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Abstract

The control of charges in a circuit due to an external electric field is ubiqui-
tous to the exchange, storage and manipulation of information in a wide range
of applications. Conversely, the ability to grow clean interfaces between materials
has been a stepping stone for engineering built-in electric fields largely exploited
in modern photovoltaics and opto-electronics. The emergence of atomically thin
semiconductors is now enabling new ways to attain electric fields and unveil novel
charge transport mechanisms. Here, we report the first direct electrical observation
of the inverse charge-funnel effect enabled by deterministic and spatially resolved
strain-induced electric fields in a thin sheet of HfS2. We demonstrate that charges
driven by these spatially varying electric fields in the channel of a phototransistor
lead to a 350 % enhancement in the responsivity. These findings could enable the
informed design of highly efficient photovoltaic cells.
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Introduction

Manipulating the motion of charge carriers by means of an electric field has been a step-

ping stone in a wide range of sectors. From electronic circuits to synapses in neural cells[1],

the electric field control over the dynamics of charges underpins a vast range of comput-

ing, storage, sensing, communication and energy harvesting tasks. For example, built-in

electric fields generated at the interfaces between materials in vertical structures gov-

ern the extraction of photo-generated carriers in several photovoltaic and opto-electronic

applications[2]. Presently, the emergence of atomically thin materials[3] and the devel-

opment of new ways to tailor their electrical and optical properties, for example by local

modification of their composition[4, 5] or structure[6], holds the promise to explore new

implementations of electric fields and unveil novel mechanisms of charge transport which

can boost the efficiency of opto-electronic devices.

The application of strain is one way to engineer electric fields in semiconducting ma-

terials through a varying energy gap. However, common bulk semiconductors can only

sustain strain of the order of ∼ 0.1 − 0.4 % without rupture[7], a value which limits the

range of physical phenomena and applications that can be accessed. On the contrary, lay-

ered semiconductors, such as graphene[8] and transition metal dichalcogenides (TMDs)[9],

are theoretically predicted to be able to sustain record high levels of strain > 25 % [10, 11]

expected to lead to an unprecedented tunability of their energy gap by more than 1 eV[12].

One tantalizing charge transport phenomenon which could be accessible owing to large

values of strain is the funneling of photoexcited charges away from the excitation region

and towards areas where they can be efficiently extracted[13, 14, 15]. Such effect is her-

alded as a gateway for a new generation of photovoltaic devices with efficiencies that could

approach the thermodynamic limit[2, 13].

In general, strain-induced gradients of energy gaps create a force on (neutral) exci-

tons that pushes them towards the regions with the smallest energy gap. In direct gap

semiconductors, this area corresponds to that of maximum tension. Hence, the strain

pattern generated by simply poking a sheet of direct gap TMD would normally funnel the

charges towards the apex of the wrinkle[13, 14, 16, 17]. Consequently, the extraction of

1



the charges for energy harvesting or sensing poses considerable technological challenges

and for this reason the funneling effect has not yet been observed experimentally in elec-

trical transport. On the other hand, the opposite behaviour is theoretically expected in

some indirect gap semiconductors (e.g. HfS2 and HfSe2) and in black-phosphorus, where

the energy gap increases in the regions of tension[12]. This would allow the exploitation

of the so-called inverse charge funnelling[18] whereby a strain pattern generated by pok-

ing a sheet of these materials would push the charges away from the apex of the wrinkle,

making them readily available for energy harvesting or computing purposes to an external

circuit.

In this work, we demonstrate the electrical detection of the inverse charge funnel ef-

fect using a photo-assisted oxidative method to attain deterministic and spatially resolved

electric fields in ultra-thin HfS2. A 350 % increase in the responsivity of strained devices

compared to pristine structures demonstrates the efficient extraction of photogenerated

carriers away from the excitation region. The bias dependence of the photocurrent shows

that the measured signal is due to charge funnelling, enabled by the strain-engineered

gradient of energy gap in the channel. Our complementary study of a wide range of exper-

imental techniques (i.e. spatially resolved absorption and Raman spectroscopy, elemental

analysis and atomic force microscopy), together with analytical theoretical modelling and

density functional theory (DFT) calculations, confirm that band tailoring by strain in

TMDs is a gateway for the observation of novel microscopic charge transport phenomena.

