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Hawk Roosting 

 

“I sit in the top of the wood, my eyes closed. 

Inaction, no falsifying dream 

Between my hooked head and hooked feet: 

Or in sleep rehearse perfect kills and eat. 

 

The convenience of the high trees! 

The air's buoyancy and the sun's ray 

Are of advantage to me; 

And the earth's face upward for my inspection. 

 

My feet are locked upon the rough bark. 

It took the whole of Creation 

To produce my foot, my each feather: 

Now I hold Creation in my foot 

 

Or fly up, and revolve it all slowly - 

I kill where I please because it is all mine. 

There is no sophistry in my body: 

My manners are tearing off heads - 

 

The allotment of death. 

For the one path of my flight is direct 

Through the bones of the living. 

No arguments assert my right: 

 

The sun is behind me. 

Nothing has changed since I began. 

My eye has permitted no change. 

I am going to keep things like this.” 

 

Ted Hughes, 1960 
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Abstract 
Many predatory species cause negative impacts on human interests by 

threatening game, livestock or human safety. These impacts can create 

conflicts where stakeholders differ over wildlife management and when one 

party is perceived to exert their interests at the expense of the other. Finding 

effective methods to mitigate conservation conflicts requires an interdisciplinary 

perspective that investigates (i) the reality of the apparent impacts, (ii) the 

efficacy of any methods intended to remedy them and (iii) the perceptions, 

motivations and objectives of key stakeholders.  

 

In this thesis, I investigated a conservation conflict in the U.K. surrounding 

predators and game management. I did so with specific reference to the 

common buzzard Buteo buteo, a species that, due to predation of released 

pheasants Phasianus colchicus, is both subject to illegal persecution and on-

going controversy concerning the licenced selective removal of ‘problem 

individuals’.  

 

I first review the literature to assess the ecological evidence that certain 

‘problem individuals’ can be both disproportionately responsible in impacts 

upon human interests and more likely to reoffend. I show that while there is 

evidence for these animals across many different taxa, the benefits of their 

removal can sometimes be short-lived. I highlight possible indirect impacts of 

selective management and identify it as a potential compromise between 

different stakeholder groups.  

 

Next, I evaluate the performance of Bayesian stable isotope mixing models 

(BSIMMs) in quantifying the diets of wild animals. By comparing indirect and 

direct observations of buzzard foraging, I demonstrate that, with the correct 

selection of trophic discrimination factors, stable isotope analyses can provide 

a reliable picture of dietary composition that mirrors direct observations.  

 

I then apply these mixing models to evaluate the ecological basis of selective 

removal of ‘problem buzzards’. The results suggest that the consumption by 

buzzards of released pheasants is not limited to release pens where 
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gamekeepers perceive buzzard predation to be a problem. However, I then 

show that stable isotope analysis of blood sampled from two of the four 

buzzards caught inside pens indicates frequent consumption of released 

pheasants, relative to the rest of the buzzard population. These results suggest 

that, while some pheasant consumption may go undetected, selecting only 

buzzards inside pens for removal is likely to target ‘problem birds’.  

 

I then investigate buzzard foraging and breeding ecology on land managed for 

pheasant shooting. I find that buzzards nest at higher density in areas with 

greater abundances of pheasants and rabbits Oryctolagus cuniculus. However, 

records of provisioning from nest cameras showed that only rabbits were 

caught in proportion to their abundance and only rabbit provisioning rate was 

associated with buzzard productivity. I suggest that the positive relationship 

between buzzard and pheasant abundance, although seemingly unconnected 

to pheasant predation, might influence how gamekeepers perceive buzzard 

impact. 

 

Next, I conduct semi-structured interviews on the subject of predator control 

with 20 gamekeepers across the south of England, to explore the underlying 

beliefs, norms and information sources that motivate their behaviour. From 

these interviews, I identify a number of separate, but interconnected, 

motivations that influence predator control including professional norms, 

potential penalties, and interpretations of what is ‘natural’. The influences of 

these motivations are discussed in detail and a conceptual model, 

incorporating the theory of planned behaviour, is developed.  

 

Finally, the key contributions of this thesis are drawn together and discussed in 

their wider context. Taken together, the results of this thesis illustrate how 

predator management occurs simultaneously within social and ecological 

contexts that incorporate the individual attributes of both predators and people. 

The results of this thesis have direct implications for the management of 

predators, the representation of stakeholder perspectives and the design of 

conflict mitigation measures. 
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Chapter 1: Introduction 

People and predators 
As human populations continue to grow, so too does the ‘human footprint’. An 

estimated 75% of the planet’s land surface is now experiencing measurable 

human pressures (Venter et al. 2016). As a consequence, many species have 

experienced rapid population declines, reductions in their historical ranges and 

fragmentation of their habitat (Ceballos 2002; Ripple et al. 2014; Haddad et al. 

2015). As the remaining wildlife is forced into closer proximity to people, 

competition arises for shared resources (Messmer 2000). This competition can 

have serious consequences for both humans and natural systems (Woodroffe, 

Thirgood & Rabinowitz 2005a). Wildlife, can negatively impact humans and, in 

turn, humans can negatively impact wildlife. Although such feedbacks have 

been referred to as ‘human-wildlife conflicts’ (Conover 2002), this term has 

been criticised in recent years as positioning wildlife as “conscious human 

antagonists” (Peterson et al. 2010: p74) and not distinguishing between the 

ecological and social aspects of wildlife management (Redpath, Bhatia & 

Young 2015). Here, following Young et al. (2010), I use the term ‘human-

wildlife impacts’ to describe situations when wild animals impact on humans 

and their activities.  

 
Predatory animals are commonly implicated in human-wildlife impacts due to 

their protein-rich diet that can incorporate prey species of economic, nutritional 

or social value to people (Treves & Karanth 2003; Graham, Beckerman & 

Thirgood 2005). Examples include the predation of livestock (Avery & 

Cummings 2004; Karlsson & Johansson 2010; Suryawanshi et al. 2013) and 

game (Treves & Karanth 2003; Park et al. 2008; Arroyo et al. 2012; Mazur & 

Asah 2013). Predators can even threaten the safety of humans themselves 

(Athreya et al. 2011; Neff & Hueter 2013). A common response to predator 

impacts has been population reduction through the use of lethal methods 

(Treves & Naughton-Treves 2005). While a few generalist predatory species, 

such as coyotes Canis latrans, have proven resilient to such attempts, 

population control strategies have been remarkably successful, producing local 
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extirpations and extinctions of their target species (Woodroffe, Thirgood & 

Rabinowitz 2005a; Ripple et al. 2014).  

 

A changing relationship? 

Despite these tensions, the relationship between people and predators is a 

curious one. Even where predators pose a high risk to both humans and their 

livestock, they can simultaneously provoke “intense feelings of awe and 

admiration as well as fear and resentment” (Goldman et al. 2010: p336). 

Globally, the balance between these two, seemingly opposing, views on 

predators (and wildlife more generally) appears to be shifting as societies in 

the developed world move from industrial to post-industrial phases (Inglehart & 

Welzel 2005; Teel, Manfredo & Stinchfield 2007). As immediate concerns over 

personal safety, security and economic stability are reduced, some societies 

are able to place a greater emphasis on self-expression and quality of life, 

which in turn has a positive relationship with environmentalism (Inglehart 1977; 

Inglehart & Welzel 2005). This can be most clearly observed in developed 

countries where there is a shift towards seeing wild animals as individuals, 

deserving of rights and protection (Jacobs 2007; Teel, Manfredo & Stinchfield 

2007). Following this sea-change in public consciousness, predatory species 

tend to be accorded high ‘existence value’ by people in the developed world 

(Dickman, Macdonald & Macdonald 2011). To many, they represent power, 

beauty and, to an increasingly urbanised population, a disappearing link to the 

natural world (Montag, Patterson & Freimund 2005; Goldman, Roque De Pinho 

& Perry 2010). Public interest in predatory species has helped fuel a growing 

demand for wildlife-based tourism and has enabled many to be used as 

surrogates for broader conservation causes (Sergio et al. 2006; Dickman, 

Macdonald & Macdonald 2011). 

 

The transition, on the part of some people, away from the framing of predators 

as ‘vermin’ and ‘pests’ might also have been aided to some extent by an 

increasing recognition of the important roles of predators in regulating 

ecosystems and sustaining biodiversity (Ritchie & Johnson 2009). For 

example, apex predators can suppress herbivores and mesopredators through 

predation, intra-guild aggression or behavioural change (Ritchie & Johnson 
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2009; Wallach et al. 2010; Estes et al. 2011) while mesopredators may 

constrain top predators through competition for resources (Bodey, McDonald & 

Bearhop 2009). As a result, predator control may disproportionately alter 

species assemblages with unintended consequences, such as changing 

disease dynamics or reducing ecosystem services (Ritchie & Johnson 2009; 

Ripple et al. 2014).  

 

Although political pressure from impacted stakeholders was, for a while, the 

driving force of government wildlife control policies (Bergstrom et al. 2014), 

budding environmental movements have pushed conservation and animal 

welfare into socio-political agendas (Graham, Beckerman & Thirgood 2005; 

Bergstrom 2017). Since the early 1970s, there has been a notable 

transformation in environmental thinking in many countries that has produced 

more stringent national and international legislative protection of predators 

(Chapron et al. 2014; Sergio et al. 2014). Although predator declines continue 

in many areas (Ripple et al. 2014; Wolf & Ripple 2017), there are some 

success stories beginning to emerge. In mainland Europe, brown bear Ursus 

arctos populations are stable or increasing (Chapron et al. 2014), in the United 

States grey wolves Canis lupus are recolonizing parts of their former range 

(Ripple et al. 2014) and in the U.K. red kite Milvus milvus and osprey Pandion 

haliaetus have rebounded from reintroduced and remnant populations (Smart 

et al. 2010; Schmidt-Rothmund, Dennis & Saurola 2014).  

 

The return of predatory species to areas from which they had previously been 

extirpated has produced ecological and economic benefits (Estes et al. 2003; 

Ritchie & Johnson 2009; Dickman, Macdonald & Macdonald 2011). Such 

benefits are lauded by exponents of ‘rewilding’, a sphere of activity that 

promotes the restoration of ecosystems through the reintroduction or recovery 

of key species (Nogués-Bravo et al. 2016). Yet the positive effects of predator 

increases can, on occasion, be overstated (Allen et al. 2017) and come to 

dominate debate over their management (Arts, Fischer & van der Wal 2012). In 

reality, reintroduced or expanding predator populations can pose sizeable 

challenges to mitigating human-wildlife impacts, in part because once 
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commonplace practices that reduce wildlife damage have ceased or been 

forgotten (Thirgood, Woodroffe & Rabinowitz 2005; Chapron et al. 2014). 

 

Conflicts over predator management 

Conservation conflicts arise over predators when “two or more parties with 

strongly held opinions clash over conservation objectives and when one party 

is perceived to assert its interests at the expense of another” (Redpath et al. 

2013: p100). These can either be when conservation objectives are perceived 

to be under threat or, conversely, when they are perceived to be threatening. 

Many conflicts incorporate aspects of both. For example, illegal killing 

threatens the viability of a reintroduced population of white-tailed sea eagles 

Haliaeetus albicilla in Ireland (the threat to conservation objectives). Yet the 

suspected culprits of this killing, disaffected sheep farmers, perceive that the 

consequences of eagle restoration, i.e. lamb predation and unwanted 

environmental designations, had been imposed on them without proper 

consultation (the threat from conservation objectives) (O’Rourke 2014).  

 

Recovering predator populations can therefore produce particularly severe 

conservation conflicts (Chapron et al. 2014; Olson et al. 2015). When wildlife is 

perceived to have been imposed on people, the animals themselves become 

“symbols of wider political divisions between rural and urban populations and 

between individuals and groups with fundamentally different value orientations 

and interests” (Chapron et al. 2014: p1519). Under such circumstances, 

protective legislation can be seen as unfair, discriminatory and/or lacking in 

legitimacy and can, therefore, be justifiably flouted (Pohja-Mykrä 2016). 

Attitudes towards illegal persecution by those who perpetrate or support it can 

move from deviance into defiance (Von Essen et al. 2014). For example, 

Pohja-Mykrä (2016) observed that illegal wolf hunting in Finland was an act of 

‘explicit resistance’ against game management authorities. In situations such 

as this, positions on both ‘sides’ can quickly become entrenched, making 

effective mitigation challenging (Redpath et al. 2013). 

 

As the number of conflicts over biodiversity and predator management 

increases globally (Conover 2002; Treves & Karanth 2003; Young et al. 2010), 
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one role for conservation scientists is to find effective ways of mitigating 

impacts on both the human stakeholders and the animal species concerned 

(Linnell 2011). Nevertheless, “the field of conservation is rooted in biology” 

(Madden & McQuinn 2014: p98) and attempts towards mitigation have typically 

been undertaken by ecologists, with socio-economic and socio-psychological 

aspects either downplayed or ignored (St John, Edwards-Jones & Jones 2010; 

O’Rourke 2014). However, there is a growing appreciation of the ‘human 

dimensions’ of these disagreements and of the need of interdisciplinary 

approaches to tackle them (Redpath et al. 2013; Madden & McQuinn 2014).  

 

The role of conservation science 

For conservation scientists, taking a holistic view of both the human-wildlife 

impact and human-human conflicts provides a broad scope for social and 

ecological investigation. This can best be illustrated along the timeline of a 

typical, if somewhat idealised, conflict where humans perceive an impact from 

wildlife:  

 

First, interviews with stakeholders can yield valuable information on the 

perceived direct costs (Wang & Macdonald 2006) or any hidden indirect 

impacts (Barua, Bhagwat & Jadhav 2013). For direct costs, independent 

ecological science might then quantify the reality of these perceptions 

(Suryawanshi et al. 2013). Once impact has been gauged, a stakeholder 

analysis might then identify “individuals, groups and organisations who are 

affected by or can affect” the conflict or potential management options (Reed et 

al. 2009: p1933). These stakeholders could be brought together in an attempt 

to define joint management objectives (Treves et al. 2006). Here, skilled 

facilitators are required to ensure participation emphasises “empowerment, 

equity, trust and learning” (Reed 2008: p2422). Management decisions would 

then be selected based on social acceptability, practicality and efficacy (each 

creating further research avenues or drawing from previous studies). 

 

Realistically, however, finding shared ground with opposing parties who hold 

fundamentally different beliefs and values creates numerous barriers to 

effective management (Redpath et al. 2013). For example, when conflicts 
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involve the illegal killing of predators, conservationists may not be willing to 

enter negotiations (Thirgood & Redpath 2008). To address these issues 

requires a broader social and psychological perspective that considers “all 

levels and sources of conflict within the social system in which conservation is 

embedded” (Madden & McQuinn 2014: p104).  

Predators, gamebirds and gamekeepers 
Gamebird shooting in the U.K. 

In the U.K., the recreational hunting of driven gamebirds on private land is a 

traditional ‘fieldsport’ (Loveridge, Reynolds & Milner-Gulland 2006) and can 

play an important social and economic role in rural communities (Public & 

Corporate Economic Consultants 2006). It can also provide benefits to 

biodiversity and its conservation. For instance, landowners who conduct 

gamebird releases maintain and plant more new woodland and hedgerows 

than those who do not (Oldfield et al. 2003). The crops planted to provide feed 

to gamebirds can also prove important for passerine species (Sage et al. 

2005). 

 

Driven gamebird ‘shoots’ can broadly be split into two categories: ‘put and take’ 

and ‘wild’ game shoots (Sokos, Birtsas & Tsachalidis 2008). Wild gamebird 

shoots attempt to maximise the ‘natural’ densities of species such as red 

grouse Lagopus lagopus scotica. In contrast ‘put and take’ shoots rear and 

release gamebirds, predominantly ring-necked pheasants Phasianus colchicus 

and red-legged partridges Alectoris rufa, (Tapper 1992). In the U.K., these 

reared birds are initially considered as livestock but then transition into ‘wild’ 

animals as their dependency on humans diminishes (Wildlife and Countryside 

Act 1981). Such releases are substantial both in the quantity of birds and their 

spatial coverage. An estimated one in twelve woodlands in England contains a 

release pen (Sage, Ludolf & Robertson 2005), with ~35 million gamebirds 

being released annually (BASC 2015). This number, thought to be increasing 

(Martin 2011), already constitutes a significant proportion of the U.K.’s avian 

biomass (Dolton & Brooke 1999).  
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In order to rear and release birds and maximise the number available to shoot, 

many landowners employ gamekeepers (although some gamekeepers lease 

the shooting rights and run the shoot independently). Gamekeeping is a 

traditional rural profession, largely conducted on a solitary basis (Munsche 

1981; Martin 2011). Skills are learnt during long apprenticeships although an 

increasing number of gamekeepers have also qualified from taught courses at 

agricultural colleges (BASC 2011). Despite the sizeable area still under game 

management and increasing gamebird releases (Park et al. 2008), numbers of 

gamekeepers have declined from a peak of 20,000 in 1911 (Sharp 2010) to 

around 3,500 in recent years (BASC 2011).  

 

Predator control 

Although yearly releases allow shoots to stock gamebirds at high densities, 

there are drawbacks. Released birds require supplementary feed and, in some 

cases, medication, to prevent starvation or the outbreak of diseases. Despite 

this, when compared to their ‘wild’ counterparts, released gamebirds have high 

levels of mortality and lower breeding success (reviewed in Sokos et al. 2008). 

Predation constitutes a significant factor in losses of reared (Parish & 

Sotherton 2007) and wild gamebird species (Thirgood & Redpath 2008). 

Therefore, gamekeepers invest substantial effort in reducing predator densities 

through numerous methods of lethal control (Reynolds & Tapper 1996; Martin 

2011). For instance, on the shooting estates where these predators are 

present, 96.5% of gamekeepers actively cull foxes Vulpes vulpes, 96.4% cull 

magpies Pica pica and 84.2% cull stoats Mustela erminea (GWCT 2011). 

Aside from the desired aims of increasing game (Reynolds & Tapper 1996; 

Reynolds et al. 2010), a number of non-game species, such as curlew 

Numenius arquata and lapwing Vanellus vanellus, appear to benefit from land 

managed for shooting (Tharme et al. 2001; Draycott, Hoodless & Sage 2007; 

Baines et al. 2008; Fletcher et al. 2010). 

 

The systematic lethal control of predators to augment game populations for 

shooting has created a social conflict centring on animal welfare and threats to 

conservation objectives, particularly for those species for which illegal 

persecution is apparent. An especially acute set of conflicts concerns the 
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perceived or actual impact of birds of prey on game species and how these 

predators should be managed (Valkama et al. 2005; Park et al. 2008; Redpath 

& Thirgood 2009; Lees, Newton & Balmford 2013; Elston et al. 2014). In the 

U.K., these birds have been protected by the law for many decades, yet 

shooting estates have been repeatedly linked to illegal persecution of such 

protected raptor species as golden eagles Aquila chrysaetos (Whitfield 2004), 

red kites (Smart et al. 2010), peregrines Falco peregrinus (Amar et al. 2012) 

and common buzzards Buteo buteo (Swann & Etheridge 1995). This 

persecution has, in some cases, had serious negative consequences, reducing 

raptor abundance, distribution and nesting success (Newton 1979; Elliott & 

Avery 1991; Amar et al. 2012).  

 

Tensions over the management of birds of prey are particularly well 

exemplified by a long-running conflict over hen harrier Circus cyaneus 

conservation and red grouse management (Thirgood & Redpath 2008; 

Redpath & Thirgood 2009). Here, despite concerted attempts to find workable 

solutions and bring stakeholders together (Redpath, Thirgood & Leckie 2001; 

Redpath et al. 2004; Elston et al. 2014), a breakthrough remains elusive 

(Redpath et al. 2013). This conflict has ecological and socio-economic 

foundations. For instance: (i) there is evidence harriers have a detrimental 

impact upon grouse densities and make intensive grouse moorland 

management uneconomic (Thirgood et al. 2000), (ii) illegal killing of harriers in 

the U.K. appears to be widespread and to be imperilling international 

conservation objectives (Etheridge, Summers & Green 1997; Sim et al. 2007) 

and (iii) stakeholders have divergent value systems making trust and 

constructive dialogue difficult (Redpath et al. 2013).  

 

These factors combine to create an impasse that has, so far, proved difficult to 

move past constructively. There is however, an emerging conflict in lowland 

Britain concerning common buzzard predation that, although it contains 

multiple parallels, appears to have more capacity for compromise on both 

‘sides’.  
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The common buzzard 
The common buzzard, hereafter buzzard, is an Old World member of the family 

Accipitridae (Dare 2015). Of the 28 members of the Genus Buteo (Ferguson-

Lees & Christie 2001), B. buteo is the most abundant across Europe and is the 

only permanent resident in the U.K. (Cramp & Simmons 1980). The buzzard is 

a medium-sized bird of prey with a robust body and broad wings. Although 

commonly dark brown in plumage, this can differ markedly from very dark to 

very pale, acknowledged in its French vernacular name, ‘la buse variable’.  

 

Although previously ubiquitous across the U.K., historical persecution that 

intensified during the 19th and early 20th centuries caused the local extirpation 

of the buzzard from most of its original range (Moore 1957). The sudden loss 

of their main prey, rabbits Oryctolagus cuniculus, following the introduction of 

myxomatosis in the mid-1950s, further reduced the British population to an 

estimated 6000-8000 pairs by the end of that decade (Dare 2015). During the 

latter half of the 20th century, as deliberate killing lessened and rabbit numbers 

recovered, buzzard populations experienced a resurgence (Robinson et al. 

2016). Combined data from the Breeding Bird Survey and the Common Bird 

Census estimated the buzzard population had increased 454% between 1970 

and 2014 (Hayhow et al. 2016). Consequently, the buzzard has now recovered 

the full extent of its former U.K. range, recolonizing areas from which it had 

been absent for several decades (Clements 2002). In 2009, the U.K. breeding 

population was estimated to be between 57,000 and 79,000 pairs, making it 

the U.K.’s most abundant bird of prey (Musgrove et al. 2013).  

 

Buzzards and released pheasants 

While conservationists have heralded the resurgence of the buzzard as a 

“conservation success story” (Harper 2012), wider responses have not been 

universally positive. Across Europe, they are considered of all birds of prey to 

have one of the greatest negative impacts on game species (Kenward 2002). 

This is particularly true in the U.K., where their rapid recovery has raised 

concerns among parts of the shooting community. Buzzards are believed to 

have both a direct impact on the numbers of gamebirds available to shoot, and 

to cause indirect mortality and financial loss due to disturbance (Harradine, 
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Reynolds & Laws 1997; Parrott 2015). In a members’ poll by both the National 

Gamekeepers Association and the Scottish Gamekeepers Association, 97% (n 

= 910) of respondents reported having buzzards on their shoots. Of these, 

76% (n = 693) identified buzzards as having a negative effect on gamebirds 

(GWCT 2011). This appears to be a marked increase from a survey conducted 

in 1995 by the BASC, in which only 61% of 996 gamekeepers reported 

problems by any raptors, of which only 20% were attributed to buzzards 

(Harradine, Reynolds & Laws 1997). The concerns of gamekeepers about the 

impact of buzzards may continue to intensify as the number and value of 

gamebirds, particularly pheasants, that are released in the U.K. continues to 

increase (BASC 2009). 

 

In the face of perceived impact, it is worth reviewing the available data 

concerning buzzard predation of gamebirds. A number of dietary studies have 

been conducted (Appendix 1), particularly in recent years (Rooney & 

Montgomery 2013; Francksen et al. 2016; Francksen, Whittingham & Baines 

2016; Prytherch 2016). Mammals, specifically rabbits and voles, are most often 

the main prey although birds do occasionally dominate. Invertebrate prey and 

livestock carrion may increase in importance over the autumn and winter 

(Newton, Davis & Davis 1982; Manosa & Cordero 1992). Gamebirds constitute 

a relatively low percentage of the diet (0 - 9.6% by number), with the three 

exceptions of Graham et al. (1995), Francksen, Whittingham & Baines (2016) 

and Tornberg & Reif (2007) (15.1%, 21.6% and 34.8% respectively). It should 

be considered, however, that these high records are from data based on 

analysis of prey remains, a technique that is known to significantly over-

represent large avian prey species, particularly gamebirds (Redpath et al. 

2001; Tornberg & Reif 2007; Francksen, Whittingham & Baines 2016). For 

example, in Francksen, Whittingham and Baines’s (2016) recent study, camera 

footage revealed pheasants to be only 1% of the total prey items, compared to 

the 15.1% estimated from prey remains. 

 

Despite the apparently low contribution of gamebirds to buzzard diet, it has 

been hypothesised that shooting estates, through habitat maintenance and 

legal predator control, create high densities of prey species (Tharme et al. 
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2001; Oldfield et al. 2003; Beja et al. 2008) enabling generalist predators, like 

buzzards, to reach densities at which they have a detrimental impact on game 

species. This has already been observed for hen harrier on moorland managed 

for red grouse (Redpath 1991; Thirgood et al. 2000).  

 

Quantifying the impact of predators on released game presents an interesting 

challenge to ecologists. Unlike wild birds (for which an assessment of the 

impact of predation might incorporate breeding success), perceptions of impact  

focus on a seven-month window (June - February) between the release of 

poults and the end of the shooting season. Indeed, buzzards are not thought to 

regularly predate adult gamebirds, and thus the majority of losses are likely to 

occur within the first two months of release (Parrott 2015).  

 

Studies have attempted to quantify the impact of buzzard predation in terms of 

gamebird losses. Questionnaires revealed that, on average, gamekeepers 

estimate 3.2% of pheasants are lost to buzzards (Harradine, Reynolds & Laws 

1997). Field studies have also attempted to quantify raptor impact through 

necropsies of predated gamebirds. However, many have been unable to 

differentiate between raptor species from carcass examination (Allen 2001; 

Parish & Sotherton 2007; Watson et al. 2007). In perhaps the most extensive 

study, Turner and Sage (2003) estimated that fewer than 1% of 486 released 

pheasants were killed by raptors. Of those studies that have succeeded in 

identifying the predator, attribution of the degree of loss to buzzards vary. For 

instance, buzzard predation accounted for 23.5% of the total mortality of grey 

partridges Perdix perdix in Switzerland (Buner & Schaub 2008) and 4.3% of 

the total mortality of released pheasants in England (Kenward et al. 2001). 

 

Conflicts over buzzard management 

Despite the literature suggesting that buzzard predation is minimal in relation to 

other sources of mortality (e.g. road collisions) (Lees, Newton & Balmford 

2013), perceptions of buzzard impact remain. This is perhaps most clearly 

reflected in the records of bird crime compiled by the Royal Society for the 

Protection of Birds. These show that buzzards continue to be the most widely 

persecuted bird of prey in the U.K. (RSPB 2016). For instance, in Scotland 
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between 1994 and 2014 buzzards comprised the majority (59.2%, n = 461) of 

all the confirmed bird of prey victims of poisoning, shooting, trapping and nest 

destruction (RSPB 2015a). Levels of illegal killing also appear to be high in the 

south of England, where one study attributed 24% of the observed mortality of 

fledgling buzzards to illegal persecution (Kenward et al. 2000). As a result, it 

has been suggested that illegal killing might be restricting population densities 

in some (Elliott & Avery 1991; Gibbons et al. 1995; Swann & Etheridge 1995), 

but not all (Arraut, Macdonald & Kenward 2015), localities. 

