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Abstract 

1. The erosion of night-time by the introduction of artificial lighting constitutes a profound pressure 

on the natural environment. It has altered what had for millennia been reliable signals from natural 

light cycles used for regulating a host of biological processes, with impacts ranging from changes in 

gene expression to ecosystem processes. 

2. Studies of these impacts have focused almost exclusively on those resulting from stationary sources 

of light emissions, and particularly streetlights. However, mobile sources, especially road vehicle 

headlights, contribute substantial additional emissions. 
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3. The ecological impacts of light emissions from vehicle headlights are likely to be especially high 

because these are (i) focused so as to light roadsides at higher intensities than commonly experienced 

from other sources, and well above activation thresholds for many biological processes; (ii) projected 

largely in a horizontal plane and thus can carry over long distances; (iii) introduced into much larger 

areas of the landscape than experience street lighting; (iv) typically broad ‘white’ spectrum, which 

substantially overlaps the action spectra of many biological processes; and (v) often experienced at 

roadsides as series of pulses of light (produced by passage of vehicles), a dynamic known to have 

major biological impacts. 

4. The ecological impacts of road vehicle headlights will markedly increase with projected global 

growth in numbers of vehicles and the road network, increasing the local severity of emissions 

(because vehicle numbers are increasing faster than growth in the road network) and introducing 

emissions into areas from which they were previously absent. The effects will be further exacerbated 

by technological developments that are increasing the intensity of headlight emissions and the 

amounts of blue light in emission spectra. 

5. Synthesis and applications. Emissions from vehicle headlights need to be considered as a major, 

and growing, source of ecological impacts of artificial night-time lighting. It will be a significant 

challenge to minimize these impacts whilst balancing drivers’ needs at night and avoiding risk and 

discomfort for other road users. Nonetheless, there is potential to identify solutions to these conflicts, 

both through the design of headlights and that of roads. 

 

Keywords: artificial light, light cycles, light pollution, night-time, skyglow, spectra, urban ecology, 

vehicles 

 

 

Introduction 

Artificial lighting of the night-time has brought enormous benefits to humankind, and has shaped 

societies in dramatic ways. Indeed, over the last hundred years or so, the introduction of electric street 

lighting in particular into villages, towns, and cities, has come to epitomize development and 
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modernity. There has been rapid, and ongoing, expansion of the extent of the global area that is now 

directly artificially lit, including into those parts of landscapes, the protected areas, that are meant to 

be best shielded from anthropogenic influences (Gaston, Duffy & Bennie 2015a; Davies et al. 2016). 

Skyglow, caused predominantly by upwardly emitted artificial light being scattered in the atmosphere, 

and which may reach 10s to 100s of kilometres beyond the limits of urban settlements (Biggs et al. 

2012; Luginbuhl, Boley & Davis 2014), is now estimated to be experienced by ~23% of the global 

land area (Falchi et al. 2016). 

This erosion of the night-time has constituted a profound pressure on the natural environment. It has 

disrupted the natural daily and seasonal light cycles experienced by organisms in ways that have no 

natural analogues (Gaston, Visser & Hölker 2015b). This has altered what had for millennia been 

reliable signals used for regulating a host of biological processes. An extraordinary array of impacts 

have now been documented, including on gene expression, the physiology and behaviour of 

organisms, the abundance and distribution of species, their ecological interactions, the composition of 

communities, and ecosystem processes and services (for a range of recent examples see Robert et al. 

2015; Sanders et al. 2015; Wakefield et al. 2015; Altermatt & Ebert 2016; ffrench-Constant et al. 

2016; Raap, Pinxten & Eens 2016; Thums et al. 2016; Davies et al. 2017). Moreover, these effects 

have been found across a wide diversity of species, including microbes, plants, molluscs, arachnids, 

insects, fish, amphibians, reptiles, birds and mammals (Gaston et al. 2013; Bennie et al. 2016). In 

consequence, potential mitigation measures (e.g. dimming of emissions, partial night-time lighting, 

shielding light sources, modifying emission spectra) have been much discussed, and there are growing 

numbers of examples of their implementation (Falchi et al. 2011; Gaston et al. 2012; Azam et al. 

