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Abstract— Electric vehicles (EVs) are recognized as one of1

the most promising technologies worldwide to address the fossil2

fuel energy resource crisis and environmental pollution. As the3

initial work of EV charging station (EVCS) construction, site4

selection plays a vital role in its whole life cycle, which, however,5

is a complicated multiple criteria decision making (MCDM)6

problem involving many conflicting criteria. Therefore, this paper7

aims to propose a novel integrated MCDM approach by a grey8

decision making trial and evaluation laboratory (DEMATEL)9

and uncertain linguistic multi-objective optimization by ratio10

analysis plus full multiplicative form (UL-MULTIMOORA) for11

determining the most suitable EVCS site in terms of multiple12

interrelated criteria. Specifically, the grey DEMATEL method is13

used to determine criteria weights and the UL-MULTIMOORA14

model is employed to evaluate and select the optimal site.15

Finally, an empirical example in Shanghai, China, is presented to16

demonstrate the applicability and effectiveness of the proposed17

approach. The results show that the proposed approach is a18

useful, practical, and effective way for the optimal location of19

EVCSs.20

Index Terms— Electric vehicle, site selection, uncertain linguis-21

tic variables, MULTIMOORA, multiple criteria decision making.22

I. INTRODUCTION23

W ITHs the rapid urbanization development and increas-24

ing demand on automobiles, energy shortage and air25

pollution have gained much attention from the countries26
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around the world. In China, the transportation sector con- 27

tributes 20-30% of the total national energy consumption, 28

as well as 7% of the gross emissions of carbon dioxide [1]. 29

Among many innovative solutions, electric vehicles (EVs) 30

are considered as a promising mobility alternative to reduce 31

energy consumption and greenhouse gas (GHG) emission [2]. 32

Meanwhile, EVs, can promote the stable and economic oper- 33

ation of electric power grids via shifting power peak load, 34

providing spinning reserve and improving the penetration 35

of renewable energy power [3]. In past years, the Chinese 36

government took various policies and regulations to promote 37

the use of EVs, and allocated considerable funding to subsidize 38

EV manufacturers and buyers [4], [5]. 39

Public charging stations, as the energy provider for EVs, are 40

significant in promoting the development of EV industry [1]. 41

Lacking convenient and efficient charging infrastructure, con- 42

sumers will not buy EVs because of their shorter driving range 43

and range anxiety [6], [7]. In the EV charging station (EVCS) 44

construction, determining the optimal site is a quite important 45

stage, which greatly impacts service quality and operational 46

efficiency of the established facilities. Improper selection of 47

sites will adversely affect an EVCS’s safety and benefits 48

during normal operations. Therefore, the emerging question 49

for engineers and planners is where to locate EVCSs to serve 50

various charging demands of a city [8]–[11]. 51

Selection of the best site for an EVCS can be regarded 52

as a complicated multiple criteria decision making (MCDM) 53

problem, which often involve many conflicting criteria, such 54

as operational benefit, effects on ecological environment, and 55

harmonization between EVCS and urban development [8]. 56

MULTIMOORA (Multi-objective optimization by ratio analy- 57

sis plus full multiplicative form) is a method newly developed 58

by Brauers and Zavadskas [12] to deal with MCDM problems. 59

It is more comprehensive than other MCDM methods since it 60

consists of three different parts, i.e., the ratio system, the refer- 61

ence point and the full multiplicative form. Besides, the MUL- 62

TIMOORA can facilitate a decision making process and pro- 63

vide effective rankings [13]–[15]. Recently, it has been applied 64

in a number of fields for various purposes [13], [15]–[17]. 65

However, its use within the EVCS site selection framework 66

was not accomplished before. Therefore, this work intends to 67

develop an extended MULTIMOORA method to determine 68

the optimal location of EVCSs under an uncertain linguistic 69

context. 70
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On the other hand, there may exist complicated and interre-71

