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Abstract: Optimisation of water distribution system design is a well-established research field, which
has been extremely productive since the end of the 1980s. Its primary focus is to minimise the cost of
a proposed pipe network infrastructure. This paper reviews in a systematic manner articles published
over the past three decades, which are relevant to the design of new water distribution systems, and
the strengthening, expansion and rehabilitation of existing water distribution systems, inclusive of
design timing, parameter uncertainty, water quality, and operational considerations. It identifies
trends and limits in the field, and provides future research directions. Exclusively, this review paper
also contains comprehensive information from over one hundred and twenty publications in a
tabular form, including optimisation model formulations, solution methodologies used, and other
important details.
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1. Introduction

Water distribution systems (WDSs) are one of the major infrastructure assets of the society, with
new systems being continually developed reflecting the population growth, and existing systems being
upgraded and extended due to raising water demands. Designing economically effective WDSs is a
complex task, which involves solving a large number of simultaneous nonlinear network equations,
and at the same time, optimising sizes, locations, and operational statuses of network components such
as pipes, pumps, tanks and valves [1]. This task becomes even more complex when the optimisation
problem involves a larger number of requirements for the designed system to comply with (e.g.,
water quality), includes additional objectives beside a least-cost economic measure (e.g., potential fire
damage) and incorporates more real-life aspects (e.g., uncertainty, staging of construction).

The early research related to the design optimisation of WDSs can be dated from the 1890s to
1950s. It was based on the principle of economic velocity [2–4], which was gradually reviewed and
replaced by establishing the minimum (annual) costs of the system (i.e., least-cost design) [5–7]. Due to
lack of computational technology in that period, those previous studies involved manual calculations
combined with graphical methods, often resulting in practical charts to derive economic pipe diameters.
The development of the optimisation of WDS design, therefore, had been an incremental process over
time and may have appeared to be “only too true that the design of the transmission and distribution
system receives [at that period] little attention in spite of the great sums of money invested in such
installations” [8].

A successive period from the 1960s to 1980s displays a more rapid progression, which was
initiated by the introduction of digital computers to network analysis in 1957 [9]. The introduction of
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computers was subsequently followed by the development of iterative methods [10,11] and simulation
packages [12,13] to solve simultaneous nonlinear network equations, and eventuated in the application
of mathematical deterministic methods to solve WDS design optimisation problems. These methods,
including linear programming (LP) [14], nonlinear programming (NLP) [15,16], and others [17],
typically minimised the design or capital (and operational) costs of the system, which were combined
into one economic measure.

Another significant advancement in the optimisation of WDSs represented an introduction of
stochastic methods using principles of biological evolution [18] and natural genetics [19]. Nonetheless,
it was not until the 1990s when these methods became more popular [20] due to their ability to solve
complex, real-world problems for which deterministic methods incured difficulty or failed to tackle
them at all [21,22], and to also control multiple objectives. The popularity of metaheuristics has resulted
in a dramatic increase in the application [21,23] to optimal design of WDSs, with “the several hundred
research papers written on the subject” by 2001 [24]. Optimisation of WDS design has also progressed
from a cost-driven single-objective framework to multi-objective models, when various objectives that
continually gain importance (e.g., environmental objectives, community objectives reflecting the level
of service provided to customers) can be evaluated on more equal basis [25]. Some of the most recent
developments include the use of an engineered (as opposed to a random) initial population to improve
the algorithm convergence [26], application of online artificial neural networks (ANNs) to replace
network simulations [27], analysis of the algorithm search behaviour [28] in relation to the WDS design
problem features [29], and reduction of the search space [30] to increase computational efficiency.

2. Aim, Scope and Structure of the Paper

This paper aims to provide a comprehensive and systematic review of publications since the
end of the 1980s to nowadays, which are relevant to the optimisation of WDS design, strengthening
(i.e., pipe paralleling), expansion and rehabilitation. The purpose of the review is to enable one’s
speedy familiarisation with the scope of the field, insight in the overwhelming amount of publications
available and realisation of the future research directions. This paper contributes to and goes beyond
the existing review literature for the optimisation of WDS design and rehabilitation [20,21,31–39] by not
only identifying trends and limitations in the field, but also by providing comprehensive information
from over one hundred and twenty publications in a tabular form, including optimisation model
formulations, solution methodologies used, and other important details.

The paper consists of two parts: (i) the main review and (ii) an appendix in a tabular form
(further referred to as the table), each having a different structure and purpose. The main review is
structured according to publications’ design problems and general classification. The design problems
cover application areas, such as new system design, existing system strengthening, expansion and
rehabilitation, and time, uncertainty and performance considerations. The general classification
captures all the main aspects of a design optimisation problem answering the questions: what is
optimised (Section 4.1), how is the problem defined (Section 4.2), how is the problem solved (Section 4.3)
and what is the application (Section 4.4)? The purpose of the main review is to provide the current
status, analysis and synthesis of the current literature, and to suggest future research directions.

A significant portion of this review paper is represented by the table, which refers to over
one hundred and twenty publications in a chronological order. Each paper is classified according
to an optimisation model (i.e., objective functions, constraints, decision variables), water quality
parameter(s), network analysis, optimisation method and test network(s) used. Obtained results
as well as other relevant information are also included. The purpose of the table is to provide a
representative list of publications on the topic detailing comprehensive information, so that it could be
used as a primary reference point to identify one’s papers of interest in a timely manner. Hence, it
presents a unique and integral contribution of this review.

The structure of the paper is as follows:
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• The main review: Design problems (Section 3), General classification of reviewed publications
(Section 4), Future research (Section 5), Summary and conclusion (Section 6), List of terms
(Section 7), List of abbreviations.

• The table: Appendix A.

3. Design Problems

Two types of a design problem have been identified based on the field progression as follows:
(i) a traditional design (i.e., theoretical or static design) of a WDS with a single construction phase
for an entire expected life cycle of the system usually considering fixed loading conditions reflecting
maximum (and other) future demands (Section 3.1); (ii) an advanced design (i.e., real-life or dynamic
design) of a WDS capturing the system modifications and growth (due to the development of the
populated area) over multiple construction phases, including future uncertainties (e.g., in demands,
pipe deterioration) and other performance considerations (Section 3.2).

3.1. Application Areas

3.1.1. New Systems: Design

Critical infrastructure, including water, energy and transport systems, is essential in ensuring
the survival and wellbeing of populations worldwide. Since the ancient Greek civilisations, WDSs
have been an important part of making human settlements sustainable, thus optimising these systems
to meet various requirements has over time gained interest of researchers and practitioners alike.
Generally, optimisation of WDS design involves determining sizes, locations and operational statuses
of network components such as pipes, pumps, tanks and valves, while keeping the system design or
capital (and operational) costs at their minimum. The problem scope is primarily dependent on a type
of a WDS under consideration, which is either a branched or looped and gravity or pumped system.

A network topology, branched or looped, represents a fundamental distinction in the problem
complexity at the network analysis stage due to a way of determining flows in pipes. In branched
networks there is a unique flow distribution calculated directly using nodal demands, while in
looped systems flows can undertake multiple and alternative paths from a source to a customer [40].
This possible variability results in iterative methods being required to solve pipe flows in looped
networks, such as that described in [41].

Regarding gravity WDSs, a basic optimisation model minimises the design cost of the network
subject to the nodal pressure requirements, with pipe sizes or diameters being the only decision
variables [42–48]. Popular test networks used to solve such a problem are the two-loop network [14],
Hanoi network [49] and Balerma irrigation network [50]. As far as pumped WDSs are concerned,
the optimisation problem becomes more complex than in the case of gravity WDSs, because of the
presence of pumps and tanks (see Section 3.1.3), which require selecting not only their sizes and
locations [14,26,51,52], but also their operational statuses [14,29,53,54], as well as often running an
extended period simulation (EPS) for multiple loading conditions. Unlike for gravity WDSs, there
does not seem to be any test network that is frequently used by multiple authors for pumped WDSs.

Regarding test networks, nevertheless, study [26] comments that they are limited, in general,
to simple transmission networks, so-called benchmark systems, excluding local distribution lines.
This exclusion is mainly due to a dramatic increase in the problem dimension, thus computational time,
if local pipes were included. A problem of excluding smaller distribution pipes from the optimisation
is in oversizing the transmission mains, as local distribution networks provide alternative pathways
and display significant capacity to carry when the transmission lines are out of service [26]. The lack of
large and complex test networks has recently been addressed by a number of researchers [55–57] who
developed methodologies for generating synthetic networks of varying sizes and complexity levels.
Furthermore, several real-world networks have been used for the design competitions by international
research teams working in the area of WDS design, including those that are described by [58,59].
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The problem complexity further increases by considering multiple simultaneous objectives.
Initially, single-objective optimisation models were used to formulate WDS design problems, in which
all objectives are combined into one economic (i.e., least-cost) measure (see, for example, [14,51,60–62]).
A multi-objective optimisation approach was possibly first applied in the late 1990s (Figure 1),
maximising the network benefit on one hand and minimising the system cost (of network rehabilitation)
on the other hand [63]. In studies of newly designed WDSs, in addition to the economic
measure, the other objectives considered were the pressure deficit [30,62,64–67] or excess [68,69] at
network nodes, the penalty cost for violating the pressure constraint [70], greenhouse gas (GHG)
emissions [71–76] or emission cost [77], water discolouration risk [68] and water quality [78].
A multi-objective optimisation approach is considered “very appealing for engineers as it provides a
tool to investigate interesting trade-offs”, for example, a marginal pressure deficit can be outweighed
by a considerable cost reduction [67].

Water 2018, 10, x FOR PEER REVIEW  4 of 91 

 

international research teams working in the area of WDS design, including those that are described 
by [58,59]. 

The problem complexity further increases by considering multiple simultaneous objectives. 
Initially, single-objective optimisation models were used to formulate WDS design problems, in 
which all objectives are combined into one economic (i.e., least-cost) measure (see, for example, 
[14,51,60–62]). A multi-objective optimisation approach was possibly first applied in the late 1990s 
(Figure 1), maximising the network benefit on one hand and minimising the system cost (of network 
rehabilitation) on the other hand [63]. In studies of newly designed WDSs, in addition to the economic 
measure, the other objectives considered were the pressure deficit [30,62,64–67] or excess [68,69] at 
network nodes, the penalty cost for violating the pressure constraint [70], greenhouse gas (GHG) 
emissions [71–76] or emission cost [77], water discolouration risk [68] and water quality [78]. A multi-
objective optimisation approach is considered “very appealing for engineers as it provides a tool to 
investigate interesting trade-offs”, for example, a marginal pressure deficit can be outweighed by a 
considerable cost reduction [67]. 

 
Figure 1. Papers (from the appendix table) by year and optimisation approach. 

The single-objective approach benefits from being able to identify one best solution, which is 
then easy to analyse and implement. Multi-objective methods, on the other hand, result in a set of 
tradeoff (Pareto, non-dominated) solutions, which requires an additional step to select only one or a 
limited number of the promising solutions. Choosing such a reduced number of solutions from a 
potentially large (or even infinite) non-dominated set is likely to be difficult for any decision maker. 
This task makes the multi-objective approach less desirable as there is often a requirement to make a 
clear decision to be implemented. The research question resulting from this challenge is how to select 
the best solution(s) from the Pareto set, which may involve providing the decision makers with a 
practical and representative subset of the non-dominated set that is sufficiently small to be tractable 
[22]. For example, study [79] introduced game-theoretic bargaining models to take into account 
conflicting requirements and managed to reduce the solution sets to a reasonable size. Further 
investigation of the methodologies for identifying a handful of useful solutions, such as those where 
a small improvement in one objective would lead to a large deterioration in at least one other 
objective, is thus warranted. In addition to game-theoretic models, the approaches that are based on 
identifying ‘knees’ of the Pareto front or expected marginal utility, maximum convex bulge/distance 
from hyperplane, hypervolume contribution and local curvature [80] are all promising methods that 
require a thorough analysis on WDS problems. 

Figure 1. Papers (from Appendix A Table A1) by year and optimisation approach.

The single-objective approach benefits from being able to identify one best solution, which is
then easy to analyse and implement. Multi-objective methods, on the other hand, result in a set of
tradeoff (Pareto, non-dominated) solutions, which requires an additional step to select only one or
a limited number of the promising solutions. Choosing such a reduced number of solutions from a
potentially large (or even infinite) non-dominated set is likely to be difficult for any decision maker.
This task makes the multi-objective approach less desirable as there is often a requirement to make
a clear decision to be implemented. The research question resulting from this challenge is how to
select the best solution(s) from the Pareto set, which may involve providing the decision makers with a
practical and representative subset of the non-dominated set that is sufficiently small to be tractable [22].
For example, study [79] introduced game-theoretic bargaining models to take into account conflicting
requirements and managed to reduce the solution sets to a reasonable size. Further investigation of the
methodologies for identifying a handful of useful solutions, such as those where a small improvement
in one objective would lead to a large deterioration in at least one other objective, is thus warranted.
In addition to game-theoretic models, the approaches that are based on identifying ‘knees’ of the Pareto
front or expected marginal utility, maximum convex bulge/distance from hyperplane, hypervolume
contribution and local curvature [80] are all promising methods that require a thorough analysis on
WDS problems.
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3.1.2. Existing Systems

As a consequence of the development/growth and population density increase within urban
areas, existing WDSs require to be upgraded to satisfy raising water demands. These upgrades
involve system strengthening (i.e., pipe paralleling), rehabilitation (e.g., pipe cleaning and relining)
and expansion. Even though these processes often take place within one WDS thus some of the
research articles fall under all system strengthening, rehabilitation and expansion, they are divided
into separate subsections in order to provide a systematic overview.

Strengthening

System strengthening represents a reinforcement of an existing WDS to meet future demands,
through lying duplicated pipes in parallel to the existing water mains. It is also sometimes referred
to as parallel network expansion [42] or pipe paralleling. The main objective and decision variables
are, similar to the design of new WDSs, the minimisation of the design (or capital) cost and pipe
diameters of duplicated pipes, respectively. Publically available test networks involving purely
system strengthening include the New York City tunnels [81] and EXNET [82]. In addition, there are
test networks considering system strengthening together with other design strategies (e.g., system
expansion, rehabilitation), which include the 14-pipe network with two supply sources [20,83] and
Anytown network [84]. Of those publically available test networks, the most frequently applied is the
New York City tunnels, which was often the only network used to test the proposed methodology.
These studies used genetic algorithm (GA) [85,86], combined with ANNs [87], fast messy GA
(fmGA) [88] and non-dominated sorting genetic algorithm II (NSGA-II) [89] as a solution algorithm.

The complexity of an optimisation problem involving exclusively system strengthening as a design
strategy can be substantially increased by incorporating water quality considerations. Such applications
include, apart from pipe sizes as decision variables, also water quality decision variables that can be in a
form of disinfectant (i.e., chlorine) dosage rates [27,87]. In order to reduce computational effort of those
problems, ANNs were implemented to replace network simulations to a large extent. Further increase
in the complexity presents the use of a multi-objective approach, with additional objectives being
system robustness [89] (uncertainty and system robustness are contained in Section 3.2.3), the pressure
deficit at network nodes [62,65], and the number of demand nodes with pressure deficit [65,90].
In those studies, a conflicting relationship was identified between the economic (i.e., least-cost)
objective and pressure deficit/the number of nodes with pressure deficit. Based on such information,
the decision maker is able to “quantitatively evaluate the cost of pressure constraints attenuation
which implies a reduction in the system service to its consumers.” Optimisation methods used in those
studies were NSGA-II [65,89,90], strength Pareto evolutionary algorithm 2 (SPEA2) [65] and cross
entropy (CE) [62].

Rehabilitation

Due to aging water infrastructure, which causes a decreased level of service in terms of water
quantity as well as quality for customers, increased operation costs and leakage, pipe breaks and
other issues, existing WDSs require rehabilitation in a timely manner. Large investments are and
will be needed in the future to rehabilitate ever deteriorating pipe networks [91] reaching the end of
their lifecycle. Network rehabilitation consists of the replacement of pipes with the same or larger
diameter, cleaning, or cleaning and lining of existing pipes; with the main objective to minimise the
pipe rehabilitation cost. Within an optimisation model, pipe replacement options can be represented
by binary [17] or integer [92] decision variables to identify the pipes selected for replacement, and
continuous [17] or integer [92] diameters, respectively, of the replaced pipes. Pipe rehabilitation
options are often binary decision variables (i.e., 1 = cleaning/lining, 0 = no action) [17,93]. If a pipe
is not scheduled for rehabilitation, it is expected to be subject of break repair over a longer planning
horizon. Hence, study [17] added the expected pipe repair costs to the rehabilitation cost of the
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network. Because a network rehabilitation strategy also has a direct impact on pump operating costs
and GHG emissions due to pumping (i.e., they are reduced with an increased quantity of rehabilitated
pipes) [94], pump energy costs have been added to the total least-cost objective [17,95].

Some studies consider only a single economic objective to formulate a network rehabilitation
problem [17], while other investigations apply a multi-objective optimisation framework in order to
incorporate measures affecting the level of service provided to customers (i.e., ‘community objectives’).
Accordingly, additional objectives considered, beside the economic measure, include the network
benefit [63], pressure violations at network nodes [68,95], velocity violations in pipes [95] causing
potential sedimentation problems and subsequent water discolouration, water quality (i.e., disinfectant)
deficiencies at network nodes [92], and potential fire damage expressed as lack of available fire
flows [92]. To generate multi-objective optimal solutions, those studies use mainly metaheuristics or
hyperheuristics, such as structured messy GA (SMGA) [63], NSGA-II [95], non-dominated sorting
evolution strategy (NSES) [92], and evolution strategy (ES)/SPEA2 in a hyperheuristic framework
with evolved mutation operators [68]. The resulting Pareto fronts can then serve decision makers in
selecting a rehabilitation strategy that balances community objectives with a capital expenditure.

Note that publications included in this section belong to the category of static design, which
involves a single network rehabilitation intervention for a near planning period, designed based on
the current network status. Publications, which are concerned with staged rehabilitation interventions
involving their timing over an extended planning horizon, are reviewed in Section 3.2.1.

Expansion

An expansion of a WDS means developing or expanding the existing system beyond its
current boundary, with the main objective to minimise the total design (or capital) and operation
cost. System expansion can be thought of as the following two interdependent design problems:
(i) developing a new network that is connected to the existing one, and simultaneously (ii)
strengthening, rehabilitating and upgrading the existing system in order to convey increased water
demands. Hence, system expansion is the most complex WDS design problem as it can ultimately
contain all aspects of designing new as well as existing systems. A typical example of the optimal
network expansion is the Anytown network problem [84]. Essentially, the objective is to determine
least-cost design and operation, using locations and sizes of new pipes (including duplicated pipes),
pumps and tanks, as well as pipe rehabilitation options (i.e., cleaning and lining) as decision variables.
Such extensive problems are often solved by combining a power of optimisation algorithms with
“manual calculations and a good deal of engineering judgement” [84].

Although some studies solved the Anytown network problem as initially formulated [84], for
example, study [83] by enumeration and [96] using GA, others included new aspects to the (original
or modified) problem. Those aspects represent, for example, water quality [97] inclusive of the
construction and operation costs of treatment facilities [53], new tank sizing approach (further
discussed in Section 3.1.3) [93,98], and additional objectives, such as the network benefit incorporating
multiple system performance criteria [93,99] or the hydraulic failure, fire flow deficit, leakage and water
age with visual analytics used to explore the tradeoffs between numerous objectives [97]. These studies
used SMGA [99], GA [53,93], and ε-NSGA-II [97] to solve the problem. Study [93] combined GA with
fuzzy reasoning, where system performance criteria are individually assessed by fuzzy membership
functions and combined using fuzzy aggregation operators.

An example of large system expansion represents the battle of the water networks II (BWN-II)
optimisation problem, which involves the addition of new and parallel pipes, storage, operational
controls for pumps and valves, and sizing of backup power supply, and includes the capital
and operational costs, water quality, reliability and environmental considerations as performance
measures [58]. This problem was solved by multiple authors within the Water Distribution Systems
Analysis (WDSA) conference series [58]. Another example of large and real-world system expansion
is presented in [100]. Apart from the decision variables for the BWN-II, it also includes selections
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of pipe routes, expansions of water treatment plants (WTPs) and configurations of pressure zones.
The common approach that is applied to solve both of those optimisation problems was the use of
engineering judgement, which led to a reduction in the number and type of decision variables. In the
case of the study of [100], some eliminated variables were included in separate optimisation problems.
Study [58] demonstrates that “different combinations of engineering experience, computational power
and problem formulation can give similar results”.

Despite the advances in optimisation methods developed for new system design, rehabilitation
and/or expansion of WDS, most notably over the last three decades, the large, complex systems
still represent a significant challenge to solve using a fully automated optimisation procedure.
There are several reasons for that, including: (i) complexity resulting from a mixed-discrete, nonlinear
optimisation problem with often conflicting and difficult to assess objectives and performance
measures; (ii) the large network sizes normally encountered in practice, which translates into large
search spaces where a global optimum is almost impossible to find; (iii) the so called No-Free-Lunch
theorem [101], which says that not all of the optimisers are well suited to solving all problems,
in other words, slow convergence of general population-based optimisation methodologies that
do not utilise some form of traditional engineering experience/heuristics; and (iv) the lack of
computational efficiency of network simulators required by modern population-based optimisation
methods. A number of approaches have been developed to deal with these challenges, mainly aimed
at increasing the computational efficiency of the optimisation process. Those improvements often
include the division of a design problem into multiple phases [58] that can be solved separately,
the involvement of engineering expertise and manual interventions [59] to reduce the search space, or
the use of surrogate and meta-modelling to speed up the simulation process [27]. The work that is still
needed in the WDS design optimisation area is to understand the link between the performance of an
algorithm (and its operators) and certain topological features of a WDS (e.g., existence of pumps/tanks,
loops), as indicated in [29].

3.1.3. Problem Elements

Pipes

Unlike other network elements (e.g., pumps, tanks, valves), pipes are always included in the
optimisation of WDS design, as the basic model is to determine such pipe sizes (or diameters)
for which the design cost of the network is minimal, subject to the nodal pressure requirement.
Even though pipe decision variables are incorporated in every optimisation model, they do not
seem to have been unified. Assuming a given layout of the pipe network, there are two types of a
decision variable, pipe sizes/diameters, and pipe segment lengths of a constant (known) diameter.
Pipe sizes/diameters are discrete by nature of the problem, because they are to be selected from a
set of commercially available sizes, however both discrete and continuous values are used mainly
depending on the optimisation method. Discrete sizes are used mostly for stochastic algorithms (i.e.,
metaheuristics) [42,70,85,88,102–109], whereas continuous sizes for deterministic methods [16,110,111].
In regards to continuous sizes, the final solution can be modified by splitting a link into two pipes of
closest upper- and lower-sized commercially available discrete diameter [16].

WDS design optimisation problems, which use pipe sizes/diameters as decision variables, can be
referred to as a single-pipe design [112,113], while problems with pipe segment lengths of a constant
(known) diameter as a split-pipe design [112,113]. Pipe segment lengths of a constant (known) diameter
are predominantly used in conjunction with deterministic algorithms [14,114,115] or hybrid methods
(i.e., combined deterministic and stochastic methods) [113,116,117]. Single-pipe design with discrete
decision variables can provide, compared to split-pipe design and continuous diameters solutions,
high quality [102], or good quality results without unnecessary restrictions imposed by split-pipe
design [42]. Even if only pipe diameters are optimised, the design of WDS is a complex problem that
requires a careful selection of decision variables as to minimise the search space. The choice between
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direct representation of discrete pipe diameters and split-pipe solutions has largely been resolved in
favour of the former, but further improvements in decision variable coding might be possible.

In cases of an unspecified network layout (e.g., when designing a new or extending an existing
WDS), additional decision variables are required in order to determine or select pipe routes [52,100].
These variables can be formulated, for example, as binary selecting a link which should be included
into the pipe route [52]. Pipe routes can also be considered when strengthening an existing WDS, as
“parallel pipes do not necessarily have to be laid in the same street”, they “may be laid in a parallel
street or right-of-way that may not have existed at previous construction times” [118]. Another possible
type of a pipe decision variable are pipe closures/openings to adjust a pressure zone boundary within
a WDS [100].

Pumps

There are two main aspects of including pumps into the optimisation of WDS design. First,
the pump design or capital cost and second, the pump operating cost due to electricity consumption.
Typically, electricity consumption is one of the largest marginal costs for water utilities, with the price
of electricity rising globally making it a dominant cost in managing WDSs. Therefore, “the presence
of pumps requires that both the design and the operation of the network should be considered in
the optimisation” [99]. Accordingly, the minimisation of the pump design or capital cost as well
as the pump operating cost to achieve minimal amount of electricity consumed by pumps ought
to be included in an optimisation model. Pump operating cost is usually calculated on annual
basis using the typical daily demand patterns (i.e., EPS), but a longer period can be considered
depending on the planning horizon of a case study, for example, 20 years [17,119], 100 years [72,76,77].
Because this cost occurs at different times in the future, its present value is required to be included in
the objective function. This conversion of future economic effects into the current time is undertaken
via a present value analysis (PVA), described in detail in [71,72,77], using zero, constant or time varying
discount rates.

In the model, pumps are controlled by three types of a decision variable. Firstly, a pump location,
which are used when designing a new or extending and upgrading an existing WDS. Possible options
to consider are, for example, to predetermine a limited number of potential pump locations [93,120], to
evaluate network nodes as potential pump locations (yes/no) via binary variables [52] or to upgrade the
current pump stations where new pumps are to be installed in parallel to existing ones [99]. Secondly, a
pump size, which can be included as a pump capacity [14,121], pump type [75,76], pumping power [17],
pump head/height [52,122], pump operation curve/head-flow [93] or pump size in a combination
with the number of pumps [26]. Thirdly, a pump schedule, which describes when the pump is on
and off during a scheduling period (e.g., 24 h). It can be specified by a pumping power [53,54] or
pump head [123] at each time step, the number of pumps in operation during 24 h [97], binary pump
statuses [29], continuous options representing on/off times with a limit imposed on the number of
pump switches [76], discrete options representing the time at which a pump is turned on/off using a
predefined time step (e.g., 30 min) [75]. All of these decisions impact on the size of the search space and
eventually on the computational efficiency of the optimisation algorithm used. A comparative study
of various approaches would be useful to help determine what their advantages and disadvantages
are and which one to use for a particular situation.

In terms of the model objectives, the pump design or capital and/or operating costs were
mostly incorporated together with the costs of other network elements (e.g., pipes, tanks, valves)
into one economic function (see, for example, [17,26,51,60,93,95,96,119]). Although a few studies,
which considered the design and operating costs as part of separate objectives (e.g., [124]), reported
on their conflicting tradeoff, this relationship was not confirmed for a higher-dimensional space
when required to balance numerous objectives [97]. Additionally, the pump maintenance cost (see,
for example, [61,62,121]) as well as the pump replacement and refurbishment cost [71,72,77] were
accounted for. More recently, GHG emission cost or GHG emissions due to the electricity that is
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consumed by pumps [71–77] were introduced as an environmental objective. Similar to the pump
operating cost, a PVA can be used for the pump maintenance, replacement and refurbishment costs,
as well as GHG emissions/cost. Even though there is a significant tradeoff between economic and
environmental objectives (i.e., GHG emissions decrease with the increasing costs and vice versa), GHG
emissions can be considerably reduced by a reasonable increase in the costs [71,72]. Additional results
indicate that the price of carbon has no effect on the tradeoff [77], whereas the discount rates do [72],
the use of variable speed pumps (VSPs) (rather than fixed speed pumps (FSPs)) leads to significant
savings in both total costs and GHG emissions [74].

The mixed-integer nature of pumps as decision variables and their often significant impact in
terms of hydraulic behaviour of the entire system, makes them a difficult element to include and
control its impact during an optimisation run. Furthermore, the increased complexity of modelling
VSPs and their incorporation into the optimisation problem pose another difficulty that has to be
tackled by modern optimisation algorithms. Finally, the formulation of various objectives, including
maintenance requirements (i.e., often surrogated by the number of times a pump is switched on
during the optimisation period), represents another challenge for including pumps into overall WDS
design studies.

Tanks

In spite of having a valuable role in WDSs contributing to their reliability and efficiency [125],
storage tanks (further in the text referred simply to as tanks) are not often included in WDS design
optimisation problems. Several types of a decision variable have been used in the literature to control
tanks in the model, and a few objectives (or objective functions) have been developed to mainly evaluate
tank performance. However, the use of those variables as well as objectives seems to vary across
studies with no general framework on how to model tanks available. As far as decision variables are
concerned, they include tank locations [71,72,96–99,120], tank volumes [16,53,93,96,98,99], minimum
(and maximum) operational levels [93,96,98,99], tank heads [78], tank elevations [14], ratio between
diameter and height [98], ratio between emergency volume and total volume [98]. Study [99] compared
two approaches to model tanks in terms of operational levels, first of which calculates tank levels
analytically during the network analysis, and second of which includes tank levels as independent
variables. Although they yielded similar results, the former approach obtained more robust solutions.

In regard to objectives, the most frequently used account for the tank design or capital cost,
which is normally part of the total system costs (i.e., pipes, pumps, etc.) [16,53,76,93,96–99,120].
Furthermore, additional objectives have been introduced evaluating, along with others, the tank
performance. These objectives are the network benefit, including storage capacity difference [99],
safety and operational volume capacities, and the filling capacity of the tank [93], and system hydraulic
failure including tank failure index [97]. A positive relationship was identified between the total cost
of the system and network benefit [93,99], whereas a negative relationship exists between the cost and
failure index [97]. The effect of changing the tank balancing volume, so called tank reserve size (TRS),
on the minimisation of system cost and GHG emissions was also investigated [76]. It was identified
that a larger TRS could assist in reducing GHG emissions with no additional cost by modifying
pumping schedules.

In addition to pumps, the presence or absence of a tank can also play a significant role in changing
hydraulic behaviour of a WDS. This presents a large challenge for any optimisation approach as it
creates a discontinuity (i.e., a large change in behaviour with or without a tank at a particular location),
which has to be properly managed by the algorithm. Additionally, the setup of the tank (i.e., the link to
the system, overflow valve operation, consideration of upper/lower level limits) within a simulation
model can also play a significant role in the efficiency of the optimisation run.
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Valves

The inclusion of valves in WDS design optimisation problems appears to be rather sporadic
and descriptions related to their implementation are often very brief with not many details provided.
Studies [14,26] accounted for valves in the overall costs of the system, based on optimal valve locations.
The optimisation of a real-life scale WDS incorporating not only transmission pipelines, but also local
distribution pipelines, concluded that optimal valve locations are to be affected by the presence of local
lines which “provide alternative pathways when the main lines are out of service” [26]. As shutdown
of valves used to isolate a portion of the WDS during an emergency (e.g., pipe break or a water
quality incident) creates a change in hydraulic behaviour, the valve numbers and locations play part in
the overall system design, particularly when the reliability or resilience of the system is considered.
For example, study [126] presented a methodology for optimal system design accounting for valve
shutdowns. Another application of valves is using their settings to influence the pressure distribution
in the network (via pressure reducing valves (PRVs)) [16], or to determine timing of flows and flow
rate values (either via flow control valves (FCVs) or PRVs) [127].

Valves were also used to incorporate a simpler model of VSPs into the multi-objective optimisation
of WDS design including total economic cost of the system (i.e., design and operation) and GHG
emissions [74]. In such an application, a pump power estimation method uses a FCV combined with
an upstream reservoir to represent a pump in the system, with the aim to maintain the flows via the
FCV into the downstream tanks as close as possible to the required flows. Hence, the determination
of the most appropriate FCV setting for calculating pump power is formulated as a single-objective
minimisation problem that is subject to multiple flow constraints, which is implemented within a
multi-objective GA (MOGA) framework [74].

A combined design of the isolating valve system and the pipe network presents a considerable
challenge to optimisation methods. Not only that the number of decisions increases exponentially
with the addition of valves, but also the consequences of various valve system designs can only
be evaluated by investigating a large number of (probabilistic) scenarios making the whole process
computationally inefficient. Furthermore, the location and status of isolating valves can form decision
variables also when a WDS is to be divided into manageable subsystems. This is the case with the
so-called district metering areas (DMAs), which have been first implemented in the UK primarily
for leakage management purposes [128]. Due to the fact that the DMA optimal design is normally
performed after a system has been constructed, this problem was deemed beyond the scope of this
review paper.

3.2. Time, Uncertainty and Performance Considerations

3.2.1. Staged Design

A staged design represents an optimisation of a WDS over a long planning horizon divided
into several construction phases, without considering future uncertainties (e.g., in demands, pipe
deterioration). In other words, it is a deterministic dynamic design either over several prefixed time
intervals or with timing decisions (i.e., year of action execution). The planning horizon can spread
across a number of years to an expected life cycle of the system.

Initial work in the staged design is related to the development of multiquality water resources
systems using a single-objective approach, which minimised the costs of water allocation, facilities
expansion, water transportation, and losses caused by insufficient supply [129]. It was formulated as
a LP optimisation problem, into which nonlinear water quality equations were incorporated using
a successive linear approximation iterative scheme. An advantage of using a staged design was
demonstrated by realising linkages between certain management processes and variables, and a
particular planning period (prefixed time interval).

Concerning WDSs, the staged design is often applied to rehabilitate an existing system
as this problem inherently involves the timing of ongoing works over an extended planning
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horizon. Both single- and multi-objective optimisation models were proposed to solve such
problems. Single-objective models included beside the network rehabilitation [130], also network
strengthening [131] and expansion [124,132] combined into one least-cost objective, while
multi-objective models incorporated the network benefit [131] or the system operating costs [124,132] as
additional objectives. Optimisation methods used were GA [130], SMGA [131] and NSGA-II [124,132].
As opposed to the study of [129], these models do not define prefixed time intervals, but include timing
decision variables to schedule works, also referred to as event-based coding [124,132]. This coding
dramatically reduces the search space, thus the computing and memory requirements, because it
eliminates unnecessary zero values of a traditional coding based on a time-interval (e.g., yearly)
basis [124]. A further search space reduction can be achieved by so called limited pipe representation
introduced by [130], which involves placing an upper bound on the number of pipes considered
for rehabilitation. These reductions in the search space and computing requirements are especially
important for large size WDSs.

Moreover, the staged design was applied to extend and strengthen existing wastewater, recycled
and drinking water systems applying an integrated optimisation scheme within a single-objective
framework using GA [127], and to plan a new WDS considering two objectives, the construction
costs and network reliability, using NSGA-II [118]. Both of these studies used prefixed time
intervals to schedule the construction. In addition, study [118] analysed the effect of the scheduled
construction on the network design using a set of scenarios reflecting different lengths of planning
horizons (25–100 years), time intervals (25–100 years) and the number of construction phases (1–4).
Both studies [118,127] confirmed that for long planning horizons, the staged design is cost effective.
The system upgrades guarantee a predefined reliability and there is always opportunity to modify
or redesign subsequent upgrades at the later stage, based on new up-to-date predictions of potential
future development [118].

By introducing staged design to WDSs, it is obvious that the search space increases almost
exponentially to accommodate decisions at various times in the planning horizon. This is one of the
key challenges for deterministic staged design, as computational efficiency of optimisation algorithms
plays even more significant role than with static design. Another difficulty for achieving the optimised
staged design is that even if an optimal solution can be found for each of the intermediate time steps, the
algorithm has to ensure that contiguity among the staged decision is maintained, i.e., that the decisions
selected in the previous stages are retained in the subsequent ones. An approach by [133] presents
one way of obtaining that contiguity of decisions, starting from the solution at one extreme of the
Pareto front. However, this issue is still an under-researched area, which requires more investigation.
All of the above challenges apply even when the future is assumed to be perfectly known, which is
unfortunately not the case.

3.2.2. Flexible Design

A flexible design represents one of the most recent developments in the design optimisation
of WDSs. Similar to a staged design, a flexible design represents an optimisation of a WDS over a
long planning horizon divided into several construction phases, but with the consideration of future
uncertainties (e.g., in demands, pipe deterioration, urban expansion scenarios). Specifically, it is a
probabilistic dynamic design over several prefixed time intervals and with the planning horizon
ranging from a number of years to an expected life cycle of the system. Such a design allows for flexible
and adaptive planning, which is favoured by water organisations that are often encouraged to include
risk and uncertainty in their long term plans.

Uncertainties included in the flexible design are related to future demands [122,134–136] and
future network expansions [137]. They are implemented using either a probabilistic demand
assessment [135] or scenario-based approach via demand/expansion scenarios [122,134,136,137].
A decision tree has been introduced to combine the uncertain demands and intervention measures
into optional decision paths [135]. Analogously, studies [122,137] have proposed the use of real options
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(ROs) approach, which is also based on decision trees that reflect future uncertainties. In ROs approach,
a decision tree is formed by independent decision paths with assigned probabilities to each of the
scenarios. This approach enables flexibility to be incorporated into the decision making process and to
subsequently change the investment plan based on new circumstances [122].

The majority of the above studies apply multi-objective optimisation approach, including, besides
an economic (least-cost) objective, the system resilience [135], reliability [136] or total pressure
violations [137] as another objective. Stochastic optimisation algorithms, such as NSGA-II [135,136],
simulated annealing (SA), and multi-objective SA [122,137] have been employed to solve flexible
design problems, except for [134] who applied integer LP (ILP) combined with preprocessing methods
to reduce the dimensionality of the problem. These preprocessing methods included separating
the (branched) network into subnetworks, reducing the number of decision variables (e.g., velocity
constraints were used to eliminate unsuitable pipe diameters) and solving each subnetwork separately.
As a consequence, the quality of the solution was improved and the proposed methodology [134] can
be applied to large size WDSs.

While comparing to a traditional deterministic design, the results indicate that a flexible design
has a higher initial cost (i.e., in the first construction phases) [122,136], which enables the system to
adapt to various future conditions. However, it outperforms a traditional design in terms of the total
cost over the entire planning horizon [122,135].