2015). 

 

Research into the ecological and evolutionary impacts of artificial night-time lighting, and how these 

can best be minimized, has focused almost exclusively on emissions from streetlights. Studies have 

variously (i) conducted field observations to determine the impacts of street lighting emissions (e.g. 

Kempenaers et al. 2010; Davies, Bennie & Gaston 2012; Mathews et al. 2015); (ii) introduced 

streetlights into previously unlit areas in experiments to determine their impacts (e.g. de Jong et al. 
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2015; Hölker et al. 2015; Spoelstra et al. 2015); and (iii) simulated the emissions from streetlights in 

either laboratory or field experiments to determine their effects (e.g. Bennie et al. 2015a, 2018; 

Sanders et al. 2015; Davies et al. 2017). However, whilst streetlights are a major source of artificial 

night-time lighting, they are far from the only one. A few studies have examined ecological impacts 

of some other stationary sources (e.g. communication towers, lighthouses; Jones & Francis 2003; 

Longcore et al. 2012), but the ecological impacts of mobile sources of lighting have remained 

virtually ignored. 

 

The predominant mobile source of artificial night-time light is the emissions from vehicle, and 

particularly road vehicle, headlights. The ecological impacts that might arise from these have received 

almost no attention, or only passing reference, either within the literature on impacts of artificial 

night-time lighting (e.g. see reviews by Longcore & Rich 2004; Gaston et al. 2013, 2014), or on the 

ecological impacts of roads (e.g. see reviews by Spellerberg 1998; Trombulak & Frissell 2000; Coffin 

2007; van der Ree, Smith & Grilo 2015). Where they have been considered, the focus has been on the 

dazzling of vertebrates and the resultant potential for this causing collisions with vehicles (e.g. Outen 

2002). Notwithstanding, there are good reasons to predict that headlight emissions have profound 

ecological impacts, both because of their general contribution to artificial night-time lighting, and 

because of the particular challenges posed by the high intensity of their emissions and the pulse-like 

nature of illuminance caused by passing vehicles. 

 

In this paper, we review the nature, extent and ecological implications of artificial light from vehicle 

headlights. We do so by exploring in turn each of four key issues that shape the ecological impacts of 

artificial night-time lighting, namely light intensity, spectrum, spatial extent and temporal pattern. 

Essentially, we work from the level of individual vehicles to that of the landscape, and explore the 

ways in which recent and potential developments in vehicle ownership and technology may influence 

these effects. 

 

Intensity 
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BACKGROUND 

Typical intensities of light emissions measured directly from headlights are around 2000-8000 lx for 

newer cars, but can be higher (Fig. 1); lux (lx) is a measure of luminous flux per unit area based on 

human photopic vision, and so does not necessarily capture the relative effects of light influencing 

biological processes with different spectral responses, but its use ensures a direct link to illuminance 

as commonly measured in the environment and employed in the design and mitigation of artificial 

lighting systems. This level of luminance is broadly comparable to that from emissions measured 

directly from streetlights, but vehicle headlights have a much more focused beam, which travels 

further at higher intensities. Therefore, whilst the downward directed emissions from streetlights tend 

to result in ground-level illuminance of around 10-20 lx directly below the source, which usually 

declines to <1 lx a few meters away, those from vehicles reach much higher levels over much greater 

distances, both horizontally and vertically. For example, emissions for a family car that approached 

10,000 lx at source remained at 25 lx at 50 m distance, and exceeded 1 lx at 100 m; moonlight is ~0.1 

lx (for a full moon) (Bennie et al. 2016). As a result, roadside vegetation and the surrounding area is 

frequently illuminated at night by emissions at levels of the order of 300 lx, and, depending on the 

angle to the oncoming traffic and the likelihood of vehicles using full-beam (which will tend to be 

higher on rural roads, given lower levels of traffic), this may on occasion approach levels of around 

1000 lx or more, equivalent to daylight on a heavily overcast day (Fig. 2). 

