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Abstract 

Objective: The decline in C-peptide in the five years after diagnosis of Type 1 diabetes has 

been well studied, but little is known about the longer-term trajectory.  We aimed to 

examine the association between log-transformed C-peptide levels and duration of diabetes 

up to 40 years after diagnosis  

Research Design and Methods: We assessed the pattern of association between urinary C-

peptide creatinine ratio (UCPCR) and duration of diabetes in cross sectional data from 1549 

individuals with Type 1 diabetes using non-linear regression approaches.  Findings were 

replicated in longitudinal follow-up data in both UCPCR (n=161 individuals, 326 

observations) and plasma C-peptide (n=93 individuals, 473 observations). 

Results: We identified two clear phases of C-peptide decline: an initial exponential fall over 

7 years (47% decrease per year [95%CI -50%,-43%]) followed by a stable period thereafter 

(+0.09% [-1.3,+1.5] per year).  The two phases had similar duration and slope in patients 

above and below the median age at diagnosis (10.8 years) although levels were lower in the 

younger patients irrespective of duration.  Patterns were consistent in both longitudinal 

UCPCR ((n=162) <7y duration: -48% per year [-55%,-38%]; >7y duration -0.1% [-4.1%,+3.9%]) 

and plasma C-peptide ((n=93) >7y duration only: -2.6% [-6.7%,+1.5%]).   

Conclusions: These data support two clear phases of C-peptide decline: an initial 

exponential fall over a 7 year period, followed by a prolonged stabilization where C-peptide 

levels no longer decline.  Understanding the pathophysiological and immunological 

differences between these two phases will give crucial insights into understanding beta-cell 

survival. 
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Background: 

 

Type 1 diabetes is a chronic disease characterized by autoimmune destruction of the beta 

cells in the pancreas. Traditionally, the autoimmunity has been considered as an ongoing 

destructive process, ultimately leading to absolute insulin deficiency.  However, recent 

studies have challenged this view by revealing that 29-80% of individuals having type 1 

diabetes with over 5 years duration still produce some C-peptide(1-5).  Importantly, this is 

responsive to meal stimulation(1) suggesting that at least some of the residual beta cells are 

functional.  These findings are consistent with histological studies of the pancreas in which 

residual insulin containing islets have been found in patients with longstanding type 1 

diabetes (6-8).  The presence of both C peptide and beta-cells in long-standing type 1 

diabetes suggests an attenuation in the rate of beta-cell loss over time.  

 

Studying the longer-term trajectory of beta cell decline will be a key step to understanding 

the preservation of C-peptide secretion in type 1 diabetes.  Many studies have examined 

early C-peptide loss and these have revealed a rapid and continuing decline in the first 5 

years after diagnosis(9-14).  However, very little attention has been paid to the progression 

of C-peptide loss in longer duration of type 1 diabetes.  For example, it is not known 

whether the rate of C-peptide loss slows or stabilizes, and if so, whether this is dependent 

on duration of diabetes or age of the patient.  

 

Therefore, we aimed to examine the trajectory of C-peptide levels measured in a large 

cohort of patients up to 40 years after type 1 diabetes was diagnosed. 
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Research Design and Methods: 

 

We used both cross sectional and longitudinal datasets to explore the trajectory of C-

peptide over time in patients with type 1 diabetes.  Characteristics of the patients in these 

cohorts are in Supplemental Table S1. 

 

Cross-sectional cohort 

Initial analysis examined the association between C-peptide and duration of diabetes in a 

cross-sectional cohort of 1549 individuals with type 1 diabetes.  Patients were recruited 

from two discrete geographic regions in the UK as part of the UNITED Study that aimed to 

recruit all patients diagnosed <30 years in these regions(15). For our study we only 

examined patients with a clinical diagnosis of type 1 diabetes who were insulin treated from 

diagnosis,  To rule out Type 2 diabetes, patients were excluded  if they had a BMI >30kg/m2 

(or above the 80th percentile if aged under 22 at the time of recruitment) unless  they were 

positive for GAD or IA2 autoantibodies.  As part of the UNITED study, all patients with 

UCPCR>0.2nmol/mmol and negative islet antibody results(15; 16)  were tested for 35 known 

monogenic diabetes subtypes(15; 16).  Any patients with an identified monogenic cause for 

their diabetes were excluded from this analysis. All patients had a duration of diabetes less 

than or equal to 40 years. 

