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Abstract 

Advanced metering technologies coupled with informatics creates an opportunity to form digital multi-

utility service providers. These providers will be able to concurrently collect a customers’ medium-high 

resolution water, electricity and gas demand data and provide user-friendly platforms to feed this 

information back to customers and supply/distribution utility organisations. Providers that can install 

low-cost integrative systems will reap the benefits of derived operational synergies and access to mass 

markets not bounded by historical city, state or country limits. This paper provides a vision of the 

required transformative process and features of an integrated multi-utility service provider covering the 

system architecture, opportunities and benefits, impediments and strategies, and business opportunities. 

The heart of the paper is focused on demonstrating data modelling processes and informatics 

opportunities for contemporaneously collected demand data, through illustrative examples and four 

informative water-energy nexus case studies. Finally, the paper provides an overview of the 

transformative R&D priorities to realise the vision. 

 

Key words: Multi-utility; digital metering; smart metering; demand management; big data; water-

energy nexus. 

 

 

1. Background 
 

1.1. Digital multi-utility futures 

Imagine a future where a technology company is the retailer of water, wastewater, electricity and gas 

services, for your home or business. At first thought this concept seems confounding but in reality this 

future is not too far away, as integrated digital metering, advanced communications and big data 

analytics paves the way for the creation of a global multi-utility service provider catering for millions, 

if not billions, of customers. 

Digital disruption has already transformed a number of other industries globally, but the utility sector 

has been slow to embrace digital transformation technologies. This is largely because of their 

conservative nature, often underpinned by a natural monopoly status that is government-owned or 

tightly regulated, thereby preventing the easy access of entrepreneurs’ reinventing typical business 

supply chains (Kiesling, 2016; Tayal, 2016). But, for instance, the rapid rise of UberTM has shown us 

that even highly regulated and protected industries, such as the taxi industry, will inevitably be pressured 

to open up to innovative products offering unprecedented customer savings and value-adding services.  
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This position paper will firstly provide a background and a vision for an integrated digital multi-utility 

service provider. The system architecture for such a provider will be discussed along with the 

opportunities and benefits, as well as impediments and challenges, for utility transition. The paper then 

hones in on its core objective, which is to demonstrate the opportunities and benefits of modelling 

concurrently collected and autonomously analysed water and energy data by presenting case studies 

and empirical data examples. The paper finishes with a discussion on the core research and development 

priorities to realise the vision of a digital multi-utility. 

1.2. Changing utility sector paradigm 

Traditional provision of water and energy (electricity or gas), until quite recently, was a conservative 

process whereby quasi-government owned utilities offered a unidimensional, one way service to their 

customers. As expectations to provide a greener, leaner and customer-focussed utility sharply rise, it 

has become clear that conventional means of water and energy provision are becoming outdated and 

will not be able to meet the requirements of the digital information age (Kabalci, 2016). By necessity 

in meeting these changing needs, utility meters are being transformed from simple measurement devices 

where manual collection of only 1 data point (i.e. consumption) via mechanical meters on a monthly or 

quarterly basis, to more complex and “intelligent” metering. In 1999, Marvin et al. termed such ‘smart’ 

meters as socio-technical systems where enhanced informational and communication capacities allowed 

for a deeper and dynamic understanding of both the supply and demand metabolism of the utility. Nearly 

20 years on, there is now a wealth of literature documenting the paradigm shift toward the digital water 

and energy utility (e.g. Stewart et al. 2010; Depuru et al. 2011; Fang et al. 2012; Stewart et al. 2013; 

Gans et al. 2013; Beal and Flynn 2015; Cominola et al. 2015; Tuballa and Abundo, 2016; Pitì et al. 

2017). 

As the momentum gathers, there is increasing pressure on the utility sector to transition to the digital 

age. Tubulla and Abundo (2016) describe the breadth of energy utilities that are embracing disruptive 

technologies to improve the efficiency and customer service of their business – including Europe, North 

America Asia, and Australia. While the water sector has been slower to adopt such disruptive 

technologies, the impetus is growing, driven largely by customer expectations and increasingly 

expensive water operations. There is a growing realization by water utilities that the enormous 

opportunities digital metering provides need to be harnessed, and a broader systems and futures 

perspective used, to determine the extent and direction of those opportunities (Turner and White, 2017). 

With digital metering comes many challenges, including capital costs, technology redundancy, business 

transformation, risk mitigation and customer expectations while maintaining billing equity. One of the 

main challenges, however, is likely to be how the vast volume of continuously accumulating 

information is used to ensure that digital technology enhances urban water, electricity and gas 
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management. Addressing this ‘big data’ challenge through targeted modelling of concurrently collected 

utility data is the key focus of this paper.  

1.3. Advent of intelligent metering technologies 

A smart water or energy grid essentially refers to the integration and remote communication of 

information via enabling technologies such as sensors, meters, and automated controls that continuously 

and remotely monitor the water, electricity or gas distribution system. The advent and advancement of 

these innovative enabling technologies has allowed an almost endless capacity to monitor many 

different parameters. For water distribution this includes pressure, quality, flow rates, temperature and 

leaks. In energy distribution systems, peak load shifting, losses and theft, resource storage and time of 

day demand are all key features of a smart energy grid (Depuru et al. 2011; Rhodes et al. 2014).  

Within a decade, technology has rapidly become more sophisticated, from needing separate hardware 

and software to collect, store, transfer and analyse a gigabyte of data, to now having one piece of 

technology that combines hardware, software and firmware to provide near-real time, tailored reports 

to utilities and customers. Selected examples of research studies presenting digital metering technology 

and its applications for managing water and energy distribution are provided in Table 1.  
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Table 1. Selected examples of research on digital metering technology and applications for water and energy utilities 

Technology Study aim / methods Sector Key points / outcomes Location and 
source 

Digital water meters (1 hour interval) Develop models of water consumer behaviors and foster 
water saving behaviours by raising consumer awareness. 

 

Water Water consumers adopting the SmartH2O 
digital platform achieved substantial water 
savings, compared to those who did not adopt it 
(control group). 

Spain, Switzerland 
(Rizzoli et al., 2014) 

Digital electricity and water meters, microcontroller 
and Global Service Mobile (GSM) modem for 
communication 

Test energy and water smart meters to see how this 
technology can improve billing system. Technology 
prototypes tested and assessed.  

Electricity 
and water 

High accuracy results for billing compared with 
existing systems. 

Sharjah, UAE (Al-
Rousan and Al-Ali, 
2006) 

Digital water meter at resolution of 0.014 litre per 
minute (L/min) and data loggers (5 second (s) 
intervals). Data remotely transferred by email for 
processing and analysis 

To generate baseline end-use or micro-component water 
data from residential homes to inform targeted demand 
management strategies. Householder survey combined 
with big data. 

Water Report showcasing the breadth of applications 
of big data and benefits to utility and customers 

South east Qld, 
Australia (Beal and 
Stewart 2011) 

Digital electricity meters with real-time customer use 
displayed on visual display digital monitor (“keypad 
meters”). 

To compare consumption before and after smart-meter 
enabled feedback to customers. Modelling using 
residential billing data. 

Electricity Electricity consumption reduction was 
calculated from post-installation of smart meter 
with visual display. 

Northern Ireland (Gans 
et al. 2013) 

Digital electricity meters (10 min intervals) Research on how data mining and analytics can reveal 
relationships useful for customer and utilities for future 
demand management. Householder survey combined 
with big data. 

Electricity Data informatics revealed relationships between 
use and household stock, size, climate and 
socio-demographics. 

California, USA 
(Kavousian et al. 2013) 

Digital water meters (3 L/hr, every hour). Meters are 
read via drive-by units. 

Meter data used to identify and classify leak typology 
and the impact of leak notification to customer. 

Water Study confirmed that smart metering provided 
water utilities with a powerful tool for rapid 
leak detection (and subsequent rectification).  

Hervey Bay, Australia 

(Britton et al. 2013) 

Digital water meters (1 gal resolution every 15s); 
digital gas meters (2 cubic feet every 15s); digital 
electricity meters (10 watt resolution at 1 min to 15 
min interval) 

Number of integrated and controlled demonstration 
projects aimed at testing large-scale smart grid 
deployment. 

 

Gas, 
electricity 
and water 

Tested technologies and analyses of novel 
datasets to identify potential for grid planning 
and understanding how customers will interface 
with new devices, information, and price 
signals. 

Texas, USA (Rhodes et 
al. 2014) 

Digital electricity meters (30 min intervals) Multiple regression analysis was used to determine 
household characteristics e.g. the number of inhabitants, 
the size of the property, and the number of appliances by 
analyzing households’ electricity consumption. 

Electricity Data can be used to develop tailored demand 
management messaging to customers, demand 
forecasting profiles for utilities and insights for 
policy makers around regulating smart meter 
data access.  

Ireland (Beckel et al. 
2014) 

Digital water meter at resolution of 0.014 litre per 
minute (L/min) and data loggers (5 second (s) 
intervals) 

Smart meter enabled informatics for economically 
efficient diversified water supply infrastructure planning. 
Using high resolution water end-use data to predict size 
and scope of infrastructure upgrades. 

Water Using modelling techniques and empirical input 
data, model runs showed deferred and 
eliminated augmentations, as well as reductions 
in infrastructure sizing for the water savings 
scenarios compared to the baseline scenario 

Gold Coast, Australia 
(Gurung et al. 2015) 
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1.4. Big data informatics 

Emerging technologies and the associated big data informatics, once fully understood and exploited, 

are the truly “smart” components of a digital water, electricity or gas grid, and these informatics can be 

used for a wealth of applications (Stewart et al. 2013; Zhou et al. 2016). Intelligent metering uptake 

however, remains relatively slow, due largely to the unexploited benefits from the back-end of the smart 

grid, including meters and sensors.  

Informatics applying a range of mathematical, statistical and rule-based approaches can be used to 

reveal important information on demand from the available data provided at second, minute or hourly 

intervals (e.g. Nguyen et al. 2015, Makki et al. 2015). Such information is powerful for government, 

utility and customer planning and decision making (Zhou et al.  2016, Erevelles et al. 2016). In the 

energy sector, in-home devices (IHD) such as visual displays, smartphones, or web-based portals fed 

by raw metering data, have been used for some time now as a demand management tool (Darby, 2010). 

IHD have the potential to combine energy data with information such as billing data, saved CO2, and 

consumption benchmarking; the goal being to supply consumers with more valuable and enriched 

information for energy savings (Pitì et al. 2017). 

There are few papers that comprehensively discuss the applications and benefits of collecting this data 

concurrently from water, gas and electricity utilities, storing it within the same database, and correlating 

it together to extract even further useful data on demand. In particular, such an integrated database 

allows customers to unpack the water-energy nexus as described in the next section.  

