39 4
H(r) := (Z (g) <C28E25,b,40 - Cz%g]bEE),bAO)) :
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5.1.6 Identity (11)

Again we use our earlier method and find the identity is equivalent to

13 -I
G3(q)Gs(q”) =q * (Ff3,7,52 + Fi51150 + Fis 1550 + Fis050 + Fiss152 + Ff3,47,52) :

5Ly 2
H(r) = (Z <13> ngng39,b,52> :

b=0

So

5.1.7 Identity (12)

Again we use our earlier method and find the identity is equivalent to

22 -2
G3(q)G3(q%) = ¢ (Fi11588 + Fi123.88 + Fi13188 + Fiia78s + Fii71.88

* * * * * *
+F5511,88 T F55,10.88 + Fr535,88 + I55.4388 T F55.51.88 + F55,83,88)-

So

87 4
b
H(r) = (Z <11) (Cg’g’bEn,b,ss — ngbEE)E),b,BS)) :

b=0

5.1.8 Identity (13)

This identity is slightly resistant to our previous method, and requires a little more effort. Recalling
that Koen — K_g—cN = —ﬁFa,c,N, we also define F); = —ﬁFa,C,N. As before, we expand
the denominators, and find the identity is equivalent to

_13

2 11 13
G3(q")G3(q) =q 3 ( — Ki1,5,88 — K11,37,88 — K11,4588 — K11,53,88 — K11,69,88
—K77388 — K77.11,88 — K7727,88 — K77,50,.88 — K77,67,88 — K77,75.88
+K3315,88 + 332388 + K33 31,88 + K334788 + K3371,88
+K55.1,88 + K55.9.88 + K552588 + K55,33,88 + Ks5.49,88 + K55,81,88>-

Now, noting that we can write —K_, .y = F;C,N — Kg.cn, and also K, . N = F;767N +K_q_cN We

have this being equivalent to, multiplying by q% for simplicity,

g% Gs(¢*)Gs(q™) = —Ki1588 — K11,37,88 — K11,4588 — K11,53,88 — K11,69,88

+(F1 85,88 — K1185,88) + (Fl177.88 — Kiu77ss) + (Fi1 61,88 — Ki161,88) + (F1120,88 — K11,20,88)
+(FY1 2185 — Ki1,21.88) + (F17 1388 — K11,13.88)

+(F3515 88 + K55,73,88) + (F33 93 85 + K55.65,88) + (Fia3 31 88 + Ko5,57,88) + (Fi3 4788 + K55.41,88)
+(F33,71,88 + K55,17,88)

+K551,88 + K559,88 + K5525 88 + K5533,88 + K5540.88 + K55.81,88
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= F11 8588 + Fi177,88 T Fl161,88 T Fi1,20,88 T Fi1,21,88 T Fi1,13,88

+F3315.88 T Fi32388 + Fa3.31.88 T Fi3.47.88 + F53.71.88

—Ki1588 — K11,13,88 — K11,21,88 — K11,20,88 — K11,37,88 — K11,4588 — K11,53,88 — K11,61,88
—K11,6088 — K11,77,88 — K11,85,88

+K55,1,88 + K559,88 + Ks5,17,88 + K55,25,88 + K55,33,88 + K5541,88 + K55.49.88 + K5557,88
+K5565,88 + K55,73,88 + K5581,88

* * * * * * *
= Fl1 8588 + F1177.88 + F1161,88  Fl12088 + Fl121,88 + F11.13,88 T F33.15 88

10 10
* * * *
+F33 0388 + F33.31.88 + F33 47,88 + F33.71.88 — E K11548r,88 + E :K55,1+8r,88
r=0 r=0

= F{\ g5.88 + Fl177,88 + F161,88 T Fl12088 T Fi121,88 + Fl1,13,88 + £53,15 88
+F5303.88 + Fa3 3188 + 334788 + Fazriss — Kiss + K518

= 18588 + Fl1,77,88 T 161,88 + Fi1,20.88 T F1121.88 + Fi113,88 T F33.15 88
+F33 93,88 + F33.31.88 + F33.47,88 + F53,71,88-

Hence identity (13) is equivalent to
2 11 -1
G3(q*)G3(q) =q 3 <F1*1,13,88 + I 9188 + Fl1208s + Fi161.88 T Fl185.88

* * * * *
+1F353 1588 + F339388 + F3331.88 + F33.47.88 + F33,71,88>

1 _13 c N c "
=359 8 E (*) F33,c,88 - E (*) F77,c,88
2 11 11
0<c<88 0<c<88
c=T (8) c=3 (8)

as —1 is not a quadratic residue modulo 11. This is therefore the same as

VIT <L /b
G3(q*)Gs(q") = 352, ° bzg <11> (Cg’g’bE?):a,b,ss - ngbEW,b,ss)

which becomes

87
T V1l b 33b 7h
Upr (*) = 28n (11) ( 88 F33b,88 — Csg E??,b,88) :

Hence
4

87

b

H(r)= (> (11) (ngg’bES&b,ss - ngbEW,b,SS)
b=0

5.1.9 Identity (14)

We find, using our earlier method, that the identity is equivalent to

G3(q)Gs3(¢*) = ¢~ 1 (F} + + + o
3(¢)G3(q°") = ¢q 37,15,148 T £'37,19,148 + £'37,23,148 T £'37,31,148 T £'37,35,148
* * * * * * *
+F57 39 148 + F37 43148 + F37.51 148 + F57 55,148 T F37,50 148 + F57.79 148 + F37,87.148
* * * * * *
+F37.91,148 + F37,103,148 + F37,119,148 T F37,131,148 T F37,135,148 + F37,143,148)