 

Perceptions of ‘problem buzzards’ 

Attempts to reduce illegal persecution and mitigate conflict are being sought by 

different means. Conservation groups are requesting tougher enforcement and 

penalties for those that break the law. In contrast, landowners and 

gamekeepers have applied repeatedly for licences that would permit the lethal 

control of a limited number of individual birds. While initially the licencing 

requests were rejected by the statutory licensing body, Natural England (NGO 

2011), a subsequent Judicial Review brought by one of the applicants 

determined that “public opinion was unlawfully taken into account” in these 

rejections (McMorn v. Natural England 2015, para. 167). In 2016, the first 

licences for the lethal control of buzzards were granted to four shooting 

estates, resulting in the deaths of 11 buzzards (Natural England 2016a). 

 

Although the granting of these licences present little threat to conservation 

objectives, they are nonetheless ecologically interesting as the license 

conditions direct the holder to selectively target specific birds. For example: 

 

“Note that overflying birds must not be shot, and that birds feeding on baits 

must not be shot. Specific problem birds may be targeted where they are 

flying into stocked release pens, or where they are predating on pheasant 

poults in or immediately around stocked release pens.” (Natural England 

2016b: p2)   

This wording is a consequence of the belief on the part of gamekeepers that 

specific ‘problem birds’ are the cause of disproportionately high losses of 
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pheasants by effectively specialising on predating gamebirds (Parrott 2015). 

The perception that only a few individual animals are responsible for the 

majority of damage is not new. The ‘problem individual paradigm’ was first 

articulated by Linnell et al. (1999) in a paper on large carnivore predation of 

livestock. However, despite a growing body of evidence documenting 

consistent differences in the behaviour of individuals of the same species 

(Bolnick et al. 2003) and much anecdotal evidence, individual level variation 

ecology is still rarely considered by conservation scientists in relation to wildlife 

management (Linnell 2011).  

 

Though the evidence available thus far, as summarised above, suggests that 

gamebirds are only a small proportion of buzzard diet at a population level, 

little scientific attention has been paid to the notion that specific buzzards 

contribute disproportionally to economic losses. This is despite such problem 

animals being common in anecdotal reports (Allen et al. 2000; Viñuela & 

Arroyo 2002) and many studies of raptor diet reporting high intraspecific 

variation in diet composition and foraging strategies (although see Rooney & 

Montgomery 2013). In the most comprehensive study to date, Kenward et al. 

(2001) monitored 136 radio-tagged buzzards following fledging and showed 

that a small subset (8%) had a significantly higher association with pheasant 

pens than other birds. However, this study was unable to link these birds to the 

minority of pens that suffered persistent losses. 

 

In order to appropriately mitigate buzzard impact and the associated social 

conflict, research on the existence of problem buzzards is urgently needed 

(Parrott 2015). Although such evidence would ideally come from randomised 

trials (Treves, Krofel & McManus 2016), experimental removal of buzzards is 

unlikely to be possible, due to the controversy surrounding the policy. Indeed, 

in 2012 government funding for just such research was withdrawn following 

public outcry (Gray 2012; Monbiot 2012). In the absence of trials, I suggest that 

elements of the efficacy of selective removal can be explored indirectly by 

studying how buzzards respond to variation in the abundance of gamebird prey 

at both a population and individual level.  
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This will require investigation of buzzard ecology, including diet, both inside 

and outside of the breeding season. Studies of raptor diet have traditionally 

been conducted through the analysis of prey remains and regurgitated pellets 

(Graham, Redpath & Thirgood 1995; Rooney & Montgomery 2013; Prytherch 

2016). However, over the last few decades the application of remote cameras 

to observe prey items during provisioning have come to the fore (Rogers, 

DeStefano & Ingraldi 2005; Smithers, Boal & Andersen 2005). Although 

potentially financially costlier (Tornberg & Reif 2007) this method provides the 

most accurate description of raptor diet (Lewis, Fuller & Titus 2004; García-

Salgado et al. 2015). Despite this development, assessing raptor diet outside 

of the nesting period has proved tricky. Studies have had to rely primarily on 

collecting pellets at roosting sites (Clarke, Combridge & Combridge 1997; 

Francksen et al. 2016). As well as making it difficult to collect data on 

individuals, this method is known to contain large biases towards certain prey 

groups (Simmons, Avery & Avery 1991; Francksen, Whittingham & Baines 

2016).  

 

It would seem, therefore, that additional methods are needed in order to 

quantify intraspecific dietary variation outside of the nesting period. Stable 

isotope analysis has show real promise in identifying animals involved in 

human-wildlife impacts (Cerling et al. 2006; Hopkins et al. 2012; Bentzen, 

Shideler & O’Hara 2014). This method determines the relative contribution of 

assimilated food to diet (Peterson & Fry 1987) as the isotopic ratios in the 

tissues of consumers reflect those of their food sources (DeNiro & Epstein 

1978). For example, Bentzen, Shideler & O’Hara (2014) analysed stable 

isotopes in the hair of grizzly bears U. a. horribilis to show which individuals 

had a history of anthropogenic food use. Another advantage of this approach is 

that tissues with different metabolic turnover rates reflect dietary information 

from different time periods (Hobson et al. 1996). This allows individual dietary 

consistency to be assessed where multiple tissues are sampled from the same 

animal (Inger & Bearhop 2008). Although stable isotope methods have been 

evaluated against other indirect methods (Weiser & Powell 2011; Resano-

Mayor et al. 2014), the difficulty of obtaining observational data of wild animals 
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means that an evaluation of stable isotope analysis using direct methods in 

natural conditions is currently lacking.   

Thesis outline and aims 
In this thesis, I apply ecological and social research methodologies to explore 

conflicts over predator management. I aim to produce a body of work that 

contributes to knowledge on the motivations of key stakeholders, the reality of 

the perceived impacts and the efficacy of any methods intended to remedy 

them. Following this general introduction, the thesis is arranged into five 

chapters, concluding with a general discussion. Each of the five chapters 

addresses one of the five aims outlined below.  

 

The specific aims of this thesis are to: 

1. Assess the evidence of the existence of ‘problem’ animals in human-

wildlife impacts and evaluate if ‘selective removal’ is a generally viable 

policy. 

2. Evaluate the use of dietary stable isotope analysis as a potential method 

for studying the diet of wild predators.  

3. Assess the ecological evidence that, within buzzard populations, there is 

a limited number of ‘problem’ buzzards that disproportionately feed on 

released gamebirds.  

4. Investigate the numerical and functional responses of buzzards to 

gamebird abundance on shooting estates. 

5. Explore the motivations behind predator management from the 

perspective of those that conduct it, the gamekeepers. 

 

In Chapter 2, I conduct a literature review to explore the efficacy of ‘selective’ 

wildlife management. Drawing on studies on a diversity of taxa I identify and 

evaluate five key questions that determine whether selective management is a 

generally viable management strategy: (i) can most of the problem be ascribed 

to few individuals? (ii) Is it possible to accurately identify and target problem 

individuals? (iii) Does targeting problem individuals mitigate impacts? (iv) Can 

indirect effects be avoided or minimised? And (v), can targeting individuals 
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help achieve social objectives? Using these five questions I discuss the 

potential costs and benefits of selective management in the round.  

 

In Chapter 3, I evaluate dietary stable isotope analysis as a potential method 

for investigating the diet of wild predators, using buzzards as my model 

species, at both population and individual scales. During the breeding season, 

buzzards offer a rare window into predator feeding ecology, as food items are 

brought back to the nest, presenting a focal point for dietary observations 

(Gaglio et al. 2017). I use detailed provisioning observations, obtained using 

remote cameras, to compare dietary stable isotope analysis against 

conventional methods of assessing buzzard diet based on analysis of prey 

remains and pellets. 

 

In Chapter 4, I apply stable isotope analysis more broadly, adding an analysis 

to provide dietary estimates for adult buzzards from their moulted feathers. 

This allows the exploration of variation in diets over time periods when 

released pheasant poults are available, something that has proven difficult in 

previous studies (Kenward et al. 2001). Using these data, I explore whether 

buzzard consumption of released pheasants is higher at pens where 

gamekeepers perceive predation problems. I add to this analysis by quantifying 

the diet of a small sample of putative ‘problem buzzards’, consistent with the 

terms of the Natural England license in that I trapped them in or around 

pheasant pens. By analysing tissues (feather, red blood cells and blood 

plasma) assimilated over different time periods, I am able to provide an 

indication of the extent and consistency of poult consumption.  

 

In Chapter 5, I explore how pheasant populations on lowland shooting estates 

influence buzzard breeding success and density. I analyse how the numerical 

(breeding density and nestling number) and functional (dietary composition) 

responses of buzzards correlate with indices of relative abundance for rabbits, 

voles and gamebirds. I am able to take this analysis further than previous 

studies (Graham, Redpath & Thirgood 1995), by linking prey abundance to 

provisioning rate (obtained from the nest cameras) and then by linking 

provisioning rate to nestling number. 
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In Chapter 6, I apply methods developed in the social sciences to explore the 

human side of predator management. Successful conflict mitigation requires an 

understanding of both social and ecological contexts (Madden & McQuinn 

2014). Despite the central role of gamekeepers in conflicts concerning predator 

control, little attention has been paid to their perspectives and motivations. 

Drawing from the theory of planned behaviour (Ajzen 1985), I use qualitative 

enquiry to explore how the beliefs, norms and information sources of 

gamekeepers create motivations for predator management. The influence of 

these motivations is discussed in detail and a framework is developed. 

 

My thesis concludes with a general discussion, during which I synthesise the 

key findings and the contributions of this work to conservation conflicts. 

Although much of the thesis focuses on the management of predators in 

relation to released gamebirds, I detail in this section how this research can 

contribute more broadly to a general understanding of how predators are 

perceived and managed. 
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Chapter 2 

 

ECOLOGY OF PROBLEM INDIVIDUALS AND EFFICACY 

OF SELECTIVE WILDLIFE MANAGEMENT 
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Chapter 2: Ecology of problem individuals and the efficacy of selective 
wildlife management 
 
Published as:  

Swan, G.J.F., Redpath, S.M., Bearhop, S. and McDonald, R.A. (2017) Ecology 

of Problem Individuals and the Efficacy of Selective Wildlife Management. 

Trends in Ecology & Evolution, 32, 518–530. 

Abstract 
As a result of ecological and social drivers, management of problems caused 

by wildlife is becoming more selective, often targeting specific animals. 

Narrowing the sights of management relies upon the ecology of certain 

‘problem individuals’ and their disproportionate contribution to impacts upon 

human interests. I assess the ecological evidence for problem individuals and 

confirm that some individuals or classes can be both disproportionately 

responsible and more likely to reoffend. The benefits of management can 

sometimes be short-lived and selective management can affect tolerance of 

wildlife for better or worse, but when effectively targeted, selective 

management can bring benefits by mitigating impact and conflict, often in a 

more socially acceptable way. 
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Current challenges in wildlife management  
Predators, large herbivores and ‘pest’ species are often managed to mitigate 

their negative impacts upon human livelihoods and well-being, and upon 

conservation objectives (Redpath et al. 2013). This management can be 

controversial, particularly when the targeted species are charismatic or are 

themselves of conservation concern. Strategies that attempt to mitigate wildlife 

impacts can therefore be challenging to develop and implement because 

effective management requires an understanding of both the ecology of the 

problem (Greggor et al. 2016), the animals causing it and its wider social 

context (Redpath et al. 2013). Allowing actual or perceived impacts to go 

unmanaged could result not just in on-going or escalating threats to human 

interests (Fernando et al. 2012) but might also lead to increased animosity 

towards conservation objectives (Olson et al. 2015) and perhaps to the illegal 

killing of wildlife (Redpath & Thirgood 2009). Currently the predominant 

approach to reducing wildlife impact tends to be pro-active or generalised 

culling (Ripple et al. 2014; Bergstrom et al. 2014). There can be advantages to 

this approach, particularly where routine harvesting or hunting effort can be 

harnessed (Treves & Naughton-Treves 2005; Cromsigt et al. 2013; Redpath et 

al. 2017). Benefits can arise in terms of economic and social gains (Redpath et 

al. 2017) and reduction of impacts (Bradley et al. 2015), potentially by reducing 

population size or effecting behavioural change. Such generalised approaches 

to controlling impacts can, however, incur high financial costs (Bergstrom et al. 

2014), result in reduced ecosystem function (Ripple et al. 2014), have 

unforeseen ecological outcomes (Bodey, Bearhop & McDonald 2011) and give 

rise to ethical and welfare concerns (Ramp & Bekoff 2015); all of which can 

challenge societal and political support (Treves et al. 2015). 

 

In integrating these ecological and social considerations, ecologists and 

managers are, in some instances, moving away from generalised removal of 

wild species and towards coexistence (Carter & Linnell 2016). This can include 

narrowing sights from control at a population level towards targeting individual 

animals (Treves & Naughton-Treves 2005; Massei et al. 2010; Doherty & 

Ritchie 2016). Indeed, there have been recent calls for the cessation of all 
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wildlife control methods that are not highly selective (Ordiz, Bischof & Swenson 

2013; Bergstrom et al. 2014).  

 

To be effective, this concentration of effort upon specific animals relies upon 

the ecology of these individuals and their disproportionate contribution to 

deleterious impacts. In framing this issue for the specific case of large 

carnivore predation of livestock, Linnell et al. (1999) identified and evaluated 

the ecological evidence for ‘problem individuals’. This notion of 

disproportionate contribution is clearly evident beyond livestock predation and 

has been applied to ‘man-eating’ lions (Yeakel et al. 2009), food-conditioned 

bears (Bentzen, Shideler & O’Hara 2014), problem elephants (Fernando et al. 

2012; Mutinda et al. 2014) and ‘rogue’ sharks (Neff & Hueter 2013), as well as 

to smaller taxa such as seabirds (Sanz-Aguilar et al. 2009), birds of prey 

(Parrott 2015) and feral cats (Moseby, Peacock & Read 2015). Targeting these 

problematic animals might be intuitively appealing, as it is often the apparent 

actions of particular individuals, and not those that behave ‘normally’, that 

engender hostility among human stakeholders (Goldman, de Pinho & Perry 

2013; Neff & Hueter 2013). It might also be assumed that concentrating 

management efforts upon fewer, specific animals could incur reduced 

ecological, social, ethical and logistical costs.  

 

Here, I broaden Linnell et al’s (1999) underlying assumption of the problem 

individual paradigm, that “a small proportion of the individuals…are responsible 

for most livestock depredation.” I define the problem individual as “any 

individual animal that is responsible for a disproportionately large negative 

impact on human interests”, acknowledging that such interests extend beyond 

the ecological into matters of health, wellbeing and economics. I use this 

definition to examine selective wildlife management, drawing on a diversity of 

research in ecology, animal behaviour and wildlife biology. While I concentrate 

on lethal control as the most typical form of selective management (Treves & 

Naughton-Treves 2005), I also consider non-lethal practices such as 

translocations or those that seek to change individual behaviour in situ (see 

Box 2.1).  
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I identify and evaluate five key questions (Figure 2.1) that are fundamental to 

determining whether targeting problem individuals is a generally viable 

management strategy: (I) Can most of the problem be ascribed to few 

individuals? (II) Is it possible to accurately identify and target problem 

individuals? (III) Does targeting problem individuals mitigate impacts? (IV) Can 

indirect effects be avoided or minimised? (V) Can targeting individuals help 

achieve social objectives?  

 

Box 2.1: Non-lethal alternatives in problem individual management 

Translocation: Despite occasional successes (Weise et al. 2015), translocating 

problem individuals often fails due to high mortality, animals returning to capture sites 

and a persistence of problem behaviour in the remaining individuals (Massei et al. 

2010; Fontúrbel & Simonetti 2011). Indeed, in extreme cases, it resulted in an 

increase in threats to human safety (Athreya et al. 2011; Fernando et al. 2012). The 

translocation of problem leopards in India, for example, is thought to have increased 

attacks on people (Athreya et al. 2011).  

 

Diversionary feeding is “the use of food to divert the activity or behaviour of a target 

species from an action that causes a negative impact, without the intention of 

increasing the density of the target population” (Kubasiewicz et al. 2016: p3). 
Targeting sub-sets of wild animal populations with diversionary feeding has shown 

promise in reducing impacts (Kubasiewicz et al. 2016). In Scotland for example, Amar 

et al. (2004) used habitat data to predict which hen harriers Circus cyaneus pairs were 

likely to have the highest predation rates on red grouse Lagopus lagopus scotica 

chicks and they were able to successfully reduce grouse chick predation by providing 

diversionary feed to specific harrier nests.  The benefits of diversionary feeding have, 

however, been reduced by unintentional increases in population sizes and 

anthropogenic dependency (Kubasiewicz et al. 2016). 

 
Aversive conditioning: Attempts have been made to change the behaviour of 

individual animals through associations with a negative stimuli introduced during a 

human-wildlife impact (Linnell, Odden & Mertens 2012). Despite some encouraging 

indications (e.g. shock collars on individual wolves, resulted in whole packs 

developing an aversion to specific baited ‘shock zones’; Rossier et al. 2012) field trials 

attempting to use aversive conditioning to prevent carnivore predation of livestock 

have so far all failed (Linnell, Odden & Mertens 2012). However, ‘hazing’ (a form of 
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aversive conditioning), has proved successful with many nuisance bears around 

human settlements, particularly on those bears that are not already ‘food conditioned’ 

(Hopkins et al. 2012). This proactive approach could be targeted either at animals 

displaying the characterises of future trouble makers (such as ‘bold’ personality types 

in ungulates; Found & St. Clair 2016) or towards animals responsible for teaching 

problem behaviour, such as female bears  (Morehouse et al. 2016). 

Physically handicapping:  This non-lethal method is on the furthest extreme of 

impact mitigation. In one of the few cases where such an approach was attempted it 

was remarkably successful: in Kenya the de-tusking of specific ‘destructive’ bull 

elephants resulted in their fence breaking behaviour being 1.7-14.5 times lower and 

the mean rate of attack falling six-fold (Mutinda et al. 2014). 

 (I) Can most of the problem be ascribed to few individuals? 
Evidence of individuality in wild animals is clearly central to the efficacy of 

managing problem individuals (Figure 2.1) but is also fundamental to ecology 

and evolution. To understand the phenomenon in this context, it is necessary 

to look at the ultimate and proximate mechanisms that give rise to individual 

variation (Araújo, Bolnick & Layman 2011). Ultimately, theory suggests that 

intraspecific variation reduces intraspecific competition (Bolnick et al. 2011). As 

a result, it might be expected that individual variability is particularly 

pronounced in species experiencing low interspecific competition, such as 

ecological generalists (Bolnick et al. 2011) or those occupying upper trophic 

levels (Araújo, Bolnick & Layman 2011). More proximately, intraspecific 

behavioural variation can stem from a complex combination of genetic 

variability and phenotypic plasticity. Considering, for example, the ontogeny of 

a predator’s foraging specialisation (a foraging behaviour consistently 

expressed by an individual that is uncommon relative to their population), 

individual behaviour might be influenced by variables common to local 

conspecifics such as group size, environmental conditions, prey species 

identity and abundance, and by individual variables, such as its personality 

type (a particular combination of behavioural tendencies that are consistently 

expressed; Wolf & Weissing 2012), size, sex, age, and reproductive status 

(Dickman & Newsome 2015; Pettorelli et al. 2015). These individual variables 

will also determine the extent to which a behaviour is consistently or 
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intermittently expressed (Modlmeier et al. 2014). Where a behaviour is 

consistently expressed by an individual there is evidence that it can be passed 

on to offspring (Morehouse et al. 2016) or to associates through social learning 

(Schakner et al. 2016). As a consequence of individual variation, animals with 

access to the same resources can exploit them very differently (Araújo, Bolnick 

& Layman 2011). This can be observed in diverse taxa through individual 

variation in risk-taking (Ciuti et al. 2012), diet (Elbroch & Wittmer 2013), or 

foraging (Patrick et al. 2014). 

 

Growing awareness of intraspecific behavioural variation has prompted a raft 

of research exploring how the phenomenon could influence ecological and 

evolutionary processes, natural and sexual selection (Dall et al. 2012), 

ecological invasions (Sih et al. 2012) and predator-prey dynamics (Pettorelli et 

al. 2015). These studies identify the major roles of within-population variation in 

community ecology (Bolnick et al. 2011). As yet, however, the influence of 

individual behaviour on how wild animals interact with humans has received 

little attention, despite clear pathways by which it might be important (Greggor 

et al. 2016). Intraspecific variation could mean that only a small proportion of 

animals within a population are responsible for most of the negative impacts. 

For instance, when local human livelihoods (Graham et al. 2011; Königson et 

al. 2013) or conservation objectives (Festa-Bianchet et al. 2006; Sanz-Aguilar 

et al. 2009; Dickman & Newsome 2015) are threatened by individual  predators 

with foraging specialisations. Individual variation can also lead to non-selective 

management strategies inadvertently selecting specific traits or demographic 

classes (Greggor et al. 2016; Leclerc, Zedrosser & Pelletier 2017). This has 

already been observed for species under selection from recreational hunting 

where animals with ‘bolder’ personality types appear to be overrepresented 

(Ciuti et al. 2012; Madden & Whiteside 2014).  

 

There is now considerable support for the notion that, in many situations where 

wildlife causes problems for people or conservation objectives, problem 

individuals are involved. This evidence can be direct, for example studies
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Figure 2.1: A conceptual framework to evaluate selective management.  

The framework illustrates the recommended stages of selective management (yellow), the questions that determine its viability 

(blue) and methods to answer them (green). 

Ecological 
evidence

Targeting 
feasibility

Impact 
evaluation Refinement Social 

assessment

4. Will there be 
undesirable indirect 
effects, can they be 
avoided or minimised?
 

Include indirect, additional 
effects (e.g. behavioural, 
demographic, social, 
evolutionary impacts) as 
outcomes in trials 
(Arlinghaus et al. 2016). 
Particularly in cases of on-
going removal. 

2. Is it possible to 
accurately identify and 
target culprits?

Evaluate accuracy of 
targeting method (e.g. by 
applying forensic 
methods [Box 2] to 
distinguish problem 
individuals from 
conspecifics).

1. Can most of the 
problem be ascribed to 
few individuals?

Quantify individual 
variation, specifically role 
of individual animals in 
impact [Box 2]. Consider 
over representation of 
particular demographic 
classes (Moseby et al. 
2015, Konigson et al. 
2013).

3. Will targeting 
problem individuals or 
classes mitigate the 
impact?

Use treatments such as 
experimental trials to 
explore relative 
effectiveness of non-
lethal management in 
situ [Box 1] against 
removal (Treves et al. 
2016).

5. Can targeting 
individuals help 
achieve social 
objectives?

Assess if method will 
meet intended social 
objectives (e.g. increase 
tolerance toward species: 
Browne-Nunez et al., 
2016). If assessment 
highlights conservation 
conflict see Redpath et 
al. (2013).
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showing that specific individuals (Chiyo et al. 2011; Elbroch & Wittmer 2013) 

and demographic classes (Moseby, Peacock & Read 2015) are 

disproportionately involved in incidents or that problem behaviours are taught 

to offspring (Morehouse et al. 2016) or associates (Schakner et al. 2016). 

Indirect evidence points towards the involvement of problem individuals, where 

all animals contribute to an impact but to markedly varying degrees (Cavalcanti 

& Gese 2010), or where sudden increases in impact are observed but are 

apparently unrelated to animal abundance (Festa-Bianchet et al. 2006). 

 

Box 2.2: Methods for exploring and evaluating problem individual management 

To develop selective management, research that explores individuality and validates 

management strategies is needed and the toolbox for these tasks is expanding:  

 

Exploring individuality: 
Marking animals with tags can facilitate individual identification, though this usually 

requires recaptures, resightings or carcass recovery (Bentzen, Shideler & O’Hara 

2014; Madden & Whiteside 2014). 

Camera trapping and image analysis can help identify the individuals involved in 

impacts when animals can be individually distinguished. Camera traps have been 

successfully used to identify problem individuals in terrestrial (Karanth, Kumar & 

Vasudev 2014) and aquatic environments (Königson et al. 2013).  

GPS and other tracking technologies provide spatial data on individual movements 

that can be linked to human-wildlife impacts (Cavalcanti & Gese 2010). For example, 

by investigating the spatial clumping of puma Puma concolor locations, researchers 

found that only a minority of individuals were involved in livestock depredation 

(Elbroch & Wittmer 2013). 

Molecular methods allow the forensic identification of individuals. For example, DNA 

fragments sampled from faeces (Archie & Chiyo 2012) or attack wounds (Caniglia et 

al. 2013) have been used to identify individual animals responsible for crop and 

livestock losses. 

Stable isotope analysis allows an inference of the relative contribution of different 

food items to an individual’s diet (Inger & Bearhop 2008). This method has been used 

to help identify food conditioned bears (Hopkins et al. 2012) and crop raiding 

elephants (Cerling et al. 2006). 
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Evaluating management: 
Removal experiments with random assignment to control and treatment groups are 

considered the ‘gold standard’ to evaluate wildlife management (Treves, Krofel & 

McManus 2016). Theoretical experiments that quantify the rate at which specific 

behaviours reoccur will help inform the required frequency of management actions 

(Modlmeier et al. 2014). 

Analysing impact records has allowed studies to evaluate problem individual 

removal by observing the change in impact levels following treatments. Studies have 

focused on specific case studies (Mutinda et al. 2014) or used data collected over 

broad areas for a number of years (Bradley et al. 2015; Artelle et al. 2016).  
Analysing involvement records requires data on individual animals. For example, 

by knowing which individual grizzly bears were involved in impacts, Morehouse et al. 

(2016) were able to link ‘conflict behaviours’ with social learning and thereby critique 

guidelines for problem bear management.  
Social network theory has the potential to advance our understanding of the social 

aspects of problem behaviour (Modlmeier et al. 2014). For example, Schakner et al. 

(2016) used a network-based diffusion analysis to first demonstrate the social 

transmission of unwanted behaviours in California sealions Zalophus californianus 

and model the impact of management interventions.  

 (II) Is it possible to accurately identify and target problem individuals? 
Even if we know that subsets of animals are responsible for most of the 

problem, correctly identifying the problem individual(s) presents a key 

challenge in selective management (Treves & Naughton-Treves 2005) (Figure 

2.1). Three broad approaches emerge whereby animals can be targeted, 

based on individual identity, location, or demographic class (Table 2.1).  

 

First, identifying those responsible can prove straightforward when individuals 

are marked (Box 2.2) or easily distinguishable. The Kenyan Wildlife Service’s 

photographic database of African elephants Loxodonta africana involved in 

conflict incidents allows them to recognise repeat offenders (Mutinda et al. 

2014). This approach is also applicable where management action only 

requires the individual to be caught in the act of a single impact event. For 

example, in parts of South Africa any fur seal Arctocephalus pusillus observed 

eating endangered seabirds can be shot (David et al. 2003).  



	 43	

 

Second, individuals can be targeted based on their location (Box 2.3). This 

approach should have highest accuracy if problems are spatially concentrated 

(Voyles, Treves & MacFarland 2015), management is conducted within a short 

time fame of the impact (Bradley et al. 2015) or during particular times when 

the impact is heaviest (Butler et al. 2011). Again in Kenya, lions Panthera leo 

that have killed cattle have been targeted by traps set near recent livestock 

kills (Woodroffe & Frank 2005). Yet zoning specific areas for removal should 

be considered with care. On-going removal coupled with rapid immigration of 

new problem animals or non-target animals, might create a sink, or ecological 

trap, influencing the population dynamics of a much larger area (Woodroffe & 

Frank 2005; Selier et al. 2014; Treves et al. 2015). To minimise this threat, it 

has been suggested that problem individuals can be more effectively targeted 

if specific attractants (Dickman & Newsome 2015) or trap designs (Königson et 

al. 2013) are used.  

