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ABSTRACT
There has been an increasing amount of research on the visualisa-
tion of search landscapes through the use of exact and approximate
local optima networks (LONs). Although there are many papers
available describing the construction of a LON, there is a dearth
of code released to support the general practitioner constructing
a LON for their problem. Furthermore, a naive implementation of
the algorithms described in work on LONs will lead to inefficient
and costly code, due to the possibility of repeatedly reevaluating
neighbourhood members, and partially overlapping greedy paths.
Here we discuss algorithms for the efficient computation of both
exact and approximate LONs, and provide open source code online.
We also provide some empirical illustrations of the reduction in the
number of recursive greedy calls, and quality function calls that can
be obtained on NK model landscapes, and discretised versions of
the IEEE CEC 2013 niching competition tests functions, using the
developed framework compared to naive implementations. In many
instances multiple order of magnitude improvements are observed.
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1 INTRODUCTION
Compact visualisations of fitness landscapes associated with an
optimisation problem are useful to both optimisation practitioners
and to problem owners. In recent years the local optima network
(LON) has been developed as an intuitive and helpful graph-based
visualisation of the fitness landscape, with vertices indicating local
modes, vertex sizes the corresponding basin size of a mode, vertex
colour indicating mode quality and the occurrence and weight of a
directed edge between vertices conveying some measure of how
easy it is to move from one optima or basin to the other.

We assume without loss of generality that the optimisation prob-
lem is to find an x ∈ X which maximises a quality measure f (x).
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Here we illustrate the legal search domain X as containing all bit
strings with d elements, though other alphabets may be employed
(in the later empirical section we also illustrate results using arrays
of integers).

A LON is a graph G = (V ,E) which describes the landscape
induced by the triple (X, f ,N ), where N (x) returns the neighbour-
hood set of x [6]. The verticesV of the graph represent local optima
— those solutions which are no worse than any of its neighbours1 —
and their respective basins of attraction. These basins are essentially
the volume of X where repeated moves from locations in a basin,
e.g. greedy selection under the neighbourhood function N , lead to
the corresponding optima. The edges E represent the probability of
moving from one optima/basin to another.

Two proposed edge definitions are:
• Basin transitions [6] — which weight the edge from one
vertex Vl to another Vk (including when l = k) as the pro-
portion of the basin members ofVl whose neighbours’ basin
isVk . This may be computed through e.g. greedy neighbour-
hood moves under N from each location. An illustration is
provided in Figure 1 for a random NK model [4].

• Escape edges [8] — which weight the edge from vertexVl to
anotherVk as the proportion of the solutions fromX who lie
in the kth basin and whose distance to the lth mode location
is ≤ m. Typicallym is chosen so that is is equal or greater
than the distance of neighbours under N . For instance, N (x)
used in greedy moves may return all single bit flip (hamming
distance 1) neighbours of x, whereas the escape edge calcu-
lation may be form = 2, and therefore include both single-
and two-bit flip neighbours. We use the notation Nm (x) to
denote all members of X with a distance ofm or less from x
to disambiguate these two potentially different neighbour-
hood functions. An illustration is provided in Figure 2, using
the same underlying data as used in Figure 1 for a range of
m.

Although there is a growing body of published work on LONs,
there is a dearth of accessible code implementations to enable the
wider community to use the technique, creating a barrier to their
use. Some publications have published data on constructed LONs,
but not the software directly employed (e.g. [7]2), and others have
published code for particular problems (e.g. [2]3), but the author
has yet to find any general purpose code for LON construction
online. In response to this we present a general implementation
in Java which constructs exact and estimated LON graphs (V and
E) for any problem and solution types conforming to the provided
Java interfaces.

In constructing this package it became apparent that a direct
naive implementation of the high-level algorithms presented in
1The reader interested in neutrality in LONs is advised to read [9].
2https://datastorre.stir.ac.uk/handle/11667/89
3http://www-lisic.univ-littoral.fr/~verel/RESEARCH/codeLON-0.1.zip
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Figure 1: Exact LON of a random nk model instance with n =
10 and k = 3 using basin transition edges.

much of the LON literature would lead to inefficient code, and we
now detail some of the computational efficiency considerations in
the Java implementation, which should also be of interest to those
developing/refactoring implementations in other languages. We
then describe the package itself, followed by some empirical results
and discussion.

