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ABSTRACT
Aggregating preferences over combinatorial domains has several

applications in artificial intelligence. Due to the exponential na-

ture of combinatorial preferences, compact representations are

needed, and (m)CP-nets are among the most studied formalisms.

Unlike CP-nets, which received an extensive complexity analy-

sis,mCP-nets, as mentioned several times in the literature, lacked

such a thorough characterization. An initial complexity analysis for

mCP-nets was carried out only recently. In this paper, we further

investigate the complexity of mCP-nets. In particular, we prove

the ΣP
3
-completeness of checking the existence of max optimal out-

comes, which was left as an open problem. We furthermore prove

that various tasks known to be feasible in polynomial time are

actually P-complete. This shows that these problems are inherently

sequential, and hence they cannot benefit from highly parallel com-

putation. The P-completeness results here proven are among the

very first of this kind in the computational social choice literature.

KEYWORDS
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1 INTRODUCTION
The problem of managing and aggregating agent preferences has at-

tracted extensive interest in the computer science community [10],

because methods for representing and reasoning about prefer-

ences are significant in AI applications, such as recommender

systems [42], (group) product configuration [7, 16, 48], (group)

planning [6, 44, 45, 47], (group) preference-based constraint sat-

isfaction [2, 4, 8], and (group) preference-based query answer-

ing/information retrieval [15, 35, 36], just to name a few. In com-

puter science, the study of preference aggregation has often been

based on social choice theory [10]. In this theory, it is common to as-

sume that agents’ preferences are explicitly represented. Although

this is reasonable when small sets of candidates are considered, this

is not feasible when the voting domain is combinatorial, i.e., the set

of candidates, or outcomes, is the Cartesian product of finite value

domains for each of a set of features [25, 28].

Combinatorial domains contain an exponential number of out-

comes in the number of features, and hence compact representa-

tions for combinatorial preferences are needed [25, 28]. CP-nets [3],

which are a graph model, are among the most studied of these repre-

sentations, as proven by a vast literature on them. In CP-nets, graph
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vertices represent features, and an edge from vertex A to vertex B
models the influence of the value of feature A on the choice of the

value of feature B. Intuitively, this model captures preferences like

“if the rest of the dinner is the same, with a fish dish (A’s value),
I prefer a white wine (B’s value)”.

CP-nets were used to model preferences of groups, obtaining the

mCP-nets [43]. This multi-agent model is a set of CP-nets, one for

each agent. The preference semantics ofmCP-nets is defined via

voting schemes: Through their own individual CP-nets, each agent

votes whether an outcome is preferred to another. Various voting

schemes were proposed formCP-nets [32, 43] and different voting

schemes give rise to different dominance semantics formCP-nets.

In the voting schemes proposed formCP-nets, the voting protocol

adopted, i.e., the actual way in which votes are collected [13], is

global voting [26] over the CP-nets of the single players. In this pro-

tocol, the outcomes of the vote are computed by having in input the

whole CP-nets (see Section 7 for related works on different voting

protocols over CP-nets). In the literature, a comparison between

global voting and other protocols over CP-nets was explicitly asked

for and stated to be highly promising [26]. However, global voting

over CP-nets has not been thoroughly investigated as other proto-

cols (see Section 7). In fact, unlike CP-nets, which were extensively

analyzed, a precise complexity analysis ofmCP-nets was missing

for long time, as explicitly mentioned several times in the litera-

ture [26, 29–32]. An initial complexity analysis of voting tasks over

mCP-nets was carried out only recently [33]. For example, deciding

Pareto dominance was shown co-NP-complete, and deciding the

existence of weak Condorcet winners was proven ΣP
2
-complete. The

aim of this paper is to further explore the complexity ofmCP-nets

(and hence the complexity of global voting over CP-nets).

Contributions. In this paper, we focus on acyclic binary polynomi-

ally connectedmCP-nets with standard CP-nets, i.e., the constituent

CP-nets of anmCP-net rank all the features, and they are not par-

tial CP-nets. Therefore, in this paper the dominance semantics of

mCP-nets is precisely global voting over CP-nets. Our contributions

are briefly as follows:

◃ Via a non-trivial reduction, we show the ΣP
3
-completeness

of deciding the existence of max optimal outcomes;

◃ We prove that various voting tasks overmCP-nets known

to be feasible in polynomial time are actually P-complete.

Furthermore, as a side result of our investigation:

◃ We define the P-complete Th-CVP problem of deciding,

given a Boolean circuit C , a Boolean vector x, and an in-

teger k , whether the number of logical gates of C evaluating

to true when x is given in input to C is at least k . This prob-
lem can be very useful in reductions showing P-hardness of

problems involving counting tasks.
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Organization of the paper. In Section 2, we provide an overview

of our results. Preliminaries on CP-nets andmCP-nets are given

in Section 3. We show P-completeness results over CP-nets and

mCP-nets in Sections 4 and 5, respectively. In Section 6, we study

max voting. We close our paper with a discussion on related works

in Section 7, and we draw our conclusion in Section 8. For space

constraints, we only provide proof intuitions for various results.

Details will be provided in a forthcoming extended paper.

2 OVERVIEW AND DISCUSSION OF THE
RESULTS

In Tables 1 and 2 there is a summary of our results. Definitions of the

concepts mentioned in this section are given in the preliminaries.

We prove that deciding the existence of max optimal outcomes

is ΣP
3
-complete. This supports that, in mCP-nets, max voting is

computationally more demanding than majority voting, for which

deciding the existence of optimal outcomes is ΣP
2
-complete [33].

The increase in the complexity is due to the need in max dominance

of precisely counting the number of agents preferring an outcome

to another, whereas this precision is not required in majority voting

(majority and max dominance are NP-complete and ΘP

2
-complete,

respectively [33, 34]). This complexity dissimilarity is carried over

to the complexity of deciding the existence of optimal outcomes.

Besides this, we obtain several P-completeness results, which are

quite interesting. Let us consider a group planning scenario [6], in

whichmultiple autonomous agents have to agree upon a shared plan

of actions to reach a goal that is preferred by the group as a whole.