lated relationships between evaluation criteria in a practical72

EVCS site selection. Decision-making trial and evaluation73

laboratory (DEMATEL) [18], [19] is an effective method74

to analyze the inter-relationships among system factors and75

visualize them by using a cause-effect relationship diagram.76

Moreover, it is capable of dividing interrelated criteria and77

dimensions into cause and effect groups [20]. Since its intro-78

duction, the DEMATEL method has been successfully applied79

in various fields [21]–[27]. Given its strengths, this paper80

will utilize the DEMATEL to model the dependency among81

EVCS site selection criteria and further determine their relative82

weights.83

With the motivations stated above, this work proposes an84

integrated MCDM approach based on grey DEMATEL and85

uncertain linguistic MULTIMOORA (UL-MULTIMOORA) to86

optimally locate public charging stations for EVs. The main87

contributions of this study are threefold: First, the theory of88

uncertain linguistic variables is used to manage the decision89

makers’ uncertain and diverse linguistic assessments. Second,90

the causal relationships and interaction levels among evalua-91

tion criteria are addressed using the grey DEMATEL method.92

Third, with the UL-MULTIMOORA model, the proposed93

approach can get a robust ranking of candidate sites and94

identify the best one to implement a public EVCS. Finally,95

an empirical example is presented to demonstrate the potential96

and advantages of the proposed EVCS site selection frame-97

work.98

The rest of this paper is structured as follows: We review99

the EVCS locating literature and indicate research gaps in100

Section II. The basic definitions and concepts of grey theory101

and uncertain linguistic variables are recalled in Section III.102

A hybrid MCDM approach is developed in Section IV for103

the EVCS site selection. Section V examines the feasibility104

and effectiveness of the proposed approach by applying it to a105

practical case. Finally, main conclusions and future directions106

of this research are presented in Section VI.107

II. LITERATURE REVIEW108

Depending on various objectives, a number of MCDM-109

based location models have been proposed in the literature.110

On the one hand, multi-objective decision making (MODM)111

techniques have been applied for site selection especially112

for the deployment of public charging infrastructures. For113

example, Tu et al. [7] developed a spatial-temporal demand114

coverage approach for optimizing the placement of electric115

taxi charging stations considering temporal constraints such as116

electric taxi range, charging time, and capacity of charging sta-117

tions. He et al. [28] incorporated institutional and spatial con-118

straints, such as local government requirements on charging119

facility deployment and spatial distribution of potential sites,120

into facility location models. Shahraki et al. [29] proposed121

an optimization model based on vehicle travel data to capture122

public charging demand and applied it to Beijing, China by123

maximizing the amount of vehicle-miles-traveled being electri-124

fied. Cavadas et al. [30] developed an improved mixed integer125

programming model for locating slow-charging stations for126

EVs in urban areas accounting for driver tours. You and127

Hsieh [31] developed a mixed-integer programming model to 128

handle the location problem of vehicle charging stations under 129

budget restrictions and, Sadeghi-Barzani et al. [32] developed 130

a mixed-integer non-linear optimization model to determine 131

the optimal place and size of fast EVCSs by considering 132

station development cost, EV energy loss, electric gird loss 133

as well as the location of electric substations and urban roads. 134

Liu et al. [33] used a two-step screening method to identify 135

the optimal site of EVCSs and developed a mathematical 136

model with the minimization of total cost associated with 137

EVCSs. Xu et al. [34] established a mathematical model that 138

determines the optimal placement of charging infrastructures 139

under the condition of large-scale integration of pure EVs 140

into grid. Wang and Lin [35] applied the concepts of set-and 141

maximum-coverage to formulate a mixed integer programming 142

method for locating multiple types of recharging stations for 143

battery-powered EV transport. 144

On the other hand, multiple attribute decision mak- 145

ing (MADM) methods have been used to solve the site selec- 146

tion problems arose from different scenarios. For instance, 147

Zhao and Li [1] employed a fuzzy grey relation analysis 148

(GRA)-VIKOR method for optimal siting of EVCSs from 149

an extended sustainability perspective. Wu et al. [11] used a 150

preference ranking organization method for enrichment eval- 151

uations (PROMETHEE)-based decision making system com- 152

bined with cloud model for the site selection of EVCSs. Guo 153

and Zhao [8] applied fuzzy technique for order of preference 154

by similarity to ideal solution (TOPSIS) approach for selecting 155

the most sustainable site of EVCSs considering environmental, 156

economic and social criteria. Awasthi et al. [36] adopted 157

the fuzzy TOPSIS method to evaluate and select the best 158

location for implementing an urban distribution center under 159

uncertainty. Vasileiou et al. [37] presented a geographical 160

information system-based decision making model for the site 161

selection of hybrid offshore wind and wave energy systems, 162

in which analytical hierarchy process (AHP) was used to iden- 163

tifying the most appropriate marine area. Govindan et al. [38] 164

established an integrated approach to identify preferred facility 165

locations, in which AHP was used to determine the weights of 166

criteria and TOPSIS was utilized to find the preference order 167

of available locations. Gigović et al. [39] suggested a spatial 168

multi-criteria model for the selection of sites for ammunition 169

depots by using the DEMATEL-based ANP technique and the 170

multiattributive ideal-real comparative analysis (MAIRCA) 171

method. In addition, a hybrid method of interpretive structural 172

modelling (ISM), fuzzy AHP, and fuzzy TOPSIS was given 173

in [40] for selecting a sustainable location of healthcare 174

waste disposal facility, and an attitudinal-based interval 2-tuple 175

linguistic VIKOR method was proposed in [41] to select the 176

best disposal site for municipal solid waste. 177

The above literature review indicates several issues related 178

to EVCS site selection researches. First, parameters in the 179

location models are fixed numbers and known in advance. 180

In reality, however, the parameters may not be obtained 181

with certainty. Moreover, uncertain linguistic evaluations are 182

often given by experts because of time pressure and lack of 183

data. Uncertain linguistic variables can be used to overcome 184

the above limitations and are more flexible and good at 185
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describing uncertain linguistic information. Second, previous186