The application of flexible optimisation methodologies in WDS design that consider long-term
uncertainty and management options, is yet to be explored to a larger extent in the literature. One of
the key reasons is that it is not clear how various types of uncertainties, i.e., stochastic vs. deep
uncertainty or aleatoric vs. epistemic uncertainty, are best represented in the optimisation process.
The other possible reason is that the flexible design incurs additional computational costs that affects
the overall computational efficiency of the optimisation algorithm. However, as the planning and
design exercises are done sporadically, the additional computational burden and costs are often
justified. Future uncertainties that might have an impact on WDS design, including climate change,
population movements and economic development, make flexible design probably the most promising
area of research over the next few decades.

3.2.3. Resilient, Reliable and Robust Design

System resilience, reliability and robustness present performance characteristics of a WDS in
relation to current and most importantly future uncertain conditions. Although there is no universally
agreed definition of any of these measures, the resilience can be defined in broadest terms as the ability
of a WDS to adapt to or recover from a significant disturbance, which can be internal (e.g., pipe failure)
or external (e.g., natural disaster) (adapted from [138]). Similarly, the reliability can be defined as the
ability of a WDS to provide expected service, and can be expressed as the probability that the system
will be in service over a specific period of time (adapted from [139]). The robustness represents the
ability of a WDS to maintain its functionality under all circumstances (adapted from [138]), or over
everyday fluctuations that have the potential to cause low to moderate (i.e., not catastrophic) loss of
performance [89].

A robust design problem of a WDS is primarily concerned with uncertainties in model parameters.
These uncertainties are related mainly to future demands [89,110,121,123,140,141], but can also
consider pipe roughnesses [89,110,140,141], minimum nodal pressure requirements [110], network
expansions [137] and others [142]. Study [89] states that “neglecting uncertainty in the design process
may lead to serious underdesign of water distribution networks”.

Several approaches have been proposed in the literature to formulate a robust design problem
for WDSs. Firstly, a redundant design approach which adds redundancy to the system to account
for the uncertain parameters by assuming that those parameters are larger than expected [140].
Secondly, an integration approach where uncertainties are incorporated into the model formulation
via either objective function [89] or constraints [140] sometimes referred to as a chance-constrained
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model [110]. Both of those approaches assume a probabilistic distribution of uncertain parameters and
convert an original stochastic optimisation problem into a deterministic one. Thirdly, a two-phase
optimisation approach that initially solves an optimisation problem with deterministic parameters
(i.e., no uncertainties), and subsequently uses those obtained solutions as an initial population
for a stochastic problem where future demands and pipe roughnesses are considered uncertain
variables following a probability density function [141]. Fourthly, a scenario-based approach where
the uncertainty is implemented via a set of scenarios, each assigned a probability [121]. Lastly and
most recently, a robust counterpart (RC) approach which is non-probabilistic and incorporates the
uncertainty through an ellipsoidal uncertainty set constructed according to the user-defined protection
level [123].

Despite a number of approaches to incorporate robustness into the design of WDSs, the measure
has been defined fairly well and consistently in the literature, and consequently it has been used in
optimisation studies. This may be due to the advances in robust optimisation in other fields and/or
due to the focus on non-catastrophic loss of performance that is associated with robust operation.
However, the other two measures, reliability and most notably resilience, have not been defined
consistently in the WDS literature or have been considered seriously only fairly recently. Therefore,
this section focuses on robust design of WDSs, with resilience and reliability being outside of the
scope of this review paper. This also indicates that future research efforts could be directed toward a
consistent and agreed definition of reliability and resilience, with optimisation methods being capable
of solving WDS design considering them as objectives/performance measures.

Robust design optimisation problems are mainly solved using stochastic methods, such as
GA [140], NSGA-II [89,121], optimised multi-objective GA (OPTIMOGA) [141], PSO [142] and CE [123],
except for [110], who solves it as a NLP problem.

3.2.4. Design for Water Quality

In the literature, water quality is incorporated into the WDS design optimisation problems in
various ways concerning both an optimisation model and water quality measure used. In terms
of optimisation models, single-objective as well as multi-objective exist which include water
quality considerations. In the former, water quality related expenditures, such as the cost of
disinfection [27,120], cost of water treatment [53] or cost of losses incurred by insufficient quality [129],
are combined with the system design/capital (and operation) costs into one objective. Alternatively,
water quality is included as a constraint to a single-objective model in a form of minimum (and
maximum) disinfectant concentrations at the network nodes [87,143]. In the latter, water quality
presents a sole objective, which is either water quality benefit (being maximised) [63,131], water
quality deficiencies (being minimised) [92,97,144] or water quality reliability (being maximised) [78].
Regardless of an optimisation model used, study [120] highlighted an importance of incorporating
water quality considerations with system design and operation in one optimisation framework,
which enables promoting water quality in the design stage, rather than leaving potential water quality
issues to be resolved during the system’s operational phase. Indeed, study [78] reports a significant
tradeoff between water quality objective based on disinfectant residual and the system capital costs (i.e.,
the best quality solutions correspond to higher costs and vice versa), and demonstrates the sensitivity
of the obtained solutions to a disinfectant dosage rate. Interestingly, there was not tradeoff found
between water quality objective based on water age and the cost.

Regarding the water quality measure, it is dependent on the system specifics, its requirements,
and also the optimisation model advancements progressively implementing water quality objectives
useful to system operators. Basic water quality parameters that are used in optimisation models
of drinking WDSs are chlorine [27,87,120,143] and chloramine [120], modelled as non-conservative
applying first order decay kinetics, adjusted by a higher decay rate in parts of the system when
needed [120]. In contrast, conservative water quality parameters are typically important for regional
multiquality WDSs. These parameters are either specified within an optimisation model, such as
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salinity [129] or unspecified being modelled in conjunction with the operation of treatment facilities [53].
In multi-objective optimisation models, both specific parameters and surrogate measures are used to
quantify water quality objectives. Water quality benefit is expressed as a function of the length
of renewed and/or lined old pipes, as aged pipes are considered to cause the development of
microorganisms and water discolouration [63,131]. Water quality deficiencies can be represented
by a performance function on disinfectant residual reflecting governmental regulations [92], water
age [97], or the risk of water discolouration due to the potential material after daily conditioning shear
stress [144]. Water quality reliability is based on disinfectant residual [145] and/or water age [78].

Optimisation methods used to solve WDS design problems including water quality considerations
were LP [129], GA [53,87,100,120,143] and differential evolution (DE) [27] for single-objective
models, and SMGA [63,131], NSES [92], ε-NSGA-II [97], NSGA-II and SPEA2 integrated with a
heuristic Markov-chain hyper-heuristic (MCHH) [144] and ant colony optimisation (ACO) [78] for
multi-objective models. These algorithms were mainly linked with a network simulator EPANET
to solve network equations. Because these EPANET simulations, in particular water quality
analyses, are very computationally demanding, they were replaced by ANNs [27,87,143] to reduce
computational effort.

Unsurprisingly, introduction of water quality considerations increases the complexity of the quest
for the optimal design considerably. This increased complexity is caused not only by the more complex
simulations required to predict the temporal and spatial distribution of a variety of constituents
within a distribution system, but also by the requirement to run shorter time step water quality
computations [22]. Furthermore, computational efficiency is affected by the ability to model multiple
constituents throughout the WDS via the EPANET Multi-Species Extension, EPANET-MSX [146].

4. General Classification of Reviewed Publications

Based on the selected literature analysis, the following are the four main criteria for the
classification of design optimisation for WDSs: application area (Section 4.1), optimisation model
(Section 4.2), solution methodology (Section 4.3) and test network (Section 4.4).

4.1. Application Area

As outlined in Section 3, there are four application areas: design of new systems (Section 3.1.1),
strengthening, expansion and rehabilitation of existing systems (Section 3.1.2). Numerous publications
do not deal only with those design optimisation problems, but also with the operational optimisation
(see, for example, [14,26,53,71,120,135]), which is an equally important area if the total cost (i.e.,
including capital and operation expenditure) is considered. Hence, the system operation has been
added to the following analysis. It represents papers optimising (mainly) the pump operation together
with the system design, strengthening, expansion and/or rehabilitation. Figure 2 displays distribution
of the application areas across the papers analysed and listed in Appendix A Table A1 as follows:

• Design of new systems is an application area with the highest representation (41%). Interestingly,
an almost identical percentage (43%) totals applications for existing systems (i.e., strengthening,
expansion and rehabilitation).

• An application area with the second highest representation (25%) is strengthening of
existing systems.

• Expansion and rehabilitation of existing systems are both represented evenly by 9% of
applications each.

• Optimisation of the system operation is represented by 16% of applications.
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It is not surprising that design (and mostly using pipe diameters as decision variables) dominates
the literature, which occurs mostly due to historical reasons. Namely, the sizing of pipes was addressed
first in the literature, even before WDS simulation was possible. Other design variants, such as
strengthening, expansion and rehabilitation, followed on, but use the same or quite similar performance
measures and optimisation tools. The introduction of other network elements, such as pumps,
tanks and valves, as well as various performance criteria, including water quality and operational
considerations, appeared much later in the literature. Lately, more emphasis was put on robustness,
reliability and resilience assessment of WDS design and operation, which seems to be the trend for
the future.

4.2. Optimisation Model

An optimisation model is mathematically defined by three key components: objectives, constraints
and decision variables. Figure 3 shows how many of these components are included in the optimisation
models (of papers analysed in Appendix A Table A1), which indicates the degree of complexity
of the formulation. Note that not all of the reviewed papers include mathematical formulations
of an optimisation model used. Therefore, our assessment is limited to our interpretation of the
provided information in the publications, where explicit formulation was partially presented or
missing altogether.

• The number of objectives included in optimisation models ranges from one to six. The majority of
models (69%) are single-objective, determining the least-cost design. The second largest proportion
(27%) represents two-objective optimisation models. Multi-objective models including more than
two objectives (i.e., 3–6 objectives) are very sparse as they represent only 4% of all formulations.

• The number of constraints incorporated in optimisation models ranges from zero to ten. Hydraulic
constraints (such as conservation of mass of flow, conservation of energy and conservation of
mass of constituent) are normally included as implicit constraints and are forced to be satisfied by
a WDS modelling tool, such as EPANET, and thus are not included in these statistics. There are 5%
of models with no constraints, which are mainly multi-objective optimisation models where the
pressure requirement is defined as an objective rather than a constraint. Almost half models (48%)
include only one constraint (mostly the minimum pressure requirement). A quarter of models
(25%) incorporate two constraints. The proportion of optimisation models with exactly three or
more (i.e., 4–10) constraints is 13% and 9%, respectively.

• The number of types of a decision (i.e., control) variable included in optimisation models ranges
from one to 13. The majority of optimisation models (60%) uses one type of a decision variable,
being a pipe diameter/size or pipe segment length of a constant (known) diameter. The use of
more than one type of a decision variable is considerably less frequent and is represented by 16%,
11% and 13%, respectively, for two, three and more (i.e., 4–13) types of a decision variable.
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Inspecting Figure 3, the question arises as to how many optimisation models there are, which
include only one objective, one constraint and one type of a decision variable? There are, in total,
129 optimisation models formulated and solved in 124 papers listed in Appendix A Table A1.
From those optimisation models, 30% (i.e., 39 models) consist of one objective (mostly design costs),
one constraint (mostly the minimum pressure at nodes) and one type of a decision variable (mostly
pipe diameters).

As indicated, the prevailing use of single-objective optimisation is probably caused by the
preference to arrive at a single solution, which can be implemented by decision makers. On the
other hand, the preference for one constraint seems surprising as the number of constraints of the
problem depends on the complexity of the system and the number of criteria expressed as constraints
rather than objectives. Finally, the number and types of decision variables appearing in the literature is
a function of historical developments in the field and the increasing trend is expected in the future.
Research questions still remain as how to best formulate the optimisation model for a particular case,
and what effect the model formulation has on obtained solution(s) [22,23].

4.2.1. General Optimisation Model

A general multi-objective optimisation model for optimal design of a WDS can be formulated as:

Minimise/maximise ( f1(x), f2(x), . . . , fn(x)) (1)

subject to:
ai(x) = 0, i ∈ I = {1, . . . , m}, m ≥ 0 (2)

bj(x) ≤ 0, j ∈ J = {1, . . . , n}, n ≥ 0 (3)

ck(x) ≤ 0, k ∈ K = {1, . . . , p}, p ≥ 0 (4)

where Equation (1) represents objective functions to be minimised (e.g., system capital costs) or
maximised (e.g., system reliability), Equations (2)–(4) present three types of a constraint, with x
representing decision variables.

Objectives

Objectives of a general optimisation model of WDS design are listed in Table 1. They can be
divided into four distinct groups according to their type. The first group represents economic objectives
such as capital and rehabilitation costs, and expected operation and maintenance costs of the system.
The second group are community objectives, which report on the level of service provided to WDS
customers, and which, if inadequate, could eventuate in water supply related issues for those customers.
Those objectives include, for example, a benefit function (using various performance criteria), water
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quality deficiencies, pressure deficit at demand nodes, hydraulic failure of the system and potential fire
damages. The third group presents performance objectives, reflecting the operation of a WDS, specifically
system robustness, reliability and resilience. These objectives, although ultimately indicating the
level of service for WDS customers, have separate classification, due to their primary purpose to
report on the performance in relation to a WDS rather than to customers. The fourth group represents
environmental objectives, namely GHG emissions, consisting of capital emissions due to manufacturing
and installation of network components applicable at the WDS construction phase, and operating
emissions due to electricity consumption occurring during the WDS life cycle.

Table 1. Objectives of a general optimisation model.

Objective Type Objectives Reference (An Example)

Economic

Capital costs of the system, including purchase,
installation and construction of network
components (pipes, pumps, tanks, treatment
plants, valves, etc.)

[53,74,121]

Rehabilitation costs of the system, including
pipe/pump replacement, pipe cleaning/lining,
pipe break repair

[17,124] (pipes), [77] (pumps)

Expected operation costs of the system, including
pump stations, treatment plants and
disinfectant dosage

[53] (pump stations and treatment plants),
[27] (disinfectant dosage)

Expected maintenance costs of the system [121]

Community

Benefit/benefit of the solution (i.e., rehabilitation,
expansion and strengthening) using various
performance criteria by authors

[131] (welfare index to place greater
importance on early improvements), [99]
(quantity shortfalls as criteria), [93] (e.g.,
safety volumes and operational capacities
as criteria)

Water quality (e.g., disinfectant, sedimentation,
discolouration) deficiencies or water age at
customer demand nodes, water discolouration
risk, velocity violations (causing
sedimentation/discolouration)

[92,120] (water quality deficiencies), [97]
(water age), [144] (water discolouration),
[95] (velocity violations)

Pressure deficit at customer demand nodes
(maximum individual or total), or the number of
demand nodes with the pressure deficit

[65] (maximum individual deficit), [66,68]
(total deficit), [90] (the number of
demand nodes)

Hydraulic failure of the system expressed by the
failure index [97]

Potential fire damages using either expected
conditional fire damages or fire flow deficit

[142] (expected conditional fire damages),
[92] (fire flow deficit)

Performance

System robustness using either a redundant design
approach, integration approach (via objective
function or constraints), two-phase optimisation
approach, scenario-based approach or
RC approach

[140] (redundant design), [89] (integration
via objective function), [110,140]
(integration via constraints), [141]
(two-phase optimisation), [121]
(scenario-based), [123] (RC)

System reliability [118]

System resilience [135]

Environmental

GHG emissions or emission costs consisting of
capital emissions (due to manufacturing and
installation of network components) and
operating emissions (due to
electricity consumption)

[77] (capital and operating GHG emission
costs), [73,75] (capital and operating GHG
emissions), [132] (operating GHG
emission cost)

Constraints

Constraints of a general optimisation model of WDS design are described in Table 2 and divided
into three groups as follows. Hydraulic constraints are given by physical laws governing the fluid flow
in a pipe network. These constraints are incorporated in an optimisation model either explicitly often
in conjunction with deterministic [147] and hybrid optimisation techniques [116,117], or implicitly by a
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WDS modelling tool (e.g., EPANET) [26] and/or ANNs [27,87] normally in combination with stochastic
optimisation algorithms. System constraints arise from limitations and operational requirements of a
WDS, and include tank water level bounds, pressure/water quality requirements at demand nodes,
etc. The ways to manage these constraints include an integration of EPANET (e.g., tank water levels),
the augmented Lagrangian penalty method [17], a penalty function [26], a penalty function with a
self-adaptive penalty multiplier [45,88], or a (modified) constraint tournament selection [148–150].
Constraints on decision variables, such as pipe diameters being limited to commercially available sizes
and others, are handled explicitly by an optimisation algorithm.

Table 2. Constraints of a general optimisation model.

Constraints Reference (An Example)

Hydraulic constraints given by physical laws of fluid flow in a
pipe network: (i) conservation of mass of flow, (ii) conservation
of energy, (iii) conservation of mass of constituent

[41]

System constraints given by limitations and operational
requirements of a WDS, for example, minimum/maximum
pressure at (demand) nodes and flow velocity in pipes, water
deficit/surplus at storage tanks at the end of the simulation
period, maximum water withdrawals from sources

[54] (limits on nodal pressure, storage tank deficit and
water withdrawals from sources), [127] (limits on
pipe velocity)

Constraints on decision variables x, for example, limits on pipe
diameters, pipe segment lengths (so called split-pipe design),
pump station capacities

[92] (limits on pipe diameters), [117] (limits on pipe
segments), [121] (limits on pump stations)

Decision Variables

Decision variables of a general optimisation model of WDS design are listed in Table 3. They are
grouped according to an element or aspect that drives the optimisation (i.e., pipes, pumps, tanks,
valves, nodes, water quality and timing). In general, a pipe diameter/size is often the main (or the
only) decision variable used in design optimisation of WDSs. Accordingly, a total of 60% optimisation
models (of papers listed in Appendix A Table A1) use only one type of a decision variable (see
Figure 3c), which is either a pipe diameter/size or the pipe segment length of a constant (known)
diameter. As the complexity of an optimisation model increases, so does the number of types of a
decision variable. An example of such an optimisation model could be an expansion and rehabilitation
of an existing WDS with pumps, tanks and a treatment plant to meet future demands and water
quality requirements.

Table 3. Decision variables of a general optimisation model.

Decision Variables Reference (An Example)

Pipes: pipe diameters/sizes, pipe duplications, pipe
rehabilitation options (pipe replacement, pipe cleaning/lining),
pipe break repair, pipe segment lengths (so called split-pipe
design), future pipe roughnesses, pipe routes, pipe
closures/openings (to adjust a pressure zone boundary)

[75] (diameters), [132] (duplications, replacement,
lining and break repair), [117] (segments), [141]
(roughnesses), [52] (routes), [100] (routes and
closures/openings)

Pumps: pump locations, pump sizes (pump capacities, pump
types, pumping power, pump head/height or head-flow), the
number of pumps, pump schedules (pumping power or pump
head at each time step, the number of pumps in operation
during 24 h, binary statuses at time steps, on/off times)

[52,99] (locations), [14] (locations and capacities), [75]
(types), [17] (power), [52,122] (head/height), [93]
(head-flow), [26] (sizes and the number of pumps),
[53,123] (power or head at each time step), [97] (the
number of pumps in operation), [29] (binary statuses),
[75] (on/off times)

Tanks: tank locations, tank sizes/volumes, minimum
operational level, ratio between diameter and height, ratio
between emergency volume and total volume, tank heads

[98] (locations, sizes/volumes, minimum operational
level, ratios), [78] (heads)

Valves: valve locations, valve settings (headlosses or flows) [14] (locations), [16] (headlosses via a roughness
coefficient), [127] (headlosses and flows)
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Table 3. Cont.

Decision Variables Reference (An Example)

Nodes: flowrates from sources, future nodal demands,
threshold demands, hydraulic heads at junctions [127] (flowrates), [135,141] (demands), [147] (heads)

Water quality: disinfectant dosage rates (at the sources, at the
treatment plants, in the tanks), treatment removal ratios,
treatment plant capacities

[143] (dosage at the sources), [27] (dosage at the
treatment plants), [78] (dosage in the tanks), [53]
(removal ratios), [121] (capacities)

Timing: year of action (e.g., network expansion, rehabilitation,
pipe replacements) execution

[131] (network expansion and rehabilitation), [130]
(pipe replacements)

Tables 1–3 provide a generic set of components used for formulating an optimisation problem
involving initial design with subsequent operational management of a WDS. Particular circumstances
being considered in different case studies may warrant only a portion of those components to be used.

4.3. Solution Methodology

An enormous effort has been dedicated to the application and development of optimisation
methods to solve WDS design optimisation problems since the 1970s. Initially, deterministic
methods namely LP [14,114,129], NLP [16,110] and mixed-integer NLP (MINLP) [17,115] were
used. In the mid 1990s, after the first popular applications of a GA [20,151], there was a swing
towards stochastic methods and they dominate the field since (see Figure 4). A great range of
those methods has been applied to optimise design of WDSs to date, inclusive of (but not limited
to) a GA [42,45,50,85,86,152–154], fmGA [88], non-crossover dither creeping mutation-based GA
(CMBGA) [149], adaptive locally constrained GA (ALCO-GA) [155], SA [60], shuffled frog leaping
algorithm (SFLA) [103], ACO [104,156], shuffled complex evolution (SCE) [157], harmony search
(HS) [105,158,159], particle swarm HS (PSHS) [160], parameter setting free HS (PSF HS) [161], combined
cuckoo-HS algorithm (CSHS) [162], particle swarm optimisation (PSO) [106,153,154], improved PSO
(IPSO) [163], accelerated momentum PSO (AMPSO) [164], integer discrete PSO (IDPSO) [165], newly
developed swarm-based optimisation (DSO) algorithm [150], scatter search (SS) [166], CE [61,62],
immune algorithm (IA) [167], heuristic-based algorithm (HBA) [168], memetic algorithm (MA) [107],
genetic heritage evolution by stochastic transmission (GHEST) [169], honey bee mating optimisation
(HBMO) [170], DE [46,153,154,171], combined PSO and DE method (PSO-DE) [172], self-adaptive DE
method (SADE) [173], NSGA-II [70], ES [68], NSES [92], cost gradient-based heuristic method [119],
improved mine blast algorithm (IMBA) [174], discrete state transition algorithm (STA) [175],
evolutionary algorithm (EA) [109], and convergence-trajectory controlled ACO (ACOCTC) [176].
The vast majority of those studies solely solve a basic single-objective least-cost design problem
(i.e., pipe cost minimisation constrained by the nodal pressure requirement) and use a small number
of available benchmark networks (e.g., Hanoi network [49], New York City tunnels [81], two-loop
network [14]) to test the proposed optimisation method. The usual result obtained was a better or
comparable optimal solution reached more efficiently than by algorithms previously used in the
literature, without providing an explanation as to why the selected algorithm performed better for a
particular test network. It seems, therefore, that research have been trapped, to some extent, in applying
new metaheuristic optimisation methods to relatively simple (from an engineering perspective) design
problems, without understanding the underlying principles behind algorithm performance. Moreover,
study [177] stresses that there has been “little focus on understanding why certain algorithm variants
perform better for certain case studies than others”.
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Over the past decade, an increase in the use of deterministic and hybrid methods (i.e., a combined
deterministic and stochastic method) can be observed from Figure 4. These methods, which are
computationally more efficient when comparing to stochastic methods, thus more suitable for
large real-world applications, include ILP [51,134], MINLP [147], a combined GA and LP method
(GA-LP/GALP) [113,117], combined GA and ILP method (GA-ILP) [178], combined binary LP and DE
method (BLP-DE) [179], combined NLP and DE method (NLP-DE) [111], hybrid discrete dynamically
dimensioned search (HD-DDS) [180], decomposition-based heuristic [52], optimal power use surface
(OPUS) method paired with metaheuristic algorithms [47], and modified central force optimisation
algorithm (CFOnet) [181]. However, WDS simulations may still be computationally prohibitive even
with more efficient deterministic or hybrid optimisation methods, especially as the fidelity of the
model and the number of decision variables increase [22].

The choice of the solution methodology depends on the type of problem being considered,
the level of expertise of the analyst and the familiarity with the particular method/tool. Nonetheless,
there is often no clear justification provided as to why a particular methodology has been selected
over another and/or why an alternative methodology has not been tested. Quite often, this choice
is based on the analyst’s preference, level of familiarity, and software availability, rather than on a
comparison of the tests performed using two or more solution methodologies. This practice makes it
difficult to progress towards the development of meaningful guidelines for the application of different
optimisation methods [177]. An interesting research question for further studies would be how to
characterise and select the best optimisation method for a particular WDS design problem.

However, that being stated, several attempts have been made to compare or evaluate algorithm
performance for both single- and multi-objective WDS design problems, but with an absence of a
universally adopted method to date. A methodology for comparing the performance of various
single-objective algorithms involves assessing the best solution obtained (which is straightforward
contrary to multi-objective optimisation), the convergence speed, and the spread and consistency of
the solutions using a number of random starting seeds and evaluations [153,154]. A methodology
has also been developed to evaluate the performance of a particular algorithm by assessing the
effectiveness of its parameters (such as crossover and mutation) applying their different values [182].
In multi-objective optimisation, in general, performance metrics were proposed and are commonly
used to compare performance of various algorithms in terms of the quality of the Pareto fronts
obtained (see, for example, [183–185]). A comparison of solutions is substantially more complex
than in single-objective optimisation as there is no single performance metric both compatible and
complete [186]. Possibly for that reason, some WDS design studies have limited their analysis to a
visual comparison of solutions only (i.e., two-objective Pareto fronts), which was criticised by [187].
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Most recent research, progressively, evaluates the performance and search behaviour of multi-objective
algorithms in relation to their parameters and/or WDS features [28] (more such studies are listed in
Section 4.3.2).

4.3.1. Computational Efficiency

Numerous advancements have been reported in the literature to improve the computational
efficiency of both optimisation algorithms and network simulators. These developments
include methods for search space reduction [45,63,88,95,99,120,131,188,189], parallel programming
techniques [109], hybridisation of the evolutionary search with machine learning techniques to
limit the number of function evaluations [67], surrogate models (metamodels) to replace network
simulations [27,43,67,87,143], approximation of the objective function by shortening the EPS [119],
and enhanced methods for speedy network simulations for large size WDSs [190].

Various techniques for search space reduction have been proposed, which can be broadly
classified as algorithm-based and network-based methods. The algorithm-based techniques include
the method for more efficient encoding of decision variables [63,99,131], a self-adaptive boundary
search strategy for selection of the penalty factor within the optimisation algorithm to guide the
search towards constraint boundaries [88], and the application of an artificial inducement mutation
(AIM) to acceleratingly direct the search to the feasible region [95]. The network-based techniques
analyse either the network as a whole or individual pipes. The former include a network stratification
into upper, middle and lower diameter sets using engineering judgment [188], and the critical path
method [45,191]. The latter involve the elimination of certain pipes from the optimisation based on
their preliminary capacity assessment [120], application of a pipe index vector (PIV), a measure of
the relative importance of pipes regarding their hydraulic performance in the network, which assists
in exclusion of impractical and infeasible regions from the search space [189], and introduction of
upper/lower bounds on pipe diameters based on the initial analysis [30].

In terms of replacing time consuming network simulations with faster means, three types of
a surrogate model have been applied to the design optimisation of WDSs to date. These models
include a linear transfer function (LTF) [43], Kriging [67] and ANNs [27,87,143], which are used more
frequently than two previous ones. The purpose of a surrogate model is to approximate network
simulations (hydraulics and/or water quality), hence reduce the calls of the simulation model during
the optimisation. Kriging uses solutions visited during the search to model the search landscape [192].
ANNs can be divided into two groups, offline ANNs, which are trained only once at the beginning
of the optimisation, and recently proposed online ANNs, which are “retrained periodically during
the optimisation in order to improve their approximation to the appropriate portion of the search
space” [27]. ANN metamodels are often used in conjunction with water quality simulations [27,87,143].

All of those methods have shown promise on a limited number of test cases or a specific case
study. It would be interesting to conduct a thorough comparison of all of those on a selection of
benchmark cases of various sizes and complexity.

4.3.2. Recent Developments

More recently, a number of advancements, such as improving and understanding the algorithm
performance and others, have been proposed in the literature indicating potential directions for future
research. Some of those developments are a consequence of an appeal of [23,177] “to counteract
potential repetition and stagnation in this field” to continually produce too many papers using “an
ever increasing number of EA variants” and “theoretical or very simplistic case studies”.

Firstly, to improve the algorithm performance regarding the solution quality, an engineered initial
population has been suggested [26,30,44,66,108]. Traditionally, a random (or naïve) initial population
of solutions (expressed as pipe sizes) is used as a starting point for algorithms. An engineered initial
population, in contrast, is created by taking into account the rules and hydraulics principles of water
flow in a pipe network, or by performing pre-optimisation runs under various parameter scenarios
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(e.g., [30]). Another way to achieve better algorithm convergence, particularly for design problems
incorporating water quality, is to run the algorithm with hydraulic analysis only for several first
generations, and subsequently add water quality analysis [120]. Furthermore, a postoptimisation
technique can be used to refine the solutions that are found by an optimisation algorithm to
get closer to the global optimum [193]. Secondly, a range of strategies have been introduced
to eliminate the tedious and time demanding process of calibrating algorithm parameters (i.e.,
selecting the best performing combination of parameter values) for a particular test problem.
These strategies involve the use of a statistical analysis [158], evolved heuristics (i.e., hyper-heuristic
approach) [68,144,194], and convergence trajectories [176]. Thirdly, several studies focused on
analysing algorithm performance [195] and search behaviour [28,48,196] in relation to the WDS
design problem features [29]. Lastly, methodological improvements using existing methods have been
proposed rather than applying/developing new algorithms, with the aim to improve computational
efficiency. Those improvements represent multiple-phase optimisation concepts [30], which can be
combined with graph decomposition [46,69] or clustering [90] techniques.

4.4. Test Network

An enormous diversity exists among test networks used in optimisation of WDS design.
These networks vary in size, complexity, and the types of network components that they contain
(i.e., nodes, pipes, pumps, tanks, reservoirs/sources and/or valves). The simplest networks are
small gravity WDSs with one source, a few nodes and pipes (see, for example, [14,60]), or simplified
pumped WDSs including only one source, one pump, one pipe and one tank (see, for example, [71]).
An example of a large network represents EXNET [82], which is a realistic WDS comprising two
sources, control valves and almost 2500 pipes. Figure 5 categorises test networks that are used (in the
papers listed in Appendix A Table A1) by network size. In order to be consistent with the previous
review [22], network size is expressed by the number of nodes within a network. Networks, for which
the number of nodes cannot be identified from the reviewed paper or the references provided, are
excluded from the analysis. Figure 5 reveals that nearly a half of the networks (49%) is limited in
size to 20 nodes and the majority of the test networks (84%) contains up to 100 nodes. This finding is
analogous to operational optimisation of WDSs, where networks with up to 100 nodes represent 80%
of applications [22].

Figure 5 illustrates that in the large body of literature, various WDS design formulations
and optimisation methods have usually been tested using small, computationally cheap networks.
This prevalent usage of small networks is in contrast to the requirement to optimise design of
real-world systems that contain hundreds of thousand elements (including pumping stations, tanks
and valves) causing a single EPS simulation to take minutes or even hours to execute even on powerful
desktop computers. Consequently, large networks are not often considered by optimal design studies.
This situation can be remedied by using latest developments in methods capable of generating realistic
WDS networks by [55–57], who have each developed their own automatic network generation software.
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Real-world WDS design optimisation problems normally involve large size, complex-topology
networks, comprising a number of elements of various types. Such a problem is often solved by
combining a sophisticated simulation model (to potentially analyse both hydraulics and water
quality) with a non-trivial optimisation method. The approach ought to satisfy the requirements
of a water utility and other stakeholders for objectives, constraints, decision variables, as well
as model assumptions. Although studies exist that report on successful solutions to such
problems [100,127,197–199], they are limited possibly due to the complexity associated with
mathematically formulating objectives and constraints and/or finding the best solution. Study [200]
even speculates that the real-world considerations need to be explicitly quantified, “if it is possible to
do so at all”, otherwise the water industry will apply engineering judgment instead of any optimisation
method to design WDSs.

Similar to network size, the frequency of use of test networks varies considerably, as some
networks have been used only once, while others have been used repeatedly and by multiple authors.
In particular, the prevalence of some networks attributes to their use as benchmark problems to test
optimisation algorithms. These benchmark networks, all of which have been used (in the papers
listed in Appendix A Table A1) 10 or more times, are listed in Table 4 in order of their usage count.
They are, except for the Anytown network, gravity-fed WDSs with the common objective to determine
the most economical pipe design. The popularity of those benchmark networks contributed to high
percentages of the first two categories in Figure 5, because the majority of them are limited in size to 20
and 100 nodes, respectively.

Table 4. Frequently used test networks.

Test Network
Name No. of Nodes Network Description Optimisation

Problem
Network Modified
Versions

Network
Usage Count *

Hanoi network
++

[49]
32

Network organised in
three loops supplied by
gravity from a single
source

New system design
(pipes)

Double Hanoi
network, triple Hanoi
network (both [113])

55

New York City
tunnels ++

[81]
20

Tunnel system supplied
by gravity from a single
source, constituting the
primary WDS of the
New York city

Existing system
strengthening (i.e.,
pipe paralleling) to
meet projected
demands

Double New York City
tunnels [201] 42

Two-loop
network ++

[14]
7

Small network with two
loops supplied by
gravity from a single
source

New system design
(pipes)

Adapted to system
strengthening and
expansion over a
planning horizon [118]

40

Balerma
irrigation
network ++

[50]

447

Large looped network
supplied by gravity from
four sources, adapted
from the existing
irrigation network in
Balerma, Spain

New system design
(pipes) N/A 20

Anytown
network
[84]

19

Hypothetical looped
system supplied by three
parallel pumps from a
single source

Existing system
strengthening,
expansion and
rehabilitation (pipes,
pumps, tanks) to meet
projected demands

** With additional
source and tank [53],
with additional tank
[119] proposed by [83]

15

5. Future Research

Future research challenges for the optimisation of WDS design are illustrated in Figure 6 and
divided into the following four groups: (i) model inputs, (ii) algorithm and solution methodology,
(iii) search space and computational efficiency, and (iv) solution postprocessing. As far as model inputs
are concerned, there is a requirement to explore how to best represent various types of uncertainties,
i.e., stochastic vs. deep uncertainty or aleatoric vs. epistemic uncertainty, in the optimisation process.
Additional future uncertainties, for example, climate change, population movements and economic
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development, might affect planning for optimal WDSs, and make flexible design one of the promising
research areas over the next few decades. Another research challenge in regards to model inputs is to
compare various approaches to pump decision variables, including VSPs and their coding, in order
to determine their advantages, disadvantages and suitability for a particular case. Furthermore and
overall, a research question remains how to best formulate the optimisation model for a particular
case [22,23].
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Concerning algorithm and solution methodology, a vast research area represents a progression
towards better understanding of algorithm performance and its search behaviour. These aspects need
to be further linked to the WDS design problem features including system topology (e.g., existence of
pumps/tanks, loops) and initial population used. A related challenge is to eliminate a time consuming
process of calibrating algorithm parameters to achieve a satisfactory performance, hence there is a
question how to select the best performing combination of parameter values. Moreover, it is important
to develop understanding related to the suitability of various optimisation methods for particular
design problems and the incorporation of engineering judgement in the search. In relation to staged
design, methods for ensuring contiguity among decisions, i.e., that the decisions selected in the
previous stages are retained in the subsequent ones, are required.

Recently, there has been an observed increased interest in aspects of the search space and
computational efficiency. Indeed, the reduction of the search space and an increase in the computational
efficiency are significant particularly for real-world WDS optimisation problems as well as dynamic
(i.e., staged and flexible) design, so they are expected to remain important and promising research
areas into the future. The research community would benefit from a thorough comparison of existing
methods for search space reduction and computational efficiency increase, which could use a selection
of benchmark cases of various sizes and complexity. In addition to currently available methods for
search space reduction, it might be possible to further improve decision variable coding.

Regarding solution postprocessing, an open question is how sensitive the obtained solution(s) is to
the optimisation model used [22,23]. When multi-objective optimisation approach is used, a remaining
challenge is to select a practical and representative subset of the non-dominated solutions, which
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could be useful for the decision makers. Accordingly, there is a need for methods to identify a handful
of effective solutions, such as those where a small improvement in one objective leads to a large
deterioration in at least one other objective. The existing approaches, including maximum convex
bulge/distance from hyperplane, hypervolume contribution, and local curvature [80] are all promising
and require a thorough analysis on WDS design problems.

6. Summary and Conclusion

A systematic literature review of optimisation of water distribution system (WDS) design since
the end of the 1980s to nowadays has been presented. The publications included in this review are
relevant to the design of new WDSs, strengthening, expansion and rehabilitation of existing WDSs, and
also consider design timing, parameter uncertainty, water quality and operational aspects. The value
of this review paper is that it brings together a large number of publications for design optimisation
of WDSs, just under three hundred in total, which have been published over the past three decades.
Therefore, it may enable researchers to identify one’s articles of interest in a timely manner. The review
analyses the current status, identifies trends and limits in the field, describes a general optimisation
model, suggests future research directions. Exclusively, this review paper also contains comprehensive
information for over one hundred and twenty publications in a tabular form, including optimisation
model formulations (i.e., objectives, constraints, decision variables), solution methodologies used and
other important details.

This review has identified the following main limits in the field and future research directions.
It was demonstrated that there is still no agreement among researchers and practitioners on how to
best formulate a WDS design optimisation model, how to include all relevant objectives and constraints,
and whether and how to take into account various sources of uncertainty, while still allowing for an
efficient search for the best solution to be achieved. Although a plethora of generic and problem-specific
optimisation methods have been developed and applied over the years, there is no consensus on
what optimisation method is best for a particular design problem, whether a single or multiple-phase
optimisation concept is to be used, and how engineering judgement can best be incorporated in the
search. Therefore, a concerted effort by the research community is required to develop methods
for objective comparison and validation of various optimisation algorithms and concepts on large,
real-world problems. In addition, an analysis of available methods for reducing the search space,
increasing computational efficiency, as well as selecting effective Pareto non-dominated solutions
representing a practical subset for decision makers, is needed using WDS design problems of various
sizes and complexity. In spite of the overwhelming amount of literature that has been published over
the past three decades, design optimisation of WDSs faces considerable research challenges in the
years to come.