For example, a group of autonomous robots coordinating during the

exploration of a remote area/planet. Each robot has a specific task

to accomplish, and the group, as a whole, coordinates to achieve a

common goal. Robots have their own specific preferences over a

vast amount of variables/features emerging from the contingency

of the situation to complete their individual tasks. However, their

individual preferences have to be blended in all together, so that

the course of action of an agent does not interfere with the tasks of

the other agents and the mission is successful.

Managing huge amount of data could be tackled by using parallel

algorithms. However, there are problems that, although solvable in

polynomial time, are inherently sequential and hence do not benefit

from highly parallel processing [21]. By saying that a problem L
does not benefit from parallel processing, it is not meant that L does

not admit parallel algorithms for its solution, but it means that par-

allel algorithms for Lwould not provide a speedup comparable with

the increase in the amount of processing hardware available [21].

Decision problems of this type are the P-hard ones, which are often

said to be non-parallelizable [21]. For this reason, P-complete prob-

lems are quite interesting, because they are in P, and hence they

are regarded as “easy”, but they are not parallelizable, which could

be an issue when the input is of remarkable size.

P-time voting has attracted extensive consideration. However,

to the best of our knowledge, P-hardness has not been carefully

investigated so far in the computational social choice literature

(see Section 7). In fact, it may well be the case that P-time voting

schemes are actually P-hard, which would be a sign that these

voting procedures would not scale up over huge input instances.

Here we show that this is the case for some voting tasks over

Table 1: Summary of the results for CP-nets.

Problem Complexity

Feat-Value-Opt P-complete

Same-Opt P-complete

Rank-Bound P-complete

Compare-Rank P-complete

Table 2: Summary of the results formCP-nets. *Membership
shown in [33].

Problem Complexity

Exists-Pareto-Optimum P-complete
*

Rank-Dominance P-complete
*

Is-Rank-Optimal P-complete
*

Is-Rank-Optimum P-complete
*

Exists-Rank-Optimum P-complete
*

Exists-Max-Optimal ΣP
3
-complete

*

Exists-Max-Optimum in ΣP
3

mCP-nets. Hence, the P-completeness results reported here, not

only characterize more precisely the complexity ofmCP-nets, but

they also point out a significant issue, which is whether P-time

voting schemes can benefit from parallel algorithms or not.

Observe that we show P-completeness already for the evaluation

of the optimal outcome and the rank of outcomes on single CP-nets.

Therefore, the P-completeness of preference aggregation based on

these concepts derives from the P-hardness of the underlying con-

cepts on single CP-nets. This points out that, to have parallelizable

preference aggregation semantics, we need simpler semantics that

are parallelizable (e.g., in LogSpace) already on single CP-nets.

3 PRELIMINARIES
CP-nets. A CP-net N is formally defined as a triple ⟨GN ,DomN ,

(CPT F
N
)F ∈FN

⟩, where GN = ⟨FN , EN ⟩ is a directed graph whose

vertices FN represent the features of the combinatorial domain,

DomN is a function, and (CPT F
N
)F ∈FN

is a family of functions. For

a feature F , DomN associates a (value) domain DomN (F ) with F ,
while CPT

F
N
is the so called “CP table” of F .

The domain of a feature F is the set of values that F may have

in the outcomes. Here, we assume features to be binary, i.e., each

feature’s domain contains two values.We denote by f and f the two
values of F , called the overlined and the non-overlined value (of F ),
respectively. For a feature setS ⊆ FN ,DomN (S) = ×F ∈SDomN (F ).
An outcome is an element of the set ON = DomN (FN ). For a feature

F ∈ FN and an outcome α , α[F ] is F ’s value in α . For a feature set
S ⊆ FN and an outcome α , α[S] is the projection of α over S.

CP tables encode preferences over feature values. The CP table of

feature F has a row for any possible combination of values of all the

parent features of F in GN ; in each row there is a total order over

DomN (F ). This order encodes agent’s preferences for F ’s values

when specific values of F ’s parents are considered: f ≻ f denotes

f being preferred to f . If F has no parents, its CP table has only one
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row with a total order over DomN (F ). Note that indifferences be-
tween features values are not admitted in (classical) CP-nets. When

we will outline CP tables in figures, we will use a “logic notation” to

identify, for which values of the parents of the features, a particular

CP table row has to be considered. Although this is the notion

which generalized propositional CP-nets are based on [17], in this

paper it is used only for notational convenience. Here we always

assume that CP tables are extensively and explicitly represented in

the input instances. We denote by ∥N ∥ the size of CP-net N , i.e.,

the space in terms of bits required to represent the whole net N

(which includes, features, links, feature domains, and CP tables).

CP-nets’ preference semantics is based on “improving flips”. Let

F be a feature, and let α , β be two outcomes differing only on F ’s
value. Flipping F from α[F ] to β[F ] is an improving flip (of F in

N ) iff, in the row of F ’s CP table associated with the values in

α of the parents of F , β[F ] ≻ α[F ]. Outcome β is preferred to α ,
or β dominates α (in N ), denoted β ≻N α , iff there is a sequence

of improving flips from α to β , otherwise β does not dominate α ,
denoted β ̸≻N α ; β and α are incomparable, denoted β ◃▹N α , iff
β ̸≻N α and α ̸≻N β . Observe that, since there are no indifferences

between features values in (classical) CP-nets, for any two outcomes

α and β , either one dominates the other, or they are incomparable.

A CP-net N is binary iff all its features are binary; N is singly

connected iff, for any two features G and F of N , there is at most

one path from G to F in GN . A class F of CP-nets is polynomially

connected, iff there exists a polynomial p such that, for any CP-net

N ∈ F and for any two features G and F of N , there are at most

p(∥N ∥) distinct paths fromG to F inGN . A CP-netN is acyclic iffGN

is acyclic. Acyclic CP-nets N have a unique optimum outcome oN ,

dominating all others, that can be computed in polynomial time [3].