1.5. Water-energy nexus 

Water-energy links related to the use of water is emerging as a key pathway for integration of water and 

energy retail services provision (Conrad et al. 2017). The advanced status of water, electricity and gas 

metering and data, has contributed to the current dynamic nature of research regarding links between 

water and energy of consumers. A range of priorities have been identified in this area including the need 

for "integrated water-energy data storage" enabling data-warehousing to capture full performance 

metrics (Kenway et al. 2013a). Big data informatics can be used at city-wide (Lundie et al. 2004; Hall 

et al. 2011; Lane et al.  2015) or household scales (Beal et al. 2012; Escriva-Bou et al., 2015; Binks et 

al. 2016; Hussien et al. 2017). 

 

Such information can be used by utilities and customers to explore a range of efficient technologies and 

strategies that can be used to reduce household water and energy consumption and can underpin the 

decision making process for sustainable management of existing and new developments (Beal et al. 

2012; Vieira et al. 2014a ).  
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2. Vision of an integrated digital multi-utility service provider 
 

2.1. Potential for digital multi-utility  

Utility retailers do not need to own the capital-intensive generation/supply (e.g. power plant for 

electricity) or distribution (e.g. pipe network for potable water) assets. Traditionally, a utility retailers’ 

role has been to purchase utility resources from such asset owners and sell them to customers at an 

agreed price. However, as GoogleTM and AmazonTM have shown, by having a direct relationship with 

numerous customers and accessibility to associated information, they can exploit new business 

opportunities. 

 

Deregulation of the energy sector prompted the creation of many private electricity and gas retailers. 

The water sector is still largely government-owned with only a few international examples of privatised 

water retailers (e.g. Thames Water in the United Kingdom). Hence, utility retailers have had little 

opportunity to be innovative due to highly restrictive regulation, a risk adverse quasi-government work 

culture, and the lack of information available from existing manually read meters. 

 

However, the advent of intelligent metering and monitoring technologies for utility services coupled 

with ‘big data’ analytics made famous by companies such as GoogleTM, creates significant opportunities 

for forward-thinking utility retailors (Stewart et al. 2010). Moreover, as argued in this article, a company 

that can integrate such technologies and concurrently collect resource demand data across the 

customers’ utility services and provide user-friendly information platforms to feed this information back 

to customers and utility organisations, will reap the benefits of derived operational synergies and access 

to potentially extensive mass markets.  

The primary benefit to a multi-utility digital retailer is access to intelligently processed and synthesised 

customer ‘big data’. From such data, digital multi-utilities can for example create innovative tariff 

structures, manage peak demand, unpack the water-energy nexus, and derive innovative tailored 

resource conservation products and rebates. The scale of customers served, multi-utility services 

offered, and data-driven value-adding to the entire utility generation/supply/distribution grid system, 

means that the utility can optimise the management of the system being used, potentially providing 

extensive financial capital and operational benefits, and the customers can benefit from significantly 

lower overall utility bills.  

 

Multi-utility service providers may even offer to install advanced metering technologies and 

information systems without the expectation that the small retail margin must be recovered from their 

initial capital investment. The long-term goal of these providers may be to build new global companies 

that use informatics to create new business opportunities such as informing customers that they have a 

significant water leak in their hot water system and providing details of qualified plumbers in their 
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suburb, taking a commission from the plumber contracted. The visioned digital multi-utility retailer can 

thus exploit new business opportunities while providing financial and non-monetary benefits to their 

customers. But with digital utility transformation also comes a range of technological, societal and 

regulatory challenges that must be overcome, explored later in this section. 

 

2.2. Digital multi-utility system architecture 

Figure 1 shows a basic schematic architecture for a novel digital multi-utility meter, communications 

network and information system arrangement. It shows water, electricity and gas meter data will be 

transferred via a communications network (e.g. RF-mesh architecture with 5G base stations or via 

LoRaWAN, Sigfox, etc.) to a server containing a database with aligned interval data for water, 

electricity and gas demand. The information system also includes data processing modules that analyse 

individual and combined (i.e. water-energy) resource demand trends and creates user-friendly reports 

to stakeholders (i.e. utility, customer, etc.). An integrated multi-utility interface can be developed that 

is accessible by both the utility officers and customers, with user-oriented modules accessible to them 

for their particular functions and concerns. 

 

 

 

Figure 1. Digital multi-utility system architecture overview 
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2.3. Digital meter data opportunities and benefits 

Digital meters generate detailed interval data about water, electricity or gas resource consumption and 

time of use, yielding the overarching benefits of improved measurement, monitoring and management. 

However, to maximise the value of the data from such meters, it needs to also be connected to a database 

of relevant customer descriptive information. This combined database adds a distinctively new 

dimension to resource management by providing far greater insight into usage patterns, thereby offering 

new opportunities to create resource use efficiencies and savings for customers. Multi-utility data 

collection facilitates a long advocated an integrated resource planning (IRP) perspective (Turner et al. 

2010).  

Using a more holistic IRP approach, first developed in the electricity industry in the US and 

subsequently in the water industry predominantly in the US and Australia (Turner et al. 2010), assists 

in viewing how such advanced meters and data can be used. Whilst IRP has been used in water planning 

and management for many years (Turner et al. 2010) it has only been used to explore the opportunities 

of digital metering and analytics to a limited extent, that is, exploring the benefits from planning, 

demand forecasting and options analysis, through to implementation and monitoring and evaluation 

(Turner 2015; Turner and White 2017). This more holistic view is essential if we are to make the most 

out of such advanced meters, data and associated technology and behavioural interfaces within the water 

industry alone, without considering the vast opportunities of combined water, electricity and gas 

metering and analytics that add a whole new dimension to what is possible in utility resource 

management. The following sections discuss the opportunities and benefits of water, electricity, gas, 

and concurrently collected data. 

2.3.1. Water demand information 

Whilst not yet used as extensively as for electricity, water demand information from intelligent meters 

is being increasingly utilised and has significant opportunities for the water industry and its customers 

(Stewart et al. 2010; Boyle, et al. 2013; Cominola et al. 2015). For example, digital meters and 

associated informatics can help re-engineer out-dated demand modelling approaches by understanding 

customer usage patterns at far greater depths, such as an end use, and facilitate more efficient pipe 

network infrastructure planning (Gurung et. al. 2014; Gurung et al. 2016; Cominola et al. 2015; Creaco 

et al. 2016) as well as overall demand forecasting and strategic resource infrastructure planning. 

In leakage and usage anomaly detection, traditional metering technologies often do not allow rapid and 

automatic detection of consumption changes due to the limited sampling resolution (e.g. litres 

consumed collected through monthly manual readings). Conversely, real-time detection systems based 

on intelligent metering offer great potential for water savings and money for both the utilities in the 

case of network leakages/anomalies on the distribution side (Puust et al. 2010), and for the end users in 
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the case of leakages/anomalies on the customer side of the meter (Britton et al. 2013). Identifying and 

preventing anomalies could be provided by utilities as an extra, on-demand, service to customers, 

possibly coupled with complementary mitigation (e.g., prompt plumber intervention in the case of 

leaks) or compensation options (e.g., leakage insurance plans). 

A number of studies have shown the benefits of using smart meter data for informing customers about 

their water demand and reinforcing efficiency efforts (Willis et al. 2010; Liu et al. 2015; Liu et al. 2016; 

Fielding et al. 2013; Sønderlund et al. 2016), now increasingly disseminated through smart phones and 

web-based applications not feasible only a few years ago. Going further, the combination of high 

resolution data with advanced disaggregation algorithms (e.g., Nguyen et al. 2013a) and estimated 

demand at the end-use level allows utilities and customers to consider the shift towards high-efficiency 

devices. With the cost compensated by the associated savings in terms of consumption on the customer 

side (Willis et al. 2013), sometimes water and energy, and deferred capital and operating expenditure 

for the utility, often amounting to millions of dollars (Turner et al. 2010). This shift to higher efficiency 

devices, possible through analysis and market segmentation, allows for targeted demand management 

programs (Liu et al. 2017) and subsequent almost instantaneous evaluation (Turner 2015). 

2.3.2. Electricity demand information 

In the electricity field, a number of works have pioneered the use of information from digital meters to 

support demand management (Siano, 2014) and increasingly diversified energy generation sources 

(Katsanevakis et al. 2017). Literature demonstrates that technological development of advanced 

metering systems such as smart plugs and distributed sensing networks (Morsali et al. 2012;  Kobus et 

al. 2015), and smart appliances have increased the ability to collect energy use data at very high 

resolutions, with pilots reporting on data collected with sub-daily sampling rate frequencies of MHz 

(Armel et al. 2013). Moreover, recent evidence indicates that customer feedback based on real-time 

information, such as the design and implementation of heterogeneous demand management strategies  

(Gaiser and Stroeve, 2014), financial incentives encouraging consumers’ to switch to energy efficient 

appliances (Geller et al. 2006), and awareness campaigns informing residential consumers about their 

energy use over time (Vassileva and Campillo, 2014), all induce energy savings and behavioural 

changes in the residential sector (Fisher, 2008). 

Building on these promising outcomes, the use of electricity data from intelligent meters has been used 

to research Non-intrusive Load Monitoring (NILM) algorithms (Bennett et al. 2014; Bennett et al. 

2015). Overall, development of intelligent meters and NILM algorithms can generate benefits for all 

parties involved. A study by Armel et al. (2013) reports that around 4% of annual energy savings can 

be achieved simply by enhanced billing information, potentially rising to over 12% with informed real-

time, appliance-level, feedback. Information from intelligent meters can allow energy users to get 

remote (historical) and immediate (real time) feedback about their use and associated information (e.g. 
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cost, carbon emissions), along with technological and behavioural recommendations to increase 

efficiency (Faruqui et al. 2010), transparent information on their energy bill, and energy and costs 

savings (Ehrhardt-Martinez et al. 2010), similar to water sector application. Again, as with the water 

sector, utilities, in turn can acquire first-class data to support ongoing management. For example, for 

the design of diversified demand management and marketing programs, as well as tailored services to 

their customers, through informed customer segmentation (Albert and Rajagopal, 2013), increased 

operational efficiency (e.g., through peak demand reduction) and reduced costs and unnecessary 

electricity generation (Faruqui et al. 2010). 

2.3.3. Gas demand information 

The major domestic uses of gas include space heating, cooking and hot water. The gas consumption 

monitored using smart-meters in European countries (Joachain and Klopfert, 2014; Castelnuovo and 

Fumagalli, 2013) has provided detailed feedback to customers and utilities, which have been used for 

the accurate prediction of gas demand, optimal operation of utilities and efficient planning of 

government infrastructure. Recently, the smart grids for water, natural gas and electricity using 

advanced metering technology have been installed for efficiently managing the energy consumption of 

households, which enables the sustainable planning of infrastructure.  

However, the sampling resolutions for gas metering are still very low. For instance, Squartini et al. 

(2015) employed sampling intervals of 1, 6, 12 and 24 hours to predict the natural gas demand. Olivera 

et al. (2016) detected gas leakage using a sampling interval of 1 minute. Little was reported on the high-

resolution (with sampling interval in seconds) digital metering and its impact on gas demand prediction. 