SO
2

ur
H(r) = Z <37> s B, 18
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5.1.10 Identity (15)

Using the same approach of Identity (13), we find the identity to be equivalent to

G3(q)G3(¢™) = q_% <F§9,35,232 + F59 51,232 + F59.50,232 + F29 67,232 T F29 83 232 + F29 01,232

+ 59 107,232 T F29.115 232 + F29.123, 232 + F59 139,232 T F29.179,232 + F29.187,232

+ 139 203,232 + F59 219,232 + F39 297 232

+F45 15232 + Fius.31.030 + Flas 30 232 + Flus.47.930 + Flas 55232 + Flas.79.930 + Fias 87.232 + Flu5.05.939

* * * * * * *
+Fu5,110,232 + Flas 127,232 + Flas 135232 T Flas,143,.232 T Flas,150,232 T Flas,101,232 + F145,215,232>

(1)

1 _s0 c c X
=54 8 Z <ﬁ) F3g.c030 — Z (@) Fiys5.,232 (2)

0<c<232 0<e<232

c=3 (8) =7 (8)
V29 s (b 29b 145b
- 928m’q ; bzg (29> (4232E29,b,232 — (39 E145,b,232> .

Hence

231 1
b
H(r) = <Z <29> <C223?§E29,b,232 - Czlélng145,b,232)>

b=0

5.1.11 Identity (16)

Using our earlier approach, we find identity (16) to be equivalent to

2 29\ __ -3l * * * * * *
G3(q")G3(q™) =q 3 (F29,15,232 + F59 31,9232 + F29 30 232 T F29 47,230 + F29 55232 + F29 79 232

* * * * * * * *
+F29 95,232 T F29,119,232 T F29,127,232 + F29,135 232 + £29,143,232 + F29.150,232 T F29,191,232 + F29 215 232

* * * * * * *
+F1a5,35.932 + F1a5 51,232 + Fla5,50.232 + Flas.67,232 + Flas.83,232 T Flas.01,232 T Flas 107,232

* * * * * * *
+F45,115,232 T Flas,123,232 T Flas,130,232 + Fla5,179,232 + Fla5,187,232 + F145,219,.232 + F145,227,232)

and

231 4
b
H(r) := (Z <29> (C21§3bE29,b,232 - C223?3E145,b,232>> :

b=0

5.2 Pentagonal Numbers
5.2.1 lIdentity (17)

Again we use our earlier approach, and find the identity is equivalent to

5 _1
G5(q)G5(¢°) =q 4 (F1*5,1,60 + F15.29.60 + F15.41,60 T F15,49,60

* * * *
+Fy57.60  Fis,0360 T Fas a3 60 + F45,47,60)~
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This identity is a little unusual, but we notice we can write it as

5 _1
G5(q)G5(¢°) =q # [F1*5,1,60 + F5.99.60 T F15.41,60 T F15,49,60

* * * *
- (F15,53,60 + Fis37.60  Fi51760 F15,13,60) ]

-1 c * c *

=q 4 Z (5) Fi5 c60 + Z (g) Fis5.c60
0<c<60 0<c<60
c=1 (12) =5 (12)

& . 59 .
=q¢ 1 |) Eispe0 Y. (5) w0 T Fipeo Y (5) e
b=0 0<c<60 b=0 0<c<60
=1 (12) c=5 (12)

59
=i B | 3 (5) @ 2 (5) e
b=0

0<C<60 0<C<60
e=1 (12) =5 (12)
NG o9 b
= 120m? Z [<5> ( o0+ ngb> E15,b,60] :
b=0

Hence

5.2.2 Identity (18)

Using the approach of identity (13), we find the identity is equivalent to

10y __ _u * * *
Gs(q)G5(q"") = ¢ 2 (F5 11190 + F5 35,120 + F5 50,120
* *
+F35 53120 T F35.77,120
* *
+F5.93120 T Fo5,47,120

* * *
+Fg5.41,120 + Fo5. 65,120 T F95,89,120)'

Therefore
1y, 12
105b 45b 105b 45b
H(T) = (Z <5> (C120 Ea5.6,120 — (120 E85,6,120 + G120 £65,6,120 — 4120E5,b,120)> ,
b—0

recalling that our exponent comes from the requirement in section 3 for the LHS to be a modular form
on the desired subgroup.