Results and Discussion

Photo-oxidation induced strain in HfS2

In traditional semiconductors such as Si and Ge, strain is typically introduced at the

growth stage by dislocations or elemental composition[19]. These techniques do not easily

allow the creation of complex planar strain patterns, forbidding the development of ultra-

thin charge-funnel devices. These limitations can be overcome by using atomically thin

semiconductors, such as HfS2. In this case, specific strain patterns can potentially be

engineered in the plane of the TMDC by exploiting the lattice mismatch between the

2



semiconductor and its in-situ grown oxide, see Figure 1a. Ab initio DFT calculations

suggest that the [1 1 1] cleavage plane of monoclinic HfO2 has a spatial arrangement of

Hf atoms commensurate to that of the basal plane of HfS2, with an Hf-Hf distance of

3.426 Å. Since the Hf-Hf distance in HfS2 is 3.625 Å, a transition between these two

structures is likely to introduce an average 2.7 % compressive strain in the semiconductor

at the interface with its oxide (see Supplementary Fig. 6). Hence, anchoring the TMD at

the edges, for example by depositing electrical contacts[20], would allow the same amount

of strain to be induced away from the oxidised area in the opposite direction (green

arrows in Figure 1a). Such tensile strain pattern results in the spatial modulation of the

bandgap of HfS2 and therefore the creation of spatially varying electric fields, which are

the key ingredients to observe the inverse charge funnel effect. The magnitude of these

electric fields can be determined from the change in the energy gap with strain. This has

been calculated using DFT and the results, shown in Figure 1b-c, predict an increasing

(decreasing) value of the direct gap (Γ→ Γ) with compressive (tensile) strain whilst the

indirect gap (Γ→ M) behaves the opposite.

To engineer strain-induced electric fields through lattice mismatch we employ a spa-

tially resolved photo-oxidation technique. Upon exposure to a focussed laser (λ = 375 nm,

P = 1 MW cm−2) we find that HfS2 is readily oxidized, becoming invisible to the naked

eyes (see Figure 2a). Surprisingly, topographic atomic force microscopy (AFM) measure-

ments show no ablation of the material in the laser-exposed area while the tapping phase

image clearly reveals a change in its viscoelastic properties (see also Supplementary Notes

2-4 and Supplementary Fig. 2,3). The energy dispersive X-ray microanalysis (EDXMA)

shows the absence of the S peaks (K lines) and the appearance of an O peak (Kα line) in

the laser-irradiated areas. This is in stark contrast to the spectrum of the pristine HfS2

where the expected S peaks are clearly measured and no O peak is resolved (Figure 1b).

No change is observed in the Hf and substrate peaks. Quantitative analysis shows that,

upon laser irradiation, the weight ratio of S decreases from ∼ 20 % to ∼ 1 % of the total,

while the O content increases from ∼ 1 % to ∼ 20 %, indicating the formation of HfO2.

Furthermore, the oxidized area is compatible with the diffraction-limited spot size of our
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laser system (see Supplementary Fig. 1d,e), indicating that a photon-assisted oxidation

process, as opposed to a thermally driven one, is taking place.

The photo-oxidation of 2D semiconductors has recently been shown to depend on

the rate of charge-transfer between the surface of the material and the aqueous oxygen

present in air[21] via the oxygen-water redox couple 2H2O −−⇀↽−− O2(aq) + 4e– + 4H+,

where the O2 binds to a metal site[22]. Adopting the same model and supported by

the EDXMA data, we summarize the oxidation reaction of HfS2 as HfS2(s) + 3O2(aq) +

hν −−→ HfO2(s) + 2SO2(g). Here, the absorption of a photon of energy hν produces

an optical excitation in the HfS2, leaving it in an excited state (HfS2 + hν −−→ HfS2
*)

which provides free carriers that are transferred to the oxygen on the surface, producing

an oxygen radical ion O2
·–(aq) which reacts with the HfS2 (see Supplementary Note 1

for details). The feasibility of the proposed reaction is confirmed by DFT calculations,

which show an energy cost of −11.58 eV per HfS2 molecule (see Supplementary Note 6).

Indeed, a detailed study of the oxidation rate and its dependence on the laser flux and the

initial amount of pristine material confirms that the process is described by the Mercus-

Gerischer theory[21] as expected for photo-oxidation (see Supplementary Equation (4)

and Supplementary Fig. 1b,c).