 

The artificial night-time lighting emitted by streetlights has been shown regularly to exceed the 

thresholds, which are often low (<1 lx; Gaston et al. 2013, 2014), that trigger a wide variety of 

biological effects (e.g. physiological, behavioural, and other responses); this includes attraction and 

repulsion behaviours of animals, which may or may not influence risks of vehicle collision. 

Nonetheless, dose-response relations - how effects change with increasing intensity of emissions - are 

poorly understood for most of these effects, and research establishing them is regarded as a high 

priority (Gaston, Visser & Hölker 2015b). The yet greater levels of illuminance at distance from 

vehicle headlights mean that the upper intensity levels that require exploration will need to be 

substantially higher than those from streetlights, and than the intensities which have been used in 
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empirical studies thus far (e.g. Bennie et al. 2015a; Sanders et al. 2015; de Jong et al. 2016; Davies et 

al. 2017). 

 

DEVELOPMENTS 

The history of vehicle headlights has largely been one in which the intensity of emissions has 

progressively increased with technological improvements and innovations. The maximum intensity 

allowed along the axis of a single headlamp on full-beam (or high-beam) is presently 112,500 cd in 

Europe (under ECE Regulation 48) and Japan (under Japanese Safety Regulation Article 32), and 

75,000 cd in the U.S. (under Federal Vehicle Motor Standard 108; Rumar 2000); E = I / (d)2, where E 

is intensity of emissions in lux (lx), I the intensity in candelas (cd), and d is distance in metres. In 

general, regulations have tended to increase to keep track with vehicle headlight strength, whilst 

keeping below a level that creates too much glare for drivers of oncoming vehicles. 

 

Recent technological developments are seeing the replacement of halogen bulbs with High Intensity 

Discharge (HID) xenon, Light-Emitting Diode (LED) and, in as yet a very limited way, laser light 

sources, all of which can reach greater visible outputs. Laser headlights can produce an exceptionally 

bright white light that is significantly more intense than conventional light sources. Yet, in tacit 

acknowledgement of the potential for unprecedented levels of vehicular light pollution, laser 

headlights are not currently authorized in urban areas. In time the current ‘higher-end’ technologies of 

LED and laser will become more affordable, and will be incorporated into low and medium cost 

vehicles (LED bulbs are already widely available for retrofitting into vehicle headlight assemblies). 

 

Unless road vehicle technology changes in such a way as to make headlights redundant (see below), 

there is little evidence that emissions will not continue to increase with further innovations in 

headlight technology. This said, one potential brake on increasing intensity of emissions from new 

types of headlights may arise from concerns that these exacerbate effects of glare from oncoming 

vehicles, particularly for older drivers and in aging populations. HID lights are especially problematic 
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in this regard. The effect is worse for older drivers due to increased intraocular light scattering, glare 

sensitivity, and photostress recovery time (Mainster & Timberlake 2003). 

 

Spectrum 

BACKGROUND 

Streetlight emissions are very different in their spectra from sunlight, moonlight or starlight (Gaston 

et al. 2014). Some types emit over very narrow bandwidths (e.g. low-pressure sodium lighting), 

others do so over a wide range of wavelengths (e.g. high-pressure sodium lighting, ‘white’ LED 

lighting; Elvidge et al. 2010). Current vehicle headlight types tend to be of the latter form (Fig. 3). Of 

those in present use, halogen lights (a type of incandescent lamp) are the oldest and commonest, and 

have a broader spectrum with greater emissions towards the longer visible wavelengths (Fig. 3a). 

Xenon lights have peaks over a range of shorter to intermediate visible wavelengths (Fig. 3b). LED 

lights typically have peaks in the blue and green (Fig. 3c). Laser headlights are not currently widely 

commercially available and the details of the spectra remain unclear, but they provide focused, high-

contrast white light intended to mimic sunlight, and are adapted from blue-laser diode technology 

(Wierer, Tsao & Sizov 2013). 

