-

Orbital-scale climate forcing of grassland burning

in southern Africa

Anne-Laure Daniau®", Maria Fernanda Sanchez Goiii®, Philippe Martinez®, Dunia H. Urrego®"<,
Viviane Bout-Roumagzeilles?, Stéphanie Desprat®, and Jennifer R. Marlon®

2Centre National de la Recherche Scientifique (CNRS), Environnements et Paléoenvironnements Océaniques et Continentaux (EPOC), Unité Mixte de
Recherche (UMR) 5805, Université Bordeaux 1, F-33400 Talence, France; PEcole Pratique des Hautes Etudes (EPHE), EPOC, UMR 5805, F-33400 Talence, France;
and “CNRS, de la Préhistoire a I’Actuel: Culture, Environnement et Anthropologie (PACEA), UMR 5199, F-33400 Talence, France; dGéosystémes UMR 8217
CNRS, Sciences de la Terre, Université Lille 1, 59655 Villeneuve d'Ascq, France; and °School of Forestry and Environmental Studies, Yale University, New Haven,

CT 06511

Edited by William F. Ruddiman, University of Virginia, Charlottesville, VA, and accepted by the Editorial Board February 12, 2013 (received for review

August 17, 2012)

Although grassland and savanna occupy only a quarter of the
world’s vegetation, burning in these ecosystems accounts for
roughly half the global carbon emissions from fire. However, the
processes that govern changes in grassland burning are poorly
understood, particularly on time scales beyond satellite records.
We analyzed microcharcoal, sediments, and geochemistry in
a high-resolution marine sediment core off Namibia to identify
the processes that have controlled biomass burning in southern
African grassland ecosystems under large, multimillennial-scale cli-
mate changes. Six fire cycles occurred during the past 170,000 y in
southern Africa that correspond both in timing and magnitude to
the precessional forcing of north-south shifts in the Intertropical
Convergence Zone. Contrary to the conventional expectation that
fire increases with higher temperatures and increased drought, we
found that wetter and cooler climates cause increased burning in
the study region, owing to a shift in rainfall amount and season-
ality (and thus vegetation flammability). We also show that char-
coal morphology (i.e., the particle’s length-to-width ratio) can be
used to reconstruct changes in fire activity as well as biome shifts
over time. Our results provide essential context for understanding
current and future grassland-fire dynamics and their associated
carbon emissions.

Large changes in the spatiotemporal patterns of wildfires in
recent decades raise concerns about how future changes in
fire might interact with climate change and human activities (1,
2). Africa is the most fire-prone continent, and southern Africa is
recognized as a climate change and biodiversity hotspot (3, 4).
Under global warming, fire risk is projected to increase by the
end of the 21st century in this region owing to a rise in tem-
peratures and austral winter dryness (5, 6). Projected wildfires,
however, vary substantially depending on the general circula-
tion model (GCMs) and Intergovernmental Panel on Climate
Change (IPCC) emission scenarios used (6). GCMs seldom take
into account vegetation adjustments to climate changes, yet such
changes are vital for projecting reliable shifts in fuels and thus
fire activity (6). Under increased aridity, for example, longer or
more frequent droughts may promote burning in ecosystems that
are not fuel limited. However, vegetation shifts toward fuel-
limited communities may reduce fire activity in the same region
(7, 8).

Currently there are no empirical data to support the idea that
a warming and drying climate would lead to an increase in bio-
mass burning in southern Africa. In fact, a number of remotely
sensed data indicate that wetter periods result in increased fire
in this region (8-10). To address this question, we examined
microcharcoal from a marine sediment record that accumulated
during the past two climatic cycles off southwestern Africa and
covers several past warm periods. We analyzed the sediment to
confirm that variations in microcharcoal concentrations reflect
biomass burning rather than transportation or depositional pro-
cesses. We then compared the fire data with orbital parameters,
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rainfall, and vegetation changes to identify the primary controls
on biomass burning over the past 170,000 y.