Theoretically, we expect that a 3 % compressive strain should induce a change by

as much as 30 meV in the bandgap of HfS2 (Figure 1c). Indeed, a measurement of the

absorption coefficient α, in the region close to the laser-written oxide, confirms an energy

gap difference of 30 meV (see Figure 2c, Supplementary Note 5 and Supplementary Fig.

4,5). The absorption coefficient measured in the centre of the oxidised area is close to

zero, showing that the direct absorption edge lies above 2.9 eV, as expected for HfO2.

Raman spectroscopy allows us to map the strain profile induced in a clamped device, as

shown in Figure 2d inset. First-principle studies have shown that the peak corresponding

to the Raman-active A1g phonon mode of HfS2 downshifts (upshifts) with the application

of tensile (compressive) strain[23]. In Figure 2d we plot the frequency of such mode as a

function of position along the length of the device. The experimental frequency of the A1g

mode of pristine multi-layer HfS2 is found to be 336.1±0.01 cm−1 from the measurements
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reported in Supplementary Fig. 1c-d, in good agreement with literature[24]. The deviation

of the measured peak from this value demonstrates the presence of compressive and tensile

strain along the device (green arrows in Figure 2d), compatible with the model proposed

in Figure 1a (the data have been calibrated using the position of two fixed peaks to

compensate for instrumental shifts, as explained in the Methods section).

Photoresponse of strain-engineered HfS2 FETs

Demonstrating the creation of strain gradients using a spatially resolved photo-oxidation

process allows the realisation of novel planar heterointerfaces and energy band tailoring.

Hence, we employed scanning photocurrent microscopy (SPCM) mapping[25, 26] to study

the photoresponse of a strain-engineered HfS2 photodetector in a field effect transistor

(FET) configuration in search of the inverse charge funneling effect. Figure 3a shows the

SPCM maps before and after photo-oxidation of a single spot in the channel of the FET.

We observe an enhancement of the photoresponse close to the laser-oxidised area, where

the responsivity increases by 350 % at low powers and by 200 % at the saturation power

(120 W cm−2), as detailed in Figure 3b (see also Supplementary Note 9 and Supplementary

Fig. 9 for extended data). In order to correlate this observation with the electrical

detection of charge funnelling, we perform SPCM in the device presented in Figure 2d.

Figure 4a schematically depicts the band alignment in such device for an applied bias

Vsd = 0 V, where the changes in the valence band maximum (VBM) and conduction band

minimum (CBm) with strain are taken from Figure 1b for indirect transitions (based on

the data from Raman and absorption spectroscopy). Excited electron-hole pairs, in the

proximity of the strained area, are funnelled towards the electrodes by the built-in energy

gradient, giving an enhanced photoresponse[13, 18]. For Vsd = 0 V, both sides of the

strained junction will give equal contribution. Indeed, we were not able to measure any

photoresponse in absence of a bias, see also Supplementary Fig. 9. The application of a

source-drain bias larger than the difference between the conduction band energy at the

maximum strain point and its value in the unstrained region (V0) is expected to exhibit a

larger photoresponse in regions with maximal energy gradients (see also Supplementary

Fig. 7). This is indeed observed in the SPCM map shown in Figure 4d. Furthermore,
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by reversing the bias it is possible to mirror the profile of the built-in electric field and

consequently reflect the position of the maximum photoresponse, see figures 4c and 4e.

Inverse charge-funneling effect

To fully capture the role of the inverse charge funneling effect on the measured photore-

sponse we develop a one-dimensional analytical model. For simplicity we assume that the

strain gradient induces a built-in potential which decays linearly with the distance from

the strain junction, creating a local built-in electric field E0 (see Supplementary Equation

(11)). By solving the charge continuity equation (see Supplementary Note 10), assuming

the rate of carrier generation to be a delta function at the illumination point x0, we find

that the charge density as a function of position x is given by:

∆n = ∆n0e
− 1

2

(
q

kbT
(Esd±E0)+

√(
q

kbT
(Esd±E0)

)2
+ 4
τD

)
|x−x0|

, (1)

where ∆n0 is the excited carrier density at the injection point, T is the temperature, kb

is the Boltzmann constant, q is the electron charge, τ is the carriers lifetime, D is the

diffusion coefficient and Esd is the electric field due to the applied bias. The plus (minus)

sign applies to the left (right) strain-engineered region, respectively and E0 = 0 outside

those regions. Calculating the current generated by this charge density distribution (see