7. List of Terms

• Deterministic dynamic design = staged design over a long planning horizon divided into several
construction phases, without considering future uncertainties.

• Deterministic static design = traditional design with a single construction phase for an entire
expected life cycle of the system, without considering future uncertainties.

• Dynamic design = staged (i.e., real-life) design capturing the system modifications/growth over a
long planning horizon divided into several construction phases (adopted from [118]).

• Hydraulic constraints = constraints arising from physical laws of fluid flow in a pipe network,
such as conservation of mass of flow, conservation of energy, conservation of mass of constituent.

• Optimisation approach = single-objective approach or multi-objective approach.
• Optimisation method = method, either deterministic or stochastic, used to solve an

optimisation problem.
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• Optimisation model = mathematical formulation of an optimisation problem inclusive of objective
functions, constraints and decision variables.

• Probabilistic dynamic design = flexible design over a long planning horizon divided into several
construction phases, with considering future uncertainties.

• Probabilistic static design = traditional design with a single construction phase for an entire
expected life cycle of the system, with considering future uncertainties.

• Simulation model = mathematical model or software used to solve hydraulics and water quality
network equations.

• Single pipe design = design which uses pipe sizes/diameters as decision variables (either discrete
or continuous).

• Solution = result of optimisation, either from feasible or infeasible domain, so we refer to a ‘feasible
solution’ or ‘infeasible solution’, respectively. In mathematical terms though an ‘infeasible solution’
is not classified as a solution.

• Split-pipe design = design which uses pipe segment lengths of a constant (known) diameter as
decision variables.

• Static design = traditional (i.e., theoretical) design with a single construction phase for an entire
expected life cycle of the system (adopted from [118]).

• System constraints = constraints arising from the limitations of a WDS or its operational
requirements, such as water level limits at storage tanks, limits for nodal pressures or constituent
concentrations, tank volume deficit etc.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

ACO ant colony optimisation
ACOCTC convergence-trajectory controlled ant colony optimisation
ACS ant colony system
AEF average emissions factor
AIM artificial inducement mutation
ALCO-GA adaptive locally constrained genetic algorithm
AMPSO accelerated momentum particle swarm optimisation
ANN artificial neural network
AS ant system
ASelite elitist ant system
ASrank elitist rank ant system
BB branch and bound
BB-BC big bang-big crunch
BLIP binary linear integer programming
BLP-DE combined binary linear programming and differential evolution
BWN-II battle of the water networks II (optimisation problem)
CA cellular automaton
CAMOGA cellular automaton and genetic approach to multi-objective optimisation
CANDA cellular automaton for network design algorithm
CC chance constraints
CDGA crossover dither creeping mutation genetic algorithm
CE cross entropy
CFO central force optimisation
CGA crossover-based genetic algorithm with creeping mutation
CMBGA non-crossover dither creeping mutation-based genetic algorithm
CR crossover probability (parameter)
CS cuckoo search
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CSHS combined cuckoo-harmony search
CTM cohesive transport model
D design
dDE dither differential evolution
DDSM demand-driven simulation method
DE differential evolution
DMA district metering area
DPM discoloration propensity model
DSO newly developed swarm-based optimisation algorithm
EA evolutionary algorithm
EA-WDND evolutionary algorithm for solving water distribution network design
EEA embodied energy analysis
EEF estimated (24-h) emissions factor (curve)
EF emissions factor
EPANETpdd pressure-driven demand extension of EPANET
EPS extended period simulation
ES evolution strategy
F mutation weighting factor (parameter)
FCV flow control valve
fmGA fast messy genetic algorithm
FSP fixed speed pump
GA genetic algorithm
GA-ILP combined genetic algorithm and integer linear programming
GA-LP/GALP combined genetic algorithm and linear programming
GANEO genetic algorithm network optimisation (program)
GENOME genetic algorithm pipe network optimisation model
GHEST genetic heritage evolution by stochastic transmission
GHG greenhouse gas (emissions)
GOF gradient of the objective function
GP genetic programming
GRG2 generalised reduced gradient (solver)
GUI graphical user interface
HBA heuristic-based algorithm
HBMO honey bee mating optimisation
HD-DDS hybrid discrete dynamically dimensioned search
HDSM head-driven simulation method
HMCR harmony memory considering rate (parameter)
HMS harmony memory size (parameter)
HS harmony search
IA immune algorithm
IDPSO integer discrete particle swarm optimisation
ILP integer linear programming
IMBA improved mine blast algorithm
IPSO improved particle swarm optimisation
KLSM Kang and Lansey’s sampling method [26]
LCA life cycle analysis
LHS Latin hypercube sampling
LINDO linear interactive discrete optimiser
LM Lagrange’s method
LP linear programming
LTF linear transfer function
MA memetic algorithm
MBA mine blast algorithm



Water 2018, 10, 307 28 of 103

MBLP mixed binary linear problem
MCHH Markov-chain hyper-heuristic
MdDE modified dither differential evolution
MENOME metaheuristic pipe network optimisation model
mIA modified immune algorithm
MILP mixed integer linear programming
MINLP mixed integer nonlinear programming
MMAS max-min ant system
MO multi-objective
MODE multi-objective differential evolution
MOEA multi-objective evolutionary algorithm
MOGA multi-objective genetic algorithm
MSATS mixed simulated annealing and tabu search
NBGA non-crossover genetic algorithm with traditional bitwise mutation
NFF needed fire flow
NLP nonlinear programming
NLP-DE combined nonlinear programming and differential evolution
NSES non-dominated sorting evolution strategy
NSGA-II non-dominated sorting genetic algorithm II
OP operation
OPTIMOGA optimised multi-objective genetic algorithm
OPUS optimal power use surface
PAR pitch adjustment rate (parameter)
PESA-II Pareto envelope-based selection algorithm II
PHSM prescreened heuristic sampling method
PIV pipe index vector
PRV pressure reducing valve
PSF HS parameter setting free harmony search
PSHS particle swarm harmony search
PSO particle swarm optimisation
PSO-DE combined particle swarm optimisation and differential evolution
PVA present value analysis
RC robust counterpart (approach)
ROs real options (approach)
RS random sampling
RST random search technique
SA simulated annealing
SADE self-adaptive differential evolution
SAMODE self-adaptive multi-objective differential evolution
SCA shuffled complex algorithm
SCE shuffled complex evolution
SDE standard differential evolution
SE search enforcement
SFLA shuffled frog leaping algorithm
SGA crossover-based genetic algorithm with bitwise mutation
SMGA structured messy genetic algorithm

SMODE
standard multi-objective differential evolution (i.e., optimising the whole network
directly without decomposition into subnetworks)

SMORO scenario-based multi-objective robust optimisation
SO single-objective
SPEA2 strength Pareto evolutionary algorithm 2
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SS scatter search
SSSA scatter search using simulated annealing as a local searcher
STA state transition algorithm
TC time cycle
TRS tank reserve size
TS tabu search
VSP variable speed pump
WCEN water distribution cost-emission nexus
WDS water distribution system
WDSA water distribution systems analysis (conference)
WPP water purification plant
WSMGA water system multi-objective genetic algorithm
WTP water treatment plant
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Table A1. Papers reviewed in a chronological order.

ID. Authors (Year) [Ref]
SO/MO *
Brief Description

Optimisation Model (Objective Functions +, Constraints **,
Decision Variables ++)

Water Quality
Network Analysis
Optimisation Method

Notes

1. Alperovits and Shamir (1977) [14]
SO
Optimal water distribution system
(WDS) design and operation with split
pipes considering multiple loading
conditions using linear programming
(LP) with a two-phase procedure.

Objective (1): Minimise (a) the overall capital cost of the network
including pipes, pumps, reservoirs and valves, (b) present value
of operating costs (pumps, penalties on operating the dummy
valves).
Constraints: (1) Min/max pressure limits, (2) sum of lengths of
pipe segments within an arc equals to the length of this arc, (3)
non-negativity requirement for the length of pipe segments.
Decision variables: (1) Flows in pipes as primary variables, (2)
length of pipe segments of constant pipe diameter (so called
split-pipe decision variables), (3) dummy valve variables to
represent multiple loadings (demands), (4) pump locations and
capacities, (5) valve locations, (6) reservoir elevations, (7) pump
operation statuses, (8) valve settings.

Water quality: N/A.
Network analysis: Initial flow
distribution is to be specified, flows
are then redistributed using a
gradient method within an
optimisation process.
Optimisation method: LP gradient
method.

• A looped network is used.
• A nonlinear problem is replaced by a linear problem. Hierarchical

decomposition is iteratively applied as follows. In the first phase, LP
solves the problem for the given flow distribution. In in the second
phase, flows in the network are updated and so on.

• The method considers multiple loading conditions (i.e., peak and low
demands) simultaneously, and is applicable for real complex systems.

• The method gives only a local optimum.
• Results: The optimal solutions represent a decrease in the total cost

of 3-9% for the test networks, comparing to the costs for the initial
flow distributions.

• Test networks: (1) Two-loop network supplied by gravity (incl.
7 nodes), (2) two-loop network with a pump and balancing reservoir
(incl. 8 nodes), (3) real network with 65 pipes and 2 pumps (incl.
52 nodes).

2. Schwarz et al. (1985) [129]
SO
Optimal development of a regional
multiquality water resources system
over a planning horizon (e.g., several
years) using LP.

Objective (1): Minimise the costs of (a) water supply (water), (b)
temporary curtailment of water supply, (c) network expansion,
(d) conveying water, (e) excess salination.
Major constraints: (1) Water quantity bounds, (2) water quality
bounds, (3) regional water balance (quantity), (4) capacity
expansion of the network, (5) annual source water balance
(quantity), (6) annual source mass balance (salinity), (7) node
mass balance (salinity).
Decision variables: (1) Target water supply (m3/year), (2)
temporary curtailment of water supply (m3/year), (3) capacity
expansion (m3/day), (4) conveyance of water (m3/day), (5)
amount of water used from storage (m3/day), (6) salinity
(mg/L).

Water quality: Salinity.
Network analysis: TEKUMA
model [202,203].
Optimisation method: TEKUMA
model [202,203] using LP.

• Seasonal variations and probabilities of climatic states are included.
• Constituent (i.e., salinity) mass balance equations make the model

nonlinear. These nonlinear equations are incorporated into the LP
model by using a successive linear approximation iterative scheme.

• The TEKUMA model was developed to determine “the plan of
allocation, capacity expansion, production, transportation and
operation that maximises the net benefit - the sum of all
water-related values minus the sum of all investment and operating
costs and losses incurred by insufficient supply”.

• Results: Some of the typical quality management processes are
demonstrated, such as that the source salinity increases steadily as a
result of saline return flows, desalination is economically justified
after the third period, etc.

• Test networks: (1) Simplified system with one source and one
customer (incl. 3 nodes), (2) real-world regional water supply
system in Southern Arava, Israel, consisting of 59 consumer groups
in 9 regions, 31 water sources, 77 links, considering 3 planning
horizons, 3 climatic zones and 3 seasons.
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Table A1. Cont.

ID. Authors (Year) [Ref]
SO/MO *
Brief Description

Optimisation Model (Objective Functions +, Constraints **,
Decision Variables ++)

Water Quality
Network Analysis
Optimisation Method

Notes

3. Kessler and Shamir (1989) [114]
SO
Optimal WDS design with split pipes
using LP with a two-phase procedure.

Objective (1): Minimise (a) the design cost of the network (pipes).
Constraints: (1) Pressure limitations at selected nodes, (2) sum of
lengths of pipe segments within an arc equals to the length of
this arc.
Decision variables: (1) Lengths of pipe segments of constant (all
available) pipe diameters (so called split-pipe decision variables),
(2) flows in pipes.

Water quality: N/A.
Network analysis: Flow in pipes is
calculated using projected gradient
method within an optimisation
process.
Optimisation method: LP gradient
method.

• A looped network is used, assuming that flow distribution is known.
In the first phase, the pipeline cost for a known flow distribution is
minimised using LP. In the second phase, flows are redistributed
based on the gradient of the objective function (GOF). These steps
repeat iteratively converging to a local optimum.

• In contrast to [204], it is proved that the mathematical expression of
the GOF is independent of the initial choice of the sets of loops and
paths, which are used for formulation of the head constraints
(conservation of energy).

• Results: The optimal solution obtained is comparable to the best
known solution [205] with the flows distributed more evenly.

• Test networks: (1) Two-loop network supplied by gravity (incl.
7 nodes) [14].

4. Lansey and Mays (1989) [16]
SO
Optimal WDS design, rehabilitation and
operation considering multiple loading
conditions using nonlinear programming
(NLP) with a two-phase procedure.

Objective (1): Minimise (a) the design cost of the network
including pipes, pumps and tanks, (b) penalty cost for violating
nodal pressure heads.
Constraints: (1) Lower and upper pressure bounds at nodes, (2)
design constraints (i.e., storage requirements), (3) general
constraints.
Decision variables: (1) Pipe diameters (continuous), (2) pump
sizes (horsepower or head-flow), (3) valve settings, (4) tank
volumes.

Water quality: N/A.
Network analysis: KYPIPE [12].
Optimisation method: NLP solver
generalised reduced gradient
(GRG2) [206].

• The solution algorithm consists of an inner and outer loop, where the
inner loop links KYPIPE with GRG2 and the outer loop updates
penalty parameters. The augmented Lagrangian penalty method is
used to incorporate nodal pressure head constraints in the
objective function.

• The final solution is modified, so that a pipe within a link is split into
two pipes of upper- and lower-sized commercially available (discrete)
diameters closest to the obtained optimal (continuous) diameter.

• Multiple demand loads are analysed (i.e., combination of
instantaneous peak, daily peak and fire demands at the
selected nodes).

• Results: The method determines optimal sizes/settings of all
network components with the limitation of continues (rather than
discrete) values for pipes and pumps.

• Test networks: (1) Anytown network [84] with modifications (incl.
16 nodes), (2) network example 5A (incl. 13 nodes) from KYPIPE
[12].

5. Lansey et al. (1989) [110]
SO
Optimal WDS design including
uncertainties in demands, minimum
pressure requirements and pipe
roughnesses using NLP.

Objective (1): Minimise (a) the design cost of the network (pipes).
Constraints: (1) Conservation of mass of flow and energy, (2) min
pressure at the nodes, (3) pipe diameter bigger than or equal to
zero.
Decision variables: (1) Pipe diameters (continuous), (2) pressure
head at nodes.

Water quality: N/A.
Network analysis: Network
hydraulics is included as a
constraint to the optimisation
model.
Optimisation method: NLP solver
GRG2 [206].

• The model includes uncertainties in (i) demands, (ii) minimum
pressure head requirements and (iii) pipe roughnesses, they are
included as chance constraints (CC).

• Constraints (1) and (2), initially expressed as probabilities, are
transformed into a deterministic form using the concept of the
cumulative probability distribution, where model uncertainties are
assumed to be normal random variables. The final
chance-constrained optimisation model represents a NLP problem.

• Results: A more reliable WDS design is obtained when
including uncertainties.

• Test networks: (1) Two-loop network supplied by gravity (incl.
7 nodes), (2) more realistic size network with 33 pipes (incl.
16 nodes).
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Table A1. Cont.

ID. Authors (Year) [Ref]
SO/MO *
Brief Description

Optimisation Model (Objective Functions +, Constraints **,
Decision Variables ++)

Water Quality
Network Analysis
Optimisation Method

Notes

6. Eiger et al. (1994) [115]
SO
Optimal WDS design with split pipes
using mixed-integer NLP (MINLP) with
a two-phase procedure.

Objective (1): Minimise (a) the design cost of the network (pipes).
Constraints: (1) Pressure limitations at selected nodes, (2) sum of
lengths of pipe segments within an arc equals to the length of
this arc.
Decision variables: (1) Lengths of pipe segments of constant (all
available) pipe diameters (so called split-pipe decision variables),
(2) flows in pipes.
Note: Same formulation as in Kessler and Shamir (1989).

Water quality: N/A.
Network analysis: Flow in pipes is
calculated using projected gradient
method within an optimisation
process.
Optimisation method: Branch and
bound (BB) method.

• The optimisation model is decomposed into two models, inner
(linear) and outer (nonsmooth and nonconvex) problems, which are
solved by the LP solver CPLEX [207] and bundle trust region
method, respectively. The dimension of the outer problem is
significantly reduced by an affine transformation. This process is
further referred to as primal.

• Using the duality theory, a dual problem paired with the original
problem is formulated and solved by CPLEX to estimate a global
lower bound of the solution. This process is further referred to
as dual.

• Both of these processes, primal and dual, are combined in a BB
type algorithm.

• Results: The proposed method produces better (and feasible)
solutions than previously used methods [14,49].

• Test networks: (1) Two-loop network supplied by gravity (incl.
7 nodes) [14], (2) Hanoi network (incl. 32 nodes) [49], (3) complex
two-loop network (incl. 8 nodes) [14], (4) real network (incl.
52 nodes) [14].

7. Kim and Mays (1994) [17]
SO
Optimal WDS rehabilitation and
operation over a planning horizon (e.g.,
20 years) using MINLP with a two-phase
procedure.

Objective (1): Minimise the sum of the present value of the (a)
pipe replacement cost, (b) pipe rehabilitation cost, (c) expected
pipe repair (i.e., break repair) cost, (d) pump energy cost.
Constraints: (1) Demand supplied to each node should be greater
or equal to the required demand, (2) min/max pressures at
demand nodes, (3) constraints on binary decision variables
representing pipe replacement and rehabilitation options, (4)
constraints on continuous decision variables representing the
diameter of the replaced pipe and pump horsepower.
Decision variables: (1) Pipe replacement option (binary), (2) pipe
rehabilitation option (binary), (3) pipe diameters of the replaced
pipes (continuous), (4) pump horsepower (continuous).

Water quality: N/A.
Network analysis: KYPIPE [12].
Optimisation method: BB method
combined with GRG2 [206].

• The optimisation problem is formulated as a MINLP problem. This
problem is divided into the following two phases within an
optimisation procedure.

• The NLP subproblem, which involves continuous decision variables,
such as pipe diameters and pumping powers, is solved by GRG2
linked with KYPIPE. Nodal pressure head constraints are
implemented using the augmented Lagrangian penalty method.

• The master problem, which involves binary decision variables, such
as pipe replacement and rehabilitation options, is solved by a BB
implicit enumeration procedure.

• The global optimum cannot be guaranteed.
• Results: The method is able to find optimal solutions, which is

supported by the comparison with the minimum cost obtained from
the 1000 random system configurations.

• Test networks: (1) Simple network with 4 pipes and 1 pump (incl.
3 nodes), (2) network with 17 pipes and 1 pump (incl. 12 nodes), (3)
network with 43 pipes and 1 pump (incl. 27 nodes).

8. Murphy et al. (1994) [96]
SO
Optimal WDS strengthening, expansion,
rehabilitation and operation considering
multiple loading conditions using
genetic algorithm (GA).

Objective (1): Minimise the design cost of the network including
(a) pipes, (b) pumps, (c) tanks, and (d) the pump energy costs.
Constraints: (1) Limits for nodal pressure heads, (2) limits for
tank water levels.
Decision variables: Options for (1) new pipes, (2) duplicated
pipes, (3) cleaned/lined pipes, (4) pumps, (5) tanks.

Water quality: N/A.
Network analysis: Unspecified
steady state hydraulic solver.
Optimisation method: GA.

• Pipe costs are calculated for the lengths of new pipes (i.e., network
expansion), pipes laid in parallel to the existing pipes as duplications
(i.e., network strengthening), and existing pipes cleaned and lined
(i.e., network rehabilitation).

• Four demand loadings are considered, these include instantaneous
peak flow and three fire flow conditions at various nodes around
the network.

• Results: The obtained solution compares favourably with the
previous designs presented in [84].

• Test networks: (1) Anytown network (incl. 19 nodes) [84].
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Table A1. Cont.

ID. Authors (Year) [Ref]
SO/MO *
Brief Description

Optimisation Model (Objective Functions +, Constraints **,
Decision Variables ++)

Water Quality
Network Analysis
Optimisation Method

Notes

9. Loganathan et al. (1995) [116]
SO
Optimal WDS design and strengthening
with split pipes using a combination of
LP, mutlistart local search and simulated
annealing (SA) in a two-phase
procedure.

Objective (1): Minimise (a) the design cost of the network (pipes).
Constraints: (1) Min pressure at the nodes, (2) sum of pipe
segment lengths must be equal to the link length, (3)
nonnegativity of segment lengths.
Decision variables: (1) Lengths of pipe segments of known
diameters (so called split-pipe decision variables).

Water quality: N/A.
Network analysis: Explicit
mathematical formulation (steady
state).
Optimisation method: Combined
LP, mutlistart local search and SA.

• The problem is solved by using an inner-outer optimisation
procedure as follows.

• Inner: for a fixed set of flows, a LP problem is solved to obtain
(least-cost) pipe diameters and heads.

• Outer: the flows are altered (optimised) using two global
optimisation techniques, multistart local search and SA. Initially, a set
of flows corresponding to a near optimal spanning tree of the
network is found. The flows in the looped network are then taken as
the perturbed tree link flows.

• Results: The proposed optimisation method yields better least-cost
designs than those previously reported in the literature.

• Test networks: (1) Two-loop network supplied by gravity (incl.
7 nodes) [14], (2) New York City tunnels (incl. 20 nodes) [81].

10. Dandy et al. (1996) [85]
SO
Optimal WDS strengthening using GA.

Objective (1): Minimise (a) the sum of material and construction
costs of pipes, (b) the penalty cost for violating the pressure
constraints.
Constraints: (1) Min/max pressure limits at certain network
nodes, (2) min diameters for certain pipes in the network.
Decision variables: (1) Pipe diameters (discrete diameters are
coded using binary substrings).

Water quality: N/A.
Network analysis: KYPIPE [12]
and another hydraulic solver
developed for the paper.
Optimisation method: GA.

• Improved GA is used incorporating: (i) variable power scaling of the
fitness function using a new variable exponent, which is initially kept
low to preserve population diversity and allow global exploration,
and gradually increases to emphasise fitter strings; (ii) adjacency or
creeping mutation operator, which allows local exploration; (iii) Gray
codes instead of binary codes representing decision variables to
ensure that nearby designs are coded similarly.

• Results: A solution found by the improved GA for the New York
tunnels problem is the lowest-cost feasible discrete solution
yet published.

• Test networks: (1) New York City tunnels (incl. 20 nodes) [81].

11. Halhal et al. (1997) [63]
MO
Optimal WDS rehabilitation and
strengthening over a planning horizon
(e.g., several years) using structured
messy GA (SMGA).

Objective (1): Maximise the weighted sum of the following
benefits of the network: (a) hydraulic performance, (b) physical
integrity of the pipes, (c) system flexibility, (d) water quality.
Objective (2): Minimise the cost (supply and installation) of the
network including (a) new parallel pipes (i.e., duplication), (b)
cleaning and lining existing pipes, (c) replacing existing pipes.
Constraints: (1) Costs cannot exceed the available budget.
Decision variables: String comprising 2 substrings: (1) substring
consisting of pipe numbers, (2) substring consisting of decisions
associated with those pipes (8 possible decisions).
Note: One MO model including both objectives.

Water quality: A general water
quality consideration.
Network analysis: EPANET.
Optimisation method: SMGA.

• Hydraulic performance benefit is quantified as the difference
between the pressure deficiencies in the initial network and in the
solution found. Physical integrity benefit is quantified using break
repair costs for the renewed pipes. System flexibility and water
quality benefits are quantified using the total diameter for the
parallel pipes and the total length of renewed or relined pipes.
Regarding water quality, old pipes usually create sites for the
development of microorganisms and/or discoloured water.

• A SMGA is introduced. It starts by evaluating all possible single
variable decisions, the best of which are kept for the initial
population. As the algorithm progresses, the short strings are
concatenated to form longer strings. This enables to start with
cheaper solutions which stay under budget from the very beginning.
The SMGA encodes only those decision variables which are active
thereby reducing the search space.

• Results: SMGA displays outstandingly superior performance over
the standard GA for the real network.

• Test networks: (1) Small looped network with 15 pipes (incl.
9 nodes), (2) real network with 167 pipes and 1 reservoir for a town
of 50000 inhabitants in Morocco (incl. 115 nodes).
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12. Savic and Walters (1997) [42]
SO
Optimal WDS design and strengthening
using GA.

Objective (1): Minimise (a) the design cost of the network (pipes).
Constraints: (1) Min pressure at the nodes.
Decision variables: (1) Pipe diameters (discrete).

Water quality: N/A.
Network analysis: Network solver
based on the EPANET.
Optimisation method: GANET
[208] using GA.

• A program GANET for least-cost pipe network design is developed,
implementing a modified GA. The modifications include, for
example, the use of Gray codes instead of binary codes, allowing
some infeasible solutions to join the population and help guide
the search.

• Discrete diameters solutions (obtained by GANET) are compared to
split-pipes and continuous diameters solutions, previously published
in the literature by [14,114,115,204].

• Results: GANET produced good designs without unnecessary
restrictions imposed by split-pipe or linearising assumptions.

• Test networks: (1) Two-loop network supplied by gravity (incl.
7 nodes) [14], (2) Hanoi network (incl. 32 nodes) [49], (3) New York
City tunnels (incl. 20 nodes) [81].

13. Cunha and Sousa (1999) [102]
SO
Optimal WDS design using SA.

Objective (1): Minimise (a) the design cost of the network (pipes).
Constraints: (1) Min pressure at the nodes, (2) min pipe diameter.
Decision variables: (1) Pipe diameters (discrete).

Water quality: N/A.
Network analysis: Newton method
to solve hydraulic equations to
obtain flows and heads.
Optimisation method: SA.

• The optimisation problem is solved as follows: initial set of pipe
diameters is selected, hydraulic equations are solved using a Newton
method, constraints are checked, SA is performed and the process is
repeated until the optimal solution is found.

• Discrete diameters solutions (obtained by SA) are compared to
split-pipes, continuous diameters, as well as discrete diameter
solutions, previously published in the literature by
[14,42,49,114,115,204,209–211].

• Results: SA can provide high quality solutions for network
design problems.

• Test networks: (1) Two-loop network supplied by gravity (incl.
7 nodes) [14], (2) Hanoi network (incl. 32 nodes) [49].

14. Gupta et al. (1999) [188]
SO
Optimal WDS strengthening and
expansion using GA with search space
reduction.

Objective (1): Minimise (a) the design cost of the network (pipes),
(b) penalty for violating minimum residual head.
Constraints: (1) Min residual head, (2) min desirable velocity in a
pipe.
Decision variables: (1) Pipe diameters (discrete).

Water quality: N/A.
Network analysis: ANALIS [212].
Optimisation method: GA.

• In GA, the solution is represented by a chromosome to avoid the
conversion of binary coding to discrete pipe sizes.

• The test networks are stratified into upper, middle and lower
diameter sets using engineering judgment, which helps reduce the
search space and facilitate faster convergence to the optimum.

• Results: GA provides a better solution in general while compared
with the NLP technique. Additionally, the GA convergence
considerably improved by providing initial information on
network stratification.

• Test networks: (1) Network with 38 pipes (incl. 23 nodes), (2) same
as network (1) with a significantly different demand pattern, (3)
network with 52 pipes (incl. 31 nodes), (4) same as network (3) with a
different demand pattern, (5) network with 28 pipes (incl. 18 nodes),
(6) network with 13 pipes (incl. 11 nodes).
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15. Halhal et al. (1999) [131]
MO
Optimal WDS rehabilitation and
strengthening over a planning horizon
(i.e., 10 years) using SMGA.

Objective (1): Maximise the present value of the benefit of the
network rehabilitation over the planning period (incorporating
the welfare index), using the following performance criteria: (a)
carrying capacity, (b) physical integrity of the pipes, (c) system
flexibility, (d) water quality.
Objective (2): Minimise (a) the present value of the rehabilitation
costs over the planning period.
Constraints: (1) Rehabilitation costs less than or equal to the
budget.
Decision variables: String comprising 3 substrings (1) location
substring: pipe numbers of pipes scheduled for rehabilitation
(integer), (2) decision substring: rehabilitation option (integer),
(3) timing substring: year of rehabilitation execution (integer).
Note: One MO model including both objectives.

Water quality: A general water
quality consideration.
Network analysis: Unspecified
solver (steady state).
Optimisation method: SMGA.

• Carrying capacity is represented by the hydraulic performance,
which is calculated as the sum of nodal pressure excesses and
shortfalls weighted by the demand flows. Physical integrity is
included as a function of the breakage repair costs, with new pipes
considered break-free. System flexibility is determined as a function
of the number of new parallel pipes. Water quality is included as a
function of the length of renewed and/or lined old pipes having
Hazen-Williams coefficient below a specified limit. Old corroded
pipes are considered to cause the development of microorganism and
discoloured water.

• SMGA has flexible coding and variable string length. Its difference
from a conventional GA is that it uses, besides common GA
operators, a process of concatenation. Basically, it starts with a
population of one-element strings corresponding to a single decision
variable (e.g., rehabilitation option for one pipe only) and gradually
increases the length of the strings as populations evolve. The
advantage of the SMGA is in reducing the space searched, while
considering only the pipes which need alteration as opposed to all
pipes in a conventional GA.

• Results: The impact of varying parameters (interest and inflation
rates, welfare index, pipe roughness) on the optimal solutions is
presented. For example, higher welfare index enables greater initial
investment and benefit.

• Test networks: (1) Simple system with 15 pipes and 1 reservoir (incl.
9 nodes).

16. Montesinos et al. (1999) [86]
SO
Optimal WDS strengthening using GA.

Objective (1): Minimise (a) the design cost of the network (pipes).
Constraints: (1) Min pressure at the nodes, (2) max velocity in the
pipes.
Decision variables: (1) Pipe diameters (discrete).

Water quality: N/A.
Network analysis:
Newton-Raphson method [10].
Optimisation method: GA.

• A modified GA with several changes to selection and mutation is
introduced. “In each generation a constant number of solutions is
eliminated, the selected ones are ranked for crossover and the new
solutions are allowed to undergo at most one mutation”. The GA
convergence significantly increases as a result of these modifications.

• A penalty factor is defined as a function of a number of constraint
violations (not taking into account the degree of violation).

• Results: The modified GA found the best-known solution for the test
network in fewer evaluations than previous GA algorithms.

• Test networks: (1) New York City tunnels (incl. 20 nodes) [81].
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17. Walters et al. (1999) [99]
MO
Optimal WDS strengthening, expansion,
rehabilitation and operation with
multiple loading conditions and two
approaches to model tanks using SMGA.
Note: Discussion: [213], Erratum to
Discussion: [214]

Objective (1): Maximise the weighted sum of the benefits of the
network rehabilitation, using the following performance criteria:
(a) nodal pressure shortfall, (b) storage capacity difference, (c)
tank operating level difference or tank flow difference.
Objective (2): Minimise (a) the capital cost of the network
including pipes, pumps, tanks, (b) present value of the energy
consumed during a specified period.
Constraints: (1) Pressure constraints for different loading
patterns, (2) flow constraints into and out of the tanks.
Decision variables: String comprising 2 substrings (1) location
substring: pipes, pumps, tanks (integer of 1 or 2 digits), (2)
decision substring (expansion/rehabilitation options): pipes,
pumps, tanks (integer of 1, 2 or 5 digits).
Note: One MO model including both objectives.

Water quality: N/A.
Network analysis: Unspecified
solver (steady state).
Optimisation method: SMGA.

• Two approaches to model tanks are tested, which differ in a way they
determine the operating levels for new tanks. The first approach
computes tank levels analytically during the network analysis, the
second approach includes tank levels as independent variables. For
the test network, both approaches yielded similar results, with the
first approach obtaining more robust solutions in slightly increased
computational time.

• The previously published SMGA [63,131] is expanded to include not
only pipe rehabilitation, but also pump and tank installations as
decision variables. Variable mutation rate as a function of the string
length and the nature of the decision variable is used. For more
information about SMGA, see [131].

• Results: Two solutions are presented, the cheapest feasible solution
and the most operationally satisfactory solution (preferred by the
authors). These solutions are 4–5% cheaper than any previously
published solutions to the Anytown problem.

• Test networks: (1) Anytown network (incl. 19 nodes) [84].

18. Costa et al. (2000) [60]
SO
Optimal WDS design and operation
using SA.

Objective (1): Minimise the capital cost of the network including
(a) pipes, (b) pumps, (c) present value of pump energy costs.
Constraints: (1) Min head bound on demand nodes.
Decision variables: (1) Pipe diameters (discrete), (2) pump sizes
(discrete).

Water quality: N/A.
Network analysis:
Newton-Raphson method [10].
Optimisation method: SA.

• Operating costs of pumps are calculated in terms of operating hours
per year. The network model presents a realistic representation of the
pump behaviour, including the head characteristic curve.

• Results: The algorithm reaches optimal solutions with the average
number of 11817-13454 simulations for the test networks.

• Test networks: (1) Gravity network with one reservoir (incl. 9 nodes),
(2) network with one pump and one reservoir (incl. 10 nodes), (3)
network with one pump and 2 reservoirs (incl. 11 nodes).

19. Dandy and Hewitson (2000) [120]
SO
Optimal WDS design, strengthening and
operation including water quality
considerations using GA with search
space reduction.

Objective (1): Minimise (a) the capital cost of new pipes, pumps
and tanks, present value of (b) pump energy costs, (c) likely cost
to the community due to waterborne diseases, (d) likely
community cost due to disinfection by-products, (e) community
cost of chlorine levels that exceed acceptable limits, (f) cost of
disinfection, (g) penalty cost for violating constraints.
Constraints: (1) Min pressure at the demand nodes, (2) tanks
must refill at the end of the cycle.
Decision variables: (1) Sizes of new and duplicate pipes, (2) sizes
of new pumps and tanks, (3) locations of new pumps and tanks,
(4) decision rules for operating the system, (5) dosing rates of
chloramine/chlorine at selected points.

Water quality: Chloramine,
chlorine.
Network analysis: EPANET
(extended period simulation (EPS)).
Optimisation method: GA.

• A total of 6 different demand patterns are used, ranging from peak
instantaneous to 38 days of winter demand.

• The periods of simulation for each season, which reflect the residence
times for a season, were found to be necessary in order to reach a
pseudo steady state for that season.

• The problem is very complex (the GA string consists of 222 integer
variables) with long run times. To reduce the size of the search space,
a run with peak instantaneous demand was undertaken, then a run
with peak daily demand. Out of 206 only 40 pipes that were
duplicated in either of these runs were included as options in the
total system analysis. It was found that better overall convergence
occurred if the GA was run with hydraulic analysis only for several
first generations, water quality analysis was subsequently added.

• Results: The advantages of including design, operations and water
quality in a single framework are demonstrated. In the design phase,
allowance can be made for reducing residence times, thus improving
water quality.

• Test networks: (1) Yorke Peninsula, a rural area west of
Adelaide, Australia.
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20. Vairavamoorthy and Ali (2000) [43]
SO
Optimal WDS design and strengthening
incorporating a linear transfer function
(LTF) model to approximate network
hydraulics using GA.

Objective (1): Minimise (a) the capital cost of the network (pipes),
(b) penalty for violating the pressure constraints.
Constraints: (1) Min/max pressure at the nodes.
Decision variables: (1) Pipe diameters (discrete).

Water quality: N/A.
Network analysis: Steady state
hydraulic solver based on the
gradient method [215].
Optimisation method: GA.

• Real coding is applied instead of binary coding (binary and Gray
coding often generate redundant states which do not represent any
of the design variables).

• A variable penalty coefficient is introduced that depends on the
degree of constraint violation.

• LTF model is proposed which approximates the hydraulic behaviour
of the system, so there is no need for each population member to be
evaluated by a hydraulic solver. Instead, the LTF is used to estimate
pressures for each string generated by the GA.

• Results: Obtained solutions are favourable while compared to the
results of previous studies [42,85,216].

• Test networks: (1) Hanoi network (incl. 32 nodes) [49], (2) New York
City tunnels (incl. 20 nodes) [81].

21. Dandy and Engelhardt (2001) [130]
SO
Optimal WDS rehabilitation (considering
only pipe replacement) over a planning
horizon (i.e., 20 years) using GA.

Objective (1): Minimise (a) the system cost of the rehabilitated
network (pipes)—present values of pipe failure costs (i.e., repair
costs of existing and new pipes) and pipe replacement costs are
considered.
Constraints (case 1): N/A.
Constraints (case 2): (1) Allowable budget for each time step (i.e.,
5-year block).
Constraints (case 3): (1) As above in the case 2, (2) min pressure
at the nodes, (3) max velocity in the pipes.
Decision variables (case 1): (1) Replacement decision (0 = no
replacement, 1 = replace).
Decision variables (case 2): (1) Timing of the replacement
(integer) (“all pipe representation”); or (1) pipe to be replaced
(integer), (2) timing of the replacement (integer) (“limited pipe
representation”).
Decision variables (case 3): (1)–(2) as above in the case 2, (3)
diameter of the new pipe (integer).

Water quality: N/A.
Network analysis: EPANET (Case
3 only).
Optimisation method: GA.

• The economic analysis of the system is undertaken in three stages
as follows.

• Case 1 “single time-step case” is to decide if the pipes need
immediate replacement or should be left in operation.

• Case 2 “multiple time-step case” is to schedule pipe replacements for
the next 20 years, in 5-year steps.

• Case 3 “multiple time-step case with changing diameters” is to
determine the diameter of the replaced pipes, which is included as a
decision variable.

• Failure prediction equations were developed for the test network
based on recorded failure data.

• Two ways to represent chromosomes in GA are considered. One is
“all pipe representation”, which includes the decision bit for all the
pipes in the network; the other is “limited pipe representation”,
where an upper limit to the number of pipes to be replaced is
considered. The size of the search space for the latter representation
is smaller than the first one, therefore it is considered a more
preferable representation.