To avoid confusion with notation for neighbourhoods, we will
eschew the standard convention of referring to ‘NK models’, and
instead refer to ‘nk models’ in later sections.

2 EFFICIENCY CONSIDERATIONS
First, let us consider the computational task of defining the vertices
in a LON. For illustration we use the score obtained by flipping the
ith bit if using a hamming distance 1 neighbourhood [1], i.e.:

Si (x) = f (x ⊕ 1i ) − f (x)

where ⊕ denotes the exclusive or operator. This score can be used
to identify whether a solution is a local optima, and added to the set
of verticesV as denoted in Algorithm 1 for a complete enumeration
of X.

If there is enough space to store the entire domain in memory,
then a list, Lf , may be used to store the fitness under the quality
function f for any putative solution. This may be indexed by the
integer represented by the solution’s bit string:

K(x) =
|x |−1∑
i=0

xi2i .

In the case of exact LON generation by complete enumeration of
the search domain, accessing the neighbours of a solution is as
simple as accessing the relevant indices in Lf via the index function
K .

If the LON is to be estimated rather than generated by complete
enumeration, a hash map,HK,f , can be used to store all x evaluated
under f , and their corresponding quality (with K(x) used as the
hash code).HK,f (x)may be queried prior to computing f (x) for any

m = 1 m = 2

m = 3 m = 4

m = 5 m = 6

m = 7 m = 8

m = 9 m = 10

Figure 2: Exact LON of an nk model instance (the same in-
stance as Figure 1) with n = 10 and k = 3 using escape edges,
m = {1, . . . , 10}.

solution to save duplicated evaluation under f (as e.g. a previously
evaluated point may be a neighbour of a current solution).

As well as defining V , the construction of a LON requires the
computation of E (the adjacency matrix, or adjacency list, and
weights). A high level procedure is provide in Algorithm 2 for basin
transition edges and Algorithm 3 for escape edges. Algorithm 4
details the recursive hill-climbing routine used by both.

In these algorithms there is the potential to both repeat the same
hill-climb (as they iterate over all members ofX, and all neighbours
of these members — which are also from X), and also overlapping
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Result: Local optima, V
V := ∅;
for x ∈ X do

if Si (x) ≤ 0 ∀1 ≤ i ≤ d then
V := V ∪ {x}

end
end

Algorithm 1: Identifying modes (LON vertices) via exhaustive
search

Data: vertices (local optima), V
Result: adjacency matrix, E, and basin sizes, B
E := 0 |V |, |V | ;
B := 0 |V | ;
for x ∈ X do

v = hillclimb(x,X, f ,N );
Bv := Bv + 1;
for x′ ∈ N (x) do

v′ = hillclimb(x′,X, f ,N );
Ev,v′ := Ev,v′ + 1;

end
end
Algorithm 2: Computing basin sizes and basin transitions

Data: vertices (local optima), V , distancem
Result: adjacency matrix, E, and basin sizes, B
E := 0 |V |, |V | ;
B := 0 |V | ;
for x ∈ X do

v = hillclimb(x,X, f ,N );
Bv := Bv + 1;

end
for v ∈ V do

v′ = hillclimb(v,X, f ,Nm );
Ev,v′ := Ev,v′ + 1;

end
Algorithm 3: Computing basin sizes and edge escapes

Data: solution x, domain X, quality measure f ,
neighbourhood function N

Result: local optima v
v := x;
for u ∈ N (x) do

if f (u) > f (v) then
v := u;

end
end
if v , x then

v := hillclimb(v,X, f ,N );
end

Algorithm 4: The hillclimb routine

segments of hill-climbs (where paths meet at a coincident solution).
Here, as well as using HK,f to save repeated queries under f for

Data: Number of restart locations, n
Result: Approximated modes,M , and basin sizes, B

(indexed by mode location)
counter := 0;
M := ∅;
B := ∅;
while counter < n do

counter := counter + 1;
v′ := hillclimb(random_draw(X),X, f ,N );
if {v′} < M then

M := M ∪ {v′};
Bv′ := 1;

else
Bv′ := Bv′ + 1;

end
end
B := B/n;

Algorithm 5: Approximating mode number and basin size.

the same solution, another hashmap, HK,v, may be stored linking
any x queried on a path during a hill-climb traversal to the optima
reached at the end of the path. This necessitates a dynamically
updated list of solutions whose neighbourhoods are enumerated
during a hill-climb, which may all be subsequently mapped to
the v returned. Such dynamic lists typically have amortised O(1)
update costs in standard language implementations. HK,v may be
queried in later hill-climbing calls, as if a location has had its optima
previously identified, the optima may be immediately returned
without repetition of the climb segment (the result of overlapping
hill-climbing paths) — assuming a non-neutral landscape.