High-resolution sampling in gas metering is critical as gas data can be correlated with other similar 

interval data from water and electricity grids to obtain a more comprehensive picture of water and 

energy demand in a household.  

For example, for instant gas boosted hot water, the correlation of gas use with water use for discrete 

events allows for a direct water-energy nexus calculation for showering and some washing machine and 

tap events. Furthermore, climate data such as the temperature and humidity may be integrated into the 

intelligent algorithm to improve the gas demand forecasting, as the consumption of space heating 

depends on air temperature and humidity (Fagiani et al. 2016) and the gas consumption of instant hot 

water is also temperature related.  

Gas metering collected concurrently with electricity demand information can also allow a determination 

on the extent to which gas can reduce peak electricity demand; this is potentially a key strategic benefit 

of having a gas supply for certain energy requirements in a home. However, all these advanced analytics 

require high-resolution gas metering. 
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2.3.4. Concurrent resource demand information 

The examples above show that the water, electricity and gas sectors are exploring similar capabilities 

and objectives with their sector specific intelligent meters. Researchers have been considering the 

intricate water-energy nexus at a household level (Beal et al. 2012; Binks et al. 2016; Hussein et al. 

2017) for several years, but due to a lack of concurrently collected high-resolution multi-utility data, 

they have had to rely on disconnected datasets or traditional empirical models to connect water and 

energy demand. The key benefits of having data from multiple utility sources are that the information 

can provide a paradigm shift in opportunities for load management and efficiency, customer profiling 

across time of use and for generating new business opportunities based on personalised demand and use 

profiles, for both residential and non-residential customers. It also has the potential to inform a future 

complex utility landscape where customers may be both generators and users of energy and even water 

– the so-called ‘prosumers’. With new distributed digital database technologies like ‘Blockchain’ 

(Gadekar and Chandgude 2017) (www.blockchain.com), a new era in peer-to-peer trading and 

exchange has begun. Illustrative examples and case studies demonstrating the benefits of concurrently 

received medium and high resolution water, energy and gas consumption data, is detailed in later 

sections of this paper. 

Recent worldwide applications (Cominola et al. 2015; Zeifman and Roth, 2011) have shown that the 

advent of digital metering technologies coupled with state-of-the-art informatics and data analytics can 

play a major role in supporting smart demand-side management solutions, ‘ubiquitous optimization’ 

and other related business improvements and opportunities.  

The use of combined utility advanced data-mining algorithms that support the identification of recurrent 

routines in consumption data, and cluster users with similar habits (Kwac et al.  2014), could facilitate 

detailed segmentation and the design of customized demand strategies targeted to the specific features 

of each group of users, such as block tariff strategies tailored to the peak hours of a specific group of 

users. Moreover, customer segmentation and information on user habits can support utilities’ marketing 

strategies aimed at offering tailored products and services, as well as improving individual customer 

experience (similarly to what online resellers such as Amazon are doing by advertising goods to users 

based on their past choices and habits).  

Similarly, information from end-use disaggregation can support marketing and tailored strategies, not 

only for utilities, but also for appliance producers. Thus, ownership of high resolution, disaggregated, 

big data is a key asset for utilities fostering commercial partnerships with providers of complementary 

products/services requiring characterization of customer segments. This then leads to the need for the 

construction and maintenance of cloud systems able to safely transmit, store, and manage big amounts 

of data, opening up business opportunities for Telco’s, cloud providers, and cyber security companies. 
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Common tariff structures differ between utilities, for example flat or inclining block-tariffs in water and 

gas (but not dependent on time of use) and flat or inclining/declining block for electricity, perhaps with 

a peak/off-peak rate. Smart electricity meters also enable the development of more sophisticated time 

of use prices (see for example Surles and Henze, 2012, Wang et al. 2014). Depending on the utility and 

jurisdiction, the bill cost can be dominated by the fixed connection charge, the usage charge or a split 

between both. The installation of local energy (e.g. rooftop solar) can lead to feed-in tariffs where 

electricity generated by the consumer can be sold back to the grid and in the case of local electricity 

trading, directly to other consumers (Poullikkas, et al. 2013). Consumers who generate their own 

electricity (and then purchase less from the grid) can contribute to the ‘death spiral’ (Graffy and Kihm, 

2014) where the costs of the fixed connection must rise to compensate the utility for selling less 

electricity to a consumer producing their own energy, the price rise can then prompt the consumer to 

see the installation of battery storage as increasingly economic through to a point where they disconnect 

from the grid, leaving a smaller number of householders to shoulder the burden of fixed network costs.  

The advent of a digital multi-utility will introduce an interesting dynamic into an already changing 

space and could offer the opportunity to optimise demand across each utility resource, for example the 

timing of using pumped water storage in the grid (or even at the household scale), the potential for 

households with solar and batteries to act as on-demand virtual power plants and supply to the grid to 

meet peak demand and possibly even hybrid heating systems which can run from gas or electricity. An 

important consideration in developing new tariff structures is the impact on lower income households 

(Estache et al. 2001). A future scenario where large global digital multi-utility retailers are the norm 

and have significant market domination, they must be carefully regulated and managed to ensure that 

they are fairly serving lower income customers.  

 

2.4.  Digital multi-utility impediments and challenges 

Notwithstanding the benefits of transitioning to a digital multi-utility, there are a number of 

impediments and challenges that need to be overcome before this vision can be realised. A 

comprehensive review of the literature identified the following categories of challenges with associated 

coping strategies to address them and achieve the goal of a digital multi-utility: (1) metering technology; 

(2) communications; (3) network; (4) cyber security and privacy; (5) societal; (6) economic and 

financial; (7) regulatory; and (8) other. A summary is provided in Table 2. A detailed discussion of each 

of these challenges and coping strategies is outside the scope of this position paper. 
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Table 2. Summary of challenges and coping strategies for the digital multi-utility 

Component Challenges Coping strategies References 

Metering 
technology 

 Meter battery life 
 Poor signal, lagged data transfer, slow 

response 
 Tampering prone meters 
 Signal transfer errors (e.g. reed switch 

failure) 
 Internal memory capacity  
 Hall-effect issues 

 Tamper-proof mechanism 
 Collaborations 

vendors/utilities/research to 
develop higher quality products 

Lloret et al. (2016); Keelson et 
al. (2014); VICGOV (2014); 
Ripka (2010) 

Communications  Lack of standards 
 Interference among wireless systems 
 Unaffordable proprietary wireless spectra 
 Wired systems are expensive and hard to 

perform maintenance if required 
 Short battery life 
 Lack of interoperability among different 

wireless protocols 
 

 Public cloud infrastructure 
 LPWA emerging as affordable 

connectivity option 
 Selection of consolidated 

protocols (e.g. Bluetooth) 
compatible with previous 
system but able to integrate new 
media 

Gungor et al. (2011); Lloret et 
al.  (2016); Parikh et al. 
(2010); Raza et al. (2017); 
Soldatos et al. (2012); Wilson 
et al. (2015) 

Network   Unfavourable site conditions for wireless 
causing signal blockage or interference  

 Cellular: not resilient during emergencies 
 PLC noisy and low frequency data 

transmission and hard to apply to services 
other than electricity supply 

 Density of signal repeaters 

 Flexible PLC supporting 
different data rates 

 5G to provide low energy, 
latency, bandwidth 

 Hybrid solution required with 
the selection of interoperable 
systems tailored for different 
conditions  

 Mesh networks can be used to 
increase routes for data 
transmission 

Bahmanyar et al. (2016); 
Cleveland (2008); Depuru et 
al. (2011); Gungor et al. 
(2011); Yan et al. (2013) 

Cyber security 
and privacy 

 Authentication, availability, 
nonrepudiation,  confidentiality, integrity  

 Hardware and firmware manipulation 
 Physical theft of meters and access to data 
 Shielding antennas 
 Easy to attack wireless sensors 
 More encryption will add cost 
 Hard to secure meters in anti-theft 

locations  
 Gateways managed by different entities, 

difficult to agree on security technology 

 Develop proper security 
standards 

 Protocols with unique device 
identification for non-
repudiation 

 Coordinated security policies 

Cleveland (2008); Gungor et 
al. (2011); McDaniel and 
McLaughlin (2009); Rottondi 
et al. (2013); Skopik et al. 
(2012); Taormina et al. 2017; 
Yan et al. (2013) 

Societal  Customers might not want to share data  
 Smart meters perceived as complex 
 Historically water, energy and gas 

managed separately 
 Wireless signal from smart meters 

perceived as causing public health issues 
 Privacy breach of consumption patterns 

may be associated with legal and personal 
security issues 

 Training personnel  
 Programs to convince 

customers of the benefits 
 Collaborations vendors/utilities 

to develop marketable products 
 Stakeholders engagement  
 Research integration  
 Signal strength of wireless 

systems within guideline 
requirements 

Cheong et al. (2016); Khan et 
al.  (2017); Kim et al. (2014); 
Kim et al. (2007); Lloret et al. 
(2016); Paetz et al. (2012); 
Parkhill et al. (2013); 
Rohracher (2003) 

Economic and 
financial 

 

 Developers install the cheapest systems 
for compliance with legislation and 
handover to utility 

 Current installation/maintenance costs too 
high for utility 

 No direct return of investment 
 Current technologies either unaffordable 

or limited capabilities  
 Deployment of obsolete systems may 

frequent upgrade requirement with high 
cost implications 

 Low data resolution of standard meters 
not feasible for time-of-use tariffs 

 Incentives/subsidies 
 Education to achieve cost-

sharing 
 Internal training to avoid 

outsourcing  
 Specifications of meters must 

be detailed enough to prevent 
the installation faulty prone 
system, and flexible enough to 
enable the adoption of new 
cutting-edge technologies with 
improved financial feasibility 

 Clear understanding of portfolio 
of available technologies and 
future trends for smart 
metering.  

Bahmanyar et al. (2016); 
Cheong et al. (2016); Dedrick 
and Zheng (2011); Depuru et 
al. (2011); El-hawary (2014); 
Kaufmann et al.  (2013); 
Luthra et al. (2014); SGCC 
(2013); Pitì et al. (2017); 
Pallonetto et al. (2016); 
Rogers and Carroll (2016). 
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 Tariff reform to include time-
of-use or real-time tariffs in 
order to divert peak 
consumption to off-peak hours 

 Tariff reform to encompass 
strategies to reduced 
concomitant energy and water 
peaks and optimise the 
performance of utilities and 
buildings. 