• Results: The GA demonstrated ability to schedule future works.
• Test networks: (1) The EL103N pressure zone, Adelaide, Australia.
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22. Wu and Simpson (2002) [88]
SO
Optimal WDS strengthening using fast
messy GA (fmGA).

Objective (1): Minimise (a) the design cost of the network (pipes),
(b) penalty for violating the pressure constraint.
Constraints: (1) Min pressure at the nodes.
Decision variables: (1) Pipe diameters (discrete).

Water quality: N/A.
Network analysis: EPANET.
Optimisation method: fmGA.

• A self-adaptive boundary search strategy is proposed for selection of
the penalty factor within the GA. It evolves and adapts the penalty
factor, so the search is guided to the boundary of the feasible and
infeasible spaces. The penalty factor is treated as another decision
variable (part of the solution string). In addition, a heuristic rule is
developed to adjust the lower and upper boundaries of the
penalty factor.

• Results: The proposed algorithm finds the least-cost solution in the
case study more effectively than a GA without the boundary
search strategy.

• Test networks: (1) New York City tunnels (incl. 20 nodes) [81].

23. Eusuff and Lansey (2003) [103]
SO
Optimal WDS design and strengthening
using shuffled frog leaping algorithm
(SFLA).

Objective (1): Minimise (a) the design cost of the network (pipes),
(b) penalty cost for pressure head violations.
Constraints: (1) Min pressure at the nodes.
Decision variables: (1) Pipe diameters (discrete).

Water quality: N/A.
Network analysis: EPANET.
Optimisation method: SFLA.

• SFLA is a hybrid between particle swarm optimisation (PSO) (which
provides local search tool) and shuffled complex evolution (SCE)
algorithm (which helps move towards global solution).

• The difference between the SFLA and GA is that in the SFLA an
improved idea can be passed between all individuals of the
population versus parent-child only interaction in GA.

• Results: When compared to GA and SA in regards to the efficacy,
SFLA is more efficient as it found the best-known optimal solutions
in fewer iterations.

• Test networks: (1) Two-loop network supplied by gravity (incl.
7 nodes) [14], (2) Hanoi network (incl. 32 nodes) [49], (3) New York
City tunnels (incl. 20 nodes) [81].

24. Maier et al. (2003) [104]
SO
Optimal WDS strengthening, expansion
and rehabilitation using ant colony
optimisation (ACO).

Objective (1): Minimise (a) the design cost of the network (pipes),
(b) penalty for violating the pressure constraint.
Constraints: (1) Min pressure at the nodes.
Decision variables: (1) Pipe diameters (discrete), (2) pipe
rehabilitation options (binary).

Water quality: N/A.
Network analysis: WADISO [217],
final solutions checked by EPANET.
Optimisation method: ACO.

• The main difference between GA and ACO is in generating the trial
solutions. In GAs, trial solutions are represented as strings of genetic
material, new solutions are obtained by modifying previous
solutions, so the system memory is embedded in the actual trial
solutions. In ACO, the system memory is contained in the
environment, rather than the trial solutions, hence ACO may be more
advantageous in certain types of applications.

• A modification is made to the way pheromone concentration is
changed, which ensures that the method does not get trapped in a
local optimum.

• Results: The comparison of GA and ACO shows that ACO is a good
alternative to GA, having found the same solution in a similar
number of iterations for the 14-pipe network, and a better (lower
cost) solution with a significantly higher computational efficiency for
the New York City tunnels.

• Test networks: (1) 14-pipe network with two supply sources (incl.
10 nodes) [20], (2) New York City tunnels (incl. 20 nodes) [81].
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25. Liong and Atiquzzaman (2004) [157]
SO
Optimal WDS design using SCE.

Objective (1): Minimise (a) the design cost of the network (pipes),
(b) penalty cost for violating the pressure head bound.
Constraints: (1) Min nodal pressure head bound, (2) min/max
bound on pipe sizes.
Decision variables: (1) Pipe sizes (converted to commercially
available diameters).

Water quality: N/A.
Network analysis: EPANET.
Optimisation method: SCE [218].

• SCE is an evolutionary algorithm (EA) combined with a simplex
algorithm [219]. The original SCE algorithm is modified to
accommodate high number of decision variables.

• The SCE algorithm is compared to the GA, SA, GLOBE [220]
and SFLA.

• Results: For the two-loop network, SCE converged after a
significantly lower number of function evaluations, and for both test
networks, SCE found an optimal solution notably faster, than other
optimisation techniques.

• Test networks: (1) Two-loop network supplied by gravity (incl.
7 nodes) [14], (2) Hanoi network (incl. 32 nodes) [49].

26. Broad et al. (2005) [87]
SO
Optimal WDS strengthening including
water quality considerations using
offline artificial neural networks (ANNs)
and GA.

Objective (1): Minimise (a) the design cost of the network (pipes),
(b) penalty cost for violating pressure head, (c) penalty cost for
violating chlorine residual.
Constraints: (1) Min/max pressure at the nodes, (2) min/max
chlorine residual at the nodes.
Decision variables: (1) Pipe diameters, (2) chlorine dosing rates.

Water quality: Chlorine.
Network analysis: Offline ANN.
Optimisation method: GA.

• The methodology uses ANN as a substitute for a simulation model in
order to reduce the computational time.

• Because it is unlikely that ANN is able to perfectly represent the
simulation model, two techniques are used to combat ANN
inaccuracies as follows.

• The first technique is to ensure feasibility, so solutions found by the
ANN-GA are evaluated by EPANET in 3 stages: (i) each new best
solution found by the ANN-GA is evaluated by EPANET; (ii) several
top solutions are evaluated by EPANET when GA converges; (iii)
local search is conducted after GA convergence.

• The second technique is to adjust the constraints to cater for ANN
underestimating or overestimating pressure and chlorine residuals.

• Results: While optimising with ANN, the most time is spent on
training the ANN. If the training time is included, the overall time
saving for ANN-GA is 21% compared to EPANET-GA. Otherwise,
ignoring the training time, the ANN-GA is 700 faster
than EPANET-GA.

• Test networks: (1) New York City tunnels (incl. 20 nodes) [81].

27. Farmani et al. (2005) [65]
MO
Optimal WDS design and strengthening
using non-dominated sorting genetic
algorithm II (NSGA-II) and strength
Pareto evolutionary algorithm 2
(SPEA2).

Objective (1): Minimise (a) the design cost of the network (pipes).
Objective (2): Minimise (a) the maximum individual head
deficiency at the network nodes.
Objective (3) (only for the EXNET test network): Minimise (a)
the number of demand nodes with head deficiency.
Constraints: N/A.
Decision variables: (1) Pipe diameters (discrete).
Note: Two MO models, the first including objectives (1) and (2)
(applied to the New York City tunnels and Hanoi network); the
second objectives (1), (2) and (3) (applied to the EXNET network).

Water quality: N/A.
Network analysis: EPANET.
Optimisation method: NSGA-II
and SPEA2 are compared.

• NSGA-II and SPEA2 are compared in terms of non-dominated fronts
obtained by these algorithms, using (i) graphical presentation, (ii)
binary ε-indicator, (iii) binary coverage indicator, (iv) (only for
EXNET test network) volume-based indicator.

• Results: NSGA-II and SPEA2 are comparable and have the potential
to find Pareto optimal solutions for WDS design problems. The
results further show that SPEA2 outperformed NSGA-II in both MO
optimisation problems, which is illustrated by graphical presentation
as well as all indicators.

• Test networks: (1) New York City tunnels (incl. 20 nodes) [81], (2)
Hanoi network (incl. 32 nodes) [49], (3) simplified EXNET water
network (serves a population of approximately 400000) [82].
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28. Keedwell and Khu (2005) [44]
SO
Optimal WDS design using a combined
cellular automaton for network design
algorithm (CANDA) and GA
(CANDA-GA) including an engineered
initial population.

Objective (1): Minimise (a) the design cost of the network (pipes),
(b) penalty for violating the pressure constraint.
Constraints: (1) Min/max pressure at the nodes.
Decision variables: (1) Pipe diameters (discrete).

Water quality: N/A.
Network analysis: EPANET.
Optimisation method:
CANDA-GA.

• A heuristic-based cellular automaton (CA) [221] approach is
introduced to provide a good initial population of solutions for
GA runs.

• A CA consists of an interconnected set of nodes that use a number of
rules to update the state of every node according to the states of
neighbouring nodes. The rules here are based on the intuitive
knowledge of how the WDSs operate, so they are similar to
engineering judgment. An important feature of the CA is that
updates for every node are performed in parallel. CA does not
produce the best solutions but it is capable of producing a good
approximate solution in much less network simulations than GA.

• Results: For the two-loop network, the results of GA and
CANDA-GA are similar, with CANDA-GA producing a slightly
better solution. For both real networks, CANDA-GA finds feasible
solutions whereas GA fails to do so.

• Test networks: (1) Two-loop network supplied by gravity (incl.
7 nodes) [14], (2) network A: real network with a single reservoir and
632 pipes, UK (incl. 535 demand nodes) [222], (3) network B: real
network with a single reservoir and 1277 pipes, UK (incl.
1106 nodes).

29. Ostfeld (2005) [53]
SO
Optimal design and operation of
multiquality WDSs including multiple
loading conditions and water quality
considerations using GA.

Objective (1): Minimise (a-D ?) the construction costs of pipes,
tanks, pump stations and treatment facilities, (b-OP ??) annual
operation costs of pump stations and treatment facilities.
Constraints: (1) Min/max heads at consumer nodes, (2) max
permitted amounts of water withdrawals at sources, (3) tank
volume deficit at the end of the simulation period, (4) min/max
concentrations at consumer nodes, (5) removal ratio constraints.
Decision variables: D: (1) Pipe diameters, (2) tank max storage,
(3) max pumping unit power, (4) max removal ratios at treatment
facilities, OP: (5) scheduling of pumping units, (6) treatment
removal ratios.

Water quality: Unspecified
conservative parameters.
Network analysis: EPANET (EPS).
Optimisation method: GA.

• Time horizon is 24 h, with a varied energy tariff and unsteady water
flow conditions. Similar to [223], cyclic water quality behaviour is
not accomplished, so the results depend on the initial settings of the
concentrations at the nodes.

• Multiple loading conditions (demands) are used.
• Sensitivity analysis is performed with the following modifications to

the data or constraints. The two-loop network: increased minimum
pressure constraint at one consumer node, increased maximum
concentration limit for all consumer nodes, increased operational
unit treatment cost coefficient. The Anytown network: reduced unit
power cost of pump construction and energy tariffs, altered pressure
and concentration constraints at one consumer node, decreased
elevation at one consumer node.

• Results: The model explicitly addresses the conjunctive design and
operation problem of quantity, pressure and quality simultaneously
under unsteady hydraulics, but is expensive in terms of the
computational resources.

• Test networks: (1) Two-loop network with 3 sources (incl. 6 demand
nodes) [223], (2) Anytown network [84] with modifications (incl.
16 nodes).
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30. Vairavamoorthy and Ali (2005) [189]
SO
Optimal WDS design using GA with a
pipe index vector (PIV) and search space
reduction in a three-phase procedure.

Objective (1): Minimise (a) the design cost of the network (pipes).
Constraints: (1) Min/max pressure at the nodes.
Decision variables: (1) Pipe diameters (discrete).

Water quality: N/A.
Network analysis: Explicit
mathematical formulation (steady
state for peak demands).
Optimisation method: GA with
PIV.

• PIV, a measure of the relative importance of pipes regarding their
hydraulic performance in the network, is introduced. Using PIV,
impractical and infeasible regions can be excluded from the search
space, enabling quicker generation of feasible solutions resulting in
substantial computational time savings.

• The proposed method involves the following three steps: (i)
establishing tighter bound constraints on all pipes using simple
heuristics before the GA starts; (ii) calculating a pipe index, ranking
the pipes and dividing them into groups (i.e., constructing PIV), and
generating the initial population using PIV; (iii) reducing the search
space during the GA itself.

• It is found that calculating pipe indices is computationally expensive,
therefore a surrogate measure is proposed to compute them.

• Results: The proposed method outperforms the standard GA in both
convergence and computational time.

• Test networks: (1) Alandur network, Madras, India (incl. 82 nodes)
[224], (2) Hanoi network (incl. 32 nodes) [49].

31. Vamvakeridou-Lyroudia et al. (2005)
[93]
MO
Optimal WDS strengthening, expansion,
rehabilitation and operation considering
multiple loading conditions using GA
with fuzzy reasoning.

Objective (1): Minimise (a) the design cost of the network
including pipes, pumps and tanks.
Objective (2): Maximise the benefit/quality of the solution, using
the following system performance criteria (constraints): (a) min
pressure at the nodes, (b) max velocity in the pipes, (c) safety
volume capacity for tanks, (d) safety volume capacity for the
network as a whole, (e) pump operational capacity, (f)
operational volume capacity for tanks, (g) filling capacity for
tanks, (h) operational volume capacity for the network as a
whole, (i) filling capacity for the network as a whole.
Constraints: N/A.
Decision variables: (1) Commercially available pipe diameters
(integer), (2) cleaning/lining of existing pipes (binary: 0 = no
action, 1 = cleaning/lining), (3) the number of new pumps
(integer) with pre-defined operation curve, (4) volume of a new
tank (integer, 0 = no tank), (5) min operational level of this tank
(integer).
Note: One MO model including both objectives.

Water quality: N/A.
Network analysis: EPANET.
Optimisation method: GA
combined with fuzzy reasoning.

• Fuzzy reasoning is introduced. System performance criteria are
individually assessed by fuzzy membership functions and combined
using fuzzy aggregation operators. A fuzzy set and fuzzy
membership functions are defined for each performance
criterion/each loading/each network element, based on previous
experience [225]. Membership functions are provided with linguistic
tags (e.g., “tolerant”, “strict”, “very strict”) to enable implementation
of decision maker requirements for specific network elements.

• Fuzzy aggregation operators used are weighted means and classic
fuzzy intersection, which are ANDlike aggregators covering a wide
range and varying in strength. The model is flexible: if a decision
maker wishes to omit one or more criteria, the weight assigned to it
can be set to zero. On the contrary, should more criteria be added
(e.g., resilience), the modular approach allows for additions and
modifications, without affecting the structure of the multiobjective
model and algorithm.

• A novel approach for the inclusion of tanks within the GA is
proposed, taking into account the tank shape.

• Results: A better solution in terms of cost is obtained than any other
previously published, despite the multiple criteria applied for the
extensive and stricter benefit function.

• Test networks: (1) Anytown network (incl. 19 nodes) [84].
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32. Atiquzzaman et al. (2006) [64]
MO
Optimal WDS design using NSGA-II.

Objective (1): Minimise (a) the design cost of the network (pipes).
Objective (2): Minimise (a) the total pressure deficit at the
network nodes.
Constraints: (1) Pipe diameters limited to commercially available
sizes, (2) min pressure at the nodes, (3) lower and upper limit of
total pressure deficit, (4) lower and upper limit of total network
cost.
Decision variables: (1) Commercially available pipe diameters
(integer).
Note: One MO model including both objectives.

Water quality: N/A.
Network analysis: EPANET.
Optimisation method: NSGA-II.

• The aim is to yield “alternative” solutions, which are particularly
useful when the associated network cost of the optimal solution is
beyond the available budget. Hence, solutions provided are within
the (i) available budget and (ii) tolerated total nodal pressure deficit.
The total pressure deficit is accompanied with the list of nodes at
which pressure deficit occurs and a value of their individual nodal
pressure deficit. This information assists in deciding whether the
magnitude of the pressure violation may be tolerated.

• Results: There is more than one solution with the same network cost
and yet different total pressure deficits. Additionally, there are
several solutions with about the same total pressure deficit for the
same network cost.

• Test networks: (1) Two-loop network supplied by gravity (incl.
7 nodes) [14].

33. Geem (2006) [105]
SO
Optimal WDS design and strengthening
using harmony search (HS).

Objective (1): Minimise (a) the design cost of the network (pipes),
(b) the penalty cost for violating the pressure constraint.
Constraints: (1) Min pressure at the nodes.
Decision variables: (1) Pipe diameters (discrete).

Water quality: N/A.
Network analysis: EPANET.
Optimisation method: HS.

• An improved HS algorithm, which adopts both memory
consideration and pitch adjustment operations, is proposed. The
algorithm is compared to the methods previously used in the
literature, including LP, GA, SA and tabu search (TS).

• Results: For all test networks, the HS obtained either the same or
0.28–10.26% cheaper solution than other algorithms. The HS also
required fewer function evaluations than other
meta-heuristic algorithms.

• Test networks: (1) Two-loop network supplied by gravity (incl.
7 nodes) [14], (2) Hanoi network (incl. 32 nodes) [49], (3) New York
City tunnels (incl. 20 nodes) [81], (4) GoYang network, South Korea
(incl. 22 nodes) [226], (5) BakRyun network, South Korea (incl.
35 nodes) [227].

34. Keedwell and Khu (2006) [66]
MO
Optimal WDS design using cellular
automaton and genetic approach to
multi-objective optimisation (CAMOGA)
and NSGA-II including an engineered
initial population.

Objective (1): Minimise (a) the design cost of the network (pipes).
Objective (2): Minimise (b) the total head deficit at the network
nodes.
Constraints: (1) Max total head deficit.
Decision variables: (1) Pipe diameters (discrete).
Note: One MO model including both objectives.

Water quality: N/A.
Network analysis: EPANET.
Optimisation method: CAMOGA
and NSGA-II are compared.

• An extension of the paper by [44] including a novel
hybrid CAMOGA.

• CAMOGA consists of the following two phases: (i) CANDA [44] to
generate good ‘near’ Pareto-optimal solutions with only a small
number of iterations; (ii) NSGA-II to enhance and expand the
solutions found in the previous step.

• The paper also compares the performance of CAMOGA and
NSGA-II using a visual comparison of obtained Pareto fronts and the
S-metric [228].

• Results: CAMOGA can provide good solutions with very few
network simulations, and that it outperforms NSGA-II in the
efficiency of obtaining similar Pareto fronts.

• Test networks: (1) Network A: real network with a single reservoir
and 632 pipes, UK (incl. 535 demand nodes) [222], (2) network B: real
network with a single reservoir and 1277 pipes, UK (incl.
1106 nodes).
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35. Reca and Martínez (2006) [50]
SO
Optimal WDS and irrigation network
design using GA.

Objective (1): Minimise (a) the design cost of the network (pipes),
(b) penalty for violating the pressure constraint.
Constraints: (1) Min pressure at the nodes, (2) min/max flow
velocities.
Decision variables: (1) Pipe diameters (discrete).

Water quality: N/A.
Network analysis: EPANET.
Optimisation method: Genetic
algorithm pipe network
optimisation model (GENOME)
using GA.

• GENOME is developed particularly for optimisation of looped
irrigation networks. It is based on a GA with modifications and
improvements to adapt for this specific problem.

• An integer coding scheme is used to code the chromosomes. A
stochastic sampling mechanism based on the “roulette wheel
algorithm” is used for selection. Three crossover strategies are used:
one-point, two-point and uniform.

• Results: The results are compared to 20 previous studies (for
two-loop network) and 17 previous studies (for Hanoi network) from
the literature. They indicate that GENOME is able to obtain the best
published results in a reasonable computational time. However,
some adjustments would be required to improve its performance for
complex networks.

• Test networks: (1) Two-loop network supplied by gravity (incl.
7 nodes) [14], (2) Hanoi network (incl. 32 nodes) [49], (3) Balerma
irrigation network, Almeria, Spain (incl. 447 nodes).

36. Samani and Mottaghi (2006) [51]
SO
Optimal WDS design, operation and
maintenance using integer LP (ILP).
Note: Discussion: [229]

Objective (1): Minimise (a) the capital cost of the network (pipes),
(b) capital, operation and maintenance costs of pumps and
reservoirs.
Constraints: (1) Only one pipe diameter per network branch, (2)
only one pump or reservoir per network location, (3) min/max
pressure at the nodes, (4) min/max velocity in the pipes.
Decision variables: (1) Integer variables related to pipe diameters
and pumps/reservoirs.

Water quality: N/A.
Network analysis: Unspecified
hydraulic solver (a single loading
condition).
Optimisation method: Linear
interactive discrete optimiser
(LINDO) program using BB
method.

• Nonlinear objective function and constraints are linearised.
• A procedure that iterates between a hydraulic solver and ILP solver

is employed.
• The test network (1) is used to demonstrate the validity of the

procedure as it can be solved by enumeration.
• An issue related to poorly selected initial decision variables is

reported, when no feasible solution could be found and the program
will stop. This issue can be overcome by setting wider limits for the
pressure and velocity constraints to provide a better initial guess of
decision variables.

• Results: The proposed method can find good solutions; for the
two-loop network, the solution obtained is comparable to previously
published results in the literature. The proposed method converges
very quickly.

• Test networks: (1) Simple network with 3 pipes and one reservoir in
a looped system (incl. 3 nodes), (2) two-loop network supplied by
gravity (incl. 7 nodes) [14], (3) network with 15 pipes, 2 reservoirs, a
pump and a check valve (incl. 15 nodes).

37. Suribabu and Neelakantan (2006)
[106]
SO
Optimal WDS design using PSO.

Objective (1): Minimise (a) the design cost of the network (pipes),
(b) penalty for violating the pressure constraint.
Constraints: (1) Min pressure at the nodes.
Decision variables: (1) Pipe diameters (discrete).

Water quality: N/A.
Network analysis: EPANET.
Optimisation method: PSONET
program using PSO.

• PSONET program, which uses PSO algorithm, is developed and its
performance compared to the previous studies from the literature
having applied GA, SA, SFLA and shuffled complex algorithm
(SCA).

• Results: For both test networks, the PSO obtained competitive
solutions, but in a lower number of function evaluations than GA, SA
and SFLA.

• Test networks: (1) Two-loop network supplied by gravity (incl.
7 nodes) [14], (2) Hanoi network (incl. 32 nodes) [49].
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38. Babayan et al. (2007) [89]
MO
Optimal robust WDS strengthening
considering uncertainties in future
demands and pipe roughnesses using
NSGA-II.

Objective (1): Minimise (a) the design cost of the
network/rehabilitation.
Objective (2): Maximise (a) the level of network robustness.
Constraints: (1) Design/rehabilitation options are limited to the
discrete set of available options.
Decision variables: (1) Design/rehabilitation option index
(discrete).
Note: One MO model including both objectives.

Water quality: N/A.
Network analysis: EPANET.
Optimisation method: NSGA-II.

• Network robustness is represented by the probability that the nodal
pressure head is equal to or above the minimum requirement for that
node, considering the uncertainties in (i) the future demands and (ii)
pipe roughnesses. These uncertainties are assumed to be
independent and random following some pre-specified probability
density function.

• To reduce computational complexity, the original stochastic
formulation of robustness objective is replaced by the
deterministic formulation.

• The model is able to handle uncertainties in different types of
parameters and with various probability distribution functions.

• Results: When compared to deterministic solutions from the
literature, the obtained results demonstrate that “neglecting
uncertainty in the design process may lead to serious underdesign of
water distribution networks”.

• Test networks: (1) New York City tunnels (incl. 20 nodes) [81].

39. Lin et al. (2007) [166]
SO
Optimal WDS design and strengthening
using scatter search (SS).

Objective (1): Minimise (a) the design cost of the network (pipes).
Constraints: (1) Min pressure at the nodes.
Decision variables: (1) Pipe diameters (discrete).

Water quality: N/A.
Network analysis: EPANET.
Optimisation method: SS.

• SS, a population-based evolutionary method, is introduced and
compared to the algorithms previously used in the literature,
including GA, SA, SFLA, ACO and TS.

• Results: The SS is able to obtain solutions as good as or better than
the other methods both in the quality of solution and efficiency.

• Test networks: (1) Two-loop network supplied by gravity (incl.
7 nodes) [14], (2) Hanoi network (incl. 32 nodes) [49], (3) New York
City tunnels (incl. 20 nodes) [81].

40. Perelman and Ostfeld (2007) [61]
SO
Optimal WDS design, operation and
maintenance using cross entropy (CE).

Objective (1): Minimise (a) (all test networks) the design cost of
the network (pipes), (b) (test network (3) only) construction costs
of pumps and tanks, (c) (test network (3) only) operation and
maintenance costs of pumps.
Constraints: (1) Min pressure at the nodes.
Decision variables: (1) Pipe diameters (discrete).

Water quality: N/A.
Network analysis: EPANET.
Optimisation method: CE for
combinatorial optimisation [230].

• An adaptive stochastic algorithm, based on the CE for combinatorial
optimisation, is proposed. In this method flows, heads and pipe
diameters are solved simultaneously.

• Results: The CE found the best-known solution for the two-loop
network, and improved the best-known solutions for the test
networks (2) and (3). For all test networks, the solutions were
obtained with a considerably lower number of function evaluations
than previously reported in the literature [42,231].

• Test networks: (1) Two-loop network supplied by gravity (incl.
7 nodes) [14], (2) Hanoi network (incl. 32 nodes) [49], (3) two-loop
network with pumping and storage (incl. 7 nodes) [231].
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41. Tospornsampan et al. (2007) [112]
SO
Optimal WDS design and strengthening
with split pipes using SA.

Objective (1): Minimise (a) the design cost of the network (pipes).
Constraints: (1) Min/max pressure at the nodes, (2) min/max
diameter for the pipes, (3) min discharge for the pipes, (4) the
total length of pipe segments equal to the length of the
corresponding link, (5) nonnegativity for pipe segment lengths.
Decision variables: (1) Two pipe diameters for each link
(discrete), (2) pipe segment lengths (continuous) for the first
diameter.

Water quality: N/A.
Network analysis: Not specified.
Optimisation method: SA.

• Split-pipe design of looped WDSs is proposed.
• The number of decision variables for split-pipe design is triple to the

number of links. For each link, two pipe diameters and the segment
length for the pipe of the first diameter need to be calculated.

• A constraint of the minimum pipe segment length, which must be
equal or more than 5% of its link length, is imposed to the
Hanoi network.

• Results: The obtained solutions are compared to the solutions from
the literature for both split-pipe and single pipe designs. The
proposed methodology found the lowest cost solutions yet published
to date for all tested networks.

• Test networks: (1) Two-loop network supplied by gravity (incl.
7 nodes) [14], (2) Hanoi network (incl. 32 nodes) [49], (3) New York
City tunnels (incl. 20 nodes) [81].

42. Zecchin et al. (2007) [156]
SO
Optimal WDS design and strengthening
using ACO.

Objective (1): Minimise (a) the design cost of the network (pipes),
(b) the penalty cost for violating the pressure constraint.
Constraints: (1) Min pressure at the nodes.
Decision variables: (1) Pipe diameters (discrete).
Note: Formulated in [201].

Water quality: N/A.
Network analysis: EPANET.
Optimisation method: ACO (5
algorithms).

• The paper compares 5 different formulations of ACO algorithms,
namely the original one: ant system (AS) [232], and four variations:
ant colony system (ACS) [233], elitist ant system (ASelite) [232], elitist
rank ant system (ASrank) [234], max-min ant system (MMAS) [235].

• Results: “ASrank and MMAS stand out from the other ACO
algorithms in terms of their consistently good performances”. They
also outperformed all other algorithms previously applied to same
test networks in the literature.

• Test networks: (1) Two reservoir network (incl. 10 nodes) [20], (2)
New York City tunnels (incl. 20 nodes) [81], (3) Hanoi network (incl.
32 nodes) [49], (4) double New York City tunnels (incl.
39 nodes) [201].

43. Chu et al. (2008) [167]
SO
Optimal WDS strengthening using
immune algorithm (IA).

Objective (1): Minimise (a) the design cost of the network (pipes),
(b) penalty for violating the pressure constraint.
Constraints: (1) Min pressure at the nodes.
Decision variables: (1) Pipe diameters (discrete).

Water quality: N/A.
Network analysis: Not specified.
Optimisation method: IA and
modified IA (mIA) are compared.

• IA, a heuristic algorithm which imitates the immune system
defending against the invaders in a biological body, is introduced.
The objective function and constraints are represented by antigens,
the string of decision variables is represented by antibodies.
Crossover and mutation operators from GA are used in producing
the new antibodies to avoid the local minima.

• Additionally, mIA is developed. Within the mIA optimisation
procedure, GA is used (due to its good global search capability) to
screen the initial repertoire (initial strings) of the IA.

• Results: Both the IA and mIA found solutions as good as those
obtained by GA and fmGA in other studies, in significantly fewer
evaluations. Moreover, mIA exhibits far superior computational
efficiency than GA or IA individually.

• Test networks: (1) New York City tunnels (incl. 20 nodes) [81].
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44. Jin et al. (2008) [95]
MO
Optimal WDS rehabilitation and
operation using NSGA-II with artificial
inducement mutation (AIM) to
accelerate algorithm convergence.

Objective (1): Minimise (a) the rehabilitation cost of the network
involving pipe replacement, (b) energy cost for pumping.
Objective (2): Minimise (a) the sum of the velocity violations
(shortfalls or excesses) weighted by the pipe flow.
Objective (3): Minimise (a) the sum of pressure violations
(excesses) weighted by the node demand.
Constraints: (1) Pipe diameters limited to available standard
diameter set.
Decision variables: (1) Pipe diameters (real).
Note: One MO model including all objectives.

Water quality: N/A.
Network analysis: EPANET.
Optimisation method: NSGA-II
with AIM.

• A new mutation method called AIM is introduced, which
acceleratingly directs the population convergence to the feasible
region, and then uses normal mutation (i.e., one point random
mutation) searching for the best solution within the feasible region.

• To evaluate algorithm performance, the optimisation problem is
solved by NSGA-II with and without AIM.

• The test network to be optimised is an existing network displaying
too high pipe velocities and too low nodal pressures in some areas
due to an increase in water consumption. The optimisation aims to
rehabilitate the network by replacing existing pipes with larger
diameter pipes (no cleaning or lining of pipes is considered).

• Results: NSGA-II with AIM outperforms NSGA-II without AIM in
terms of convergence speed as well as the quality of the
solutions obtained.

• Test networks: (1) Network resembling the EPANET Example 3 (incl.
92 nodes) network [236].

45. Kadu et al. (2008) [45]
SO
Optimal WDS design using GA with
search space reduction.

Objective (1): Minimise (a) the design cost of the network (pipes),
(b) penalty for violating the pressure constraint.
Constraints: (1) Min pressure at the nodes.
Decision variables: (1) Pipe diameters (discrete).

Water quality: N/A.
Network analysis: GRA-NET, a
hydraulic solver based on gradient
method [215].
Optimisation method: GA-WAT
program using GA.

• GRA-NET and GA-WAT are developed.
• A modified GA is used with the following operators: the tournament

selection, the multiparent, universal parent and basic crossover, a
nonuniform and neighbour mutation [237–239]. The operators are
selected randomly.

• Self-adapting penalty multiplier to handle the constraints and scaled
fitness function are used.

• Real-coding scheme, in which discrete diameters are directly used to
form solution strings, is adopted.

• The solution space is substantially reduced by applying the critical
path method [191] as follows. A tree is identified that approximates
the original looped network, the links are classified as primary and
secondary. Primary links are the pipes forming the shortest paths
from the source to each demand node. Hydraulic gradient levels are
obtained at the intermediate demand nodes, then flows and
diameters for the links are obtained. Candidate diameters are
obtained for each link based on the previous information and these
are used in generating the initial population of GA.

• Results: The modified GA with search space reduction is more
effective, especially for large networks.

• Test networks: (1) Single source network with 7 links (incl. 5 demand
nodes), (2) Hanoi network (incl. 32 nodes) [49], (3) two-reservoir
network with 34 links (incl. 26 nodes).
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46. Ostfeld and Tubaltzev (2008) [54]
SO
Optimal WDS design and operation
considering multiple loading conditions
using ACO.

Objective (1): Minimise (a) the pipe construction costs, (b) annual
pump operation costs, (c) pump construction costs, (d) tank
construction costs, (e) penalty function for violating pressure at
nodes.
Constraints: (1) Min/max pressure at consumer nodes, (2) max
water withdrawals from sources, (3) tank volume deficit at the
end of the simulation period.
Decision variables: (1) Pipe diameters, (2) pump power at each
time interval.

Water quality: N/A.
Network analysis: EPANET (EPS).
Optimisation method: ACO,
compared to the previous study
also using ACO [104].

• Time horizon is 24 h, with a varied energy tariff.
• Multiple loading conditions (demands) are used.
• Sensitivity analysis is performed for algorithm parameters, such as

the maximum number of iterations, the discretisation number,
quadratic and triple penalty functions, the initial number of ants, the
number of ants subsequent to initialisation, the number of best ants
solutions for pheromone updating.

• Results: The proposed ACO produced better results than the ACO of
[104]. However, it is difficult to anticipate which method is better in
general as the performance always depends on model calibration for
a specific problem.

• Test networks: (1) Two-loop network with 3 sources (incl. 6 demand
nodes) [223], (2) Anytown network [84] with modifications (incl.
16 nodes).

47. Perelman et al. (2008) [62]
MO
Optimal WDS design, strengthening,
operation and maintenance using CE.

Objective (1): Minimise (a) (both test networks) the design cost of
the network (pipes), (b) (test network (2) only) construction costs
of pumps and tanks, (c) (test network (2) only) operation and
maintenance costs of pumps.
Objective (2): Minimise (a) the maximum pressure deficit of the
network demand nodes.
Constraints: N/A.
Decision variables: (1) Pipe diameters (discrete).
Note: One MO model including both objectives.

Water quality: N/A.
Network analysis: EPANET.
Optimisation method: CE for
combinatorial optimisation [230].

• An extension of the paper by [61] to a multi-objective optimisation
approach, particularly by using the rank of the generated elite
solutions to update the CE probabilities instead of using fitness
function values.

• CE is compared to NSGA-II using the following performance metrics:
(i) generational distance [240]; (ii) distance measure [241] for
assessing the proximity of individual solutions of a Pareto front to
the best approximated Pareto front; (iii) distribution measure [241]
for evaluating the diversity of the solutions along the Pareto frontier.

• Results: The CE method demonstrates a high potential of receiving
good solutions with a relatively low number of function evaluations.
It is robust and reliable, and provides improved results when
compared to the NSGA-II.

• Test networks: (1) New York City tunnels (incl. 20 nodes) [81], (2)
two-loop network with pumping and storage (incl. 7 nodes) [231].
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48. Van Dijk et al. (2008) [152]
SO
Optimal WDS design and strengthening
using GA with an improved
convergence.

Objective (1): Minimise (a) the design cost of the network (pipes),
(b) penalty for violating the pressure constraint.
Constraints: (1) Min pressure at the nodes.
Decision variables: (1) Pipe diameters (discrete).

Water quality: N/A.
Network analysis: EPANET.
Optimisation method: Genetic
algorithm network optimisation
(GANEO) program using GA.

• GANEO program, based on GA, is developed. Modifications are
made to crossover and mutation to improve GA convergence.

• A new approach of determining penalty for not meeting the pressure
requirements at the nodes depending on the degree of failure and
importance of the pipe (higher or lower flow) is developed.

• Results: GANEO produced comparable results, in a limited number
of generations in relation to other GA-based methods used in
the literature.

• Test networks: (1) New York City tunnels (incl. 20 nodes) [81], (2)
Hanoi network (incl. 32 nodes) [49], (3) two-loop network supplied
by gravity (incl. 7 nodes) [14].

49. Wu et al. (2008) [71]
MO, SO
Optimal WDS design and operation
including greenhouse gas (GHG)
emissions using multi-objective GA
(MOGA).

Objective (1): Minimise (a) the capital cost of the network
including pipes and pumps, (b) present value of pump
replacement costs, (c) present value of pump operating costs
(due to electricity consumption).
Objective (2): Minimise GHG emissions including (a) capital
GHG emissions (due to manufacturing), (b) present value of
operating GHG emissions (due to electricity consumption).
Constraints: (1) Min flowrate in pipes.
Decision variables: (1) Pipe sizes (discrete), (2) pump sizes
(discrete), (3) tank locations (discrete).
Note: One MO model including both objectives, one SO model
including objective (1).

Water quality: N/A.
Network analysis: EPANET.
Optimisation method: MOGA
(based on NSGA-II).

• Present value analysis (PVA) using Gamma discounting is applied to
evaluate operating costs and pump replacement costs during the life
of the system.

• Evaluation of GHG emissions is undertaken using life cycle analysis
(LCA), where only pipes are considered as they account for most of
the material usage. Two sources of emissions are considered:
emissions during manufacturing of pipes and during operation of
the system. Embodied energy analysis (EEA) is performed to
evaluate the former, whereas PVA to evaluate the latter.

• A single average energy tariff is used.
• The constraints are handled by constrained tournament

selection method.
• For both test networks, multi-objective and single-objective

optimisation is performed. For the first network, a full enumeration
of solutions is also carried out to show that the MOGA has found all
Pareto optimal solutions.

• Results: There is a significant tradeoff between economic and
environmental objectives. Considerable reduction in GHG emissions
can be achieved by a reasonable increase in the cost. The discount
rate values have significant impacts on the PVA results.

• Test networks: (1) One-pipe pumping system (incl. 1 node), (2)
multi-pump system (incl. 4 nodes).
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50. Dandy et al. (2009) [127]
SO
Optimal expansion, strengthening and
operation of wastewater, recycled and
potable water systems for planning
purposes using GA.

Objective (1): Minimise the total design cost of (a) wastewater, (b)
recycled and potable networks.
Constraints: Wastewater system: (1) Max surcharge in gravity
sewers, (2) min/max velocity in rising mains, (3) treatment plant
capacity. Potable/recycled systems: (4) Min pressure at the nodes.
Decision variables: Wastewater system: Options for (1) trunk
sewers upgrades, (2) new diversion sewers, (3) pump stations
upgrades, (4) new pump stations, (5) new storage facilities, (6)
new treatment plants. Potable/recycled systems: Options for (7)
new/duplicate pipelines, (8) new/expanded pump stations, (9)
new storages, (10) valve settings, (11) pump controls, (12) potable
top-ups, (13) flowrates from sources.

Water quality: Not specified.
Network analysis: Not specified.
Optimisation method: GA.