 

Third, several recent studies on managing wildlife have suggested that animals 

be removed based on their demographic class (Cromsigt et al. 2013; Königson 

et al. 2013; Hiller et al. 2015; Kauhala et al. 2015; Moseby, Peacock & Read 

2015). In Australia, removing large male cats Felis catus is considered a 

conservation priority due to their ability to take large native prey (Moseby, 

Peacock & Read 2015), while in the Baltic Sea, adult male grey seals 

Halichoerus grypus are significantly more likely to be responsible for damage 

to fishing gear (Kauhala et al. 2015). This classification has been described as 

“predator profiling” (Moseby, Peacock & Read 2015: p332) and I suggest the 

term ‘problem animal profiling’ (using data on previous human-wildlife impacts 

to identify those demographic classes most likely to have a negative impact) to 

allow for its wider use in wildlife management. 

 

With the exception of incidents where individuals can be recognised ‘at the 

scene of the crime’, we can otherwise assume that few strategies are perfectly 

accurate in their targeting (Table 2.1). Measures of targeting accuracy, 

sensitivity or specificity (e.g. proportion of true problem individuals identified 

and removed, proportion of true non-target individuals identified and removed) 
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are therefore needed to allow practitioners to evaluate alternative methods. 

While these evaluations can be supported by ecological data, forensic methods 

including detailed necropsies, stable isotope and DNA analysis might also 

prove useful (Box 2.2).  

(III) Does targeting problem individuals mitigate impacts?  
If problem individuals have been identified and a means of targeting them 

found, it is important to consider whether their removal will decrease impact 

and, if so, the timescale of any benefit (Figure 2.1). Wildlife managers can see 

the removal of individual animals as the only practical, humane and cost-

effective option available (Hall & Kress 2008; Sanz-Aguilar et al. 2009; Massei 

et al. 2010; Schakner et al. 2016), even for species of conservation concern 

(see Boxes 2.3 & 2.4). Indeed, if an uncommon behaviour, such as a foraging 

specialisation, is the cause of a problem, generalised measures to reduce 

impacts will likely fail if certain individuals are missed (Moseby, Peacock & 

Read 2015; Pettorelli et al. 2015). Where removal of the problem individual has 

been achieved, studies have reported minimal loss to the overall population 

(Graham, Harris & Middlemas 2011), little stress to the remaining individuals 

(Burke et al. 2008) and both perceived (Königson et al. 2013) and actual 

(David et al. 2003; Hall & Kress 2008; Sanz-Aguilar et al. 2009) decreases in 

wildlife impact. On Stratton Island, USA, culling a single black-crowned night-

heron Nycticorax nycticorax with a specialisation on common tern Sterna 

hirundo chicks resulted in the number of tern chicks per pair increasing from 

0.42 to 1.9 (Hall & Kress 2008). In Namibia, after the translocation of ‘problem 

leopards’ Panthera pardus, livestock losses stopped for at least 16 months, 

despite new leopards moving into the vacated territory after only 6 weeks 

(Weise et al. 2015). There are also circumstances where the timely removal of 

problem animals might minimise future interventions by preventing the spread 

of undesirable behaviours (Schakner et al. 2016). 
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Box 2.3: Case Study - Managing foraging specialisations in seals  

In northern Scotland grey seals Halichoerus grypus and harbour seals Phoca vitulina 

are perceived to impact fisheries through a reduction in Atlantic salmon Salmo salar 

available to recreational anglers (Redpath et al. 2013). Traditional management 

involved non-selective population reduction through culling seals at their haul out sites 

(Thompson et al. 2007) but was replaced with a more selective form of lethal removal 

following conservation and welfare concerns (Young et al. 2012). This new 

management regime attempted to remove individual seals by issuing licenses to 

trained marksmen to target individuals frequenting rivers and netting systems (Butler 

et al. 2011). Graham et al. (2011) set out retrospectively to test the efficiency of this 

strategy using photography to identify individual seals that were using rivers to forage. 

Their study provided evidence that only a small proportion (<1%) of the local seal 

populations were consistently sighted in rivers. They complimented this analysis with 

forensic methods that suggested that these “river-specialist” seals had a higher 

proportion of salmonids in their diet than those seals found at haul out sites (Graham 

et al. 2011). Although this research falls short of quantifying the losses seals cause to 

recreational fisheries, it strongly suggests that river specialist seals will have the 

greatest per capita impact.  Indeed, despite requiring on-going lethal control, the 

refinement of seal culling to these individuals represents a workable compromise for 

parties interested in both the protection of salmon stocks and the conservation of 

seals (Young et al. 2012). 

 
Figure 2.2: A grey seal eating a mature salmon on the River Ness, Scotland.   

(Photo: © Rob Harris, University of St. Andrews) 
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Table 2.1: Examples of methods for targeting animals and their assumed 

accuracy for selecting specific individuals. Selectivity is based on: 1 identity, 2 

location, 3 demographic class (problem animal profiling) and 4 assumed non-

selective.   

Accuracy Method Example Reference 
Highest 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Lowest 

Targeting animals that 
can be individually 
recognised1 

Using records of individual 
involvement to inform 
management. 

Mutinda et al. 
(2014) 

Targeting individuals 
during human-wildlife 
impact1 

Enacting management 
actions during human-wildlife 
impact. 

Schakner et 
al. (2016) 

Targeting individuals 
based on evidence 
from impact event1,2 

Using tracking hounds to 
locate specific animals (see 
also Box 2.2) 

Peebles et al. 
(2013) 

Targeting individuals 
post human-wildlife 
impact2 

Targeting those individuals 
found at or near recent 
impact events. 

Woodroffe & 
Frank (2005) 

Targeting individuals 
using specific lures, 
attractants or traps2 

Using specific lures or 
attractants aimed at those 
individuals most likely cause 
impact. 

Königson et 
al. (2013) 

Targeting individuals 
within specific 
territories2 

Removing animals when 
territory, not individual 
identity, is known. 

Sanz-Aguilar 
et al. (2009) 

Targeting individuals 
based on pre-
established geographic 
areas2 

Identifying specific areas 
where individuals are most 
likely to cause impact. 

Hoare (2001) 

Targeting individuals 
based on problem 
animal profiling3 

Identifying specific 
demographic classes within a 
population most likely to 
cause impact. 

Moseby, 
Peacock & 

Read (2015) 

Population control or 
eradication4 

Generalised control or 
eradication of a species. 

Treves & 
Naughton-

Treves 
(2005) 

Excluding access4 Attempting to exclude all 
individuals of a species from 
an area. 

Mutinda et al. 
(2014) 
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Despite these successes, many studies report that the benefits of removing 

problem individuals are short-lived (Woodroffe & Frank 2005; Selier et al. 

2014; Bradley et al. 2015). The rapid recurrence of (Selier et al. 2014), or 

increase in (Artelle et al. 2016), wildlife impact following the removal of 

individuals could indicate the presence of a problem component within the 

population (Hoare 2001), the social transmission of behaviours (Schakner et 

al. 2016), compensatory immigration or population growth (Doherty & Ritchie 

2016), a specific site effect (Zarco-González et al. 2012), inadequate 

prevention measures (Treves & Naughton-Treves 2005), or behavioural 

changes in the residual population (Smith, Wang & Wilmers 2015). Whatever 

the cause, if benefits are short-lived and frequent interventions are necessary, 

increased ecological, economic and social costs can be expected. 

 

The utility of problem individual removal has been analysed in two cases 

using long-term datasets. Bradley et al. (2015) compared the consequences 

for livestock losses of selectively and entirely removing packs of grey wolves 

Canis lupus. Although this study failed to identify those animals specifically 

responsible for predation, their analysis suggests that removing the breeding 

female, or a > 1 year old male (the demographic class most likely to lead 

livestock hunts) did not significantly increase the time to reoccurrence of 

depredation, when compared to the effect of removing any other member of 

the pack. Furthermore, this study found that removing whole wolf packs 

reduced subsequent livestock depredation events by 79% over the next five 

years, when compared to 29% for partial pack removal (Bradley et al. 2015). 

At least in this situation, the selective removal of individual wolves was 

ineffective. Second, Artelle et al. (2016) analysed attacks on humans and the 

consequent lethal control of grizzly bears Ursus arctos horribilis in Canada. 

They found evidence that the primary driver of these attacks was not the 

number of conflict-prone (risk-tolerant, bold) individual bears but shortages in 

their food supply (Artelle et al. 2016). This finding suggests that proactively 

addressing ecological stressors might be a better long-term strategy than 

responsive bear removal.   
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(IV) Can the indirect effects of selective management be avoided or 
minimised? 
Although there are promising non-lethal methods to mitigate wildlife impact 

(Box 2.1; see also Johnson & Wallach, 2016; Treves, Krofel & McManus, 

2016), problem individual management often involves the lethal removal of 

animals (Box 2.3). This removal is non-random, targeted at behaviours that 

create impacts, and therefore likely to remove correlated phenotypes and 

demographic classes. While my focus is on removal of individuals for wildlife 

management purposes, my findings draw from, and are relevant to, animal 

populations under non-random selection from harvesting (Leclerc, Zedrosser 

& Pelletier 2017). Following Greggor et al. (2016), I consider the possible 

additional and unintended effects of selectivity (Figure 2.1).  

 

In selective management there is a general trend for males to be 

overrepresented in removal records. This bias was first identified in relation to 

large carnivores (Linnell et al. 1999) but is apparent in other taxa (Fernando et 

al. 2012; Selier et al. 2014; Fukuda, Manolis & Appel 2014) and can be 

extremely pronounced. Only 2 of 38 seals caught raiding salmon traps in the 

Baltic Sea were female (Königson et al. 2013). Only male Australian magpies 

Cracticus tibicen were observed attacking people (Warne, Jones & Astheimer 

2010). In Kenya, male elephants were responsible for 86% of fence breaking 

incidents (Mutinda et al. 2014). In an attempt to refine lethal management, 

several recent studies have explicitly directed wildlife managers towards 

removing male animals (Königson et al. 2013; Hiller et al. 2015; Kauhala et al. 

2015). The deliberate or unintentional targeting of males can, however, have 

broader detrimental effects; male removal and the skewing of natural sex 

ratios can alter community structure and sexual selection processes, produce 

an increase in infanticide and female harassment and potentially remove the 

benefits of biparental care (Milner, Nilsen & Andreassen 2007; Rankin & 

Kokko 2007). 

 

To reduce impacts in social species, individuals can be targeted to elicit 

behavioural change in others. This could be by removing individuals 

responsible for leading group behaviour. For example, the culling of specific 
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alpha coyotes Canis latrans has been recommended to reduce livestock 

depredation by preventing co-operative killing behaviour (Mitchell, Jaeger & 

Barrett 2004). Individuals might also be removed to induce a behavioural 

change in those animals that remain. Cromsigt et al. (2013: p547) have 

proposed utilising fear to induce behavioural change, stating “it might be 

easier to induce fear for social ungulates where one individual is shot and 

escaping individuals learn about risk”. Aside from the unintended behavioural 

consequences of elevating the perception of risk (Smith, Wang & Wilmers 

2015), targeting individuals in group-living species carries additional 

uncertainty due to the uneven roles that individuals play in group dynamics. 

For instance, the removal of ‘keystone individuals’ (“an individual that has a 

disproportionately large, irreplaceable effect on other group members and/or 

the overall group dynamics”; Modlmeier et al. 2014: p55) during management 

might have unforeseen negative consequences on the fitness of other 

individuals in the group through loss of knowledge or the destabilisation of 

social structures (Milner, Nilsen & Andreassen 2007; Modlmeier et al. 2014). 

Modlmeier et al. (2014) identify social network theory as a promising 

approach for investigating these concerns (see Box 2.2). 

 

In the longer term, selective management can exert a strong artificial selection 

against certain behaviours (Woodroffe & Frank 2005; Mysterud 2011), 

possibly causing rapid changes to correlated phenotypes and genotypes 

(Darimont et al. 2009). Long-standing, historical control of European brown 

bears U. a. arctos might have resulted in the selection of certain traits leading 

these bears being better suited to coexistence with people than their North 

American counterparts (Zedrosser et al. 2011). Although it would appear that 

changing the behaviour of a population through the selective removal of 

individuals would be a win-win situation, the “semi-domestication” of a species 

through trait selection can itself yield undesirable evolutionary effects by 

removing certain phenotypes (Mysterud 2011; Leclerc, Zedrosser & Pelletier 

2017).  
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(V) Can targeting individuals help achieve social objectives? 
Conservation conflicts can arise due to disagreement between parties over 

the methods or objectives of wildlife management (Redpath et al. 2013). 

Mitigating or working within these conflicts is often a difficult task as social 

variables, such as politics or stakeholder attitudes can be of equal or greater 

importance to ecological variables in determining policy, practice and 

outcomes (Massei et al. 2010; Dickman 2010). While selective management 

itself is not typically seen as socially contentious, methods utilised to remove 

individuals, such as lethal control, can be (e.g. Box 2.4). An assessment is 

therefore needed as to whether focussing management on individual animals 

can help navigate the diverse, and often opposing, attitudes, objectives and 

ethical positions of a broad range of people (Figure 2.1). 

 

The lethal control of wild animals is unpopular amongst those who value 

wildlife in an intrinsic and non-consumptive way (Ramp & Bekoff 2015). Yet it 

has been suggested that, when compared to population control, removing 

only the problem individuals will create less of an impact upon the sensibilities 

of such groups (Linnell 2011). This might be due to selective management 

being seen as ‘more ethical’ (Schakner et al. 2016) or that the label of 

‘problem’ or ‘rogue’ gives the animal a ‘malicious agency’ (Neff & Hueter 

2013). There certainly appears to be increased support for killing an individual 

once it has committed an act that could impact upon humans (Martínez-

Espiñeira 2006; Browne-Nunez et al. 2015). Despite these findings, lethal 

control is likely to be met with at least some opposition (see Box 2.4). 

 

Stakeholders who are negatively and directly impacted by wildlife rarely share 

the protectionist values of others (Treves & Naughton-Treves 2005), favouring 

hunting, population control (Treves, Naughton-Treves & Shelley 2013) and 

translocation (Fernando et al. 2012). The perception that the impact is caused 

by an individual animal appears to catalyse calls for lethal control (Goldman, 

de Pinho & Perry 2013; Neff & Hueter 2013; Parrott 2015). In Kenya, Maasai 

communities refused monetary compensation aimed at preventing retaliatory 

lion hunts as they perceived that individual lions developed foraging 

specialisations on livestock that would continue indefinitely until those 
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particular lions were removed (Goldman, de Pinho & Perry 2013). Where 

appropriate, allowing stakeholders to participate actively in the hunting of 

problem animals might offer a form of bottom-up collaborative governance 

that promotes coexistence (Redpath et al. 2017), especially if methods with 

high accuracy are used (Table 2.1). 

 

Wildlife managers that choose to apply lethal control of individuals to ease 

social tensions tend to follow a utilitarian approach (Dubois & Harshaw 2013), 

whereby the removal of a few animals is acceptable when compared to the 

negative consequences that other strategies (including inaction) might 

produce, such as a breakdown in trust between stakeholders and 

management agencies or increased illegal persecution (Goldman, de Pinho & 

Perry 2013; Olson et al. 2015). Yet those that see problem individual 

management as a “quick-fix method” with a “high public relations value” 

(Hoare 2001: p45) should be alert to the importance of correctly distinguishing 

between an improvement in stakeholder attitudes towards a management 

body and an improvement in attitudes towards the species (Treves et al. 

2015). Indeed, the assumption that the removal of a few individuals will 

increase tolerance for those remaining is often made by management bodies 

without clear evidence to suggest this is the case (Treves et al. 2015). Recent 

longitudinal studies attempting to unravel whether lethal grey wolf 

management increased stakeholder tolerance of wolves in the US have found 

limited support for this assertion when surveying attitudes (Treves, Naughton-

Treves & Shelley 2013; Browne-Nunez et al. 2015). This assumption is 

fundamental to strategies that aim to promote co-existence and reduce illegal 

killing through control of problem individuals. Further studies across other 

systems are urgently needed to help those considering the social implications 

of selective management. 
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Box 2.4: Case study - ‘Bruno the Bear’ and the power of the individual  

A single animal can sometimes have broad-reaching impacts, extending beyond 

ecology to international policy. Perhaps the most famous problem individual in recent 

decades was Bear JJ1. Named ‘Bruno’ by the media, in May 2006 this brown bear 

was the first to be recorded in Germany in 170 years (Maderspacher 2007). While 

there was initially considerable positive attention at Bruno’s arrival, a trail of well-

publicised incidents, primarily the killing of livestock, led to Bruno being branded a 

‘problem bear’ (Austrian Bear Emergency Team 2006; Maderspacher 2007). It is 

likely that Bruno’s ‘bad habits’ were, at least in part, a product of his upbringing 

(Morehouse et al. 2016); his mother had displayed similar behaviour during his 

infancy and his brother also went on to become a ‘problem bear’ (Austrian Bear 

Emergency Team 2006; European Commission Technical Report 2015). While 

Bruno’s individuality was perceived as errant by those who had been directly affected 

(Austrian Bear Emergency Team 2006), it was seen as charismatic by others 

(Maderspacher 2007). Although Bruno seemed to become less and less fearful of 

humans, his extensive roaming meant that attempts to capture him were 

unsuccessful and he was eventually shot by hunters commissioned by the Bavarian 

government (Austrian Bear Emergency Team 2006). The decision to shoot Bruno 

was made following a rigorous risk assessment, centred less on threats to livestock, 

but more on evidence that he had become habituated to people and so posed an 

imminent threat to human safety (Austrian Bear Emergency Team 2006). By the time 

he was shot, the character of ‘Bruno the Bear’ had achieved international celebrity-

like status. His death was reported in newspapers from Das Spiegel to The 

Washington Post with headlines such as “Fed up Germany kills its only wild bear” 

(Washington Post, 27 June 2006). This single episode had policy implications at 

national and international levels. Within Germany, comparisons of public attitudes 

before and after Bruno suggested a significant decline in support for predator 

reintroductions, particularly in Bavaria (Munchhausen & Herrmann 2007). At an 

international level, it prompted a special European Commission report focused on 

“defining, preventing and reacting to problem bear behaviour” (European 

Commission Technical Report 2015). The story of Bear JJ1 vividly illustrates the 

impact of animal individuality.  
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Figure 2.3. A taxidermy mount of Bruno the Bear raiding a beehive. 

This photograph is of a display at the Museum of Man and Nature, Munich 

(Photo: © Museum Mensch und Natur) 

Concluding remarks  
I have looked at the ecological basis for, and efficacy of, selective wildlife 

management. As ethical and environmental concerns over traditional forms of 

wildlife management increase, it seems likely that the current trend toward 

selectivity will continue. Evidence is broadly supportive and I am hopeful 

about what can be achieved and about prospects for future research (Box 2.5: 

Outstanding questions). Problem individuals can indeed be found in wild 

animal populations, and the clearest examples are found in generalist species 

with high behavioural plasticity. Tailoring management to focus on individual 

animals displaying unwanted traits, although at times logistically challenging, 

can generally be thought of as a less harmful strategy when compared to 

population-level intervention.  There are instances of where this selective 

management has produced sudden drops in impact, without threatening 

conservation objectives and/or has presented a workable compromise for 

stakeholders with opposing views.  
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However, targeting problem individuals should not be seen as a general 

solution. The behaviour these animals display, though often uncommon, 

rarely appears to be truly exceptional. As a result, benefits can be short-lived 

as problem animals are replaced, meaning such strategies must rely on on-

going management, which is usually lethal. Where this is the case, in addition 

to increased economic costs, it seems likely that selection on certain traits, 

behaviours or demographic classes will be strong and disruption to social 

dynamics is likely. Those responsible need to ensure that they have 

considered subtle, indirect impacts of these new selective processes. 

 

For practitioners, decisions about selective management should be based on 

a combination of the economic, ecological and social costs and benefits 

(Figure 2.1). A decision-making process that is both transparent and flexible, 

should help account for any uncertainty or change in these variables (Redpath 

et al. 2013; Milner-Gulland & Shea 2017). Ultimately management will benefit 

greatly from improved understanding of the underlying causes of problem 

behaviours, e.g. Artelle et al. (2016), Morehouse et al. (2016) and Schakner et 

al. (2016). Such research, though rare, represents the best long-term 

prospect for mitigating, minimising and preventing impact and conflict. 

 

Box 2.5: Outstanding questions 

I highlight four areas of research that will add to our understanding of the 

ecology of problem individual management. 

(i) What are the ecological drivers of problem behaviours, and can 

proactive management of such drivers alleviate impact and conflict? 

(ii) Can we build end-to-end ecological appraisals of selective management, 

where the behaviour and biology of individuals are used to understand 

problems, develop solutions, and evaluate actions in practice? 

(iii) In which environmental contexts is management confounded by rapid re-

emergence of problem behaviours? 
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(iv) Can we effectively integrate ecology and social science in developing 

mitigation options and investigating the longer-term effects of selective 

management on those affected by, and engaging with, the problem? 
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Chapter 3 

 

EVALUATING BAYESIAN STABLE ISOTOPE MIXING 

MODELS OF WILD ANIMAL DIET  
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Chapter 3: Evaluating Bayesian stable isotope mixing models of wild 
animal diet 

Abstract 
Ecologists quantify animal diets using direct and indirect methods, including 

analysis of faeces, pellets, prey items and gut contents. For stable isotope 

analyses of diet, Bayesian stable isotope mixing models (BSIMMs) are 

increasingly used to infer the relative importance of food sources to 

consumers. Although a powerful approach, it has been hard to test BSIMM 

performance as the necessary fine-scale data for wild animals are difficult to 

collect.  I evaluated the performance of BSIMMs in quantifying animal diets 

when using δ13C and δ15N stable isotope ratios from the feathers and blood of 

common buzzard Buteo buteo nestlings. I analysed model outcomes with 

various trophic discrimination factors (TDFs) and with and without informative 

priors, and compared these to direct camera observations of prey provisioned 

to nestlings at nests. BSIMMs with different TDFs varied markedly in their 

performance and the best fits to observations were obtained using the 

statistical package SIDER to derive TDFs. These models produced strong 

agreement at the population level and, for the main prey item, at the individual 

nest level. The inclusion of informative priors from conventional analysis of 

prey remains appears to have transferred biases into model posteriors, 

markedly reducing model performance. BSIMMs can provide highly accurate 

assessments of diet in wild animals at population and finer scales. TDF 

estimates from the SIDER package perform better than those from 

taxonomically similar species. 
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Introduction 
Stable isotope analysis of consumer tissues is an effective indirect method for 

determining animal diets that, when used in combination with other methods, 

can provide an estimate of the proportional contributions of food sources 

(Inger & Bearhop 2008; Parnell et al. 2013). The method works because 

naturally-occurring variation in the stable isotope ratios of foods is 

incorporated into consumer tissue (Hobson & Clark 1992). By analysing 

isotope ratios in the tissue of consumers and their putative food, it is possible 

to model isotope mixing and infer the relative importance of food groups to the 

consumer (Inger & Bearhop 2008). Recent advances have moved stable 

isotope mixing models (SIMMs) into a Bayesian framework (BSIMMs), which 

incorporates uncertainty in parameter estimates and error and gives 

probabilistic predictions of diet composition (Moore & Semmens 2008; Parnell 

et al. 2013; Phillips et al. 2014). These models also allow prior knowledge of 

feeding behaviours or food preferences to be taken into account, guiding the 

model fitting process. The inclusion of ‘informative priors’ from complementary 

field and dietary information, is a widely advocated means of improving SIMM 

performance (Moore & Semmens 2008; Bond & Diamond 2011). Indeed, in 

reconstructing known diets from captive feeding trials, Derbridge et al. (2015) 

were unable to produce comparable pictures of wolf Canis lupus diet without 

including priors. Ecologists have used priors derived from assessments of diet 

(Doucette, Wissel & Somers 2011), resource availability (Derbridge, 

Krausman & Darimont 2012) and other biologically relevant information such 

as prey abundance and handling times (Yeakel et al. 2011). Despite this, the 

potential influence of informative priors on model outcomes, or ‘posteriors’ 

(Derbridge et al. 2015), raises concerns that inappropriate priors could 

confound important information within the basic isotopic data (Franco-Trecu et 

al. 2013).  

 

A further challenge in formulating mixing models is trophic discrimination, 

which is the change in isotope ratios arising from physiological processes 

during incorporation of dietary protein into consumer tissue. Trophic 

discrimination factors (TDFs) account for this change in mixing models and 

can have a profound influence upon their outcomes (Caut, Angulo & 
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Courchamp 2008; Bond & Diamond 2011). To derive TDFs, researchers have 

used values from taxonomically similar species, often from captive feeding 

trials or means from other studies (Caut, Angulo & Courchamp 2009). 

However, TDFs can vary with species, nutritional status, tissue type, 

individual physiology and isotopic composition of diet (Vanderklift & Ponsard 

2003; Caut, Angulo & Courchamp 2009). Although BSIMMs allow for 

uncertainty in TDFs the ‘true’ ranges within which they lie are difficult to 

determine, particularly for wild animals (Phillips et al. 2014).  

 

The creation of open source packages for BSIMMs has led to an increase in 

usage (Phillips et al. 2014). If properly implemented, BSIMMs can produce 

accurate, probabilistic estimates of animal diets (Moore & Semmens 2008; 

Parnell et al. 2013), yet concerns have been raised over misuse and 

sensitivity to input parameters (Martínez Del Rio et al. 2009; Boecklen et al. 

2011; Polito et al. 2011; Franco-Trecu et al. 2013; Derbridge et al. 2015). This 

has led to attempts to evaluate BSIMMs through experimental and 

observational studies (Weiser & Powell 2011; Derbridge, Krausman & 

Darimont 2012; Franco-Trecu et al. 2013; Flemming & van Heezik 2014; 

Resano-Mayor et al. 2014; Derbridge et al. 2015; Newsome, Collins & Sharpe 

2015). However, studies of captive animals in controlled conditions (Caut, 

Angulo & Courchamp 2008; Derbridge et al. 2015) lack the variation in diet 

and physiology found in wild animals (Boecklen et al. 2011). This variation will 

change patterns of nutrient incorporation into different tissues (isotopic 

routing; see Podlesak & McWilliams, 2006), meaning that models validated in 

captivity might be less applicable to wild systems. Attempts to evaluate 

BSIMMs in field conditions have, so far, been constrained to comparing 

outcomes with those of alternative indirect methods. While some studies 

demonstrated similarity between indirect methods and BSIMMs (Resano-

Mayor et al. 2014; Newsome, Collins & Sharpe 2015), others have reported 

mixed results related to biases associated with prey size and digestibility 

(Weiser & Powell 2011; Franco-Trecu et al. 2013; Flemming & van Heezik 

2014). 
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To measure BSIMM performance, a system is required for which accurate 

dietary data from a direct method can be collected and aligned with stable 

isotope analysis of tissue integrated over a comparable period. During the 

breeding season, predatory birds offer such a system, as food is brought to 

the nest, allowing direct observation and sampling of nestling diet (Gaglio et 

al. 2017; Resano-Mayor et al. 2014). Direct observation of feeding at the nest 

has been aided by remote cameras (Rogers, DeStefano & Ingraldi 2005; 

Smithers, Boal & Andersen 2005). Although this method might fail to identify 

small prey (García-Salgado et al. 2015) and can be costly (Tornberg & Reif 

2007), dietary estimates from cameras can represent the most complete 

assessments of raptor diets (Lewis, Fuller & Titus 2004; García-Salgado et al. 