The rank of an outcome α in a CP-net N , RankN (α), is the length of

the shortest improving flipping sequence from α to oN [43]. Unless

stated otherwise, we consider acyclic binary CP-nets.

mCP-nets. AnmCP-net is a set ofm CP-nets defined over the same

set of features having, in turn, the same domain. The “m” of an

mCP-net is the agents’ number, so a 3CP-net is anmCP-net with

m = 3. Originally, partial CP-nets were allowed to be constituent

ofmCP-nets [43]. We assume only standard CP-nets to be part of

mCP-nets, and we do not assume CP-nets to be O-legal (i.e., we

de not assume that the CP-nets of an mCP-net have a common

topological order of the features).mCP-nets’ semantics is based on

voting. LetM = ⟨N1, . . . ,Nm⟩ be anmCP-net, and let α , β be two

outcomes.We define the sets S≻
M
(α , β) = {i | α ≻Ni β}, S

≺
M
(α , β) =

{i | α ≺Ni β}, and S
◃▹
M
(α , β) = {i | α ◃▹Ni β}, as the sets of agents

preferring α to β , preferring β to α , and for which α and β are

incomparable, respectively. RankM (α)=
∑
1≤i≤m RankNi

(α) [43].
The following are the dominance semantics considered:

Pareto: β Pareto dominates α , denoted by β ≻
p

M
α , iff all the agents

ofM prefer β to α , i.e., |S≻
M
(β ,α)| =m.

Majority: β majority dominates α , denoted by β ≻
maj

M
α , iff the

majority of the agents ofM prefers β to α , i.e., |S≻
M
(β ,α)| >

|S≺
M
(β,α)| + |S◃▹

M
(β ,α)|.

Max: β max dominates α , denoted by β ≻max

M
α , iff the group of the

agents ofM preferring β to α is the biggest, i.e., |S≻
M
(β ,α)| >

max(|S≺
M
(β ,α)|, |S◃▹

M
(β ,α)|).

Rank: β rank dominates α , denoted by β ≻r

M
α , iff RankM (β) <

RankM (α).

For a voting scheme s , α is s optimal inM iff β ̸≻s

M
α for all β , α ,

whereas α is s optimum inM iff α ≻s

M
β for all β , α . Optimum

outcomes, if they exist, are unique.

AnmCP-net is acyclic, binary, and singly connected, iff all its

CP-nets are acyclic, binary, and singly connected, respectively.

A class F of mCP-nets is polynomially connected, iff the set of

CP-nets of themCP-nets in F is polynomially connected. Unless

stated otherwise, the consideredmCP-nets are acyclic, binary, and

belong to polynomially connected classes ofmCP-nets.

Complexity Classes. We assume basic knowledge of computa-

tional complexity and of the polynomial hierarchy (PH); see [22, 40]

for an overview. A language L is P-hard iff, for all languages L′

in P, there is a log-space reduction from L′ to L. A language L is

P-complete iff L is in P and is P-hard.

4 P-COMPLETE PROBLEMS ON CP-NETS
In this section, we show the P-completeness of various tasks over

CP-nets. To prove these results, we will exploit the P-completeness

of the classical CVP problem defined below.

In the Circuit Value Problem (CVP) [24], for a Boolean circuit C
and a Boolean vector x, we have to decide whether C ’s output is

true when receiving x as input. In the literature, various ways to

represent circuits were illustrated. Here, we use a representation

that is a mix of those in [24, 39]. A circuit C = {C1, . . . ,Cm } is a

sequence of logic gates, which are represented through formulas:

(i) if Ci = x j , Ci is an input gate fed with the jth input bit; (ii) if

Ci = Cj ∧Ck (resp., Ci = Cj ∨Ck ), Ci is an AND (resp., OR) gate,

whose inputs are the outputs of Cj and Ck (with j,k < i); (iii) if
Ci = ¬Cj , Ci is a NOT gate, whose input is the output of Cj (with

j < i). The Boolean values of gates Ci when x is given in input to

C , denoted by vC (Ci , x), are defined in the natural way.

We assume that the problem CVP is defined as in [21]. A CVP

instance I = ⟨C , x,Cout⟩, where C = {C1, . . . ,Cm } is a circuit,

x = {x1, . . . ,xn } is a vector, and Cout ∈ C is the output gate, is a

‘yes’-instance iffvC (Cout , x) = true.CVP is known to be P-complete

and its hardness holds even if various restrictions are issued over the

circuit structure and even if the output is fixed to beCm [21, 24, 39].

For the following results, we need CP-nets mimicking the be-

havior of circuits when specific vectors are given in input. Let

C = {C1, . . . ,Cm } be a circuit and let x = {x1, . . . ,xn } be an input

vector. The CP-net N (C , x), defined from C and x, is as follows. For
each gateCi ∈ C , there is a feature Di ∈ F

N (C ,x), and Di ’s domain

is {di ,di }. The intuition of the transformation is that values di and
di of Di are associated with gate Ci evaluating to true and false,

respectively, when x is given in input to C .

• If Ci is an input gate with Ci = x j , there is no edge entering

in Di ; if x j = true, di ≻ di ; if x j = false, di ≻ di .
• If Ci is an AND (resp., OR) gate, with Ci = Cj ∧ Ck (resp.,

Ci = Cj ∨Ck ), then there are two edges entering in Di , one

from D j and one from Dk . If Ci = Cj ∧Ck , for Di , di ≻ di
iff both D j and Dk have overlined values. If Ci = Cj ∨Ck ,

for Di , di ≻ di iff D j or Dk has an overlined value.
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• If Ci is a NOT gate with Ci = ¬Cj , there is an edge from D j

to Di ; for Di , di ≻ di if D j has value dj , di ≻ di otherwise.

Observe that N (C , x) is binary, acyclic, and can be computed

in logarithmic space from C and x (because the indegree of each

feature is at most 2, i.e., it is bounded by a constant, and hence

the number of rows in the CP tables of N (C , x) is bounded by a

constant). Therefore, all the hardness results shown here hold even

on acyclic binary (m)CP-nets with indegree 2. Via induction on the

gates’ levels in C , it can be shown that, in N (C , x), a feature Di
has value di in the optimum outcome iff vC (Ci , x) = true.

Lemma 4.1. Let C = {C1, . . . ,Cm } be a circuit, and let x be an

input vector. For any gate Ci , vC (Ci , x) = true iff o
N (C ,x)[Di ] = di .

From this key property follows the P-hardness of the problem

Feat-Value-Opt: For a CP-net N , a feature F ∈ FN , and a value

v ∈ DomN (F ) for F , decide whether the value of F in the optimum

outcome of N is v , i.e., oN [F ] = v .

Theorem 4.2. Feat-Value-Opt is P-complete.