 

Key to the ecological impact of artificial night-time lighting is the interaction between the spectral 

composition of that lighting and the action spectra of biological processes (Aubé, Roby & Kocifaj 

2013; Davies et al. 2013; Solano Lamphar & Kocifaj 2013). These action spectra vary a great deal 

both between different processes (e.g. Butler, Hendricks & Siegelman 1964; Ahmad et al. 2002; 

Aubé, Roby & Kocifaj 2013) and between different kinds of organisms for a given process (e.g. 

photosynthesis: Clark & Lister 1975; Inada 1976; vision: Davies et al. 2013; Solano Lamphar & 

Kocifaj 2013). Research is being conducted to determine the impacts of artificial night-time lighting 

on systems with a range of different action spectra (e.g. Aubé, Roby & Kocifaj 2013; Davies et al. 

2013; Solano Lamphar & Kocifaj 2013). White light is typical for car headlights for superior 

illumination at night, to avoid causing unnecessary fatigue, and to avoid inhibiting driver’s colour 

vision. However, it is widely held that broad ‘white’ lighting is environmentally especially 
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problematic because of the greater likelihood of substantial emissions in key parts of the action 

spectra of many biological processes. Concerns have particularly been raised around emissions in the 

blue part of the spectrum, which have marked influences on melatonin levels and circadian rhythms of 

many species (Bayarri, Madrid & Sánchez-Vázquez 2002; Lockley, Brainard & Czeisler 2003), and 

are more attractive to some organisms (e.g. Evans et al. 2007; Cowan & Gries 2009; Somers-Yeates 

et al. 2013) whilst being more repellent to others (e.g. Downs et al. 2003; Widder et al. 2005). Car 

headlights have progressively increased in their Correlated Colour Temperature (CCT) values 

(frequently used to describe the aesthetic appearance of white light, increasing in value from ‘warm’ 

orange to ‘cool’ blue light). Newer headlight types, particularly xenon and LED, have substantial 

emissions at blue wavelengths (intended to help drivers pick out objects and ease eye fatigue; 

Mainster & Timberlake 2003); several new LED headlights hit the international regulated limit of 

6000 K (Fig. 1). 

 

DEVELOPMENTS 

It seems likely that there will be increasing use of headlight technologies with greater emissions 

particularly in the biologically significant blue part of the spectrum. A similar shift has been seen in 

streetlight technology, and has led to much public discussion over the implications for human health 

and wellbeing, for aesthetics, and for wider environmental impacts. In particular, there has been 

public opposition in some areas to the use of LED street lighting with higher CCT values. It would 

seem sensible to bring the desirability of developments in headlight technology into these same 

debates. The breadth of concerns here is similarly wide, embracing not just potential environmental 

impacts, but those on the behaviour and wellbeing of oncoming drivers and pedestrians, on occupants 

of roadside properties, and on the night-time aesthetics of roads. 
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Spatial extent 

BACKGROUND 

Vehicle headlights illuminate vastly greater areas of habitat than do streetlights, introducing artificial 

night-time lighting into areas without streetlights or other static forms of lighting. For example, 

238,000 ha of road verge alone exist in Britain, more than twice the area of natural and semi-natural 

grassland in the wider countryside (Plantlife 2013), and whilst outside of urban areas only a small 

proportion of this road verge is lit by streetlights, virtually all is lit at some time by vehicle headlights.  

 

The global (paved and unpaved) road network is estimated to be more than 64 million km in length, 

with that of Brazil being 1.6 million km, China 4.1 million km, India 4.7 million km, and the U.S.A. 

6.6 million km (Central Intelligence Agency 2013). In some parts of the world this coverage is such 

that influences from roads are arguably the norm for areas rather than the exception. Of the 

coterminous United States, 20% of the total land area has been estimated to lie within 127 m of a road 

and 83% within 1061 m (Riitters & Wickham 2003). 