2015) and have been used to evaluate other analytical methods (Lewis, Fuller 

& Titus 2004; Selås, Tveiten & Aanonsen 2007; Tornberg & Reif 2007). 

 

I compare dietary inference from BSIMMs against observations of food 

provisioning at nests of common buzzards Buteo buteo. Buzzards are a 

medium-sized bird of prey found across much of the Palaearctic (Cramp & 

Simmons 1980). In the U.K., buzzards have a diverse diet (Rooney & 

Montgomery 2013; Francksen, Whittingham & Baines 2016) and rapid 

increases in buzzard populations has created growing interest in their diet 

(Parrott 2015). I assessed how TDF choice influences the accuracy of model 

posteriors and then used these results to demonstrate how informative priors 

influence model performance. 

Materials and Methods 
Fieldwork was conducted from May to August 2015 on three study sites in 

Cornwall, U.K. (the central point of three study sites is 50.35°N, 4.85°W). 

Buzzard nests were located during the early nesting phase and accessed 

three times during the nesting season (Table 3.1). Motion-activated cameras 

(CMOS 380 TVL, HandyKam, Cornwall) were installed on each nest between 

early June and mid-July. Cameras recorded up to 5 minutes of video when 

movement was detected  (Appendix 2). Each camera was active over a mean 

of 15 days (SD = 5.1) encompassing a mean of 207 ‘hunting hours’ (SD = 82). 
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Videos of prey deliveries were watched by a single observer (GS). Where 

possible, prey items were recorded at a species level but were otherwise 

identified to category (Table 3.2). Each item was classed as small, medium or 

large in relation to the mean size for that species or category (Appendix 3, 5 & 

6). For larger prey items (> 100g), the proportion of the whole carcass brought 

to the nest was noted, as adults often partially consume large prey before 

returning to the nest (Resano-Mayor et al. 2014). Weights were allocated for 

each item based on species, size and proportion provisioned. For items that 

could not be identified, biomass was calculated from the approximate size and 

the length of time it took to consume. The proportion of biomass was 

calculated for unidentified items but did not feature in further analysis. For 

each of the 20 nests, the total biomass was used to calculate the contribution 

of each prey category to nestling diet.  

 

Table 3.1: Periods of data and sample collection in relation to nesting stage.  

Nesting stage Hatching 
confirmed  

Nestlings 18-25 days old After fledging 

 May 

1-15 

May 

16-31 

June 

1-15 

June 

16-30 

July 

1-15 

July 

16-31 

August 

1-15 

Prey remains and 

pellets 

       

Nest cameras         

Prey tissue        

Nestling bloods and 

feathers 

       

 

At each nest, prey remains and egested pellets were located by searching the 

nest cup, tree and a 10m radius at ground level at each visit. Pellets were 

dissected and the contents sorted by species (or category, as above) and the 

minimum number of each prey type was identified. When feather remains in 

pellets could not be identified, size class was estimated from feather size. 

Remains without edible parts were removed from the nest to avoid recounting. 

I did not record invertebrates as, even when frequently recorded, their 

importance as a dietary item is negligible due to their low biomass (Rooney & 
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Montgomery 2013). Following Resano-Mayor et al. (2014), I used estimates of 

prey weights to convert frequency of occurrence into percentage biomass 

(Table 3.2; Appendix 6 & 7). Prior to analysis, data from prey remains and 

pellet collections were combined. This approach is commonly used to assess 

raptor diet (Rooney & Montgomery 2013), though the biases from indirect 

methods can vary between species (Simmons, Avery & Avery 1991; Redpath 

et al. 2001) and years (Francksen, Whittingham & Baines 2016) and I 

acknowledge that combining methods may not always be appropriate. 

 

Approximately 0.2ml of blood and four growing or freshly grown body feathers 

were sampled under licence (Appendix 4) from nestlings that were 18-25 days 

old. Bloods were centrifuged and red blood cells (RBCs) separated. Feathers 

were cleaned with de-ionised water to remove surface contaminants. All 

tissues were stored at -80°C. The turnover rate of RBCs and the age-class at 

which natal down is replaced by body feathers means both RBCs and body 

feathers can represent nestling diets during the rearing period (Hobson & 

Clark 1993; Bearhop et al. 2000). As a result, some of the sampled tissue 

might have been formed prior to the deployment of the cameras, creating 

some temporal disparity in my datasets. 

 

Access to food sources between delivery by the parent and ingestion by the 

nestling is a particular benefit of this system, assuring that tissue samples are 

more directly representative of those eaten (Doucette, Wissel & Somers 

2011). Therefore, all fresh prey items found within the nest cup were sampled 

by taking up to 0.5 g of muscle before the remaining prey was returned to the 

nest. Additional amphibian tissue was collected opportunistically from 

carcasses found in or near the study area. Tissue samples were immediately 

put on ice before being stored at -80°C. 
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Table 3.2: Frequency of prey items identified from video footage from 

cameras on 20 buzzard nests. The six most important prey groups are shown 

in bold. N denotes frequency of occurrence. BIO denotes biomass. 

Taxonomic 
group 

Prey group Species N N % Total 
BIO (g) 

Total 
BIO (%) 

Lagomorpha Rabbits Rabbit Oryctolagus cuniculus 178 12.6 33161 37.4 
Rodentia Small 

rodents 
Vole Myodes/Microtus spp. 359 25.5 6427 7.2 

  Small 
rodents 

Wood mouse Apodemus 
sylvaticus 

49 3.5 1044 1.2 

  n/a Rat Rattus norvegicus 22 1.6 3196 3.6 
  n/a Squirrel Sciurus carolinensis 9 0.6 3306 3.7 
Soricomorpha Shrews & 

moles 
Mole Talpa europaea 59 4.2 5109 5.8 

  Shrews & 
moles 

Shrew Soricidae spp. 66 4.7 470 0.5 

Carnivora n/a Mustela spp. 6 0.4 352 0.4 
Galliformes Gamebirds Pheasant Phasianus colchicus 30 2.1 5760 6.5 
  *      Released poults 39 2.8 7836 8.8 
Passeriformes n/a Thrush Turdidae spp. 26 1.9 1984 2.2 
  n/a Unidentified Passeriformes 39 2.8 594 0.7 
  Corvids Corvid Corvidae spp. 30 2.1 4719 5.3 
Columbiformes  n/a Woodpigeon Columba 

palumbus 
7 0.5 1627 1.8 

Accipitriformes n/a Buzzard Buteo buteo 1 0.1 50 0.1 
Gruiformes n/a Moorhen Gallinula chloropus 1 0.1 230 0.3 
Anura Frogs & 

toads 
Frog Rana temporaria 104 7.4 2704 3.0 

  Frogs & 
toads 

Toad Bufo bufo 108 7.7 3196 3.6 

Squamata n/a Slow worm Anguis fragilis 2 0.1 26 0.0 
  n/a Grass snake Natrix natrix 5 0.4 353 0.4 
  n/a Adder Vipera berus 1 0.1 83 0.1 
Anguilliformes n/a European eel Anguilla anguilla 2 0.1 600 0.7 
Megadrilacea n/a Earthworm 9 0.6 37 0.0 
Unidentified  Shrew or small rodent 104 7.4 1524 1.7 
   Small (est. < 50g) 138 9.8 2236 2.5 
   Medium (est. 50-150g) 10 0.7 1040 1.2 
   Large (est. > 150g) 5 0.4 1050 1.2 
Total   1409 100 88715 100 
Total identified   1152 82 82865 93 
Total in 6 prey 
groups 

  983 70 62590 71 
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Stable isotope analysis 

Prior to analysis, samples were freeze dried for >48 hours. Samples were 

homogenised and ~0.7mg aliquots were weighed into tin cups. All stable 

isotope analyses were carried out using a Sercon (Crewe, U.K.) INTEGRA2 

elemental analyser-isotope ratio mass spectrometer at the University of 

Exeter. Stable carbon and nitrogen isotope ratios are expressed as δ values 

and expressed in ‰ where 

!	# = [('()*+,-	/	'(/)01)21) − 1]	∗ 	1000 
and # = 15N or 13C, '()*+,- 	= heavy to light isotope ratio derived from the 

sample, and '(/)01)21	= heavy to light isotope ratio derived from the Vienna 

Pee Dee Belemnite (VPBD) for δ13C and atmospheric nitrogen for δ15N. 

Based on within-run standards, analytical precision was ± 0.1‰. 

 

Trophic discrimination factors  

I searched the literature for feather and blood TDFs of ecological relevance to 

my species. I found none for B. buteo or other Buteo species (although Li et 

al. (2001) provide TDFs for B. hemilasius but for a different tissue type, i.e. 

muscle), but identified four sources of blood and feather values from 

taxonomically similar species and results of meta-analyses (Table 3.3). 

Specifically, the two TDFs sources from taxonomically similar species were 

from laboratory feeding trials of peregrine falcons Falco peregrinus (Hobson & 

Clark 1992) and California condors Gymnogyps californianus (Kurle et al. 

2013). For the third source, with the exception of blood �13C, I used the 

mean values from a meta-analysis of 61 avian TDFs for �13C and 52 for �
15N (Caut et al. 2009). Blood �13C was calculated from the blood �13C of 

nestlings using a regression reported by Caut et al. (2009). The fourth source 

was a recently developed R package (SIDER; Healy et al. 2016) that uses a 

Bayesian imputational approach to estimate TDFs based on a species’ 

ecology, physiology and phylogeny. TDFs estimated from the SIDER package 

may also have the added benefit of a measure of precision within its 

estimates producing a more realistic parameter of uncertainty (Healy et al. 

2016).  
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Table 3.3: Trophic discrimination factors (TDFs) for common buzzards used 

in Bayesian stable isotope mixing models. TDFs were from taxonomically 

similar species: (a) peregrine falcon Falco peregrinus fed on Japanese quail 

Coturnix japonica (Hobson & Clark 1992); (b) California condor Gymnogyps 

californianus fed on laboratory rats Rattus norvegicus (Kurle et al. 2013), (c) 

from a meta-analysis of 61 avian TDFs for Δ13C and 52 for Δ15N reported by 

Caut et al. (2009) and (d) from Bayesian inference in the R package SIDER 

(Healy et al. 2016).  
Source  Blood  Feather  

Δ13C Δ15N Δ13C Δ15N 

a. Peregrine falcon + 0.20 ± 0.01 + 3.30 ± 0.40 + 2.10 ± 0.08 + 2.70 ± 0.50 

b. California condor -  0.70 ± 0.10 + 1.70 ± 0.10 + 0.40 ± 0.40 + 3.10 ± 0.20 

c. Meta analysis + 1.27 ± 0.17* + 2.25 ± 0.20 + 2.16 ± 0.35 + 3.84 ± 0.26 

d. SIDER  + 1.51 ± 1.46 + 2.35 ± 0.99 + 2.37 ± 1.49 + 2.79 ± 1.03 

*Blood Δ13C was calculated from the blood δ13C of nestlings using a 

regression provided by Caut et al. (2009). 

 

Only prey items identified to taxonomic Order or lower, were included in the 

direct observations data. For comparison of methods, all three datasets, i.e. 

BSIMMs, direct observations and conventional methods, were grouped into 

the same prey categories (Phillips et al. 2014). Only prey categories that 

comprised >5% biomass from the direct observations were selected for 

comparison, as the exclusion of uncommon dietary items tends to improve 

mixing model accuracy (Phillips & Gregg 2003). For all methodological 

comparisons, I used biomass rather than frequency of occurrence, as the 

former provides the most appropriate measure of relative importance in diet. 

Biomass estimates from provisioning observations and conventional methods 

were calculated for every prey category at each nest. I used a bootstrapping 

procedure (sampling the proportions of each prey category 1000 times) to 

create distributions that could be compared to BSIMM posteriors. 
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Statistical analysis 
R version 3.2.2 (R Core Team 2016) was used for all analyses. To validate 

my assumption that red blood cells and feathers contained isotopic 

information assimilated over comparable time periods, I fitted linear 

regressions between feather and blood δ15N and δ13C. To assess the 

significance of variation in δ15N and δ13C among prey groups, I fitted one-way 

ANOVAs and Tukey’s post-hoc tests. I used SIMMR in R (Parnell et al. 2010; 

Parnell & Inger 2016), to infer the relative contribution of the six prey groups 

to the diet of buzzard nestlings. Models included the mean and standard 

deviation of δ15N and δ13C for the prey groups (Table 3.4). To account for the 

non-independence of buzzard nestlings from the same nest I used mean δ15N 

and δ13C values per nest. 

 

To test the effects of different TDFs, the similarity of model outputs using the 

four TDF sources were compared to direct observations, using 

Bhattacharyya’s Coefficient (BC). BC varies from 0 (no similarity) to 1 

(identical). Catry et al. (2009), Bond and Diamond (2011) and Jardine et al. 

(2015) have previously considered a BC of > 0.6 to represent a significant 

overlap in the distributions of a dietary source. Here, we use BC to evaluate 

variation in dietary estimates but do not infer statistical significance from this 

value. As I was interested in within prey category agreement, as well as 

overall agreement, I conducted pairwise model comparisons for each prey 

category and used mean BC (± SD) as an overall measure. The TDF inputs 

that led to the BSIMM with the highest BC were then used to explore model 

performance at a finer scale by reconstructing nestling diet in individual nests, 

using SIMMRsolo (Parnell et al. 2010; Parnell & Inger 2016). Separate 

models were run for blood and feather samples. The relationship between diet 

estimates from direct observations and BSIMMs were then tested using 

Spearman’s rank correlation for each prey category. To demonstrate the 

effect of informative priors on model posteriors, the BSIMMs with the highest 

similarity index for each tissue were run again with informative priors. For 

each prey category, I used mean and SD of proportional biomass, estimated 

by conventional methods (pellets and prey remains) across all nests. 
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Table 3.4: The stable isotope signatures of six main prey groups of common 

buzzards.  

 

Prey categories comprised: rabbits (Oryctolagus cuniculus), small rodents (3 

Apodemus sylvaticus, 14 Myodes glareolus / Microtus agrestis), shrews & moles (2 

Sorex araneus, 5 Talpa europaea), Gamebirds (1 Alectoris rufa, 8 Phasianus 

colchicus), Corvids (2 Corvus corone, 3 Corvidae spp.), Frogs & toads (4 Rana 

temporaria, 3 Bufo bufo). 

Results 
334 prey items were identified at 20 nests; 235 prey remains (mean per nest 

11.8 ± 5.1 SD) and 99 from pellets (5.0 ± 3.2). For these conventional 

methods, rabbit was the most frequently identified prey item (frequency of 

occurrence for prey remains = 32% and pellets = 37%) and the most 

important (biomass for prey remains = 36% and pellets = 62%) (Appendix 5). 
 

Nest cameras recorded footage for 4144 hours over 300 ‘nest days’ (mean 

hours per nest per day = 13.8 ± 4.2). 1409 prey items were recorded (mean 

items per nest = 70.5 ± 30.6), of which 1152 (82%) were identified. Of the 257 

that could not be identified, 242 (94.2%) were categorised as ‘unknown small 

prey’ due to their rapid (< 1 minute) consumption. This category included 104 

(41%) deliveries identified as ‘small mammals’, but where shrews and small 

rodents could not be distinguished (Appendix 6 & 7). On seven nests, 

released pheasant poults, identified by clipped primary feathers, were 

recorded as prey items towards the end of the monitoring period. Because the 

release date for poults was after the isotope samples had been taken from the 

buzzard nestlings, and to allow for the comparison of methods, released 

pheasants were excluded from further analysis (camera observations: n = 39; 

Prey category n Mean δ15N (SD) Mean δ13C (SD) 
Rabbits 24 6.11 (1.69) -28.76 (0.52) 

Small rodents  17 4.18 (2.59) -28.33 (1.49) 

Shrews & moles 7 9.01 (1.73) -25.77 (1.01) 

Gamebirds 9 6.34 (0.73) -24.71 (2.13) 

Corvids 5 8.60 (1.53) -24.97 (0.58) 

Frogs & toads  7  6.25 (1.47) -26.54 (0.44) 
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conventional methods: n = 18). Biomass estimates were obtained for all 1409 

items. These were based on species, size, proportion remaining and time 

taken to consume (Appendix 6, 7 & 8). Prey items were grouped by taxonomy 

and dietary ecology (e.g. corvids were separated from other Passeriformes). 

This left six prey groups comprising >5% biomass that were used for further 

analyses (Table 3.2). 

 
I obtained isotope ratio data from red blood cells and feathers sampled from 

29 buzzard nestlings from 20 nests. There was a strong positive relationship 

between the blood and feather signatures for both δ13C (slope =  0.87, S.E. = 

0.11; intercept = -2.56, S.E. = 3.00) and δ15N (slope = 1.28, S.E. = 0.12; 

intercept = -1.04 , S.E. = 0.95). 69 prey tissue samples were collected from 

the six prey categories (Table 3.4). There was significant variation among the 

prey categories in δ13C (F5,63 = 25.73, P < 0.001) and δ15N (F5,63  = 8.87, P < 

0.001). Buzzard nestling signatures mainly fell within the range of sampled 

prey items when TDFs were applied (Figure 3.1), a necessary condition for 

SIMMs to produce accurate dietary estimates (Phillips et al. 2014). 
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Figure 3.1: Mean stable isotope values (δ15N and δ13C) from 20 nests with 29 

buzzard nestlings and their main prey categories. Buzzard samples are in 

black (feathers) and red (red blood cells). Buzzard signatures are corrected by 

TDF estimates calculated using the SIDER package (feather: 2.37 ‰ for δ13C 

and 2.79 ‰ for δ15N, blood: 1.51 ‰ for δ13C and 2.35 ‰ for δ15N). Bars 

indicate standard deviation. Prey groups are rabbits (light orange), small 

rodents (blue), shrews & moles (green), gamebirds (yellow), corvids (dark 

orange) and frogs & toads (pink). 

 

The outcomes (posteriors) of BSIMMs varied markedly in their similarity to 

direct observations of nestling provisioning (Table 3.5). Of the four TDF 

sources, models run using TDFs from the SIDER package produced the 

estimates most similar to direct observations, for both feathers and red blood 

cells (Figures 3.2 and 3.3). The inclusion of informative priors from 

conventional analysis of prey remains reduced the similarity of mixing model 

outcomes to the direct observations, to the extent that inclusion of priors 
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rendered the stable isotope approach worse than the analysis of prey remains 

alone (Table 3.5). 

 

 
Figure 3.2: Differences in the proportions of each prey group in the diets of 

buzzard nestlings when estimated by Bayesian stable isotope mixing models 

using multiple TDFs and compared to direct observations from cameras. High 

values indicate large discrepancies. 
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Figure 3.3: Estimates of the composition of buzzard nestling diet. Estimates 

are sourced from Bayesian stable isotope mixing models run using (A) 

feathers and (B) red blood cells, (C) direct observations of adults provisioning 

nestlings at the nest and (D) conventional analysis of prey remains and 

pellets. BSIMMs used no priors and trophic discrimination factors from the 

Bayesian package SIDER.  

 

When the mixing models for feathers and blood cells using TDFs from SIDER 

and no priors were run for each nest, a strong positive relationship was 

observed between mixing model estimates of nestling diet in each nest to 

those from direct observations, but only for the most important prey item, i.e. 

rabbits (Feather  rs = 0.81, n = 20, P < 0.001; Blood: rs= 0.77, n = 20, P < 

0.001; Figure 3.4). No significant relationships were observed with other prey 

groups. 
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Figure 3.4: Relationship between estimates of the contribution of rabbit to 

buzzard nestling diets from direct observations of provisioning at the nest and 

Bayesian stable isotope mixing models (BSIMMs) run using feathers and red 

blood cells. TDF estimates were from SIDER. BSIMM estimates are mean 

proportions (± confidence intervals) for each nest using SIMMRsolo. 
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Table 3.5: Estimates of diet composition of buzzard nestlings using stable isotope analysis and conventional prey/pellet 

analysis. Bayesian Stable Isotope Mixing Models (BSIMMs) were run with and without informative priors and with four sources 

for trophic discrimination factors (TDFs). Methods are ranked by their similarity to direct observations from remote cameras. 

Similarity was assessed by the mean Bhattacharyya’s coefficient (BC), ranging between 0 (no similarity) and 1 (identical). 

Rank Indirect  Priors Tissue TDF source Similarity to direct observations (Bhattacharyya’s coefficient) 
 method    Mean ± SD Rabbit Small 

rodent 
Shrew 
& mole 

Game
bird 

Corvid Frog 
& toad 

1 BSIMM No Feather SIDER 0.772 ± 0.078 0.839 0.639 0.808 0.723 0.835 0.787 
2 BSIMM No Blood SIDER 0.759 ± 0.089 0.855 0.614 0.719 0.733 0.811 0.825 
3 BSIMM No Blood Meta-analysis 0.729 ± 0.111 0.734 0.516 0.750 0.740 0.824 0.807 
4 BSIMM No Feather Peregrine 0.728 ± 0.080 0.781 0.578 0.762 0.697 0.785 0.764 
5 BSIMM No Feather Meta-analysis 0.600 ± 0.273 0.323 0.189 0.760 0.699 0.837 0.790 
6 BSIMM No Blood Vulture 0.513 ± 0.362 0.009 0.726 0.786 0.090 0.773 0.695 

7 BSIMM No Feather Vulture 0.499 ± 0.333 0.019 0.661 0.773 0.130 0.703 0.710 
8 BSIMM No Blood Peregrine 0.421 ± 0.336 0.016 0.121 0.600 0.244 0.774 0.772 
9 Prey/pellet n/a n/a n/a 0.241 ± 0.310 0.774 0.000 0.434 0.038 0.203 0.000 
10 BSIMM Prey/pellet Feather SIDER 0.196 ± 0.247 0.166 0.000 0.334 0.049 0.629 0.000 
11 BSIMM Prey/pellet  Blood SIDER 0.177 ± 0.265 0.083 0.000 0.148 0.129 0.703 0.000 
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Discussion 
I have used direct observations of wild animal feeding behaviour as a reference 

against which indirect estimates of diet from stable isotope mixing models and 

more conventional methods could be compared. Although camera observations 

are not free from bias (García-Salgado et al. 2015), my approach represents a 

significant advance from testing mixing model performance by comparison 

among models (Bond & Diamond 2011) or with other indirect methods (Ramos 

et al. 2009; Weiser & Powell 2011; Franco-Trecu et al. 2013; Resano-Mayor et 

al. 2014). My results show that, with the right choice of TDFs, and, in this case, 

by not using priors, BSIMMs produced estimates of diet that closely matched 

direct observations. 

 

Of the four sources I used to obtain TDFs, the SIDER package (Healy et al. 

2016) produced outputs with the greatest similarity to direct observations. The 

accuracy of models for feathers and red blood cells when using SIDER TDFs 

provides evidence of the value of accounting for the numerous sources of 

variation (e.g. phylogeny, tissue type, consumer signature) in TDF calculation 

(Caut, Angulo & Courchamp 2009; Healy et al. 2016). Such variation may be 

missed when TDFs are gleaned from captive animals fed on controlled diets. I 

recommend future studies either calculate TDFs by incorporating multiple 

sources of variance or use larger uncertainties in BSIMM parameterisation 

(Granadeiro et al., 2014). I also echo Phillips et al.’s (2014) recommendation of 

a sensitivity analysis to test the influence of TDFs on model outputs. 

 

When the top BSIMMs were applied for individual nests, there was strong 

agreement with direct observations for rabbits but not other prey groups. The 

ability of BSIMMs to infer variation in the relative importance of rabbits among 

nests relates to the dietary importance and distinctiveness of this prey. Although 

there is a strong relationship between the proportion of rabbit in diet for direct 

observations and BSIMMs, less than perfect agreement could be attributed to 

constraints on posteriors when models are run using low numbers of consumer 

samples (Parnell et al. 2010). I did not observe a significant relationship in nest-
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level estimates between BSIMMs and direct observations for other prey 

categories and there are several plausible explanations for this. First, there 

might be dietary items that were underrepresented in the camera observations 

(e.g. 138 small unidentifiable prey items) or temporal mismatches in data 

collection (e.g. provisioning of reared pheasants after blood sampling). Second, 

the contribution that any one food source makes to diet is low, relative to rabbit 

prey, impeding the discriminatory power of the mixing models. Third, model 

performance is reduced when signatures of prey sources are less distinctive, 

either because they overlap and/or lie in between other sources (Phillips et al. 

2014). 

 

Estimates of diet from conventional analysis of prey remains and pellets differed 

markedly from direct observations and reflected known biases in favour of large 

birds and against small, digestible prey (Tornberg & Reif 2007; Francksen, 

Whittingham & Baines 2016). The contribution of amphibians to buzzard diet is a 

clear example. Estimates from BSIMMs (feather: 12.5%, SD = 9.0, blood: 

13.1%, SD = 8.3) closely matched those from direct observations (11.7 % 

biomass, SD = 3.4), yet we, like others (Tornberg & Reif 2007; Francksen, 

Whittingham & Baines 2016), recorded very few frogs or toads among prey 

remains or pellets (0.2% biomass, SD = 0.1) 

 

When priors from analysis of prey remains and pellets were included in the 

BSIMMs that were otherwise most similar to direct observations, I observed a 

substantial reduction in their performance. Here, it appears that the biases 

within the conventional methods have constrained the models and reduced their 

similarity with direct observations. I present this result not to show that priors 

influence posteriors; clearly, this is their purpose (Moore & Semmens 2008). 

Rather I highlight how the inclusion of information intended to strengthen models 

can make them considerably worse, if they hide the effects of ‘real’ isotopic 

variation by introducing bias. One approach for incorporating priors with known 

biases into BSIMMs could be by expanding their variance or including a bias 

parameter within the models (A. Parnell, pers. comm.). Although this holds 

promise, such corrections may themselves be difficult to support, as biases can 

vary among species, time and place. It is trivial to recommend that those 
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considering informative priors should be confident that their data reflects the 

current diet of their study species, but in reality such information is often 

unobtainable or requires extensive additional data (Orr et al. 2011). Indeed, 

could such confirmation be sourced, the benefit of deriving a BSIMM estimate 

would be moot. For future studies I therefore recommend that, rather than 

combining conventional methods within mixing models as priors, dietary 

information from isotope analysis and conventional sources be presented in 

conjunction. This would allow the limitations and biases of these approaches to 

be considered independently.  