5.2.3 Identity (19)

Using the approach of identity (13), we find the identity is equivalent to

2 5\ _ —o& * *
Gs5(q°)G5(q°) = q 1 (F5,7,120 + F5 103,120
* *
+F55. 11,120 T Fo5 50,120
* *
+F5.19,120 T Fo5,91,120

* *
+Fg5 93120 + F85,47,120) .
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So we define

119 12
_ 105b 45b 1056 45b
H(r):= E () (C120 Es 4,120 — (120 E65,0,120 + (120 £85,6,120 — C120E25,b,120) .

5.2.4 Identity (20)

Here we use our earlier approach, and see the identity is equivalent to

13\ __ - * * * * * *
G5(q)Gs(q") = ¢ 12 (Fis 7156 + Fiz 10156 + Fiss1.156 + Fiser.156 + Fi3115.156 + Fi3.151.156

* * * * * *
+Fg5.11,156 T F65.47,156 T F65,50.156 + F65.71,156 T F65,83.156 + F65,119,156)-

So we let

155 6
b
H(r):= Z <13> (ClléngQLb,lS(i - C?ggEl?),b,lSG) :
b=0

5.2.5 Identity (21)

Our earlier approach shows us that the identity is equivalent to

22\ —23 * * * * *
G5(q)Gs(q™) = q 21 (F143,35,264 + F43,83,264 + F143,107,264 + F143,131,264 T F143,227,264
* * * * *
+Fs7.31.264 + Fis7,103,264 T Fis7,199,264 T Fig7,223 264 T Fi7247 264
* * * * *
+F509,29 264 + F509.101,264 T F209,149,264 T F209,173,264 T F209,197,264

* * * * *
+F553.1,264 + Fo53.95 264 T Fo53 49,264 T Fo53.97,264 + F253,169,264)-

Thus

b

263 12

,_ 121b 253b 2095 187b

H(r) = Z (11) <C264 E11p264 — (61 F143,0,264 + Cogy B187,6,264 — Cog4 E209,b,264> :
b=0

5.2.6 Identity (22)

Our earlier approach shows us that the identity is equivalent to

2 11y . —43 * * * *
G5(q7)Gs5(q) =q = (F11,13,264 + F11 61,260 T F11,85.264 + F11,100,264 + F11,205,264
* * * * *
+F791,23.264 + F121,47,264 + F121,71,264 + F121,119,264 + F121,191,264
* * * * *
+Fs7.29 264 + Fis7,101,264 T Fis7,149,264 T Fig7173,260 T Fis7,197,264

* * * * *
+F309,31,264 + F209,103,264 T F209,199,264 T F209 223 264 + F209,247,264)'

We therefore define

263 12

_ 121b 187b 2090 253b

H(T) = Z <11> (CQG4 FEr21.6,264 — Coga Frs7,p,264 + Cagi £2209,6,264 — Copd E253,b,264> .
=0



29 Modular Forms
5.2.7 ldentity (23)

For this identity, we must use the approach of identity (13), and find equivalence with

G5(q)G5(¢*") = q—% (F§7,19,444 + F37 51,040 + F37.43 040 + F37 55,440 + F57 70 444 + 57,01 444
+F37 103,424 T F37163.442 + F37. 187,424 + F37,199 444 + F37 935 444 + F37.283 444

+F57 319,404 T F37.331 424 + F37 355 444 + F57 415,244 + F37 407 424 + Fi7 439 444

+FYg5,23,444 + Fis5 35 444 + Fiss 50 444

+Fg5.119.444 + Fligs.131,444 + Fiss 143,424 + Fiss 167,424 + Fiss 179,444 + Fiss,191,444

+F185 203,444 + Fiss 207442 + Fiss5 230 444 + Fis5 251 444

* * * * *
+ 85,311,444 + Fg5 335,444 + Figs 347 444 + Figs 383 444 + F185,431,444)-

We therefore let

443 6
b
H(r) = Z <37> (432?]5259,1),444 - CiﬁbE:’,?,bAM) :

5.2.8 Identity (24)

Again, we use the approach of identity (13), and find identity (24) is equivalent to

58y _ —99 * * * * *
G5 (Q)G5(q ) =q % (F29,35,696 + F29,59,696 + F29,83,696 + F29,107,696 + F29,179,696

+F39,203,606 T £39,227,606 + £39.209.606 + £39,323,696 T F29,347,606 T F29,371,696

+F59 419,606 + F29 515,606 T 99 587.606 T F29 683,696

+F503.77.606 T F203,101,606 T F203,221,606 T £503.269,696 T F503.293,696

+F503 317,696 T F503 365,696 T F203,389,.696 + F203,437.606 + F203,461,606 + F203,485,696

+F303 533,606 + F203,653,606 T £203,677,696

+F377 47,606 T F377,95,606 T F377,119,606 + F377,143,606 + F377,101,606

+F377 915,696 T F577,263,606 T F377,287,696 + 577,311,606 T F377,350,696

+F577 479,606 T 377 503,606 T F377.500.606 T 377,693,696

+F551 65,606 T F551,161,606 T F551,200,606 T F551,233,606 T F551,257,606 T F551,281,696

+ 551 353,606 + F551,377,606 T F551,401,606 T F551,473,606 + F551,497,606

+F351.521,606 + Frs1,505,696 T Fos1,503,606 + F351,689,696)