Supplementary Equation (10) and Supplementary Fig. 10) by scanning the laser along

the channel, we can describe experimentally measured SPCM (see Figure 4f). Although

the strain gradient, and thus the built-in field, should be treated as ∝ 1/x, our simple

assumptions allow the derivation of an analytical result which is still able to reproduce

well the experimental data with τ as the only free fitting parameter. In our case we

find a value of τ ' 10−10 s outside the strain region, which is typical of multi-layer

semiconducting TMDs[27]. In the strain region we find τ ' 10−6 s, which translates in a

carrier diffusion length of L =
√
τD ' 8µm (assuming a mobility of 2.4 cm2V−1s−1)[28].

The observation of a diffusion length which exceeds the extension of the strained region

(2.5µm) is, indeed, a signature of efficient separation and extraction of charges, compatible

with the charge-funnel effect[14]. Future studies of the effects of bandgap engineering on
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the carriers recombination lifetimes could elucidate the physical mechanisms behind this

improvement and may shed light on the role of hot-carriers in such strained devices for

photovoltaic applications. In particular, charge funneling could allow carriers excited

above the bandgap to be extracted before their excess kinetic energy is lost through

cooling, enabling solar cells relying on this phenomena to overcome the Shockley-Queisser

limit and bring their efficiency above 60 % [29]. Furthermore, the spatial modulation of

the semiconductor bandgap could be used to create an effective tandem solar cell able

to absorb a much larger portion of the solar spectrum compared to a single bandgap

device[2], see also discussion in Supplementary Discussion.

Discussion and conclusion

In summary, in this work we report the first experimental observation of the inverse

charge funneling effect, that is a novel microscopic charge transport mechanism enabled

by strain-induced electric fields. By developing a unique technique of photo-oxidation, we

are able to engineer deterministic and spatially resolved strain patterns in ultra-thin films

of HfS2 which in return generate built-in electric fields. Such strain gradient is responsible

for the enhancement of the responsivity of a phototransistor of up to 350 %, which was

attributed to the inverse charge funnel effect. A simple analytical model was derived

to simulate the scanning photocurrent microscopy experiments, which demonstrated the

charge funneling effect and allowed the determination of a long carrier recombination

lifetime of 10−6 s in the strain-engineered region of the device. These results open the route

towards the exploitation of strain-engineered devices for high-efficiency energy harvesting

and sensing applications, with the potential to overcome the intrinsic limitations of current

solar cells by exploiting both hot-carriers extraction and lossless transport, to achieve

efficiencies approaching the thermodynamic limit in photovoltaic devices[2, 29]. The use

of atomically thin materials could open the door to the incorporation of such devices in

emerging wearable electronics technologies[30] and smart buildings[31], creating a new

paradigm in energy harvesting.
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Methods

Sample preparation

Thin flakes of HfS2 were obtained by micro-mechanical exfoliation[32] from commercial

bulk crystal (HQ Graphene) on different substrates. The oxygen free CaF2 substrate

was used in the EDXMA allowing one to probe purely the oxygen peak of the oxidised

HfS2. This same substrate was used for Raman spectroscopy since it only has a well-

defined Raman peak at 322 cm−1. Quartz (525µm thick) substrate was used to perform

the absorption coefficient measurements, due to its constant refractive index across the

scanned energy range. Substrates of heavily doped Si capped with 285 nm of thermally

grown SiO2 were used to fabricate phototransistors using standard electron-beam lithog-

raphy, deposition of Ti/Au (5/50 nm) for the contacts followed by lift-off in Acetone. For

EDXMA analysis the sample was coated with 5 nm of Au and grounded to avoid charging

of the CaF2 substrate. The choice of substrate did not affect the laser-induced oxidation

in terms of morphology, exposure time or incident power.