 

The use of direct camera observations provided us with clear insight and a 

standard against which to evaluate isotopic and other methods of diet 

determination. The collection of such detailed observational data is rare as it is 

costly, hazardous and requires sustained effort. For dietary studies where such 

data are not obtainable, the application of stable isotope analysis, with careful 

deployment of information from conventional methods, can provide a route to 

identify and account for the biases and shortcomings of both methods. I have 

demonstrated that, when variation within and among dietary sources is 

adequately represented and the correct trophic discrimination factors applied, 

Bayesian stable isotope mixing models are able accurately to infer diet and the 

relative importance of food sources at a population and, to a lesser extent, 

individual level. 
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Chapter 4: Do ‘problem buzzards’ exist? Applying stable isotope analysis 
to understand buzzard diet and predation of pheasants 

Abstract 
Wildlife management is becoming increasingly selective, often targeting 

particular individuals for removal. The efficacy of such management actions 

depends primarily on certain animals having a disproportionate impact upon 

human interests but also on the accuracy of the removal method. Collecting 

empirical information on such individuals is challenging, potentially 

compromising the evidence base for making management decisions. In the 

U.K., a recent and controversial change in policy has seen the granting of 

licences to kill ‘problem’ common buzzards Buteo buteo, that are perceived to 

specialise on killing and eating released pheasants Phasianus colchicus. I 

analysed stable isotope (δ13C and δ15N) signatures of adult buzzards and their 

putative food sources to estimate the relative contribution that released 

pheasant poults make to buzzard diets. I use the results to assess selective 

removal of buzzards as a mitigation method by exploring how buzzard 

consumption of pheasant poults varies in territories with (i) no pheasant release 

pen, (ii) a release pen but no perceived predation problem and (iii) a release pen 

where a predation problem was perceived. The consumption of released 

pheasant by a small subsample of buzzards caught within release pens was 

compared to the wider population. Young, released pheasants were isotopically 

distinct from other buzzard prey, including adult, wild pheasants. I observed 

significantly higher consumption of released pheasants by buzzards living in 

territories with a release pen that had a perceived predation problem than those 

living in territories with no release pen. However, variation in consumption of 

released pheasants by buzzards living in territories with a release pen but no 

perceived predation problem suggests that in some pens, pheasant 

consumption is going undetected or is not a matter of concern. Analysis of the 

tissue of a small sample of alleged ‘problem buzzards’, that were caught and 

released under license within pheasant release pens, suggested that buzzards 

caught within pens consumed significantly higher quantities of released 

pheasants than their local conspecifics. However, this distinction was 
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particularly apparent in recently metabolised tissues (red blood cells and blood 

plasma) suggesting that ‘problem’ behaviour might not be manifested over 

longer time periods.  
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Introduction  
Disputes among people often arise over the management of predators, due to 

the perceived threats they pose to human safety, livelihoods or recreation 

(Treves & Karanth 2003; Woodroffe, Thirgood & Rabinowitz 2005b). Such 

disagreements can develop into acute incidents or chronic conflict when the 

species involved have economic or social value and/or are protected by law 

(Graham et al. 2011; O’Rourke 2014), making management or mitigation 

challenging. Ecology can be applied to uncover the scale of the problem 

(Redpath et al. 2013), the proximate and ultimate drivers underlying the impact 

(Artelle et al. 2016) and the efficacy of potential mitigation measures (Redpath, 

Thirgood & Leckie 2001; Treves, Krofel & McManus 2016). 

 

In recent decades there has been a shift in predator management from general 

reductions in predator populations to targeting problem individuals (Treves & 

Naughton-Treves 2005; Doherty & Ritchie 2016). This trend can be seen as a 

compromise, made by wildlife practitioners, to balance the benefits of healthy 

predator populations with their potential impacts. The underlying assumption of 

such ‘selective management’ is that, within wildlife populations, individual 

animals are responsible for a disproportionately large negative impact on human 

interests (Linnell et al. 1999; Swan et al. 2017). Impacted stakeholders often 

perceive a subset of ‘problem’ individuals to be the perpetrators of wildlife 

damage (Kenward 2002; Viñuela & Arroyo 2002), but this is rarely addressed 

scientifically (Linnell 2011), in part  due to the difficulties of collecting individual-

specific data on the behaviour or diet of wild predators (Linnell et al. 1999; 

Bentzen, Shideler & O’Hara 2014). 
 

Conflicts over buzzard predation 

The predation of game species by birds of prey has created a number of 

conservation conflicts (Valkama et al. 2005). Hunters have identified the 

common buzzard Buteo buteo (hereafter buzzard) as second only to the 

goshawk Accipiter gentilis in their negative impact upon quarry species 

(Kenward 2002). This is especially true in the U.K., where a rapid increase in 

buzzard abundance and range (Musgrove et al. 2013), coupled with declining 

returns of released game (Bicknell et al. 2010), has caused a dispute between 
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game shooting interests and conservation organisations over how buzzards 

should be managed (Lees, Newton & Balmford 2013; Parrott 2015). This 

manifests itself most clearly in illegal behaviour and buzzards routinely rank 

highly in confirmed instances of illegal shooting and trapping of birds of prey 

(RSPB 2012 - 2015). Indeed, research on radio-tagged buzzards by Kenward et 

al. (2000) estimated that shooting and poisoning accounted for 24% of the 50 

deaths in their study population..  

Solutions to both the conflict and illegal behaviour are currently being sought by 

different means. Conservation groups have requested tougher enforcement and 

penalties for those that break the law while, in stark contrast, landowners and 

gamekeepers have made repeated calls to be granted licences for lethal control 

(Parrott 2015). These requests focus on a subset of pheasant Phasianus 

colchicus release pens where gamekeepers perceive high losses due to a small 

number of ‘problem buzzards’ that are thought to be disproportionately 

responsible for depredation (Kenward 2002; Parrott 2015). In 2016, the first 

licences were issued in England to permit buzzards to be shot to protect 

released pheasants “where individual behaviour indicates a risk of serious 

damage” (Natural England 2016c). This development has occurred with little 

ecological evidence that ‘problem buzzards’ exist (Parrott 2015). In order to 

mitigate this conflict, and advise future policy, evidence is needed on the 

ecology of such birds and the potential efficacy of their removal. 

 

Analysis of variation in the abundance of stable isotopes of carbon (δ13C) and 

nitrogen (δ15N) in animal tissues represents a particularly powerful tool for 

researching ‘problem individuals’ in animal populations (Swan et al. 2017). The 

development of Bayesian stable isotope mixing models (BSIMMs) has increased 

the accuracy of this approach (Phillips et al. 2014) by providing quantitative 

estimates of diet composition, while incorporating multiple sources of uncertainty 

in the system (Phillips et al. 2014). By applying stable isotope analysis to 

investigate the impact of wildlife upon human interests, ecologists have also 

been able to generate data on the involvement of specific animals in impacts 

that are usually difficult to observe, such as crop raiding or livestock depredation 

(Cerling et al. 2006; Bentzen, Shideler & O’Hara 2014; Loudon et al. 2014; Voigt 
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et al. 2014; Ditmer et al. 2016). Recent research using buzzards as a model 

species has shown that dietary estimates derived from BSIMMs can produce 

similar estimates to those from direct observations (Chapter 3). Therefore, in 

this chapter, I analyse the stable isotope ratios of buzzard feathers and blood as 

well as their putative dietary sources and use this information to address two 

questions:  

(i) Do certain pheasant release pens suffer consistently higher levels of 

predation by buzzards? 

(ii) Is there evidence consistent with the existence of ‘problem buzzards’ 

and the possible efficacy of managing the problems they cause?  

Methods 
Study area 

The study was conducted between May and September 2015 across three 

study sites in Cornwall, in the southwest of the U.K. (50.35°N, 4.85°W). Habitat 

across all sites was predominantly arable and pastoral farmland, interspersed 

with areas of broadleaf woodland. Buzzard territories were mapped by locating 

active nests during April and May. An approximate core territory was established 

around each nest using half the mean nearest neighbour distance as a radius. A 

single nest was excluded from this calculation, as I could not be certain that the 

neighbouring nests had been located. Thiessen polygons were created where 

core territories overlapped, as territorial buzzards do not share hunting areas 

(Prytherch 2013). 

 

All three study sites were centred on shooting estates releasing > 10,000 

pheasants for shooting each year. The locations of 18 pheasant release pens 

were recorded. Pens were on average 16,000 m2 and surrounded by wire-mesh 

~2m high to prevent access by terrestrial predators. Pheasant ‘poults’ aged 5-7 

weeks were released into pens during late June – July. Poults’ wings were 

clipped to prevent initial escape. Dispersal from pens began in late August – 

September, once flight feathers had developed. 

 

Sampling adult buzzards 
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Adult buzzard tissue was sampled from moulted feathers collected 

opportunistically from June to August within the core territories. Prior to being 

stored at -80oC, all feathers were cleaned with deionised water to remove all 

surface contaminants. The use of moulted feathers is a common non-invasive 

way of sampling the tissue of birds (Inger & Bearhop 2008). As feathers are 

metabolically inert, isotopic information regarding diet (at the time of 

assimilation) is stored in the keratin (Inger & Bearhop 2008). Adult buzzards 

undergo an unpredictable partial moult every year, typically starting when 

nestlings are three weeks old and lasting until November (Zuberogoitia et al. 

2005; Hardey et al. 2013). Consequently, moulted feathers from adults can be 

seen as representing diet during the previous two summers. In the southwest of 

England the period of heaviest moult in flight feathers (primaries, secondaries 

and tail feathers) occurs from the end of June through July (Dare 2015); 

coinciding with the period of highest pheasant losses (Allen et al. 2000; 

Kenward et al. 2001). Alongside these large flight feathers, I collected and 

analysed smaller body feathers for which the moulting (and assimilation) period 

is rarely reported, and therefore more uncertain. Although moulted feathers 

were from unknown individuals, I assume that they reflect dietary information 

from the pair of adults holding the core territories in which they were collected. 

This is because adult buzzards are strongly territorial and have low (< 12%) 

annual mortality  (Kenward et al. 2000; Walls & Kenward 2001; Prytherch 2013). 

 

Sampling buzzard nestlings 

I sampled the blood and feather tissue of buzzard nestlings in the two weeks 

immediately preceding the pheasant releases. Thus, the tissue of buzzard 

nestlings effectively allows us to run a null model to check how much of the 

dietary variation in buzzard chicks the models would erroneously attribute to 

consumption of released pheasants. Approximately 0.2 ml of blood and the tips 

of four back feathers were sampled. The turnover rate of blood cells, plasma 

and the age-class at which natal down is replaced by body feathers means 

blood and feathers represent nestling diets during the rearing period (Hobson & 

Clark 1993; Bearhop et al. 2000). Blood samples were immediately put on ice 

before being separated into plasma and red blood cells and frozen at -80oC. 
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Identifying predation problems and sampling ‘problem buzzards’ 

To classify territories encompassing a release pen with a perceived predation 

problem I asked gamekeepers to identify release pens where they perceived 

persistent buzzard predation of released pheasants. To characterise the 

signature of ‘problem buzzards’, I trapped buzzards, in or around (< 10m) the 

problem pens using spring-net traps placed on fresh poult kills, without pre-

baiting. Blood and feather tissue from adult buzzards was sampled following the 

same procedure used for nestlings.  

 

Sampling buzzard food 

To characterise the main dietary sources of buzzards, muscle tissue was 

collected from all fresh dietary items found within the nest cup during the nesting 

period (May - July). Dietary sources encompassed all prey groups recorded as > 

5% of diet in Chapter 3. Additional tissue was sampled from the carcasses of 

released pheasant predated by buzzards within pens (July – August). Only 

dietary sources utilised during the moulting period (Spring – Autumn) were 

included. For example, although earthworms are an important food source in the 

winter (Stubing, 1995; Dietrich et al. 1995; Tubbs 1975), their contribution during 

the breeding period is thought to be negligible (Rooney et al. 2013; Chapter 3). 

For each sample, approximately 0.1cm3 of muscle was removed using a scalpel 

and tweezers. Tissue samples were immediately put on ice, before being stored 

at -80oC.  

 

Quantifying the contribution of a single food source using stable isotope analysis 

requires that source to be isotopically distinct from others. In this context, an 

investigation of buzzard predation of released pheasants may be aided by the 

widespread provision to poults of processed gamebird feed, that increases the 

likelihood of released pheasants being isotopically distinct from other ‘natural’ 

food sources for buzzards.  

 

All animal procedures used in this study were conducted under the U.K. Home 

Office project licence #30/3274 and conformed with the U.K. Animals (Scientific 

Procedures) Act, 1986. All research received prior ethical approval from the 

University of Exeter Animal Welfare and Ethics Committee. Animals were 
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handled by trained and experienced personnel under further licences from both 

the British Trust for Ornithology (CO/6164) and Natural England (2015-7805-

SCI-SCI).  

 

Stable isotope analysis 

Prior to analysis, feather, plasma, red blood cells from buzzards and muscle 

tissue from food items were placed in a freeze drier for > 48 hours. Samples 

were then homogenised using a mortar and pestle (blood and muscle) or 

scissors (feathers) and ~0.7mg was weighed into a 6 x 4mm tin cup. Stable 

isotope analysis was conducted using a Sercon Integra Elemental Analysis 

Isotope Ratio Mass Spectrometer (EA-IRMS) at the University of Exeter and a 

Sercon 2020 EA-IRMS at Elemtex Ltd, Callington (Cornwall). Tissues were 

analysed for carbon, 13C, and nitrogen, 15N, isotopes. Carbon and nitrogen 

isotope ratios are expressed in δ notation in per mil units following the equation: 

!	# = [('()*+,-	/	'(/)01)21) − 1] 	× 	1,000                                      

where # = 15N or 13C, '()*+,-	is the heavy to light isotope ratio derived from the 

sample, and '(/)01)21	 is the heavy to light isotope ratio derived from the Vienna 

Pee Dee Belemnite (VPBD) for δ13C and atmospheric N2 for δ15N using an in-

house laboratory standard of alanine (DeNiro & Epstein 1978). 

Statistical analysis 
Characterising isotopic ratios of buzzard dietary items  

To assign prey species into isotopically similar dietary categories, I first grouped 

all samples by species (or lowest taxonomic equivalent) then used an a 

posteriori approach where the δ15N and δ13C values of these groups were tested 

for equality of means and combined when they were similar (Phillips et al., 

2014). This was achieved by fitting one-way ANOVAs and Tukey’s post hoc 

multiple comparisons (where a = 0.05). Released and ‘wild’ pheasants were 

kept as separate dietary items as they had distinct isotopic signatures. Once 

dietary items had been grouped, linear models were fitted with δ15N or δ13C as 

the response and the prey sources as the predictor. In these models ‘released 

pheasant’ was set as the intercept to assess the statistical significance of this 

dietary item relative to the other groupings.  
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To test my assumption that moulted adult feathers were all assimilated over the 

same time period, feathers were checked for significant differences in isotopic 

ratios between feather types by fitting one-way ANOVA and Tukey’s post hoc 

tests for both δ15N and δ13C. To examine the relationship between adult and 

nestling feathers, I investigated variation in mean δ15N and δ13C signatures of 

feathers from nestlings and adults from the same nest using linear regression. 

Adult feathers were collected during the same field season as the nestling 

feathers, though adult feathers had been assimilated during the previous moult 

(2013 - 2014). 

 

Buzzard dietary composition 

In order to quantify the relative contributions of the various food sources to 

buzzard diet, I applied Bayesian isotope mixing models using the SIMMR 

package in R (formerly SIAR; Parnell & Inger 2016; Parnell et al. 2010). All 

models included the mean and standard deviation of δ15N and δ13C for each 

prey category. Trophic discrimination factors (TDFs) (feather: 2.37 ± 1.49 ‰ for 

δ13C and 2.79 ± 1.03 ‰ for δ15N, blood: 1.51 ± 1.46 ‰ for δ13C and 2.35 ± 0.99 

‰ for δ15N) were derived using the SIDER package in R (Healy et al. 2016). To 

provide a broad overview of buzzard diet, population-level models were run 

separately for all adult feathers and for the feathers and blood of ‘problem 

buzzards’ caught in pheasant release pens. I then ran models using the same 

inputs for nestling blood and feather tissue. Within nestling models, released 

pheasant (unavailable to nestlings during tissue assimilation) was kept as a 

dietary source to examine the proportion of diet the mixing model would 

erroneously attribute to this source. This ‘null’ measure allows an estimate of 

confidence when compared to values obtained from adult tissue. The 

population-level models for blood tissue included both red blood cells and blood 

plasma as repeat samples for each buzzard to increase model power. For all 

models, three parallel MCMC chains were run for 100,000 iterations with a 

thinning rate of 10 (the first 50,000 iterations excluded as a burn-in). I extracted 

posterior samples of 10,000 iterations when the Gelman and Rubin 

convergence diagnostic for all sources was 1 (Gelman & Rubin 1992). Mean 

values are presented as mean ± SD unless otherwise stated. 
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Comparing estimates of released pheasant consumption 

Variation in released pheasant consumption was analysed by extracting the 

model posterior estimates and their distributions were compared across ages 

and tissues using the Bhattacharyya Coefficient (BC) as a measure of 

distribution overlap (Bhattacharyya 1946; Kailath 1967). 

BC =	∫ =	>?	(@)	>A	(@)	B@			                                                                                 
where >? and >A are the two distributions to be compared. BC = 0 indicates no 

overlap and 1 indicates complete similarity (Kailath 1967). Catry et al. (2009), 

Bond and Diamond (2011), Lavoie et al. (2012) and Jardine et al. (2015) have 

previously considered a BC of > 0.6 to represent a significant overlap in the 

distributions of dietary sources. Here, we use BC to evaluate variation between 

dietary estimates but do not infer statistical significance from this value. I also 

calculated the probability that the estimate from one BSIMM is less than the 

estimate from its comparison by subtracting all the values in one posterior from 

their comparison and giving the percentage of these values under 0.  

 

I then ran separate BSIMMs for each tissue sample using the SIMMRsolo 

function. Constraining the models to single samples increases the uncertainty of 

estimates (Parnell et al. 2010), but this approach allows us to explore within-

population variation in released pheasant consumption. For each model, the 

mean estimate of ‘released pheasant’ consumption was extracted from the 

posterior distribution for further analysis.   

 

Do certain release pens suffer consistently higher levels of pheasant predation? 

To investigate whether buzzards living in territories where significant predation 

had been perceived by gamekeepers, ate more released pheasants than in 

other territories, I applied generalised linear mixed models (GLMMs) using the 

lme4 package in R (Bates et al. 2015). In these models, the response variable 

was the estimated proportion of released pheasant in the individual’s diet and 

the explanatory variable, ‘territory category’ was a three-level factor where 

territories were identified as having (i) no release pen (ii) a release pen with no 

perceived problems or (iii) a release pen with perceived problems. As the 
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response variable was a non-normally distributed proportion it was logit-

transformed (Warton & Hui 2011). A binary variable ‘age’ (nestling or adult) was 

included as an interaction with ‘territory category’ to account for the difference in 

pheasant poult availability when buzzard nestling samples were taken. A further 

binary variable, ‘feather type’ was included to identify those feathers for which 

the moulting period, and therefore assimilation time, was uncertain (Zuberogoitia 

et al. 2005; Hardey et al. 2013; Dare 2015). In this model, study site was 

included as a fixed effect to account for any variation between study sites, and 

buzzard territory was included as a random effect to account for repeated 

sampling of birds from a single territory. Model selection was conducted on fitted 

models using maximum likelihood. For the most parsimonious model, post hoc 

comparisons between the ‘territory category’ factor levels were made by 

calculating least-squares means, with Satterthwaite’s approximation for degrees 

of freedom, using the lsmeans and lmerTest R packages (Bates et al. 2015; 

Lenth 2016). For GLMMs I present the proportion of variance explained by the 

fixed effects as the marginal R2 (Nakagawa & Schielzeth 2013).  

 

Is there evidence to support the existence of ‘problem buzzards’?  

Finally, I conducted an analysis to explore the diet of a small sample of ‘problem 

buzzards’, i.e. those that had been caught in release pens, where gamekeepers 

identified significant buzzard predation, against the wider population. I applied a 

GLMM, in which the response variable was the proportion of released pheasant 

poult in diet (logit-transformed) and the explanatory variable was ‘problem 

buzzard’. Age, site and buzzard territory were included as above. To examine 

where the dietary estimates of poult consumption from the tissue samples of the 

‘problem buzzards’ sit in the distribution of the broader population, I applied one-

sample t-tests with a pooled variance estimate. I present P values corrected for 

the False Discovery Rate to control for multiple comparisons (Benjamini & 

Hochberg 1995). All analyses were conducted using R (v3.2.2) (R Core Team 

2016). 

Results 
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A total of 37 active buzzard nests were located during the breeding season and 

territories were determined for 36. The mean nearest neighbour distance 

between nests was 689 m (± 201 m). Core territories were therefore 

approximated as a 345 m radius around the nest site. Moulted feather samples 

were collected in 33 of 37 territories (Table 4.1). Sixteen of these 33 buzzard 

territories contained at least one active pheasant release pen within their core 

territory. The sites included eighteen pheasant release pens, of which five 

(28%), were identified by gamekeepers as having a persistent problem with 

buzzard predation. Six buzzard territories encompassed part or all of these five 

pens and so were categorised as territories with ‘release pen with problems’. 

The mean distance from the nest to the pen in these territories was 94 m (± 118 

m). The 10 territories that encompassed part or all of the 13 pens where 

buzzard predation was not perceived to be a problem were categorised as 

territories with ‘release pen with no problems’. The mean distance from nest to 

pen in these territories was 161 m (± 141 m). There were a further 17 territories 

with ‘no release pen’, where the mean distance to the nearest pen, which was 

outside the territory, was 1152 m (± 653 m).  

 

Characterising isotopic ratios of buzzard dietary items  

A total of 79 muscle samples from buzzard prey were collected and analysed 

(Appendix 9). Dietary items were grouped into broader, functionally equivalent, 

categories if their isotopic ratios were similar. This resulted in the grouping of 

rabbits with small rodents, corvids with shrews and moles, and frogs and toads. 

As the hypotheses were concerned with losses of released pheasants in and 

around release pens, I subdivided pheasants into ‘wild’ (not released that year) 

and ‘released’ (released that year). This process resulted in five major dietary 

categories represented in the models (Table 4.1). Overall, there were significant 

differences between these dietary sources in δ13C (one-way ANOVA: F 4,74 = 

12.3, P < 0.001) and δ15N (one-way ANOVA: F 4,74 = 48.7, P < 0.001). Post-hoc 

testing revealed that the isotopic ratios of released pheasant tissue differed 

significantly from those of all other dietary sources, including wild gamebirds, for 

at least one of δ13C or δ15N (Appendix 10). 
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Table 4.1: Isotopic signatures (δ15N and δ13C ‰) of common buzzards and five buzzard food groups. Isotope ratios are mean ± 

SD. The isotopic ratios of dietary categories are from muscle tissue collected from buzzard nests. Additional tissue was sampled 

opportunistically for frogs, toads and released pheasants. 

Notes:  Further information on the composition of the dietary sources can be found in Appendix 9. 

Food source δ15N δ13C Territories 
n 

Buzzards 
n 

Tissue samples 
n 

     Adult buzzards      
Feather 9.47 ± 1.11 -24.09 ± 1.03 33 - 86 

Red blood cells 7.81 ± 0.89 -24.87 ± 0.71 4 4 4 

Blood plasma 7.90 ± 0.76 -25.54 ± 0.82 4 4 4 

     Nestling buzzards      

Feather 8.94 ± 1.21 -25.57 ± 0.93 27 42 42 

Red blood cells 7.71 ± 1.03 -26.64 ± 0.87 26 41 41 

Blood plasma 8.50 ± 1.01 -27.35 ± 0.88 26 41 41 

     Dietary categories      

Rabbits & small rodents 5.31 ± 2.29 -28.58 ± 1.04 - - 41 

Shrews, moles & corvids 8.84 ± 1.59 -25.44 ± 0.92 - - 12 

Amphibians 6.25 ± 1.47 -26.54 ± 0.44 - - 7 

Wild pheasants 6.45 ± 0.69 -24.34 ± 1.94 - - 8 

Released pheasants 3.78 ± 0.42 -25.57 ± 0.11 - - 11 
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Characterising isotopic ratios of buzzards 

The majority of δ13C and δ15N values observed within the sampled buzzards 

(Table 4.1) fell within the range of the sampled dietary sources (Phillips et al. 

2014) (Figure 4.1). For moulted adult feathers, no statistically significant 

variation was observed between feather types in either δ15N or δ13C. When the 

isotopic ratios of adult feathers (assimilated 2013 or 2014) were compared to 

those from nestlings (assimilated 2015) in the same territory (n = 26) a 

significant relationship was observed in δ15N (F1, 24  = 4.5, R2
 = 0.16, P = 0.043) 

suggesting that between years the adult buzzards were feeding on, and 

provisioning, prey at the same trophic level. No relationship was observed when 

the same analysis was conducted for δ13C suggesting that, within territory, 

habitat use might vary between years (F1, 24  = 1.2, R2
 = 0.01, P = 0.284).  

 

Figure 4.1: Isotopic values (δ15N and δ13C) from the feathers (black points) and 

red blood cells and blood plasma (red points) of common buzzards and their 

putative food sources (mean ± SD) in Cornwall, southwest England.  

Colours represent food sources: rabbits and small rodents (blue), shrews, moles 

and corvids (green), amphibians (pink), wild pheasants (yellow) and released 

pheasants (orange). Stable isotope ratios of buzzards are corrected by trophic 

discrimination factors derived from the SIDER package: (feather: 2.37 ‰ for 

δ13C and 2.79 ‰ for δ15N, blood: 1.51 ‰ for δ13C and 2.35 ‰ for δ15N). 
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Relative composition of prey in buzzard diet  

Rabbits and small rodents were the most commonly consumed food source for 

buzzard nestlings (dietary proportion from feathers: 0.58 ± 0.06, blood: 0.68 ± 

0.04) (Appendix 11). The model of nestling diet erroneously attributed only 0.05 

(± 0.03) and 0.04 (± 0.03) of the diet to the consumption of released pheasants 

(which were unavailable when tissue was assimilated and sampled) for feather 

and blood respectively. For adult buzzards, dietary estimates based on the 

analysis of 79 adult buzzard feathers from territories with non-problem release 

pens, suggest a more generalised diet than nestlings where rabbits and small 

rodents (0.25 ± 0.07), shrews, moles and corvids (0.33 ± 0.07) and amphibians 

(0.24 ± 0.15) are all of importance. Although the consumption of released 

pheasants by adult buzzards was feasible, models suggested there was only a 

3% increase in the estimated contribution of released pheasant (total = 0.08 ± 

0.04) when compared to nestling diet.  

 

When models were run using tissue from the four ‘problem buzzards’ that had 

been caught within release pens where gamekeepers had perceived a problem 

with predation, a generalist diet was still observed. However, there was an 

increase in the importance of released pheasant (feathers: 0.18 ± 0.11, blood: 

0.26 ± 0.12) in diet, when compared to other adult buzzards and to nestlings 

(Appendix 11).  

 

Further investigation of the posterior distributions for ‘released pheasant’ in diet, 

through pair-wise comparisons between different models, produced probability 

estimates for observed differences as well as similarity indexes for their 

distributions (Table 4.2). The blood and feathers of ‘problem buzzards’ produced 

posteriors for released pheasant that had the least overlap and highest 

estimated contribution when compared to posteriors from analysing other 

buzzard tissue (Table 4.2; Figure 4.2). In other words, the feathers and blood of 

‘problem buzzards’ produced distinct posteriors that suggested a high 

consumption of released pheasants. 

 



	 95	

 Table 4.2. Comparison of estimates of released pheasant consumption by buzzard nestlings from Bayesian Stable Isotope Mixing 

Models (BSIMMs) using different tissues. The probability (%) that the mean from one BSIMM is less than the mean from its 

comparison is presented as well a similarity index of the two posteriors. Similarity was assessed by Bhattacharyya’s coefficient 

(BC) of paired distribution comparisons for released pheasant. BC values fall between 0 (no similarity) and 1 (complete similarity). 

 

 

 

 

 

 

 

 

 

 

BSIMM 1 BSIMM 2 Probability  
BSIMM1 < BSIMM2 

Bhattacharyya’s 
coefficient 

Problem buzzard blood Nestling blood 2.1% 0.313 

Problem buzzard blood Nestling feathers 3.8% 0.408 

Problem buzzard feathers Nestling blood 6.3% 0.522 

Problem buzzard blood Non-problem buzzard feathers 7.7% 0.528 

Problem buzzard feathers Nestling feathers 11.8% 0.642 

Problem buzzard feathers Non-problem buzzard feathers 20.1% 0.769 

Problem buzzard blood Problem buzzard feathers 30.7% 0.939 

Nestling blood Nestling feathers 64.1% 0.963 

Non-problem buzzard feathers Nestling feathers 32.4% 0.946 

Non-problem buzzard feathers Nestling blood 20.5% 0.835 
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Figure 4.2: Estimated proportional consumption of released pheasants by 

nestling, non-problem and problem buzzards from BSIMMs. Proportion of diet 

was inferred from stable isotope analysis of blood and feathers (10000 model 

iterations). 