There are two major types of fire-prone vegetation in southern
Africa: eastern grasslands and southwestern fynbos (Mediterra-
nean evergreen hard-leaved scrub). Fire is absent from the desert
and semidesert regions (Fig. 1). The eastern half of southern
Africa and the northern Cape regions, Namibia, and Botswana
are dominated by arid savanna and grasslands that support sur-
face fires (9) (Fig. 1). These regions are under the influence of
the Intertropical Convergence Zone (ITCZ), and their climatic
regime is modulated by the South African monsoon, which
brings rainfall during the austral summer (November—March)
(11). Surface fires occur mainly during the peak of the dry season
from July to September (austral winter) and are highly de-
pendent on the accumulated rainfall of the previous 2 y (which
drives fuel loads), as well as on marked rainfall seasonality (i.e.,
a limited number of months with rainfall) (9). In general, the
seasonality causes fuel build-up during the wet austral summers
and increased fuel flammability during dry winters. Ignitions in
the region come from both lightning and humans today, but
lightning alone would provide an ample source of ignitions for
fires even in the absence of humans (12).

In the southern and southwestern regions (western Cape),
winter-rainfall fynbos provide woody fuels that support crown
fires during the dry season of the western Cape (i.e., from De-
cember to February), corresponding to the wet austral summer
period when precipitation mainly falls in the eastern part of
southern Africa. These fires burn dense sclerophyllous shrubs
and small trees. They are most likely to occur after exceptional
weather conditions, especially prolonged drought (9, 13, 14).
Large fires are common in savanna and grassland, but in-
creasingly fragmented vegetation induced by human activities
reduces landscape connectivity and wildfire occurrences in these
vegetation types (15).

Results and Discussion

Microcharcoal belongs to the fine sediment fraction and is
transported by winds and river plumes from southern African
combustion sites to the Atlantic Ocean. The main source of
microcharcoal is not well constrained but is very likely limited to
southern Africa below 20°S. The Orange River’s hydrographic
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Fig. 1. Map of southern Africa with the location of marine core MD96-
2098, the Orange River’s hydrographic basin (dashed blue line), and sim-
plified vegetation distribution, after ref. 48. Arrows indicate mean annual
wind direction (redrawn from National Centers for Environmental Pre-
diction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis,
mean annual 850-mb vector wind calculated over 1948-2012, www.esrl.
noaa.gov/psd/). Black dashed arrow indicates the Benguela current (17).
Bathymetric data extracted from the General Bathymetric Chart of the
Oceans (GEBCO; www.gebco.net). (Inset) Gray color indicates areas char-
acterized by absence of fire, after ref. 9.

basin is the largest river catchment area in southern Africa (Fig.
1). The annual water discharge of the Orange River is relatively
low, but the annual suspended sediment flux is the highest
among other African rivers (16). Easterly winds are dominant
and blow over southern Africa throughout the year (11) (Fig. 1).
The Southeast Trade Winds are perennially consistent between
22°S and 27°S (17). The present-day circulation of the southeast
Atlantic upper waters along the southwestern African margin is
associated with the northward flow of the Benguela Current
(Fig. 1) (17), which represents a potential carrier of sediments
from southern Africa to the core location. The studied site has
been under the influence of this current at least for the last 500 ka
(18-21). In addition, the present-day source of silicoclastic
sediment in core MD96-2098 mainly consists of Namibian dust
and southwestern Atlantic clays (<20% Congo river clay input)
(22). During glacial times, the Congo River’s material contri-
bution to the core location was reduced from ~20% to ~10%
(22). Consequently, the source area for microcharcoal particles
in the core is very likely limited to southern Africa, even during
glacial times.