 

Headlight emissions are not captured well by the satellite imagery that is used widely to analyse 

spatial patterns of artificial night-time lighting (Fig. 4). This is both because the emissions occur 

predominantly in the horizontal plane, and because imagery is often processed to represent 

static/persistent lighting and remove ephemeral lighting (thereby avoiding contamination of images of 

artificial night-time lighting with the location of fires etc). In consequence, satellite imagery will tend 

markedly to underestimate the extent of artificial night-time lighting. This is important, because such 

imagery has been used to determine the levels to which the night-time environment has been eroded 

in different ecosystem types (Bennie et al. 2015b; de Freitas et al. 2017), across areas protected for 

conservation (Gaston et al. 2015a), in areas with different species richness (Bennie et al. 2014), and 

across the geographic ranges of different species (Duffy et al. 2015). Almost invariably, concerns 

have been expressed as to the levels of light pollution being experienced, and the consequent changes 

in habitat suitability for organisms. However, in ignoring vehicle headlight emissions, these will tend 

to be substantial underestimates. 
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As well as causing direct illuminance, upwardly directed or reflected emissions from headlights will 

also contribute to skyglow, but these emissions are not presently incorporated into the prevailing 

models of this phenomenon, again underestimating its extent. 

 

DEVELOPMENTS 

The spatial extent of influence of vehicle headlights is likely to be growing rapidly alongside that of 

the road network. Globally, this network increased by 35% in the decade 2000-2009, and it has been 

estimated that there will be a need for an additional 25 million km of paved roads by 2050 (Dulac 

2013). Inevitably this will introduce emissions from vehicle headlights into substantial areas in which 

they have not previously occurred. Of particular concern is that much of this growth in roads is likely 

to be in regions with rapidly emerging economies (e.g. China, India), with non-OECD countries 

expected to account for nearly 90% of the global growth in roadway infrastructure (Dulac 2013). 

These regions include ones of high global importance for biodiversity and ecosystem services 

(Laurance et al. 2014). 

 

Some change in the spatial extent of influence of headlights from individual vehicles may result from 

increased used of adaptive technologies that, for example, cause these lights to swivel to better 

illuminate bends in the road and that extend beams on straighter roads. However, at least in the 

immediate term, these effects seem likely to be small compared with the overall growth in length of 

roads and numbers of road vehicles. This may place a primacy on careful planning of where new 

roads are built so as, alongside other concerns, to limit the propagation of headlight emissions across 

landscapes, and to incorporate into their design landscape or habitat changes that block or reduce this 

spread of light. It seems likely that, cognisant of safety issues, landscape profiling and careful planting 

of appropriate vegetation (akin to sound barriers) could serve markedly to limit the propagation of 

emissions from headlights both along existing and new roads. 
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Temporal dynamics 

BACKGROUND 

Street lighting and other static forms of lighting give rise to night-time-long continuous or reasonably 

continuous periods of illumination. By contrast, at any one point along a roadside (and its 

surroundings) illuminance by emissions from headlights is typically pulsed due to the passage of 

vehicles (Fig. 2). The form that the pulsing takes is dependent on the speed of vehicles, level of traffic 

and time of day. The greater the speed at which vehicles are moving, the briefer is the pulse of light 

received at a point along the roadside. For the majority of roads, the level of traffic varies markedly 

through the day (Fig. 5), and in the UK, one of few regions for which data are accessible, 16-48% of 

traffic is on the road outside of daylight hours depending on the time of year (Department for 

Transport 2015). The volume of traffic, and thus the gaps between light pulses, also varies 

considerably throughout the night-time, with relatively fewer journeys occurring in the early hours of 

the day (see Fig. 5). The time of year may also have a significant effect; in winter organisms will 

experience more traffic-related pulses due not only to a longer period of night-time, but also because 

these dark or twilight hours are more likely to coincide with peak ‘rush-hour’ traffic. Furthermore, the 

level and pattern of traffic-related light pulsing is likely to vary both regionally and globally, 

according to latitude (influencing seasonal variation in length of night-time), level of economic 

development, and cultural conventions such as typical working and non-working days of the week. 

This introduces a wholly unnatural regime of light exposure to organisms, unrelated to genuine 

seasonal or biological cues. 