 

There was no significant effect of ‘feather type’ on released pheasant 

consumption ("	$,$$&'  = 0.25, P = 0.62; Appendix 12) and so feather type was 

removed from further analysis. A significant reduction in the goodness of model 

fit was observed when the interaction between territory category and age was 

removed ("	$,$$('  = 8.80, P = 0.012; Appendix 12). For adult buzzards, estimates 

of the importance of released pheasant in diet were significantly greater in 

territories with release pens with perceived problems than in territories with no 

release pens (Post-hoc comparison test: Estimate = -0.047, SE = 0.017, t ratio 

23.1= -2.77, P = 0.028). Territories with a release pen but no perceived problem 

did not have statistically different levels of poult consumption when compared to 

other types of territories (Figure 4.3; Appendix 13). 
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Figure 4.3: Variation in the estimated proportion of released pheasant poults in 

buzzard diet between buzzard territories categorised by perceived problems of 

poult predation. Buzzard territories are those with no pheasant release pen 

(adults: n = 17; nestlings: n = 17), those with a release pen with no buzzard 

predation problems (adults: n = 10; nestlings: n = 5) and those with a release 

pen where buzzard predation problems were perceived by gamekeepers to be 

significant (adults: n = 6; nestlings: n = 5). Proportions of released pheasants in 

buzzard diets are estimated from stable isotope analysis of tissues of buzzards 

and their putative prey and by Bayesian stable isotope mixing models. Adult 

buzzards in a territory with a problem release pen exhibited a higher proportion 

of released pheasants in their diets than buzzards in territories with no release 

pen. The comparison marked with a star indicates a significant difference (P = 

0.028). 

 

There was a significant interaction between ‘problem buzzard’ and tissue type 

("	$,')&'  = 6.45, R2
 = 0.45, P = 0.040). This interaction was largely a function of 

‘problem buzzard’ blood plasma exhibiting signatures indicative of significantly 

higher levels of poult consumption (Estimate = 0.478, SE = 0.188, t 183.9 = 2.53, 
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P = 0.012) (Figure 4.4; Appendix 14), in line with predictions given the time 

periods over which the different tissue types integrate dietary information.  

 

 

Figure 4.4: Variation in the estimated proportions of released pheasant poults in 

the diets of ‘problem buzzards’ trapped in pheasant release pens and other 

buzzards. Proportions of released pheasants in buzzard diets are estimated 

from Bayesian stable isotope mixing models based on stable isotope analysis of 

three tissue types from buzzards (feather n = 35, cellular blood n = 28 and blood 

plasma, n = 28) and of their putative prey. The comparison marked with a star 

indicates a significant difference (P = 0.012), based on post-hoc comparisons, 

based on differences between least-squares means, after fitting a linear mixed 

effects model. 

 

When the different tissues of the ‘problem buzzards’ were analysed individually, 

the consumption of pheasant poults estimated from buzzard feathers did not 

differ significant from the wider population (Table 4.3; Figure 4.5). One bird (B) 

produced a significantly higher estimate of pheasant consumption for both red 

blood cells (t = -2.927, df = 40, P FDR = 0.020) and blood plasma (t = -2.891, df = 

40, P FDR = 0.024) and another bird (D) produced a significantly higher estimate 

for blood plasma (t = -2.537, df = 40, P FDR = 0.030). 

No            YesNo            YesNo            Yes

Problem buzzard
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Figure 4.5: Distribution of individual-level stable isotope mixing model estimates 

for the proportion of released pheasant in diet (logit-transformed). The mean of 

all non-problem buzzards (blue line) and the estimates for the four ‘problem 

buzzards’ (A: D) (red dashed lines) are shown.  
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Table 4.3: Results of one-sample t-test analysis comparing dietary estimates from ‘problem buzzards’ against those of non-

problem buzzards. PFDR denotes the P value corrected for False Discovery Rate due to multiple comparisons. 

Buzzard Feathers Red blood cells Blood plasma 

 t value P value P FDR t value P value P FDR t value P value P FDR 

A  1.107 0.271 0.542 -0.620 0.538 0.538 -0.238 0.821 0.821 

B -1.724 0.087 0.348 -2.927 0.005 0.020 -2.891 0.006 0.024 
C -0.754 0.452 0.603 -0.807 0.425 0.538 -1.824 0.076 0.101 

D -0.300 0.765 0.765 -0.966 0.340 0.538 -2.537 0.015 0.030 
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Discussion 

For selective management to be effective in mitigating the impact of wildlife on 

human interests, the targeted subset of the animal population must be 

disproportionately responsible for these impacts (Linnell et al. 1999; Swan et 

al. 2017). The existence of this subset of ‘problem’ animals is central to 

current disputes and contested practices in relation to buzzard management 

in the U.K. (Parrott 2015). Using the stable isotope ratios of buzzard feathers 

and blood, this study has explored variation in consumption of released 

pheasants and provides three main strands of evidence. First, although the 

effect size was small, buzzards living in territories where gamekeepers 

identified a problem with buzzard predation consumed more released 

pheasants than those with no pheasant release pens in their territories, but 

did not consume any more pheasant than buzzards in territories with release 

pens that were not thought to experience problems. Second, three of the four 

buzzards caught within pheasant release pens, where gamekeepers had 

identified a problem, produced higher estimates of released pheasant 

consumption than other buzzards (two of which were statistically significant). 

Third, by analysing tissues assimilated over different time periods, there is 

some, limited evidence that individual buzzards caught in pens can be 

identified as frequent, recent consumers of released pheasants.  

 

Dietary information from the preceding two years, stored in the metabolically 

inert keratin of buzzard feathers (Zuberogoitia et al. 2005; Inger & Bearhop 

2008), identified significantly higher levels of released pheasant consumption 

in  ‘problem territories’ relative to those territories without pens. This result 

supports the findings of Kenward et al. (2001) who observed a strong 

correlation in the number of pheasant depredation events between the two 

years of their study. My analysis did not find a significant difference between 

territories encompassing a release pen with problems and those 

encompassing a release pen with no problems. Instead, consumption of 

released pheasants in territories with a release pen with no problems was 

highly variable (Figure 4.3), raising the possibility that, alongside foraging 



102	
	
 

specialisations, there was a highly variable opportunistic component to 

buzzard consumption of pheasants. 

 

There is an alternative explanation as to why buzzards with territories 

encompassing pheasant release pens might produce higher estimates of 

released pheasant in diet; that the isotopic ratios of released pheasants are 

being assimilated indirectly though other prey due to changes to the ‘iso-

scape’ around pheasant pens after annual release of gamebirds. Similar 

pathways have been documented in natural systems, such as the transfer of 

nutrients from immigrant Pacific salmon Oncorhynchus spp. into riparian 

ecosystems (Naiman et al. 2002). However, were this the case, I would have 

expected to see the results from nestling tissues (for whom direct 

consumption of released pheasants was not possible) to mimic the significant 

effects observed in the adult tissue. 

 

Making statistical inferences about a foraging behaviour that is rarely 

expressed in a population is difficult as, by definition, I am measuring the 

behaviour of a small minority of distinctive individuals (Cerling et al. 2006; 

Yeakel et al. 2009; Graham et al. 2011). However, there is evidence to 

suggest that buzzards that consistently kill and eat released pheasants are 

such a distinctive subset of the population. In their study of 136 radio tagged 

buzzards in Dorset, U.K., Kenward et al. (2001: p813) observed that only 11 

buzzards (8%) had “significantly more association than other buzzards with 

pheasant pens”. Thus, while my sample of ‘problem birds’ is small, it 

represents an important opportunity to explore the rare expression of this 

behaviour, particularly as I was able to collect multiple tissue samples from 

each individual, each containing dietary information reflecting different time 

periods. When analysed as individual samples, feather tissue, grown over the 

preceding two summers (Dare 2015), did not suggest that released pheasants 

had been an important food source for these birds. Red blood cells identified 

a single buzzard (B; Figure 4.5, Table 4.3) as having particularly high poult 

consumption over the preceding weeks (Hobson & Clark 1993; Bearhop et al. 
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2002), though the greatest level of poult consumption, relative to the wider 

population could be observed in samples of blood plasma, where two problem 

individuals were distinguishable (Buzzards B & D; Figure 4.5, Table 4.3). The 

other two ‘problem’ buzzards trapped in pens did not produce significant 

results for any of the three tissue types, suggesting that their utilisation of 

poults in the pens was either a very recent development or pheasants 

contributed little to their overall diet (Hobson & Clark 1993; Bearhop et al. 

2002). Given the small sample size of buzzards caught inside pheasant 

release pens it is not possible to draw firm conclusions on the prevalence or 

ecological correlates of ‘problem buzzards’. However, these results do provide 

provisional support for individual behavioural variation playing a role in this 

conflict. 

 

Using dietary stable isotope analysis to explore human-wildlife impact  

I have shown how stable isotope analytical approaches can be applied to 

quantify the contribution of released pheasant poults to the diet of buzzards. 

By analysing the isotopic ratios of adult buzzard tissue I was able to explore 

their feeding ecology outside the nestling rearing period (Kenward et al. 

2001), without the biases of alternative indirect methods associated with prey 

handling and digestibility that could potentially overestimate the frequency of 

predation of gamebirds (Francksen, Whittingham & Baines 2016).  

 

Analysis of the isotopic ratios of the five food sources included in all BSIMMs 

provided clear evidence that the tissue of released pheasant poults is 

isotopically distinct from other buzzard foods. The ability of the models to 

provide separate dietary estimates for both wild and released pheasants 

makes this study a rare example of dietary isotope analysis that is able to 

discriminate among life stages within a species. However, the limitations of 

this study merit discussion. Primarily, the results presented here are relative 

dietary proportions that have not been converted into rates of predation. In 

other words, I have shown how important consumption of pheasants is to 

buzzards, but not how important consumption by buzzards is to pheasants. 
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Stable isotope analysis can provide valuable insights into resource depletion 

(Inger et al. 2006), however, in order to ascertain how depredation affects the 

number of gamebirds available to harvest, further data would be required. 

This includes the proportion of pheasants scavenged against those actively 

hunted and the extent to which predation is additive to other losses (Kenward 

et al. 2001).  

 

Management implications 

The presence of ‘problem buzzards’ was recently identified as a key 

knowledge gap in the debate over buzzard management (Parrott 2015). In 

response to licensing requests from those who perceive they are impacted, 

policy has allowed selective lethal control when impact was deemed to be 

severe. To date, such licences have included requirements that lethal control 

be targeted only at buzzards caught in release pens (Natural England 2016c; 

d; e). My results provide tentative evidence to support this approach, 

suggesting that some, but not all, of those individuals caught within pens are 

likely to be problem individuals expressing high levels of poult consumption, 

relative to the wider population.  

 

For licencing authorities, this form of spatially and temporally concentrated, 

selective removal might represent a pragmatic solution to complaints about 

predation. In northern Scotland, a similar management strategy directed at 

‘rogue seals’ (Phoca vitulina and Halichoerus gypus) has created a workable 

compromise between various stakeholders (Graham et al. 2011). Such 

targeted management, if undertaken at a small scale, is unlikely to threaten 

the conservation status of buzzards and the large number of non-breeding 

‘floaters’ in the population suggests that birds will quickly be replaced 

(Kenward et al. 2000). However, little is known about the effects of culling 

raptor populations (Viñuela & Arroyo 2002) or the time-period over which 

benefits will be felt (Parrott 2015). Were such benefits to game rearing 

interests short-lived (or absent), it is likely that on-going selective removal 

could create a sink with local reductions in buzzard densities. Lees et al. 
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(2013) highlight the wider potential for this to have unintended negative 

consequences for game shooting interests, namely the competitive release of  

other medium-sized predators, such as corvids, whose populations may be 

regulated through predation by, or competition with, buzzards. It is also 

possible that the removal of adult buzzards might break down territorial 

structures, increasing any aggregative responses to pheasant releases. This 

effect has been observed in coyotes Canis latrans, where emigration into 

territories left vacant after the lethal control meant that no reduction of 

livestock losses was observed (Conner et al. 1998). 

 

There are non-lethal options that could be refined using these findings, though 

these may not be as popular with impacted stakeholders (Harradine, 

Reynolds & Laws 1997; Treves & Naughton-Treves 2005). For example, 

buzzards holding territories encompassing a release pen with problems could 

be prioritised for diversionary feeding (Parrott 2015). Similar strategies have 

proved successful in reducing raptor predation of gamebirds in upland 

ecosystems (Amar et al. 2004). Alternatively, concentrating deterrent 

measures, already widely used by stakeholders (Harradine, Reynolds & Laws 

1997), such that they lead to the aversive conditioning of individual buzzards, 

is possible, although not without technical difficulties. Although aversive 

conditioning has proved successful in field conditions at reducing predation of 

marbled murrelet Brachyramphus marmoratus eggs by a subset of Steller’s 

jays Cyanocitta stelleri (Gabriel & Golightly 2014), studies on black bears 

Ursus americanus found that once an animal became ‘food-conditioned’ its 

behaviour was difficult to change (Mazur et al. 2010).  

 

Further research that attempts to identify ‘problem’ buzzards and the 

proximate drivers of this behaviour should now be prioritised. Previous work 

that observed higher predation levels in pens with little shrub cover and high 

numbers of released poults provides a good starting point (Kenward et al. 

2001). The application of dietary stable isotope analysis alongside more 

traditional methods of recording predation will strengthen this research, 
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allowing for a more complete understanding of buzzard prey selection and the 

validity of management methods.  

 

Although my sample of problem buzzards was small, the results raise the 

possibility of developing a diagnostic approach that could be used to inform or 

evaluate management on a case-by-case basis. In North America, for 

example, δ13C in black bear hair can predict the risk of that bear being a 

‘conflict bear’ (Kirby, Alldredge & Pauli 2016). Where licenced lethal control is 

conducted, stable isotope analysis might also provide a valuable tool by which 

to assess whether buzzards removed in culling operations were indeed 

problem buzzards or non-target individuals. Such data are rarely collected or 

evaluated, even where selective approaches form the mainstay of 

management (Swan et al., 2017), but could then be used to inform future 

licensing processes.  
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Chapter 5: Buzzard foraging and breeding on land managed for 

pheasant shooting 

Abstract 

In the U.K. long-term increases in populations of common buzzards Buteo 

buteo have created disputes over their management. A concern expressed by 

shooting interests is that buzzards are able to reach higher densities and 

produce more young on land managed for pheasant Phasianus colchicus 

shooting. However, this perception, and any potential underlying causes, has 

never been fully examined. In this study I investigated how buzzard density, 

foraging and breeding success are influenced by the abundance of pheasants 

(birds that had survived previous shooting seasons) and two alternative prey 

items (rabbits Oryctolagus cuniculus and field voles Microtus agrestis) on, and 

around, shooting estates in southwest England. I found a significant effect of 

both pheasant and rabbit abundance on buzzard breeding density. However, 

when I studied prey brought to the nest for chicks, only rabbits were 

provisioned in relation to their abundance. Rabbits were also the only prey for 

which provisioning rate explained variation in the number of buzzard 

nestlings. Pheasants were rarely brought to the nest and no relationship was 

observed between pheasant abundance and provisioning rate at the nest. My 

results therefore suggest that although buzzards nest in closer proximity to 

one another in areas with more pheasants, pheasants are not a preferred 

prey item. I suggest that winter pheasant carrion or high densities of 

alternative prey due to habitat and predator management might explain this 

trend. The visibility of buzzards as a predator and the positive relationship 

between buzzard densities and pheasant abundance has potential to 

influence perceptions of impact and increase the social conflict over their 

management.  
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Introduction 

Across Europe populations of many predatory species are recovering from the 

detrimental impacts of persecution and of toxic contaminants (Clements 2000; 

Chapron et al. 2014). Although such increases are usually seen as positive by 

conservation organisations, increased incidence of real or perceived predation 

can raise concerns with other land users (Amar et al. 2010). This is especially 

true where predators are thought to reduce prey that is either threatened itself 

or of economic importance (Park et al. 2008; Mattisson et al. 2011). A 

common response from those who observe negative impacts is to implement 

or request lethal control (Treves & Naughton-Treves 2005). However, this can 

be controversial, sometimes leading to social conflicts over wildlife 

management (Redpath et al. 2013).  

 

In the U.K., one such conflict concerns the common buzzard Buteo buteo 

(Arraut, Macdonald & Kenward 2015). Buzzard populations have grown over 

450% since 1970 (Hayhow et al. 2016) due to a reduction in killing by humans 

and the recovery of prey populations (Clements 2002; Dare 2015). This 

increase has been observed in annual standardised breeding bird surveys 

(Musgrove et al. 2013), and informally, by those working in the countryside 

and tasked with maintaining small game numbers (Ainsworth et al. 2016). 

Indeed, the majority of gamekeepers now believe that buzzard populations 

have reached a point where they are not only impacting on game, but also 

other wildlife (GWCT 2011). Animosity towards buzzards appears to be 

particularly strong on estates that rear and release pheasants Phasianus 

colchicus (Lees, Newton & Balmford 2013; Parrott 2015). There is provisional 

evidence that part of this animosity stems from gamekeeper perceptions that 

buzzards reach ‘unnaturally’ high densities (Chapter 6). However, the effect of 

gamebird releases on raptor biology has received little scientific attention 

(Bicknell et al. 2010). 

 

Buzzard densities and breeding success are principally limited by the amount 

of available prey (Tubbs 1974; Swann & Etheridge 1995; Sim et al. 2001). 



110	
	
 

Therefore, land managed for driven pheasant shooting might influence 

buzzard breeding biology both directly, by supporting high densities of prey, 

and indirectly, by providing high densities of alternative, non-game, prey 

species arising from legal predator control or habitat management (Trout & 

Tittensor 1989; Oldfield et al. 2003). In order to investigate this in more detail, 

it is important to consider how buzzards respond to variation in the abundance 

of different potential prey species (Park et al. 2008; Smout et al. 2010; 

McKinnon et al. 2013). Buzzards are dietary generalists and able to hunt a 

wide variety of prey (Graham, Redpath & Thirgood 1995; Selås, Tveiten & 

Aanonsen 2007). This allows them to respond to increases in prey availability 

not just numerically, through increased breeding density and productivity, but 

functionally, by increasing how often they consume the prey (Francksen et al. 

2017).  

 

In this study, I examined how buzzard breeding ecology is influenced by the 

local abundance of pheasants, as well as alternative prey (rabbits Oryctolagus 

cuniculus and field voles Microtus agrestis), on, and around, shooting estates 

in Cornwall, U.K. Specifically, I address two hypotheses: (1) buzzards 

respond to increases in pheasant abundance numerically by increasing either 

their breeding density or breeding success; and (2) buzzards respond to 

increases in pheasant abundance functionally by increasing the proportion of 

pheasant in their diet. As the annual release of reared pheasant poults occurs 

when most buzzard chicks are well developed and mortality rates are low 

(Kenward et al. 2001; Hardey et al. 2013; Rooney & Montgomery 2013), it 

appears unlikely that poult releases in the same year will influence the density 

of buzzard nests or the number of nestlings or fledglings. Therefore, this 

research focuses on those pheasants that have either been released and 

survived the previous year’s shooting season or have been hatched in the 

wild.   
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Methods 

 

Study sites 

Fieldwork was undertaken from April to August 2015 on three study sites in 

Cornwall, U.K. (50.35°N, 4.85°W). All three sites centred on separate private 

shooting estates that were managed for the purposes of pheasant shooting. 

On all, management included the killing of mammalian and corvid predators 

and the release of >10,000 pheasant poults annually.  

 

 
Figure 5.1: The locations of three study sites and 37 common buzzard nest 

sites in Cornwall, United Kingdom.  

 

Territory mapping 

Buzzard breeding territories were mapped by locating active buzzard nests 

through systematic searches of all woodland, tall hedgerows and lone trees 

during April and May 2015. A nest was considered active with the observation 

of an adult bird leaving the nest. Once all nests had been located, the nearest 

neighbour distance (NND) was calculated using QGIS. Following Swann & 

Etheridge (1995), NND was used as a proxy for territory size. The mean 

NND/2 was then used as the ‘core territory’ radius for all nests. Active nests 

were accessed three times during the nesting season: (i) to confirm clutch 

Cornwall, U.K. 

Buzzard nest
Study site
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size during late incubation, (ii) to check hatching success and install nest 

cameras 7 days after hatching, and (iii) to ring the chicks at 18-25 days old. 

All work was conducted by trained and experienced personnel under licences 

from the British Trust for Ornithology (CO/6164) and Natural England (2015-

7805-SCI-SCI).  

 

Prey abundance 

As buzzard pairs provision their chicks from prey hunted within established 

territories (Prytherch 2013), the area within the core territory of each nest was 

used to sample prey abundance. In addition to pheasants, the relative 

abundance of rabbits and field voles were quantified as these are known to be 

an important prey source from buzzards in the U.K. (Graham, Redpath & 

Thirgood 1995; Francksen, Whittingham & Baines 2016; Prytherch 2016).  

 

This was achieved by surveying forty random points (assigned using QGIS) 

within each territory immediately after the nestlings had fledged (July – early 

August). At each point, appropriate sampling methods were employed to 

produce indices of relative abundance for the three prey types. For rabbits, an 

adaptation of the ‘standing crop pellet count’ (Fernandez-de-Simon et al. 

2011) was followed. A 1m2 quadrat was thrown and searched for evidence of 

rabbit droppings. The total number of quadrats per territory in which rabbit 

droppings were located was then used as a relative index of rabbit 

abundance. For field voles, the top right 25cm2 of the same quadrat was 

examined for the presence or absence of field vole signs, specifically grass 

clippings. Following Lambin, Petty & Mackinnon (2000) this area was then 

scored 0, 1 or 2 depending on the deterioration of the clippings (fresh = 2, old 

= 1). This score was then summed for each territory to create a field vole sign 

index. To provide a measure of relative abundance of pheasants for each 

territory an adaptation of the timed point counts conducted by Selås, Tveiten 

& Aanonsen (2007) was employed. At each point, ‘wild’ pheasant (not 

released that year) observed within 100m over 2 minutes were recorded. I 

excluded juveniles in and around release pens as these were all assumed to 
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be captive bred. Juveniles seen with a hen pheasants outside of pens were 

included. Distances were measured using a laser rangefinder (Rangemaster 

1600, Leica). The total number of points in each territory from which 

pheasants were observed was then used as the index. 

 

Sampling provisioning rate 

Buzzard feeding data were collected using motion-activated remote cameras 

(CMOS 380 TVL, HandyKam, Cornwall) installed at nests. Recording 

provisioning by adults of chicks at the nest in this way represents the most 

accurate technique for determining food habits at raptor nests (Lewis, Fuller & 

Titus 2004). On detecting movement, the cameras recorded up to 5 minutes 

of continuous video footage. Videos of prey deliveries were watched by a 

single observer (GS) to reduce any effects of between-observer bias. Where 

possible, prey items were recorded at a species level. As pheasant releases 

occurred > 18 days into nestling development, it was assumed that they did 

not influence nesting density or productivity directly (Rooney & Montgomery 

2013). All released poults were therefore excluded from further analysis. 

Statistical analysis 

To investigate whether there was a relationship between buzzard breeding 

density and the relative abundance of their prey, linear models were fitted with 

‘nearest neighbour distance’ as the response and the abundance indices of 

rabbits, voles and pheasants as explanatory variables.  

 

Using the dietary data from the camera footage the provisioning rates for 

rabbit, vole and pheasant prey were calculated for each nest. Provisioning 

rate was the total observations for each prey group divided by the number of 

hours the camera was running. To investigate how buzzards utilise rabbits, 

voles and pheasants in relation to their abundance (their functional response), 

linear models were fitted with provisioning rate for each of the three prey 

groups as the response variable and the index of relative abundance for that 
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prey as the explanatory variable. Prior to inclusion in the model, the 

provisioning rates were log-transformed to meet assumptions of normality. 

 

The relationships between provisioning rates and buzzard productivity were 

then tested using the number of nestlings, categorised as 1 or >1, as a 

measure of productivity. Nests containing two and three nestlings were 

grouped, as there were only two nests with three nestlings.  A generalised 

linear model (GLM) was fitted with ‘nestling number’ as a binomial response. 

Different models were fitted with the provisioning rate of each prey (log 

transformed) as the explanatory variable.  

Results 

 

Nestling density and productivity 

A total of 37 active buzzard territories were located and mapped (Figure 5.1). 

The average nearest neighbour distance was 690m (± 202m, n = 36) and thus 

core territories were assumed to be within a 345m radius from each nest. One 

nest was excluded from this calculation, as it was not possible to be certain 

that the nearest neighbour nest had been located. 

 

26 nests (70%) successfully raised chicks to the point of fledging, with most 

failures occurring early in the nesting period (Figure 5.2A). The average 

number of nestlings per pair declined more slowly with a mean of 0.89 (SD = 

0.70) nestlings surviving in each territory, two weeks after fledging had 

occurred (Figure 5.2B). The fact that there was minimal change in either 

measure of breeding success was observed across my sample after the 

nestlings had reached 18-25 days (the approximate time period at which that 

year’s released pheasants became available) adds weight to the assumption 

that buzzard breeding success was not significantly influenced by that year’s 

pheasant releases.   
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Figure 5.2: Decline in percentage of nests active (A) and the eggs or 

nestlings present (B) over the period of study. 

 

Provisioning observations 

Using the nest cameras, a total of 4290 ‘hunting hours’ were recorded at 24 

nests. At nests, cameras were active over an average of 12.8 ± 6.4 days  

(mean ± SD) and encompassed an average of 178.8 ± 101.8 ‘hunting hours’. 

Within this footage, 1455 provisioning events were observed (mean per nest = 

62 ± 35). Buzzards displayed a diverse diet that included mammals, birds, 

reptiles, fish and invertebrates. Voles (Microtus agrestis / Myodes glareolus) 

were the most important prey item by frequency (n = 365, 25.1% frequency, 

6.9% biomass) and rabbits were the most important prey by mass (n = 195, 

13.4% frequency, 39.1% biomass).  

 

In total, 70 provisioning events involving pheasants were observed on the 

camera footage, of which, 39 (2.7% frequency, 7.3% biomass) were identified 

as released pheasant poults (identified by their clipped primary feathers) and 

31 (2.1% frequency, 7.2% biomass) as ‘wild’ gamebirds. Of these ‘wild’ birds, 

9 were pheasant chicks, 15 were young poults and 7 were adult birds.  

 

Measures of relative prey abundance for each of the three prey groups 

(rabbits, field voles and pheasants) and nearest neighbour distance were 

recorded in 35 of the 37 territories (in one territory it was not possible to be 

certain that the nearest neighbour nest had been located, and in another it 

was not possible to adequately sample the core territory). There was a 
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significant negative correlation between the indices of relative abundance for 

rabbits and voles (Spearman’s rank-order correlation rs = -0.342, P = 0.044), 

but no significant correlation between the abundance of pheasant and that of 

either rabbits or voles. 