Variations of microcharcoal concentrations (CCnb, Fig. 2F)
form six cycles, with alternating peaks at approximately 41, 70,
97, 116, 136, and 160 ka (ky cal BP) and troughs at 53, 78, 103,
124, and 146 ka. We normalized microcharcoal concentrations
with Caxrr and (Al+K+Ti+Fe)xrr content (Fig. 24) to evalu-
ate whether they are affected by dilution of biogenic or terrige-
nous material, respectively (Fig. 2 B and C and Figs. S1 and S2).
Normalized microcharcoal concentrations display the same var-
iability pattern (frequency and amplitude) as the unnormalized
microcharcoal concentrations, suggesting that dilution processes
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from either biogenic or terrigenous material do not significantly
control microcharcoal concentrations variability. Today the Or-
ange River is the primary source of smectite and kaolinite (23),
whereas illite is transported by winds (23) toward the oceanic
region where MD96-2098 was retrieved. Clay analyses (Fig. 2D)
show that similar illite/smectite ratios are either associated with
peaks or troughs of microcharcoal concentration (i.e., micro-
charcoal concentration variation is independent of changes in
wind transport or river supply). As a result, variations in micro-
charcoal concentrations seem to reflect microcharcoal production
and henceforth are interpreted as faithful records of changes in
biomass burning and fire activity in southern Africa.

The morphometric analysis showed that more elongated par-
ticles are prevalent during periods of high fire activity. The mean
elongation ratio is approximately 1.82 for high fire activity
compared with approximately 1.65 for low activity (Fig. 2F,
CCnb vs. elongation ratio, r = 0.4, P < 0.001). More elongated
particles are found also during precession maxima (elongation
ratio vs. precession, r = 0.71, P < 0.001). During a fire, charcoal
fragmentation occurs along axes derived from the anatomical
structure of plant species. The elongation degree is preserved
even when the particle is broken (24). Experimental analysis
conducted on burned grasses and wood from North America
showed that charcoal from grasses has a greater elongation ratio
than charcoal derived from wood (24). We thus infer that the
increase in the mean elongation of microcharcoal particles is an
indicator of low-intensity fires spreading in grass-dominated
fueled environments. An input of microcharcoal from fynbos
fires is negligible, owing to the absence of a clear correspondence
between increased biomass burning and Restionaceae pollen
percentages (mainly found in fynbos) from the close core
GeoB1711 in the Atlantic Ocean (25) (Fig. S3).

We observed a tight correlation between the amplitude of
biomass burning and the magnitude of precession changes, with
high fire activity (Fig. 2F) occurring during precession maxima
(Fig. 2H) and high northern hemisphere ice volume (Fig. 2G)
(i.e., when global average temperature was cold). At those
times, sea surface temperatures from southeastern Atlantic and
southwestern Indian oceans were low (26, 27). Spectral analysis
applied on CCnb showed a significant periodicity of 23,000 y
(Fig. S4). Precession and CCnb were positively correlated (r =
0.75, P < 0.001), and precession alone accounted for 57% (ad-
justed R?) of the total variance of CCnb. Fire activity changes at
Wonderkrater (28), a peat bog record located within the savanna
biome of eastern south Africa, where grasslands have been
present throughout the last 300,000 y (29), also showed two peaks
coinciding with precession maxima during the last 30,000 vy,
with the oldest one lagging 3,000 y precession (Fig. 2F). This
reinforces our interpretation of a strong dependence between
grass-fueled fires and precession changes.