Regulation  Policies are complex and open to contest 
and negotiation 

 Current policies are obsolete and 
discouraging a change 

 Policies incentivising consumption do not 
motivate utility to change 

 Political will required despite potential 
economic benefits 

 Lack of clear directions and 
responsibilities may lead to ineffective 
outcomes 

 Stakeholders engagement and 
education  

 Targeted research funding 
 Financial incentives 
 Robust solution to account for 

uncertainty  
 Demonstration projects   

Bahmanyar et al. (2016); 
Bulkeley et al. (2016); Cheong 
et al.  (2016); Depuru et al. 
(2011); El-hawary (2014); 
Kaufmann et al.  (2013); Khan 
et al. (2017); Luthra et al. 
(2014); Mutchek and Williams 
(2014); Vojdani (2008) 

Other  High data frequency required for reliable 
modelling 
 

 Address technical challenges to 
overcome data frequency issue 

 Integrate GIS with smart meters 
for better faults location 

Bahmanyar et al. (2016); 
Depuru et al. (2011); Khan et 
al.  (2017); Wilson et al. 
(2015) 

 

 

3. Modelling contemporaneous multi-utility demand data from intelligent meters 

The coupled analysis and modelling of water and energy data has shown valuable state-of-the-art 

applications to inform single and multi-utilities and regulatory agencies. Indeed, low and medium 

resolution data can be exploited to perform urban scale studies aimed at assessing the environmental 

impacts and costs of water-related energy (Escriva-Bou et al. 2015), as well as exploring heterogeneous 

consumption patterns. In contrast, detailed end-use water consumption data requires higher resolution 

digital water meters, capable of measuring very low flow rates (e.g. 0.01 L) at close logging intervals 

(e.g. 5s) (Giurco et al. 2008). In the energy industry where smart electricity and gas meters and 

communications infrastructure have already been more widely introduced, low-medium power 

consumption data collected at minute or hourly interval have been effectively used in power demand 

forecasting, or design of customized energy demand management strategies. Several algorithms for 

high-resolution power consumption end-use disaggregation have been proposed and summarised in a 

review paper by Zoha et al. (2012).   

This paper advocates a vision of a multi-utility where demand data is concurrently collected and 

modelled to allow for enhanced pattern recognition of other resources (e.g. having electricity data assists 

pattern recognition of water), deeper insight into customer demand and strategies to manage it, as well 

better water and electricity grid infrastructure asset management. The following sub-sections discuss 

and illustrate how the collection and modelling of concurrent multi-utility data of different resolutions 

can be used by the multi-utility provider to benefit customers, utilities and regulatory agencies. 
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3.1. Concurrent modelling of medium resolution meter data  

 

Low resolution (i.e. monthly, quarterly) water and energy consumption data is still largely being 

gathered in modern economies, and this data has mainly been used for billing purposes. Considering 

modelling purposes, the use of such data has been limited to feed statistical time-series analysis and 

simple econometric models to estimate aggregate demand levels at the municipal or district level, or for 

assessing the macro-effect of exogenous variables (e.g., seasonality, water/energy prices) on demand at 

regional scale (House-Peters and Chang, 2011). Yet, low-resolution data provides restricted capability 

of representing the spatial and temporal heterogeneity of water and energy demands (Cominola et al. 

2015). Moreover, the coarse data sampling frequency does not allow the implementation of quasi-real 

time management actions, as well as the detection of anomalous events and consumption behaviours 

(Loureiro et al. 2014a).  

 

Finally, the exploitation of coupled water-energy data at low resolutions has been limited to accounting 

for energy costs associated with water pumping in water tariffs design (e.g., Spang et al. 2015), 

assessing the energy intensity of water treated and delivered to customers in large-scale urban areas 

(Spang and Loge, 2015), or developing models that rely on water-energy data and end-use parameters 

to assess water-related energy use, greenhouse gas emissions, and costs (e.g., Fidar et al. 2010; Kenway 

et al. 2015; Escriva-Bou et al. 2015). Medium-resolution data opens further opportunities for the 

development of fine-scale demand models. For instance, in the electricity sector Kwac et al. (2014) 

developed a customer segmentation technique able to discriminate among heterogeneous clusters of 

electricity users based on a set of typical 24-hour consumption patterns (i.e., load shapes) iteratively 

extracted from a database of hourly consumption data. 

 

Similarly in the water sector, apart from allowing earlier detection of leaks and anomalies (Britton et 

al. 2013), recent works by Cardell-Oliver et al. (2016) and Cominola et al. (2017a) showed the potential 

of data-mining hourly water consumption data to identify recurring behaviours (routines) in the 

residential sector, and pinpoint links with demographic and household characteristics. The above 

examples represent promising approaches to uncover demand patterns and demand features useful to 

inform supply-side operations such as peak demand (Beal et al. 2016a), as well as heterogeneous 

categories of water or electricity users to advance the development of customized demand management 

strategies. However, there are sparse reported cases of data mining and analysis for coupled water-

energy datasets. One very recent study by Cominola et al. (2017b) performed data mining and customer 

segmentation on a coupled water-energy dataset, in order to explore opportunities for joint planning 

and management actions, and inform multi-utility operations and water-energy conservation programs. 

 

 



17 
 

3.1.1. Illustrative examples 

 

Example 1: Assessing the energy intensity of water treated and delivered to urban customers 

A first example showing how low-medium-resolution water and energy data can be jointly exploited is 

provided by recent work by Spang and Loge (2015). In this study, the authors consider a mix of monthly 

and hourly resolution water and energy data, and develop a method for evaluating the energy intensity 

of water treatment and delivery processes for the service area of the East Bay Municipal Utility District 

in Northern California. The model presented takes into account seasonal and topographic effects 

impacting on water delivery (and related energy costs). Findings on how the energy intensity of water 

changes among pressure zones, seasons, and topography provide utilities and water agencies useful 

insights for infrastructure planning and design of water saving programs leading to related energy 

savings, at the urban scale. Yet, this large spatial scale study does not include information on 

heterogeneous consumers’ behaviours or residential end-uses. 

 

Example 2: Assessing water-related energy footprint with end-use information 

A number of recent applications show that low-medium resolution water and energy data can be utilized 

to perform detailed impact assessment of residential water consumption, in terms of related energy 

(mainly for water heating) and consequent GHG emissions. These studies (Fidar et al. 2010; Kenway 

et al. 2013a;  Escriva-Bou et al. 2015), coupled total household water and energy consumption data 

with daily or sub-daily characteristics of water end-uses. For example they used average flow-rate, 

volume of water per event, etc. in order to both assess the aggregate household impact, as well as the 

impact of each component on the total households’ consumption, thus informing conservation programs 

on effective ways to reduce the overall direct and indirect impacts of residential water use.   

Example 3: Water-energy consumer segmentation for customized demand management 

The recent work by Cominola et al. (2017b) provides an example on how water and energy data can be 

jointly used to inform demand management actions by agencies and multi-utilities. The study 

contributes a customer segmentation analysis of hourly water and electricity data for over 1000 

residential accounts in South California. This data analysis example is featured as a case study in a later 

section of the paper.  

 

3.1.2.  Applications for utilities and regulatory agencies 

Based on recent studies showcasing modelling applications on low-medium resolution water-energy 

data, the following applications for utilities and regulatory agencies emerges: (1) low resolution (for 

instance seasonal or monthly) data can be used to develop seasonal pricing schemes or block pricing 

schemes based on total demand magnitude, in order to control water and energy demands during high-

use periods, as well as reduce costs; (2) low resolution data can be used for detecting dominant changes 
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in demand trends overtime, due to population increase, for instance; (3) low and medium resolution 

data can support the assessment of water demand impact on other sectors (e.g., energy production and 

supply, and environment), thus supporting strategic decision making for efficiency programs; (4) 

medium resolution data (i.e. hourly), supports comparative studies of water and energy demand patterns 

for average and peak days, and allows for the identification of demand peaks, correlations between 

water and energy demand patterns, and customer segmentation; (5) cross-correlation between water-

energy consumption data and consumers’ and households’ features allows identifying groups of target 

users for demand management interventions, as well as the drivers of their demand, thus supporting the 

design of customized feedbacks; and (6) hourly demand data can improve leakage and anomaly 

detection systems. 

3.1.3. Applications for customers 

On the customer side, the applications of medium-low resolution data are predominately related to more 

detailed communication of consumption feedback to consumers, and include: (1) users can monitor 

their daily or hourly water consumption data in quasi real-time and through easily accessible digital 

portals (e.g. Opower, iWIDGET and SmartH2O platforms); (2) users can be promptly informed and 

warned about anomalous consumption events and leaks; (3) customized feedback can be provided based 

on time-of-use or exceedance of high demand thresholds; (4) consumption levels can be visualized in 

contrast with data from peers, in order to foster efficient behaviours through peer-pressure mechanisms; 

and (5) users can be informed about the impacts of their water and energy demand and choices using 

various ecological footprint indicators (e.g. GHG). 

 

3.2. Concurrent modelling of high resolution meter data  

Concurrently collected high resolution water-energy data contains valuable information which, if 

thoroughly explored, provides a range of benefits for both utilities and customers. Disaggregated water 

and energy demand data into different end-use categories is one of the most notable of these benefits. 

Certain appliances in a household require both water and energy to function, such as a clothes washer 

and dishwasher, and understanding the water and energy demand of each individual event is of great 

value. It should also be noted that the disaggregation of demand data into end-use categories becomes 

more accurate when there are multiple signals relating to that appliance (i.e. water and energy signal). 

The below sub-sections illustrate how the water and energy demand of a single clothes washer water 

event can be pattern recognised using a single independent demand pattern (e.g. water pattern), and 

demonstrates how a concurrent water-energy pattern improves the accuracy of pattern recognition.  

Potential benefits for customer and water utilities from exploiting the concurrent high resolution data 

are also described. 
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3.2.1. Illustrative examples  

Example 1: Clothes washer classification using individual water flow pattern 

A clothes washer is a very common appliance present in most households, and the classification of end-

uses like this is a focus of all studies relating to water and energy consumption disaggregation (Nguyen 

et al.  2015; Anderson, 2014). In terms of energy, smart meter data collected at minute or hourly 

intervals was used as the main resource, and several techniques have been applied to achieve this task, 

including genetic algorithms, integer optimization, sparse optimization, factorial hidden Markov model, 

dynamic time warping, signature-based algorithms, or hybrid algorithms (Zoha et al. 2012; Piga et al. 

2016; Cominola et al. 2017b). In the water domain, data collected at several different resolutions was 

also used, and the maximum recorded accuracy of 90-94% for clothes washer classification was 

reported in (Nguyen et al.  2014) when several techniques including hidden Markov model, dynamic 

time warping algorithm, probabilistic models and artificial neural networks were all combined to 

analyse smart water data collected at 5 seconds intervals with a data resolution of 72 pulse per litre 

(0.014 L/pulse). The authors are not aware of other substantial research works seeking to use multiple 

concurrently collected utility demand signals to aid the pattern recognition of other signals.  