Consider now the problem Same-Opt: Given two (different)

CP-nets N1 and N2 defined over the same set of features, which,

in turn, have the same domain in the two nets, decide whether

the optimum outcome of N1 equals the optimum outcome of N2,

i.e., oN1
= oN2

. We can show that Same-Opt is P-complete. The

intuition behind the P-hardness proof (a reduction from CVP) is to

encode the same circuit in N1 and N2 with an additional feature

O . In N1, O is attached to the output gate and replicates its value,

instead, in N2, O has a specific preferred value, say o. In this case,

oN1
= oN2

iff the circuit outputs true.

Theorem 4.3. Same-Opt is P-complete.

Let us denote by TG(C , x) the number of C ’s gates Ci such that

vC (Ci , x) = true. Consider this new problem Th-CVP (Threshold

CVP): Given a Boolean circuit C , an input vector x, and an integer

k , decide whetherTG(C , x) ≤ k . The P-hardness can be shown via

a reduction from CVP. The idea behind the proof is to modify the

original circuit by attaching to the original output gate a cascade

of (enough) gates replicating the output’s value. Then, when the

output is true, a number of gates greater than k evaluates to true.

Theorem 4.4. Th-CVP is P-complete. Hardness holds even if the

threshold number k is such that k < ⌊|C |/2⌋.

Proof. Th-CVP is in P, because gates’ values can be evaluated

in polynomial time [21, 24], and then we can count those evaluating

to true and compare the count with k (in polynomial time).

Hardness can be shown via a reduction from CVP. Consider

the following reduction transforming an instance ⟨C , x,Cout⟩ of

CVP, where C = {C1, . . . ,Cm }, into an instance ⟨C ′, x′,k⟩ of Th-
CVP. C ′

consists of 2m gates, whose first m gates are identical

(for function and wiring) to those of C . The remainingm gates of

C ′
essentially replicate the value of C ′

out
= Cout . More formally,

C ′
m+1 = C ′

out
∧ C ′

out
, and, for all 2 ≤ i ≤ m, C ′

m+i = C ′
m+i−1 ∧

C ′
m+i−1. The input vector x′ equals x, and k = m − 1. Clearly,

the reduction can be computed in logarithmic space. Observe that

k =m−1 < ⌊2m/2⌋, where 2m = |C ′ |. Given that P is closed under

complement, in this case we assume that ‘yes’-instances of CVP

are those in which the output of the circuit is false.

(⇒) If ⟨C , x⟩ is a ‘yes’-instance of CVP, i.e., vC (Cout , x) = false,

then vC ′(C ′
out
, x′) = vC ′(C ′

m+1, x
′) = · · · = vC ′(C ′

2m , x
′) = false.

Hence,TG(C′, x′) ≤ |C ′ |−(m+1) =m−1 = k , and thus ⟨C ′, x′,k⟩
is a ‘yes’-instance of Th-CVP as well.

(⇐) On the other hand, if ⟨C , x⟩ is a ‘no’-instance of CVP, i.e.,
vC (Cout , x) = true, then vC ′(C ′

out
, x′) = vC ′(C ′

m+1, x
′) = · · · =

vC ′(C ′
2m , x

′) = true. Hence, TG(C′, x′) ≥ m + 1 > m − 1 = k , and
thus ⟨C ′, x′,k⟩ is a ‘no’-instance of Th-CVP as well. �

Problem Rank-Bound is, for a CP-net N , an outcome α ∈ ON ,

and an integerk , decidewhether RankN (α) ≤ k . For acyclic CP-nets,

RankN (α) = |{F | F ∈ FN ∧ α[F ] , oN [F ]}|, (1)

i.e., α ’s rank in N is the number of features whose value in α differs

from its value in oN [33]. Rank-Bound’s P-hardness follows from

Lemma 4.1 and Equation (1), by which the number of overlined

values in the optimum outcome of N (C , x) equals TG(C , x).

Theorem 4.5. Rank-Bound is P-complete.

Problem Compare-Rank is, for a CP-net N and two outcomes

α , β ∈ ON , decide whether RankN (β) < RankN (α). Its P-hardness
can be shown from Feat-Value-Opt. In fact, by Equation (1), for a

CP-net N , two outcomes α and β differing only on the value of a

feature F are such that RankN (β) < RankN (α) iff β[F ] is oN [F ].

Theorem 4.6. Compare-Rank is P-complete.

Proof. Membership in P follows from the fact that computing

outcome ranks in acyclic CP-nets is feasible in polynomial time [33],

and then we can compare them (in polynomial time).

Hardness can be shown via a reduction from Feat-Value-Opt.

Consider the reduction transforming an instance ⟨N , F ,v⟩ of Feat-
Value-Opt into the instance ⟨N ′,α , β⟩ of Compare-Rank as fol-

lows (assume w.l.o.g. thatv = f ): N ′ = N , α and β are the outcomes

assigning non-overlined values to all features but F , and α[F ] = f ,
while β[F ] = f . By Equation (1), and since α and β differ only on the

value assigned to feature F , there is a difference of exactly 1 between
the rank of the two outcomes, i.e., |RankN ′(β) − RankN

′(α)| = 1.

(⇒) If ⟨N , F ,v⟩ is a ‘yes’-instance of Feat-Value-Opt, oN [F ] =
f = v . Hence, RankN ′(β) < RankN

′(α).
(⇐) If ⟨N , F ,v⟩ is a ‘no’-instance of Feat-Value-Opt, oN [F ] =

f , v . Hence, RankN ′(α) < RankN
′(β). �

5 P-COMPLETE PROBLEMS ONmCP-NETS
First, we focus on a Pareto voting task. Consider the problem Exists-

Pareto-Optimum: Given anmCP-netM, decide whetherM has

a Pareto optimum outcome. AcyclicmCP-nets have a Pareto opti-

mum outcome iff all their individual CP-nets have the very same

individual optimum outcome [33]. By this, the P-hardness of Exists-

Pareto-Optimum follows from the P-hardness of Same-Opt.

Theorem 5.1. Exists-Pareto-Optimum is P-hard. Hardness holds

even on 2CP-nets.

Since Exists-Pareto-Optimum is also in P [33], it is P-complete.