Subjects had their endogenous insulin secretion tested by a post meal urinary C peptide 

creatinine ratio (UCPCR).  This test has been validated against a formal assessment of C-

peptide in a mixed meal tolerance test and shows a very high correlation with the 

stimulated C-peptide (r=0.91(17)). UCPCR results below the limit of detection were coded at 
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0.00072nmol/mmol (which is the limit of detection for the urinary C-peptide assay 

(0.03nmol/l) divided by the maximum urine creatinine seen in the study (41.6mmol/l)).   

 

Longitudinal cohorts: 

We analysed changes over time of C-peptide using repeat samples from individuals to test 

findings in cross-sectional data.   The patients were recruited from two different cohorts 

both from a single geographic region (Exeter, UK) and meet the used the same inclusion and 

exclusion  criteria for Type 1 diabetes as the cross-sectional cohort 

 

a) UCPCR: A subset of patients who had UCPCR measured as part of the UNITED study 

(described above) or a UCPCR validation study(17) had repeat post meal UCPCR samples 

taken a median of (IQR) 4.3 (3.6, 5.1) years later ((n=221 patients in total, 2 repeat 

measurements except for 3 individuals with 3 measurements)).  

 

b) Plasma C-peptide:  Repeat random non-fasting plasma C-peptide measurements were 

available on 105 patients with type 1 diabetes recruited to the Diabetes Alliance for 

Research in England (DARE) study.  These patients consented for C-peptide to be 

measured at the same time as routine HbA1c testing using EDTA plasma. This enabled 

regular monitoring without specific research visits.  C-peptide is stable for 24 hours at 

room temperature on EDTA plasma(18) and random non-fasting C-peptide has been 

shown to be highly correlated to 90 minute C-peptide in a mixed meal tolerance test 

(r=0.91) (19).  All patients with at least 3 repeat measurements were included in the 

analysis.  529 C-peptide results were available from the 105 patients, with a median of 6 

results available per patient, over a median (IQR) of 2.1 (1.3, 2.2) years.  
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The studies were approved by the National Research Ethics Service Committee South West 

Exeter and Bristol.  All patients gave signed informed consent. 

 

Laboratory analysis 

 

Urinary C-peptide and plasma C-peptide were measured by electrochemiluminescence 

immunoassay (intra-assay coefficient of variation, 3.3%; interassay coefficient of variation, 

4.5%) on a Roche Diagnostics (Mannheim, Germany) E170 analyzer by the Blood Sciences 

Department at the Royal Devon and Exeter National Health Service Foundation Trust, 

Exeter, U.K. The assay is a 2-site immunoassay employing monoclonal antibodies against 

human C-peptide, calibrated to WHO International Reference Reagent (IRR) for C-peptide of 

human. Urinary creatinine was analyzed on the Roche P800 platform using creatinine Jaffé 

reagent (standardized against isotope dilution mass spectrometry) to calculate UCPCR 

(nmol/mmol). 

 

GAD and IA2 antibodies were measured as part of the UNITED study in those who had 

UCPCR>0.2nmol/mmol(15), and as part of the longitudinal plasma C-peptide studies.  GAD 

and IA2 antibody analysis was performed using commercial ELISA assays (RSR Ltd., Cardiff, 

UK) and a Dynex DSX automated ELISA system (Launch Diagnostics, Longfield, UK). The 

laboratory participates in the Diabetes Autoantibody Standardization Program.  Patients 

were considered positive for antibodies if their results were >97.5th centile (11 

WHOunits/ml for GAD, 15 WHOunits/ml FOR IA2).   
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Statistical analysis: 

All C-peptide results, in both plasma and urine, were natural log transformed for analysis in 

line with previous studies (2; 10; 20), as the distribution of their values was heavily skewed.   