studies have generally considered evaluation criteria as inde-187

pendent when establishing site selection models. However,188

in many real-world cases, there may exist complicated and189

interrelated relationships among criteria. DEMATEL is an190

effective method for analyzing causal relationships among191

factors and structuring them through graphical representations.192

Third, researchers have used a variety of MCDM methods193

for ranking alternative sites, but there has been no complete194

integration method to provide sufficient ranking information195

during site selection processes. MULTIMOORA represents196

one of the most robust approaches to multi-objective opti-197

mization. Therefore, the purpose of this study is to fill these198

gaps by extending the MULTIMOORA method based on199

uncertain linguistic variables for the evaluation and selection200

of EVCSs. Further, the grey DEMATEL technique is utilized201

to determine the weights of criteria by considering their202

interactions.203

III. PRELIMINARIES204

A. Grey Theory205

The grey theory was proposed by Deng [42] to handle206

the ambiguities in cases of discrete data and incomplete207

information [43], [44]. Its basic concepts can be defined as208

follows.209

Definition 1: Let x be a closed and bounded set of real210

numbers, a grey number ⊗ is defined as an interval with known211

upper and lower bounds but unknown distribution information212

for x [42]. That is,213

⊗x = [x
¯
, x̄] =

[
x ′ ∈ x

∣∣x
¯

≤ x ′ ≤ x̄
]
, (1)214

where x and x̄ represent the lower and upper bounds of ⊗x ,215

respectively.216

Definition 2: Give any two grey numbers ⊗x1 =
[
x
¯ 1, x̄1

]
,217

⊗x2 =
[
x
¯ 2, x̄2

]
and let λ be a crisp number, the basic218

mathematical operations of grey numbers are expressed as219

follows [44]:220

⊗x1 + ⊗x2 =
[
x
¯ 1 + x

¯ 2, x̄1 + x̄2
]
, (2)221

λ × ⊗x1 =
[
ax
¯ 1, ax̄1

]
. (3)222

Definition 3: A set of grey numbers ⊗x j =223 [
x
¯ j , x̄ j

]
( j = 1, 2, . . . , n)can be easily converted into crisp224

values by the converting fuzzy data into crisp scores (CFCS)225

method, following the procedure described as follows:226

(1) Normalize the grey numbers227

x j =

(
x
¯ j − min

j
x
¯ j

)

"max
min

, (4)228

x̄ j =

(
x̄ j − min

j
x
¯ j

)

"max
min

, (5)229

where "max
min = max

j
x̄ j − min

j
x
¯ j .230

(2) Compute the total normalized crisp values231

y j =
x
¯ j

(
1 − x

¯ j
) + x̄ j × x̄ j

1 − x
¯ j + x̄ j

. (6)232

(3) Compute the final crisp values 233

z j = min
j

x̄ j + y j"
max
min . (7) 234

235

B. Uncertain Linguistic Variables 236

A finite and ordered discrete linguistic term set is usually 237

introduced as S = {
s0, s1, . . . , sg

}
, where g is an even number, 238

si represents a possible value for a linguistic variable, and it 239

satisfies the following characteristics: (1) si > s j , ifi > j , 240

and (2) there is a negative operator neg (si ) = sg−i . 241

In many decision making processes, the linguistic rates of 242

decision makers may not match any of the original linguistic 243

terms, and there may be no clear cut between two of them. 244

Thus, Xu [45] extended the discrete linguistic variables to 245

uncertain linguistic variables. 246

Definition 4: Let S =
{
s0, s1, . . . , sg

}
be a linguistic term 247

set, a uncertain linguistic variable s̃ is defined as [45]: 248

s̃ =
[
sα, sβ

]
, (8) 249

where sα, sβ ∈ S, sα and sβ are the lower and the upper limits 250

of s̃, respectively. 251

Definition 5: Let s̃1 =
[
sα1 , sβ1

]
, s̃2 =

[
sα2 , sβ2

]
be any two 252

uncertain linguistic variables and λ ∈ [0, 1] is a crisp number, 253

then their operational laws are displayed as follows [45], [46]: 254

s̃1 ⊕ s̃2 =
[
sα1, sβ1

]
⊕

[
sα2, sβ2

]
=

[
sα1+α2, sβ1+β2

]
, (9) 255

s̃1 ⊗ s̃2 =
[
sα1, sβ1

]
⊗

[
sα2, sβ2

]
=

[
sα1×α2 , sβ1×β2

]
, (10) 256

λs̃1 = λ
[
sα1 , sβ1

]
=

[
sλα1, sλβ1

]
, (11) 257

(s̃1)
λ = [

sα1, sβ1

]λ =
[
sαλ

1
, sλβλ

1

]
. (12) 258

To make a comparison between uncertain linguistic variables, 259

the concept of possibility degrees is introduced here based on 260

the work of [45]. 261

Definition 6: Let s̃1 =
[
sα1, sβ1

]
, and s̃2 =

[
sα2, sβ2

]
be any 262

two uncertain linguistic variables, and let ds̃1 = β1 − α1 and 263

ds̃2 = β2 − α2, then the possibility degrees between them are 264

defined as 265

p (s̃1 > s̃2) = max (0,β1 − α2) − max (0,α1 − β2)