 

The vast majority of studies of the biological impacts of artificial night-time lighting have focused on 

continuous lighting. However, pulsed lighting can have profound effects, at least as evidenced from 

laboratory studies. Table 1 provides examples of the findings of such studies, revealing that even brief 

single pulses of artificial night-time lighting can be sufficient to induce a response. This table 

excludes the large number of studies that have used regular night-time light pulses (commonly of 30 

min or 1 hr duration, but sometimes much less) to produce phase response curves to understand the 

circadian rhythms of a variety of organisms (e.g. Daan & Pittendrigh 1976; Ford & Cook 1988; Flari 
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& Lazaridou-Dimitriadou 1995; Gronfier et al. 2004; Kumar & Singaravel 2014; Kennedy & Hudson 

2016). It also excludes phenomena such as the recovery times of night vision (‘dark adaptation’) after 

exposure to artificial lighting (and associated ‘bleaching’ of photopigments), which may in insects 

and vertebrates take 30 mins or more (Post & Goldsmith 1965; Martin 2017), with profound 

consequences for resource acquisition and predator avoidance. Pulsed lighting has regularly been 

found to act as a repellent to organisms, with limited evidence for adaptive responses (e.g. Patrick, 

Sheehan & Sim 1982; Linhart 1984; Nemeth & Anderson 1992; Hamel, Brown & Chipps 2008; 

Sullivan et al. 2016), and to be less of an attractant than continuous lighting (Gehring et al. 2009). 

Areas experiencing pulsed lighting may thus as a consequence be avoided and may contribute to the 

fragmentation of habitats. 

 

DEVELOPMENTS 

Globally, in 2012 there were an estimated 833 million passenger cars and 309 million commercial 

vehicles (OICA 2014); these greatly outnumber streetlights, for example in the EU there are an 

estimated 287 million road vehicles and 60 million streetlights (Van Tichelen et al. 2007; The 

International Council on Clean Transportation 2015). Clearly, particularly in developing economies, 

vehicle ownership is growing rapidly, and this trajectory is likely to continue. Since the growth in 

vehicle numbers is increasing at a greater rate than that of most countries’ road networks, traffic 

density on the current roads will increase, which is likely to increase headlight pulse frequency by 

default. This said, the probable future trajectory of road transport and therefore volume is much 

debated. Whilst short-term increases in car numbers are inevitable, the overall trends seem likely to be 

dependent on the type, rate, and level of uptake of automated vehicles. Innovations could vary from 

advanced driver assist functions to full automation of personal cars and haulage vehicles. Full 

automation may perhaps appear in combination with a system where personal car ownership has all 

but ceased in urban areas, with rentable cars or taxis held in depots. In that case, the volume of traffic 

on roads could decrease, or become more evenly spread throughout the night-time hours as 

passengers make long journeys in the (currently unpopular) small hours, by automated vehicle. 
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Increases in night-time traffic would obviously be a major concern for ecological impacts of 

headlights. 

 

Discussion 

Widespread recognition of the, arguably pervasive, ecological impacts of artificial night-time lighting 

has only emerged quite recently. Indeed, whilst spurred by key earlier contributions, the now rich 

literature of modeling, observational, and experimental studies that documents these impacts has 

largely developed in the space of just the last decade. These insights have, however, focused almost 

exclusively on the consequences of emissions from static lighting sources. The argument that mobile 

sources, and especially those from road vehicle headlights, are both contributing substantially to 

overall levels of artificial night-time lighting and to the ecological impacts seems compelling. 

Moreover, emissions from headlights give rise to particular concerns because of their intensity, 

predominantly horizontal and long trajectory, prevailing broad ‘white’ spectrum, and the pulsed 

nature of the illuminance of habitat and organisms that they cause. 