• Optimisation of wastewater, recycled and potable water systems is
performed simultaneously by linking together two optimisation
models, one for wastewater and the other for recycled and potable
water. The interface between those two models occurs at wastewater
and recycled water treatment plants (WTPs). Three different
combinations of locations of the plants are considered. Linking the
wastewater solution with the potable/recycled water solutions
involves pairing solutions from compatible source scenarios.

• The optimisation of recycled/potable water systems is undertaken
for a 24-h dry summer day demand for ultimate build out (year 2030)
using 5-year increments. Possible future demands of a potential new
development are considered.

• Results: The feasibility of an integrated approach to the planning
problem considered is demonstrated. This approach “is likely to
make third pipe systems more attractive and to lead to significant
savings in the use of limited water supplies”.

• Test networks: (1) Hume/Epping corridor, north
Melbourne, Australia.

51. di Pierro et al. (2009) [67]
MO
Optimal WDS design using ParEGO and
LEMMO with a limited number of
function evaluations.

Objective (1): Minimise (a) the total cost of the network (pipes).
Objective (2): Minimise (a) the head deficit.
Constraints: (1) Min head at the nodes.
Decision variables: (1) Pipe diameters (discrete).
Note: One MO model including both objectives.

Water quality: N/A.
Network analysis: EPANET (EPS
for the test network (2)).
Optimisation method: Hybrid
algorithms ParEGO [192] and
LEMMO [242].

• The paper aims to use algorithms capable of satisfactory
performance with a limited number of function evaluations.

• ParEGO is based on surrogate modelling “Kriging” to model the
search landscape from solutions visited during the search [192].
LEMMO is based on the hybridisation of the evolutionary search
with machine learning techniques. These algorithms are tested
against Pareto envelope-based selection algorithm II (PESA-II) [243]
which can address simultaneously proximity and diversity (two
success measures) of an approximation of the Pareto front and
performed well on difficult problems. The best solutions for the
problems have been obtained by PESA-II.

• Results: For the network (1), LEMMO can achieve results similar to
PESA-II with a significant (90%) reduction in hydraulic simulations.
For the network (2), it performed well in identifying solutions
interesting from an engineering perspective (i.e., solutions with small
pressure deficit). ParEGO performed worse than LEMMO, but it can
still be successfully applied to reduce the number of function
evaluations for small to medium-size problems.

• Test networks: (1) Medium-size network with 34 pipes, Apulia,
Southern Italy (incl. 24 nodes) [244], (2) network A: real network with
a single reservoir and 632 pipes, UK (incl. 535 demand nodes) [222].
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52. Geem (2009) [160]
SO
Optimal WDS design and strengthening
using particle swarm HS (PSHS).

Objective (1): Minimise (a) the design cost of the network (pipes).
Constraints: (1) Min pressure at the nodes.
Decision variables: (1) Pipe diameters (discrete).

Water quality: N/A.
Network analysis: EPANET.
Optimisation method: PSHS.

• An application of a particle swarm concept to the original HS
algorithm to enhance its performance is presented.

• The memory consideration operation in HS is replaced by the
particle swarm operation where the new harmony (new vector) is
formed with a certain probability (called particle swarm rate) using
the best-known solution vector.

• PSHS is compared with several other methods, such as GA, SA,
SFLA, ACO, CE, HS, SS, and mixed SA and TS (MSATS).

• Results: The PSHS algorithm performed well, especially for
small-scale and medium-scale networks, for which it found the best
solution in a lower number of evaluations than other methods. For
the large networks, it was inferior only to HS.

• Test networks: (1) Two-loop network supplied by gravity (incl.
7 nodes) [14], (2) Hanoi network (incl. 32 nodes) [49], (3) Balerma
irrigation network, Almeria, Spain (incl. 447 nodes) [50], (4) New
York City tunnels (incl. 20 nodes) [81].

53. Giustolisi et al. (2009) [141]
SO, MO
Optimal robust WDS design considering
uncertainties in demands and pipe
roughness using optimised
multi-objective GA (OPTIMOGA) with a
two-phase procedure.

Objective (1) (for a deterministic phase): Minimise (a) the design
cost of the network (pipes), (b) pressure deficit at the critical node
(i.e., the worst-performing node).
Objective (2) (for a stochastic phase): Minimise (a) the design
cost of the network (pipes).
Objective (3) (for a stochastic phase): Maximise (a) the
robustness of the network.
Constraints: (1) Min pressure at the nodes.
Decision variables: (1) Pipe diameters (discrete) (for both
deterministic and stochastic problems), (2) future nodal demands
(for stochastic problem only), (3) future pipe roughnesses (for
stochastic problem only).
Note: One SO model (i.e., deterministic) including objective (1);
one MO model (i.e., stochastic) including objectives (2) and (3).

Water quality: N/A.
Network analysis: Demand-driven
analysis [11].
Optimisation method:
OPTIMOGA [245].

• The network robustness is defined based on the worst-performing
node (that is a constraint should be fulfilled at the most critical node).

• The optimisation consists of two phases as follows: (i) the optimal
design is found deterministically (a single-objective problem); (ii)
using the obtained solutions as initial population, the robust design
is found multi-objectively (cost minimisation and robustness
maximisation) and stochastically considering future nodal demands
and pipe roughnesses uncertain variables. This two-phase procedure
is to reduce the computational time required by the stochastic phase.

• Several probability density functions (mainly beta functions) are
introduced and tested to model uncertain variables in different ways.

• Results: The proposed two-phase optimisation procedure results in
noticeable computational savings. “The entire procedure permits the
simultaneous realisation of two major objectives: overall network
robustness can be improved and the most important mains in terms
of network reliability may be identified from the difference in the
deterministic and stochastic solutions. Results illustrate the
procedure’s effectiveness in yielding information of practical
engineering value”.

• Test networks: (1) Apulian network, Southern Italy (incl. 23 nodes).
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54. Krapivka and Ostfeld (2009) [117]
SO
Optimal WDS design with split pipes
using a combination of GA and LP
(GA-LP) in a two-phase procedure.

Objective (1): Minimise (a) the design cost of the network (pipes).
Constraints: (1) Min pressure at the nodes, (2) sum of pipe
segment lengths must be equal to the link length, (3)
nonnegativity of segment lengths.
Decision variables: (1) Lengths of pipe segments of known
diameters (so called split-pipe decision variables).
Note: Formulated in [116].

Water quality: N/A.
Network analysis: Explicit
mathematical formulation (steady
state).
Optimisation method: Combined
GA-LP.

• An extension of the paper by [116] with the following modifications:
• To solve the outer problem, a GA is used instead of SA.
• The solution is constrained to the lowest cost spanning tree layout

with the spanning tree chords (the missing pipes) kept at the
minimum permissible diameters. (This solution is further improved
by the GA).

• Results: The results obtained are similar to the results presented in
[116]. The proposed methodology is superior to the standard GA
(without the refinement of using a spanning tree with minimal chord
diameters).

• Test networks: (1) Two-loop network supplied by gravity (incl.
7 nodes) [14].

55. Mohan and Babu (2009) [168]
SO
Optimal WDS design using
heuristic-based algorithm (HBA).

Objective (1): Minimise (a) the design cost of the network (pipes).
Constraints: (1) Min head at the nodes.
Decision variables: (1) Pipe diameters (discrete).

Water quality: N/A.
Network analysis: EPANET.
Optimisation method: HBA.

• Heuristic optimisation method, which uses implicit information
provided by the network, is proposed. Initially, all pipes are assigned
the minimum available diameter size, then all diameters are
increased until minimum head requirement at the nodes is met.
Finally, certain diameters are decreased or increased based on the
head loss information from the network.

• HBA is compared to other heuristic optimisation methods
(rule-based gradient approach, CANDA) as well as stochastic
optimisation methods (GA, SA, SFLA).

• Results: HBA finds a better solution than other heuristic methods.
Compared to stochastic methods, the cost obtained by HBA is
slightly higher, but the number of evaluations is significantly lower.

• Test networks: (1) Two-loop network supplied by gravity (incl.
7 nodes) [14], (2) Hanoi network (incl. 32 nodes) [49].

56. Mora et al. (2009) [158]
SO
Optimal WDS design using HS with
optimised algorithm parameters.

Objective (1): Minimise (a) the design cost of the network (pipes),
(b) penalty for violating the pressure constraint.
Constraints: (1) Min pressure at the nodes.
Decision variables: (1) Pipe diameters (discrete).

Water quality: N/A.
Network analysis: Not specified.
Optimisation method: HS.

• The aim of the paper is to find the most suitable combination of HS
parameters, which would ensure not only a better solution to be
obtained, but also a lower number of iterations to reach such a
solution. Parameters considered are harmony memory size (HMS),
memory considering rate (HMCR) and pitch adjustment rate (PAR).

• HS parameters are optimised using a statistical analysis of the HS
performance, for which 54,000 simulations is performed with varying
values of HS parameters. The optimal cost of 6081 thousands, the
smallest value ever published for the Hanoi network in the literature,
was only found 4 times out of 54,000.

• The concept of “good solutions” is introduced. It is the capacity of an
algorithm to obtain a set of solutions, which exceed the minimum
cost by no more than 3%.

• Results: HMS has a key influence on obtaining good solutions and
also on the number of iterations, while PAR does not have a great
impact on the results.

• Test networks: (1) Hanoi network (incl. 32 nodes) [49].
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57. Rogers et al. (2009) [100]
SO
Optimal WDS expansion, operation and
maintenance planning with reliability
and water quality considerations over a
planning horizon (i.e., 25 years) using
GA.

Objective (1): Minimise the life cycle cost of the network
including (a) capital costs, (b) energy costs, (c) operation costs, (d)
maintenance costs, (e) penalty cost for violating constraints.
Constraints: (1) Min pressure at the nodes, (2) min/max storage
facility levels, (3) min/max watermain velocities.
Decision variables: Options for (1) watermains (pipe sizing and
routes), (2) new pump stations, (3) pump station expansions, (4)
elevated storage facilities, (5) reservoir expansions, (6) control
valves, (7) expansions at the two existing water purification
plants (WPPs), (8) pressure zone configurations (pressure zone
boundaries).

Water quality: Water age (as a
surrogate measure for water
quality).
Network analysis: EPANET.
Optimisation method: GANET
using GA, and a heuristic solver for
postprocessing.

• The following optimisation strategy is adopted:
• Preliminary capacity-driven solutions are generated and evaluated

by EPANET-GANET. Design criteria (e.g., the minimum sizing of
specific infrastructure elements) are updated to ensure that the final
solutions meet reliability and water quality requirements. This
process is repeated to arrive at near optimal solutions.

• The review of near optimal solutions led to a reduction in the
number and variety of the decision variable options. For example,
pressure zone configuration options were eliminated from the
optimisation model and were run as separate optimisation problems.

• The optimisation results are evaluated using H20Map Water, a
GIS-enabled hydraulic simulation package. Operating scenarios
involving critical infrastructure failures are developed and tested.

• A heuristic solver is used to arrive at the final optimal solution from
near optimal solutions generated by GA.

• Results: The results assisted in formulating practical conclusions and
recommendations for large and complex WDS
optimisation problems.

• Test networks: (1) City of Ottawa WDS, Canada.

58. Tolson et al. (2009) [180]
SO
Optimal WDS design and strengthening
using hybrid discrete dynamically
dimensioned search (HD-DDS).

Objective (1): Minimise (a) the design cost of the network (pipes),
(b) penalty for violating the pressure constraint.
Constraints: (1) Min pressure at the nodes.
Decision variables: (1) Pipe diameter option numbers (integer).

Water quality: N/A.
Network analysis: EPANET.
Optimisation method: HD-DDS.

• An adaptation of the paper by [246] for continuous optimisation to
discrete optimisation with a new termination criterion.

• HD-DDS, which is not a population-based algorithm, combines
global and two local search techniques (i.e., hybrid approach). Local
search heuristics used are “one-pipe change” and “two-pipe change”,
which cycle through all possible ways to change the solution by
modifying the diameter of one or two pipes at a time, respectively.
No parameter tuning is required as there is only one parameter with
a fixed value. Constraints are handled equivalently to Deb’s
tournament selection in GAs [148].

• A hydraulic simulator is only required for a fraction of the
solutions evaluated.

• The results are compared to the results from the literature obtained
by other heuristics including GA, CE, PSO, MSATS and MMAS
(ACO).

• Results: The ability of HD-DDS to find near global optimal solutions
is the same or better than other heuristics while being more
computationally efficient.

• Test networks: (1) New York City tunnels (incl. 20 nodes) [81], (2)
double New York City tunnels (incl. 39 nodes) [201], (3) Hanoi
network (incl. 32 nodes) [49], (4) GoYang network, South Korea (incl.
22 nodes) [226], (5) Balerma irrigation network, Almeria, Spain (incl.
447 nodes) [50].
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59. Banos et al. (2010) [107]
SO
Optimal WDS design using memetic
algorithm (MA).

Objective (1): Minimise (a) the design cost of the network (pipes),
(b) penalty for violating the pressure constraint.
Constraints: (1) Min pressure at the nodes, (2) min/max flow
velocities.
Decision variables: (1) Pipe diameters (discrete).

Water quality: N/A.
Network analysis: EPANET.
Optimisation method: MA.

• MA, an extension of EAs which apply local search processes in the
agents, is introduced. MA is compared to GA, SA, MSATS, SS using
SA as a local searcher (SSSA) and binary linear integer programming
(BLIP) method.

• To compare the algorithms, the termination criterion used is the
number of fitness function evaluations (except for BLIP that does not
have a fitness function), which is a function of the number of links
and possible pipe diameters. To avoid the randomness due to the use
of different initial solutions, they are all obtained by taking the largest
diameter pipes in the test networks. To achieve a good performance
of each metaheuristic, a parametric analysis is performed.

• The computer model called MENOME (metaheuristic pipe network
optimisation model) [247] is used which integrates all algorithms,
EPANET, a graphical user interface (GUI) and database
management module.

• Results: A dominance of MA over other algorithms is demonstrated,
particularly for large-size problems.

• Test networks: (1) Two-loop network supplied by gravity (incl.
7 nodes) [14], (2) Hanoi network (incl. 32 nodes) [49], (3) Balerma
irrigation network, Almeria, Spain (incl. 447 nodes) [50].

60. Bolognesi et al. (2010) [169]
SO
Optimal WDS design and strengthening
using genetic heritage evolution by
stochastic transmission (GHEST).

Objective (1): Minimise (a) the design cost of the network (pipes),
(b) penalty for violating the head constraint.
Constraints: (1) Min head at the nodes.
Decision variables: (1) Pipe diameters (discrete).

Water quality: N/A.
Network analysis: EPANET.
Optimisation method: GHEST.

• GHEST, a multi population evolutionary strategy method, is
introduced. It uses two different complementary processes to search
for the optimal solution. The first process synthesizes and transmits
the genetic patrimony (heritage) of the parent solutions using their
statistical indicators, while the second process called “shuffle” avoids
local minima when the evolutionary potential of the population
appears to be exhausted.

• An extensive comparison of GHEST with previously used
optimisation methods (such as ACO, GA, HS, LP, MSATS, PSHS, SA,
SCE, SFLA) from the literature is presented.

• Results: GHEST is able to find the same or better solution when
compared to other algorithms. In particular, better results using a
decreased number of evaluations are achieved for
large-size problems.

• Test networks: (1) Two-loop network supplied by gravity (incl.
7 nodes) [14], (2) Hanoi network (incl. 32 nodes) [49], (3) New York
City tunnels (incl. 20 nodes) [81], (4) Balerma irrigation network,
Almeria, Spain (incl. 447 nodes) [50].
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61. Cisty (2010) [113]
SO
Optimal WDS design with split pipes
using a combined GA and LP method
(GALP) in a two-phase procedure.

Objective (1): Minimise (a) the design cost of the network (pipes).
Constraints: (1) The sum of the unknown lengths of the
individual diameters in each section has to be equal to its total
length, (2) total pressure losses in a hydraulic path between a
pump/tank and every critical node should be equal to or less
than the known value (based on the minimum pressure
requirements), (3) the lengths are positive (and greater than a
nominated minimum value).
Decision variables: (1) Lengths of selected pipe diameters for
each section.

Water quality: N/A.
Network analysis: Explicit
mathematical formulation,
EPANET used only for the
computation of friction headlosses.
Optimisation method: GALP.

• A split-pipe design is used. Hence, search space is smaller comparing
to optimising pipe diameters, because the chromosomes correspond
to the number of loops in the network rather than the number
of pipes.

• LP is more reliable to find the global optimum than heuristic
methods, but is only suitable for branched networks. Therefore, GA
is used to decompose the looped network into a group of branched
networks, then LP is applied to optimise those branched networks.
So, GA is used as an outer algorithm, LP as an inner algorithm,
embedded into a GA fitness function.

• It is suggested to refine the methodology by introducing a
preprocessing stage with half the genes in the chromosomes. This
stage is dealt with a suitable GA method, then the solutions are
passed onto the main stage with full chromosomes. A postprocessing
stage can be included, which also refines the solutions, again using
only half the genes in the chromosomes, but a different half than in
the preprocessing stage.

• Fine tuning GA parameters is not necessary, as the algorithms
performs consistently with different parameter values.

• The extensions of the Hanoi network are introduced in order to test
the method on greater problems. Those extensions are built so that
the optimal solution can be evaluated. It is thus possible to compare
the results produced by GALP with the global solutions for
the problems.

• Results: GALP consistently finds better solutions than those
presented in the literature.

• Test networks: (1) Hanoi network (incl. 32 nodes) [49], (2) double
Hanoi network (incl. 62 nodes), (3) triple Hanoi network (incl.
92 nodes).

62. Filion and Jung (2010) [142]
SO
Optimal WDS design including fire flow
protection using PSO.

Objective (1): Minimise (a) the design cost of the network (pipes),
(b) cost of potential economic damages by the fire (expected
conditional fire damages).
Constraints: (1) Max velocity in the pipes.
Decision variables: (1) Pipe diameters (discrete).

Water quality: N/A.
Network analysis: EPANET.
Optimisation method: PSO.

• Potential fire damages are incorporated directly into the objective
function and are assigned a weight to reflect their importance relative
to design costs.

• New integration-based method to estimate the expected damages by
the fire is developed. The uncertainty in needed fire flow (NFF) is
included. Maximum day demands are considered to be known.

• Minimum pressure constraint is excluded since corresponding
violations are “accounted for in the damage component of objective
function under the maximum day demand+fire condition”.

• Sensitivity analysis is performed to investigate the sensitivity of
diameters, design costs, fire damages and total costs to changes in
mean and standard deviation of fire flow.

• Tradeoff curves for design costs and fire damage costs are generated.
• Results: The uncertainty in fire flow has a little impact on pipe sizing

and cost for the two-loop network. For the real-world network,
150 mm diameters provide adequate hydraulic capacity and make
design costs and damages insensitive to fire damage weighting.

• Test networks: (1) Two-loop network supplied by gravity (incl.
7 nodes) [14], (2) real-world network (incl. 29 nodes) [248].
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63. Mohan and Babu (2010) [170]
SO
Optimal WDS design using honey bee
mating optimisation (HBMO).

Objective (1): Minimise (a) the design cost of the network (pipes),
(b) penalty for violating the head constraint.
Constraints: (1) Min head at the nodes.
Decision variables: (1) Pipe diameters (discrete).

Water quality: N/A.
Network analysis: EPANET.
Optimisation method: HBMO
[249].

• HBMO is introduced, different values of parameters tested and the
sensitivity analysis presented.

• Performance of HBMO in terms of the obtained solution and number
of evaluations is compared to the other algorithms (GA, SA, SFLA)
from the literature.

• Results: The multiple-queen colony is essential with the number of
queen bees increasing with the increase in the number of pipes in the
system. HBMO can obtain comparable results as other algorithms
using a reduced number of evaluations.

• Test networks: (1) Two-loop network supplied by gravity (incl.
7 nodes) [14], (2) Hanoi network (incl. 32 nodes) [49].

64. Prasad (2010) [98]
SO
Optimal WDS strengthening, expansion,
rehabilitation and operation with a new
approach for tank sizing considering
multiple loading conditions using GA.

Objective (1): Minimise the capital cost of the network including
(a) pipes, (b) pumps, (c) tanks, (d) present value of the energy
cost.
Constraints: (1) Min pressure at the nodes, (2) max velocity in the
pipes, (3) volume of water pumped greater than or equal to the
system daily demand, (4) tanks recover their levels by the end of
the simulation period, (5) total tank inflows greater than or equal
to total tank outflows, (6) bounds on decision variables.
Decision variables: For pipes: (1) New/duplicate diameters
(integer), (2) options for existing pipes (0 = no change, 1 = clean
and line). For pumps: (3) the number of pumps (integer). For
tanks: (4) Location (integer), (5) total volume (real), (6) min
operational level (real), (7) ratio between diameter and height
(real), (8) ratio between emergency volume and total volume
(real).

Water quality: N/A.
Network analysis: EPANET (EPS).
Optimisation method: GA.

• A new approach for tank sizing is proposed, which eliminates
explicit consideration of some operational constraints.

• EPS is conducted for each trial solution during the optimisation to
enable accurate calculation of energy cost.

• The pressure constraints are treated as hard constraints, so they are
not to be violated. In contrast, all other constraints are treated as soft
constraints, so the sum of normalized violation must be less than a
specified value. Constraint handling is undertaken by ranking
the solutions.

• Two scenarios are analysed, the first considering all constraints
except pressure constraints for normal day loading and the second
considering all constraints.

• Results: Designs obtained are cheaper comparing to designs
proposed by other researchers under similar performance conditions,
but with different tank sizing methods. The solution for the first
scenario violates pressure constraints for normal day loading as
expected. The solution for the second scenario is superior in terms of
both the cost and hydraulic performance.

• Test networks: (1) Anytown network (incl. 19 nodes) [84].

65. Suribabu (2010) [171]
SO
Optimal WDS design, strengthening,
expansion and rehabilitation using
differential evolution (DE).

Objective (1): Minimise (a) the design cost of the network (pipes),
(b) penalty for violating the pressure constraint.
Constraints: (1) Min pressure at the nodes.
Decision variables: (1) Pipe diameters (discrete at the
initialisation, converted to continuous in the DE process and back
to discrete before the selection for the next generation), (2) pipe
rehabilitation options.

Water quality: N/A.
Network analysis: EPANET.
Optimisation method: DE [250].

• DE resembles an EA and differs in an application of crossover
and mutation.

• The 14-pipe test network requires expansion and possibly
rehabilitation (with pipes being cleaned, duplicated or left alone).

• DE is compared to other optimisation methods (such as ACO, GA,
HS, PSO, SA, SCE, SFLA) from the literature.

• Results: DE proves to be very effective as it finds optimal or near
optimal solutions with a lower number of functions evaluations.

• Test networks: (1) Two-loop network supplied by gravity (incl.
7 nodes) [14], (2) Hanoi network (incl. 32 nodes) [49], (3) New York
City tunnels (incl. 20 nodes) [81], (4) 14-pipe network with two
supply sources (incl. 10 nodes) [20].
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66. Wu et al. (2010) [77]
MO, SO
Optimal WDS design and operation
including GHG emissions over a
planning horizon (i.e., 100 years) using
water system multi-objective GA
(WSMGA).

Objective (1): Minimise (a) the capital cost of the network
including pipes and pumps (i.e., purchase and installation of
pipes and pumps, and construction of pump stations), (b) present
value of pump replacement/refurbishment costs, (c) present
value of pump operating costs (i.e., electricity consumption).
Objective (2): Minimise GHG emission cost including (a) capital
GHG emissions (i.e., manufacturing and installation of pipes), (b)
present value of operating GHG emissions (i.e., electricity
consumption).
Constraints: (1) System must be able to deliver at least the
average flow(s) on the peak day to the tank(s).
Decision variables: (1) Pipe sizes (discrete), (2) pump sizes
(discrete).
Note: One MO model including both objectives; one SO model
summing up objectives (1) and (2).

Water quality: N/A.
Network analysis: Not specified.
Optimisation method: WSMGA
(used for both single-objective and
multi-objective problems, based on
NSGA-II).

• An extension of the paper by [72] including carbon pricing while
accounting for GHG emissions priced at a certain level (i.e., monetary
value).

• The question is raised “whether the introduction of carbon pricing
under an emission trading scheme will make the use of a
multi-objective optimisation approach obsolete or whether such an
approach can provide additional insights that are useful in a
decision-making context”. A comparison between using
single-objective and multi-objective approaches is presented.

• A pipe network service life of 100 years and a pump service life of
20 years are assumed.

• Because the test network (1) is very small with only 442 solutions,
full enumeration and non-dominated sorting was used to optimise
the system instead of GA.

• Results: A multi-objective approach requires more computational
effort and domain knowledge than a single-objective approach, but
provides decision makers with more detailed information by
showing the tradeoffs between the conflicting objectives. The authors
note that the price of carbon has no effect on the tradeoff, hence it is
recommended not to be used for the WDS optimisation of accounting
for GHG emissions, resulting in the tradeoff between system costs in
dollars and GHG emissions in tons.

• Test networks: (1) Simple network with 1 tank and 1 pump station
with 10 fixed speed pumps (FSPs) (incl. 1 node), (2) network with
1 pump, 8 pipes and 3 tanks (incl. 5 nodes).

67. Wu et al. (2010) [72]
MO
Optimal WDS design and operation
including GHG emissions over a
planning horizon (i.e., 100 years) using
WSMGA.

Objective (1): Minimise (a) the capital cost of the network
including pipes and pumps (i.e., purchase and installation of
pipes and pumps, and construction of pump stations), (b) present
value of pump replacement/refurbishment costs, (c) present
value of pump operating costs (i.e., electricity consumption).
Objective (2): Minimise GHG emissions including (a) capital
GHG emissions (i.e., manufacturing and installation of pipes), (b)
present value of operating GHG emissions (i.e., electricity
consumption).
Constraints: (1) Min pressure at the nodes.
Decision variables: (1) Pipe sizes (discrete), (2) pump selection
(discrete), (3) tank location selection (discrete).
Note: One MO model including both objectives.

Water quality: N/A.
Network analysis: EPANET.
Optimisation method: WSMGA
(based on NSGA-II with several
modifications).

• PVA is used to account for future costs and emissions. A number of
different discount rates is used in PVA for the evaluation of
objective functions.

• Two discount rate scenarios are used. In the first scenario, costs are
discounted at different rates and GHG emissions are not discounted
at all. In the second scenario, costs and GHG emissions are all
discounted at the same rate.

• A system design life of 100 years and a pump service life of 20 years
are assumed.

• Results: There is a significant tradeoff between the two objectives for
both discount rate scenarios. This tradeoff notably improves the
decision maker’s understanding of the search space and shows
which design is the most economical in reducing GHG emissions. It
is found that the Pareto front is very sensitive to the discount rates,
thus the selection of discount rates has a considerable impact on final
decision making.

• Test networks: (1) Simple network with one source, 9 pipes and one
tank location (selected from two possible locations) (incl. 4 nodes).
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68. Geem and Cho (2011) [161]
SO
Optimal WDS design using parameter
setting free HS (PSF HS).

Objective (1): Minimise (a) the design cost of the network (pipes),
(b) penalty cost for violating the pressure constraint.
Constraints: (1) Min pressure at the nodes.
Decision variables: (1) Pipe diameters (discrete).

Water quality: N/A.
Network analysis: EPANET.
Optimisation method: PSF HS.

• The paper develops a new method for dynamic updating of the two
major parameters in HS, HMCR and PAR, without resorting to trial
and error approach to set their values. The authors argue that even
though metaheuristic algorithms have their advantages over the
traditional algorithms, their disadvantage is a tedious and time
consuming setting of parameters.

• Basically, the parameters HMCR and PAR are set up automatically,
but two other parameters are needed to do so: number of iterations
with central parameter values and amount of noise effect. Proper
values for these two amounts need to be investigated in the future.

• Results: PSF HS found the global solution 10 times out of 20 runs for
the two-loop network, as opposed to the standard HS finding it only
twice. This favourable result is believed to be due to automatic
parameter settings in the iterations. Good results are obtained for the
Hanoi network as well, reaching the global solution in fewer
iterations than other algorithms (ACO, CE, GA, HS, SS).

• Test networks: (1) Two-loop network supplied by gravity (incl.
7 nodes) [14], (2) Hanoi network (incl. 32 nodes) [49].

69. Geem et al. (2011) [159]
SO
Optimal WDS design using HS.

Objective (1): Minimise (a) the design cost of the network (pipes).
Constraints: (1) Min/max pressure at the nodes, (2) min/max
velocity in the pipes.
Decision variables: (1) Pipe diameters (discrete).

Water quality: N/A.
Network analysis: EPANET.
Optimisation method: HS.

• The velocity constraint is included to eliminate water hammer and
sedimentation in pipes.

• The methodology was intended to apply to three test networks, but
only one test network is presented. Other test networks considered
were the two-loop network [14] and the Hanoi network [49].
However, the methodology was not suitable for those test networks
due to the velocity constraint for pipes.

• A comparison of HS with LP, which was originally used to design the
test network by [251], is presented.

• Results: HS obtains about 20% cheaper solution than LP.
• Test networks: (1) Yeosu network, South Korea (incl. 19 nodes) [251].
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70. Goncalves et al. (2011) [52]
SO
Optimal WDS design and operation
using a decomposition-based heuristic
with a three-phase procedure.

Objective (1): Minimise (a) the investment cost of pipes, (b)
investment cost of pumps and the power cost, (c) energy cost of
the system.
Constraints: (1) Each hydrant visited by exactly one path, (2)
each junction/withdrawal visited at the most by one path, (3) a
single diameter selected for an arc, (4) one pressure class selected
for an arc, (5) min/max velocity in arcs, (6) max pressure in arcs,
(7) min pressure at the hydrants, (8) min/max height for a pump
at the nodes, (9) min/max land area to irrigate downstream the
arcs, (10) binary and nonnegativity constraints.
Decision variables: (1) Arc included into the route (0 = no, 1 =
yes), (2) diameter assigned to the arc (0 = no, 1 = yes), (3) pressure
class assigned to the arc (0 = no, 1 = yes), (4) pump installed at the
node (0 = no, 1 = yes), (5) pumping height of installed pumps, (6)
water flow in arcs, (7) land area to irrigate downstream the arcs.

Water quality: N/A.
Network analysis: Explicit
mathematical formulation.
Optimisation method: Steiner tree
constructive-based heuristic
followed by improved local search
heuristic (first subproblem), simple
calculation of flows and irrigated
areas (second subproblem), CPLEX
[207] (third subproblem).

• The paper solves optimal design of a non-looped irrigation system.
The problem considered is to find the routes from sources to
consumer nodes, water flows in pipes and irrigated areas
downstream of pipes, and diameters and thicknesses of pipes, and
locations and powers of pumps.

• Two new mixed binary nonlinear formulations of the problem are
proposed: an initial model and a reformulated model to reduce
nonlinearities of the initial model.

• To solve the problem, it is sequentially decomposed into the
following three subproblems: (i) building the network layout; (ii)
computing the water flows and irrigated areas (a system of linear
equations); (iii) dimensioning the network pipes and pumps, and
locating the pumps (a mixed binary linear problem (MBLP)), defined
for the network tree, flows and irrigated areas resulting from the
previous two subproblems.

• The computational experiments are undertaken using 12 randomly
generated networks built from a real network in Portugal [252] to
simulate different real case situations. This real network consists of
three different zones and contains one source, 39 hydrants,
13 junctions and 279 pipes.

• Results: The proposed methodology is suitable for the problem at
hand, with the average relative optimality gap calculated for all cases
with known optimum 2.30%.

• Test networks: (1)–(12) Small test networks consisting of five
different types (depending on the dimension of the network irrigated
area), each possessing 10 nodes and a number of arcs (ranging
between 20 and 40).

71. Haghighi et al. (2011) [178]
SO
Optimal WDS design using a combined
GA and ILP method (GA-ILP) in a
two-phase procedure.

Objective (1): Minimise (a) the design cost of the network (pipes).
Constraints: (1) Min/max pressure limits, (2) min/max velocity
in the pipes, (3) only one diameter for each pipe can be assigned.
Decision variables: (1) Zero-unity variables related to the pipe
diameters.

Water quality: N/A.
Network analysis: EPANET.
Optimisation method: GA-ILP.

• Using ILP, the search space thus the number of evaluations is
considerably reduced.

• For ILP purposes, the looped network is transformed into a
quasi-branched network by ignoring one pipe in each loop. These
ignored pipes are not optimised in the ILP, but are assigned a fixed
diameter for the objective function calculation. The quasi-branched
network is optimised using a BB method. This process creates an
inner loop. GA creates an outer loop, where the pipes which were
ignored are optimised. The method iterates between ILP and GA.

• Results: The GA-ILP method finds the optimal solution in a very fast
and efficient manner, which is due to ILP preventing blind and time
consuming searches in the GA and promoting each chromosome to a
near optimal design.

• Test networks: (1) Hanoi network (incl. 32 nodes) [49], (2)
two-reservoir network with 34 links (incl. 26 nodes) [45].
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72. Qiao et al. (2011) [163]
SO
Optimal WDS design using improved
PSO (IPSO).

Objective (1): Minimise (a) the design cost of the network (pipes),
(b) penalty cost for violating the pressure constraints.
Constraints: (1) Min/(max) pressure at the nodes.
Decision variables: (1) Pipe diameters (discrete).

Water quality: N/A.
Network analysis: Not specified.
Optimisation method: IPSO.

• The optimisation method combines PSO with disturbance (in order
to escape local minima) with DE (in order to keep the population
diversity).

• IPSO performance is compared with several other methods such as
HBMO, Lagrange’s method (LM), PSO, random search technique
(RST), SFLA and SS.

• Results: IPSO performs well and reduces the possibility of trapping
into a local optimum.

• Test networks: (1) Serial network with 3 pipes (incl. 3 nodes) [253],
(2) branched network with 3 pipes (incl. 3 nodes) [253], (3) two-loop
network supplied by gravity (incl. 7 nodes) [14].

73. Wu et al. (2011) [73]
MO
Optimal WDS design and operation
including GHG emissions over a
planning horizon (i.e., 100 years),
analysing sensitivity of tradeoffs
between economic costs and GHG
emissions, using WSMGA.

Objective (1): Minimise (a) the capital cost of the network
including pipes and pumps (i.e., purchase and installation of
pipes and pumps, and construction of pump stations), (b) present
value of pump replacement/refurbishment costs, (c) present
value of pump operating costs (i.e., electricity consumption).
Objective (2): Minimise GHG emissions including (a) capital
GHG emissions (i.e., manufacturing and installation of pipes), (b)
present value of operating GHG emissions (i.e., electricity
consumption).
Constraints: (1) Min pressure at the nodes, (2) min flowrates
within the system.
Decision variables: (1) Pipe sizes (discrete).
Note: One MO model including both objectives.

Water quality: N/A.
Network analysis: EPANET.
Optimisation method: WSMGA
(based on NSGA-II with several
modifications).

• An extension of the papers by [72,77] including sensitivity of
tradeoffs between total economic costs and GHG emissions to
electricity tariff and generation (i.e., emission factors). Three
electricity tariff options and three emission factor options both over a
time horizon of 100 years are considered.

• The pump power estimation method [74] is used to estimate the
maximum pump capacity and the annual electricity consumption for
calculation of pump operating costs and operating GHG emissions.

• To test the sensitivity of the optimisation results to the electricity
tariff and emission factors, two optimisation scenarios (each for one
factor) are considered. In each scenario, one factor is varied and the
remaining factor is set at the moderate value of the three options
considered, giving a total of 5 combinations of the two factors.

• Results: Electricity tariffs impact significantly on the cost of the
network, but little on GHG emissions. High electricity tariffs in the
future can remove some networks from the Pareto front, indicating
further possible reduction of GHG emissions by managing the water
and energy industries jointly. In contrast, emission factors have no
effect on the cost of the network.

• Test networks: (1) Network with 1 pump, 8 pipes and 3 tanks (incl.
5 nodes) (adapted from [77]).
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74. Zheng et al. (2011) [111]
SO
Optimal WDS design and strengthening
using a combined NLP and DE method
(NLP-DE) in a three-phase procedure.

Objective (1): Minimise (a) the design cost of the network (pipes).
Constraints: (1) Min pressure at the nodes, (2) min/max
diameter of pipes.
Decision variables: (1) Pipe diameters (continuous for NLP,
discrete for DE where continuous diameters are rounded to the
nearest commercial pipe sizes after the mutation process).

Water quality: N/A.
Network analysis: Explicit
mathematical formulation for NLP,
EPANET for DE.
Optimisation method: NLP-DE.

• The methodology consists of three distinct steps as follows.
• The shortest distance tree is determined for a looped network. This

tree is part of the network graph, which contains only shortest paths
from the sources to all demand nodes. It is assumed that the effective
way to deliver demands is along the shortest path. The shortest
distance tree is identified using a Dijkstra algorithm, which is
modified in this paper to cover multisource WDSs.

• A NLP solver is applied to the obtained shortest distance tree to
optimise pipe diameters. The energy conservation constraint is not
considered for NLP, because the shortest distance tree has no loops.
The NLP solution with continuous diameters is an approximate
solution to the original WDS. Missing pipes from the shortest
distance tree are assigned the minimum allowable diameters.

• A DE algorithm is applied to optimise the original looped network.
The initial population for DE is seeded with diameters in the
proximity of the continuous pipe sizes obtained by a NLP solver and
with the minimum allowable diameters assigned to the missing pipes
in the previous step.

• Results: NLP-DE found optimal solutions with an extremely fast
convergence speed. In addition, it found the new lowest cost
solutions for the test networks (3) and (4).

• Test networks: (1) New York City tunnels (incl. 20 nodes) [81], (2)
Hanoi network (incl. 32 nodes) [49], (3) Zhi Jiang network, China
(incl. 113 demand nodes), (4) Balerma irrigation network, Almeria,
Spain (incl. 447 nodes) [50].