ds̃1 + ds̃2

, (13) 266

p (s̃2 ≥ s̃1) = max (0,β2 − α1) − max (0,α1 − β2)

ds̃1 + ds̃2

. (14) 267

Definition 7: Let s̃1 =
[
sα1 , sβ1

]
and s̃2 =

[
sα2 , sβ2

]
be two 268

uncertain linguistic variables, then 269

1) if p (s̃1 > s̃2) > p (s̃2 ≥ s̃1), then s̃1 is superior to s̃2 to 270

the degree of p (s̃1 > s̃2), denoted by s̃1
p(s̃1> s̃2)≻ s̃2; 271

2) if p (s̃1 > s̃2) = p (s̃2 ≥ s̃1) = 0.5, then s̃1 is indifferent 272

to s̃2, denoted by s̃1 ∼= s̃2; 273

3) if p (s̃2 ≥ s̃1) > p (s̃1 > s̃2), then s̃1 is inferior to s̃2 to 274

the degree of p (s̃2 ≥ s̃1), denoted by s̃1
p(s̃2≥s̃1)≺ s̃2. 275

Definition 8: Let s̃1 =
[
sα1 , sβ1

]
and s̃2 =

[
sα2 , sβ2

]
be two 276

uncertain linguistic variables, then 277

d (s̃1, s̃2) 278

=
√

1
3

[
(α1 − α2)

2 + (β1 − β2)
2 + (α1 − α2) (β1 − β2)

]
279

(15) 280

is called the distance between s̃1 and s̃2. 281
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Fig. 1. Proportional linguistic quantifiers.