In the rest of the section we prove the hardness results for rank

voting overmCP-nets. Consider the problem Rank-Dominance:

Given anmCP-netM and two outcomesα , β ∈ OM , decidewhether
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β ≻r

M
α , i.e., decide whether RankM (β) < RankM (α). We re-

mind to the reader that, for an mCP-net M = ⟨N1, . . . ,Nm⟩,

RankM (α) =
∑
1≤i≤m RankNi

(α). Hence,Rank-Dominance’s hard-
ness follows from the P-hardness of Compare-Rank on CP-nets.

Theorem 5.2. Rank-Dominance is P-hard. Hardness holds even

on 1CP-nets.

Since Rank-Dominance is also in P [33], it is P-complete.

Consider now problems Is-Rank-Optimal and Is-Rank-Opti-

mum: Given an mCP-net M and an outcome α ∈ OM , decide

whether α is rank optimal (resp., optimum) inM. We recall some

definitions from [33]. A value v of a feature F is average optimal iff

v is in argminv ∈DomM (F ) |{i | 1 ≤ i ≤ m ∧ v , oNi [F ]}|, i.e., iff v
minimizes the number of agents i for which v is different from the

value of F in the optimum outcome of agent i’s CP-net. An outcome

α is average optimal iff, for each feature F , α[F ] is average optimal.

An outcome is rank optimal iff it is average optimal [33]. Since

mCP-nets have always average optimal outcomes,mCP-nets have

always rank optimal outcomes.
1
Computing average optimal out-

comes ofmCP-nets is feasible in polynomial time (we just need to

compute the individual optimal outcomes to perform the counting

operations). Observe that, if anmCP-net M has two average opti-

mal outcomes, then M has two rank optimal outcomes, and hence

M has no rank optimum outcome, because different rank optimal

outcomes do not rank dominate each other (which is required to

be rank optimum). Thus, binarymCP-nets with an odd number of

CP-nets, since they have a unique average optimal outcome, have

only one rank optimal outcome which is also rank optimum.

In the reductions for Is-Rank-Optimal and Is-Rank-Optimum,

we will use a CP-net that is designed to have a desired optimum

outcome. Let S be a set of binary features, and let α ∈ Dom(S) be

an outcome. The “direct” net D(α) has as features the set S and has

no edge. The CP table of feature F is f ≻ f , if α[F ] = f ; on the

other hand the CP table of feature F is f ≻ f , if α[F ] = f .
Thanks to direct nets, P-hardness of Is-Rank-Optimal and Is-

Rank-Optimum can be shown from Feat-Value-Opt. In fact, in

anmCP-net ⟨N ,N ′,N ′′⟩, where N ′
and N

′′
are designed to have

optimum outcomes differing only on the value of a feature F , oN ′

is average optimal iff oN [F ] is a specific value.

Theorem 5.3. Is-Rank-Optimal and Is-Rank-Optimum are P-hard.

Hardness holds even on 3CP-nets.

Proof. Hardness can be shown via a reduction from Feat-Value-

Opt. Consider the reduction transforming an instance ⟨N , F ,v⟩ of
Feat-Value-Opt into the instance ⟨M,α⟩ of Is-Rank-Optimal
(resp., Is-Rank-Optimum) as follows (assume w.l.o.g. that v = f ):
M = ⟨N1,N2,N3⟩ is a 3CP-net, where N1 = N , N2 = D(α), with
α being an outcome defined over the features in N and assigning

non-overlined values to all features, and N3 = D(β), with β being

almost equal to α , except for β[F ] = f .
Observe that the value α[G] is the average optimal value for all

features G , F , because, for all features G , F , α[G] = β[G]. Since

α[F ] = f and β[F ] = f , α is rank optimal inM iff oN [F ] = f = v .
To conclude, sinceM contains an odd number of CP-nets, α is rank

optimum in M iff α is rank optimal inM (see above). �

1
A different proof ofmCP-nets always having rank optimal outcomes is in [43].

Is-Rank-Optimal and Is-Rank-Optimum are in P [33], hence

they are P-complete.

The P-hardness of Exists-Rank-Optimum can be shown from

Feat-Value-Opt via direct nets, as well. In an mCP-net ⟨N ,N ,

N
′,N ′′⟩, where N ′

and N
′′
have optimum outcomes being equal

only on the value of a feature F , oN is the unique average optimal

outcome (and so, rank optimum) iff oN [F ] is a specific value.

Theorem 5.4. Exists-Rank-Optimum is P-hard. Hardness holds

even on 4CP-nets.

Proof. Hardness can be shown via a reduction from Feat-Value-

Opt. Consider the reduction transforming an instance ⟨N , F ,v⟩ of
Feat-Value-Opt into the instance ⟨M⟩ of Exists-Rank-Optimum

as follows (assume w.l.o.g. that v = f ): M = ⟨N1,N2,N3,N4⟩ is a

4CP-net, where N1 = N2 = N , N3 = D(α), with α being an outcome

defined over the features in N and assigning non-overlined values

to all features, and N4 = D(β), with β assigning overlined values to

all features but F for which β[F ] = f .
M has a rank optimum outcome iff M has a unique average

optimal outcome (see above). For any featureG , F , since N1[G] =
N2[G], N3[G] = д, and N4[G] = д, the average optimal value is

unique and it is oN [G]. Therefore,M has a unique average optimal

outcome iff the average optimal value for feature F is unique inM.

(⇒) If ⟨N , F ,v⟩ is a ‘yes’-instance of Feat-Value-Opt, oN [F ] =
f = v . Hence, oN1

[F ] = oN2
[F ] = oN3

[F ] = oN4
[F ] = f , and f is

the unique average optimal value for F in M. This implies that M

has a unique average optimal outcome which is rank optimal and

optimum, and thusM has a rank optimum outcome.

(⇐) If ⟨N , F ,v⟩ is a ‘no’-instance of Feat-Value-Opt, oN [F ] =

f , v . Hence, oN1
[F ] = oN2

[F ] = f and oN3
[F ] = oN4

[F ] = f , and

both f and f are average optimal values for F inM. This implies

thatM has two distinct average optimal outcomes, which are rank

optimal, and thusM has no rank optimum outcome. �

Exists-Rank-Optimum is in P [33], hence it is P-complete.