75. Artina et al. (2012) [70]
MO
Optimal WDS design using parallel
NSGA-II.

Objective (1): Minimise (a) the design cost of the network (pipes).
Objective (2): Minimise (a) the penalty cost for violating the
pressure constraint.
Constraints: (1) Min pressure at the nodes.
Decision variables: (1) Pipe diameters (discrete).
Note: One MO model including both objectives.

Water quality: N/A.
Network analysis: EPANET.
Optimisation method: Parallel
NSGA-II.

• Parallelisation of NSGA-II is implemented in order to reduce the
computational time and improve the quality of solutions obtained.

• Two parallel models, global and island, are used. In the global model,
the selection and mating is performed globally, but “at each
generation the fitness evaluation of solutions is distributed in a
balanced way”. In the island model, the population is divided into
several subpopulations (i.e., islands), which evolve independently,
but occasionally a migration between islands occurs. Additional
parameters are necessary in the island model, being frequency and
number of migrating solutions and the criterion for selecting
the migrants.

• Results: The global model reduces the computational time. On the
other hand, the island model improves the quality of solutions due to
an introduction of fundamental changes in the algorithm exploration
method. Some parameter configurations (i.e., criteria for selecting the
migrants) in the island model can find better solutions compared
with the serial version of the algorithm. More observations are made
in relation to the configuration of island model.

• Test networks: (1) Hanoi network (incl. 32 nodes) [49], (2) Modena
network, Italy (incl. 272 nodes) [254].
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76. Bragalli et al. (2012) [147]
SO
Optimal WDS design and strengthening
using MINLP.

Objective (1): Minimise (a) the design cost of the network (pipes).
Constraints: (1) Min/max pipe diameters/pipe cross sectional
areas, (2) min/max hydraulic heads, (3) flow bounds.
Decision variables: (1) Pipe flows, (2) pipe diameters/pipe cross
sectional areas, (3) hydraulic heads at junctions.

Water quality: N/A.
Network analysis: Explicit
mathematical formulation.
Optimisation method: BONMIN
(an open source MINLP code) [255]
using BB method.

• The methodology starts with preliminary smooth continuous NLP
relaxation which accurately models the problem. In the model, the
discrete objective function (due to discretised cost data) is
transformed into a continuous polynomial, and headloss in pipes
(Hazen-Williams) has a smooth relaxation. Subsequently, the
diameters are discretised by introducing additional binary variables
indicating when a specific diameter is selected for a pipe. They are
further replaced by a cross sectional area (in the constraints), which
removes the nonlinearities and nonconvexity from flow bound
constraints. Finally, a MINLP solver can be applied. The MINLP
code has been adapted to better suit the model formulation.

• The quality of the solutions obtained is checked by (i) comparing
with the lower bounds on the solutions obtained using the global
optimisation software Baron [256]; (ii) comparing with other results
from the literature obtained mainly by metaheuristics; (iii)
implementing and comparing with mixed-integer LP
(MILP) technique.

• Results: Effective solutions are presented, both in terms of quality
and accuracy, which are immediately usable in practice as diameters
decrease from the sources towards the points further away from the
sources (which is not the case for majority of the methods presented
in the literature).

• Test networks: (1) Two-loop network supplied by gravity (incl.
7 nodes) [14], (2) Hanoi network (incl. 32 nodes) [49], (3) Blacksburg
network (incl. 31 nodes) [257], (4) New York City tunnels (incl.
20 nodes) [81], (5) Foss_poly_0 network, Italy (incl. 37 nodes) [254],
(6) Foss_iron network, Italy (incl. 37 nodes) [254], (7) Foss_poly_1,
Italy (incl. 37 nodes) [254], (8) Pescara network, Italy (incl. 71 nodes)
[254], (9) Modena network, Italy (incl. 272 nodes) [254].

• Note: Test networks (5)–(9) are available from www.or.deis.unibo.it/
research_pages/ORinstances/ORinstances.htm (accessed on
10 September 2017).

www.or.deis.unibo.it/research_pages/ORinstances/ORinstances.htm
www.or.deis.unibo.it/research_pages/ORinstances/ORinstances.htm
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77. Kang and Lansey (2012) [26]
SO
Optimal WDS design and operation
including the integrated
transmission-distribution network
considering multiple loading conditions
using GA with an engineered initial
population.

Objective (1): Minimise (a) the pipe construction (the sum of the
base installation cost, trenching and excavation, embedment,
backfill and compaction costs, and valve, fitting, and hydrant
cost), (b) pump construction cost, (c) pump operation cost
(energy consumed by pumps), (d) penalty for violating the
pressure constraint.
Constraints: (1) Min pressure at the nodes for three demand
loading conditions (average, instantaneous peak and fire flows).
Decision variables: (1) Pipe sizes, pump station capacity
including (2) pump sizes and (3) the number of pumps.

Water quality: N/A.
Network analysis: EPANET.
Optimisation method: GA (for
optimisation), a new heuristic (for
generating an engineered initial
population to improve the GA
convergence).

• The optimisation of integrated transmission-distribution network is
presented. The distribution network (a part of the system which
delivers water to individual households) is usually not considered in
the WDS design optimisation because of the large number
of variables.

• A new heuristic is proposed to generate initial population
considering hydraulic behaviour of the system, so the velocities in
the selected pipe sizes fall below the pre-defined flow velocity
threshold. To maintain the diversity in the optimisation process, half
of the initial population is generated by the new heuristic and the
other half randomly.

• The following main assumptions are made: no uncertainty in
demand, one constant efficiency parameter to represent pumps,
constant energy tariff, and one fire flow demand pattern.

• There are 4 design scenarios considered: (i) the distribution network
is excluded from the model; (ii) the distribution network is included
in the model, but its pipe sizes are fixed at minimum values (i.e., are
not optimised); (iii) and (iv) both transmission and distribution
networks are included in the model, the initial population is
generated by the proposed heuristic and randomly, respectively.

• Results: The comparison of scenarios (i) and (ii) shows that the pipes
in the transmission network tend to be oversized if the distribution
network is excluded from the model. The comparison of scenarios
(iii) and (iv) shows that the new heuristic considerably improves the
convergence of the GA in terms of speed as well as the quality of
the solution.

• Test networks: (1) Real system with one source, one pump station
and 1274 pipes (incl. 936 nodes).
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78. Kanta et al. (2012) [92]
MO
Optimal WDS redesign/rehabilitation
(pipe replacement) including fire
damage and water quality objectives
using non-dominated sorting evolution
strategy (NSES).

Objective (1): Minimise (a) the potential fire damage, calculated
as lack of available fire flows at selected hydrant nodes taking
into account the importance of a hydrant location.
Objective (2): Minimise (a) the water quality deficiencies,
represented by a performance function on chlorine residual at
selected monitoring nodes reflecting governmental regulations
for drinking water quality.
Objective (3): Minimise (a) the system redesign cost, expressed as
a ratio of actual redesign cost over maximum expected redesign
cost.
Constraints: (1) Min pressure at the hydrant nodes, (2) pipe
diameters limited to commercially available sizes, (3) max
number of pipe decision variables (i.e., pipes to be replaced).
Decision variables: (1) Pipes selected for replacement (integer),
(2) diameters of replaced pipes (integer).
Note: One MO model including all objectives.

Water quality: Disinfectant (i.e.,
chlorine).
Network analysis: EPANET
(demand-driven analysis
to calculate the fire flows, using a
hydrant lifting technique to satisfy
the pressure constraint).
Optimisation method: NSES.

• The method provides the flexibility to select a mitigation plan for
urban fire events best suited for decision makers’ needs.

• NSES, a modification of NSGA-II for an evolution strategy
(ES)-based implementation to address difficulties for heuristics posed
by WDS optimisation problems, is proposed. It differs from the
standard NSGA-II in the application of specialised operators, such as
representation, mutation and selection.

• NSES is tested on three test problems of varying degrees of difficulty
and compared to NSGA-II and PAES using a deviation metric [258].
Subsequently, it is applied to a WDS optimisation problem using two
scenarios, fire flow at three and six hydrants, respectively.

• EPANET simulations are executed as follows. Fire flow analysis is
performed separately for each hydrant. Water quality analysis (incl.
hydraulics) is simulated without a fire flow demand over 168 hours
to reach dynamic equilibrium for chlorine residuals.

• Results: NSES outperforms (for three test problems used) both
NSGA-II and PAES in spreading solutions across the Pareto front and
in maintaining solution diversity. NSES also demonstrated the
capability to produce Pareto optimal solutions across several
objectives. However, almost no solutions were found in the ‘high fire
flow—low water quality—high cost’ region of the objective domain,
which is influenced by the disinfectant decay parameters and the
characteristics of the particular WDS.

• Test networks: (1) Virtual city of Micropolis (incl. 1262 nodes)
[259,260].

79. McClymont et al. (2012) [194]
SO
Optimal WDS rehabilitation (pipe
resizing) using ES with evolved
mutation heuristics.

Objective (1): Minimise (a) the design cost of the network (pipes).
Constraints: (1) Min/max pressure at the nodes, (2) max velocity
in the pipes.
Decision variables: (1) Pipe diameters (discrete).

Water quality: N/A.
Network analysis: Not specified.
Optimisation method: ES.

• A decision tree generative hyper-heuristic approach is presented
which uses genetic programming (GP) to evolve novel mutation
heuristics for the WDS design optimisation. The decision tree is
based on domain knowledge in the form of node head conditions to
inform the mutation to upstream pipes. For example, the upstream
pipes may be too large or too small if a node has excessive head or
head deficit, respectively.

• Mutation heuristics evolve using NSGA-II and are evaluated on their
ability to search for good solutions to the Hanoi test problem. The
best 5 mutation heuristics are compared against a tuned Gaussian
mutation using the Anytown network and three real networks.

• Results: The importance of testing evolved heuristics for over-fitting
is highlighted. Mutation heuristics display an improvement in
performance over traditional heuristics such as Gaussian mutation.

• Test networks: (1) Anytown network (incl. 19 nodes) [84], (2) real
network with 7 pipes, (3) real network with 29 pipes, (4) real network
with 81 pipes.
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80. Sedki and Ouazar (2012) [172]
SO
Optimal WDS design and strengthening
using a combined PSO and DE method
(PSO-DE).

Objective (1): Minimise (a) the design cost of the network (pipes),
(b) penalty cost for violating the pressure constraint.
Constraints: (1) Min pressure at the nodes.
Decision variables: (1) Pipe diameters (discrete).

Water quality: N/A.
Network analysis: EPANET.
Optimisation method: PSO-DE.

• A hybrid PSO-DE method is developed to overcome the problem of
premature convergence in PSO. In this method, PSO finds the region
of optimal solution, then combined PSO and DE find the
optimal point.

• PSO-DE is compared to the standard PSO as well as other methods
from the literature (ACO, CE, GA, HS, SA, SFLA, SS).

• Results: For the two-loop and Hanoi networks, PSO-DE found the
best-known solution in fewer iterations than other algorithms. For
the New York City tunnels, PSO-DE found a slightly better feasible
solution in a lower number of evaluations than the solution reported
in the literature to date.

• Test networks: (1) Two-loop network supplied by gravity (incl.
7 nodes) [14], (2) Hanoi network (incl. 32 nodes) [49], (3) New York
City tunnels (incl. 20 nodes) [81].

81. Wu et al. (2012) [74]
MO
Optimal WDS design, operation and
maintenance including GHG emissions,
incorporating variable speed pumps
(VSPs) using MOGA.

Objective (1): Minimise the total economic cost of the system
including (a) capital cost (i.e., purchase, installation and
construction of network components), (b) present value of
operating costs (i.e., electricity consumption due to pumping), (c)
present value of maintenance and end-of-life costs.
Objective (2): Minimise the total GHG emissions of the system
including (a) capital GHG emissions (i.e., manufacturing and
installation of network components), (b) present value of
operating GHG emissions (i.e., electricity consumption due to
pumping), (c) present value of maintenance and end-of-life
emissions.
Constraints: (1) Min flowrates within the system.
Decision variables: (1) Pipe sizes (discrete).
Note: One MO model including both objectives.

Water quality: N/A.
Network analysis: EPANET.
Optimisation method: MOGA.

• The aim is to incorporate VSPs into an optimal design of WDSs.
• A pump power estimation method is developed to incorporate VSPs.

This method uses a flow control valve (FCV) combined with an
upstream reservoir to represent a pump in the system, so that the
flows (via FCV) into the downstream tanks are maintained as close as
possible to the required flows. Therefore, the task of determining the
most appropriate FCV setting for calculating pump power is
formulated as a single-objective minimisation problem subject to
multiple flow constraints. To solve this problem, the false position
method [261] in conjunction with EPANET is used.

• VSPs are compared to FSPs within the defined multi-objective
optimisation problem.

• In the case study, only capital and operating costs and emissions are
considered (maintenance and end-of-life costs and emissions are
omitted).

• Results: The use of VSPs leads to significant savings in total cost as
well as GHG emissions. “The effectiveness of replacing FSPs with
VSPs in reducing operating costs and emissions is more significant
for a smaller pipe diameter system with higher dynamic heads
(friction losses) relative to static heads”.

• Test networks: Network with 1 pump, 8 pipes and 3 tanks (incl.
5 nodes) [77].
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82. Fu et al. (2013) [97]
MO
Optimal WDS strengthening, expansion,
rehabilitation and operation including
multiple loading conditions and water
quality objective applying
many-objective visual analytics using
ε-NSGA-II.

Objective (1): Minimise the capital cost for network
expansion/rehabilitation including (a) pipes, (b) storage tanks,
(c) pumps.
Objective (2): Minimise (a) the operating cost of the system (i.e.,
energy cost for pump operation) during a design period.
Objective (3): Minimise hydraulic failure of the system,
expressed by the total system failure index (SFI) combining (a)
nodal failure index and (b) tank failure index.
Objective (4): Minimise (a) the fire flow deficit, representing the
potential fire damage.
Objective (5): Minimise (a) the total leakage of the system,
considering background leakage from pipes only (calculated
based on the pipe pressure).
Objective (6): Minimise (a) the water age.
Constraints: N/A.
Decision variables: (1) Pipe diameters for new pipes (integer), (2)
options for existing pipes including cleaning and lining or
duplicating with a parallel pipe (integer), (3) tank locations
(integer), (4) the number of pumps in operation during 24 hours
(integer).
Note: One MO model including all objectives.

Water quality: Water age (as a
surrogate measure for water
quality).
Network analysis: Pressure-driven
demand extension of EPANET
(EPANETpdd) (EPS).
Optimisation method: ε-NSGA-II.

• The optimisation model is formulated with no constraints, because
the objective functions used meet all the criteria.

• Nodal hydraulic failure is quantified as a fraction of time during
which pressure at the node drops below the required pressure, the
consequence of which is defined as water shortage at this node
relative to the total demand of the entire WDS at that time.

• Tank hydraulic failure is identified by the water level at the end of
EPS being lower than at the beginning of simulation, which can
cause potential problems for the following time period.

• Five loading conditions are considered: average day flow,
instantaneous flow, and three fire flow conditions.

• The fire flow deficit objective is considered as the average deficit
across the three fire flow conditions.

• The leakage and water age are calculated for the average day
flow condition.

• ε-NSGAII is chosen over NSGA-II as it has a better computational
efficiency, which is important for many-objective optimisation due to
a high computational burden.

• Visual analytics are used to explore the tradeoffs between
6 objectives. The visualisation of the 6 objectives is achieved by
placing three objectives (capital costs, system failure and leakage) on
axes in a 3D chart, and representing the other 3 objectives through
the colour, orientation and size of the cones which indicate the
solutions. Also, lower-dimensional subproblem tradeoffs can be
observed using convention Pareto fronts in 2D and 3D.

• Results: The results indicate relationships between individual
objectives. For example, the capital and operating costs have a very
different relationship with water age and leakage, which would not
be revealed if the costs were aggregated into one objective. This
paper highlights benefits therefore of many-objective optimisation
approach in supporting more informed, transparent decision-making
in the WDS design process.

• Test networks: (1) Anytown network (incl. 19 nodes) [84].
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83. Kang and Lansey (2013) [121]
MO
Scenario-based robust optimal planning
of an integrated water and wastewater
system considering demand
uncertainties using NSGA-II.

Objective (1): Minimise (a) the systems initial construction cost
(pipes, pumps, tanks, wastewater plants), (b) expected operation
and maintenance costs, (c) adaptive construction cost to expand
the system if needed, (d) penalty cost for violating constraints.
Objective (2): Minimise (a) the variability of actual costs across
scenarios for the design solution, calculated as the standard
deviation.
Constraints: (1) Min pressure at the nodes, (2) min velocity in the
sewer pipes, (3) max pump station capacities, (4) max storage
tank sizes.
Decision variables: (1) Pipe sizes (discrete), (2) pump station
capacities (discrete), (3) wastewater treatment plant capacities
(discrete).
Note: One MO model including both objectives.

Water quality: N/A.
Network analysis: Not specified.
Optimisation method: NSGA-II.

• Scenario-based multi-objective robust optimisation (SMORO) model
for planning and designing a regional scale integrated water and
wastewater system is proposed. SMORO solves deterministic
problems in a scenario-based structure to effectively implement the
stochastic factors inherent in the problem.

• Uncertain parameters in the model are potable and reclaimed water
demands, which are implemented through scenarios. A set of
5 scenarios (base condition, low growth, high growth, low
reclamation, high reclamation) is developed, with the same
probability assigned to each scenario.

• Initially, the problem is solved individually for every scenario as
regular single-objective optimisation problems. Subsequently,
postoptimisation regret computation is performed. The regret cost is
an overpayment or a supplementary cost due to overdesign or
underdesign, respectively, owing to the implemented decision being
made with imperfect information about the future. “In other words,
the regret cost represents the risk that the implemented decision will
be more costly than a decision made”. Finally, the multi-objective
problem with two objectives (costs and variability) is solved
simultaneously for all scenarios.

• Results: A single-objective solution is cost effective only for the
design scenario; but in all other cases is inferior with possibly
substantial regret cost. In contrast, SMORO provides a robust and
flexible system design via a balanced solution in terms of initial
investment and future risk. It is demonstrated that system demand is
the most critical uncertainty in system design.

• Test networks: (1) Water system planning (water supply and reuse
water networks) in southeast Tucson, Arizona.



Water 2018, 10, 307 67 of 103

Table A1. Cont.

ID. Authors (Year) [Ref]
SO/MO *
Brief Description

Optimisation Model (Objective Functions +, Constraints **,
Decision Variables ++)

Water Quality
Network Analysis
Optimisation Method

Notes

84. McClymont et al. (2013) [144]
MO
Optimal WDS design and rehabilitation
including the water discolouration risk
using NSGA-II and SPEA2 integrated
with a new heuristic Markov-chain
hyper-heuristic (MCHH).

Objective (1): Minimise (a) the cost of network infrastructure
(pipes), (b) penalty for violating the pressure constraint, (c)
penalty for violating the velocity constraint.
Objective (2): Minimise (a) the water discolouration risk
expressed as the sum of cumulative potential material after daily
conditioning shear stress for all pipes in the network, (b) penalty
for violating the pressure constraint, (c) penalty for violating the
velocity constraint.
Objective (3): Minimise (a) the sum of the cumulative head
excess, (b) penalty for violating the pressure constraint, (c)
penalty for violating the velocity constraint.
Constraints: (1) Min head at the nodes, (2) max velocity in the
pipes.
Decision variables: (1) Pipe diameters.
Note: One MO model including all objectives.

Water quality: Water
discolouration.
Network analysis: EPANET,
discoloration propensity model
(DPM).
Optimisation method: NSGA-II
and SPEA2 integrated with
MCHH.

• This paper presents least-cost design of WDSs with a reduced risk of
water discolouration (i.e., self-cleaning networks), thus reduced
long-term maintenance and operational burdens of the system.

• A new heuristic MCHH is proposed. It is applied after each
generation of solutions having been attained and evaluated.
Essentially, MCHH learns which simple heuristic within the
algorithm (e.g., crossover, mutation) performs most effectively and
adjusts the likelihood of their selection accordingly.

• For the optimisation, NSGA-II and SPEA2 are integrated with
MCHH. Four extra heuristics in addition to crossover and mutation
are supplied to the algorithms with MCHH. Both the original
algorithms NSGA-II and SPEA2 and the MCHH variants are run on
the problem.

• For comparison, NSGA-II and SPEA2 are also integrated with two
other hyper-heuristics (Simple Random and TSRoulWheel).

• To calculate the discoloration risk, DPM software which implements
a cohesive transport model (CTM) [262,263] is used. So, the
algorithms are linked with both EPANET and DPM.

• Results: An improvement in performance obtained by MCHH
variants over the original algorithms is demonstrated. When
compared with Simple Random and TSRoulWheel, it is shown that
MCHH is able to find a wider range of solutions across the networks.

• Test networks: (1) Two-loop network supplied by gravity (incl.
7 nodes) [14], (2) Anytown network (incl. 19 nodes) [84], (3) Hanoi
network (incl. 32 nodes) [49], (4) small network with 68 pipes, South
West of England (incl. 52 nodes), (5) medium-size network with
107 pipes, South West of England, (incl. 81 nodes), (6) large network
with 213 pipes, South West of England (incl. 160 nodes).
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85. Zhang et al. (2013) [134]
SO
Optimal design, strengthening,
expansion and operation of a reclaimed
WDS considering demand uncertainty
with the time-staged construction over a
planning horizon (i.e., 20 years) using
ILP.

Objective (1): Minimise (a) the cost of installing pipes, (b) cost of
constructing pump stations, (c) pump energy cost of operating
the system, at the stage one (time horizon 0–10 years), (d)
expected cost of installing additional pipes, pumps and
operating the system, at the stage two (time horizon 10–20 years).
Constraints: (1) Min pressure at the nodes for peak demands, (2)
min pressure at the nodes for average demands, (3) only one pipe
size selected for each link, (4) only one pump size selected for
average demands, (5) only one pump size selected for peak
demands, (6) ensuring that the existing pump station is either
expanded or a new one constructed at the stage two, (7) binary
constraints.
Decision variables (stage 1): (1) Pipe of size j installed in link i,
(2) pump size p installed at station s for peak demands, (3) same
as (2) for average demands.
Decision variables (stage 2): (4) Additional pipe of size k
installed for link i, (5) if no pump installed at stage 1, pump size
p installed at station s for peak demands, (6) if pump installed at
stage 1, additional pump of size p installed at station s for peak
demands, (7) pump size p installed at station s for average
demands.
Note: All decision variables are binary (0 = no, 1 = yes).

Water quality: N/A.
Network analysis: Explicit
mathematical formulation.
Optimisation method: GAMS
CPLEX solver [207] using branch
and cut method.

• The paper presents a two-stage stochastic integer problem for a
planning horizon of 20 years, so there are 2 stages of construction
decisions: current decisions (for time horizon 0–10 years) and
expansion decisions in 10 years’ time (for time horizon 10–20 years).

• The network structure is branched (due to reliability not being as
important in a reclaimed water network), nonlinear hydraulic
equations are linearised.

• Preprocessing methods are developed to reduce the dimensionality
of the problem (i.e., reducing the number of pipe and pump
decisions). The network is separated into subnetworks, and pipe and
pump size reduction is performed for each subnetwork. The set of
permissible pipe diameters is reduced using velocity constraints.
Each subnetwork is solved separately.

• Uncertain future demands in expansion prospects (stage 2) of the
system are considered. The uncertainties are handled by a discrete
set of scenarios, with 81 scenarios used in the test problem.

• Sensitivity analysis is performed to test changes in total cost, and
pipe and pump decisions under varying demands, energy costs,
annual discount rates and pipe material prices.

• Results: Preprocessing considerably reduces problem dimension,
improves solution quality, and enables to solve large problems. In
regards to sensitivity analysis, mean demands are the most
significant driving factor with respect to total costs.

• Test networks: (1) Network with one source (wastewater treatment
plant), 4 pump stations and 56 pipes (incl. 56 demand nodes).

86. Zheng et al. (2013) [46]
SO
Optimal design of a multisource WDS
using network decomposition and DE in
a two-phase procedure.

Objective (1): Minimise (a) the design cost of the network (pipes).
Constraints: (1) Min/max pressure at the nodes.
Decision variables: (1) Pipe diameters (discrete).

Water quality: N/A.
Network analysis: EPANET.
Optimisation method: DE (the
modification based on the
approach of [171] to manage a
discrete problem).

• The proposed method consists of the following two steps.
• Network decomposition: A graph decomposition method is

developed to divide the original network into subnetworks, so that
the only one unique source supplies each subnetwork.

• Multistage optimisation: Each subnetwork is optimised (i.e.,
first-stage optimisation) using DE. The combined optimal solutions
for the subnetworks produce an approximate solution for the total
network. However, this approximate optimal solution needs to be
further improved because some of the pipes were not included in the
optimisation due to network partitioning. Therefore, the entire
original network is optimised (i.e., second-stage optimisation) using
the initial population seeded from the optimal solutions of the
subnetworks obtained from the first-stage optimisation.

• Results: The final solution from the second-stage optimisation is
close to the approximate solution found in the first-stage
optimisation. Comparison with the standard DE (a whole of network
optimisation) and other methods from the literature demonstrate that
the proposed method exhibits better performance in terms of
solution quality and convergence speed.

• Test networks: (1) Two-reservoir network (incl. 4 nodes), (2)
two-reservoir network with 34 links (incl. 26 nodes) [45], (3) real
three-reservoir network, China (incl. 199 demand nodes), (4) Balerma
irrigation network, Almeria, Spain (incl. 447 nodes) [50].
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87. Zheng et al. (2013) [173]
SO
Optimal WDS design and strengthening
using a self-adaptive DE method
(SADE).

Objective (1): Minimise (a) the design cost of the network (pipes).
Constraints: (1) Min head at the nodes.
Decision variables: (1) Pipe diameters (integer, with continuous
values created during the mutation process which are then
truncated to the nearest integer size).

Water quality: N/A.
Network analysis: EPANET.
Optimisation method: SADE.

• The paper introduces three new contributions as follows.
• Mutation weighting factor (F) and crossover probability (CR)

parameters of the SADE are encoded into a solution string and hence
are adapted through evolution (i.e., are not pre-specified).

• F and CR parameters are applied at the individual level rather than
generational level like in the standard DE, so different parameters
can be used for different individuals.

• A new termination criterion for the SADE is proposed. The
algorithm is terminated when all the individuals in the population
have similar objective function values, which is checked using the
coefficient of variation.

• Constraint tournament selection [148] is used to handle constraints.
• A sensitivity analysis is performed for different population sizes.
• Results: The SADE displays good performance for both the solution

quality and efficiency, with a reduced need to fine-tune algorithm
parameter values.

• Test networks: (1) New York City tunnels (incl. 20 nodes) [81], (2)
Hanoi network (incl. 32 nodes) [49], (2) double New York City
tunnels (incl. 39 nodes) [201], (4) Balerma irrigation network,
Almeria, Spain (incl. 447 nodes) [50].

88. Zheng et al. (2013) [149]
SO
Optimal WDS design and strengthening
using non-crossover dither creeping
mutation-based GA (CMBGA).

Objective (1): Minimise (a) the design cost of the network (pipes).
Constraints: (1) Min pressure at the nodes.
Decision variables: (1) Pipe diameters (discrete).

Water quality: N/A.
Network analysis: EPANET.
Optimisation method: CMBGA.

• Unlike the standard GA, the proposed CMBGA does not use
crossover. It only uses selection and newly proposed dither creeping
mutation replacing generally used bitwise mutation. The new
parameter is randomly generated throughout the algorithm run
rather than being preselected. It is also varies for each individual of
the population.

• To handle constraints, constraint tournament selection [148] is used.
• CMBGA is compared with 4 other GA variants, including a

crossover-based GA with bitwise mutation (SGA), a crossover-based
GA with creeping mutation (CGA), a non-crossover GA with
traditional bitwise mutation (NBGA), and a crossover dither
creeping mutation GA (CDGA).

• Results: CMBGA exhibits improvements in finding optimal solutions
compared with the other GA variants and displays a comparable
performance to the other EAs (MMAS and HD-DDS).

• Test networks: (1) New York City tunnels (incl. 20 nodes) [81], (2)
Hanoi network (incl. 32 nodes) [49].
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89. Aghdam et al. (2014) [164]
SO
Optimal WDS design and strengthening
using accelerated momentum PSO
(AMPSO).

Objective (1): Minimise (a) the design cost of the network (pipes),
(b) penalty for violating the pressure constraint.
Constraints: (1) Min pressure at the nodes.
Decision variables: (1) Pipe diameters (discrete).

Water quality: N/A.
Network analysis: EPANET.
Optimisation method: AMPSO.

• A new version of PSO called AMPSO is proposed in order to increase
the convergence rate of the algorithm and avoid getting trapped in
local optima.

• The increased convergence rate is achieved by introducing new
adaptive terms into the velocity update equation of the algorithm.
These terms decrease or increase the movement step size relative to
being close or far from the global optimum, respectively. The
convergence rate can be thus enhanced by large or short steps
proportional to the value of the cost function.

• To avoid getting trapped in local minima, so-called momentum terms
are introduced into the position updating formula of the algorithm.
These momentum terms “determine the influence of the past position
changes on the current direction of movement in the search space”.

• AMPSO is compared with three other heuristic methods from the
literature (GA, ACO and PSO-DE).

• Results: AMPSO exhibits the efficiency when compared with
other heuristics.

• Test networks: (1) Hanoi network (incl. 32 nodes) [49], (2) New York
City tunnels (incl. 20 nodes) [81].

90. Bi and Dandy (2014) [27]
SO
Optimal WDS design and strengthening
including water quality considerations
using online ANN and DE.

Objective (1): Minimise (a) the design cost of the network (pipes),
(b) the net present value of chlorine cost over a planning horizon.
Constraints: (1) Min head at the nodes, (2) min chlorine
concentration at the nodes.
Decision variables: (1) Pipe diameters (discrete), (2) chlorine
dosage rates at the WTPs.

Water quality: Chlorine.
Network analysis: Online ANN.
Optimisation method: DE.

• ANN is proposed to replace a hydraulic and water quality simulator
in order to reduce the computational effort of those simulations.
Online DE-ANN method is designed, where ANN is retrained
throughout the optimisation process (so called online ANN) to
improve approximation of the portion of search space under
consideration and DE performs the optimisation. A local search
strategy is used to improve the final solution obtained by DE-ANN.

• To reduce the run time, the ANN training is performed only for the
selected critical nodes, which are determined before the optimisation
using data from EPANET. There are 3 parameters used for training:
the size of the training data, the number of generations between
retrainings, and the number of retrainings.

• To ensure the feasibility of generated solutions at each generation,
the best solution is compared to the previous generations’ best
solution. If different, it is checked by EPANET for feasibility, if
cheaper, it is noted as the current best solution.

• The demands for the test network (1) are constant, whereas for the
test networks (2) and (3) they vary within the 24 h cycle.

• The performance of the proposed online DE-ANN method is
compared with the DE-EPANET method and offline DE-ANN
method where the ANN model is trained only at the beginning of the
optimisation (see, for example, [87,264].

• Results: The online DE-ANN outperforms the offline DE-ANN in
terms of efficiency and solution quality. In comparison to
DE-EPANET, the online DE-ANN displays a substantial
improvement in computational efficiency, while still producing good
quality solutions.

• Test networks: (1) New York City tunnels (incl. 20 nodes) [81], (2)
modified New York City tunnels (incl. 20 nodes), (3) hypothetical
Jilin network (incl. 28 nodes).
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91. Creaco et al. (2014) [118]
MO
Optimal WDS design, strengthening and
expansion accounting for construction
phasing in prefixed time intervals (i.e.,
25 years) over a planning horizon (i.e.,
100 years) using NSGA-II.

Objective (1): Minimise (a) the total present worth construction
cost of the network (pipes), calculated as the sum of the present
worth costs of the n upgrades, (b) penalty for violating the
pressure surplus constraint.
Objective (2): Maximise (a) the network reliability, calculated as
the minimum pressure surplus over the whole construction time.
Constraints: (1) Pressure surplus bigger or equal to zero.
Decision variables: (1) Pipe diameters (coded as integer
numbers), with the genes consistently ordered (within each
individual) according to the construction phases.
Note: One MO model including both objectives.

Water quality: N/A.
Network analysis: Demand-driven
analysis [11].
Optimisation method: Modified
NSGA-II.

• The aim is to optimise a phased WDS construction in prefixed time
intervals over an expected life cycle, where nodal demands increase
in time without uncertainty.

• Modified NSGA-II used encodes genes with integer numbers instead
of real numbers.

• The solutions provide the pipe diameters which have to be laid in the
various sites (inclusive of pipes laid in parallel to existing pipes) at
the various time intervals.

• The following two scenarios are considered for network growth: (i)
the network topology is constant in time, so no network expansion
occurs over the planning horizon; (ii) the network topology changes
in time, so network expansion occurs over the planning horizon.

• Three different types of optimisation are performed for each network
scenario as follows: (i) four construction phases with 25-year
intervals over 100-year planning horizon; (ii) one construction phase
over 25-year planning horizon; (iii) one construction phase over
100-year planning horizon. The objective is to assess how
construction phasing affects network design.

• Results: Optimisation of WDS design with construction phasing
leads to better results than the traditional single construction
phase approach.

• Test networks: (1) Two-loop network supplied by gravity (incl.
7 nodes) [14].

92. Ezzeldin et al. (2014) [165]
SO
Optimal WDS design using integer
discrete PSO (IDPSO).

Objective (1): Minimise (a) the design cost of the network (pipes),
(b) penalty cost for violating the pressure constraint.
Constraints: (1) Min pressure at the nodes, (2) min/max pipe
diameters.
Decision variables: (1) Pipe diameters (discrete).

Water quality: N/A.
Network analysis:
Newton-Raphson method [10].
Optimisation method: IDPSONET
program using IDPSO.

• A new boundary condition and a new initialisation method are
proposed for PSO.

• The boundary condition is called billiard boundary condition. When
a particle reaches the boundary, it is reflected back to the search space
with its velocity remaining the same (only the sign changes). This
technique gives the particle a bigger chance to find its global solution.
Usually, a velocity clamping technique is used in PSO. The new
boundary condition is tested against 5 other boundary conditions for
the two-loop network.

• In a new initialisation method, the initial position of the solution
vector is set to one side of the boundary with the maximum
available diameters.

• Results: IDPSO reached the known optimal solution in a reduced
number of evaluations for the two-loop network, and it improved the
solutions previously found in the literature for the
two-reservoir network.

• Test networks: (1) Two-loop network supplied by gravity (incl.
7 nodes) [14], (2) two-reservoir network with 34 links (incl.
26 nodes) [45].
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93. Johns et al. (2014) [155]
SO
Optimal WDS design, strengthening and
operation using adaptive locally
constrained GA (ALCO-GA).

Objective (1): Minimise (a) (all test networks) the design cost of
the network (pipes), (b) (test network (4) only) cost of tanks, (c)
(test network (4) only) pump energy cost.
Constraints: (1) Min pressure at the nodes.
Decision variables: (1) Pipe diameters (discrete), (2) (test network
(4) only) tank locations (binary), (3) (test network (4) only) the
number of pumps in operation during 24 h at every 1-h time step
(binary).

Water quality: N/A.
Network analysis: Not specified.
Optimisation method: ALCO-GA.

• Heuristic-based mutation operator which utilises hydraulic head
information and an elementary heuristic to allow earlier location of
feasible solutions in the optimisation process are proposed.

• Constraint handling is performed through the use of the modified
mutation operator.

• If only the heuristic-based mutation operator is applied (i.e., without
random bitwise mutation) throughout the whole optimisation
process, it causes premature convergence on a suboptimal solution.
Therefore, the fitness gradient monitor is employed, which controls
the probability that the heuristic-based mutation operator is used
based on the rate of convergence of the best solution in
the population.

• Results: ALCO-GA displays faster convergence than the standard
GA and often obtains better solutions than solutions from the
literature obtained by the standard GA.

• Test networks: (1) Two-loop network supplied by gravity (incl.
7 nodes) [14], (2) New York City tunnels (incl. 20 nodes) [81], (3)
network B: real network with a single reservoir and 1277 pipes, UK
(incl. 1106 nodes), (4) modified Anytown network (incl. 19 nodes)
[84] (the options to duplicate/clean/line existing pipes are removed).

94. McClymont et al. (2014) [68]
MO
Optimal WDS rehabilitation (pipe
resizing) using ES with evolved mutation
operators in a three-phase procedure.

Objective (1): Minimise (a) the design cost of the network (pipes).
Objective (2): Minimise (a) the total head deficit at the nodes.
Constraints: N/A.
Decision variables: (1) Pipe diameters (discrete).
Note: One MO model including both objectives.

Water quality: N/A.
Network analysis: Not specified.
Optimisation method: ES.

• An extension of the paper by [194] developing a hyper-heuristic
approach by using GP to evolve (optimise) mutation operators for
the bi-objective WDS design optimisation.

• A generative hyper-heuristic framework consists of the following
three phases.

• Initialisation phase, which generates random population of mutation
operators and sample network designs (using the Hanoi training
network) which are fixed.

• Generation phase, which creates an optimisation loop, where the
mutation operators are varied and evaluated using sample network
designs. The best mutation operators are then selected to propagate
into the next generation and the process repeats until a termination
criterion is met. SPEA2 is used to optimise mutation operators.

• Evaluation phase, which evaluates the best evolved mutation
operators and applies them to a set of three test networks (the
Anytown network and two real networks).

• A comparison of the best 10 varied evolved mutation operators with
each other and also with the standard Gaussian mutation operator is
performed using the hypervolume indicator [265].

• Results: The method enables to classify the evolved mutation
operators in terms of their robustness and impact on
convergence characteristics.

• Test networks: (1) Anytown network (incl. 19 nodes) [84], (2) real
network with one source, (3) real network with two sources.
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95. Roshani and Filion (2014) [124]
MO
Optimal WDS rehabilitation,
strengthening, expansion and operation
with asset management strategies over a
planning horizon (i.e., 20 years) using
NSGA-II with event-based coding.