 

Initial analysis of cross-sectional data used non-linear regression modelling to examine the 

association between duration and log UCPCR.  Generalized additive models were used to 

explore the initial shape of the association.  This revealed a pattern consistent with two 

phases that could be modelled with two lines of best fit.  Segmented regression was used to 

determine the optimal breakpoints where the lines of best fit would meet, and to enable 

calculation of the intercept and slope of the two different phases, thereby modelling the 

starting point and rate of C-peptide decline. 

 

To determine whether the association was similar in patients diagnosed both in childhood 

and in teenage years/young adulthood, the dataset was split by the median age at diagnosis 

and the analysis repeated in each group.   

 

For the longitudinal analysis, data were split into two groups for the two phases: before and 

after the optimal breakpoints identified from cross sectional analysis.  The intercept and 

slopes of the two different phases were determined using mixed effects models to model C-

peptide against duration, with random effects at the patient level to allow each patient to 

contribute multiple C-peptide values at different time points. We used a random-intercept, 

random-slope model to allow for variability between individuals in terms of both C-peptide 

at diagnosis (the intercept) and in percentage change in C-peptide over time (the slope).  
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We repeated the analysis excluding those whose first value was below the lower limit of 

detection of the assay to ensure the finding did not represent a floor effect (i.e. that the 

results were not an artefact of those below the lower limit of the assay not being able to 

fall).  Model assumptions were tested by examining normality of residuals and by plotting 

associations between residuals and fitted values and duration of diabetes.   

 

The intercepts were back transformed (using the exponential) to estimate C-peptide at 

diagnosis from the models.  As slopes were on a log scale they were interpreted in terms of 

percentage change per year (calculated from the exponential of the β coefficient minus 1).  

The half-life of C-peptide was calculated from loge(0.5)/β.  The variability of individual slopes 

in the longitudinal models was determined using the standard deviation (SD) range 

(calculated by back transforming the β coefficient +/- 1 SD of the slopes) 

 

All analysis was carried out in R version 3.3.2, including the mgcv package (for GAM models), 

lme4 package (for mixed effects models) and segmented package (for segmented 

regression). 

 

 

Results: 

 

Cross-sectional analysis identifies two phases of C-peptide decline 

Generalized additive modelling of cross-sectional data was used to explore the initial shape 

of the association and revealed a non-linear association between log UCPCR and disease 

duration (Figure 1a). This is suggestive of two phases: an initial log-linear (exponential) 
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decline followed by a more stable period where the association flattens out.  Characteristics 

of the 1549 individuals in the cross-sectional cohort are shown in Supplemental Table 1.   

 

To model the slopes of these two phases, segmented regression was used.  Figure 1b shows 

the two fitted slopes and the summary statistics, including the estimated UCPCR as 

modelled at diagnosis and at the breakpoint, are presented in Table 1.  The optimal 

breakpoint (i.e. the point at which the slope changes) was modelled at 6.9 years from initial 

diagnosis (95% CI: 6.3, 7.5).  Over this period, UCPCR declined by 47% (95% CI: 43%, 51%) 

per year (p<0.0001), equivalent to a half-life of 1.10 years (95% CI: 0.99, 1.25).  Beyond 6.9 

years the slope was flat, suggesting a more stable period with no further decline (+0.07% 

per year (95% CI: -1.3, +1.5), p=0.8). 

 

The rates of decline were similar for patients diagnosed at different ages but the overall 

UCPCR values were higher at all durations in those diagnosed at older ages. 