Atomic force microscopy and energy-dispersive X-ray microanalysis

Atomic force microscope (AFM) topography and phase image were acquired with a Bruker

Innova AFM system, operating in the tapping (or dynamic) mode to avoid damage to

the sample while maintaining a high spatial resolution. The measurements were done

using a highly doped silicon tip acquired from Nanosensors with a nominal resonance

frequency of 330 kHz, and a sharp radius of curvature (< 10 nm). Energy dispersive X-

ray microanalysis (EDXMA) was performed using a Hitachi S-3200N scanning electron

microscope equipped with an Oxford Instruments EDS Model 7021 (detection area 10 mm2

and resolution at 5.9 keV of 138 eV). The accelerating voltage was 10 kV and the total

counts were fixed at 104 for each spectrum. The observed Hf/S weight ratio (∼ 3) in the

pristine area, confirmed the stoichiometry of HfS2, as also reported in the literature[33].

Raman and optical spectroscopy

Raman spectroscopy of ultrathin HfS2 requires great care in order to avoid the photo-

oxidation of the material: low laser intensity, long acquisition time and low background

noise are required. For this reason the Raman spectra presented in this work were acquired
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with a custom-built micro-Raman spectrometer[25]. For very thin flakes we used an

incident power density of 5 kW cm−2 with an acquisition time of 20 s, with no visible

changes in the sample. The same set-up was also used to acquire the transmission and

reflection spectra, in order to measure the absorption coefficient, with an incandescent

bulb and a white LED as light sources. All light sources were thermally controlled to

ensure no thermal drift during measurements.

In order to determine with great accuracy the Raman shift of the A1g mode of HfS2

we calibrated the acquired spectra relying on the presence of two fixed peaks which were

acquired in the same spectrum: the silicon peak (from the substrate) and the spurious

laser-line peak (L) which appear at 520 cm−1 and 316 cm−1, respectively (see Supplemen-

tary Fig. 1b and 2h). Since these two peaks do not belong to the HfS2 they will not

shift with the strain applied to the semiconductor and can be used to correct for instru-

mental shifts of the frequency. The average frequency of the unstrained A1g mode is

336.1± 0.01 cm−1 after averaging 115 spectra (see Supplementary Fig. 1c).

Determination of the absorption coefficient

The absorption coefficient α (λ) is defined as the fraction of the power absorbed per unit

length in the medium, and it is a strong function of the incident wavelength λ. We

used the formulation by Swanepoel[34] to calculate the absorption coefficient of HfS2 and

HfO2[25]. In order to account for the interface between the HfS2 and the substrate we used

the measured reflectance of a thick HfS2, so that we can ignore multiple reflections from

the substrate, to compute the refractive index n of HfS2. We found that n ∼ 2.5 across

the measured range and, thus R2 ∼ 5.6 % (reflectance at air/medium interface). Since

R3 = 5.0 % (air/quartz interface), we assumed R2 = R3 in equation (A3) in reference [34].

The same result can be obtained by computing n from the measured transmittance curve,

using equation (20) in reference [34]. The bandgap of a semiconductor is related to the

absorption coefficient by: α ∝ (hν − Eg)
1/2 for direct allowed transitions[35], therefore

measurement of α close to the absorption edge can be used to extrapolate the value of

the direct bandgap of HfS2.

Photoresponse and scanning photocurrent microscopy measurements
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In our custom made multi-functional opto-electronic set-up, solid-state diode lasers are

used and all the optical components are chosen in order to minimize deviations from

the TEM00 laser mode[25], which has a Gaussian intensity distribution. The lasers spot

diameter and depth of focus are: for λ = 375 nm, ds = 264 nm and ∆z = 158 nm;

for λ = 473 nm, ds = 445 nm and ∆z = 268 nm; for λ = 514 nm, ds = 484 nm and

∆z = 291 nm.

Scanning photocurrent maps were acquired by measuring the photo-generated current

at each laser spot location (λ = 473 nm, P = 150 W cm−2, see Supplementary Note 8 and

Supplementary Fig. 8 for detailed electrical characterization). The electrical signal from

the device was amplified with a DL Model 1211 current preamplifier and measured with

an Ametek Model 7270 DSP Lock-in amplifier. The locking frequency was provided by a

mechanical chopper which modulated the light source. The bias and gate voltages were

provided by a Keithley 2400 SourceMeter.

Band structure calculations

First principles simulations were carried out using the density functional by Perdew,

Burkeand Ernzerhof (PBE)[36], as implemented in the QUANTM ESPRESSO package[37].