 

Example 2: Clothes washer water-energy use classification using concurrent data patterns 

A demonstration of how the classification of end-uses can benefit both joint water and energy data is 

described here through the classification of clothes washer use events using concurrent water-energy 

signals, and comparing the outcomes against those obtained from separate water or energy data. In a 

pilot project of a single household, 5 second data was concurrently collected for both water and energy 

use data (see Figure 2). The figure illustrates a strong correlation between the water (green) and energy 

(blue) signal for the overlaid patterns. More specifically, it indicates that during the spin cycle of the 

clothes washer, water is injected while power is used to spin the drum, which resulted in two closely 

aligned signals. Closely correlated water-energy related pattern features such as these are important as 

they significantly enhance the classification accuracy of utility demand events for both water and 

energy, which is particularly useful for times of peak water and energy demand.  
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Figure 2. Concurrent water-electricity demand signal (5s; L/min and Wh) (Autoflow screen shot) 

When only water data is provided, the clothes washer pattern sometimes has similarities with some 

toilet or tap event patterns. The addition of concurrent energy consumption patterns improves the 

accuracy and efficiency of both the water and energy pattern recognition process. Moreover, by 

improving the pattern recognition accuracy of events that consume both water and energy, the 

recognition accuracy of separate energy (e.g. oven) or water (e.g. toilet) events will be improved through 

greater deductive reasoning. Water-related heating (e.g. instant gas boosted showers) is another end use 

category where there is a strong correlation between water and energy patterns. 

Figure 3 illustrates a screen shot of a prototype ‘Autoflow’ system that wirelessly collects real-time high 

resolution water and energy signals (5s interval) and performs on-board data analysis and processing to 

disaggregate water and energy consumption into different water and energy end-use categories. An 

illustrative example is provided for a single property in Figure 3. The Autoflow software was originally 

developed for the purpose of autonomous water end-use classification Nguyen et al. (2011; 2013a; 

2013b; 2014; 2015) but recent developments of this software and its underpinning algorithms have been 

focused on enhancing this software to unpack both water and energy end-use demand components. End 

use data has a range of applications for both customers (e.g. feedback on demand) and multi-utilities 

(e.g. understanding end uses contributing to peak demand). 
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Figure 3. Water-energy demand end use summary for single home (Autoflow software screen shot) 

3.2.2. Applications for utilities and regulatory agencies 

The collection and analysis of concurrent water and energy data will result in a wide range of benefits 

for utilities and regulatory agencies. This includes: (1) having a unique single platform to monitor all 

water and energy consumption of any particular household or region in near real-time to immediately 

identify issues (e.g. household water leaks); (2) optimised water and energy grid infrastructure asset 

management; (3) improved customer satisfaction when user is provided with comprehensive 

information regarding the efficiency of their appliances (e.g. “your clothes washer water and energy 

consumption per load are 140 L and 1300 W, which is much higher than the average consumption of 

70 L and 800 W”); and (4) provides utilities and regulators to develop more effective demand 

management messaging and strategies  (e.g. rebates, education, restrictions, etc.) during periods of 

water scarcity or peak energy periods by using information derived from the concurrent data. 

3.2.3. Application for customers 

Customers will gain significant benefits from the analysis and presentation of concurrent water-energy 

data from a multi-utility provider, including: (1) one single account to view both real-time water and 

energy consumption as well as other statistical reports, including comparisons with other households 

with similar demographic patterns, notification from suppliers, detailed end use disaggregation, or 
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recommendations to help reduce consumption; (2) be immediately alerted when  water or energy 

demand is uncharacteristic (e.g. water leak in home); and (3) be informed about the current efficiency 

status of water and power appliances and devices; (4) receipt of rewards when shifting or reducing 

demand on the request of the utility to achieve certain supply or distribution grid infrastructure 

management objectives  (e.g. Message from utility: “Please avoid using clothes washer and dishwasher 

between 6 to 8pm tomorrow. In return, you will receive ten reward points to your account. Once 50 

points has been accumulated, you will receive a $10 discount on your next bill”). 

 

4. Case studies showcasing applications of concurrent water-energy data 

Together with socioeconomic and competitive market pressures, advances in digitalisation and 

technological innovations are the key drivers behind the development of digital multi-utilities. Globally, 

the adoption of smart technologies has been increasing rapidly resulting in the massive generation of 

data together with an increasing ability of utilities to collect, process, analyse and use multiple data 

points. These trends are bolstering the feasibility of the digital multi-utility combining multiple-services 

by connecting data and technology to increase efficiency and consequently, make the multi-utility 

concept attractive to both utility operators (e.g. network asset management) and customers (e.g. 

potential tariff reductions). Concurrent water/energy data collection and processing would create 

synergy in improving performance in utility administration and cost reduction through integrated tailor-

made services to their customers. Thus, the formation of digital multi-utility retailers can enable utilities 

to improve their productivity and efficiency by using high-resolution smart meter data for all 

measurements and analytics. 

This section provides an overview of four case studies that demonstrate just a few of the many 

applications and benefits of concurrently collected water and energy data. These case study 

demonstrations seek to showcase the potential widespread implications of the digital multi-utility. Case 

study 1 demonstrates how the simultaneous collection of high resolution data of water and energy for 

individual end use events supplied by a rain tank enabled better understanding of the energy intensity 

of those end uses. Case study 2 demonstrates how the simultaneous collection of medium resolution 

data can be used for customer segmentation analysis of residential accounts of water-electricity 

consumers. Case study 3 summarises a household level analysis of water-energy nexus data to better 

understand shower end use consumption trends. Case study 4 showcases a European case study where 

a prototype digital multi-utility web interface containing key water-energy feedback information has 

been provided to customers to inform them of their consumption trends, conservation opportunities and 

demand anomalies. 
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4.1. Case study 1: End use level water-energy analysis of residential rain tanks in households 

 

4.1.1. Case study overview 

To tackle potential water shortages, many countries have been working on developing alternative water 

management strategies such as decentralised (e.g.: rainwater harvesting) or rain-independent water 

sources (e.g. desalination plants). Decentralised rainwater harvesting systems were often considered as 

a good solution to provide a substitute to traditional centralised reservoir supplies (Siems and Sahin, 

2016). For example, as at 2012, 35% of new buildings in Germany were built with a rainwater 

harvesting system (Galbraith, 2012). In the UK, rainwater harvesting is encouraged by the Code for 

Sustainable Homes (Environment Agency, 2010). Similarly, many Australian State and Local 

governments mandated the installation of internally plumbed rainwater tank systems (IPRWTS) during 

the severe drought across Australia. As a result, 2.3 million households had an IPRWTS (Australian 

Bureau of Statistics, 2013), about 50 % of which had an internally plumbed IPRWTS. Typically, 

IPRWTS in Australia included the installation of a 5m3 rainwater tank, pressurised with a single speed 

pump and were plumbed internally to toilets, garden taps and clothes washer fixtures (Siems and Sahin, 

2016; Stewart, 2011). Without gravity head, most of these systems require a pump to supply captured 

rainwater to end-uses. These pumps are mostly energy intensive during their start-up and throughout a 

water use event (Talebpour et al. 2014). Despite the efforts focusing on alternative water substitutions 

in urban areas, the energy intensity of these substitutions has typically not been examined adequately 

by considering both economic and environmental factors in order to maximise the effectiveness of these 

strategies in the long term (Retamal et al. 2008; Proenca et al. 2011; Vieira et. al. 2014b; Siems and 

Sahin 2016). Further, the previous studies are limited to finding the total amount of energy used by an 

IPRWT as they examined the energy intensity of the IPRTWS only at an overall system level rather 

than investigating at an end-use level (i.e. toilet, clothes washer, outdoor tap). Using high resolution 

smart water and energy meters, Talebpour et al. (2014) and Siems and Sahin (2016), were able to 

capture 5s interval data of water (0.014 L/pulse) and pump electricity usage (0.1 Wh/pulse) that enabled 

the determination of the energy intensity of individual end-uses (i.e. toilet, clothes washer, irrigation) 

supplied by IPRWTS as detailed below. This case study demonstrates the capability of the multi-utility 

and its customers to better manage complex decentralised water supply systems. 

4.1.2. Approach and findings 

The main objectives of these two studies conducted by Talebpour et al. (2014) and Siems and Sahin 

(2016)  were to (i) gain an in-depth understanding of the water and energy requirements of IPRWTS 

supplied end-uses by using data collected from households in Gold Coast City, Australia; (ii) analyse 

the energy intensity of IPRWTS at an end-use level (toilet, clothes washer and irrigation) and (iii) 

understand the energy intensity and the associated economic and environmental implications of the 

IPRWTS.  
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19 households with IPRWTS (broadly representative of the cross section of households in the region) 

were randomly selected to continuously collect high-resolution water and pump energy data (readers 

are referred to Talebpour et al. 2014 and Siems and Sahin, 2016 for further detail). The water and energy 

usage data collected through smart meters was disaggregated into four end-use categories (clothes 

washer, irrigation, toilet half-flush, toilet full-flush) using AutoflowTM software. In addition, an 

extensive demographic and water-energy appliance stock survey were conducted to reduce 

classification uncertainty. From a data population of 1,210 events captured during the six-month 

monitoring study, the following aspects could be evaluated:  

Water and electricity demand relationships for the IPRWT supplied end-uses: As illustrated in Figure 

4(a), high flow rate events are more efficient than low flow rate events. Both Event 1 and Event 2 have 

a median electricity supply rate of 0.16 Wh/s, however, their rainwater supply rates are significantly 

different, 0.174 L/s for Event 1 and 0.036 L/s for Event 2, which is 5 times more efficient than Event 

1. This means that high-flow rate events exhibit the lowest energy intensity due to the pump system 

working closer to its optimal pumping range, with efficiency only lowered at the beginning and end of 

an event (Siems and Sahin, 2016). Thus, the selection of high flow rate appliances and irrigation 

equipment could lead to a substantial reduction in electricity costs for homeowners (Talebpour et al. 

2014). Alternatively, lower power output, pressure tanks and/or variable speed pumps should also be 

considered by home-owners instead of selecting the commonly used fixed speed pump (mostly 700-

800W). 

Energy consumption at an end-use level and a comparison of energy intensity of events: As exhibited 

in Figure 4(b), the half-flush toilet category has the highest average energy intensity (1.9 Wh/L) but the 

lowest average water and energy consumption (3.2 L and 5.8 Wh) while the irrigation category has the 

lowest energy intensity (1.1 Wh/L) and highest average water and energy consumption (249.9 L and 

263.4 Wh). High energy intensity of half-flush toilet events is a result of frequent starts and stops of the 

pump for a very short period of time, a low flow rate and a relatively small volume of water. In contrast, 

irrigation events typically have a long duration, higher volume and higher flow rate, which provide an 

ideal condition for an optimal pump performance. 