We also observe a significant correlation (» = 0.76, P < 0.001)
between biomass burning and austral summer (DJFM months)
insolation at 25°S, the core’s latitude (Fig. 2I). Our record is in
phase with records of the South African monsoon (30, 31) and
in opposition to the East African monsoon model (Fig. 27) that
responds quasi-directly to northern-hemisphere summer insola-
tion (32). An increase in solar radiation during the southern-
hemisphere summer reinforces the convection associated with
the ITCZ, which in turn causes higher summer rainfall over
southern Africa (30). We infer that summer rainfall accumula-
tion at orbital timescales promotes grass fires in southern Africa
(Fig. 3, Left). Four peaks of biomass burning fall within periods
of Podocarpus pollen percentage increases recorded in the In-
dian Ocean core MD96-2048 (25) (Fig. S3). Podocarpus forest
expansions are interpreted as indicators of humid periods in
southeastern Africa (25) and are in accordance with increased
summer rainfall accumulations during precession maxima. This
configuration also implies the occurrence of particularly marked
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Fig. 2. Biomass burning variability of southern Africa over the last 170 ka.
(A) Terrigenous fraction (Al+K+Ti+Fe) obtained from XRF core scanner from
core MD96-2098. (B) Standardized microcharcoal concentration (CCnb curve)
to Caxge from core MD96-2098. (C) Standardized microcharcoal concentra-
tion (CCnb) to Terrigenousyge from core MD96-2098. (D) lllite/smectite ratio
from MD96-2098 clay analysis. (E) Elongation (ratio length/width) of
microcharcoal particles. (F) Microcharcoal concentration curve (red) (CCnb,
biomass burning); predicted biomass burning obtained from a simple linear
regression model (dashed purple curve); charcoal percentage, ratios of
charcoal number to all other organic particles curve from Wonderkrater peat
bog (black curve) (28), age model from ref. 49 and the Abrupt Climate
Changes and Environmental Responses (ACER) International Focus Group
(International Union for Quaternary Science). (G) Benthic foraminifera oxy-
gen isotopic curve from MD96-2098 (36). (H) Precession index calculated with
analyseries software (47) following ref. 46. (/) Summer insolation (DJFM
months) calculated at 25°S following ref. 46. (J) East African monsoon
model index after ref. 32. Warm substages of Marine Isotopic Stage 5 are
also indicated.
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rainfall seasonality (11), the ideal situation for increasing fuel
load, flammability, and fires.

Local charcoal percentage maxima during glacial isotopic
stages 2, 3, 4, 5b, 5d, and 6 occur in a northern core from the
eastern equatorial Atlantic (RC24-07) (33), although the peak
amplitudes vary and do not match those of the precession index.
Verardo and Ruddiman (33) did not interpret their data as
an indicator of biomass burning, however, because levels of
charcoal were low during interglacials and high during glacial
periods. These results were counterintuitive because warm tem-
peratures are associated with increased woody biomass pro-
ductivity in these systems and thus increased available biomass
for burning. Consequently, burning and charcoal levels were
presumed to be low during glacials and high during interglacials.
As a result, the authors argued that terrestrial charcoal pro-
duction and ocean burial were decoupled and that the charcoal
variations indicated shifts in wind strength or direction from
interglacials to glacials. We propose here an alternative in-
terpretation of the charcoal data in core RC24-07 and suggest
in particular that () in addition to wooded-fuel fires, grass-fueled
biomass burning is an important source of charcoal, and (ii) the
maxima reflect increased biomass burning from grass fires during
cooler climate conditions.

Our results also have implications for anthropogenic burning
in Africa. Archibald et al. (34), ignoring climatic changes in their
model, predict a peak in fire between 40 and 4 ky in Africa and
suggest that this results from human-induced fire activity in
closed/dissected landscapes. However, our data show a re-
duction of fire activity between 40 and 30 ky cal BP (Fig. 2F)
that mimics the precession decrease, implying that climate was
overriding any human impacts on fire at that time at least in
southern Africa.

Finally, the close correspondence between the elongation ratio
of microcharcoal and climate changes associated with precession
suggests that charcoal morphology measurements may provide
a valuable source of information about biome shifts over time,
although careful parallel analyses are required to ensure that
variations are not caused by transportation and deposition
processes that can also have an influence on marine records.
Whether these changes are due to shifts in grassland extent
or productivity remains uncertain, but the latter is most likely.
Dupont et al. (25) showed that the distribution of the three main
biomes in southern Africa (grassland in the east and desert/
semidesert in the western part) was not dictated by precession
changes. We also know that rainfall can strongly affect grass
biomass at one spot and that changes in rainfall (on the order
of 200 mm according to ref. 30) could easily double grass pro-
ductivity from ~1,000 kg/ha to ~2,000 kg/ha (35). Our elon-
gation index therefore most likely indicates increased biomass
of grassy vegetation in the eastern part of southern Africa during
precession maxima.