Objective (1): Minimise the present value of the capital costs of
the network including (a) pipe replacement, (b) pipe duplication,
(c) pipe lining, (d) installation of new pipes.
Objective (2): Minimise the present value of the operating costs
including (a) lost water to leakage, (b) break repair, (c) electricity
to pump water.
Constraints: (1) Max yearly annual budget for the total of all
costs (excluding leakage), (2) min pressure at the nodes, (3) max
velocity in the pipes.
Decision variables: (1) Time of rehabilitation, (2) place of
rehabilitation, type of rehabilitation including (3) the diameter of
a pipe being replaced/duplicated and (4) the diameter of a new
pipe in an area slated for future growth, (5) the type of lining
technology used.
Note: One MO model including both objectives.

Water quality: N/A.
Network analysis: EPANET.
Optimisation method: NSGA-II.

• An event-based algorithm for optimal timing of water main
rehabilitation is introduced. A new gene coding scheme, which
reduces the chromosome length, thus saves computer memory and
increases speed of convergence, is developed. The chromosome
length is reduced by only coding the rehabilitation events, rather
than coding all years of the planning horizon (20 years) with mostly
zero entries where no rehabilitation occurs.

• Savings achieved using asset management strategies by
synchronising road reconstruction works with water main
replacement/rehabilitation (called infrastructure adjacency discount)
and obtaining discounts for purchasing large numbers of water main
pipes (called quantity discount) are accounted for.

• Four scenarios are used to investigate the impact of different asset
management strategies on the optimisation process, where different
variations of infrastructure adjacency discounts, quantity discounts
and annual budget constraints are applied.

• Pipe leakage, pipe break and pipe roughness forecasting models are
used. Sensitivity analysis is performed to examine the sensitivity of
the capital and operation costs to uncertainties in water demands,
initial break rate, break growth rate, initial leak rate, leak growth rate,
and pipe roughness.

• Results: A budget constraint prohibits from investing early and
heavily in pipe rehabilitation. This pipe rehabilitation postponement
leads to an increase in operation costs linked to leakage, breaks and
energy use in unimproved pipes. The capital and operation costs
decrease when applying discounts, with pipe lining being favoured
over pipe replacement and duplication.

• Test networks: (1) Fairfield network in Amherstview and Odessa,
Ontario, Canada.

96. Zheng et al. (2014) [179]
SO
Optimal WDS design and strengthening
using a combined binary LP and DE
method (BLP-DE) in a three-phase
procedure.

Objective (1): Minimise (a) the design cost of the network (pipes),
(b) penalty cost for violating the nodal head requirement.
Constraints: (1) Total head loss used by the pipes (from the
source to a node) should be less than the value of the head at the
source minus the head requirement at a node, (2) only one pipe
diameter selected for each link.
Decision variables: (1) Pipe diameters (binary for BLP,
continuous for DE rounded to the nearest commercially available
discrete diameters after the mutation process).

Water quality: N/A.
Network analysis: EPANET
Optimisation method: BLP-DE.

• The proposed BLP-DE method takes advantages of both BLP (being
able to efficiently provide a global optimum for a tree network) and
DE (being able to generate good quality solutions for a loop network
with a reduced search space). However, this method is not
appropriate for least-cost design of networks, which have only loops
or only trees.

• The proposed BLP-DE method involves the following three stages: (i)
network decomposition into trees and the core using a graph
algorithm; (ii) optimisation of the trees using BLP; (iii) optimisation
of the core using DE while incorporating the optimal solutions for
the trees.

• Results: For the New York City tunnels and Hanoi networks, BLP-DE
found the best-known solutions with a significantly improved
efficiency compared to numerous other algorithms from the
literature. For the real network, BLP-DE found better quality
solutions than standard DE (SDE) also with an improved efficiency.

• Test networks: (1) New York City tunnels (incl. 20 nodes) [81], (2)
Hanoi network (incl. 32 nodes) [49], (3) real network with one source
and 96 pipes, China (incl. 85 demand nodes).
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97. Basupi and Kapelan (2015) [135]
MO
Optimal flexible WDS strengthening,
expansion, rehabilitation and operation
considering demand uncertainty and
optional intervention paths in prefixed
time intervals (i.e., 25 years) over a
planning horizon (i.e., 50 years) using
NSGA-II.

Objective (1): Minimise the total intervention cost including (a)
capital cost of rehabilitation intervention, (b) pump energy
consumption cost.
Objective (2): Maximise (a) the end-of-planning horizon system
resilience, using a resilience index [266].
Constraints: (1) Min head requirement at the nodes.
Decision variables: Intervention options (discrete) including (1)
addition of new pipes, (2) duplication/cleaning/lining of
existing pipes, (3) addition and (4) sizing of new tanks, (5) pump
schedules, (6) threshold demands (discrete).
Note: One MO model including both objectives.

Water quality: N/A.
Network analysis: EPANET.
Optimisation method: NSGA-II.

• Future demand uncertainty, following a probability density function,
is considered. Simulations (Monte Carlo or Latin Hypercube) around
the traditionally projected water demand are employed to reflect the
possible scenarios of future demand realisation at certain
decision points.

• Decision trees are used to represent the uncertain demands and the
respective flexible design intervention plans. The decision tree has
optional intervention paths consisting of a set of intervention
measures. There is path-dependence, which means that the extent of
future design interventions depends on the previous intervention
path undertaken.

• Planning horizon of 50 years, divided into two design stages of
25 years, is used.

• The proposed flexible design with optional intervention paths into
the future is compared with the deterministic design with a single set
of interventions for each design stage’s future demand in the
analysed planning horizon.

• The sensitivity analyses of both the cost discount rate and the
standard deviation scenarios across the planning horizon
are investigated.

• Results: The optimal flexible design under future demand
uncertainty outperforms the corresponding optimal deterministic
design in terms of the cost and resilience objectives, because it
enables the system to adapt in addition to simply postpone
interventions. The flexible design methodology is more sensitive to
the cost discount rate than the level of demand uncertainty.

• Test networks: (1) New York City tunnels (incl. 20 nodes) [81], (2)
Anytown network (incl. 19 nodes) [84].



Water 2018, 10, 307 75 of 103

Table A1. Cont.

ID. Authors (Year) [Ref]
SO/MO *
Brief Description

Optimisation Model (Objective Functions +, Constraints **,
Decision Variables ++)

Water Quality
Network Analysis
Optimisation Method

Notes

98. Bi et al. (2015) [108]
SO
Optimal WDS design using GA with an
engineered initial population.

Objective (1): Minimise (a) the design cost of the network (pipes),
(b) penalty cost for violating the pressure constraints.
Constraints: (1) Min/(max) pressure at the nodes.
Decision variables: (1) Pipe diameters (discrete).

Water quality: N/A.
Network analysis: EPANET.
Optimisation method: GA (for
optimisation), a new heuristic
called prescreened heuristic
sampling method (PHSM) (for
generating an engineered initial
population to improve the GA
convergence).

• A new PHSM is proposed to determine the initial population of the
EAs using engineering experience and domain knowledge to
improve convergence of the algorithms.

• The PHSM procedure is designed as follows: (i) assigning pipe sizes
based on the knowledge that pipe diameters decrease with a greater
distance from sources; (ii) adjusting pipe sizes based on the velocity
threshold; (iii) ensuring diversity in the initial population by
generating it from a distribution, so pipe diameters from step (ii)
have the highest probability of being selected.

• PHSM is compared to Kang and Lansey’s sampling method (KLSM)
[26] and two other sampling methods which do not use domain
knowledge, such as random sampling (RS) and Latin hypercube
sampling (LHS).

• The number of decision variables of 7 test networks used varies from
34 to 1274.

• Results: PHSM outperforms other sampling methods in terms of
computational efficiency as well as the solution quality, and its
advantage increases with network size.

• Test networks: (1) Hanoi network (incl. 32 nodes) [49], (2) extended
Hanoi network (incl. 32 nodes) (a number of diameter options is
increased), (3) Zhi Jiang (ZJ) network, China (incl. 113 demand
nodes) [111], (4) Balerma irrigation network, Almeria, Spain (incl.
447 nodes) [50], (5) rural network (incl. 379 nodes) [154], (6)
Foss_poly_1, Italy (incl. 37 nodes) [147], (7) modified Kang and
Lansey’s network (KLmod) (incl. 936 nodes) [26].
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99. Creaco et al. (2015) [136]
MO
Optimal WDS design, strengthening and
expansion accounting for demand
uncertainty and construction phasing in
prefixed time intervals (i.e., 25 years)
over a planning horizon (i.e., 100 years)
using NSGA-II.

Objective (1): Minimise (a) the total present worth construction
cost of the network including (a) the cost of installing pipes at
new sites, (b) cost of installing pipes in parallel to existing pipes.
Objective (2): Maximise (a) the network reliability, calculated as
the minimum pressure surplus over the whole construction time.
Constraints: (1) Min pressure at the nodes.
Decision variables: (1) Pipe diameters (coded as integer
numbers).
Note: One MO model including both objectives.

Water quality: N/A.
Network analysis: Demand-driven
analysis [11].
Optimisation method: Modified
NSGA-II.

• An extension of the paper by [118] taking into account uncertainty in
demand growth. “The uncertainty in the water demand is obtained
by expressing the parameters of the demand-growth model by means
of a (discrete) random variable of given probability mass function”.

• A set of 81 demand-growth scenarios is developed, the first three of
which have a constant demand-growth rate, whereas the others have
a randomly variable demand-growth rate over the planning horizon.
The reliability which is maximised in the second objective is in fact a
discrete random variable, reflecting different
demand-growth scenarios.

• Four construction phases with 25-year intervals over 100-year
planning horizon are considered. The number of pipes to be inserted
at each phase is assumed to be known.

• Different types of optimisation are performed: (i) probabilistic
second objective optimisation using the entire set of 81
demand-growth scenarios; (ii) deterministic second objective
optimisations, applying a constant demand-growth rate (i.e., the first
three demand-growth scenarios), where the second objective
function is the crisp minimum temporal surplus (instead of the
discrete random variable) over the planning horizon.

• Results: Optimisation of construction phasing, accounting for
demand growth uncertainty, leads to the network being sized more
conservatively (larger pipe diameters are evident mainly in the first
construction phases), which makes the network more flexible to
adapt itself to various conditions of demand growth over time.

• Test networks: (1) Network of a town in northern Italy (incl.
26 nodes) [267], skeletonised from the original network [268].
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100. Dziedzic and Karney (2015) [119]
SO
Optimal WDS design, strengthening and
operation considering multiple loading
conditions over a planning horizon (i.e.,
20 years) using cost gradient-based
heuristic method with computational
time savings.

Objective (1): Minimise (a) the pump energy cost, (b) damage
cost, (c) capital cost of the network (pipes).
Constraints: (1) Min pressure at the nodes.
Decision variables: (1) Pipe diameters (discrete).

Water quality: N/A.
Network analysis: EPANET.
Optimisation method: Cost
gradient-based heuristic method.

• The aim is to reduce the computational time of the optimisation
process of a WDS with multiple loading conditions.

• A gradient search is applied and the objective function is
approximated by shortening the extended period analysis. So, a
shorter time period is used to estimate the hydraulic variations of the
system and the costs for the full planning horizon. The demands
within the shorter time cycle (TC) should match the demand
probabilities in the full analysis period and their variation.

• The ratio between the gradients of energy dissipation cost, damage
cost and pipe cost is calculated at each iteration (i.e., one TC). The
pipes with the minimum and maximum cost gradient ratios are
identified, the pipe with a minimum (below 1) and maximum (above
1) cost ratio is downsized and upsized, respectively.

• Hourly iterations were used initially to generate a rough solution,
which was then optimised with the 100-day TC to represent demand
variations. Significantly, these short TC results, when extrapolated,
accurately depict the costs of the full 20-year planning horizon. The
optimisation process took approximately 1 h.

• The damage cost is computed according to the pressures (the
probabilities are given) from EPANET. Three types of damage are
considered: (i) the pressure falls below 14 m and fire erupts
simultaneously; (ii) the pressure is between 14 and 26 m causing for
example backup pumps to fail; (iii) the pressure is above 88 m
potentially leading to a pipe burst.

• Four additional scenarios were optimised: reduced demand,
increased damage cost, increased energy cost, and
varying roughness.

• Results: Shorter TCs can be used to approximate full time horizon
costs. The method is useful in cases where more computationally
intensive methods are infeasible.

• Test networks: (1) Anytown network (incl. 19 nodes) [84].
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101. Marques et al. (2015) [122]
SO
Optimal WDS design, strengthening,
expansion and operation with a real
options (ROs) concept and demand
uncertainty, accounting for construction
phasing in prefixed time intervals
(10–20 years) over a planning horizon (60
years) using SA.

Objective (1): Minimise (a) the cost of the initial solution to be
implemented in year zero (for interval 0–20 years) incl. pipes,
pumps and pump energy costs, (b) cost of the future conditions
incl. pipes, pumps and pump energy costs (cost of all scenarios
weighted by the corresponding probability of each scenario), (c)
regret term incl. pipes, pumps and pump energy costs (squared
differences between the cost of the solution to implement and the
optimal cost for each scenario).
Constraints: (1) Min/max pressure at the nodes, (2) min pipe
diameter, (3) only one commercial diameter assigned to a pipe.
Decision variables: (1) Pipe diameters (discrete), (2) pump heads.

Water quality: N/A.
Network analysis: EPANET.
Optimisation method: SA.

• The ROs concept is proposed, which allows flexibility to be included
in the decision making process. The regret term introduced in the
objective function captures a situation of making decisions without
perfect information (i.e., an implemented solution can be suboptimal
and the regret term represents the risk of such a decision).

• Uncertainties in future demands are implemented. Three demand
conditions are used, one of them considers instantaneous peak
discharge and fire flow at one node.

• Various network expansion options are considered to predict
alternative future developments.

• Combining all the different conditions and expansion options, a total
of 8 scenarios are derived, which form a decision tree.

• Planning horizon of 60 years divided into 4 intervals is used. It is
assumed that interval 1 (T = 1, 20 years) requires no modifications
and conditions will not change. T = 2 and T = 3 are 10-year intervals
with potential network expansion. Pumps should be replaced in
T = 2 and T = 4. Also in T = 4, the demand should be predicted, two
scenarios here are demand increasing by 20% and demand remaining
constant. For the first 40 years, the demand would increase at a
constant rate of 10% per decade.

• In order to understand the difference of using ROs in the flexible
design of WDSs, the ROs concept and a traditional design
are compared.

• Results: Compared to a traditional design, the ROs solution enables
saving resources if an extended and uncertain planning horizon is
considered. Accordingly, the ROs solution has a higher initial cost
(the first 20 years), yet the total cost over 60 years is lower.

• Test networks: (1) Simple network supplied from a single reservoir
(incl. 10 nodes), inspired by [269].
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102. Marques et al. (2015) [137]
MO
Optimal WDS design, expansion and
operation with a ROs concept and
network expansion uncertainty,
accounting for construction phasing in
prefixed time intervals (20 years) over a
planning horizon (60 years) using
multi-objective SA.

Objective (1): Minimise (a) the cost of the initial solution to be
implemented in year zero (for interval 0–20 years) incl. pipes,
pumps, pump energy costs, carbon emissions cost for pipes and
energy (b) cost of the future conditions incl. pipes, pumps, pump
energy costs, carbon emissions cost for pipes and energy (cost of
all scenarios weighted by the corresponding probability of each
scenario).
Objective (2): Minimise (a) total pressure violations for future
scenarios (the sum of pressure violations for each scenario, each
interval (starting from T = 2), each demand condition and each
network node).
Constraints: (1) Min pressure at the nodes, (2) min pipe diameter,
(3) only one commercial diameter assigned to a pipe.
Decision variables: (1) Pipe diameters (discrete).
Note: One MO model including both objectives.

Water quality: N/A.
Network analysis: EPANET.
Optimisation method:
Multi-objective SA.

• An extension of the papers by [122,270] considering a multi-objective
approach with carbon emissions and uncertainties related to the
future expansion scenarios of the network.

• Similar to [122,270], ROs concept is applied, which uses a decision
tree to reflect different scenarios (there is a total of 8 scenarios).

• Planning horizon of 60 years divided into 3 intervals is used.
Two kinds of minimum pressures are considered: desirable and
admissible. In the first interval (T = 1, 20 years), the pressure cannot
fall below the desirable minimum pressure.

• The constraint of minimum pressure at the nodes aims to obtain
higher values, thus fewer pressure violations, for scenarios with high
occurrence probabilities.

• The test network used can be expanded into four different areas, and
also one area can be depopulated.

• Results: The carbon emission costs have an insignificant influence on
the objective function value. Energy and pipe costs are
conflicting objectives.

• Test networks: (1) Network supplied by three reservoirs (incl.
14 nodes) inspired by the study of [271].

103. McClymont et al. (2015) [29]
SO
Optimal WDS design and operation,
investigating linkages between
algorithm search operators and the WDS
design problem features, using elitist EA.

Objective (1): Minimise (a) the design cost of the network (pipes),
(b) the energy cost of running pumps.
Constraints: (1) Min/max pressure at the nodes, (2) max velocity
in the pipes.
Decision variables: (1) Pipe diameters (discrete), (2) pump
statuses (binary).

Water quality: N/A.
Network analysis: EPANET.
Optimisation method: Elitist EA.

• The aim is to bring insight into the interaction between an algorithm
search operator and the WDS design problem. For that purpose,
60 artificial test networks are designed specifically, so they isolate
individual features. These networks are then used to evaluate the
impact of network features on operator performance.

• “The method is as follows: (1) select operators, (2) select problems,
(3) identify problem features, (4) synthesize artificial problems, (5)
test on artificial problems, (6) analyse results and determine linkages,
(7) select the most appropriate operators for selected problems, (8)
test on actual problems, (9) analyse results”. Such a systematic and
quantitative approach provides detailed information (e.g., what
linkages, if any, exist between the performance of an operator and
certain WDS features) about an algorithm’s suitability to optimise
certain types of problem.

• The following 6 operators are tested: mutation (random and 1 step
size variation), crossover (uniform and n-point), and pipe smoothing
and pipe expander (designed specifically for WDS problems).

• Two types of experiments were conducted, one to test the effects of
operators individually, the other to test the effect of the pairs
of operators.

• Results: Operator performance and problem search spaces are linked,
which is verified using three well known benchmark problems.

• Test networks: (1)–(60) Artificial networks based on 3 simple systems
(looped, branched and hybrid), (61) two-loop network supplied by
gravity (incl. 7 nodes) [14], (62) Hanoi network (incl. 32 nodes) [49],
(63) Anytown network (incl. 19 nodes) [84].
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104. Roshani and Filion (2015) [132]
MO
Optimal WDS rehabilitation,
strengthening, expansion and operation
with GHG emissions over a planning
horizon (i.e., 20 years) using NSGA-II
with event-based coding.

Objective (1): Minimise the present value of the capital costs of
the network including (a) pipe replacement, (b) pipe duplication,
(c) pipe lining, (d) installation of new pipes.
Objective (2): Minimise the present value of the operating costs
including (a) lost water to leakage, (b) break repair, (c) electricity
to pump water, (d) carbon cost associated with electricity use.
Constraints: (1) Min pressure at the nodes, (2) max velocity in the
pipes.
Decision variables: (1) Time of rehabilitation, (2) place of
rehabilitation, type of rehabilitation including (3) the diameter of
a pipe being replaced/duplicated and (4) the diameter of a new
pipe in an area slated for future growth, (5) the type of lining
technology used.
Note: One MO model including both objectives.

Water quality: N/A.
Network analysis: EPANET.
Optimisation method: NSGA-II.

• An extension of the paper by [124] including energy use and GHG
emissions linked to electricity consumption due to pumping, leakage,
and increases in pipe wall roughness due to pipe aging. The paper
also analysis impact of two carbon reduction strategies (carbon tax
and discount rates) on WDS rehabilitation.

• Event-based rehabilitation timing approach of [124] is used.
• Six carbon-abatement scenarios are examined, involving different

combinations of carbon tax and discount rates, for two different
GHG emissions intensity factors (low and high yearly emissions).

• Results: Adopting a low discount rate and levying a carbon tax has a
small impact on energy use and GHG emissions reduction. A low
discount rate and the application of a carbon tax has a modest impact
on leakage and pipe breaks reduction, and encourages an early
rehabilitation investment to reduce the ongoing costs of leakage, pipe
repair, energy, and GHG emissions.

• Test networks: (1) Fairfield network in Amherstview and Odessa,
Ontario, Canada.

105. Sadollah et al. (2015) [174]
SO
Optimal WDS design and strengthening
using improved mine blast algorithm
(IMBA).

Objective (1): Minimise (a) the design cost of the network (pipes).
Constraints: (1) Min pressure at the nodes.
Decision variables: (1) Pipe diameters (discrete).

Water quality: N/A.
Network analysis: EPANET.
Optimisation method: IMBA.

• An improved algorithm based on a mine blast algorithm (MBA) is
developed for least-cost design of WDSs. MBA is inspired by the
process of mine explosions. Similar to other metaheuristics, it starts
with an initial population (the number of shrapnel pieces), further
followed by exploration and exploitation phases.

• The modifications in the IMBA concern the exploitation phase and
distance reduction of each shrapnel piece. In particular, the
exploitation equations are modified to avoid problems with the
dimension of the search space, where the perception of direction is
replaced by moving to the best solutions.

• IMBA is compared to a large number of other algorithms (14 to 17 for
each test network) in terms of the solution quality and
computational effort.

• Results: IMBA reached a cheaper design than other algorithms for at
least one test network. For the other two test networks, IMBA found
the best-known design in fewer function evaluations.

• Test networks: (1) Hanoi network (incl. 32 nodes) [49], (2) New York
City tunnels (incl. 20 nodes) [81], (3) Balerma irrigation network,
Almeria, Spain (incl. 447 nodes) [50].
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106. Saldarriaga et al. (2015) [47]
SO
Optimal WDS design using optimal
power use surface (OPUS) method
paired with metaheuristic algorithms.

Objective (1): Minimise (a) the design cost of the network (pipes),
(b) penalty for violating the pressure constraint.
Constraints: (1) Min pressure at the nodes.
Decision variables: (1) Pipe diameters (discrete).

Water quality: N/A.
Network analysis: Not specified.
Optimisation method: OPUS
combined with: GA in REDES, GA
in GANETXL, GA in MATLAB, HS
in REDES, SA in MATLAB, greedy
algorithm in REDES.

• The OPUS algorithm is paired with metaheuristic methods whereby
the solutions obtained through OPUS are used as hot start (i.e., initial
population) for the metaheuristics applied subsequently.

• The OPUS method uses deterministic hydraulic principles drawn
from analysing energy use and flow distribution in the network.

• Results: The proposed optimisation method consistently marginally
reduces the costs obtained through the OPUS algorithm (up to 1%)
and substantially increases the number of iterations in every case
(around 3 orders of magnitude). Authors argue, therefore, that it is
not worth “to refine a solution that is already very close to the
optimum and required minimum computational and human effort to
be reached” (through the OPUS algorithm).

• Test networks: (1) Hanoi network (incl. 32 nodes) [49], (2) Balerma
irrigation network, Almeria, Spain (incl. 447 nodes) [50], (3) Taichung
network, Taiwan (incl. 20 nodes) [272], (4) hypothetical network R28
(incl. 39 nodes) created at the Water Distribution and Sewer Systems
Research Centre (CIACUA) of the University of Los Andes in
Bogota, Colombia.

107. Stokes et al. (2015) [76]
MO
Optimal WDS design and operation
including GHG emissions over a
planning horizon (i.e., 100 years),
investigating the effect of changing tank
reserve size (TRS), using Borg
multi-objective EA (MOEA).

Objective (1): Minimise (a) the construction costs of the network
(pipes, pumps, tanks), (b) operating costs (electricity consumed
by pumps).
Objective (2): Minimise GHG emissions associated with the
system (a) construction, (b) operation (electricity consumed by
pumps).
Constraints: (1) Min pressure at the nodes, (2) the total volume
pumped equal to or greater than the total demand during the
EPS.
Decision variables: (1) Pipe diameters (discrete), (2) pump types
(discrete), (3) pump scheduling decision variable (continuous).
Note: One MO model including both objectives. For the test
network (1), both design and operation components are included;
for the test network (2) (D-town), only operation components are
included.

Water quality: N/A.
Network analysis: EPANET (EPS).
Optimisation method: Borg MOEA
[273].

• The effect of changing (i) the storage tank balancing volume or TRS
and (ii) time-varying emissions factors (EFs) on the minimisation of
costs and GHG emissions in WDSs is investigated.

• Four different TRS scenarios (for 3, 6, 12 and 24-h supply under
average-day demand) and two different EF cases (an estimated 24-h
time-varying EF (EEF) curve and an average EF (AEF)) are used. The
TRS volumes are altered by changing the tank diameter, rather than
lower and upper water levels which would impact on the
system hydraulic.

• Planning horizon of 100 years is considered and is used for
calculating electricity costs, GHG emissions and pump
replacement costs.

• Peak and off-peak electricity tariffs are used.
• Results: A larger TRS can help to reduce GHG emissions when the

emissions intensity of electricity fluctuates during each day. This
reduction in GHG emissions represents only 2–4% for a new WDS,
but occurs with no additional cost as it allows pumping to be moved
to the off-peak tariff period. However, when these fluctuations do
not occur or are not considered when evaluating pumping
operational GHG emissions (i.e., AEF is used), increasing the TRS
results in no reduction of the cost or GHG emissions.

• Test networks: (1) Two-pump network with 23 pipes (incl. 15 nodes),
(2) modified D-town network (incl. 348 non-zero demand nodes)
from the battle of the water networks II (BWN-II) [58,274].
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108. Stokes et al. (2015) [75]
MO
Optimal WDS design and operation
including GHG emissions considering
varying emission factors, electricity
tariffs and water demands using
NSGA-II.

Objective (1): Minimise (a) the design costs of the network (pipes
and pumps), (b) operating costs (electricity consumed by pumps).
Objective (2): Minimise GHG emissions associated with the
system (a) design (pipes), (b) operation (electricity consumed by
pumps).
Constraints: (1) Min pressure at the nodes, (2) the sum of the
instantaneous pump supply equal to or greater than the sum of
the instantaneous water demands.
Decision variables: (1) Pipe diameters (discrete), (2) pump types
(discrete), (3) pump schedules (discrete options representing the
time at which a pump is turned on/off, using a time step of 30
minutes).
Note: One MO model including both objectives.

Water quality: N/A.
Network analysis: EPANET (EPS).
Optimisation method: NSGA-II.

• Water distribution cost-emission nexus (WCEN) computational
freeware framework is introduced for consolidating computational
tools to solve WDS optimisation problems. A range of
time-dependent operational conditions (e.g., EFs, electricity tariffs,
water demands, pumping operational management options) can
be considered.

• For this study, hydraulic and pumping operational simulation, cost
and GHG emissions calculation and MO heuristic optimisation
are integrated.

• Four operational scenarios are used: the first scenario reflects
“standard” practices (i.e., steady state simulation with an average
emission factor, electricity tariff and water demand), the other
3 scenarios use additional simulation complexity and flexibility (i.e.,
unsteady state simulation with varying emission factors, electricity
tariffs and water demands).

• Results: Compared to standard simulation practices, considering
both short-term (e.g., daily) and long-term (e.g., monthly and annual)
variations can significantly affect the design, pumping operational
management options as well as their costs and GHG emissions.

• Test networks: (1) Simple network with 23 pipes (incl. 15 nodes) [76].

109. Wang et al. (2015) [195]
MO
Optimal WDS design, strengthening and
rehabilitation of well-known benchmark
problems with the aim to obtain the
best-known approximation of the true
Pareto front using various MOEAs.

Objective (1): Minimise (a) the design costs of the network
(pipes).
Objective (2): Maximise (a) the network resilience [275].
Constraints: (1) Min/max pressure at the nodes (max pressure
only for some test networks), (2) max velocity in the pipes (only
for some test networks).
Decision variables: (1) Diameters of new or duplicate pipes
(integer) (duplicate pipes only for some test networks), (2)
cleaning of existing pipes or do-nothing option (integer) (only for
some test networks).
Note: One MO model including both objectives.

Water quality: N/A.
Network analysis: EPANET.
Optimisation method: Five
state-of-the-art MOEAs are used
including AMALGAM [276], Borg
[273], NSGA-II [258], ε-MOEA
[277], ε-NSGA-II [278].

• The aim is to obtain the best-known approximation of the true Pareto
front (PF) for a set of benchmark problems, in order to create a single
point of reference.

• MOEAs parameters are not fine-tuned, instead the recommended
settings are used.

• An innovative projection plot is applied to facilitate the MOEAs
comparison in terms of convergence and diversity.

• Results: The true PFs for small problems and the best-known PFs for
the other problems are obtained. No algorithm is completely
superior to the others. Nevertheless, NSGA-II shows generally the
best achievements across all the benchmark problems.

• Test networks: (1) Two-reservoir network [83], (2) two-loop network
supplied by gravity (incl. 7 nodes) [14], (3) BakRyan network, South
Korea (incl. 35 nodes) [227], (4) New York City tunnels (incl.
20 nodes) [81], (5) Blacksburg network (incl. 31 nodes) [257], (6)
Hanoi network (incl. 32 nodes) [49], (7) GoYang network, South
Korea (incl. 22 nodes) [226], (8) Fossolo network, Italy (incl. 37 nodes)
[254], (9) Pescara network, Italy (incl. 71 nodes) [254], (10) Modena
network, Italy (incl. 272 nodes) [254], (11) Balerma irrigation
network, Almeria, Spain (incl. 447 nodes) [50], (12) Exeter network
(serves a population of approximately 400,000) [82].
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110. Zheng (2015) [196]
SO
Optimal WDS design and strengthening
using four DE variants with a
comparison of their searching behaviour.

Objective (1): Minimise (a) the design cost of the network (pipes),
(b) penalty cost for violating the pressure constraint.
Constraints: (1) Min pressure at the nodes.
Decision variables: (1) Pipe diameters (discrete, with continuous
values adjusted to the closest discrete sizes according to [111]).

Water quality: N/A.
Network analysis: EPANET.
Optimisation method: DE (4
variants).

• The aim is to investigate the impact of different parameterisation
strategies on the DE’s searching performance (exploration and
exploitation) through the real-time behaviour analysis using a series
of proposed metrics.

• The following four variants of DE algorithm are used: (i) the SDE
algorithm with fixed mutation (F) and crossover (CR) parameter
values; (ii) the dither DE (dDE) variant [279] with the randomised F;
(iii) the modified dDE (MdDE) variant with the randomised F and
CR; (iv) the SADE variant [173] with the self-adapted F and CR along
the searching progress. The modified DE is proposed specifically for
this study.

• Six performance metrics, which measure search quality, search
progress and convergence, are used to compare DE algorithms.

• Results: The dDE, MdDE and SADE outperformed the SDE
algorithm only in the middle to later searching periods. The SADE
offered a larger number of improved solutions than the other DE
variants in the exploitative periods. The MdDE has a greater
exploratory ability than the SADE in the later searching period,
hence found better solutions when a very large computational
budget was available for the complex test network (3).

• Test networks: (1) New York City tunnels (incl. 20 nodes) [81], (2)
Balerma irrigation network, Almeria, Spain (incl. 447 nodes) [50], (3)
large network with five reservoirs and 1278 pipes (incl. 936 nodes),
originally introduced by [26], modified by [280].

111. Zheng et al. (2015) [69]
MO
Optimal WDS design considering
multiple loading conditions using
multi-objective DE algorithm (MODE)
with a graph decomposition technique.

Objective (1): Minimise (a) the design cost of the network (pipes),
(b) penalty for violating the pressure head constraint.
Objective (2): Maximise (a) the minimum head excess across the
network of multiple demand loading cases, (b) penalty for
violating the pressure head constraint.
Constraints: (1) Min/max allowable pipe diameters.
Decision variables: (1) Pipe diameters (discrete).
Note: One MO model including both objectives.

Water quality: N/A.
Network analysis: EPANET (EPS
for the second objective).
Optimisation method: MODE.

• The graph decomposition technique is proposed to improve the
efficiency of MOEAs for WDS design optimisations. It allows to
decompose the original network into a series of more manageable
subnetworks (subproblems), which are optimised individually with
significantly higher efficiency than the original network.
Subsequently, the propagation method is used to evolve Pareto fronts
of the subnetworks towards the Pareto front of the original full
network without the need to run the hydraulic simulation of the
full network.

• MODE, based on a single-objective DE algorithm [111], is developed.
For comparison purposes, MODE is applied in conjunction with as
well as without the graph decomposition technique when the whole
network is optimised directly (referred to as SMODE). MODE is also
compared with NSGA-II applied to the whole network optimisation.

• Results: MODE exhibits significantly better performance than both
conventional full-search methods SMODE and NSGA-II and its
efficiency is more notable for larger networks.

• Test networks: (1) Real-world network with 112 pipes and
24 demand loading cases, China (incl. 99 demand nodes), (2) BWN
network with 433 pipes and 24 demand loading cases (incl.
387 demand nodes) [281].
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112. Zheng et al. (2015) [48]
SO
Optimal WDS design using DE,
analysing impact of algorithm
parameters on its search behaviour.

Objective (1): Minimise (a) the design cost of the network (pipes),
(b) penalty cost for violating the pressure constraint.
Constraints: (1) Min pressure at the nodes.
Decision variables: (1) Pipe diameters (discrete, with continuous
values produced in the initialisation and mutation processes of
DE converted to the nearest discrete pipe diameters).

Water quality: N/A.
Network analysis: EPANET.
Optimisation method: DE.

• The aim is to investigate search behaviour (exploration and
exploitation) of DE as a function of the two control parameters:
mutation weighting factor (F) and crossover probability (CR). The six
metrics are developed to measure the population variance, search
quality, convergence properties, the percentage of the time spent in
feasible and infeasible regions, and the percentage of improved
solutions within each generation.

• The results are compared with prior theoretical results using WDS
design problems. Test problems used (Hanoi, ZJ and Balerma
networks) have different sizes and complexity (34, 164 and
454 decision variables, respectively).

• Results: An improved knowledge on search behaviour of DE via
parameters F and CR is obtained. It was found that (i) there is
excellent agreement between predicted and observed population
variance as well as the lower bound of parameter F; (ii) DE
performance is more dominated by parameter F; (iii) high CR value
(CR > 0.8) often reduces DE’s diversity with a rapid speed likely
resulting in premature convergence.

• Test networks: (1) Hanoi network (incl. 32 nodes) [49], (2) Zhi Jiang
(ZJ) network, China (incl. 113 demand nodes) [111], (3) Balerma
irrigation network, Almeria, Spain (incl. 447 nodes) [50].

113. Zhou et al. (2015) [175]
SO
Optimal WDS design and strengthening
using discrete state transition algorithm
(STA).

Objective (1): Minimise (a) the design cost of the network (pipes),
(b) penalty for violating the pressure constraint.
Constraints: (1) Min pressure at the nodes.
Decision variables: (1) Pipe diameters (discrete).

Water quality: N/A.
Network analysis:
Newton-Raphson method [10].
Optimisation method: Discrete
STA [282].
Note: Continuous STA [283].

• A reduction in the computational complexity of solving network
continuity equations (linear equations) and energy equations
(nonlinear equations) simultaneously is presented. Basically, some
pipe flows are initially fixed as known to solve the linear equations
and then substituted into the nonlinear equations. Consequently, the
number of network linear and nonlinear equations is reduced to the
number of closed simple loops.

• For the two-loop network, the influence of penalty coefficient and
one of the STA parameters called the search enforcement (SE) on the
algorithm performance is studied. The knowledge gained is used in
the optimisation of other test networks.

• Results: The penalty coefficient has a significant impact on the search
ability and solution feasibility, whereas SE does not affect the STA
performance explicitly. Discrete STA is able to find the best-known
solutions with fewer function evaluations.

• Test networks: (1) Two-loop network supplied by gravity (incl.
7 nodes) [14], (2) Hanoi network (incl. 32 nodes) [49], (3) New York
City tunnels (incl. 20 nodes) [81], (4) triple Hanoi network (incl.
92 nodes).
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114. Andrade et al. (2016) [143]
SO
Optimal WDS design with improved
offline ANNs to replace water quality
simulations and the probabilistic
approach to generate training data sets,
using GA.

Objective (1): Minimise (a) the system cost of the network (the
pipe and installation costs).
Constraints: (1) Min pressure at the nodes, (2) min chlorine
concentration at the nodes.
Decision variables: (1) Pipe diameters (discrete), (2) chlorine
dosages at the water source (discrete).

Water quality: Chlorine.
Network analysis: EPANET, offline
ANN (for water quality analyses).
Optimisation method: GA.

• The aim is to improve the performance of an offline ANN applied to
the WDS design problems in terms of their architecture and training
data, which affect their speed and accuracy.

• The probabilistic approach is introduced to generate a large set of
networks (training data sets) resembling those analysed by an
optimisation method after its initial iterations. ANNs trained with
these networks are compared against ANNs trained with
conventional random networks.

• The conventional multi-ANN architecture versus two single ANN
architectures are also compared. Regarding the multi-ANN
architecture, there are multiple ANNs each individually forecasting
concentration at a single node. Concerning the first single ANN
architecture, concentrations at all network nodes are forecast. The
second single ANN architecture has only one output neuron (for one
node) to estimate the minimum concentration in a WDS regardless of
its location.

• Therefore, six types of ANNs, resulting from the combinations of the
two training data sets (the new introduced one and conventional
random) and the three ANN architectures are analysed with respect
to speed and accuracy.

• Results: For a small WDS, there is no advantage in using multi-ANN
architecture with a single output neuron over single ANN
architectures; a probabilistic data set has no advantage over a
conventional random data set. For a large WDS, multi-ANN
architecture with a single output neuron outperforms the two other
architectures analysed; a probabilistic data set is significantly
superior to a conventional random data set.

• Test networks: (1) Hanoi network (incl. 32 nodes) [49], (2) modified
Kang and Lansey’s network (incl. 517 demand nodes) [26].