Figure 2 shows the patterns of association between disease duration and UCPCR when 

splitting the data by the median age at diagnosis (10.8y).  In both ‘age at diagnosis’ groups, 

the pattern of beta cell decline was similar, showing an initial exponential fall followed by a 

more stable period.  There was no significant difference in the slope of the first phase of 

decline in those diagnosed below 10.8y compared with those diagnosed above 10.8y (42% v 

49% decrease per year, p=0.13; Table 2).  The association between UCPCR and duration was 

much flatter in the second phase in both groups (Table 1).  Although the initial slopes were 

similar in each age group, the absolute UCPCR value was higher across all time points in 

those who were older at diagnosis: the intercept was higher (indicating the UCPCR at 

diagnosis was higher) (1.32nmol/mmol v 0.27nmol/mmol, p<0.0001), as well as the 
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modelled UCPCR at the breakpoint (i.e. the level for the start of the second more stable 

phase) (0.022 v 0.005 nmol/mmol, p<0.0001).  Based on the initial UCPCR and half-life 

estimated from the slopes, we can calculate that it would take 0.6 years for those diagnosed 

<=10.8 years to reach the clinically important threshold of absolute insulin deficiency 

(0.2nmol/mmol (equivalent to 200 pmol/L))(21), compared with 2.7 years in the older group 

diagnosed >10.8y. 

 

 

Longitudinal cohorts validate the two phases of C-peptide decline in both plasma and 

urine 

To validate the existence of two distinct phases, separate models were analyzed using 

longitudinal data obtained either in the first 7 years (individual patient data rounded to the 

nearest year), or after 7 years, in line with the estimated inflection point from cross 

sectional data.  Of 221 patients with repeat UCPCR results, 41 had both initial and repeat 

results within 7 years of diagnosis and 121 had both initial and repeat results beyond 7 

years after diagnosis.   

 

The patterns were similar to those seen in the cross-sectional data, with an initial 

exponential fall in UCPCR during the first 7 years (48% decrease per year (SD range for 

variability of individual slopes: -67% to -18%), half-life = 1.1y; Table 2) and a more stable 

phase showing no further decline after that time (0.1% decrease per year (SD range -1.8% to 

+1.7%); Table 2).  When excluding those whose first result was below the lower limit of the 

assay (to examine only those whose C-peptide levels could fall) there was a slight decline in 
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the second phase, but this was far slower than that seen in the first 7 years (-4.5% per year 

(SD range -9.0 to +0.3%), half-life = 15y; Table 2).    

 

In the 26 patients who had a UCPCR>0.2nmol/mmol (significant endogenous insulin(22)) 

after 7 years duration, there was no decrease in slope on repeat sampling (-0.7% [95% CI -

4%, +3%] per year, p=0.7).  15/26 of these patients were positive for either GAD or IA2 

autoantibodies, and given the high positive predictive value for islet antibodies in this age 

group and our strict inclusion criteria this reinforces the conclusion that these individuals 

have Type 1 diabetes despite their high C-peptide levels. 

 

Similar patterns were seen in the long duration patients when assessing the longitudinal 

plasma C-peptide data.  Of the 105 patients with repeat plasma C-peptide results, only 5 

had repeat samples in the initial 7 years, so analysis of the first phase was not carried out.  

Data were available from 93 patients who had initial and all repeat samples beyond 7 years 

duration and, again, there was no decline in slope over this second phase (-2.6% decrease 

per year, p=0.2, (SD range -12.6% to +8.5%); Table 2).  Results were similar when excluding 

those whose first measurement was below the lower limit of the assay (Table 2).  

 
 
Discussion: 
 

We have shown using both cross sectional data and longitudinal data, that there are two 

phases of C-peptide decline in the first 40 years after diagnosis of Type 1 diabetes. These 

comprise an initial exponential fall over the first 7 years, followed by a more stable period, 

where C-peptide levels either completely plateau or decline much more slowly. 
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The decline in C-peptide over the first few years after diagnosis has been studied in detail in 

a number of other studies(10-14; 20).  The rate of decline we show of ~47% per year up to 7 

years is similar to that reported previously(10; 20). Some studies have not used log 

transformed data for analysis but, despite this, the patterns reported are consistent with an 

exponential fall(11; 13) 

  