 

This said, it will be important to determine the details of the actual ecological impacts of emissions 

from vehicle headlights. In particular, it would be helpful to conduct field and mesocosm experiments 

with suitable study systems (e.g. see Bennie et al. 2015a; Sanders et al. 2015), to measure the effects 

on individual organisms, populations and communities of pulsed lighting of different intensity, 

frequency and spectrum. Perhaps more so than with static lighting, a key challenge will be to 

determine the relative importance of, and interactions between, impacts of emissions from vehicle 

headlights and other ecological impacts of vehicles, including from traffic noise, exhaust emissions 

and animal roadkill. Disentangling these impacts may be difficult because the magnitudes of all will 

inevitably tend to be associated with traffic volumes. It would also be helpful to explore the impacts 

separately and in combination of emissions from streetlights and vehicle headlights, so as to unpick 

the likely consequences of night-time vehicle use on roads with and without street lighting. Looking 

yet more broadly, one might embed such studies within a consideration of the overall ecological effect 

of roads, including on habitat availability and connectivity. 
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The practical challenges of reducing the ecological impacts of emissions from road vehicle headlights 

are perhaps greater than those associated with emissions from streetlights. First, the use of headlights 

is intimately associated with the night-time visual needs of drivers and the avoidance of risks and 

discomfort of other road users. By contrast, streetlights serve a wide range of purposes, including 

safety, security, social benefit, and aesthetics, although their general importance for some of these 

(including impacts on levels of vehicle accidents and crime) is hotly disputed (Gaston et al. 2015c). 

Second, recent developments in headlight technology have not been strongly driven by concerns to 

further reduce energy demands (albeit there are clearly limits to what can be supplied) and carbon 

dioxide emissions, or further prolonging the lifespan of lamps. These factors have, however, been 

critical considerations in the development of street lighting schemes, particularly at a time when 

public finances are widely under great pressure following the global financial crisis (Gaston 2013). 

Third, headlight technology has predominantly been focused on broad ‘white’ spectrum lamps for a 

long time, on grounds of safety, and there seems little likelihood of changing this. By contrast, 

different parts of the world have employed different streetlight technologies, with different spectral 

characteristics, and the rapidity and extent, benefits and costs, of a switch to broad ‘white’ spectrum 

lamps is a topic of much debate. 

 

This is not to say that headlight systems could not be redesigned so as to better limit light emissions 

into places and in forms (e.g. intensities, spectra) that they are not needed. Recognition and 

understanding of the environmental consequences of these emissions is obviously key to pressure for 

such changes. Substantial reduction in these environmental impacts will also require accompanying 

landscape or habitat changes that reduce the spread and influence of the light emissions from 

headlights, and the incorporation of such concerns into the planning and design of new roads. 
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Table 1. Examples of the biological effects of pulsed night-time lighting. Different studies use 

different measures of light intensity, many of which are not interchangeable. 

 

Species Setting Night-time lighting Effect Source 

Plants 

Campanula 

carpatica, 

Coreopsis 

grandiflora, 

Petunia 

×hybrida, and 

Rudbeckia hirta 

Greenhouse 

6 min pulse every 30 

min for 4 h using 600 

W HPS lamp 

≥80% of plants had macroscopic 

visible flower bud or 

inflorescence, whereas for all but 

one species controls remained 

vegetative 

Blanchard & Runkle  

(2010) 

Moths 

Helicoverpa 

armigera and 

Mamestra 

brassicae 

Lab 

0.5 sec pulses of green 

light of 2.5 x 1017 

photons.m-2.s-1 at 10 

cm from source 

Decreased activity in one 

species, no effect on other 
Yabu et al. (2011) 

Mosquito 

Anopheles 

gambiae 

Lab 
6, 10 or 30 min pulses 

of 150, 300 to 870 lx 
Suppression of biting activity Sheppard et al. (2017) 

Japanese horse-

mackerel 

Trachuras 

japonicus 

Outdoor 

tank 

Pulses of 3.0, 1.36, 

0.62, and 0.15 cycles 

per second, at peak of 

100 lx 

General aversion to intermittent 

light or attraction and school 

confusion. 

Koike & Matsuike 

(1987) 

Senegal sole 

Solea 

senegalensis 

Lab 1 hour pulse at 30 W Decreased plasma melatonin Bayarri et al. (2004) 

Rat Rattus 

norvegicus 
Lab 

1 ms pulse at 2000 

mW/cm2 

Pineal N-actyltransferase & 

melatonin content reduced 
Vollrath et al. (1989) 

Rat Rattus 

norvegicus 
Lab 

5-60 min pulse every 2 

hours at 200-250 ft. 

cd. 