Definition 9: Let X = {s̃1, s̃2, . . . , s̃n} be a set of uncer-282

tain linguistic variables, which has an associated weighting283

vector ω = (ω1,ω2, . . . ,ωn)T such that wi ∈ [0, 1] , i =284

1, 2, . . . , n,
∑n

j=1 wi = 1. Then the uncertain linguistic285

ordered weighted averaging (ULOWA) is described as [45]:286

ULOWA (X) = ULOWA (s̃1, s̃2, . . . , s̃n) = n⊕
j=1

ω j s̃σ ( j ), (16)287

where s̃σ ( j ) denotes the j th largest of the s̃i values, s̃i ∈ S.288

Determining the weight vector ω is crucial in applying289

the ULOWA operator. Many different methods have been290

suggested do derive the ordered weighted aggregation (OWA)291

weights. The most common method is the one guided by292

the fuzzy linguistic quantifier [46], which can not only allow293

decision makers to translate their preferences in different ways294

but also reduce the influence of unduly high or unduly low295

arguments in the decision making.296

Definition 10: The aggregation weighing vector ω is deter-297

mined based on a non-decreasing proportional linguistic quan-298

tifier Q, given by299

w j = Q
(

j
n

)
− Q

(
j − 1

n

)
, j = 1, 2, . . . , n, (17)300

Q (y) =

⎧
⎪⎨

⎪⎩

0 if y < a
y − a
b − a

if a ≤ y ≤ b

1 if y > b,

(18)301

with a, b ∈ [0, 1] , and Q (y) represents the degree to302

which the proportion y is compatible with the meaning of the303

quantifier. Some representative non-decreasing proportional304

linguistic quantifiers are identified by the terms “most”, “at305

least half”, and “as many as possible”, where the parameters306

(a, b), are (0.3, 0.8), (0, 0.5) and (0.5, 1), respectively [47].307

Fig. 1 shows their membership functions for the sake of308

visualization.309

For example, if four elements are considered and the lin-310

guistic quantifier “most” with the pair (0.3, 0.8) is used, then311

we have312

Q (y) =

⎧
⎪⎨

⎪⎩

0 if y < 0.3
y − 0.3

0.8 − 0.3
if 0.3 ≤ y ≤ 0.8

1 if y > 0.8

.313

Applying Eq. (17), the weights are calculated as: 314

ω1 = Q
(

1
5

)
− Q (0) = 0, ω2 = Q

(
2
5

)
− Q

(
1
5

)
= 0.2, 315

ω3 = Q
(

3
5

)
− Q

(
2
5

)
=0.4, ω4 = Q

(
4
5

)
−Q

(
3
5

)
=0.4, 316

and ω5 = Q (1) − Q
( 4

5

)
= 0. 317

IV. THE PROPOSED METHODOLOGY 318

In this section, we establish a hybrid MCDM approach 319

by combining grey DEMATEL technique with UL- 320

MULTIMOORA method to solve the EVCS sitting problem 321

with interrelated criteria. The grey DEMATEL is used for 322

analyzing the interrelationships between evaluation criteria 323

and computing the influential weight for each criterion. 324

To select the most suitable site, the UL-MULTIMOORA is 325

adopted to determine the ranking order of the alternative 326

sites. Fig. 2 delineates the flowchart of the proposed approach 327

for EVCS site selection, and the corresponding decision 328

procedures are explained in the following subsections. 329

A. The Grey DEMATEL for Computing Criteria Weights 330

The DEMATEL technique is a structural modeling approach 331

to analyze causal-effect relationships among complex fac- 332

tors [18]. In this study, grey theory is integrated with 333

the DEMATEL to examine the interdependent relationships 334

of evaluation criteria for the EVCS site selection prob- 335

lem. Assume that a system contains a set of n criteria 336

{C1, C2, . . . , Cn} and an expert group has l respondents 337

DM1, DM2, . . . , DMl , the steps involving the grey DEMA- 338

TEL are introduced below. 339

Step 1: Generate the overall grey direct-relation matrix 340

First, the expert group is asked to pairwise compare the 341

evaluation criteria in terms of an influence comparison scale. 342

For example, a grey linguistic scale including five linguistic 343

terms can be expressed as grey numbers shown in Table I. 344

The results of these evaluations generate l grey direct-relation 345

matrixes ⊗Zk =
[
⊗zk

i j

]

n×n
, where ⊗zk

i j represents the 346

direct influence of criterion Ci over criterion C j given by 347

decision maker DMk . Based on the direct respondent matrices, 348

the overall grey direct-relation matrix ⊗Z =
[
⊗zi j

]
n×n can 349

be calculated via the average method. 350

Step 2: Develop the crisp direct-relation matrix 351
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Fig. 2. Flowchart of the proposed EVCS site selection model.

TABLE I

GREY LINGUISTIC SCALE FOR DIRECT-RELATION OF CRITERIA

In this step, the CFCS defuzzification method is used to352

transform the grey direct-relation matrix ⊗Z = [⊗zi j
]

n×n353

into a crisp direct-relation matrix Z = [
zi j

]
n×n .354

Step 3: Obtain the normalized direct-relation matrix355

Based on the matrix Z , the normalized direct-relation matrix356

X =
[
xi j

]
n×n is obtained through (19)-(20).357

X = Z
s

, (19)358

where359

s = max

⎧
⎨

⎩max
1≤i≤n

n∑

j=1

zi j , max
1≤ j≤n

n∑

i=1

zi j

⎫
⎬

⎭. (20)360

All elements in the matrix X lie between 0 and 1, and the sum-361

mation of at least one (but not all) row or column equals to 1.362

Step 4: Set up the total-relation matrix363

The normalized direct-relation matrix X is processed by364

using (21) to set up the total-relation matrixT = [
ti j

]
n×n .365

T =X (I − X)−1 , (21)366

in which I denotes an identity matrix.367

Step 5: Build the causal relation diagram 368

Based on the matrixT , the sum of rows and the sum of 369

columns are expressed as the vectors R and C, respectively. 370

R = [ri ]n×1 =

⎡

⎣
n∑

j=1

ti j

⎤

⎦

n×1

, (22) 371

C =
[
c j

]
n×1 =

[
n∑

i=1

ti j

]T

1×n

, (23) 372

where ri is the sum of the i th row in the matrix T and 373

represents the sum of both direct and indirect influences given 374

by criterion Ci towards the other criteria. Likewise, c j is the 375

sum of the j th column in the matrix T and denotes the sum 376

of both direct and indirect influences received by criterion C j 377

from the other criteria. 378

Based on the data set (R+C, R-C), a causal relation diagram 379

can be plotted, where R+C illustrates the degree of importance 380

that the criterion plays in the system and R-C shows the net 381

effect that the criterion contributes to the system. 382

Step 6: Calculate the influential weights of criteria 383

The weight vector for evaluation criteria w = 384

(w1, w2, . . . , wn) is generated by the following equation [48]: 385

w j =

√(
r j + c j

)2 +
(
r j − c j

)2

n∑
j=1

√(
r j + c j

)2 +
(
r j − c j

)2
. (24) 386

B. The UL-MULTIMOORA for Ranking Alternatives 387

The MULTIMOORA is a robustness MCDM method, which 388

determines the ranking of alternatives based on dominance 389

theory [12]. In the second stage of the proposed model, 390

the normal MULTIMOORA is extended to the uncertain 391

linguistic environment (called UL-MULTIMOORA) to derive 392

the ranking priority of EVCS sites. 393

Assuming that an EVCS selection problem has K 394

decision makers DMk (k = 1, 2, . . . , K ), m feasible 395

alternatives Ai (i = 1, 2, . . . , m) and n evaluation criteria 396

C j ( j = 1, 2, . . . , n). Let X̃ k =
[
x̃ k

i j

]