To our knowledge, this is the first study examining the continuous pattern of C-peptide 

concentrations over time in long duration Type 1 diabetes.  Analysis of the T1D Exchange 

cohort investigated the prevalence of detectable C-peptide and found a decrease with 

increasing duration, but as the outcome was categorical this did not fully capture the 

changing association(4).  The longest previous longitudinal study we have been able to 

identify modelled C-peptide over the first 7.4 years but used older less sensitive C-peptide 

assays, so was unable to evaluate the pattern of decline at lower levels(23). Our data 

suggest that there is a major change at around this point, with a dramatic decline in C-

peptide secretion (half-life of approximately one year) over the first 7 years after diagnosis, 

followed by a relatively stable period beyond 7 years, where C-peptide levels either remain 

fairly constant or decline much more slowly (half-life estimated at 15 years from 

longitudinal plasma C-peptide data).  This change is consistent with data showing HbA1c 

“tracks” over time stabilizing after around 6 years(24).   

 

In our study, the absolute values of C-peptide differed according to age at diagnosis, with 

younger patients having lower levels on average, but the rate of decline and disease 

duration before the second stable phase was similar in individuals diagnosed below or 
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above 10.8 years (the median age at diagnosis).  The finding that younger patients have 

lower levels of C-peptide at diagnosis (and throughout the disease process) is well 

established(4; 10; 13; 20) and fits nicely with studies of the pancreas which show fewer 

residual insulin containing islets in patients having younger ages at disease onset(8).  The 

similarity in the rate of decline between those diagnosed in childhood and in teenage years 

has also been seen previously(4; 10; 11).  By contrast, the studies which have suggested that 

the rate of C-peptide decline is faster in patients diagnosed at younger ages have used other 

outcomes, such as time to a given low C-peptide threshold, to judge the rate and, as such, 

are not directly comparable with the present data (9; 12). Nevertheless, given that we find 

an exponential loss, and that younger patients with lower C-peptide levels at diagnosis 

would reach a low threshold more quickly, these previous results are not inconsistent with 

our data. 

  

The finding of two phases suggests a change in the underlying biological processes leading 

to beta cell demise at around 7 years of disease duration.  The fact that the pattern and 

inflection points were similar in those diagnosed at both younger and older ages, suggests 

this is a feature of disease progression, rather than being determined by the chronological 

age of the patient.  This means that it is more likely to be a manifestation of changes 

occurring in the disease process in the pancreas rather than differences in puberty or in the 

maturity of the pancreas.   

 

The nature of the biological changes that result in the stabilization of C-peptide are not 

revealed by our study so we see our findings as largely hypothesis generating.  The stability 

of C-peptide around 7 years could reflect either a susceptible population of beta-cells that 
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remain after an exponential decay or a change in the immune response at this time.   Recent 

work has described a sub population of beta-cells and it may be that these “hub” cells are 

able to escape the immune destruction that affects all other beta cells(25).  A change in the 

immune response is another possibility There is evidence that the immune attack may 

subside over time, given the recent finding that HLA Class I hyperexpression on the residual 

insulin-containing islets of individuals with type 1 diabetes (which is prominent at diagnosis) 

declines with disease duration (26).  However, it could also reflect changes in antigen or 

antigen presentation.   

 

Follow-up prospective studies involving repeated C-peptide measurements before and after 

the 7 year inflection point in larger numbers of people, would be of considerable value.  

These would allow the timing of the change in rate of C peptide decline to be examined in 

individual subjects and combined with simultaneous immune studies.  However the 

considerable intra-individual variation in both C-peptide estimation and immune cell 

populations would mean that large numbers must be studied. .   