Greater visual cell damage than 

continuous light exposure 

Organisciak et al. 

(1989) 

Rat Rattus 

norvegicus 
Lab 

Five 1 min pulses 

every 2 hours using 2 

standard 100 W 

incandescent lamps 

Decreased peak night-time serum 

melatonin concentrations. No 

effect on incidence or 

development of NMU-induced 

mammary tumors 

Travlos et al. (2001) 
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Syrian hamster 

Mesocricetus 

auratus 

Lab 
1 or 5 sec pulse at 

32000 μW/cm2 

Pineal melatonin production 

depressed 
Reiter et al. (1986) 

Djungarian 

hamster 

Phodopus 

sungorus 

Lab 
1 min pulse at 40-200 

lx 

Melatonin synthesis reduced 

during consecutive night 
Lerchl (1995) 

Social vole 

Microtus 

socialis 

Lab 
three 15 min pulses at 

450 lx 

Resistance to cold markedly 

lowered 

Zubidat, Ben Shlomo 

& Haim (2007) 

Nile grass rat 

Arvicanthis 

niloticus 

Lab 1 h pulse at 300 lx 
Increased activity, & brain 

responses 
Shuboni et al. (2015) 

Mouse Mus 

musculus 
Lab 1 h pulse at 300 lx 

Decreased activity, & brain 

responses 
Shuboni et al. (2015) 

Mouse Mus 

musculus 
Lab 1 h pulse at 100 lx 

Decreased locomotor activity, 

increased anxiety & failure of 

memory performance, in 

proestrous females 

Datta et al. (2016) 

 

  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Fig. 1. Variation in (a) intensity and (b) correlated colour temperature (CCT) of emissions measured 

from headlights on full beam for different makes and models of cars, of a variety of ages (year) 

(n=35). CCT is the absolute temperature of a blackbody whose chromaticity most nearly resembles 

that of the light source, and is frequently used to describe the aesthetic appearance of white light, from 

‘warm’ orange to ‘cool’ blue light. Symbols represent light type. Data were collected using a UPRtek 

MK350N PLUS spectrometer, held in a cushioned frame that was placed in a standardised way 

directly on car headlights and surrounded by blackout fabric that eliminated external ambient light in 

the visible spectrum. These figures represent forward emissions and not the peak emissions achieved 

by the angling and reflection of the light. Some of the variation in figures is likely to be due to the 

shape and configuration of headlight assemblies. 
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Fig. 2. Light intensity over example night-time 18 hour periods at three road sides in Cornwall, U.K. 

(a) Link road to Treluswell: 50°10'23.0"N 5°07'46.0"W (b) Road to Laddock: 50°17'34.1"N 

4°58'09.5"W (c) Link to A30 (on corner): 50°17'27.8"N 5°02'34.1"W. Measurements were made on 

19 December, 2016 (under overcast conditions with light rain), using Onset Hobo UA-002-64 

pendant light recorders, placed at 55cm above ground level, secured to wooden posts and pointed in 

the direction of oncoming traffic. Posts were placed 3m from the midline of the oncoming traffic lane. 
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Fig. 3. Measured spectral irradiances (relative intensity) of three contrasting headlight types: (a) 

halogen; (b) high intensity discharge xenon; and (c) ‘white’ LED. Data were collected using a UPRtek 

MK350N PLUS spectrometer, held in a cushioned frame that was placed directly on car headlights 

and surrounded by blackout fabric. 
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Fig. 4. a) Annual composite of night-time lights from 2015 as recorded from the Visible Infrared 

Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) (Earth Observation Group & NOAA 

National Geophysical Data Center 2017) and b) Highways Agency road network (Ordnance Survey 

2016) for a region of Devon and East Cornwall including the rural area of Dartmoor National Park 

(delineated in red) and the city of Plymouth. 
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Fig. 5. Traffic distribution by time of day on all roads, for cars, in Great Britain in 2015. This is 

scaled such that the average annual daily flow of 3500 vehicles per day = index value of 100. Data 

from Department for Transport (2015). 

 

 

 