Stand-by (non-event) energy consumption: Non-event energy consumption (NEC) refers to energy 

usage not directly associated with rainwater supply. A varying amount of energy is used for pumping 

water for each individual end-use event. Besides, rigorous analyses of the raw data feed showed that 

some IPRWTS had been consuming electricity when no water was supplied. This NEC is mainly 

attributed to toilet cistern overflow leaks. Site inspections and data analysis revealed that 58 % of the 

installed systems consumed less than 0.1 kWh per month when not supplying rainwater (Group 1) while 

other 42% (Group 2) consumed a proportionally large amount of energy constituting 35 % of the total 

pump electricity used over the 6 month period. Consequently, as shown in Figure 4(c), the total energy 
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intensity for the Group 2 (2.26 kWh/m3) is much higher than the Group1 systems (1.29 kWh/m3) as the 

latter systems did not consume power when unused. 

Life cycle water-energy-carbon assessments: To assess the importance of IPRWTS energy intensity, 

the electricity, water costs and CO2 emission were calculated over a 20 year simulation period under 3 

performance scenarios, namely, the average, most efficient and least efficient IPRWTS (Siems and 

Sahin, 2016). The most efficient system refers to a system with high flow rates for all end-uses, an 

efficient pump and no NEC. The least efficient system represents a system with low flow rates for all 

end-uses, an inefficient pump and leaky toilet cisterns leading to NEC. Results from the simulations are 

illustrated in Figure 4(d). Over a 20 year period, the least efficient system required double the electricity 

costs of the most efficient system, based on current prices. Moreover, as shown in Figure 4(d), the least 

efficient system will generate about 1.25 tonnes more CO2 than the most efficient system over a 20-

year period. 

 

(a) Pump performance comparison from two irrigation events taken from the same system 
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(b) Average energy intensity and energy and water usage at an end-use level 

 

(c) Pump NEC and total energy intensity (kWh/m3) 

 

(d) A comparison of 3 scenarios, the average, most efficient and least efficient IPRWTS 

Figure 4. High resolution water-energy data collection and analysis 
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4.2. Case study 2: Southern California case study  

 

4.2.1. Case study overview 

This case study is synopsis of a recently completed study by the authors (Cominola et al. 2017b). The 

study illustrates a customer segmentation analysis of residential accounts of water-electricity consumers 

in Southern California. The authors propose a three-phase customer segmentation analysis developed 

to (i) discriminate among heterogeneous water-energy use routines (i.e., typical hourly patterns or daily 

water/energy use) by mining hourly water and electricity use data, (ii) identify groups of consumers to 

target with management actions aimed at pursuing water/energy conservation and demand peak 

shifting, and (iii) show policy implications of data mining smart-metered data, by recommending a 

portfolio of customized demand-side management measures for those targeted users. The use of 

information from intelligent meters to discover causal and behavioural connections between water and 

electricity use patterns is key for multi-utilities to cost-effectively design coordinated customized 

demand management strategies (e.g., tailored consumption feedbacks, pricing schemes, etc.) and, thus, 

effectively differentiate them for diverse groups of users. 

In this case study, the proposed methodology was applied to categorise different water-energy use 

behaviours for over 1000 residential water and energy consumers, in Burbank (Los Angeles County - 

South California). Each account is described by anonymous hourly water and electricity data, collected 

by the municipal utility Burbank Water and Power in the second half of 2015 (June – December, 2015). 

Moreover, each account was characterized by approximately 50 psychographic features collected 

through an opt-in survey (WaterSmart, 2015), which described occupant demography, household 

features, personal attitudes especially toward water use and conservation, and stated preferences. In 

order to extract relevant consumption patterns out of a dataset with over 5 million data points of hourly 

water-energy use, and cross-correlate it with user psychographics, the authors combined several data 

mining techniques in the overall customer segmentation approach described below.  

4.2.2. Approach and findings 

The customer segmentation analysis consisted of three main steps. The first is the Eigenbehaviour 

extraction: this step exploits Principal Component Analysis (PCA) to perform data dimensionality 

reduction and extract recurring coupled water and electricity daily use patterns, called  eigenbehaviours 

(Eagle and Pentland, 2009; Cominola et al. 2016) from the initial large dataset of hourly water and 

electricity use data of each account. In this case study, the first eigenbehaviour was found to account 

for more than 60% of the total variance of user's consumption data, and so each account was 

characterized solely by his/her primary eigenbehavior. The second phase is consumer segmentation: 

water-electricity consumer accounts are clustered based on similarities of the eigenbehaviours assigned 

in the previous phase. The primary eigenbehaviours of all users are automatically clustered via a 
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sequential use of t-Distributed Stochastic Neighbor Embedding (van der Maaten, 2008) and K-means 

clustering.   

Clustering the 1107 Burbank’s accounts with the above procedure resulted in a set of 18 predominant 

water-energy eigenbehaviours, i.e., relevant types of water and electricity consumption routines across 

the whole set of accounts. Finally, factor mapping: in this last step, the 18 predominant water-electricity 

eigenbehaviors are cross-correlated with the 50 user psychographic features collected via opt-in survey. 

The Patient Rule Induction Method (Friedman and Fisher, 1999) factor mapping technique was 

preferred over traditional correlation methods because of the heterogeneous nature of the input features, 

as well as their uncertainty embedded intrinsically into information declared via surveys. This last phase 

allowed automatically inferring the most likely determinants of demand drivers for a set of selected top-

consuming profiles to target with conservation and demand peak shifting actions.  

The outcomes of this study are particularly interesting to inform future digital multi-utilities. First, 

results demonstrated that the methodology proposed can capture differences and similarities in water-

electricity consumption routines and, thus, extract relevant concise information out of large datasets 

from intelligent meters. As an example from the mentioned study, Table 3 displays and describes the 

main heterogeneous predominant eigenbehaviors among the 18 found after the clustering step. In the 

table, each subplot shows the coefficient of the eigenbehaviours for different levels of water (solid lines) 

and electricity (dashed lines) consumption: higher coefficients mean higher frequency of a level of 

consumption for a given hour. The authors of this case study found that the per-household average daily 

water and electricity uses of Burbank’s accounts have a strong linear correlation of 0.93, yet the time 

of use and hourly patterns are different between water and electricity (as it can be noticed via visual 

analysis of the profiles in Table 3). These information impacts the definition of criteria utilities and 

authorities should consider to select target users for their demand management programs, as well as the 

design of programs based on time of use (e.g., hourly tariffs). First, out of 50 candidate psychographic 

determinants cross-correlated via factor mapping with primary eigenbehaviours, the main feature 

automatically identified as a likely driver of large water and electricity demands was the presence of 

either a swimming pool, a hot tub, or both. Data supported this result, as 75% of the users belonging to 

the cluster with the largest water-electricity use own a swimming pool/hot tub/both. Second, the main 

feature identified as likely demand driver for those top-consumers not owning a swimming pool/hot tub 

was their medium-to-low sensitivity towards water price and medium-to-low environmental attitude 

towards water conservation. This result demonstrated that both objective and personal features 

significantly influence water and electricity use. 

Inferring key demand determinants for different segments of consumers would support utilities in 

designing effective portfolios of customized demand management interventions. Thus, the 

methodology presented in this case study significantly contributes to behavioural studies on residential 
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water-electricity nexus, and its findings relevant implications for coordinated water-energy 

interventions.   

Table 3. Main types of predominant water-energy eigenbehaviors found across Burbank’s accounts.  

Water-Electricity eigenbehavior Type of water-electricity user Description 

 

High-regular  
water-electricity consumer 

Users regularly use high 
amounts of water and 
electricity during day hours.  

 

High-occasional  
water consumer 

Users only occasionally use 
high amount of water 
during day, but have high 
total water demand. 

 

Average  
water-electricity consumer 

Mostly, medium levels of 
water and energy use 
during daytime hours.  

 

Low consumer 

Low consuming profiles, 
frequent zero water and low 
electricity use. 

 

Daytime consumer 

Low water use and high 
electricity use concentrated 
in working hours. 

Note: In each subplot: x-axis represents the hour of day, y-axis the coefficient of the 1st eigenbehaviour distinguished among 

high water use (red solid line), medium water use (green solid line), zero water use (blue solid line), high electricity use (red 

dashed line), medium electricity use (green dashed line), low electricity use (blue dashed line). Table content was adapted 

from Cominola et al. (2017b). 

4.3. Case study 3: Household appliance water-energy nexus analysis 

 

4.3.1. Case study overview 

This case study presents research conducted collaboratively across the water and energy sectors in 

Melbourne and Brisbane, Australia. The work aimed to understand water and energy connections in 
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seven individual households, and to use this to inform the assessment of water-related energy use, GHG 

emissions and costs at district scale (~10,000 households) (Clearwater 2017). The approach involved 

collection and use of high-resolution water and electricity end-use information across seven widely 

varying households, to characterise water-related energy. Modelling was undertaken using “ResWE” a 

mathematical material flow analysis (MMFA) model (Kenway et al. 2013b). Early stages of the project 

identified that the most significant quantities of water-related energy are generated from shower use 

(Binks et al. 2016).  

4.3.2. Approach and findings 

Using normalized sensitivity results from the MMFA, the research demonstrated (i) high inter-house 

variability and (ii) a large and consistent influence of shower duration, flow rate, frequency and 

temperature along with hot water system efficiency. A 10% simulated change in these factors influenced 

0.1–0.9 kWh/p/d, equivalent to a 2–3% of total household energy use. Results from the seven highly 

characterised households were coupled with behavioural information e.g. duration, flow rate, and 

frequency, from 5,399 shower events across 94 households, and (much rarer) 491 shower temperature 

measurements to understand the drivers that could be targeted to   reduce current levels of water and 

energy use, GHG emissions and costs. 

Event-based measurements were collected for showers across four households. Amphiro meters 

(Amphiro 2017) were chosen due to their ability to simultaneously collect temperature, frequency, flow-

rate and flow duration measurements. When coupled with householder log sheets, the result enabled a 

high level of partitioning of water-related energy from individual householders: in this case Persons A 

and B (Figure 5). 

Based on the analysis, Person A (in this case a male) was using 0.9 ± 0.2 kWh energy per shower. And 

Person B (in this case a female) was using 2.7 ± 0.7 kWh. In the absence of simultaneously compiled 

information we would not have been able to tease-apart this significant difference in behaviour. 
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Figure 5. Summary results for volume and temperature for Persons A and B (Amphiro meter). 

 

4.4. Case study 4: Household multi-utility water-energy ICT system 

4.4.1. Case study overview 

A multi-utility ICT system that supports the integrated management of urban water demand at both 

household and utility levels was recently developed in the framework of iWIDGET Project (Savić et 

al. 2014). The project delivered two innovative cloud-based platforms with advanced data analytics to 

acquire, transfer, process and visualise information from telemetry systems and smart meters to utility 

personnel and householders respectively (see Kossieris et al. 2014; Loureiro et al. 2014b; Makropoulos 

et al. 2014). This case study application is focused on the residential customer platform that enables 

end-users to monitor and control, on a real-time basis, both water and energy consumption of their 

household providing valuable information and feedback (Figure 6). More specifically, the main 

functionalities of the platform included: i) monitoring of total water and energy consumption; ii) coarse 

breakdown of the total water and energy meter readings into main domestic uses and appliances; iii) 

detection of unusual consumption events as well as fault events such as bursts and leakages; iv) 

comparisons/challenges with other households in the monitoring network; v) provision of customised 
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suggestions, tips and practices towards water and energy efficiency; and vi) remote control of smart 

appliances (e.g. dishwasher and washing-machine). 