mn
be the uncertain 397

linguistic decision matrix of the kth decision maker, where 398

x̃ k
i j is the rating of alternative Ai pertaining to criterion C j . 399

In here, the ratings of alternatives are linguistic assessments 400

represented by uncertain linguistic variables x̃ k
i j =

[
sk
αi j

, sk
βi j

]
. 401

Following the grey DEMATEL, the procedures of the UL- 402

MULTIMOORA are continued to find the optimal location 403

for EVCSs. 404

Step 1: Establish the uncertain linguistic collective decision 405

matrix 406

By utilizing the ULOWA operator, all decision makers’ rat- 407

ings for alternatives are aggregated to construct the uncertain 408

linguistic collective decision matrix X̃ =
[
x̃i j

]
m×n , where 409

x̃i j = [
sαi j , sβi j

] = ULOWA
(

x̃1
i j , x̃2

i j , . . . , x̃ K
i j

)
. (25) 410

Note that fuzzy linguistic quantifier is adopted in this study to 411

calculate the weights of the ULOWA operator. 412
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Step 2: Normalize the uncertain linguistic collective deci-413

sion matrix414

Considering benefit and cost criteria, the normalized uncer-415

tain linguistic decision matrix R̃ =
[
r̃i j

]
m×n is computed as416

r̃i j =
[
sα′

i j
, sβ ′

i j

]
417

=
{ [

neg
(
sαi j

)
, neg

(
sβi j

)]
for cost criteria[

sαi j , sβi j

]
for benefit criteria.

(26)418

Step 3: The weighted ratio system419

In this step, the collective assessments of a certain alterna-420

tive are added by421

ỹi = n⊕
j=1

w j r̃i j , (27)422

where ỹi is the overall assessment value of alternative Ai for423

the weighted ratio system.424

Step 4: The weighted reference point approach425

A maximal objective reference point (MORP) vector r̃∗ is426

deduced based on the matrix R̃ = [
r̃i j

]
m×n . Since the elements427

r̃i j are uncertain linguistic variables belong to the linguistic428

term set S =
{
s0, s1, . . . , sg

}
, we can define the j th coordinate429

of the MORP vector as r̃∗
j =

[
sg, sg

]
. Then, the distance430

matrix D = [
di j

]
m×n is acquired by431

di j = d
(

r̃i j , r̃∗
j

)
, (28)432

where di j denotes the gap of alternative Ai with respect to433

criterion C j . The weighted distance of each alternative from434

the MORP vector is obtained using (29).435

di =
n∑

j=1

w j di j . (29)436

Step 5: The weighted full multiplicative form437

The overall utility of the alternative Ai is an uncertain438

linguistic variable, which can be computed via439

ũi = n⊗
j=1

(
r̃i j

)w j . (30)440

Step 6: Acquire the ranking of alternatives441

All the alternatives can be prioritized by arranging the442

assessment values ỹi and ũi for i = 1, 2, . . . , m in decreasing443

order, and the assessment valuesdi for i = 1, 2, . . . , m in444

ascending order. Then, the final ranking of the alternatives445

could be derived by integrating the three sets of rankings with446

the dominance theory [49].447

V. EMPIRICAL EXAMPLE448

A. Background449

Shanghai is one of the fastest developing cities in China and,450

because of rapid economy development, vehicle demand has451

been rising dramatically for many years. In 2016, the number452

of cars in Shanghai reached 3.22 million, ranking the top453

fourth in China. Similar to others Chinese cities, air pollution454

is a growing problem in Shanghai. Hence, Shanghai govern-455

ment is endeavoring to promote the use of EVs and construct456

more and more charging infrastructures. It is expected that457

by 2020, EV production and sales in Shanghai exceeded458

Fig. 3. Geographical locations of the alternative sites.

20, 000 vehicles, and there will build 68 charging stations and 459

12, 000 charging piles. Based on market demands and govern- 460

ment support, an electricity company plans to build a charging 461

station for EVs in Shanghai. By reviewing project feasibility 462

research reports [4], [5] and the Shanghai development plan- 463

ning, a total of four sites are determined as alternatives for 464

EVCSs, which are located in the districts of Minghang (A1), 465

Jiading (A2), Baoshan (A3), and Pudong (A4), respectively. 466

These alternatives, with typical characteristics of a large res- 467

idential community, are suitable for constructing EV charg- 468

ing facilities. Fig. 3 displays the geographical locations of 469

these sites. For evaluating the EVCS sites comprehensively, 470

many qualitative and quantitative factors should be taken 471

into account. The evaluation criteria for the optimal location 472

of EVCSs are selected from the perspective of economic 473

sustainability. The sustainability theory requires a new devel- 474

opment way which can achieve economic growth and social 475

development without environmental damage. Sustainability 476

has three dimensions: environment, economy and society. 477

Therefore, the evaluation index system for EVCS site selection 478

includes these three dimensions. Further, the relevant criteria 479

affiliated with these dimensions are determined according 480

to [8], [11], [50], and expert interviews. The final evaluation 481

index system comprising three dimensions and nine criteria is 482

shown in Table II. 483

In this study, the evaluations on the weights of criteria 484

and on the alternatives over each criterion are conducted by 485

five expert groups, denoted as DM1, DM2, . . . , DM5. The 486

assessment panels are comprised of experts in the fields of 487

environment, economy, industrial engineering, electric power 488

system and transportation system. Besides, all invited experts 489

should have a master degree and more than three years relevant 490

working experience as their basic qualifications. Because of 491
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TABLE II