So we define

12

695
b
,_ 1493b 145b 319% 667b
H(T) = E (29 (Cﬁge‘ E29 4,606 — Ceo6 L377.6,696 + Coo6 L551.6,696 — Ceo6 E203,b,696>
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5.2.9 Identity (25)

Using the approach of identity (13), we see the identity is equivalent with

G5(q*)Gs(¢*) = q_% (F59,31,696 + F59 55,606 T £59.79.606 T F59.127 606

+F59 247,606 + F59 271,606 T F59.319.606 + F20 367,696 T F59,391,696

+F39 511,606 T F29,550,606 T F20,583,606 T F20,607,696 T F20,655,696 T £29,679,696
+F31977,606 T F310,101,606 T F510,221,606 T F319,260,606 T 319,293,696
+F3519.317,606 T £519,365,606 T F319,380,696

+F3519 437,696 T F319 461,696 T F319.485.606 + F319,533.606 + F319.653.606 + F319.677,606
+Fo3 47,606 + Fho3.05.606 T 193,119,606 T 193,143,606 T 193,191,696

+ 93,215,606 + F193,263,606 T F493,287,606 T Fi93,311,606 + F193,359,606

+ 93,479,606 + F193,503,606 T F493,551,606 T F193,500,606 + £193,623,696
+F551,37,606 + F551,61,606 + F551,85,696 T F551,133,606 T F551,157,696

+F551 205,606 T F551.220.606 T F551.253.606 T F551,301,696

* * * * *
+F551,421,606 T F551,445 606 T F551,541,606 T 551,565,606 F551,685,696)'

695 /4 12

._ 3190 667b 493b 145b

H(t) := Z <29> (CG% Ee67.6,696 — Coo6 F319,6,696 + Ce06. £145.5,696 — C696 E493,b,696> -
b=0

5.3 Heptagonal Numbers
5.3.1 Identity (26)

Our final identity, and the only one involving the heptagonal numbers, requires us to use the approach
of identity (13). It is our most complex identity in terms of length. We find identity (26) to be
equivalent to

6\ __ -63 * * *
G7(q)G7(q") = q % <F3,103,120 + Fy.91,120 + F9,101,120
* * *
+F51 49,120 + F33,53,120 T F33,93,120

* * * *
+F51 79120 + F57.77,120 T F81,20 120 + F93,73,120>

1 _@ C * C * c *
=3¢ " Z (g) F3 e 120 — Z (g) Fyc120 + Z <§> Fo1e120

0<c<120 0<c<120 0<c<120
=23 (40) =21 (40) =9 (40)

- E <§) F33 190 E <§) F5i c120 — E <§) F57 120
0<c<120 0<c<120 0<c<120
=13 (40) ¢=39 (40) =37 (40)

c * c *
- E (g) Fgi ca20 + E (g) Fo3.¢.120
0<c<120 0<c<120

=29 (40) =33 (40)
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1 _@ C 3 c *
=—§q 4°< Z (g) F21,c,120— Z (g) F9,c,120

0<c<120 0<c<120
c=9 (40) c=21 (40)
C
+ Z ( ) 69,¢,120 — Z (g) F§1 e120
0<c<120 0<e<120
1 (40) =29 (40)
C
+ Z ( ) 117,6,120 — Z (g) F57 120
0<c<120 0<e<120
=17 (40) =37 (40)
c *
+ Z ( ) Fgs c120 — Z (g) F33,c,120>
0<c<120 0<c<120
=33 (40) c=13 (40)
V3 5 b 111b 99b
= 2wy (2 E %,
801 3 (G20 E21,6,120 — (196 Fop,120

+C%0 E69,6,120 — (iapEs1 6,120
+(T30E117,6120 — CiooEs7.6,120
+C0 B3 120 — CTaoEs3.5,120) -
This leads us to define

119

b 111b 51b 39b 99b

H(r) == (Z <3> (C120 Ea1p,120 — G20 E81,0,120 + Cia0E69,0,120 — Cr20E9,6,120
b=0

20
63b 3b 870 27b
(150 E117,0,120 — Ci20E57,6,120 + (20 F93,6,120 — C120E33,b,120)> :

6 ldentities Under Transformation by the Congruence Subgroup

For all our identities we have already shown that the LHS (as a theta function) raised to some even

power is modular for IV, where
N
' =T, <2> nT%2),

further intersected with I'y(10) for the heptagonal case. As we have also seen, the RHS of each
identity is an Eisenstein series, and is therefore modular with respect to I'(IV), where thankfully the
N of the LHS is equal to the N of the RHS. In order to reduce the amount of coefficients needed to
be calculated, we would like to show that the RHS (raised to the same even power as the LHS), is
also modular for IV. As the RHS is already modular for I'(V), we only need to consider elements in
I =T'/T(N). A set of generators for I'” is