In summary, there were six cycles of shifts in grassland and
increased burning in southern Africa during the past 170,000 y.
The grassland and fire cycles result from precession-driven
changes in the seasonality and amount of rainfall associated with
shifts in the ITCZ. During past warm periods, fire activity is re-
duced in southern Africa owing to an increase in summer dryness
and a probable decline in grassland biomass (Fig. 3, Right). Our
work has important implications for our understanding of fire—
climate relationships, the prediction of future fire activity, the
global carbon cycle, and landscape management for a region
recognized as a biodiversity and climate-change hotspot (Fig. 2F,
predicted fire curve): the current natural trend of decreasing
precession is likely to result in a long-term reduction of fire ac-
tivity in southern Africa due to reduced rainfall and grassland
productivity. Contemporary human activities associated with
landscape fragmentation and loss of vegetation connectivity may
amplify this natural trend in fire reduction.

PNAS Early Edition | 3 of 5

ENVIRONMENTAL
SCIENCES



L T

/

1\

BN AS  DNAS P

Precession maxima

? 1

GeoB171 1:,
MD96-2098

*
RC24-07

rainfall
+ seasonality
fuel build-up and dry

Precession minima

*
RC24-07

Wonderkrate

6-2048

GeoB171¥

MD96-2098
dinfall limited

Fuel limited

Fig. 3. Hypothesized scenarios of annual rainfall and high fire activity during precession maxima (positive values of precession index; Left) and annual
rainfall and low fire activity during precession minima (negative values of precession index; Right) (Fig. 2H). Green shaded areas indicates rainfall amount
with darker ones reflecting heavier rainfall. High rainfall in southern Africa during the precessional maxima scenario is illustrated by average austral
summer (January) precipitation over 1979-1995; low rainfall in southern Africa during the precession minima scenario is illustrated by average austral
winter (July) precipitation over the same period. Changes in the ITCZ are identified by the position of the most intense rainfall. Data were retrieved from
the International Research Institute for Climate Prediction (http://iri.ldeo.columbia.edu). Location of cores discussed in the text.

Materials and Methods

The marine sediment core MD96-2098 (25°35’S, 12°38’E, 2,909 m water
depth) was retrieved during the 1996 IMAGES II-Nausicaa cruise on the
Luderitz lower slope of the Namibian margin, north of the Orange River
mouth (Fig. 1). The sediment consists of lithologically homogenous light
gray to olive gray nanno- and foram-ooze with variable amounts of bio-
genic silica and organic matter. The chronology of the core is established
by nine "C AMS (accelerator mass spectrometry) dates on planktonic fo-
raminifera and the marine isotope stratigraphy on benthic foraminifera
Cibicioides wuellerstorfi (36) (Table S1). *C AMS were calibrated according
to the Calib6.0 radiocarbon calibration program (http:/calib.qub.ac.uk/
calib/) using the MARINE09.14c calibration curve and a local reservoir
correction, AR of 157 + 59 calculated as a mean of nine local reservoir error
(AR for the MD96-2098 core location is available at http://calib.qub.ac.uk/
marine/) (37, 38). On the basis of this chronology, the core covers the past
170,000-30,000 y.