EVALUATION INDEX SYSTEM FOR THE CASE STUDY

TABLE III

INITIAL DIRECT-RELATION MATRICES PROVIDED BY E EXPERT GROUPS

the difficulty to assess the influence among criteria precisely,492

the grey linguistic scale defined in Table I is used for compar-493

ing the evaluation criteria. In addition, experts’ questionnaires494

are collected as inputs to determine the ratings of alternatives495

with the linguistic term set S,496

S = {s0 = V ery Low (V L) , s1 = Low (L) , s2 = Moderately497

Low (M L) , s3 = Medium (M) , s4 = Moderately498

High (M H ) , s5 = High (H ) , s6 = Very High (V H )} .499

The decision makers in each expert group gave their own500

evaluations first based on the general information of alternative501

sites. Then they met to make a final assessment according to502

the collective results. Consequently, the linguistic evaluations503

collected from the five expert groups for criteria interdepen-504

dencies and for the alternative sites are listed in Tables III-IV,505

respectively.506

B. Implementation507

In the sequence, the procedure of the proposed hybrid508

approach is implemented to determine the most suitable509

EVCS site.510

First, the grey DEMATEL technique is utilized to ana- 511

lyze the interrelationships between criteria. After converting 512

into corresponding grey numbers, the individual grey direct- 513

relation matrixes from Table III are combined to construct 514

the overall grey direct-relation matrix ⊗Z . Then, the crisp 515

direct-relation matrix Z is obtained with the CFCS method. 516

Based on (19)-(20) the normalized direct-relation matrix X is 517

calculated, and by (21), the total-relation matrix T is obtained 518

as shown in Table V. Additionally, the influences given and 519

received on criteria are summarized in Table VI, and the causal 520

relation diagram is plotted as displayed in Fig. 4. Note that 521

the arrows representing significant relationships among criteria 522

based on the threshold of 0.369, which is calculated by adding 523

one standard deviation to the mean of the values in matrix T . 524

Finally, the criteria weights are determined by using (24) and 525

listed in Table VI. 526

Next, the UL-MULTIMOORA method is employed to 527

obtain the ranking of the EVCS sites. First, the linguistic 528

evaluations given in Table IV are transformed into uncertain 529

linguistic decision matrices X̃ k =
[
x̃ k

i j

]

4×9
(k = 1, 2, . . . , 5). 530

Then, by (25), the uncertain linguistic collective decision 531

matrix X̃ =
[
x̃i j

]
4×9 is yielded and presented in Table VII. 532
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TABLE IV

LINGUISTIC RATINGS OF ALTERNATIVES PROVIDED BY EXPERT GROUPS

TABLE V

THE TOTAL-RELATION MATRIX T

TABLE VI

INFLUENCES AND WEIGHTS OF CRITERIA

Note that the linguistic quantifier “most” is utilized in the533

information aggregation and the ULOWA weight vector is534

computed as ω = (0, 0.2, 0.4, 0.4, 0)T by (17)-(18). Sub-535

sequently, the normalized uncertain linguistic decision matrix536

R̃ =
[
r̃i j

]
4×8 is established via (26), as shown in Table VIII.537

Next, the ranking indices ỹi , di and ũi for the four alternatives538

are calculated by (27)-(30) and the final ranking is determined539

by referring to the dominance theory [49]. The results of540

the calculations are tabulated in Table IX. Therefore, it is541

concluded that the site in Baoshan district (A3) is the most542

desirable one for the considered EVCS location problem.543

C. Sensitive Analysis544

In the above case study, the ULOWA weight vector545

ω = (0, 0.2, 0.4, 0.4, 0)T based on the linguistic quantifier546

TABLE VII

THE UNCERTAIN LINGUISTIC COLLECTIVE DECISION MATRIX X̃

TABLE VIII

THE NORMALIZED UNCERTAIN LINGUISTIC DECISION MATRIX R̃

“most” is adopted in the information aggregation to diminish 547

the influence of extreme evaluations provided by experts. 548

In this part, a sensitive analysis by changing the weight vector 549
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TABLE IX

RANKING RESULTS BY THE UL-MULTIMOORA METHOD

Fig. 4. Causal relation diagram for the case study.

Fig. 5. Results of sensitivity analysis.