. 1 2 . 1 0 _ . C1 0 . (6] 0
i) e (y 1) e e (B8 e (0 )

where the C continue to include all ¢; necessary to generate (Z/NZ)" (noticing we have already
included —1). All identities have a RHS of the form

N_1 ﬁ 2v
H(r) = Z () Z (_1)1+1<N’8Ea¢,6,N(7')
8=0 P/ (han)
for some integer v, with the second sum running over the pairs (k;, a;), i = 1,2,.... For our triangular

identities, there are either 1 or 2 pairs, for our pentagonal, 2 or 4 pairs. For the single heptagonal
identity, there are 8 pairs.
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6.1 Invariance Under Transformation by Matrix A

We begin this section with the following lemma.

Lemma 6.1. Let p be an odd prime, p | N. Let ged(d,N) = g, and kg = d, Mg = N, all integers.

Then
N-1 N-1 o, Ok . p#M
—db —kb k) N — M=
<p><N :Z<p> b (p)p\/f) p=M=1 (mod 4)
b=0 b=0 - (%) VP p=M=3 (mod4).
Proof.
1, N_
—k(b+pr
R
b=0 p r=0
I N_
= <> C]\_4kb Z C]\—/[kpr
b=0 p r=0
= b kb %71 k
— 2o Ckor
— <p> M ; >
Now,
N_ 1 N
pz C—kgr 0 kg 7_é 0 (mOd ;)
=
—0 P % kg = (mod %)
Clearly, ged(k, M) = 1. Hence for some t € Z,
N N N
kg =0 (mod —) <= k— = —t < kp= Mt < M |p.
p M p

So S =0 when p # 0 (mod M), and as p an odd prime, p # M. When p =0 (mod M), i.e. p = M,
we have

-1 E\ N _
s- 2% (b> cw_ () Fve p=10modd)
P \P i - (%) %z\/ﬁ p =3 (mod 4),
which completes the proof. O

To show that H(7) is invariant under the matrix A, we recall that the E,; v is an Eisenstein
series, and make use of the transformation formula noted earlier. We also write

Z s, B, N)q% = FEqapgn(T)

>0

so that s;j(c, 8, N) is the q% coefficient of E, g n (7). We also spot

e 1 &S - br _br
Bopran(r) = Bapn(r+ 1) =2mi | o= o= > a¥Ck| D G = D Gy
r=1 slr s|r
s=a (N) s=—a (N)

s>0 s>0
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JEN
Thus 2
N-1 3 ' !
M= (3 (2) 5 0 i b
=0 (kiai)
2v
N .
[ i o
Z( ) ST DTS (a8, N) g
= (ki,a;) Jj=0
| N 2v
> Ra¥ Y (- Z“Z( > N's(ai, B, N)
]20 (kiva‘l) :

By Lemma 6.1, we have

5 (2) s

unless s;j(a;, 3, N) has a Cﬁ’g term with (m + k;, N) = % := v, hence we need,
m = —k; + di7y

with d; £ 0 modulo p. As, for j > 0,

sj(ai, B, N ——2m[ Z {N — Z CN/BSj]

sl sl
s=a; (N) s=—a; (N)
s>0 >0

We have j = £(a; + IN)m for some | € Z, hence j = +a;m (mod N). We note that for all our
identities p | a;, hence j = +a;m = +a;(—k; + d;i7y) = +a;k; (mod N).
For triangular identities of the form that have just one pair of (a;, k;), we notice that a;k; = %

modulo N. Hence C2j = =41 for all j of non vanishing terms. These identities were raised to the power
of 2, hence H|q = H

For triangular identities that have two pairs of (a;, k;), we see that a;k; = % or j:% modulo N.

Hence ¢ 27 = 4 for all j of non vanishing terms. These identities were raised to the power of 4, hence
Hla=H

For pentagonal identities that have two pairs of (a;, k;), we see that a;k; = % (identity (17)) or
ﬁ (identities (20, 23)) modulo N. Hence for identity (17) ]2\; = —1, and for the others, (3 = ¢ for
all j of non vanishing terms. Identity (17) was raised to the power of 2, and identities (20) and (23)

were raised to the power of 6, hence in both cases H|4 = H.