 

There was a significant negative relationship between nearest neighbour 

distance of buzzard territories and indices of relative abundance for rabbits 

(F1,33 = 5.47, r2 = 0.14, P = 0.026) and pheasants (F1,33 = 4.68, r2 = 0.23, P = 

0.006), but not for voles (F1,33 = 0.02, r2 = 0.001, P = 0.88) (Figure 5.3). 

 

 

 
Figure 5.3: The relationship between the nearest neighbour distance (m) 

between buzzard nests and indices of relative abundance for rabbits, voles 

and pheasants in 24 common buzzard territories. Dashed lines denote 

statistically significant relationships between nearest neighbour distance and 

indices of relative abundance for rabbits and pheasants. 

 

In those territories with cameras installed at buzzard nests (n = 24), there was 

a significant positive relationship for between provisioning rate at the nest and 

the abundance index for rabbits (F1,22 = 8.80, r2 = 0.29, P = 0.007), but not for 

voles (F1,22 = 3.13, r2 = 0.13, P = 0.09) or gamebirds (F1,22 = 0.24, r2 = 0.01, P 

= 0.63) (Figure 5.4).  
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Figure 5.4: Relationships between prey provisioning rates (provisioned items 

per hour of nest camera footage) at common buzzard nests and indices of 

relative abundance for rabbits, voles and pheasants in 24 buzzard territories. 

The dashed line denotes a statistically significant relationship between rabbits 

provisioned per hunting hour (log-transformed) and an index of relative 

abundance for rabbits. 

 

There were differences in the relationship between provisioning rate and nest 

productivity for the three prey groups. There was again a significant 

relationship between the provisions per hour of rabbits and nestling number 

(!"
1 = -7.98, P = 0.004) but the same relationship was not present for voles 

(!"
1 = -0.99, P = 0.319) or pheasants (!"

1 = -1.86, P = 0.172) (Figure 5.5).  
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Figure 5.5. Provisioning rates of prey items per hour of rabbits, field voles and 

pheasants in relation to the number of nestlings in 24 buzzard territories.  

Boxplots indicate the median and interquartile range, whiskers indicate 

largest/smallest observation + / - 1.5 x the interquartile range. The stars 

denote a significant difference in the number of rabbits provisioned per hour 

(log-transformed) in nests with 1 and >1 nestlings.  

Discussion 

The results of this study suggest that buzzards nest at higher densities in 

areas where pheasants and rabbits are more abundant. However, only rabbits 

were provisioned to nestlings in proportion to their abundance, and it was only 

rabbit provisioning rate that predicted the number of nestlings. I therefore find 

evidence to support the first hypothesis that buzzards respond to increasing 

pheasant abundance numerically, in local breeding density but not 

productivity. I was able to reject the second hypothesis that buzzards exhibit a 

functional response to pheasant abundance, as there was no relationship 

between pheasant abundance and pheasant provisioning rate. 

 

Although previous studies have address buzzard density and breeding in 

relation to abundance measures of alternative prey (Graham, Redpath & 

Thirgood 1995; Sim et al. 2001), to the best of my knowledge this is the first 

study that has examined how buzzard breeding variables relate to any 
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measure of pheasant density. Although my results suggest that buzzard 

densities are highest where pheasants are abundant, I found that pheasants 

represent a small proportion of buzzard diet and that pheasant abundance 

was not correlated with provisioning rates. These findings suggest that 

pheasants are not preferred buzzard prey, at least pre poult release. 

Considering the current conflict over buzzard management on pheasant 

shooting estates this study therefore represents an important contribution to 

our ecological understanding of the problem.  

 

Due to these conflicts, the positive relationship between buzzard densities 

and gamebird abundance is also worth brief discussion in a socio-ecological 

context. Buzzards are highly visible predators and, if seen frequently in 

proximity to pheasants, might generate a high level of concern (Naughton-

Treves & Treves 2005) in comparison to other sources of mortality (Lees, 

Newton & Balmford 2013). This has the potential to influence levels of illegal 

killing by gamekeepers, an activity known to be a frequent occurrence in 

Britain (RSPB 2015b). Indeed, in their recent conceptual framework for 

understanding predator persecution, Carter et al. (2017) identified a link 

between predator abundance, interactions with people and poaching 

opportunity.  

 

The significance of the relationship between pheasant abundance and the 

nearest neighbour distance between buzzard nests (Figure 5.3) is perhaps 

surprising, considering the relatively small contribution of pheasants to 

buzzard diet in the breeding season (Figure 5.5). A potential mechanism to 

explain this observation could be that pheasants are of greater dietary 

importance in late winter or early spring when nest sites are selected and 

territories defined (Tubbs 1974; Prytherch 2013). It is possible that buzzards 

increase their predation of pheasants over this period - gamekeeper records 

of raptor predation on grey Perdix perdix and red-legged Alectoris rufa 

partridges peak between February and May (Watson et al. 2007). An 

explanation that might be more plausible, however, is that areas with more 
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pheasants provide more carrion during the winter and early spring period as a 

consequence of unrecovered hunting casualties (Watson et al. 2007) and 

vehicle collisions (Madden & Perkins 2017). In their study of wild grey 

partridge survival, Watson et al. (2007) estimate 10% of birds shot were not 

recovered. Were this estimate a similar percentage for pheasants this would 

represent a sizable biomass, potentially allowing pairs to maintain smaller 

territories. It is also possible that habitat management on land that is intended 

to hold pheasants over the winter provides buzzards with prey sources not 

quantified in this analysis. This could be either though maintaining hedgerows 

and woodland belts (Oldfield et al. 2003) or planting game crops intended to 

provide pheasants feed and cover (Sage et al. 2005). For example, Sage et 

al. (2005) observed over ten times more songbirds in winter game crops than 

on adjacent arable fields.  

 

Of the three prey items investigated in this study, rabbits appear to have the 

most important influence upon buzzard breeding ecology. Specifically, I have 

shown that buzzards in areas with higher rabbit densities nest closer together, 

provision more rabbits and, consequently, are able to rear more chicks. The 

findings are therefore confirmation, not just of the importance of rabbits in 

buzzard diet (Swann & Etheridge 1995), but of the importance of rabbit 

abundance on buzzard density and productivity. This result has potential 

management implications for game estates as rabbits occur at higher 

densities on land where mammalian predators are removed (Trout & Tittensor 

1989). Thus, the legal predator control commonly practised by gamekeepers 

(GWCT 2011; Martin 2011), might trigger the ‘competitive release’ of buzzard 

populations, allowing them to reach unusually high densities (Trewby et al. 

2008; Bodey, McDonald & Bearhop 2009). 

 

Although restricted by the necessity to sample across habitats, the rabbit, field 

vole and pheasant indices provided suitable approximations of the relative 

abundance of each of these prey items. One possible shortcoming of the 

analysis is that, while the vole sign index only reflects field vole abundance, I 
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was unable to differentiate between field voles and bank voles Myodes 

glareolus during provisioning observations. However, the results of pellet and 

prey analysis of buzzard diet suggest that bank voles only constitute a small 

percentage of all vole prey (Graham, Redpath & Thirgood 1995; Dare 2015). 

Indeed, in Graham, Redpath and Thirgood’s (1995) analysis of pellet and prey 

remains, of the 206 voles recorded, only 3 were identified as bank voles. 

Thus, while it might be assumed that some bank voles were recorded, any 

bias in the provisioning data would be expected to be small.  

 

As my study sites were all pheasant shooting estates, this study used fine 

scale data on the relative abundances of pheasants in each territory. A useful 

further contribution would be to research how buzzard breeding densities vary 

at a landscape scale; comparing between sites where gamebirds are released 

and those where no releases occur. These results also highlight the need for 

data on buzzard winter diet on lowland shooting estates to help understand 

the relationship between buzzard breeding densities and pheasant 

abundance. This will necessitate methods that can be applied without the nest 

as a focal point such as direct observations (Redpath et al. 2002), collecting 

pellets at roosts (Francksen et al. 2016) or, if the tissue of birds can be 

successfully sampled, dietary stable isotope analysis (Inger & Bearhop 2008).  

 

In conclusion, this study is the first to explore buzzard breeding density and 

success against a measure of pheasant abundance. The results show a 

positive relationship between pheasant abundance and buzzard breeding 

density. However, the ecological driver of this is currently unknown as 

pheasants, at least in the breeding season, made up a small proportion of 

overall diet and were not provisioned in relation to their abundance. Instead, I 

suggest that buzzards are able to nest in closer proximity in areas of high 

pheasant abundance as a result of either the availability of pheasant carrion 

over the winter or the abundance of alternative prey sources due to predator 

control and habitat management. The visible nature of buzzards as predators 

and the positive relationship between buzzard and pheasant densities may 
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contribute to the apparent disconnect between the published evidence of 

buzzard predation of pheasants and the perceptions held by gamekeepers.  
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Chapter 6: Gamekeepers’ motivations for predator management 

Abstract 

Disagreements and disputes over the management of predatory animals are 

common factors in multiple conservation conflicts. In the U.K., there are long 

established conflicts surrounding the management of game species and the 

associated control of predator numbers. Despite the central role of game 

managers as stakeholders and actors in these activities, little attention has 

been paid to their perspectives and motivations. I conducted semi-structured 

interviews on the subject of predator control with 20 gamekeepers across the 

south of England, to explore the underlying beliefs, norms and information 

sources that motivated their behaviour. Six ‘primary motivations’ for predator 

management emerged: professional norms, personal norms, potential 

penalties, perceived impact, personal enjoyment and perceived efficacy. The 

influences of these motivations are discussed in detail and a conceptual 

model, incorporating the theory of planned behaviour, is developed. The 

findings have the potential to advance and inform wildlife management, and 

the conflicts with which it is associated, in three ways, by 1. characterising the 

information sources used to make decisions, 2. providing a basis for improved 

communication with stakeholders by detailing how the concepts of ‘balance’ 

and ‘natural’ are perceived and defined and 3. uncovering the interests and 

motivations behind predator control and illegal behaviour. I propose that, 

conflict mitigation will be more effective if efforts are tailored to address 

specific motivations of impacted stakeholders. 
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Introduction 

When humans and predators share spaces, there can be social 

disagreements over how these animals are managed. Where conflict 

develops, this is often because of a disparity in how people differently value 

and perceive predators. Some view them as intrinsically valuable or 

ecologically beneficial (Lees, Newton & Balmford 2013; Ramp & Bekoff 2015) 

while others view them with fear or intolerance (Treves & Bruskotter 2014) 

that can be centred around perceived threats to human safety, livestock or 

game (Graham, Beckerman & Thirgood 2005; Woodroffe, Thirgood & 

Rabinowitz 2005b). Where stakeholders feel threatened by predators, 

responses can be made privately, through legal or illegal killing (Liberg et al. 

2012), or more publicly through exerting political pressure to remove 

protections (Parrott 2015). Such actions can elicit strong opposition and 

conflict, particularly when killing actually or potentially threatens conservation 

objectives (Treves & Naughton-Treves 2005; Redpath et al. 2013; Ramp & 

Bekoff 2015). 

 

Attempts to mitigate conflicts about predatory animals and their management 

have focused on the ecological and economic aspects of impacts (Dickman, 

Marchini & Manfredo 2013; Marchini 2014). This has included offering 

financial compensation, advising on animal husbandry or reducing 

populations (Graham, Beckerman & Thirgood 2005). Yet, such mitigation 

efforts can take for granted that the impact caused by wildlife is directly 

related to the response and that the level of impact elicits a proportionate 

response on the part of those affected (St John, Edwards-Jones & Jones 

2010; Dickman 2010). This has been described as a ‘bio-rational’ 

understanding of the problem (Cavalcanti & Gese 2010), that ignores other 

possible social-psychological drivers behind stakeholder behaviour (Burton, 

Kuczera & Schwarz 2008; Cavalcanti et al. 2010). There is increasing 

evidence to suggest that management approaches based on a bio-rational 

understanding can be short-sighted; For example, Pohja-Mykrä (2016) 

observed that wolf killing in Finland was motivated not only by risk perception 
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but by defiance of authorities, while Inskip et al. (2014) observed that tiger 

killing in Bangladesh is motivated by fear and by expected social rewards.  

 

In this context, evaluating conflicts through a social-psychological lens 

appears a crucial step towards effective and lasting management (Madden & 

McQuinn 2014). Where pre-existing knowledge suggests possible predictors 

of behaviour, researchers can approach respondents with surveys or 

questionnaires designed to test a priori hypotheses (St. John et al. 2014). One 

social-psychological model that has been used for this purpose is the ‘Theory 

of Planned Behaviour’ (Figure 6.1) (Ajzen 1985). This framework has proven 

valuable in supporting analysis of both intentions and behaviour by 

addressing: (i) the attitude held toward a behaviour, (ii) the normative beliefs 

about what others expect and (iii), the degree that a person can control their 

behaviour (Armitage & Conner 2001; St John, Keane & Milner-Gulland 2013). 

It has also been successfully applied to understanding predator management. 

Marchini & Macdonald (2012) used this framework to demonstrate how 

perceived threats to livestock and human safety influenced rancher intent to 

kill jaguars in the Brazilian Pantanal. 

 

Qualitative research has also yielded detailed data on motivations and 

preferences for wildlife management (Dandy et al. 2012; Maye et al. 2014; 

Pohja-Mykrä 2016). A qualitative approach investigates social-ecological 

systems through the perspective of respondents, permitting the identification 

of “insider viewpoints that could easily be missed using predesigned, 

structured surveys based on outsider perspectives” (Rust et al. 2017: p1305). 

 

In this chapter, I explore predator management by gamekeepers using 

qualitative enquiry. I do so by investigating the norms, values and beliefs that 

create motivations for predator control. Although there is no broad consensus 

on how values are defined (Ives & Fischer 2017), I follow social-psychological 

definition that conceptualises values as “trans-situational goals and principles 

that guide human behaviour” (Manfredo et al. 2017: p773). Values are formed 
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Figure 6.1: Diagrammatical representation of the Theory of Planned 

Behaviour (Ajzen 1985) and potential motivation sources.  

Adapted from St. John et al. (2010). Solid lines represent direct links and 

dashed lines represent indirect links 

 
during socialisation and influence how attitudes towards objects and actions 

are constructed and maintained (Stern & Dietz 1994). Following Dandy et al. 

(2012), I define ‘beliefs’ as “pieces of information, judgements or ‘facts’… that 

the believer thinks to be true”. As humans make decisions based on an 

evaluation of the information available to them (Ajzen & Fishbein 1980), I also 

attempt to highlight information sources that influence management decisions.  

 

I use ‘the theory of planned behaviour’ to structure how individuals come to 

decisions. Here, the motivations can be seen as providing the “the basis for 

the corresponding attitude, norm or perception of control” (Manfredo & Dayer 

2004: p318) (Figure 6.1). I first describe the background to these conflicts 

before presenting a qualitative assessment of the values and beliefs that 

shape decisions on predator control.  

Normative 
beliefs

Motivation 
to comply

Theory of 
Planned 
Behaviour

Motivations

Behavioural 
beliefs

Outcome 
evaluation

Control 
beliefs

Power 
beliefs

Beliefs
Norms
Values

Information sources

Attitude

Direct	
Indirect	

Subjective norm Perceived behavioural 
control

Behavioural intention

Behaviour



128	
	
 

 

Background to gamebird hunting 

The shooting of driven gamebird species is a widespread recreational activity 

in the U.K. and can play an important social, ecological and economic role 

within rural communities (Oldfield et al. 2003; Public & Corporate Economic 

Consultants 2006). In lowland landscapes, the majority of the birds hunted are 

ring-necked pheasants Phasianus colchicus of which ~28 million are released 

annually from captive-bred stock (BASC 2015). The spatial coverage of such 

releases is substantial (5 - 10% of the U.K.’s land area; Tapper 1999), and 

one in twelve woodlands in England is thought to contain a pheasant release 

pen (Sage, Ludolf & Robertson 2005). In order to rear gamebirds, conduct 

releases and oversee the shooting during the hunting season many shooting 

estates employ gamekeepers. Alongside habitat management, the majority of 

gamekeepers also conduct predator control in some form (Reynolds & Tapper 

1996; GWCT 2011).  

 

There is evidence that removing predators increases both the surplus of game 

and the density and breeding success of other native wildlife (Tapper, Potts & 

Brockless 1996; Fletcher et al. 2010; Reynolds et al. 2010). However, 

predator killing has created a social conflict centring on animal welfare and 

threats to conservation objectives (Lees, Newton & Balmford 2013; Elston et 

al. 2014). These conflicts are exacerbated by shooting interests being 

repeatedly linked to the illegal killing of protected predator species (Smart et 

al. 2010; Amar et al. 2012; Whitfield & Fielding 2017). Illegal killing not only 

threatens the conservation status of several predatory species (Etheridge, 

Summers & Green 1997; Whitfield & Fielding 2017) but also erodes trust 

between conservation organisations and shooting interests, making 

constructive dialogue on broader issues difficult (Redpath et al. 2013). 

Conflicts concerning game shooting and predator management are 

exemplified by the long-running conflict between hen harrier Circus cyaneus 

conservation and moorland managed for the purposes of red grouse Lagopus 

lagopus scotica hunting. Here, although there has been significant investment 
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from stakeholders and scientists, a practical means of conflict mitigation 

remains elusive (Redpath & Thirgood 2009; Sotherton, Tapper & Smith 2009; 

Elston et al. 2014).  

 

Despite the central role of gamekeepers in this conservation conflict (White et 

al. 2009), the spatial extent of game releases (Sage, Ludolf & Robertson 

2005), and the participation of some gamekeepers in illegal predator killing 

(Nurse 2011), there is little published literature analysing their perspectives 

and motivations behind predator management. Such information might allow 

stakeholder groups to acknowledge, engage and respond to the deeper social 

and psychological drivers that might influence predator killing. The results of 

the few quantitative studies of practice, based on mailed questionnaires, 

suggest that gamekeeper effort to trap mustelids is higher following perceived 

predation (Packer & Birks 1999) and on estates that rely on ‘wild’ game 

(McDonald & Harris 1999). However, more detailed qualitative research on 

game managers in Spain provides evidence that, as well as perceived impact 

on hunting opportunities, intentions to control predators are influenced by 

broader social factors (such as tradition) and ecological factors (such as 

predator population size) (Delibes-Mateos et al. 2013). In the context of these 

findings and the apparent impasse over predator management, it seems 

pertinent to evaluate the social drivers of predator management in the U.K.  

Methodology  

I conducted 20 semi-structured, one-to-one interviews with gamekeepers in 

five counties across the south of England (Table 6.1) between September and 

November 2016. Eleven interviews were conducted while the gamekeepers 

carried out their daily activities, while nine were sedentary discussions. ‘Go-

along’ interviews were used in conjunction with static interviews as they 

provide “a unique means of obtaining contextually based information about 

how people experience their local worlds” and the consequences these 

experiences have on actions (Carpiano 2009: p271).  
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To recruit interviewees, I employed a ‘snowball sampling’ method whereby 

gamekeepers known to the research team were contacted first and then 

asked to recommend others. In selection I sought individuals currently 

employed as gamekeepers, with a diversity of experience and backgrounds 

(rather than a sample that was representative of broader variation in the 

industry at national or regional scales). This approach was chosen to 

maximise access to research subjects. The use of known individuals, rather 

than cold-calling, also served to build a foundation of trust, which was 

particularly important as the research topic contained inherent sensitivities 

(predator control is controversial and illegal behaviour persists within the 

profession). Prior to interviews, all participants were supplied with information 

on the research and provided written consent. This project received ethical 

approval from the University of Exeter College of Life and Environmental 

Sciences Ethics Committee. To provide anonymity, participant names are 

replaced with numbers (e.g. G1). Position is noted to distinguish:  

o Headkeepers (HK), who were ultimately responsible for all 

gamekeepers and game management on the estate. These also had 

their own ‘beat’ (a section of the estate that was their primary 

responsibility). 

o Single-handed keepers (SHK), who were ultimately responsible for all 

game management on the estate. 

o Beatkeepers (BK), who had their own beat that was their responsibility.  

o Underkeepers (UK), who had their own beat but reported regularly to 

the Headkeeper.  

 
With the exception of a single ‘wild bird’ shoot, all respondents annually 

supplemented gamebird populations with juvenile pheasants reared in 

captivity. These releases varied in size but could be substantial; several 

estates released over 50,000 pheasant poults each year. Several also 

released smaller quantities of red-legged partridges Alectoris rufa. Shoots 

were run commercially, by a private family or by syndicates of hunters (often 

the distinction between these types was blurred). Seventeen of the 
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respondents were employed full time, while three had part-time positions. 

Within the sample, six respondents were second or third generation 

gamekeepers. Collectively, my data represented over 400 years of 

gamekeeping experience (range 4 – 45 years). 

 

Table 6.1: Research participants categorised by position and size of pheasant 

shoot. Shoot size was defined by the gamekeepers themselves as the 

number of birds released was found to be a sensitive question.  

Shoot size Headkeeper Single-handed keeper Beatkeeper Underkeeper 

Small  4 c   

Medium 6 a 2 d 3 e 2 g 

Large 2 b  1 f  

Total 8 6 4 2 

Notes: a 2 West Sussex, 1 Cornwall, 1 East Sussex, 1 Kent, 1 Devon; b 1 West 

Sussex, 1 Cornwall; c 2 East Sussex, 1 Cornwall, 1 Kent; d 1 Cornwall, 1 West 

Sussex; e 3 West Sussex; f 1 West Sussex; g 2 East Sussex. 

 

Interviews followed a schedule of themes, beginning with personal 

background and professional development before moving on to predator 

impact and management decisions (Appendix 15). I asked general, open 

questions structured around subjective norms, perceived behavioural control 

and attitude in accordance with the theory of planned behaviour. Specific 

predatory species were not introduced by the interviewer to avoid specific 

preconceptions biasing results. Instead, respondents were encouraged to 

discuss their attitudes to any species that they perceived killed or ate 

gamebirds or their eggs. By allowing respondents to consider a diversity of 

predatory species I aimed to uncover the broader motivations for predator 

control. Discussions were developed during the process to expand on 

concepts or statements brought up in previous conversations (Appendix 15). 

The introduction of statements from other keepers into our conversations 

created an indirect dialogue aimed at producing a more nuanced discussion.  
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During discussions I focused on how respondents used legal methods to 

control predators and did not seek to identify those conducting illegal 

behaviour. However, as I was interested in the context in which illegal 

behaviour is rationalised I used ‘projective’ questioning (whereby respondents 

were asked about how they suspect others rationalise their behaviour) to shed 

further light on gamekeepers’ motivations behind this behaviour (Nuno & St 

John 2014). 

Analysis 

Interviews were digitally recorded and fully transcribed. One respondent 

asked not to be recorded but allowed detailed notes (including direct quotes) 

to be taken. Transcripts were then analysed using NVIVO 11 (QSR 

International Pty ltd 2015) software for qualitative analysis. This was achieved 

in two stages. In the first stage, transcripts were analysed by identifying 

underlying and unprompted patterns in language, subject or content 

concerning predators and their management. Themes were aggregated into 

six ‘primary motivations’. I understand these to be the key drivers of predator 

control but acknowledge that there are additional, less common, motivations 

that are not discussed. By analysing the text in this way motivations emerged 

both from the questions in the interview guide but also inductively from the 

gamekeepers’ reasoning and experience. In the second stage, motivations 

were restructured within the theory of planned behaviour based on whether 

they related to subjective norms, attitudes, or perceived behavioural control.  

Results 

Gamekeeping was viewed as a “way of life” (G13, HK) or a “vocation” (G14, 

HK) rather than an occupation. On a day-to-day basis, gamekeepers 

described themselves as largely solitary1 and autonomous2, making their own 

                                            
1 “Keepers are usually quite isolated, they don’t like other peoples company, they don’t like to 
talk to people” (G2, SHK) 
2 “I keep myself to myself and do what I’ve got to do” (G14, HK) 
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decisions on much of the detail concerning game releases and predator 

management3. A total of 24 mammals and birds (11 and 13 respectively) were 

implicated in predation of pheasants or their eggs on the estates visited. 

Twelve of these 24 species could be subject to legal lethal control without 

prior application for a licence. Although I observed variation in the way 

participants viewed specific predators and mitigated perceived impact, broad 

patterns in motivations and perceptions emerged. I discuss their influence 

below using the theory of planned behaviour to structure my findings. 

 

Normative beliefs and motivation to comply 

Social normative pressures were evident through expected behavioural 

conformity within the gamekeeping profession (e.g. “Any gamekeeper worth 

his salt would control…”: G13, HK). The normative beliefs regarding predators 

meant that the abundance of some predatory species could be seen as a 

personal reflection of the gamekeepers’ capabilities. In other words, these 

beliefs could be considered as professional norms. For instance, 

gamekeepers talked of the presence of certain predators on their beat as 

being “like a stigma” (G4, UK) and finding it “ridiculously embarrassing” (G2, 

SHK) if they were seen during a shoot day4. Another talked about how he 

controlled magpies, in part, because other gamekeepers “take the micky” (G7, 

HK) when they see them (magpies) on his shoot. Such responses suggest not 

only that professional norms have an influence on predator control, but also 

that they might affect the instinctual and emotive responses gamekeepers feel 

toward predators (e.g. “I bloody hate seeing magpies”: G2, SHK). 

 

In my projective questioning, professional norms and what it meant ‘being a 

gamekeeper’ were used to explain illegal behaviour. A prevalent attitude “I’m 

a gamekeeper, therefore I have to kill absolutely everything” (G6, BK) was 

ascribed by some to the older generation, while others perceived that some of 

                                            
3 “There’s no bureaucracy, there’s no red tape, there’s no paperwork” (G11, SHK) 
4 “If a fox runs out on a shoot day, it’s like, fuck there’s a fox here, but you can’t kill every 
single one” (G20, BK) 



134	
	
 

the younger generation thought such killing was how a ‘good’ gamekeeper 

behaved5. This is not to say they felt that such norms were static, and many 

made references to a perception of change within their profession. For some6, 

this professional change ran parallel to a personal change: 

 

“I think that gamekeepers [now] are hugely more aware… my 

thinking has definitely changed over my lifetime… I’m far more 

lenient and far happier to let live and not overreact… I think most 

people have grown up with the idea that there has to be 

acceptance, of really reaching a balance. Which is where we are. 

And I think that there is a greater acceptance now that we must be 

more lenient in our approach to say, for instance, birds of prey, 

because those old days have gone.” (G17, HK).  

 

The motivation of individuals to comply with their own normative beliefs 

appeared to be largely structured around an individual’s moral beliefs about 

what was right and wrong. These can be described as ‘personal norms’ 

(Carter et al. 2017) and their influence on predator control appeared as a 

complex composite of professional/social norms, perceived impact and 

conformity to the law. Gamekeepers described the responsibility they felt to 

protect both game and non-game wildlife by controlling predators in moral 

terms7. For example one gamekeeper, in describing why he killed predators, 

used the metaphor of a pet that had been left in his care: 

 

“It’s like if you dropped a dog off at me to look after, it’s my 

responsibility to make sure that dog comes back to you in perfect 

health. It’s the same with pheasants come the [start of the shooting 

                                            
5  In reference to what the younger generation of gamekeepers think the profession entails: 

“they think that it’s to kill everything” (G2, SHK) 
6  “Years gone by I might have thought about doing it [illegal predator control] but now I don’t” 
(G9, SHK) 
7 “If I didn’t shoot a single fox all year, you’d never have a nesting pair of skylarks on the top 
of the downs” (G6, BK) 



135	
	
 

season]. Not only is my boss expecting it, but I’m expecting it” (G2, 

SHK). 