The total energy of the system was minimized with respect to coordinates of all atoms and

the cell parameters for the bulk structures and the ground state obtained. For bulk, the

structure was allowed to fully relax using the Broyden-Fletcher-Goldfarb-Shanno (BFGS)

algorithm. A cutoff of 120 Ry and a 3× 3× 3 Monkhorst-Pack k-point set were used for

these calculations. Based upon these total energy calculations, reaction energetics were

calculated (see Supplementary Note 7 and Supplementary Table 1). The reaction was

taken as HfS2(s, 2D) + 3 O2(g) −−→ HfO2(s) + 2 SO2(g), where the energy of the reaction

is calculated from ER = E(HfS2) + 3E(O2) − E(HfO2) − 2E(SO2). The HfO2 structure

was fully relaxed.

Data availability: All data needed to evaluate the conclusions in the paper are

present in the main text and/or the Supplementary Information. Additional data related

to this paper are available from the corresponding authors upon reasonable request.
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Figure 1: Inverse charge funnelling in strained HfS2. (a) Schematic diagram of
the proposed device (see Figure 4 for the actual implementation). Compressive strain is
induced in the centre of a semiconducting HfS2 channel by controlled photo-oxidation.
The compression induces tensile strain away from the HfS2/HfO2 interface, resulting in
the spatial modulation of the bandgap. (b) Ab initio calculations of the valence band
maximum (VBM) and conduction band minimum (CBm) of 1T-HfS2 as a function of
strain in the Γ → Γ (direct gap) and Γ → M (indirect gap) directions. (c) Change
in bandgap as a function of strain in the two directions, with respect to the unstrained
bandgap (relaxed lattice constant a0 = 3.625 Å). Inset: calculated band structure of
1T-HfS2.
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Figure 2: Photo-oxidation and strain engineering in HfS2. (a) AFM topography
with phase contrast ϕ signal superimposed of a representative flake after laser exposure
(green-dashed line). Top-left inset: optical micrograph of the flake before (top) and
after (bottom) laser-assisted oxidation. Bottom-right inset: height (H) and phase signal
along a 5 µm line-cut (black line). Scalebars are 5 µm. (b) EDXMA spectra acquired
in the regions A and B in panel a and quantitative analysis of the chemical elements
(right). (c) Square of the absorption coefficient (α2) of: (A) HfS2 away and (B) close to
the oxidised area and (C) HfO2. Extrapolated direct bandgap: EA

g = 2.785 ± 0.001 eV
and EB

g = 2.815 ± 0.001 eV, ∆Eg = 30 ± 1 meV. Inset: optical micrograph of the flake
where the colour boxes represent the sampling areas (1× 3µm) in which the absorption
spectra where acquired. Spectrum (B) is centred at 1µm from the edge of the oxide area.
Scale bar is 4µm (d) Frequency of the A1g mode of HfS2 as a function of position along
the photo-engineered device shown in the inset (green circle indicates the photo-oxidised
area). The horizontal solid line marks the average frequency of an as-fabricated flake at
336.1 cm−1, tensile (compressive) strain is marked by a down- (up-) shift of this mode
(green arrows). Error bars represent the uncertainty of the Lorentzian fit of the spectra.
Scale bar is 3µm.
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Figure 3: Photo-response of HfS2/HfO2 engineered device. (a) Responsivity before
(blue, <0) and after (red, <) laser-assisted oxidation as a function of incident optical
power. Inset: ratio </<0. (b) SPCM map of the device before (top) and after (bottom)
laser-assisted oxidation. Vsd = −5 V, Vbg = 50 V, λ = 473 nm, P = 150 W cm−2 and
0.5µm step size. Inset: optical micrograph of the device, after laser-assisted oxidation of
a single spot (green dashed circle). Scale bars are 3µm.
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Figure 4: Charge funnel effect in HfS2/HfO2 engineered devices. (a) Schematic
band diagram of a device subject to strain induced by local oxidation, with Vsd = 0 V,
according to the proposed geometry in Figure 1. (b) and (c) Schematic band diagrams
of the device under Vsd > 0 and Vsd < 0, respectively. (d) and (e) SPCM map of the
device under Vsd = ±1 V, respectively. SPCM maps were acquired using λ = 473 nm,
P = 150 W cm−2 at Vbg = +30 V. (f) Normalised photoresponse along the centre of
the channel in the SPCM maps in panels (d) and (e) (dots) and simulated curves (solid
lines) according to Equation (1). Inset: optical micrograph of the measured device and
measurement diagram. Scale bars are 3µm.
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