4.4.2. Approach and findings 

The platform was implemented and validated in three case studies (UK, Portugal and Greece) where 

data from 15-min up to daily time scales were collected for approximately 2 years. With a focus on the 

water-energy nexus, smart energy meters were also installed, further to smart water meters, in half of 

the households of the Athens case study, in Greece. The metering system transferred 15-min water and 

energy data to a secure storage server which periodically updated the household web ‘profile’ via the 

web platform and the user is able to monitor the current energy consumption and the corresponding cost 

(by specifying the relevant pricing structure) and explore how these are allocated into different time 

spans (i.e., day/night, summer/winter, working/week-end days’ consumption). The system also presents 

a coarse estimation of the percentage of total energy consumption that is associated with various water-

related activities (i.e., boiler, dishwasher, washing machine, dryer). At a more detailed level, the 

platform also estimates and presents the breakdown of total energy consumption into the main energy 

uses (as specified by the user), also including water-related activities. Since the user is able to specify, 

within the system, the source of energy (i.e., gas, electricity, solar energy etc.) of the household, the 

carbon footprint of the household can also be estimated. 

 

 

(a) Displays of water related household energy consumption in different timescales (upper: 15 min; lower: hr) 
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(b) Pie chart and summary table of per appliance energy consumptions also including water-related activities 

Figure 6. The iWIDGET household platform for water-energy monitoring and control 

 

4.5. Case study implications for digital multi-utility 

As demonstrated in the case studies, the digital multi-utility offers a number of new opportunities for 

both customers and utilities. The use of digital energy and water monitoring technologies, as 

demonstrated by Case Study 1, would provide multi-utilities and their customers with a real-time direct 

and important feedback of water and energy consumption and cost. Having high-resolution data is 

especially important for utilities and customers owning, leasing or managing decentralised water and 

energy systems (Talebpour et al. 2014; Bennett et al. 2015). In particular, being able to unpack the 

water-energy nexus of such complex systems is a valuable benefit of digital customer metering. Multi-

utilities would be able to use data analytics to inform customers having sub-standard systems operations 

and provide clear advice on how they can be optimised. Concurrently collected multi-utility metering 

of high-resolution water and electricity data would enable multi-utility providers and customers to 

reveal a range of system deficiencies at each site.   

Advanced customer segmentation of coupled sub-daily water and energy use data, as shown in Case 

Study 2, would enable multi-utilities to explore heterogeneity and similarities in typical water-electricity 

demand profiles, identify behavioural nexus and key determinants of target profiles, and design 

recommendations for joint water-energy demand-side management interventions. This case study 

demonstrated that water-energy use data metered at a medium (i.e. hourly) sampling resolution 

contained useful information to characterize consumers’ behaviour and habits. Thus, the findings of 
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this case study provided vital information on the customers’ behaviours in the context of the city-scale 

residential water-energy nexus and has implications for coordinated water-energy interventions.  

The outcome of the household appliance water-energy nexus analysis, shown in Case Study 3, informs 

the tailoring of behavioural and technological water-efficiency programs towards those with the 

strongest potential to influence energy. The information also helps guide city-scale analysis of 

household water-related energy demand. For example, better collection of data on shower water 

temperature would help improve the resolution and impact of water-related energy savings measures. 

The results generated from the monitoring, coupled with detailed MMFA modelling across all seven 

households, has also shown how there is a strong interaction between parameters. This suggests that 

programs aiming to influence water-related energy need to be aware of how this interplay either 

amplifies, or diminishes, the intended energy savings. 

Case Study 4 presents a comprehensive multi-utility ICT system that provides an integrated platform 

for urban water demand management at both household and utility level. The platform utilises medium-

resolution water and energy data (15-minute interval) to inform customers of their water, water-related 

energy and energy consumption. Such large case study projects that prototype various features of the 

future digital multi-utility provider help this emerging industry to understand data types and 

presentation options that best engage with customers. Such platform would also enable utilities to better 

analyse the substantial volume of data for their planning needs, improving service quality and customer 

relationships. 

 

5. Digital multi-utility transformation R&D priorities 

A number of research and development (R&D) activities must be addressed to realise the full 

applications and benefits of the visioned digital multi-utility service provider (Figure 7). This section 

briefly outlines the major R&D priorities to be addressed before the digital multi-utility vision can be 

realised. These fifteen priorities have been clustered into three broad perspectives, namely, strategy, 

technology; and information. In addressing the transformational R&D priorities, it is important to 

pursue system transformation through a process of co-design with researchers, utilities, technology 

providers, government and the community and cognisant of current and future practices and 

preferences in relation to water and energy. 
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Figure 7. Digital multi-utility transformation R&D priorities 

5.1. Strategy 

5.1.1. Regulatory and market transformation 

Research is urgently required to reveal the regulatory and market arrangement hurdles to enable the 

formation of multi-utility retailers covering services of water, wastewater, energy and gas sectors. This 

aspect is particularly relevant for the urban water sector where there has been significantly less 

deregulation occurring than the energy sector. Working towards a policy, regulatory and market 

environment that supports digital multi-utility transformation is critical. Research is needed to 

understand the best strategies to foster collaboration between parties and to accelerate the diffusion of 

demonstration and deployment projects.  
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5.1.2. Digital multi-utility transformation strategic planning 

Digital metering deployment requires meticulous strategic planning (Zhou and Brown, 2017). 

Repositioning energy and water utility sectors with long established traditions, to include space for 

digital multi-utility service providers, will be challenging and will require successful strategic planning, 

pilot and citywide rollouts, technology push, and customer pull. Strategic management research is 

needed in order to understand the best mechanisms and frameworks to streamline this transformative 

agenda with minimal risk and maximised value adding to customers and the utility sector business 

stakeholders (i.e. generators/suppliers, distributors, etc.). 

5.1.3. Re-engineering multi-utility operational processes 

Management consultants and technology firms will often spruik the benefits of their disruptive 

technology to utilities without a complete understanding of the operational processes of the utility. 

Failed technology projects are often related to inadequate strategic planning of the tasks that need to be 

re-engineered (Stewart et al. 2002; Stewart 2008). Digital multi-utility transformation requires a 

complete understanding of the traditional and potential re-engineered processes of a utility. Big data is 

only value adding when it provides synthesised information to an end-user for more productive 

operational processing or decision making. Therefore, research is required to complete work studies on 

existing processes, and then vision and comparatively analyse identified key performance indicators for 

re-engineered digital multi-utility processes. After such work studies and re-engineering assessments 

are completed, a strategic digital multi-utility transformation plan can be developed and implemented 

in a well-planned manner that is likely to be realise all envisaged benefits. 

5.1.4. Societal readiness preparation 

Utilities are consumed by various customers, including commercial, industrial and residential. Within 

these segments, there are various sub-segments each having particular needs and wants for their utility 

consumption data. Proactive societal readiness planning is particularly important counteract the vocal 

opponents to digital utility technologies (e.g. Stop smart meter groups), which have made traditional 

utilities nervous about such technologies and delayed their widespread rollout (Boyle et al. 2013). 

Efforts to demonstrate that digital multi-utilities will not adversely affect vulnerable consumer groups 

and endanger privacy rights through information sharing with authorities is especially required (Giurco 

et al. 2010). Often, a lack of educating the public on the benefits of digital technologies, examples of 

failed digital systems, and utilities failing to demonstrate that transformative changes will yield cost 

benefits for customers prior to a rollout, has given opponents adequate ammunition to create fearful 

campaigns on the potential negative risks of this technology. Socio-behavioral research is needed to 

firstly understand different customer segments requirements, wants and concerns related to digital 
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multi-utility solutions and then to secondly formulate technology diffusion strategies that address these 

acceptance factors.  

5.1.5. Demonstration and commercial cases of digital multi-utility applications 

Many early adopters of innovative technologies have failed to realize the intended transformative 

benefits promised by their technology consultants (Panuwatwanich and Stewart, 2012). Reported cases 

of failed technology programs that have failed to meet hyped expectations make others firms reluctant 

to be technology leaders. This reluctance to lead the technology agenda is prevalent in the utility sector 

which is characterized by conservative practices and slow change (Stewart et al. 2010). An R&D 

strategy to facilitate digital multi-utility transformation is needed to conduct increasingly scaled pilot, 

demonstration and eventually commercial sized program implementation. These ‘real life’ pilot and 

demonstration projects will mitigate later implementation risks associated with a larger rollout, by 

resolving issues (e.g. technology, environment, change management, etc.) at an early stage.  

 

5.1.6. Legal aspects 

There are a number of yet to be resolved debates on the privacy, rights and access legal implications of 

extensive databases containing interval data on a customers, water, energy and gas demand, that a digital 

multi-utility providers will be a custodian over (Brown 2013). Advanced pattern recognition algorithms 

has the potential to unpack the end use activities of customers (e.g. showering, making a cup of tea, 

etc.) at a particular time of the day (Gurung et al. 2016; Beal et al. 2016b). Moreover, the digital multi-

utility having access to interval data may also have a heightened legal responsibility (i.e. duty of care) 

to act on certain issues reported in a timely manner. For example, if continuous water usage is identified 

by the digital meter, the utility will have a duty to immediately inform customers of a potential leak 

(Britton et al. 2013). A research program is required that proactively addresses the many legal 

implications of digital multi-utility transformation. 

5.2. Technology 

5.2.1. Fit-for-purpose communication systems 

Determining the most appropriate communications systems for digital multi-utility companies for 

different customer segments and locations is required. Customer properties may be located in densely 

or sparsely populated areas having different available ICT infrastructure. For different situational 

context and available infrastructure, fit-for-purpose and reliable communications systems are needed. 

Whether using private utility communication networks (i.e. radio networks, mesh networks, etc.) or 

public carriers and networks (Internet, cellular, cable or telephone), the communication network should 

be able to transfer adequate multi-utility data simultaneously to the utility provider. While a number of 
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studies and demonstration projects have detailed particular architectures for different single utility 

provider scenarios (Kabalci, 2016), further research is required to validate that these approaches and to 

extend them by meeting the requirements for multi-utility data transfer.  

5.2.2. Digital multi-utility metering and communications technologies 

Concentrated R&D activities are required to improve the current product range of digital multi-utility 

metering and communication technologies. Improvements are required in product resilience to harsh 

outdoor conditions (e.g. meters are often external to properties and exposed to environmental conditions 

and vandalism), data interval resolution recording (i.e. second data), data storage availability, 

communications reliability and security, to name a few. Customers will only have faith in digital multi-

utility technologies when they have confidence that these technologies will consistently provide them 

with useful accurate data over the long term. Detailed technical specifications for such technologies that 

will ensure the realisation of the vision of a digital multi-utility need to be formulated and provided to 

industry product manufacturers and technology providers. 