 

Understanding the mechanisms that mediate the change in C-peptide decline occurring at 

the inflection point will not only help elucidate the underlying biological mechanisms of 

beta-cell destruction over time in Type 1 diabetes, but may also lead to improved strategies 

for beta cell preservation.  If the level of C-peptide attained in any given person at 7 years 

post diagnosis, is sustained, then this would also have implications for future intervention 

trials.  The majority of trials currently focus on preserving beta cell function close to 

diagnosis of type 1 diabetes, but our new finding offers the potential for therapeutic trials to 

be undertaken later in the disease process   
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Our study has strengths and weaknesses.  The major strengths are i) the large numbers 

studied (>1500), ii) that we combined both cross sectional and longitudinal studies, 

measuring both urine and plasma C-peptide, which show consistent support for both the 

stabilization of C peptide levels at 7 years and the rate of exponential deterioration before 

that, and iii) that we examined a large range of disease durations (up to 40 years).  The 

major weaknesses are that the initial analysis was based on cross sectional data and the 

longitudinal studies based on repeat samples collected over a relatively short period (2-4 

years) with the number of measurements limited to 2 for most individuals.  Therefore 

larger, longer and more frequently sampled longitudinal replication would have 

considerable value, particularly prospective studies crossing the 7 year time point.  Without 

longer follow-up time we cannot determine the extent to which our results reflect the 

pattern of C-peptide loss in all patients. However, given that the second phase, as modelled, 

is flat, this pattern would not occur if some patients were still declining at this point, 

without an equivalent number increasing their C-peptide to balance this. The fact that the 

second phase slope still remains relatively flat even when removing those individuals whose 

measured C-peptide is below the limit of the assay, suggests this is not an artefact caused by 

the inclusion of people with unrecordable values.  Moreover, we used strict inclusion 

criteria to ensure that potential cases of Type 2 or monogenic diabetes were excluded.  

Given the rarity of other causes in those diagnosed young and the high proportion of 

positive islet autoantibodies in those with high C-peptide, we feel it is unlikely that the 

individuals studied had a form of diabetes other than type 1, and any potential 

misclassification will be minimal.  It should also be emphasized that we have used home 

post-meal UCPCR and random non-fasting plasma C-peptide results rather than results from 
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a gold standard mixed meal tolerance test for the present analysis.  However, both of these 

C-peptide measurements have been validated against the MMTT and shown to be highly 

correlated(17; 19).  Although, the measurements we used are potentially more prone to 

noise, we have used large sample sizes, and, importantly, the results were remarkably 

consistent in both plasma and urine.   Finally, it is important to note that this study was 

carried out on predominantly White Caucasian cohorts.  Further work is needed to 

determine whether the pattern is generalizable to other racial groups. 

 

In conclusion, we have shown that there are two phases of C-peptide decline in Type 1 

diabetes.  The stabilization of C-peptide levels at around 7 years after diagnosis suggests 

there are important and previously unrecognized changes in immune function and/or beta 

cell viability around this time that may have critical implications for future pharmaceutical 

interventions. 
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Table 1:  Modelled C-peptide results and estimated percentage change per year of the two slopes from segmented regression analysis (Figure 
1b) from the cross sectional data in 1549 patients with Type 1 diabetes.  *No significant decrease in slope so half-life not calculated 
 

 Whole group 
N=1549 

Age at diagnosis 
<=median (10.8y) 

N=782 

Age at diagnosis 
>median (10.8y) 

N=784 

P lower v 
higher age 

at 
diagnosis 

group 

Breakpoint (years)  [95% CI] 6.9 [6.3, 7.5] 7.5 [6.6, 8.3] 6.2 [5.4, 7.1] 0.03 

Slope 1 (before breakpoint):     

Estimated UCPCR at diagnosis (nmol/mmol) *  [95% CI] 0.66 [0.50, 0.88] 0.27 [0.18, 0.39] 1.33 [0.91, 1.92] <0.0001 

Percentage change in UCPCR per year† [95% CI] -47% [-51, -43] -42% [-47, -36] -49% [-54, -43] 0.13 

Half-life of UCPCR (years) ‡ [95% CI] 1.1y [1.0, 1.3] 1.3y [1.1, 1.5] 1.0y [0.9, 1.2]  

Slope 2 (after breakpoint):      