For pentagonal identities that have four pairs of (a;, k;), we see that a;k; = % or ?N (identities
(18,19)) or ¢, LN 13N 1N (1dent1tles (21 22, 24 25)) modulo N. Hence for identity (18, 19)
2 = —1, and for the others, = (19, , or for all 7 of non vanishing terms. All of these
N N 12 P2
identities were raised to the power of 12, hence in both cases H|4 = H.
For the one heptagonal identity we have a;k; = 51 = 17N for all 8 pairs. Thus C 11 and as

the identity is raised to the power of 20, H|4 = H
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6.2 Invariance Under Transformation by Matrix B

- . . 1 0 .
To show that H(7) is invariant under the matrix B = < N ) we notice
2
H|B = H|B1_1|BQ|BI

_ 0 1 1 X 0 -1
Bll:<1 0>7 B2:<O 21)7 Blz<1 0>7

because B = By 'ByBy. If H |B, remains fixed under transformation by Bg, then H will be fixed by
B. Therefore we just need to check that H|p, is a sum of powers of q%.

with

2v

N—-1 /8 ‘
Hlg, = | ). < > > ()N Ep oy v

p=0 p (ki,ai)

r . 2v

; i 5 4 6 1 > xr — 2T L
S ED IR N CI ST D IS DD D
P N 2
(kirai) B=0 r=1 sl sl
s=B (N) s=—8 (N)
L >0 >0 J
r b 2v
Nl s e ar air
=|5—2m Y (-~ Y () ¢hip ZqN[ Yoo - D> W ]
—o \P —
(kiaq) B=0 r=1 s|r s|r
s=8 (N) s=—f (N)
L >0 >0 i
with S some constant. Rearranging the RHS, we get
. [e's) N-1 B agr N-1 B agr
Hlp, = [ 5-2m 3 (07 Y g% | 3 [( )k ] DY [() e ]
(ki,ai) r=1 B=0  s|r p B=0 s|r p
s=8 (N) s=—p (N)
| >0 >0

=|S—2mi > (—1)i+1iq%
r=1

(ki,ai)

oo
=1|5- 2772'2@[%
r=1

Define

1

2.

s|r
s>0

()2

s|r
s>0

(ki,aqi)

f kis _%
[<p> N o

|-x

; iS—a;t —1\ —kista;Z
(1) [C]Ii/ S <p) CNk ' ]

2v

2v

G .= Z (_1)i+1 [CJ’?S—%Z _ (_pl> C]:/kis+ai;] ‘

(kiai)

We aim to show G = 0 whenever r is odd. Suppose first that p = 1 (mod 4), then, as we always have
an even number of pairs of (a;, k;), and using a simple trigonometric identity,

; kis—aii‘ —ki8+ai£\
6= 3 (o gl

(ki,ai)
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=2i 3 (~1)"*'sin ﬁv (k;s—azm

(kiai)

—2 Y (Sm [ (k: s— Z)} — sin B;T <k¢+1s - a¢+12)D

odd i

=4 Z cos [ ( (ki + kiy1) — Z(ai + ai+1)):| sin [% (s(k:l —kit1) — g(ai — ai+1)>:| .

odd i

Similarly, if p = 3 (mod 4) we have

G= 3 (- [ ey cN]

(ki,ai)

=2 (%) 1)fte [3\7; (kis - ai)]
T

— 43 sin [ ( (ki + kisr) — Z(az n aM)) sin [ﬁ (s(ki ki) — g(ai - am))} :

odd 1

For identities that have p =1 (mod 4), we note that for odd i, k; — ki1 = a; — a;41 = % modulo
N. Thus G vanishes when r is odd, as s and T must share the same parity.

For identities that have p = 3 (mod 4), we are not as restricted, we can have either (for odd %)
ki—kivi=a; —a;41 = % or ki +kiv1 =a; + a4 = % modulo N. For all of these identities we have
this requirement, hence G vanishes for odd r, as required.

6.3 Invariance Under Transformation by Matrices C;

To show these identities remain fixed under matrices of the form (disregarding the subscript for now)

C = < ¢ c_(l) ) modulo N, we apply the transformation formula again:

0
N_1 ﬁ 2v
oy
H|C - Z () Z (_1)Z+ICNBEcai,c—157N
=0 P/ ()
We let ' = ¢! and find, as we must have (¢, N) =1 and p | N,
No1 CB/ 2v
ks
H|C - Z () Z ( )Z+1C it Ecal,c_l,B,N
g=0 NP ()
2v

¢ 20 [N-1 ﬂ, . /
() (E@ g
B'=0

P p (ki,as)

This will be equal to H if ¢ acts on the pairs (k;, a;), by multiplication modulo N, by mapping each
+(kj,a;), with j =1,2,... and so on. To see this we consider the effect of one mapping. We allow
for each (k;, a;) to be mapped to either itself, its negative, a different (k;,a;), or the negative of that.
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If (k;, a;) is mapped to itself or (k;,a;), there are no issues. If it is mapped to the negative of one of
these we notice, using E_, _p n = —Eqp N,

N-1 N-1

Z (g) CNVPE N =— Z (i) (NP Ba, g
B=0 B=0
NV s
- (= P chibg,
< p > ;) <p> N TaoN
Vg s
- (= PN kbR, 4y
( p > 52) <p> N TendN

If p = 3 (mod 4) then the negatives cancel, and we are done. If however p = 1 (mod 4), we need to
have either all the pairs (k;, a;) map to negatives, or for each pair that maps to a negative match to
a pair (k;,a;) where j has a different parity than ¢, which will be accounted for by the (—1)"*! term.