6 MAX VOTING
We now show the ΣP

3
-completeness of deciding the existence of max

optimal outcomes inmCP-nets. To prove this we need an involved

reduction, for which we will give intuitions on the purpose of the

key pieces. The starting problem for the reduction is deciding the

validity of quantified Boolean formulas Φ = (∃X )(∀Y )(∃Z )ϕ(X ,Y ,
Z ), where X , Y , and Z , are three disjoint sets of Boolean variables,

and ϕ(X ,Y ,Z ) is a non-quantified Boolean formula. This problem

is ΣP
3
-complete, and it is ΣP

3
-hard even if ϕ is in 3CNF [49, 50].

In the reduction, we use as building pieces two CP-nets intro-

duced in [33]: An interconnecting net HC(m) “propagating the

information” that all them features of a set have been flipped to

their overlined value; and a net Fs(ϕ) encoding the satisfiability of a
3CNF non-quantified Boolean formula ϕ. The other building piece

that we need is the direct net introduced in Section 5. For notational

convenience, in this section we define direct nets as follows: the

direct net D(AB) is defined over feature setsA and B, for features

of A the non-overlined value is preferred, while for features of B

To transform the validity problem into Exists-Max-Optimal,

we need to encode Boolean assignments into outcomes of a suitable
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mCP-net. We use three sets of “variable features” X, Y, and Z, as-

sociated with the sets of Boolean variablesX , Y , and Z , respectively.
In particular, X = {XT

i ,X
F
i | xi ∈ X }, Y = {YTi ,Y

F
i | yi ∈ Y },

and Z = {ZTi ,Z
F
i | zi ∈ Z }. We use the following association

for the assignments. If we focus on the variables in X , for a (par-
tial) Boolean assignment σX over X , an outcome ασX encoding

σX over the features set X is such that if σX [xi ] = true then

ασX [X
T
i X

F
i ] = xTi x

F
i , if σX [xi ] = false then ασX [X

T
i X

F
i ] = xTi x

F
i ,

and if σX [xi ] is undefined then ασX [X
T
i X

F
i ] = xTi x

F
i . (An outcome

ασX with ασX [X
T
i X

F
i ] = xTi x

F
i will be dealt with so that it will

not give issues in the reduction.) We use a similar encoding for the

variable sets Y and Z over feature sets Y andZ, respectively.

The idea of the reduction is to design an mCP-net such that

specific outcomes encoding assignments for variables X are max

optimal iff the encoded assignments are witnesses of the validity

of the quantified formula. All other outcomes that are not in the

specific form encoding assignments forX have to bemax dominated

(and hence not max optimal). Besides the features associated with

the Boolean variables, there are various other features supporting

the correctness of the reduction. Two of these additional features are

U1 andU2, which are features belonging to the net Fs(ϕ) (see, [33]).
In particular, the principles of our reduction are:

(a) For an assignment σX on X , the associated outcome is βσX ,

where σX is encoded over the featuresX, βσX [U1U2] = u1u2,
and all other features have non-overlined values.

(b) Any outcome in a form different from the one described in

Principle (a) is max dominated.

(c) For a pair of assignments σX and σY on X and Y , respec-
tively, the associated outcome is βσX ,σY , where σX and

σY are encoded over the features X and Y, respectively,

βσX ,σY [U1U2] = u1u2, and all other features have non-over-

lined values.

(d) Any outcome in a form different from the one of Principle (c)

does not max dominate an outcome of Principle (a).

(e) If βσX and βσ ′
X ,σY

are two outcomes such that σX , σ ′
X ,

then βσ ′
X ,σY

does not max dominate βσX . This imposes that

βσX might be max dominated only by an outcome encoding

the very same assignment for X of βσX .

(f ) If βσX and βσX ,σY are two outcomes, then βσX ,σY max dom-

inates βσX iff ϕ(X/σX ,Y/σY ,Z ) is not satisfiable.

A reduction following the principles above has the property that

only an outcome in the form βσX can be max optimal, and βσX is

max optimal iff σX is an assignment such that (∀Y )(∃Z )ϕ(X/σX ,Y ,
Z ) is valid, i.e., iff σX is a witness of the validity of the quantified

formula Φ. Therefore, anmCP-net obtained via this reduction has

a max optimal outcome iff the quantified formula is valid.

Let us now see the reduction. Let Φ = (∃X )(∀Y )(∃Z )ϕ(X ,Y ,Z )
be a quantified formula. From ϕ(X ,Y ,Z ) we define the 8CP-net

M(ϕ) = ⟨N1, . . . ,N8⟩ as follows.

The features ofM(ϕ) are:

• The features of a net Fs(ϕ) (see, [33]) in which we distinguish
three variable feature sets X = {XT

i ,X
F
i | xi ∈ X }, Y =

{YTi ,Y
F
i | yi ∈ Y }, and Z = {ZTi ,Z

F
i | zi ∈ Z } (P and D

are the literal and clause feature sets, respectively, A is the

set of features of the interconnecting net embedded in Fs(ϕ)
and A is the apex of the interconnecting net);

• Features Y ′ = {Y ′
i | yi ∈ Y }, Y ′′ = {Y ′′

i | yi ∈ Y };
• Features in set B, which are the features Bi of an intercon-

necting net HC(|Y
′ |) and its apex is feature B (features Bi

and features Ai of the interconnecting net HC(m) embedded

in Fs(ϕ) are distinct).

To sum up,M(ϕ)’s features are X ∪Y ∪Y ′ ∪Y ′′ ∪Z ∪ P ∪D ∪

A ∪ B ∪ {U1,U2} (U1 andU2 are features of Fs(ϕ)).
The CP-nets ofM(ϕ) are (we do not report the direct nets in the

figures with the schematic representations of these CP-nets):

• N1 is composed by a net Fs(ϕ) (for a schematic representation

of this net see [33]), in which we distinguish three variable

feature sets X, Y, andZ, and a direct net D(Y ′Y ′′B).

This net supports Principle (f ). Indeed, we need a CP-net mimicking

a Boolean formula to encode the satisfiability of ϕ.

• N2 has, for each xi ∈ X , the link (XT
i ,X

F
i ), and a net D(Y

Y ′Y ′′ZPDAB{U1,U2}). The other CP tables are: for XT
i ,

xTi ≻ xTi ; for X
F
i , x

F
i ≻ xFi iff XT

i has value xTi .