UCPCR at breakpoint (nmol/mmol) § [95% CI] 0.009 [0.006, 0.01] 0.005 [0.003, 0.007] 0.022 [0.014, 0.034] <0.0001 

Percentage change in UCPCR per year† [95% CI] +0.07% [-1.3, +1.5] +1.6% [-0.3, +3.5]  -3.3% [-5.3, -1.3] 0.0003 

Half-life of UCPCR(years) ‡ [95% CI] Flat|| Flat|| 20y [13, 53]  

*exponential of intercept taken to show estimated C-peptide at diagnosis 

†calculated from the exponential of β (the regression slope) -1 

‡calculated from log(0.5)/ β 

§ 
calculated from slope 1: (β * breakpoint) + intercept 

||No significant decrease in slope so half life not calculated 

Plasma C-peptide (pmol/L) = UCPCR (nmol/mmol)*0.910(21) 
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Table 2:  Results from mixed effects models of longitudinal repeated C-peptide measurements against duration of diabetes in a) urinary C-
peptide creatinine ratio (UCPCR), and b) plasma, showing the pattern of decline in C-peptide over 40 years.  Data presented for the two phases 
before and after 7 years duration. *No significant decrease in slope (i.e association flat) so half-life not calculated  

 UCPCR UCPCR (excluding 
values <lower limit 

of assay) 

Serum C-peptide Serum C-peptide 
(excluding values 

<lower limit) 

Total no. of individuals / observations 162 ind /  326 obs 117 ind / 236 obs 93 ind /  473 obs 63 ind /  335 obs 

Median (IQR) years from 1st to last result 4.3y (3.6, 5.1) 4.5y (3.9, 5.4) 2.1y (1.3, 2.2) 2.0 (1.3, 2.2) 

First phase (0-7y duration):     

No. of individuals / observations  41 ind  /  83 obs 37 ind  /  75 obs - - 

C-peptide level at diagnosis*  0.56 nmol/mmol 1.2 nmol/mmol   

Slope <7 years† (% change per year [95% CI]) -48% [-55%, -38%] -51% [-58%, -43%]   

Half life‡ [95% CI] 1.1y [0.9, 1.4] 1.0y [0.8, 1.2]   

Second phase (7-40y duration):     

No. of individuals / observations 121 ind  /  243 obs 80 ind /  161 obs 93 ind /  473 obs 63 ind /  335 obs 

C-peptide level at 7y breakpoint§ 0.02 nmol/mmol 0.12 nmol/mmol 21.0 pmol/L 50.8 pmol/L 

Slope >7 years† (% decrease per year (95% CI)) -0.1% [-4.1%, +4.0%] -4.5% [-8.3%, -0.4%] -2.6% [-6.7%, +1.5%] -4.6% [-10%, +1.4%] 

Half life‡ [95% CI] Flat|| 15y [8, 164] Flat|| Flat || 

*exponential of intercept of fixed effects from mixed effects model of observations <7y duration taken to show estimated C-peptide at diagnosis 

†calculated from the exponential of β (the regression slope) minus 1 

‡calculated from log(0.5)/β 

§calculated from slope 1: (β * breakpoint) + intercept 

||No significant decrease in slope (i.e association flat) so half life not calculated 

Plasma C-peptide (pmol/L) = UCPCR (nmol/mmol)*0.910(21) 
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Figure legends 

 

Figure 1:  Scatterplots of urinary C-peptide Creatinine Ratio (UCPCR) against duration of diabetes in 1549 individuals with Type 1 diabetes.  Red 

lines show a) generalised additive modelling (non-linear) line of best fit, b) two straight lines of best fit meeting at the optimal breakpoint from 

segmented regression analysis 

 

Figure 2:  Scatterplots of urinary C-peptide Creatinine Ratio (UCPCR) against duration of diabetes in 1549 individuals with Type 1 diabetes.  Red 

lines show two lines of best fit from segmented regression analysis for a) individuals below the median age at diagnosis (<=10.8y) and b) 

individuals above the median age at diagnosis (>10.8y). 