For example, identity (7) has RHS

23 4
b
H= <Z <3) (CQQZE&b,M - <22ibE15,b,24>> .

b=0

A set of generators for (Z/247)" is 5, 7, 23. Of course 23 = —1 is trivial, so we focus first on 5. We get
5-(k1,a1) =5-(9,3) = (21,15) = (ko, az) modulo 24, and 5 - (kg,a2) =5 (21,15) = (9,3) = (k1,a1)
modulo 24. Thus H transforms to

2 4
< <3> (CﬁbEw,b,M - <32E3,b,24>> = H.
=0

Similarly, for 7 we find 7 - (k1,a1) = —(k1,a1) modulo 24, and 7 - (k2,a2) = —(ke, az) modulo 24. So

H transforms to
2 4
( (3> <<2_4ng73,11,24 - C2_4216E15,b,24>>

23 4
1 b
= (— (3 ) > <3) (CSXEs,b,M — C%ibEw,b,M)) = H.
b=0

This is shown in the tables below. Listed is the identity number, the value of N, a list of the ¢;
required, and the values of the pairs (k;, a;). The table then shows how the ¢; permute the pairs. All
permutations are in fact involutions, and we denote the fact that ¢; swaps (k;, a;) to (k;,a;) as simply
(i,7), whereas if ¢; takes (k;, a;) to —(kj,a;) and (kj, a;) to —(ki, a;), we write (i, —j). If (k;, a;) maps
to itself, or to —(k;, a;), we write (i), or (—i), respectively. Of course, —1 just takes the pair (k;,a;)
to —(ki, ai).
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Identities with 2 pairs of (k;, a;)

Id. | N | ¢1,¢c3,c3 <k1> k2 c1 acts co acts
ai az
9 21
7 24 | 5,7,23 <3> 15 (1,2) (1,-2)
21 9
9 5
40 | 3,11,39 5

5
25

DO
at

10

at

(SN |
[GAREN

~J
EN|

33

29
15 232 | 3,5,231 29

145
16 ()

EN|
~J

N N /‘\@ /N
[SL e
N N | N P—— | N N— —
~—~
l_‘
|
)
S~—
:,_.\
|
o

— =
I
Tt

()
21 88 | 35,87 G?)
13 (33)
(2)

—
s
ot

7 NN
DN
Ne)
NN

17 | 60 | 7,13,59 (i’g) (455> (1,-2) | (1),(2)
20 | 156 | 7,11,155 (19413> (?g) (1,2) | (=1),(-2)
23 | 444 | 5,7,443 (gg;) <13875> (1,-2) (1,2)

For the three identities (6, 11, 14), that have just a single pair, it is easy to find a set of generators
that for example, maps the pair to its negative. For the single heptagonal identity, we need to avoid
matrices with first entry congruent to +3 modulo 10. So, as N = 120 we take ¢y = 119, ¢; = 11,
co = 19, and c3 = 29. As before, ¢y is immediate. We see that ¢; takes (ki1,a1) to —(kg, aq) and vice
versa, (ka,az2) to —(ks,as) and vice versa, (ks, as) to —(ks, ag) and vice versa, and (k¢, ag) to —(k7,ay)
and vice versa. The value 19 swaps the pair with index 1 with the negative of the pair with index 2,
3 with —4, 5 with —6, 7 with —8. Finally, 29 swaps 1 and 4, 2 and 3, 5 and 8, 6 and 7.

7 Equivalence Using Sturm’s Bound

Let f = > ez oxq”. We define ord(f) to be the smallest such n that o, # 0. We first state a
simplified version of Sturm’s bound [12].

Theorem 7.1. Define I' := SLy(Z), and let f,g be modular forms on T" 2O T'(N) of weight k, a

positive integer. Suppose ord(f — g) > k[FliQM Then f =g.

In other words, Sturm’s bound says that given two modular forms over the same congruence

subgroup and of the same weight, then they are equivalent if their g-expansions agree up to the q%
coefficient, where k = 2v is the weight, and M is the index of the congruence subgroup in T'.
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Recall we have defined for the triangular and pentagonal identities,
N
I =T, (2> nT%2),

and for the heptagonal identity,

N
' =T, (2> NTY(2) NT4(10).
We have now shown that each side of our transformed identities are modular of weight 2v for I =
IV/T(N). We can now apply Sturm’s bound. We have [2, p. 14], for the triangular and pentagonal
cases,
1
M=[:T]= [F:FO(N)]:NH<1+>
p
pIN
as, despite the fact that IV # T'o(N), they have the same index in I'. To see this, we simply notice
that I'” and I'g(N) both share a common subgroup, I'g(N) NT%(2), and this common subgroup clearly
has index 2 in both. For the heptagonal case, we simply have to double M. We need to check % +1
coefficients. Starting with identity (6), we have M = 36, and we need to check kl—M +1 = 7 coefficients.