Algorithm 5 shows a high-level procedure for the unbiased ap-
proximation of a LON. As with the exact LON algorithm the use
of HK,v can reduce both calls on f and on hillclimb, however
unlike in the exact case, at algorithm completion it is highly likely
that |HK,f | , |HK,v | (as not all evaluated neighbours, which will
enter HK,f , will be a path root in HK,v).

Although not explored here, the same exploitation of hash maps
may also be employed for biased LON approximations, such as the
popular choice of using iterative local hill-climbers.

3 THE JAVA PACKAGE
The open source Java lons package may be found in the author’s
GitHub page4. A snapshot of the package corresponding with the
version at publication of this paper, in the form of a jar file, may
be found at Open Research Exeter5 and the University of Exeter
hosted project page6. The lons package contains a number of ab-
stract classes, interfaces, and concrete classes to allow LON genera-
tion for arbitrary problem, neighbourhood and solution definitions.
Some concrete implementations illustrating the use of the core LON
generator are provided in the lons.examples package.

4https://github.com/fieldsend
5https://ore.exeter.ac.uk/repository
6http://pop-project.ex.ac.uk

https://github.com/fieldsend
https://ore.exeter.ac.uk/repository
http://pop-project.ex.ac.uk
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lons

Solution ≪interface≫
Problem

K extends Solution

≪interface≫
Neighbourhood

K extends Solution

Weight

LONGenerator

≪enum≫

EdgeType

Figure 3: UML class diagram of the lons package.

The generator exploits the efficiency gains detailed in earlier
sections. The current release version of lons contains the following
core members:

• Solution: an abstract class which requires concrete sub-
types to provide methods to (i) return a non-negative integer
to representation of the solution — this is used as the key for
the hash code 7 and (ii) the number of elements in a solution
(e.g. bit-string length). It also provides concrete methods for
the hash code generation via the first abstract method .

• Problem<K extends Solution>: a parameterised (i.e. generic)
interface which requires implementors to provide methods
to (i) return the quality of a provided Solution subtype K,
(ii) return a random instance of the Solution subtype K,
and (iii) return an array containing all possible Solution
subtype K instances (used in exact LON generation).

• Neighbourhood<K extends Solution>: a parameterised
interface which requires implementors to provide methods
which (i) return an array of all immediate neighbour in-
stances of Solution subtype K corresponding to the Solution
subtype K argument (i.e. function N ), and (ii) return an ar-
ray of all neighbour instances of Solution subtype K corre-
sponding to the Solution subtype K argument up to a given
distance (i.e. function Nm ).

• EdgeType: an enumerated type which holds a value repre-
senting either basin transition or escape edge.

• Weight: a concrete class, instances of which are used to store
and update basin sizes and edge weights.

• LONGenerator: a concrete classwhich provides parametrised
(K extends Solution ) methods to calculate LONs (either
exhaustively or via sampling) for a given problem, solution,
neighbourhood, and edge type. It also provides a method
to write out a LON’s details (optima indices, optima qual-
ity, basin sizes, adjacency lists and corresponding weights)
to plain text files for manipulation by the user’s preferred
graphing software.

7The maximum of the Java int type is 2 147 483 647. If |X | is larger than this then
care should be taken in the definition of K ’s hash code, to minimise clash situations.

Additionally, example classes which represent (discretised) IEEE
CEC 2013 niching competition multi-modal test problems (which
wrap Java implementations of these problems are published online
by the competition authors [5]8) are also provided as part of the
lons.examples package, along with classes representing nk land-
scape problems and associated solution implementations. These
are used in the later empirical section. Specifically this package
includes:

• BinarySolution: an abstract subtype of Solution.
• BinaryProblem: an interface subtype of Problem<Binary
Solution>.

• ConcreteBinarySolution: an implementor of BinarySo-
lution.

• BinaryHammingNeighbourhood: an implementor of Neigh-
bourhood<BinarySolution>.