• N3 is similar to N2 with roles of XT
i and X F

i exchanged.

The purpose of these two nets is achieved in conjunction with

nets N6 and N7 below. Their purpose is supporting Principle (e).

For nets N2 and N6, their preferences restricted over {XT
i ,X

F
i } are

xTi x
F
i ≺ xTi x

F
i ≺ xTi x

F
i ≺ xTi x

F
i ; while, for nets N3 and N7, their

preferences restricted over {XT
i ,X

F
i } are x

T
i x

F
i ≺ xTi x

F
i ≺ xTi x

F
i ≺

xTi x
F
i . Therefore, for an outcome βσX , if we focus on a pair of

features {XT
i ,X

F
i }, some of the nets prefer to change the values of

{XT
i ,X

F
i } in a specific way, and the other nets prefer something

different. Hence, intuitively, there will never be a group of agents

big enough such that βσX can be max dominated by an outcome

βσ ′
X ,σY

with σX , σ ′
X . Only outcomes βσ ′

X ,σY
with σX = σ ′

X
may max dominate βσX , because there will not be contrasting

preferences among the agents (this is Principle (e)).

• N4 (see Figure 1) has, for each yi ∈ Y , the links (U1,Y
T
i ),

(U1,Y
F
i ), (YTi ,Y

′
i ), (Y

F
i ,Y

′
i ), (Y

T
i ,Y

′′
i ), (Y F

i ,Y
′′
i ), (Y ′′

i ,Y
′
i ); the

links of a net HC(|Y
′ |) over features B and connected to fea-

tures Y ′
, with apex B linked to U2; and the link (U1,U2).

There is the direct net D(XZPDA). The other CP tables

are: forU1, u1 ≻ u1; for F ∈ Y, f ≻ f iffU1 has value u1; for

Y ′′
i ∈ Y ′′

, y′′i ≻ y′′i iff XT
i and X F

i have values yTi and yFi ;

for Y ′
i ∈ Y ′

, y′i ≻ y′i iff Y ′′
i has value y′′i and either YTi or

Y F
i has an overlined value; features B of the interconnecting

net have the usual CP tables; for U2, u2 ≻ u2 iff U1 and B
have values u1 and b.

• N5 is similar to N4 with roles ofU1 andU2 exchanged.

These two nets are devised to achieve two “contrasting” goals. They

are designed so that for an outcome βσX , if we focus on a pair of

features {YTi ,Y
F
i }, it is not possible to have improving flips toward

an outcome having overlined value for both YTi and Y F
i (this is

required by Principle (d), because such an outcome would not

properly encode an assignment for variables Y ). On the other hand,
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Figure 1: A schematic representation for CP-net N4. The ex-
pression “(yTi ⊕ yFi )” in the CP table of Y ′

i is satisfied when
exactly one feature amongYTi andY F

i has an overlined value.

Figure 2: A schematic representation for CP-net N6.

these two nets allow improving flips toward outcomes properly

encoding an assignment σY for Y , and hence toward outcomes for

which either YTi or Y F
i have an overlined value (this is required

by Principle (f )). Since these two nets have to exhibit this mixed

behavior, N4 and N5 have this slightly intricate structure.

• N6 (see Figure 2) has, for each xi ∈ X , the link (XT
i ,X

F
i ); for

each yi ∈ Y , the links (U1,Y
T
i ), (U1,Y

F
i ), (U2,Y

T
i ), (U2,Y

F
i );

and the link (U2,U1). There is the direct net D(Y
′Y ′′ZPD

AB). The other CP tables are: XT
i and X F

i have CP tables as

in N2; forU2, u2 ≻ u2; forU1, u1 ≻ u1 iffU2 has value u2; for
F ∈ Y, f ≻ f iffU1 andU2 have values u1 and u2.

• N7 has, for each xi ∈ X , the link (X F
i ,X

T
i ); and the link

(U2,U1). There is the direct net D(YY ′Y ′′ZPDAB). The

other CP tables are: XT
i and X F

i have CP tables as in N3; for

U2, u2 ≻ u2; forU1, u1 ≻ u1 iffU2 has value u2.

Figure 3: A schematic representation for CP-net N8.

• N8 (see Figure 3) has, for each yi ∈ Y , the links (U1,Y
T
i ),

(U1,Y
F
i ), (U2,Y

T
i ), (U2,Y

F
i ); and the link (U1,U2). There is

the direct net D(XY ′Y ′′ZPDAB). The other CP tables

are: for U1, u1 ≻ u1; for U2, u2 ≻ u2 iff U1 has value u1; for
F ∈ Y, f ≻ f iffU1 andU2 have values u1 and u2.

The aim of these nets is supporting the correctness of the reduction

and realizing all the principles listed above. This is achieved together

with various parts of the other nets.

M(ϕ) is acyclic, binary, its indegree is three, and can be com-

puted in polynomial time from Φ. Moreover, the class ofmCP-nets

derived from quantified formulas according to the reduction shown

above is polynomially connected. It is possible to prove the follow-

ing crucial property of M(ϕ).

Lemma 6.1. Let Φ = (∃X )(∀Y )(∃Z )ϕ(X ,Y ,Z ) be a quantified for-
mula, where ϕ(X ,Y ,Z ) is a 3CNF formula defined over three disjoint

sets, X , Y , and Z , of variables. Then, Φ is valid iff M(ϕ) has a max

optimal outcome.

Lemma 6.1 implies the following theorem.

Theorem 6.2. Let M be anmCP-net. Deciding whether there is

a max optimal outcome in M is ΣP
3
-hard. Hardness holds even on

polynomially connected classes of acyclic and binarymCP-nets whose

indegree is three, and the number of agents is bounded to 8.

Exists-Max-Optimal is in ΣP
3
[33], hence it is ΣP

3
-complete.

Regarding the complexity of deciding the existence of max opti-

mum outcomes, we narrow down the upper-bound shown in the

literature. In fact, in order to decide whether anmCP-net has a max

optimum outcome, it is sufficient to guess an outcome α , and then

check, via an oracle call, that α is actually max optimum. The oracle

answering the latter question is in ΠP

2
[33].

Theorem 6.3. Let M be anmCP-net. Deciding whether there is a

max optimum outcome inM is in ΣP
3
.