5.2.3. Designing minimum energy devices 

Water and gas meters are often removed from a continuous power source, making them reliant on long-

life battery sources. Such digital meters will need to be reliant on their own limited energy resources or 

some innovative remote energy harvesting inclusion throughout their lifetime. Low power 

communications are receiving considerable research attention, with IEEE standard, Bluetooth, ultra-

wide bandwidth, and RFID/NFC technologies all working towards low energy solutions (Yaboob et al. 

2017). In addition to reducing digital meter power consumption, there are potential research 

opportunities to explore energy harvesting opportunities (Ma et al. 2016; Villani et al. 2016). For 

example, for water meters, there are examples of harvesting water flow to harvest energy to sustain 

digital water meter requirements (Kroener et al. 2016). Undoubtedly, power efficiency and harvesting 

are an ongoing R&D agenda for the realization of the digital multi-utility provider. 

5.2.4. Digital multi-utility system production, installation and operational costs 

A core driver or impediment of digital multi-utility transformation is the cost-benefit equation. While 

technology and operational costs remain high, the benefits will be outweighed by the costs. Only 

through technology commercialisation and mass market production along with a utility sector becoming 

experienced with installing and operating sophisticated multi-utility systems, will costs reduce to a point 

where technology becomes the driver of transformation. R&D funding is needed internationally to 

reduce the costs of digital metering technologies, and to complete pilot and demonstration projects to 

demonstrate its fitness-for-purpose for widespread implementation. Collaborative partnerships between 

Universities, Research Institutes, technology providers and utilities is essential, to conduct research and 
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development activities, as well as to train a new generation of utility professionals that are savvy with 

digital technologies and informatics. 

5.2.5. Standardization and interoperability 

Ideally, the various advanced water, electricity and gas metering systems available have sufficient 

compatibility to work together in order to logically and efficiently provide their data to a multi-utility 

service providers. However, such desired standardization and interoperability has not been realised in 

the utility sector, requiring an urgent push for a framework and research program addressing the four 

main areas for interoperability, namely: (1) technical interoperability; (2) syntactic interoperability; (3) 

semantic interoperability; and (4) organizational interoperability. Different technologies and 

components involved in data processing still use proprietary or ad-hoc protocols or data formats, 

making the exchange of data among different systems or the interconnection of components for a 

combined processing of the information complex.  

5.3. Information 

5.3.1. Data storage, management and mining 

Data management is a critical requirement for creating digital multi-utilities where a number of 

interconnected metering devices are constantly exchanging all types of information, the sheer volume 

of the generated data and the processes involved in the handling of such data is of paramount 

importance. The potential volume of multi-utility data being collected and automatically stored in 

information systems will be huge and storage servers must be capable of storing this data. Moreover, 

stored data must be pre-processed to ensure reliability (i.e. missing data, erroneous data, etc.), and stored 

logically for subsequent processing and extraction. Significant research effort is needed to define and 

implement semantics and rules for streamlining information processing.  

Data representation and mining algorithms should be capable of handling higher levels of abstraction 

and information manipulation, and allow for the subsequent employment of more complex pattern 

recognition and informatics algorithms that can handle complex interrelationships between multiple 

utility data sources (e.g. determining the water-related energy required for a clothes washer event). 

 
5.3.2.   Big data analytics, machine learning and computational tools 

Intelligent digital multi-utility meters will produce massive datasets that have limited value unless they 

can be analysed to unpack a number of trends. Brunswicker et al. (2015) recently provided a description 

of the research activities related to ‘big data’ analytic tools and computational techniques. They 

identified that research is need in the following six areas: (1) Meta-network modelling; (2) Network 

discovery and network analysis methodologies; (3) Dynamic network analysis and statistical prediction; 
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(4) Agent-based simulation models; (5) Behavioural sequencing techniques and genetic computation; 

and (6) Collaborative and automated coding tools for unstructured text data. 

5.3.3. Cyber-security and privacy 

The digital multi-metering system will need to be able to send very detailed demand information about 

customers’ water, wastewater, electricity and gas usage, which can be assessed both legitimately and 

illegitimately (McHenry, 2013) and also unintentionally (Yan et al. 2013). Researchers and standards 

organizations are working on secure data transfer protocol technologies for both wireless (e.g. IEEE 

802.16e) and wired connections (e.g. SSH/SSL) (Ahmad et al. 2016); however, hackers repeatedly 

come up with means to circumvent these technologies requiring further research and enhancements.  

Research is required into attack detection, vulnerability metrics and recovery/resilience for digital 

multi-utility specific threats, as well as management response decision support procedures and tools. 

Privacy, authentication and data ownership in the context of globally distributed digital multi-utility 

systems is another key area of research. Ideally, the design of voluntary “opt-in” paradigms may be 

needed for enabling some features of the digital multi-utility system. To alleviate privacy concerns that 

customers may have related to digital multi-utility transformation, there is a requirement for research 

to support anonymity and restrictive handling of utility customer information.  

Research is required in cryptographic techniques that restrict information content being accessible to 

other parties, designing more edge computing and processing applications, methods to support Privacy 

by Design approaches, including data minimization, identification, authentication and anonymity 

(Brown, 2013), and research underpinning techniques allowing for the greater use of soft identities 

(Nadargi, and Thirugnanam, 2016). 

 

5.3.4. Water-energy nexus pattern analysis and relationships 

The realisation that water-related energy is a significant proportion of total energy demand has 

prompted researchers to analyse collected data to reveal efficiency opportunities (Beal et al. 2012; Beal 

et al.  2016). Moreover, while there is some anecdotal understanding of the relationship between 

customer water and energy demand, there is still a lack of evidence-based research supporting certain 

water-energy nexus trends. Detailed understanding has not been possible because until recently there 

has been limited high resolution water and energy data available, especially concurrently occurring 

energy (electricity and/or gas) and water data that can be directly correlated to reveal interesting water-

energy nexus trends. Digital multi-utility pilot and demonstration projects will deliver significant 

datasets that could underpin data mining and pattern recognition research studies to reveal a range of 

customer water, electricity and gas demand trends, as well as the more complex water-energy nexus 

trends.  
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6. Conclusion 

While the rate of diffusion has been slower than initial expectations, it is inevitable that individual utility 

organisations will embrace digital technologies to more efficiently and effectively manage their assets, 

while significantly enhancing their level of engagement with customers. Technology companies such 

as Google, Uber, Facebook, and others, have shown that new data types and/or abundant existing data 

and/or aggregating/synthesising available data creates new business opportunities for exploitation. 

Digital and AI disruption can be delayed by a particular industry sector but not avoided in the longer 

term. The leading digital multi-utility provider has the opportunity to not only extract numerous benefits 

from the new and abundant data from intelligent metering and monitoring of an individual utility sector 

(e.g. water sector), but also from the aggregation of concurrent multi-utility datasets (i.e. coupling water, 

electricity and gas demand data).  

While there are a number of technical and management studies demonstrating the applications and 

benefits of mining and modelling big data from smart or intelligent single utility networks, there are 

few that showcase the aggregation opportunities presented by the future digital multi-utility network. 

From a modelling and software viewpoint, the combined concurrently collected water, electricity and 

gas information of each and every customer, enables greater accuracy and granularity of pattern 

recognition as well as significantly enhanced understanding of each utilities demand. There is a dearth 

of studies completed by data informatics and modelling researchers that have unlocked the necessary 

techniques and tools for this emerging sector to be able to effectively harness combined digital multi-

utility sector datasets. A new research field of multi-utility resource informatics will emerge. 

This paper has demonstrated examples and showcased recent reported pilot cases where digital multi-

utility data has been analysed for a particular application. The purpose of showing and explaining these 

illustrative examples is to seed novel thought and motivate greater R&D attention to this field, in order 

to formulate the techniques and tools required to extract the full suite of herein explained customer and 

utility benefits of this transformative agenda. While the heart of the paper is focused on the technical 

data mining and modelling challenges and opportunities related to the formation of a digital multi-

utility, which is in line with the scope and readership of this journal, the paper also purposely includes 

the overarching R&D agenda for this transition. This R&D priorities section was included to 

acknowledge that the data mining and modelling tasks are just a few of the priorities that must be 

addressed in order to facilitate digital multi-utility transformation. The described technology, strategy 

and information categories of priorities must all receive R&D attention before the visioned digital multi-

utility service provider can be realised.      
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Software availability: Restricted 
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Software required: MATLAB Compiler Runtime (MCR) 
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Dataset: 
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Time: 2-week period in 2010, 2011 and 2014 

http://gc-prd-ersservices.rcs.griffith.edu.au/smip2/ 

Dataset Availability:  restricted 

Reference articles DOI: 
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Developer: Dr. Andrea Cominola 
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Dr. Andrea Cominola 

Postdoctoral research fellow 

Politecnico di Milano 

Email: andrea.cominola@polimi.it 

Website: http://www.nrm.deib.polimi.it/?page_id=35 

First year available: 2017 

Program language: MATLAB (tested with Matlab R2016a), Python (tested with version 2.7.8) 

Hardware required: tested on a 2.5GHz Intel Core i5 processor and 4GB RAM machine. 

Software availability: Restricted 

Dataset: 

Location: City of Burbank  - California (USA) 

Size: 1107 residential accounts 

Time: June 28th – December 8th, 2015 

Dataset Availability:  restricted 
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Project web site: http://www.smarth2o-fp7.eu/ 

Contact information: smarth2o.deib.polimi.it/contact/ 

Publication, software and data information:  

smarth2o.deib.polimi.it/results/deliverables/ 

smarth2o.deib.polimi.it/results/publications/ 

smarth2o.deib.polimi.it/results/software/ 

smarth2o.deib.polimi.it/results/datasets/ 

 

Section reference: Case Study 3 

Name of software: Residential Water Energy Model (RESwe) 

Developer: Dr. Steven Kenway, Hans Peter Bader, Ruth Scheidegger 

Contact information:  

Associate Professor Steven Kenway 

Research Group Leader, Water-Energy-Carbon 

School of Chemical Engineering,  

Postal Address: Level 3, Chemical Engineering Building (74) 

University of Queensland, St Lucia, 4072 Australia 

s.kenway@uq.edu.au 

First year available: 2015 
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Software availability: Restricted 

Software size: 2 MB 

Software required: HTBASIC and SIMBOX 

Hardware required: 2.4GHz processor and 2GB RAM 
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Dataset Availability:  restricted 

Reference articles DOI: 

http://www.sciencedirect.com/science/article/pii/S0378778816308088 
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Paper section reference: Case Study 4 

Name of software: iWIDGET  

Project web site: www.i-widget.eu 
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Contact information: www.i-widget.eu/contacts.html 

Publication and software information: www.i-widget.eu/publications.html 
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