2
We use the form of »

quk(qa)Gk(qﬁ) = Z F;i70i74(k_2)’

(ai,ci)

for ease, which as we mentioned before each identity can be written as. For identity (6), this is

¢1G5(q)Gs(¢%) = F5 300+ F57.20
and find both sides start with
141-g4+0-P+1-¢*4+0-¢*+1-¢"+2-¢+0-¢".
As the coefficients of this form agree up to the required amount for Sturm’s bound, the coefficients of

H(7) and Yp4r (%)27} must also agree up to the required amount. Hence by Sturm’s bound H(7) =

Upir (%)27}, and so the LHS is equivalent to the RHS up to multiplication by some constant (a root
of unity). But we’ve seen that the coefficients agree, so this constant is 1, and the identity holds. See
appendix for the code used.

For identity (7), we have M = 48, and so we need to check 17 coefficients. We check the coefficients
of the same form

z * *
a5G3(q)Gs(¢°) = F3790+ Fys504
and find both sides start with

1+1q+0q2+1q3+0q4+0q5+2q6+1q7+0q8+1q9+1q10+0q11+1q12+0q13+0q14+1q15+1q16+0q17

As before, this is enough to show identity (7) holds.

Our computations show that both the LHS and RHS have the same coefficients for all triangular,
pentagonal, and heptagonal identities. Notice that while we always knew both sides were modular
forms for I'(V), using that would have made the number of coefficients required for Sturm’s Bound
much larger, hence the efforts to show both sides were modular forms for the larger congruence
subgroups.
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8 Appendix

We used a simple code in MATLAB to check the coefficients. There may very well exist a more elegant
way of doing this, but as we always had N < 1000 this was suitable for our purposes. The code first
calculates the triangular/pentagonal/heptagonal numbers up to the number required, then sums the
appropriate multiples and checks the frequency to find the coefficients of the LHS. For the RHS the
code uses the definition of F,, . x to calculate the coefficients using the pairs (a;, ¢;). Finally, these two
lists are compared, returning a value of 0 if the coefficients are the same. If the coefficients agree up
to the necessary limit, then of course the coefficients agree when raised to the power 2v.

Included below is the code used for the triangular numbers. We merely altered the first section so
it would calculate the correct number of coefficients, and the correct numbers, for the pentagonal and
heptagonal number identities.

8.1 Triangular Numbers Code

%/ Script to find number of ways each number can be represented as the sum of a
%% triangular # and a multiple of a triangular #

% Numbers that cannot be represented in any such way are excluded from

% output. Output is each number with the frequency at which it can be

% expressed in the above way.

clear

% IDENTITY VALUES GO HERE

% alpha = ; beta = ; J values of alpha, beta, alpha < beta
% d = ; % power of q multiplied by N

% N = ; % value of N

% M= % index of subgroup

%k = ; %% weight of form

ha=101; c=1L[1; % values of a, c

noF = length(c); % number of F_{a,c,N}

m = k*M/12 + 1; % number of coefficients needed

n = floor( ( -1 + sqrt( 1 + 8 * m / alpha) ) / 2 ) + 1; % number of
% triangular numbers needed

tri = zeros(n, 1);

sums = zeros(n);

for i =0 :n
tri(i+1) =1 x (i +1) / 2;
end
atri = alpha .* tri;
btri beta .* tri;

fori=1:n
for j=1:n
sums (i, j) = atri(i) + btri(j);
end
end
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out = [unique(sums),histc(sums(:),unique(sums))];
index = find(out(:, 1) < m + 1);
result = out(1 : max(index), :);

%% Working out coefficients of the RHS

Fpos = zeros(noF, m, m);
Fneg = zeros(noF, m, m);

for i =1 : noF
for j=1:m+ 1
for k=1 :m+ 1
Fpos(i, j, k)
Fneg(i, j, k)

end
end
end

outpos = [unique(Fpos) ,histc(Fpos(:),unique(Fpos))];
indexpos = find(outpos(:, 1) < m + 1);
resultpos = outpos(l : max(indexpos), :);

outneg = [unique(Fneg) ,histc(Fneg(:) ,unique(Fneg))];
indexneg = find(outneg(:, 1) < m + 1);
resultneg = outneg(l : max(indexneg), :);

resultF = zeros(m, 2);
k = max(length(resultpos), length(resultneg));
for i =1 :k

if isempty(find(resultneg(:, 1) == resultpos(i, 1), 1))

resultF(i, :) = resultpos(i, :);
else

resultF(i, 1) = resultpos(i, 1);

resultF(i, 2)

== resultpos(i, 1), 1), 2);

resultneg(find(resultneg(:, 1) == resultpos(i, 1), 1),

end
end

resultneg(:, 2) = -resultneg(:, 2);

resultF = [resultF; resultneg];

resultF = resultF(any(resultF, 2), :);
resultF = resultF(any(resultF(:, 2), 2), :);

%% Comparing

Modular Forms

(@@ + k-1 *xN) * (c@) + (j-1) *N) -d)/N;
((-a(@) +k*N) * ( -c(i) + j *N) -d)/ N;

resultpos(i, 2) - resultneg(find(resultneg(:, 1)

any (any(result-resultF)) % Checking if the difference between the two results

% is zero. If zero, it will return zero.
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