115. Jabbary et al. (2016) [181]
SO
Optimal WDS design using a modified
central force optimisation algorithm
(CFOnet).

Objective (1): Minimise (a) the design cost of the network (pipes),
(b) penalty cost of violating the pressure constraint, (c) penalty
cost of violating the velocity constraint.
Constraints: (1) Min/max commercial pipe diameters, (2)
min/max velocity in the pipes, (3) min/max pressure at the
nodes.
Decision variables: (1) Pipe diameters (discrete).

Water quality: N/A.
Network analysis: EPANET.
Optimisation method: CFOnet.

• CFOnet, a deterministic metaheuristic method based on the rules of
gravity, is applied to the WDS design optimisation. CFO uses a set of
probes flying through space. The probes move under the influence of
an accelerated force created by the gravitational attraction of masses
in decision space. Due to the large computed acceleration values in
the WDS problem, a normalisation operator is introduced to
decelerate the probes so they remain inside of the decision space.
Among the modifications, a new deterministic mutation operator is
proposed, which prevents the algorithm to be locally trapped.

• The method is compared with the original CFO method and other
methods (GA, GA-ILP, PSO, LP) previously applied to the two test
networks considered.

• Results: CFOnet shows significantly better results over CFO, 55%
and 94% improvement for the Kadu and Khorramshahr networks,
respectively. When compared to other methods (GA, GA-ILP and
PSO) for the Kadu network and LP for Khorramshahr network, the
improvement is 3–4%.

• Test networks: (1) Kadu network (incl. 26 nodes) [45], (2)
Khorramshahr network (incl. 39 nodes) [284].
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116. Schwartz et al. (2016) [123]
SO
Optimal robust WDS design and
operation considering multiple loading
conditions and demand uncertainty
using the robust counterpart (RC)
approach and CE.

Objective (1): Minimise the construction and operation costs of
the network including (a) pipe capital costs, (b) tank capital costs,
(c) pump station capital cost, (d) energy costs related to the
operation of the system during a TC of operation.
Constraints: (1) Min/max tank water volumes at the last time
period of the cycle, (2) min desired nodal heads, (3) tank closure
constraints defined by the difference between the tank water
level at the start and end of the TC.
Decision variables: (1) Pipe diameters (discrete), (2) pump
station heads at all time periods reflecting the pump curve
needed for the system.

Water quality: N/A.
Network analysis: Explicit
mathematical formulation
(nonlinear equations are linearised).
Optimisation method: CE for
combinatorial optimisation
[230,285].

• The RC approach, which incorporates the uncertainty without the
need for full stochastic information, is used.

• The approach utilises characteristics of data distribution as opposed
to assuming the entire probability density function. It uses simple
statistical measures such as mean and covariance matrix to replace
the original stochastic model with the deterministic model.
Ellipsoidal uncertainty set, required by RC, is constructed using the
mean value and the covariance matrix, according to the user-defined
protection level. An obtained solution is robust and optimal to all
possible scenarios in the uncertainty set.

• Multiple time periods and multiload consumption patterns taking
into account the temporal and spatial correlations simultaneously
are used.

• The system is tested under two different probability distributions,
normal and uniform, on two test networks.

• Results: The proposed method is robust under both normal and
uniform distributions. Some of the tank volume obtained for a high
protection level will not be utilised in reality and will perform as a
safety factor withstanding the unexpected consumption unlike the
deterministic solution.

• Test networks: (1) Simple network (incl. 3 demand nodes) adopted
from [286], (2) network with 2 sources and 65 pipes (incl. 48 demand
nodes) adopted from [14].

117. Sheikholeslami and Talatahari (2016)
[150]
SO
Optimal WDS design using a newly
developed swarm-based
optimisation(DSO) algorithm.

Objective (1): Minimise (a) the design cost of the network (pipes).
Constraints: (1) Min pressure at the nodes.
Decision variables: (1) Pipe diameters (discrete).

Water quality: N/A.
Network analysis: EPANET.
Optimisation method: DSO
algorithm.

• A new DSO algorithm, which integrates accelerated PSO with big
bang-big crunch (BB-BC) algorithm, is proposed for optimal design
of WDSs.

• To preserve the diversity of the swarm and avoid premature
convergence to local optima, BB-BC concepts are introduced into the
global and local search steps of accelerated PSO. In addition, a
harmony memory concept from the HS algorithm is adopted to
ensure that the particles do not leave the search space.

• A modified constraint tournament selection is used for handling the
constraints. Another rule is added stating that infeasible solutions
with slight violations are considered as feasible, which is to maintain
the diversity of the population.

• Results: While comparing with other methods from the literature,
DSO found the best-known solutions in a lower number of
evaluations for the GoYang and Hanoi networks, and exhibited
comparable performance for the Balerma network.

• Test networks: (1) GoYang network, South Korea (incl. 22 nodes)
[226], (2) Hanoi network (incl. 32 nodes) [49], (3) Balerma irrigation
network, Almeria, Spain (incl. 447 nodes) [50].
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118. Sheikholeslami et al. (2016) [162]
SO
Optimal WDS design using a combined
cuckoo-HS algorithm (CSHS) in a
two-phase procedure.

Objective (1): Minimise (a) the design cost of the network (pipes),
(b) penalty for violating the pressure constraint.
Constraints: (1) Min pressure at the nodes.
Decision variables: (1) Pipe diameters (discrete).

Water quality: N/A.
Network analysis: EPANET.
Optimisation method: CSHS
algorithm.

• The proposed CSHS algorithm is a two-phase algorithm. It employs
the cuckoo search (CS) algorithm in the first stage, and the HS
algorithm in the second stage.

• To overcome the weaknesses of CS (i.e., slow convergence rate and
no information exchange between the individuals of the population),
some HS components are integrated with CS. HMCR enables CS to
use a memory containing the search history, which assists in
generating new solutions; PAR from HS serves as a mutation
operator and speeds up the convergence.

• A self-adaptive technique is used to adjust HMCR and PAR during
the optimisation process to alter the performance of the algorithm.

• Dynamic penalty factor which increases towards the end of the
optimisation process is used.

• Sensitivity analysis is performed for the main parameters of the
algorithm (scaling factor, discovering probability of alien
eggs/solutions) using the Hanoi network.

• Results: CSHS outperformed the standard CS and the majority of
other meta-heuristics previously applied to the test networks in
terms of efficiency.

• Test networks: (1) Hanoi network (incl. 32 nodes) [49], (2) double
Hanoi network (incl. 62 nodes), (3) Balerma irrigation network,
Almeria, Spain (incl. 447 nodes) [50], (4) network of a town in
southeast China (incl. 192 demand nodes) [281].

119. Zheng et al. (2016) [28]
MO
Optimal WDS design and strengthening,
analysis and comparison of the searching
behaviour of NSGA-II, self-adaptive
multi-objective DE (SAMODE) and Borg.

Objective (1): Minimise (a) the total network cost, including pipe
material and construction costs.
Objective (2): Maximise (a) the network resilience.
Constraints: (1) Min/max pressure at the nodes, (2) min/max
velocity in the pipes.
Decision variables: (1) Pipe diameters (discrete).
Note: One MO model including both objectives.

Water quality: N/A.
Network analysis: EPANET.
Optimisation method: NSGA-II,
SAMODE, and Borg are compared.

• An extension of the paper by [195] analysing the run-time searching
behaviour of MOEAs to understand how they arrive at their final
performance. Six performance metrics, categorised as solution
quality, spacing and convergence metrics, are used to measure
algorithm’s search effectiveness and convergence properties in both
the objective and decision spaces.

• The relationship between algorithm operators and behavioural
properties is analysed.

• Results: A fundamental understanding of the working mechanisms
of MOEAs is developed. Guidance on the selection of appropriate
algorithms (operators) for particular optimisation problems is
provided. NSGA-II is good at obtaining solutions covering a large
extent of the Pareto front, and Borg is a good choice when
computational resources are limited.

• Test networks: (1) New York City tunnels (incl. 20 nodes) [81], (2)
Hanoi network (incl. 32 nodes) [49], (3) Fossolo network, Italy (incl.
37 nodes) [254], (4) Pescara network, Italy (incl. 71 nodes) [254], (5)
Modena network, Italy (incl. 272 nodes) [254], (6) Balerma irrigation
network, Almeria, Spain (incl. 447 nodes) [50].
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120. Avila-Melgar et al. (2017) [109]
SO
Optimal WDS design using EA in a grid
computing environment.

Objective (1): Minimise (a) the design cost of the network (pipes).
Constraints: (1) Min/max pressure at the nodes, (2) min/max
velocity in the pipes.
Decision variables: (1) Pipe diameters (discrete).

Water quality: N/A.
Network analysis: EPANET.
Optimisation method: EA.

• An evolutionary method is coupled with EPANET to create an EA for
solving water distribution network design (EA-WDND) problems.

• The method is implemented in a grid environment and uses parallel
computing techniques.

• Results: EA-WDND obtains the best-known solution for the
two-loop network. The best solution found for the Balerma network
is an improvement of 12.5% over the current best-known solution.

• Test networks: (1) Two-loop network supplied by gravity (incl.
7 nodes) [14], (2) Hanoi network (incl. 32 nodes) [49], (3) Balerma
irrigation network, Almeria, Spain (incl. 447 nodes) [50].

121. Cisty et al. (2017) [30]
MO
Optimal WDS design using NSGA-II
with a two-phase procedure and search
space reduction.

Objective (1): Minimise (a) the design cost of the network (pipes).
Objective (2): Minimise (a) the total head deficit in the network.
Constraints: N/A.
Decision variables: (1) Pipe diameters (discrete).
Note: One MO model including both objectives.

Water quality: N/A
Network analysis: Not specified.
Optimisation method: NSGA-II
(for both phases of the optimisation
procedure).

• A two-phase optimisation procedure is proposed as follows: in the
first phase, suboptimal solutions are searched for; in the second
phase, the optimisation problem is solved with a reduced search
space based on these solutions.

• The first phase consists of running NSGA-II several times with
varying parameters (population size, number of generations,
crossover and mutation). The aim is to obtain different
suboptimal solutions.

• The second phase has the following two alternatives: (i) diameters
from the first phase’s suboptimal solutions are used; (ii) flows in the
pipes from suboptimal solutions are used. In both cases, the search
space is reduced by introducing upper and lower bounds of
diameters for all the pipes based on the diameters and flows
obtained in the first phase.

• The recommendations regarding the use of the proposed
methodology are as follows. If a solution with the lowest cost
possible is sought after, perform approximately 10 optimisation runs
in the first phase and subsequently use the first alternative (with
diameters) of the second phase. If a solution with the shortest
computational time is required, perform only one optimisation run in
the first phase and subsequently use the second alternative (based on
the flows) of the second phase.

• Results: Compared with previous results from the literature, the
proposed methodology displays a slightly better performance in
terms of the cost as well as the computational effort. The key finding
from the computational experiments is that it is possible to obtain
competitive results with simple, existing optimisation methods
provided their adequate and methodological utilisation.

• Test networks: (1) Balerma irrigation network, Almeria, Spain (incl.
447 nodes) [50].
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122. Muhammed et al. (2017) [90]
MO
Optimal WDS strengthening using a
cluster-based technique and NSGA-II in
a two-phase procedure.

Objective (1): Minimise (a) the total capital cost of duplicated
pipes.
Objective (2): Minimise (a) the total number of demand nodes
with pressure below the minimum pressure requirement.
Constraints: (1) The sum of the pressure deficiencies in all the
nodes with negative pressure.
Decision variables: (1) Pipe diameters (discrete).
Note: One MO model including both objectives.

Water quality: N/A.
Network analysis: EPANET.
Optimisation method: GANETXL
[208] using NSGA-II.

• The optimisation procedure consists of the following two phases: (i)
the network is partitioned into a number of clusters (subsystems); (ii)
the pipes which can have a direct impact on system performance are
identified and considered as design variables in the optimisation.

• The network is mapped into an undirected graph. For network
clustering, the modularity-based method is applied to divide the
graph into clusters with stronger internal than external connections.

• The clustering method is implemented using an open source
program Gephi [287], widely used for graph network visualisation.

• The only rehabilitation option considered is pipe duplication.
Candidate pipes for rehabilitation are selected based on three
strategies: (i) rehabilitation of intercluster water transmission pipes
with pressure deficiencies; (ii) rehabilitation of feed pipelines
between the clusters with pressure deficiencies, or pipes in the path
between sources and clusters; (iii) the combination of the previous
two strategies.

• Results: Strategy (iii) generated a Pareto front which dominates the
Pareto fronts obtained by the other two strategies. It also shows a
better performance when compared with the whole search space (all
pipes used as design variables) and engineering judgement-based
optimisation strategies.

• Test networks: (1) EXNET water network (incl. 1891 nodes) [82].

123. Shokoohi et al. (2017) [78]
MO
Optimal WDS design including water
quality objective using ACO.

Objective (1): Minimise (a) the construction cost of the network
(pipe cost, excavation, demolition etc.), (b) chlorine cost
calculated as one-year chlorine usage (applied in the tanks).
Objective (2A): Maximise (a) water quality reliability based on
chlorine residual [145].
Objective (2B): Maximise (a) water quality reliability based on
water age.
Objective (2C): Maximise (a) combined water quality reliability
based on both chlorine residual and water age.
Constraints: (1) Min/max pressure at the nodes, (2) max velocity
in the pipes.
Decision variables: (1) Pipe diameters (discrete), (2) tank heads
(discrete), (3) chlorine injection dosages in the tanks (discrete).
Note: Three two-objective optimisation models, where the
objective (1) is combined with either objective (2A), (2B) or (2C).

Water quality: Chlorine, water age.
Network analysis: EPANET (EPS).
Optimisation method: ACO.

• The aim is to investigate the effect of water quality on WDS design.
• A new water age penalty curve is developed. The existing chlorine

residual penalty curve [288] is used.
• Project lifetime considered is 22 years.
• The following four scenarios are analysed, all of them using EPS:
• (i) Hydraulic analysis is based on demand-driven simulation method

(DDSM), objectives (1) and (2A) are used.
• (ii) Hydraulic analysis is based on head-driven simulation method

(HDSM), min pressure constraint is not considered, another
constraint to secure at least 95% supply of water demand is applied,
objectives (1) and (2A) are used.

• (iii) DDSM method is used, objectives (1) and (2B) are considered.
• (iv) DDSM method is used, objectives (1) and (2C) are considered,

hence both chlorine residual and water age are used as the water
quality parameters.

• Results: Scenario (i) offers cheaper solutions than the original design
(i.e., already constructed in Jahrom). Scenario (ii) has cheaper
solutions than scenario (i), but there is a risk of pressure deficit at
some nodes. Scenario (iii) offers only marginal improvement in the
reliability objective with a relatively significant increase in the
construction costs. In scenario (iv), all the differences between
solutions are in chlorine reliability, so water age reliability does not
have any significant impact on solutions.

• Test networks: (1) Jahrom WDS, zone 3, South of Iran (incl. 44 nodes).
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Table A1. Cont.

ID. Authors (Year) [Ref]
SO/MO *
Brief Description

Optimisation Model (Objective Functions +, Constraints **,
Decision Variables ++)

Water Quality
Network Analysis
Optimisation Method

Notes

124. Zheng et al. (2017) [176]
SO
Optimal WDS design and strengthening
using convergence-trajectory controlled
ACO (ACOCTC) algorithm with
parameter-adaptive strategy.

Objective (1): Minimise (a) the design cost of the network (pipes),
(b) penalty for violating the pressure constraint.
Constraints: (1) Min pressure at the nodes.
Decision variables: (1) Pipe diameters (discrete).

Water quality: N/A.
Network analysis: EPANET.
Optimisation method: ACOCTC.

• Parameter-adaptive strategy for ACO algorithms is developed,
which enables pre-specified parameter trajectories to be followed and
ensures the convergence to increasingly higher fitness subregions in
decision space for a given computational budget. The algorithm
parameters are automatically adjusted to balance search
diversification and intensification (exploration and exploitation).

• ACOCTC is based on ASrank [234].
• A total of eight different convergence trajectories (ranging from

emphasis on high diversification to high intensification) and three
computational budgets (low, moderate and high) are applied to six
test networks.

• Results: There is a strong relationship between the convergence
trajectory in decision space and the searching quality in objective
space. The convergence trajectories can significantly impact on the
solution quality. The trajectory with a slight emphasis on
intensification performed best overall, irrespective of the
computational budget. New best-known solutions were found for
the Pescara, and Kang and Lansey’s test networks.

• Test networks: (1) New York City tunnels (NYTP) (incl. 20 nodes)
[81], (2) Hanoi network (HP) (incl. 32 nodes) [49], (3) Fossolo
network (FOS) , Italy (incl. 37 nodes) [254], (4) Pescara network (PES),
Italy (incl. 71 nodes) [254], (5) Balerma irrigation network (BN),
Almeria, Spain (incl. 447 nodes) [50], (6) Kang and Lansey’s network
(KL) (incl. 936 nodes) [26].

Notes: * SO = Single-objective (approach/model), MO = Multi-objective (approach/model). + Objective function is referred to as ‘objective’ in the column below due to space savings. **
Conservation of mass of flow, conservation of energy, and conservation of mass of constituent (for water quality network analysis) are not listed. ++ Control variables are listed, state
variables resulting from network hydraulics are not necessarily listed. ? D = Design. ?? OP = Operation.
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187. Wang, Q.; Creaco, E.; Franchini, M.; Savić, D.; Kapelan, Z. Comparing low and high-level hybrid algorithms
on the two-objective optimal design of water distribution systems. Water Resour. Manag. 2015, 29, 1–16.
[CrossRef]

188. Gupta, I.; Gupta, A.; Khanna, P. Genetic algorithm for optimization of water distribution systems.
Environ. Model. Softw. 1999, 14, 437–446. [CrossRef]

189. Vairavamoorthy, K.; Ali, M. Pipe index vector: A method to improve genetic-algorithm-based pipe
optimization. J. Hydraul. Eng. 2005, 131, 1117–1125. [CrossRef]

http://dx.doi.org/10.1016/j.mcm.2008.02.008
http://dx.doi.org/10.1061/(ASCE)0887-3801(2009)23:5(249)
http://dx.doi.org/10.1016/j.advengsoft.2009.12.020
http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000018
http://dx.doi.org/10.2166/hydro.2010.014
http://dx.doi.org/10.1016/j.aei.2012.03.007
http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000208
http://dx.doi.org/10.1080/0305215X.2014.979815
http://dx.doi.org/10.1080/0305215X.2015.1025775
http://dx.doi.org/10.1109/TEVC.2017.2682899
http://dx.doi.org/10.1016/j.envsoft.2015.05.003
http://dx.doi.org/10.1007/s11269-011-9775-4
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000367
http://dx.doi.org/10.1029/2008WR007673
http://dx.doi.org/10.2166/ws.2016.051
http://dx.doi.org/10.1162/106365600568202
http://www.ncbi.nlm.nih.gov/pubmed/10843520
http://dx.doi.org/10.1109/TEVC.2003.810758
http://dx.doi.org/10.1007/s11269-014-0823-8
http://dx.doi.org/10.1016/S1364-8152(98)00089-9
http://dx.doi.org/10.1061/(ASCE)0733-9429(2005)131:12(1117)


Water 2018, 10, 307 99 of 103

190. Giustolisi, O.; Laucelli, D.; Berardi, L.; Savic, D.A. Computationally efficient modeling method for large
water network analysis. J. Hydraul. Eng. 2012, 138, 313–326. [CrossRef]

191. Bhave, P.R. Noncomputer optimization of single-source networks. J. Environ. Eng. Div. 1978, 104, 799–814.
192. Knowles, J. Parego: A hybrid algorithm with on-line landscape approximation for expensive multiobjective

optimization problems. IEEE Trans. Evol. Comput. 2006, 10, 50–66. [CrossRef]
193. Andrade, M.; Kang, D.; Choi, C.; Lansey, K. Heuristic postoptimization approaches for design of water

distribution systems. J. Water Resour. Plan. Manag. ASCE 2013, 139, 387–395. [CrossRef]
194. McClymont, K.; Keedwell, E.; Savic, D.; Randall-Smith, M. Automated construction of fast heuristics for

the water distribution network design problem. In Proceedings of the 10th International Conference on
Hydroinformatics (HIC 2012), Hamburg, Germany, 14–18 July 2012.

195. Wang, Q.; Guidolin, M.; Savic, D.; Kapelan, Z. Two-objective design of benchmark problems of a water
distribution system via moeas: Towards the best-known approximation of the true pareto front. J. Water
Resour. Plan. Manag. ASCE 2015, 141. [CrossRef]

196. Zheng, F. Comparing the real-time searching behavior of four differential-evolution variants applied to
water-distribution-network design optimization. J. Water Resour. Plan. Manag. ASCE 2015, 141. [CrossRef]

197. Murphy, L.; Simpson, A.; Dandy, G.; Frey, J.; Farill, T. Genetic algorithm optimization of the fort
collins–loveland water distribution system. In Proceedings of the Conference in Computers in the Water
Industry, Chicago, IL, USA, 15–18 April 1996.

198. Savic, D.A.; Walters, G.A.; Randall-Smith, M.; Atkinson, R.M. Cost savings on large water distribution
systems: Design through genetic algorithm optimization. In Building Partnerships Joint Conference on
Water Resources Engineering and Water Resources Planning and Management; Rollin, H.H., Michael, G., Eds.;
ASCE: Reston, VA, USA, 2000.

199. Wu, W.; Maier, H.R.; Dandy, G.C.; Leonard, R.; Bellette, K.; Cuddy, S.; Maheepala, S. Including stakeholder
input in formulating and solving real-world optimisation problems: Generic framework and case study.
Environ. Model. Softw. 2016, 79, 197–213. [CrossRef]

200. Walski, T.M. Real-world considerations in water distribution system design. J. Water Resour. Plan.
Manag. ASCE 2015, 141. [CrossRef]

201. Zecchin, A.C.; Simpson, A.R.; Maier, H.R.; Nixon, J.B. Parametric study for an ant algorithm applied to water
distribution system optimization. IEEE Trans. Evol. Comput. 2005, 9, 175–191. [CrossRef]

202. Schwarz, J. Use of mathematical programming in the management and development of israel’s water
resources. In Ground Water in Water Resources Planning; No. 142, 917–929; IAHS Publisher: Koblenz, Germany,
1983; Available online: http://hydrologie.org/redbooks/a142/142078.pdf (accessed on 20 July 2017).

203. TAHAL. The Tekuma Model: User’s Manual; Report No. 01/81/50; TAHAL-Water Planning for Israel, Ltd.:
Tel Aviv, Israel, 1981.

204. Goulter, I.C.; Lussier, B.M.; Morgan, D.R. Implications of head loss path choice in the optimization of water
distribution networks. Water Resour. Res. 1986, 22, 819–822. [CrossRef]

205. Fujiwara, O.; Jenchaimahakoon, B.; Edirishinghe, N. A modified linear programming gradient method for
optimal design of looped water distribution networks. Water Resour. Res. 1987, 23, 977–982. [CrossRef]

206. Lasdon, L.S.; Waren, A.D. Grg2 User’s Guide; Department of General Business Administration, University of
Texas: Austin, TX, USA, 1984.

207. IBM-ILOG-CPLEX. V12.1: User’s Manual for Cplex; International Business Machines Corporation: Armonk,
NY, USA, 2009.

208. Savic, D.A.; Bicik, J.; Morley, M.S. A dss generator for multiobjective optimisation of spreadsheet-based
models. Environ. Model. Softw. 2011, 26, 551–561. [CrossRef]

209. Fujiwara, O.; Khang, D.B. Correction to “a two-phase decomposition method for optimal design of looped
water distribution networks” by okitsugu fujiwara and do ba khang. Water Resour. Res. 1991, 27, 985–986.
[CrossRef]

210. Sonak, V.V.; Bhave, P.R. Global optimum tree solution for single-source looped water distribution networks
subjected to a single loading pattern. Water Resour. Res. 1993, 29, 2437–2443. [CrossRef]

211. Varma, K.V.K.; Narasimhan, S.; Bhallamudi, S.M. Optimal design of water distribution systems using an nlp
method. J. Environ. Eng. 1997, 123, 381–388. [CrossRef]

212. Bassin, J.; Gupta, I.; Gupta, A. Graph theoretic approach to the analysis of water distribution system. J. Indian
Water Works Assoc. 1992, 24, 269.

http://dx.doi.org/10.1061/(ASCE)HY.1943-7900.0000517
http://dx.doi.org/10.1109/TEVC.2005.851274
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000265
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000460
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000534
http://dx.doi.org/10.1016/j.envsoft.2016.02.012
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000574
http://dx.doi.org/10.1109/TEVC.2005.844168
http://hydrologie.org/redbooks/a142/142078.pdf
http://dx.doi.org/10.1029/WR022i005p00819
http://dx.doi.org/10.1029/WR023i006p00977
http://dx.doi.org/10.1016/j.envsoft.2010.11.004
http://dx.doi.org/10.1029/91WR00368
http://dx.doi.org/10.1029/93WR00289
http://dx.doi.org/10.1061/(ASCE)0733-9372(1997)123:4(381)


Water 2018, 10, 307 100 of 103

213. Walski, T.M.; Gessler, J. Improved design of ‘anytown’ distribution network using structured messy genetic
algorithms. Urban Water 1999, 1, 265–268.

214. Walski, T.M.; Gessler, J. Erratum to discussion of the paper “improved design of ‘anytown’ distribution
network using structured messy genetic algorithms”. Urban Water 2000, 2, 259. [CrossRef]

215. Todini, E.; Pilati, S. A gradient method for the analysis of pipe networks. In Proceedings of the International
Conference on Computer Applications for Water Supply and Distribution, Leicester, UK, 8–10 September
1987.

216. Morgan, D.R.; Goulter, I. Optimal urban water distribution design. Water Resour. Res. 1985, 21, 642–652.
[CrossRef]

217. Gessler, J.; Sjostrom, J.; Walski, T. Wadiso Program User’s Manual; United States Army Engineers Waterways
Experiment Station: Vicksburg, MS, USA, 1987.

218. Duan, Q.; Sorooshian, S.; Gupta, V. Effective and efficient global optimization for conceptual rainfall-runoff
models. Water Resour. Res. 1992, 28, 1015–1031. [CrossRef]

219. Nelder, J.A.; Mead, R. A simplex method for function minimization. Comput. J. 1965, 7, 308–313. [CrossRef]
220. Solomatine, D.P. Two strategies of adaptive cluster covering with descent and their comparison to other

algorithms. J. Glob. Optim. 1999, 14, 55–78. [CrossRef]
221. Von Neuman, J. Theory of Self-Reproducing Automata; Burks, A.W., Ed.; University of Illinois Press: Urbana, IL,

USA; London, UK, 1966.
222. Savic, D.A.; Walters, G.A.; Randall-Smith, M.; Atkinson, R.M. Large water distribution systems design through

genetic algorithm optimisation. In Proceedings of the ASCE 2000 Joint Conference on Water Resources Engineering
and Water Resources Planning and Management, Minneapolis, MN, USA, 30 July–2 August 2000.

223. Ostfeld, A.; Salomons, E. Optimal operation of multiquality water distribution systems: Unsteady conditions.
Eng. Optim. 2004, 36, 337–359. [CrossRef]

224. Vairavamoorthy, K. Water Distribution Networks: Design and Control for Intermittent Supply; University of
London: London, UK, 1994.

225. Vamvakeridou-Lyroudia, L.S. Optimal extension and partial renewal of an urban water supply network,
using fuzzy reasoning and genetic algorithms. In Proceedings of the 30th IAHR World Congress,
Thessaloniki, Greece, 24–29 August 2003.

226. Kim, J.H.; Kim, T.G.; Kim, J.H.; Yoon, Y.N. A study on the pipe network system design using non-linear
programming. J. Korean Water Resour. Assoc. 1994, 27, 59–67.

227. Lee, S.-C.; Lee, S.-I. Genetic algorithms for optimal augmentation of water distribution networks. J. Korean
Water Resour. Assoc. 2001, 34, 567–575.

228. Zitzler, E.; Thiele, L. Multiobjective optimization using evolutionary algorithms—A comparative case study.
In Parallel Problem Solving from Nature V (PPSN-V); Springer: Amsterdam, The Netherlands, 1998.

229. Martínez, J.B. Discussion of “optimization of water distribution networks using integer linear programming”
by hossein mv samani and alireza mottaghi. J. Hydraul. Eng. 2008, 134, 1023–1024. [CrossRef]

230. Rubinstein, R.Y.; Kroese, D.P. The Cross-Entropy Method: A Unified Approach to Combinatorial Optimization,
Monte-Carlo Simulation and Machine Learning; Springer: New York, NY, USA, 2004.

231. Salomons, E. Optimal Design of Water Distribution Systems Facilities and Operation; Technion: Haifa, Israel, 2001.
232. Dorigo, M.; Maniezzo, V.; Colorni, A. Ant system: Optimization by a colony of cooperating agents.

IEEE Trans. Syst. Man Cybern. Part B 1996, 26, 29–41. [CrossRef] [PubMed]
233. Dorigo, M.; Gambardella, L.M. Ant colony system: A cooperative learning approach to the traveling salesman

problem. IEEE Trans. Evol. Comput. 1997, 1, 53–66. [CrossRef]
234. Bullnheimer, B.; Hartl, R.F.; Strauss, C. A new rank based version of the ant system: A computational study.

Central Eur. J. Oper. Res. Econ. 1999, 7, 25–38.
235. Stützle, T.; Hoos, H.H. Max–min ant system. Future Gener. Comput. Syst. 2000, 16, 889–914. [CrossRef]
236. United States Environmental Protection Agency (USEPA). Epanet 2.0; USEPA: Washington, DC, USA, 2016.

Available online: http://www.epa.gov/water-research/epanet (accessed on 10 February 2016).
237. Goldberg, D.E. Genetic Algorithms in Search, Optimization and Machine Learning; Addison-Wesley Publishing

Company: Reading, MA, USA, 1989.
238. Michalewicz, Z. Genetic Algorithms + Data Structures = Evolution Programs; Springer: Berlin/Heidelberg,

Germany; New York, NY, USA, 2013.

http://dx.doi.org/10.1016/S1462-0758(00)00055-8
http://dx.doi.org/10.1029/WR021i005p00642
http://dx.doi.org/10.1029/91WR02985
http://dx.doi.org/10.1093/comjnl/7.4.308
http://dx.doi.org/10.1023/A:1008334632441
http://dx.doi.org/10.1080/0305215042000207054
http://dx.doi.org/10.1061/(ASCE)0733-9429(2008)134:7(1023)
http://dx.doi.org/10.1109/3477.484436
http://www.ncbi.nlm.nih.gov/pubmed/18263004
http://dx.doi.org/10.1109/4235.585892
http://dx.doi.org/10.1016/S0167-739X(00)00043-1
http://www.epa.gov/water-research/epanet


Water 2018, 10, 307 101 of 103

239. Deb, K. Multi-Objective Optimisation Using Evolutionary Algorithms; John Wiley & Sons: Chichester,
West Sussex, UK, 2001.

240. Van Veldhuizen, D.A. Multiobjective Evolutionary Algorithms: Classifications, Analyses, and New
Innovations. Ph.D. Thesis, Department of Electrical and Computer Engineering, Graduate School of
Engineering, Air Force Institute of Technology, Wright-Patterson Air Force Base, Dayton, OH, USA, 1999.

241. Ang, K.H.; Chong, G.; Li, Y. Visualization technique for analyzing non-dominated set comparison.
In Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution and Learning (SEAL 2002),
Singapore, 18–22 November 2002.

242. Jourdan, L.; Corne, D.; Savic, D.; Walters, G. Lemmo: Hybridising rule induction and nsga II for
multi-objective water systems design. In Proceedings of the 8th International Conference on Computing and
Control for the Water Industry, Exeter, UK, 5–7 September 2005.

243. Corne, D.W.; Jerram, N.R.; Knowles, J.D.; Oates, M.J. Pesa-II: Region-based selection in evolutionary
multiobjective optimization. In Proceedings of the 3rd Annual Conference on Genetic and Evolutionary Computation;
Morgan Kaufmann Publishers Inc.: Burlington, VT, USA, 2001.

244. Giustolisi, O.; Doglioni, A. Water distribution system failure analysis. In Proceedings of the 8th International
Conference on Computing and Control for the Water Industry; University of Exeter, Centre for Water Systems:
Exeter, UK, 2005.

245. Giustolisi, O.; Doglioni, A.; Savic, D.A.; Laucelli, D. A Proposal for an Effective Multi-Objective Non-Dominated
Genetic Algorithm: The Optimised Multi-Objective Genetic Algorithm-Optimoga; School of Engineering, Computer
Science and Mathematics, Centre for Water Systems, University of Exeter: Exeter, UK, 2004.

246. Tolson, B.A.; Shoemaker, C.A. Dynamically dimensioned search algorithm for computationally efficient
watershed model calibration. Water Resour. Res. 2007, 43. [CrossRef]

247. Reca, J.; Martínez, J.; Gil, C.; Baños, R. Application of several meta-heuristic techniques to the optimization
of real looped water distribution networks. Water Resour. Manag. 2008, 22, 1367–1379. [CrossRef]

248. Jung, B.S.; Boulos, P.F.; Wood, D.J. Effect of pressure-sensitive demand on surge analysis. Am. Water Works
Assoc. 2009, 101, 100–111. [CrossRef]

249. Abbass, H.A. A monogenous mbo approach to satisfiability. In Proceeding of the International Conference
on Computational Intelligence for Modelling, Control and Automation CIMCA 2001, Las Vegas, Nev.; Canberras
University Publication: Canberra, Australia, 2001.

250. Storn, R.; Price, K. Differential Evolution—A Simple and Efficient Adaptive Scheme for Global Optimization Over
Continuous Spaces; Technical report; International Computer Science Institute: Berkeley, CA, USA, 1995.

251. Jang, H.S. Rational design method of water network using computer. J. Korean Prof. Eng. Assoc. 1968, 1, 3–8.
252. Gonçalves, G.M.; Pato, M.V. A three-phase procedure for designing an irrigation system’s water distribution

network. Ann. Oper. Res. 2000, 94, 163–179. [CrossRef]
253. Bansal, J.C.; Deep, K. Optimal design of water distribution networks via particle swarm optimization.

In Proceedings of the International Advance Computing Conference IACC 2009, Patiala, India, 6–7 March
2009.

254. Bragalli, C.; D’Ambrosio, C.; Lee, J.; Lodi, A.; Toth, P. Water Network Design by Minlp; Report No. Rc24495
(wos02–056); IBM Research: Yorktown Heights, NY, USA, 2008.

255. Bonami, P.; Lee, J. Bonmin Users’ Manual; COIN-OR Foundation: Baltimore, MD, USA, 2013; Available online:
https://www.coin-or.org/Bonmin/ (accessed on 9 September 2017).

256. Tawarmalani, M.; Sahinidis, N.V. Global optimization of mixed-integer nonlinear programs: A theoretical
and computational study. Math. Program. 2004, 99, 563–591. [CrossRef]

257. Sherali, H.D.; Subramanian, S.; Loganathan, G.V. Effective relaxations and partitioning schemes for solving
water distribution network design problems to global optimality. J. Glob. Optim. 2001, 19, 1–26. [CrossRef]

258. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: Nsga-II.
IEEE Trans. Evol. Comput. 2002, 6, 182–197. [CrossRef]

259. Brumbelow, K.; Bristow, E.C.; Torres, J. Micropolis: A virtual city for water distribution systems research
applications. In AWRA 2006 Spring Specialty Conference: GIS and Water Resources IV; American Water
Resources Association: Denver, CO, USA, 2005.

260. Brumbelow, K.; Torres, J.; Guikema, S.; Bristow, E.; Kanta, L. Virtual cities for water distribution and
infrastructure system research. In ASCE World Environmental and Water Resources Congress 2007: Restoring
Our Natural Habitat; ASCE: Reston, VA, USA, 2007.

http://dx.doi.org/10.1029/2005WR004723
http://dx.doi.org/10.1007/s11269-007-9230-8
http://dx.doi.org/10.1002/j.1551-8833.2009.tb09877.x
http://dx.doi.org/10.1023/A:1018989721586
https://www.coin-or.org/Bonmin/
http://dx.doi.org/10.1007/s10107-003-0467-6
http://dx.doi.org/10.1023/A:1008368330827
http://dx.doi.org/10.1109/4235.996017


Water 2018, 10, 307 102 of 103

261. Burden, R.L.; Faires, J.D. Numerical Analysis; Brooks/Cole, Cengage Learning: Boston, MA, USA, 2005.
262. Boxall, J.; Skipworth, P.; Saul, A. A novel approach to modelling sediment movement in distribution mains

based on particle characteristics. Water Softw. Syst. 2001, 1, 263–273.
263. Boxall, J.; Saul, A. Modeling discoloration in potable water distribution systems. J. Environ. Eng. 2005, 131,

716–725. [CrossRef]
264. Broad, D.R.; Maier, H.R.; Dandy, G.C. Optimal operation of complex water distribution systems using

metamodels. J. Water Resour. Plan. Manag. ASCE 2010, 136, 433–443. [CrossRef]
265. Bader, J.; Deb, K.; Zitzler, E. Faster hypervolume-based search using monte carlo sampling. In Multiple

Criteria Decision Making for Sustainable Energy and Transportation Systems, Lecture Notes in Economics and
Mathematical Systems; Ehrgott, M., Naujoks, B., Stewart, T., Wallenius, J., Eds.; Springer: Berlin/Heidelberg,
Germany, 2010; pp. 313–326.

266. Todini, E. Looped water distribution networks design using a resilience index based heuristic approach.
Urban Water 2000, 2, 115–122. [CrossRef]

267. Farina, G.; Creaco, E.; Franchini, M. Using epanet for modelling water distribution systems with users along
the pipes. Civ. Eng. Environ. Syst. 2014, 31, 36–50. [CrossRef]

268. Creaco, E.; Franchini, M. A new algorithm for real-time pressure control in water distribution networks.
Water Sci. Technol. 2013, 13, 875–882. [CrossRef]

269. Taher, S.A.; Labadie, J.W. Optimal design of water-distribution networks with gis. J. Water Resour. Plan.
Manag. ASCE 1996, 122, 301–311. [CrossRef]
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