ω is carried out to measure the impact of biased assessment550

data on the ranking results yielded by the proposed551

approach. The considered cases include “minimum”, “at least552

half”, “average”, “as many as possible” and “maximum”553

and their corresponding aggregation weight vectors are554

ω = (1, 0, 0, 0, 0)T ,ω = (0.4, 0.4, 0.2, 0, 0)T ,ω =555

(0.2, 0.2, 0.2, 0.2, 0.2)T ,ω = (0, 0, 0.2, 0.4, 0.4)T , and556

ω = (0, 0, 0, 0, 1)T , respectively. Fig. 5 displays the results557

of the sensitivity analysis according to theses weight vectors.558

From Fig. 5, we can find that the rankings of the four559

alternative sites are influenced greatly by the weight vector560

ω. For example, A4 is the most suitable site for the EVCS561

site selection when “average” and “as many as possible” are562

used, while in terms of the linguistic quantifier “most”, it is the563

lowest ranked location (i.e., the worst site) and A3 becomes564

the best choice at the same time. Particularly, the influence565

of unfair assessments on the optimal EVCS site results can 566

be evidently seen in the rank orderings derived in the cases of 567

“minimum” and “maximum”. They are quite different from the 568

ranking determined by the linguistic quantifier “most”, which 569

can relieve the influence of unfair evaluations on the ranking 570

results by assigning low weights to those “false” or “biased” 571

ones. Therefore, utilizing the ULOWA operator in the pro- 572

posed approach to deal with false or biased opinions is of 573

great importance and benefit to the optima site selection of 574

EVCSs in real-life situations. 575

D. Discussions 576

There are some important insights from the results produced 577

by the proposed EVCS site selection approach. First, according 578

to the UL-MULTIMOORA, the ranking of the four alternative 579

sites is A3 ≻ A2 ≻ A1 ≻ A4, which is in accordance 580

with the one derived by the fuzzy TOPSIS method [8]. This 581

indicates the effectiveness of the proposed approach. How- 582

ever, in comparison with other sitting methods, the proposed 583

approach to locate EVCSs has the following advantages: (1) 584

the ambiguity and diverse linguistic information of decision 585

makers can be well handled and modeled using uncertain 586

linguistic variables; (2) various types of correlations among 587

evaluation criteria can be taken into account by the grey 588

DEMATEL technique; (3) by using the modified MULTI- 589

MOORA approach, a more robust and credible ranking of 590

alternative sites can be achieved as it summarizes three differ- 591

ent methods. In addition, the ranking result of the EVCS sites 592

obtained in this study are validated via getting feedback from 593

the expert groups participated in this case study. According 594

to the domain experts, the proposed hybrid MCDM approach 595

is more suitable for the location problem of public charging 596

stations and can help decision makers find the optimal site 597

effectively. 598

Second, based on the obtained causal relation diagram 599

Fig. 4, the interrelationships among the nine criteria can be 600

determined. It can be found that the criteria with the highest 601

prominence values are construction cost (C4), annual operation 602

and maintenance cost (C5), and service capability (C8), which 603

are consistent with the criteria weights. That is, they are critical 604

and well networked criteria and should be the focus of decision 605

makers. Besides, the causal relation diagram determines that 606

the criteria with the highest net cause values include construc- 607

tion cost (C4), harmonization of EVCS with the development 608

planning of urban road network and power grid (C6) and traffic 609

convenience (C7). This shows that the three criteria should be 610

improved first because they are the most prominent causal 611

factors relative to other criteria. Moreover, an in-depth check 612

of Fig. 4 shows that adverse impact on people’s lives (C9) 613
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is a criterion being affected most; thus the adverse impact614

on people’s lives is an important problem which needs more615

attention. All the evaluation criteria indicate the necessary616

behaviors to improve EVCS site selection for the considered617

problem. Therefore, each of the criteria should be evaluated for618

the EVCS site selection in accordance with the causal relation619

diagram.620

VI. CONCLUSIONS621

EVCSs play a pivotal role in the successful development622

of EVs and the optimal location of public charging facilities623

has received much attention in recent years. In this paper,624

we present an integrated MCDM approach based on grey625

DEMATEL and UL-MULTIMOORA to select the most suit-626

able site for locating EV charging facilities. The proposed627

approach can not only effectively tackle ambiguity and diverse628

linguistic assessments of decision makers with uncertain lin-629

guistic variables, but also allows us to create a causal relation630

diagram for analyzing complex interactions among criteria631

with the grey DEMATEL. Moreover, we can determine the632

reasonable and credible ranking of candidate locations and633

identify the best one for locating an EVCS based on the634

UL-MULTIMOORA method.635

An empirical example is presented to demonstrate the effec-636

tiveness of the proposed EVCS site selection approach. The637

result implies that the evaluation criteria are proved hav-638

ing interrelations and self-feedback relationships. Though the639

influence of all criteria have to be considered in the EVCS site640

selection process, domain experts have noted that economy641

related criteria should be given the top priority with bigger642

weights. By using the UL-MULTIMOORA method, the alter-643

native located in the Baoshan district is found to be the optimal644

site for the considered problem. Moreover, a comparative645

analysis with the existing method is performed to examine646

the validity and superiority of the developed approach. It has647

been shown that the integrated MCDM framework proposed648

in this paper provides a practical and adequate tool to address649

the multifaceted EVCS site location problems with inter-650

dependent criteria.651
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