7 RELATEDWORKS
The graphical structure of CP-nets evidences that, in general, pref-

erences may exhibit dependencies between features. Dependencies

certainly are a critical characteristic to model, however they can

become troublesome during preference aggregation. Whether de-

pendencies are actually problematic or not depends on the specific

ways in which agents’ votes are collected. Two ways of collecting

votes over combinatorial domains are the global voting and the
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sequential voting [28]. In global voting, agents submit the entire

representation of their preferences, while, in sequential voting,

agents’ preferences are collected feature-by-feature. Global vot-

ing is the semantics of mCP-nets. Feature dependencies are not

an issue in global voting, because in this case all the information

needed for the aggregation is available. However, global voting can

be expensive to evaluate (especially if preferences are extensively

unfolded before any further processing). This computational bur-

den can be limited by adopting sequential voting, for which, on

the other hand, dependencies can be quite detrimental, to the point

that sub-optimal outcomes can be selected [28]. Lacy and Niou

[23] showed that these issues in sequential voting can be (partly)

avoided if the considered preferences are separable, i.e., they do not

have dependencies among features. Clearly, this is a very strong

assumption, and it is unlikely to be met in practice [26, 27, 52, 53].

To overcome this limitation, O-legality was proposed by Lang

[26] as a weaker restriction. Essentially, if O = (F1, . . . , Fm ) is

a sequence of features, a set P of agent preferences is O-legal

if, for any agent A ∈ P, and any two features Fi and Fj , i < j
implies that A’s preferences for Fi do not depends on Fj ’s value.
When preferences are represented via CP-nets, a set of CP-nets is

O-legal if O is a topological order shared among all the CP-nets’

graphs. Sequential voting over O-legal CP-nets has extensively

been investigated [26, 27, 52, 53], and O-legality of CP-nets has

been required in various other studies, e.g., [14, 18, 37, 38]. Of

these, an interesting approach to preference aggregation over O-

legal CP-nets was proposed in [14], where “probabilistic” CP-nets

were used to represent the result of the aggregation. However, also

O-legality is somewhat demanding [31, 46, 51], because it imposes

that there are no inversions in the preference dependencies.

For example, if in a set of CP-nets encoding preferences for a din-

ner there were an agent whose choice of the starter influences the

choice of the main dish and another agent whose choice of the main

dish influences the choice of the starter, then those CP-nets would

not be O-legal. To overcome this limitation, the hypercubewise

preference aggregation was introduced, however the semantics

of hypercubewise aggregation is different from global voting (see,

e.g., [12, 31, 32, 51]). Another approach is computing tailored voting

agendas to circumvent preference dependencies [1].

Although it was explicitly stated in the literature that a theoreti-

cal comparison between global and sequential voting was highly

promising [26], global voting over (non-O-legal) CP-nets has not

been thoroughly investigated as sequential voting.

The first work studying global voting over (not necessarily

O-legal) CP-nets was the one of Rossi et al. [43] in whichmCP-nets

are defined (remember thatmCP-nets’ semantics is global voting

over CP-nets). Most of the algorithms considered in [43] were brute-

force, hence, those algorithms gave only Exp upper bounds for most

of the global voting tasks over CP-nets, and no hardness result was

provided. Algorithms exploiting SAT solvers to compute global

Pareto optimal outcomes andweak Condorcet winners over CP-nets

were proposed in [29, 30]. Li et al. [31] extended those results to

computing weak Condorcet winners via SAT solvers even on cyclic

CP-nets, while Li et al. [32] introduced also the possibility of mul-

tivalued and incomplete CP-nets. Although the mentioned works

advanced the research on global voting over CP-nets, still they did

not provide precise complexity results. As mentioned above, the

complexity of these problems was reported as open several times in

the literature [26, 29–32], and only recently a work characterized

the exact complexity of some voting tasks overmCP-nets [33].

Regarding the P-completeness results, to the best of our knowl-

edge there is only another P-completeness result in the computa-

tional social choice literature [9, 11], and it is the complexity of

checking the essential set, which is a specific solution concept, over

weak tournaments. Weak tournaments are graphs representing

incomplete preference relations, and they directly encode a domi-

nance relation (after vote aggregation, we could say). Intuitively, the

data structure in input, i.e., the weak tournament, reports whether

an alternative is preferred to another via some voting procedure

(e.g., majority), but the preferences of the single agents are not

explicitly represented in the input. This means that the aggregation

of the preferences is assumed to be pre-computed and provided

in input. In this respect, our work is different because we assume

that the input contains the preferences of the single agents. More-

over, the papers cited above do not mention the consequences of

P-completeness in terms of non-parallelizability. In this respect, to

the best of our knowledge, our work is the first pointing to the

important issue of whether polynomial-time voting procedures can

scale up over big instances.

8 SUMMARY AND OUTLOOK
In this paper, we have further analyzed the complexity ofmCP-nets,

whose dominance semantics is global voting over not necessarily

O-legal CP-nets. We have proven that deciding the existence of

max optimal and max optimum outcomes is ΣP
3
-complete and in

ΣP
3
, respectively. We have also shown that various polynomial-time

voting tasks over (m)CP-nets are actually P-complete, and hence

non-parallelizable. This points out a significant issue, which is

whether polynomial-time voting schemes are highly parallelizable,

so that parallel algorithms can scale up un big instances.

Possible directions for further research are showing the exact

complexity of deciding the existence of max optimum and Pareto

optimum outcomes inmCP-nets. AnalyzingmCP-nets when par-

tial CP-nets are allowed to be constituent of them will also be

important, given that the original definition ofmCP-nets used the

idea of partial CP-nets to model influences between preferences

of different agents. Having constraints on outcomes’s feasibility

is another interesting direction of investigation. Without any con-

straint, CP-nets model agents’ preferences when it is assumed that

all outcomes are attainable. However, this is not always the case.

During the aggregation precess, we have to take into account what

outcomes are feasible and what are not. For example, to decide

whether an outcome is majority dominated by another, we have

to check that the latter is actually feasible. A similar idea charac-

terized the solution concepts in NTU cooperative games defined

via constraints [19]. This approach could be integrated with the

definition of constrained CP-nets [5, 41], and a concept of compact

representation of constraints (see [20]) could also be introduced.
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