• NKModelProblem: an implementor of Problem<BinarySo-
lution>.

• IntegerVectorSolution: an abstract subtype of Solution.
• IntegerVectorProblem: an interface subtype of Problem
<IntegerVectorSolution>.

• ConcreteIntegerVectorSolution: an implementor of Int-
egerVectorSolution.

• IntegerVectorNeighbourhood: an implementor of Neighb-
ourhood<IntegerVectorSolution>.

• DiscretisedCEC2013NichingProblem: an implementor of
Problem<IntegerVectorSolution>.

• Experiments: a concrete class which recreate the empirical
work of this paper.

• Various Neighbourhood and Problem subtypes which use
the decorator pattern [3] to track calls to methods of im-
plementations required in the experiments here, but which
contain overhead costs not needed in general usage.

A Unified Modelling Language (UML) class diagram of the pack-
age is provided in Figure 3, illustrating the interdependencies be-
tween the various lon package members.

8https://github.com/mikeagn/CEC2013

https://github.com/mikeagn/CEC2013
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Figure 4: Number of greedy hill-climber routine calls for exact LON generation of 100 instances of 9 different nk models using
basin transition edges. ‘E’ denotes efficient implementation, ‘N’ denotes naive implementation. Note, asK increases the number
of modes tends to increase and the length of paths tends to decrease — as smoother landscapes tend to have larger basins and
therefore longer paths to local optima.

4 EFFICIENCY GAINS: EMPIRICAL
ASSESSMENT

We now detail some observed efficiency gains exploiting the pack-
age for various exhaustive and sampled LONs for a range of nk
model instances, and for discretised versions of IEEE CEC 2013
niching competition multi-modal test problems.

4.1 Exact LONs
In the first set of experiments we evaluate the benefit of usingHK,v
for exact LON calculation (i.e. exhaustive enumeration) using basin
transitions and escape edges. We run efficient and naive implemen-
tations for 100 landscape instances induced from nine different nk
models: {(10, 8), (10, 3), (10, 1), (16, 8), (16, 3), (16, 1), (18, 8), (18, 3),
(18, 1)}. These correspond to |X| ranging from 1 024 up to 262 144.
Figure 4 shows box plots of the numbers of calls to the greedy hill-
climber routine hillclimb (Algorithm 4) — including recursive
calls — in the two implementations for LON generation with basin
transition edges. Figure 5 provides the corresponding box plots for
escape edges (m = 2).

Note there is no variation across runs for the efficient implemen-
tation, as the number of (recursive) calls of the greedy hillclimber is
always exactly |X| — as when climbing from a solutionHK,v is first
queried and if it has been visited in a previous path the correspond-
ing end optima is returned. In both figures the number of greedy

hill-climb calls is markedly lower in the efficient implementation,
often by multiple orders of magnitude.

We next run the generator on discretised versions of the CEC
2013 Niching Competition test functions, specifically functions 1–
12 for 10–1 000 equally spaced values per variable (i.e. various grid
resolutions) for problems 1–7, and 10–200 equally spaced values
per variable for problems 8–12. N (x) in this case are all neighbours
of the integer vector representing a grid point, x, which differ by
±1 grid step on one variable only (i.e. the von Neumann neigh-
bourhood). Figure 6 shows how the number of greedy hill-climber
calls varies with resolution for basin transition edges using the
two LON generator implementations. Here the reduction in calls to
hillclimb, depending on the problem, is between one and three
orders of magnitude for the maximum resolution investigated.

4.2 Estimated LONs
In the next set of experiments we evaluate the benefit of using
HK,v and HK,f for approximate LON generation. Here we take
10 000 random starts from the X associated with 100 different
instances of the nk models {(24, 8), (24, 3), (24, 1)}. Figure 7 shows
box plots of the number of calls to the greedy hill-climber routine
(including recursive calls) and to f in these two implementations
for LON generation with basin transition edges. Figure 8 provides
the corresponding box plots for escape edges (m = 2). Note that,
unlike in the exact case, there is variation in the greedy hill-climb
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Figure 5: Number of greedy hill-climber routine calls for exact LON generation of 100 instances of 9 different nk models using
escape edges. ‘E’ denotes efficient implementation, ‘N’ denotes naive implementation.

calls for the efficient implementation. This is because the number of
hill-climb calls will depend on the paths lengths encountered during
the sampling of X. This variation will tend to zero as the relative
proportion of X visited approaches 1, and the maximum value is
bounded by the efficient complete enumeration implementation,
i.e. |X|.