To reconstruct biomass burning, we examined microcharcoal (average
length 4-200 pm) in the sediment, which consists of small carbonized
particles produced during vegetation fires. The microcharcoal extraction
technique follows (39, 40), slightly modified to remove the large amount
of diatoms preserved in core MD96-2098, which interferes with micro-
charcoal observations. A chemical treatment of 5 mL 37% hydrochloric
acid (HCl), 5 mL 68% nitric acid (HNOs), and 10 mL 33% hydrogen peroxide
(H,0,) is performed over 24 h on approximately 0.2 g of dried sedi-
ment, followed by a chemical attack of 70% hydrofluoric acid (HF), and
one HCL 25% and centrifugation to remove HF. A dilution of 0.1 is ap-
plied to the residue. The suspension is then filtered onto a membrane of
0.45 mm porosity and 47 mm in diameter. A portion of this membrane is
mounted onto a slide. The particles were identified using petrographic
criteria and quantified using image analysis (39, 40). Quantification of
microcharcoal is performed using automated image analysis in trans-
mitted light and following the criteria proposed by Boulter (41), who
identifies charcoal as being black, opaque, and angular with sharp
edges. Identification of unburned particles, characterized by the ab-
sence of plant structures and distinct level of reflectance, was used to set
the best-fit threshold level to secure identification of microcharcoal by
image analysis.

From measurements of microcharcoal (number, surface area, length, and
width), three parameters were calculated for each sample: (/) the concen-
tration of microcharcoal (CCnb) (i.e., the number of microcharcoal per gram;
nb-g‘1); (ii) the concentration of microcharcoal surface (CCs), which is the
sum of all surfaces of microcharcoal in one sample per gram (um?.g™~") (using
CCs avoids the overrepresentation of CCnb as the result of potential
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fragmentation during particle production or transport) (42); and (iii) the
elongation of microcharcoal particles (length/width ratio). Concentrations of
both abundance (CCnb) and surface area (CCs) were significantly correlated
(Fig. S5), confirming that both CCnb and CCs record the same pattern of
microcharcoal concentration variability. We used microcharcoal morphology
(i.e., elongation) to infer the contribution of grasslands and fynbos fires to
variations in microcharcoal concentrations.

To ensure that changes in microcharcoal concentrations did not reflect
changes in sedimentation processes (dilution by biogenic or terrigenous
material) or changes in aeolian supply, we compared CCnb with analyses
of trace elements and clay mineralogy. X-ray fluorescence (XRF) analysis
was performed on the surfaces of the split sediment core every 0.5 cm
using a nondestructive Avaatech core-scanner (EPOC, Université Bordeaux
1). The split core surface was first covered with a 4-um-thick Ultralene
to avoid contamination of the XRF measurement unit and desiccation
of the sediment. Geochemical data were obtained at different tube
voltages, 10 kV for Al, K, Ca, Ti, and Fe, and 30 kV for Sr. Elemental
concentrations are given as total counts (43). Eight samples were ana-
lyzed for clay mineralogy (illite, smectite, and kaolinite) at the Université
de Lille 1, using X-ray diffraction following classic protocols (44). Three
runs (air-dried sample, after 12 h ethylene-glycol saturation, heated
at 490 °C for 2 h) were performed from 2.49° to 32.49°20 on a Bruker D4
Endeavor set with Lynkeye fast detector, Copper anode, tube (30 kV and
30 mA). The semiquantitative estimation of the clay mineral association,
based on peak characterization (45), was performed using Macintosh
MacDiff4.2.5 software. Replicate samples indicate 5% error on measurements
reproducibility.

We used summer insolation (DJFM months) calculated at 25°S following
ref. 46 and a precession index calculated with analyseries software (47)
following ref. 46 to determine how biomass burning variations were related
to climate forcing.

Future long-term evolution of biomass burning in southern Africa is pre-
dicted by a simple linear regression model between CCnb and precession
component over the last 170-30 ka (r = 0.75; R?> = 0.57; P < 0.001). Micro-
charcoal data were evenly resampled using linear interpolation (step of 500 y)
to match with ages of precession component. We used calculated precession
from ref. 46. Then we extrapolated our observation to the last 30 ka to —10
ka (future).
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