Aswith the exact LONs, the efficiency gains are readily apparent –
with large reductions in calls to both hillclimb and f experienced.

5 DISCUSSION
We have presented some computational efficiency considerations
for the generation of the LON graph. The empirical examples illus-
trate the marked reduction in greedy hill-climber routine calls, and
queries under the quality function f , that may be enjoyed when
exploiting previous visit information. This does of course come at
the cost of memory. Certainly, when tackling large problems with
high sample numbers, it is possible to exceed the memory capacity
of a machine — as, due to path lengths, the number of evaluations
under f may be multiple orders of magnitude larger than the num-
ber of samples. For example, on the n = 24 and k = 8 model, 10 000
random starting solutions for generating a LON with basin transi-
tions typically resulted in around 6 000 000 unique solutions being
queried (over a third of the corresponding |X|), with 600 000 of
these residing on paths (meaning |HK,f | ≈ 107, and |HK,v | ≈ 106).
Where the space is large and machine memory is low, a ‘middle-
road’ option would be to update HK,f only with locations that fall

on paths. This would still fully benefit from the reduction in calls
to hillclimb, and some of the reduction in repeated calls to f .

As the package implementation relies on the user providing
concrete implementations of the Problem and Neighbourhood in-
terfaces, and a subtype of the abstract Solution class, grey-box
approaches (e.g. [1, 10]) may be utilised to further speed up perfor-
mance.

In this work a landscape without neutrality has been assumed.
With neutral landscapes the approach proposed to improve effi-
ciency using HK,v will result in erroneous LONs, as the optima
for a putative solution is non-deterministic (as, depending on the
stochastic choice of equally best quality neighbours, a different
climb path will be taken). In the case of the generation of an exact
LON with neutrality there is scope for book-keeping approaches to
compute the re-weightings needed (although this is not a feature of
the software package currently). For the approximate case however
an efficient solution is much more problematic — simply exploring
all neutral branches at the greedy hillclimbing stage could at the
worst case result in an attempt to enumerate the prohibitively large
X. As such the efficiency gains of utilising HK,v cannot be realised
in landscapes with neutrality, without the imposition of a bias in
the resultant LON. However, even for neutral landscapes, HK,f can
still be usefully exploited.

Finally, there is the additional question with approximated LONs
regarding to how many samples are required for the resultant LON
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Figure 6: Number of greedy hill-climber routine calls for exact LON generation of discretised CEC 2013 Niching competition
problems using basin transition edges. Blue line denotes efficient implementation, red line denotes naive implementation.
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Figure 7: Number of greedy hill-climber routine calls and quality function queries for estimated LONS of 100 instances of 3
different nk models using basin transition edges. ‘E’ denotes efficient implementation, ‘N’ denotes naive implementation. 10
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Figure 8: Number of greedy hill-climber routine calls and quality function queries for estimated LONS of 100 instances of 3
differentnk models using escape edges. ‘E’ denotes efficient implementation, ‘N’ denotes naive implementation. 10 000 random
locations initially sampled.

0 2000 4000 6000 8000 10000

# random initial solutions

0

0.2

0.4

0.6

0.8

1

P
ro

p
. 

o
f 

o
p

ti
m

a
 f

o
u

n
d

Figure 9: Proportion of local optima detected as samples in-
crease. Results over 100 runs of approximate LON genera-
tion. The same n = 24 and k = 3 model instance for each
run, but different random seeds used for random solution
generation. Solid line denotes median, dashed line the inter
quartile range and dotted line themaximum andminimum.

to be a reasonable approximation of the exact LON. This will un-
doubtably depend on the size of |X| and the ruggedness of the land-
scape. However as the number of solutions queried for a random
sample in an unbiased search also depends upon the ruggedness
and domain size, investigating this further will be an interesting
strand of future work. Figure 9 shows how the number of modes in
an estimated LON varies with sample number for the same n = 24
and k = 3model instance, over 100 different runs with different ran-
dom seeds for the sampling. For this particular instance, over 50%
of the optima are identified with 2 000 random initial solutions, and
over 80% after 10 000. This is only a coarse comparison, and using
distance metrics between graphs is likely to be more informative.
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