 

A moral obligation to protect game was also used during projective 

discussions as to why other gamekeepers might decide to break the law and 

kill protected predators: 

 

“If you spent 12-14 hours a day, from when they’re little chicks, 

keeping something alive and then it’s getting attacked every day by 

something and you’ve tried your scarecrows and you’ve tried your 

bangers and you’ve tried all that sort of thing, then I think it could 

push some people over the top” (G8, HK) 

 

One gamekeeper expressed frustration in how illegal behaviour was framed 

by the media and conservation organisations: “We’re not bird of prey killers. 

We’re game protectors” (G17, HK). For many of the keepers within the 

sample, however, the responsibility they felt for their pheasants appeared not 

to outweigh the moral cost of breaking the law and removing protected 

predators: “I’m sure my percentages are not as good as other keepers, I don’t 

give a fuck, at least I can live with myself” (G11, SHK). 

 

Behavioural beliefs and outcome evaluations 

As the primary purpose of gamekeeping is to produce gamebirds for 

recreational hunting8, perceived impacts, in the form of gamebird losses to 

predators, was a key motivation in predator removal. Gamekeepers 

considered that predation resulted in reductions in the number of gamebirds 

available to shoot and, thereby, created a threat to their job security9. This 

                                            
8 “Our primary purpose is to produce shoot days. That’s what we're paid to do.” (G9, SHK) 
9 “Christ, if I drop down to 60% everybody would notice. The boss would say, ‘Oh we haven’t 
had a very good season really’ even though we’ve shot 60%. So there’s still pressure, there’s 
still a pressure but its all relative” (G9, SHK) 
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“pressure to produce” (G16, HK), was often referenced during in the projective 

discussions on the illegal behaviour of others.  

 

“You’re forced to break the law, or some people are, if you’re under a lot of 

pressure. Luckily we don’t head for massive percentages here, and we allow 

for enough in the pens, so that I can lose 30-40 (individuals) and it doesn’t 

matter” (G5, BK) 

 

Impact and risk appeared to be ascribed mainly through daily interactions with 

predators (or predation) and through the occasional transfer of knowledge 

with other gamekeepers. Individuals frequently recounted instances where 

they had witnessed predation events or their aftermath first hand, making the 

harm done by a species thereafter self-evidently valid10. When predators were 

not observed directly, predation could be attributed to specific species through 

detailed personal ecological knowledge such as smell, tracks, or in-field 

necropsy examinations11. References to other sources of information were 

less common, though information sourced from scientific studies, the shooting 

press and various shooting NGOs was specified12. 

 

Gamekeepers’ descriptions of predation suggested that perceived impact was 

influenced both by experiential and analytical systems (Epstein 1994). 

Analytical processing (the cognitive and deliberate evaluation of information; 

Wilson 2008) was observed when individuals rationalised losses to predators 

by framing them in relative terms. This was observed in sentences such as  

“You expect to lose 10% whether it’s disease [or] predators” (G2, SHK) and 

                                            
10 “Hedgehogs will kill poults. I’ve proved that. I watched a hedgehog one morning, there was 
a poult in the pen in the track, nothing wrong with it, just tucked down, and the hedgehog 
actually went on top of it and actually bit the back of its neck and he killed that poult”. (G14, 
HK); “I’ve seen it, it happens” (G19, SHK) 
11 “Fox, you’ll always know, you can smell it.” (G10, HK); “I could generally see tracks going 
around the pen” (G11, SHK); “You’ll just see a skeleton, there’s no head or neck but the 
wings, just the rib cage and feet left. That’s a buzzard” (G10, HK) 
12 “I know there have been environmental studies…” (G1, SHK); “I know from reading the 
shooting press…” (G5, BK) 
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“When you’ve got livestock in the number we’ve got them, you’re going to get 

dead-stock” (G14, HK). Often, however, evidence of experiential processing 

(instinctive, involuntary and largely produced by affect; Wilson 2008) was 

clear13. For example, one gamekeeper described losses of pheasant poults 

as “heart-breaking” (G13, HK), while another asserted “every one hits me like 

an arrow” (G17, HK). The instantaneous reaction that individuals had to 

predator appearance and behaviour was also evident. Peregrine falcons 

Falco peregrinus, for instance, had an obvious “killer mentality” (G12, BK) 

while red kites Milvus milvus did not “have that sort of killer-ness about them” 

(G6, BK). 

 

Incidents where predators were able to kill tens, or sometimes hundreds, of 

gamebirds were recounted to justify attitudes or behaviours14. Gamekeepers 

commonly ascribed these events to specific ‘problem’ animals that 

transgressed the limits of tolerated behaviour. These were either animals 

having a disproportionate impact, such as a fox that had “figured out it can get 

under the electric fence” (G11, SHK) or they were animals that had developed 

what they saw as a malicious agency, such an animals that will “kill for the 

sake of killing” (G12, BK). In some cases it was both:  

 

“You’ll get one buzzard that might not kill a pheasant in its life. It’ll be 

sat around eating worms and voles and that sort of stuff. Then you’ll 

get one that’ll be switched on and it’ll just kill pheasants all day for 

fun.” (G20, BK). 

 

                                            
13 “To my boss that’s a £38 pound loss. To me, I’m more disappointed that that pheasant is 
dead. I’ve spent all summer keeping it alive.” (G20, BK); “I don’t really see it as money at all. 
Not at all… no it’s a life at the end of the day... You hate the fact that you weren’t there and 
this bastard fox has gone chasing round and killed one of your poults.” (G5, BK) 
14 “It’s that point when you outside a pen in a morning and you pick up 109 dead pheasants. 
And I’ve done that twice in the 16 years I’ve been here” (G14, HK); “I’ve had mass kills where 
you get there in the morning and there’s bodies everywhere... It’s very demoralising.” (G16, 
HK) 
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Gamekeepers considered that, if left, the behaviour might continue 

indefinitely, being passed on to offspring15. Thus, experiencing multiple losses 

and/or the perception of such ‘problem’ animals translated into a preference 

for more intense, reactive and direct management16.  

 

Personal ecological knowledge was also used to determine what was, or 

wasn’t, ‘natural’. Here, gamekeepers followed an ‘appeal to nature’ argument, 

positing that because something is perceived as more ‘natural’ than 

something else, it is therefore of higher worth and more valid (Moore 1903). 

Indeed, they saw their own role as to provide a surplus of gamebirds but also 

to monitor, and when appropriate, correct that which was unnatural17. 

 

Thus, what individual gamekeepers view as ‘natural’ and how they define it 

are both important questions. The threshold appeared largely structured 

around the benefit, or cost, produced from anthropogenic disturbances18. The 

perception of predators being ‘unnatural’ was most clearly demonstrated in 

attitudes to invasive predators - animals that were entirely a product of human 

actions and therefore, “not supposed to be here” (G14, HK). For this subset of 

species no observational checks and balances were required to guide 

attitudes or management, as one respondent put it when discussing grey 

squirrel control: “you know you’re doing good because they’re an invasive 

species” (G5, BK). 

 

The concept of predators being ‘unnatural’ was further developed by the idea, 

shared by five of the respondents, that some individuals of native predatory 

species were the result of secret reintroductions or releases. The behaviour of 
                                            
15 “She will take a brood into a pen to teach them how to hunt” (G9, SHK) 
16 “If I’ve got one killing them then I’ll sit up there until I get it” (G12, BK); “A lot of 
gamekeepers are quite perfectionist and regimented and if something cocks up they take it, I 
take it, personally … Like when those mink attacked for instance, I sat out for three days 
before I trapped all those ... I didn’t go home” (G2, SHK). 
17 “Everything has to be at a certain balance” (G3, HK); “why persecute they [sic] when 
there’s plenty of natural food, like rabbits, for them?” (G14, HK). 
18 “Buzzards have learnt to follow that tractor and they hammer the leverets” (G1, SHK) 
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individual animals or observations of rapid population rises was used as 

evidence for these theories19. One gamekeeper talked of having a particular 

problem with “released” buzzards predating pheasant pens because 

pheasants were “easy pickings” (G3, HK) implying that released predators 

were unable to hunt ‘naturally’. There were also those species whose rapid 

population increase was “not a true representation of a natural success story” 

(G19, SHK) because of a belief that they were being artificially fed.  

 

References to maintaining ‘balance’ were common and appeared to influence 

how observations were converted into management intentions. This was 

interpreted through personal ecological knowledge of abundance: “balance is 

when you go out your backdoor and you don’t see loads of predators” (G10, 

HK). This concept seemed to be analogous to what was, and what wasn’t, 

‘natural’ in that it helped identify species that were “over-populated” (G3, HK) 

as a consequence of anthropogenic disturbances:  

 

“I guarantee, the way the world is now, that if you didn’t control any 

predators, things would go extinct. Not maybe nationally or worldwide 

but within areas they would. So yes, [gamekeepers] have to balance 

it.” (G6, BK) 

 

When viewed through the lens of ‘balance’, management preferences for 

predators could be decided. A perceived increase in population therefore 

increased negative attitudes towards the species: “Badgers, they’ve become a 

pest and that’s simply because there are too many of them” (G7, HK). 

Accordingly, keepers spoke about their enjoyment, or at least tolerance, of 

predators they perceived to be rare20. 

 

                                            
19 “They would be sitting there like dogs, not even caught and we could just walk up to them 
and shoot them. It was quite bizarre … it’s what we call ‘fluffy foxes.’ It’s almost like they’re 
not wild animals, they’ve been living in someone’s shed or something” (G16, HK) 
20 “…because it isn’t something you see everyday” (G14, HK) 



140	
	
 

For some, however, the very concept of a ‘balanced’ population of predators 

on game shooting estates was an oxymoron. To these keepers, the release of 

game or the control of other predators had, to continue the metaphor, tipped 

the scales21 and therefore justified direct interventions to restore equilibrium22. 

They had, by their own actions, made predator populations unnatural23. They 

feared that “if left, predator levels would build and build and build” (G9, SHK) 

to a point where they would reduce both game and non-game prey. This belief 

effectively shifts the focus from an economic impact to a more powerful 

platform of environmental damage, creating moral incentives to act. Thus, 

keepers used most or all legal methods24 to “keep on top of” (G2, SHK) 

predator populations. As one respondent put it, gamekeepers “should keep 

everything on level playing field” (G17, HK). The belief that there was a 

constant source of new predators being drawn in from areas not under game 

management was also used as evidence that predator control was unlikely 

ever to threaten conservation objectives25. Furthermore, when keepers were 

not legally able to control species that they perceived to be over abundant 

(principally badgers and buzzards) there was a belief that environmental harm 

would continue and increase26. 

 

For several gamekeepers, predator control was not only to reduce predation 

but also for personal enjoyment. This was mentioned only in relation to fox 

                                            
21 “Gamekeepers are the reason why the birds of prey are at the biggest population that 
they’ve ever been” (G17, HK) 
22 “If you provide a food source, something will turn up to eat it” (G8, HK) 
23 “There’s no natural predator for a badger is there? So if nothing is there to control them, 
but you’re controlling other species, then you’re just going to get a massive boom of one 
species and it’s just that balance isn’t it?” (G12, BK) 
24 “We use every legal method that we can to be honest” (G16, HK) 
25 “You’d be mad to think you could ever wipe something out on one estate” (G4, UK); 
“…buzzards and kites and things like that for every one you kill you’d get another ten move 
back in” (G12, BK) This was in reference to why the respondent felt licences would not work. 
26 “The protected status should be lifted and in doing so, very quickly there will be a 
rebalancing of populations” (G1, SHK); “There’ll come a time when there’s going to be so 
many buzzards that something will have to be done about them.” (G16, HK) 
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control: “If I didn’t have this job where I could go lamping and shoot foxes, I 

would probably pay to go lamping” (G20, BK). 

 

Power and control beliefs  

Gamekeeper perceptions of their ability to perform predator control were 

linked to the efficacy of the control method. A variety of methods were utilised 

including shooting, trapping and poisoning (the latter used for rodents only) 

usually as part of a yearly cycle linked to opportunity and availability27. The 

efficacy of these methods were largely self determined28 and judged both 

directly by the number of predators killed and indirectly by the absence of 

observations of predation. Trapping allowed low efficacy methods to be 

implemented with little cost. For instance, one gamekeeper explained that he 

hadn’t caught a stoat in his Fenn traps for over 8 months but still set them 

because “it’s that one time you don’t [that] something is going to happen” (G2, 

SHK). As a consequence of access to guns, traps and poison, gamekeepers 

described it as technically easy to kill most predators, including (they 

imagined) those protected by law, however, perceived behavioural control 

could be overwritten by an evaluation of the expected penalties: “If I [kill a 

protected predator] I’m going to lose my job, lose my livelihood, lose my car, 

lose my house and, more than likely, lose my missus.” (G2, SKH). 

 

Incorporating motivations into the theory of planned behaviour  

To summarise, the gamekeepers in my sample articulated multiple drivers of 

predator control that connected and interacted to influence behaviour. 

Predation was rarely framed as an economic loss, although concerns about 

job security might make this an important indirect influence. Instead 

respondents described a duty of care over the gamebirds and non-predatory 

wildlife on the land they managed. This required them to maintain the ‘natural 

                                            
27 “We use tunnel traps, we snare, we poison the rats, Larsen cages, letterbox cages…” 
(G16, HK); “We’ll go after [corvids] in the spring … foxes we got after all year. Stoats and 
weasels, we go after autumn and spring (G7, HK) 
28 “You can read as many books as you like and they’ll all tell you something different. The 
only way to do it is to do it the way that you know works” (G14, HK) 
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balance’, removing animals that were ‘unnatural’ or ‘overpopulated’. This 

included predators that were perceived to benefit from gamebird releases. For 

many, predator management was a moral obligation as well as a professional 

responsibility. 

 

Of the empirical results detailed above, I identified six ‘primary motivations’ for 

predator management: professional norms, personal norms, potential 

penalties, perceived impact, personal enjoyment and perceived efficacy. In 

Figure 6.2 I present these within the theory of planned behaviour to illustrate 

their potential influence on predator management. Of these motivations, 

perception of impact appeared to have the most salient influence and thus, I 

detail an additional three ‘secondary motivations’ that appear to influence how 

this was determined: maintaining ‘balance’, ‘appeal to nature’ and ‘problem’ 

animals (Figure 6.2). I observed that gamekeepers discussed predator control 

as being reactive or proactive. In Table 6.2 I provide indicative extracts to 

illustrate how various motivations might determine these specific actions. 
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Figure 6.2: Diagrammatical representation of the Theory of Planned 

Behaviour (Ajzen 1985) with primary and secondary motivations for predator 

control on game shooting estates in the south of England. Direct influences 

are denoted with a black line, indirect influences are denoted with a dashed 

line. Adapted from St. John et al. (2010). 
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 Table 6.2: Management preferences for predators on gamebird shooting estates with underlying motivations and examples taken 

from qualitative interviews.  

Management 
intention 

Motivation Examples 

No control  • Perceived impact 
 

“I’m not going to put down Fenn traps, which arbitrarily kill mustelids, if they’re not doing any 
harm” (G11, SHK) 

• Maintaining balance “I know they take some birds but they’re rare” (G7, HK) 

• Personal norm “I wouldn’t [kill] something just because they’re there” (G17, HK) 

 • Potential penalties  “It’s not worth getting caught, I like my job too much to risk losing everything” (G20, BK) 

Reactive 

control 
• Perceived impact “Generally it’s best to leave stuff alone unless it’s an actual major problem” (G3, HK) 

• ‘Problem’ animals “You’ll get rogue foxes and they’ll just kill for the sake of killing … they’re the ones that you need 

to try and get on top of” (G12, UK) 

• ‘Appeal to nature’ “I just think it’s Mother Nature. It adapts and overcomes. That’s why the populations have 
increased” (G19, SHK) 

Proactive 
control 

• Perceived impact 
(game) 

“[I’m] controlling small pests and predators … all the things that are going sneak under the fence 
and take a poult or two” (G18, SHK) 

 • Perceived impact 
(wildlife) 

“If I didn’t shoot a single fox all year, you’d not have a single pair of nesting skylarks” (G6, BK) 

 • Maintaining balance “Everything has to be at a certain balance. When something becomes overpopulated…” (G3, 

HK) 
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 • ‘Appeal to nature’ “Something definitely needs to happen with the buzzard population. … you see as many 

buzzards some days as you do pigeons flying around. Which isn’t natural” (G12, BK) 
 • Professional norms “We all have a duty to try and keep the number of foxes down” (G4, UK) 

 • Personal enjoyment  “I enjoy fox shooting” (G11, SHK) 

 • Perceived efficacy “When we hadn’t got Larsen traps, magpies were actually quite difficult… but then the Larsen 

trap come along and absolutely revolutionised catching magpies” (G1, SHK) 
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Discussion 
My study has revealed the interacting factors that directly and indirectly 

motivate predator management by gamekeepers. My results can advance and 

inform wildlife management and the human conflicts it creates in at least three 

ways. First, they characterise the information sources used to make 

decisions. Second, they might improve communication with external 

stakeholders by detailing how specific concepts are perceived and defined. 

Finally, they uncover previously unrecognised motivations behind both legal 

and illegal predator control.  

 

Characterisation of information sources 

I observed that personal observation dictated much of how gamekeepers 

think about, and respond to, predators. This is perhaps unsurprising 

considering the strong power of direct experience in shaping attitudes (Maye 

et al. 2014; Eriksson, Sandström & Ericsson 2015). Furthermore, as 

perceptions of abundance are linked directly with control preferences through 

concepts like ‘balance’, there appeared to be an interaction between the 

number of encounters a gamekeeper has with a predator, and management 

preferences due to perceptions of population trends. Indirect feedbacks 

between predator population size and motivation to control have also been 

observed in Swedish wolverine Gulo gulo management (Carter et al. 2017). 

This presents a potential challenge where the objective is improving 

coexistence between gamekeepers and predators, as evidence suggests that 

those that rely on ‘local knowledge’ (such as personal experiences) might 

estimate predator populations to be increasing significantly faster than those 

who rely on ‘scientific knowledge’ (such as academic articles) (Ainsworth et al. 

2016).  

 

Defining concepts for improved communication 

Discussions over conservation conflicts have encountered problems where 

terms or concepts mean different things to different stakeholders. For 
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example, while stakeholders discussing predator management in the uplands 

of Scotland could agree their broad goal was “to establish and maintain 

balanced and healthy populations”, the concepts of balance and health within 

this statement translated into different ecological realities depending on 

associated conservation-management objectives (Ainsworth et al. 2016: p14). 

I therefore take this opportunity to describe how gamekeepers in my sample 

perceived ‘balance’ and ‘nature’, concepts central to how they managed 

predators and the natural world.  

 

While broader publics might define ‘natural’ as “that which is not under the 

control of humans” (Clayton & Myers 2009: p16), gamekeepers appeared to 

perceive the concept as that which has not been affected, for better or worse, 

by human activities. The differences in these definitions have real 

management implications, allowing gamekeepers to rationalise much predator 

control as corrective. In this sense, there was evidence that some predator 

management was viewed as hybrid (Latour 1993), a product of a socio-natural 

landscape: “We live in a managed environment, everything needs managing” 

(G16, HK). In a similar way, gamekeepers viewed ‘balance’ in the predator 

populations as a point where the perceived benefit or cost to a species from 

human activities (including the activities of the gamekeepers themselves) was 

countered. Therefore, ‘keeping the balance’ was framed as both a 

professional and moral duty. This result can be seen as a version of the 

‘outrage effect’ where individuals are more willing to pay to correct 

environmental problems presented as man-made than those presented as 

‘natural’ (Bulte et al. 2005). 

 

By identifying and exploring narratives concerning ‘balance’ and ‘nature’, this 

study joins a small body of literature that has investigated how underlying 

philosophies about the natural world influence wildlife management (Buller 

2008; Eden & Bear 2011; Maye et al. 2014). Such philosophies can have 

significant sway over decision making (Adams 1997; Buller 2008). For 

example, when ecosystems are thought able to regulate themselves, minimal 
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interference might be advised (for example 'the land ethic': Leopold 1949). 

However, when important components are thought to be under or over-

represented, direct intervention might be preferred. Intervention can take the 

shape of introductions (for example ‘rewilding’: Nogués-Bravo et al. 2016) or 

population control. Where the intervention involves lethal management, there 

is evidence that other rural stakeholders share this perspective, viewing lethal 

management as necessary to ‘rebalance’ nature (Campbell & Mackay 2009; 

Maye et al. 2014).  

 

Representation of motivations 

Although several of the older respondents in this study perceived that 

attitudes to predators in their profession had changed and were changing, 

attempts to fundamentally alter the way that individuals think is difficult over 

short timescales (Manfredo et al. 2017). Instead, there is potential to 

“recognise and work within the boundaries of existing values” (Manfredo, Teel 

& Dietsch 2016: p287). In this context, that would mean asking the question: 

how do we best conserve predators, given the values and beliefs of 

gamekeepers? Although my study provides a strong foundation from which to 

consider this, such a question might best be answered by addressing the 

relative strength of the motivations I outlined (St. John et al. 2014). Following 

others (Marchini & Macdonald 2012), this could be analysed 

(semi)quantitatively to uncover the relative power of each motivation in 

predicting behavioural intention or behaviour. Data on the strength of the 

various motivations would then encourage targeted interventions aimed at 

fostering higher levels of coexistence (St John, Edwards-Jones & Jones 

2010). Take, as an example, an initiative working to reduce the illegal killing of 

birds of prey: quantifying the respective strengths of ‘perceived impact’ and 

‘potential penalties’ at predicting behavioural intention would allow the 

direction of effort towards either disseminating information emphasising the 

consequences of being caught or, alternatively, methods for preventing 

predation of gamebirds. Thus, testing the strength of my findings should be 
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considered an important step towards the development of communication and 

engagement strategies within conflicts.  

 

Study limitations 

The geographic focus of this research involves some limitations for broader 

application of these findings. Chiefly, these concern the absence of any large 

carnivores in the U.K. As a consequence, factors that can significantly 

influence management preferences, such as risk to high value livestock (e.g. 

horses) or to human safety (Frank, Johansson & Flykt 2015) are missing from 

this study. It should also be stressed that, although I have reported negative 

attitudes to protected predators, that are not at all equivalent to illegality 

(Delibes-Mateos 2013). That said, the repeated identification of links between 

some gamekeepers and illegal predator killing (Whitfield et al. 2003; Whitfield 

2004; Smart et al. 2010; Amar et al. 2012; Whitfield & Fielding 2017) will 

certainly make these findings relevant to those wishing to understand this 

behaviour. With Delibes-Mateos (2013), I call for further research that 

attempts to understand when negative attitudes towards protected predators 

result in illegal activities. 

Conclusions 
Using qualitative research methods and analysis I have provided a detailed 

exploration of a question central to multiple conservation conflicts: why do 

gamekeepers kill predators? By contextualising this behaviour within broad 

motivations my findings suggest that predator control in the U.K. is not simply 

a consequence of impact perception, but rather complex and interacting 

social, personal and ecological perceptions. Furthermore the findings indicate 

that gamekeepers are not simply motivated by financial rewards but are 

knowledgeable stakeholders with emotional ties to both wildlife and the game 

they release. Conservationists, policy makers and scientists will benefit from 

acknowledging perspectives and motivations, beyond those relating to 

ecology or economics.  
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Chapter 7: Discussion 
 

As human populations continue to expand, it seems inevitable that pressures 

on wildlife and ecosystems will intensify (Cardinale et al. 2012). The loss of 

predatory species that compete with humans for space and resources has 

been identified as a particular concern (Ritchie & Johnson 2009; Ripple et al. 

2014), causing disruption to ecological processes and the degradation of 

ecosystems (Estes et al. 2011). Nonetheless, living alongside predators can 

prove challenging. They can pose a direct threat to conservation objectives, 

human livelihoods and even human safety (Thirgood, Woodroffe & Rabinowitz 

2005; Festa-Bianchet et al. 2006; Neff & Hueter 2013). Therefore, a key test 

for conservation in the 21st century is to find ways to sustain predators in 

human dominated landscapes (Chapron & López-Bao 2016). This will require 

the successful mitigation of the ecological impacts as well as the management 

of the social conflicts they can create (Redpath et al. 2013). The broad aim of 

this thesis is to contribute to human-predator coexistence by exploring the 

perceptions of impacted stakeholders from ecological and social perspectives. 

 

I have done so by concentrating on conservation conflicts around predation 

and gamebird shooting in the UK. This is a system in which predation, and 

predator management, have taken a central place since the 17th century 

(Munsche 1981; Martin 2011), dictating the fortunes of British wildlife for 

better and worse (Lovegrove 2008). Yet while gamebird shooting has 

remained, for the most part, very traditional (Reynolds & Tapper 1996), wider 

publics have begun to value wildlife differently (Teel, Manfredo & Stinchfield 

2007). This value change has matched an increase in non-consumptive 

wildlife use (Treves & Naughton-Treves 2005; Walpole & Thouless 2005; 

Booth et al. 2011). Indeed, while there is evidence that the number of people 

interested in gamebird shooting is rising (Martin 2011), bird hunters now find 

themselves greatly outnumbered by bird watchers (Treves & Naughton-

Treves 2005). Thus, disagreements over predator management might be 

seen as symptoms of a larger underlying conflict between ‘traditional’ forms of 
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land management (i.e. farming and shooting) that value wildlife in a more 

utilitarian way and more urban populations that prioritise animals’ rights, 

welfare and conservation (Manfredo, Teel & Henry 2009; Dickman, Marchini & 

Manfredo 2013). This societal divergence has, perhaps, made conflicts over 

wildlife management inevitable. 

 

As highly visible predators, birds of prey enjoy an elevated position in the 

public consciousness, in conservation efforts and in considerations of land 

management (Galbraith, Stroud & Thompson 2003). Yet, for those with 

interests in gamebird hunting, the positive value of these birds can be 

outweighed by their perceived negative impact. The disparity in how various 

parties perceive these birds has created particularly acute disagreements 

over their management (Park et al. 2008; Thirgood & Redpath 2008; Lees, 

Newton & Balmford 2013). These have developed into conservation conflicts 

where the ‘sides’ tend to believe that their interests are being dismissed or 

ignored by the other (Redpath & Thirgood 2009; Sotherton, Tapper & Smith 

2009; Thompson et al. 2009). Such conflicts are exacerbated by illegal killing, 

which serves to build distrust and animosity (Redpath et al. 2013). Some of 

these conflicts, namely that over hen harrier conservation (Thirgood et al. 

1997), have now been on-going for several decades, potentially adding 

specific, contemporary meaning and emotion to somewhat unrelated 

disagreements about wildlife management. 

 

Ecology can play a vital role in informing these debates and providing robust, 

objective evidence that enables those involved in the conflict to negotiate 

solutions (Messmer 2000; Ormerod 2002). This could be by uncovering the 

scale of perceived impacts (Kenward et al. 2001), identifying the underlying 

causes (Francksen et al. 2017) and testing potential solutions (Redpath, 

Thirgood & Leckie 2001). However, the social context in which these conflicts 

are enacted should not be overlooked (Manfredo & Dayer 2004; Madden & 

McQuinn 2014). Addressing any underlying social drivers is particularly 

important as fundamental differences in values and attitudes can cause 
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misunderstandings (Ainsworth et al. 2016) and a breakdown of 

communication (O’Rourke 2014), even where aspects of underlying ecology 

might be agreed.  

 

In this thesis, I have addressed both ecological and social aspects of a conflict 

surrounding predation and game shooting interests. This has involved 

detailed investigation of two perceptions that appear central in how 

gamekeepers view and manage predators. Specifically these are 1, that 

certain animals are disproportionately responsible for impacts and 2, that the 

release of gamebirds creates high densities of protected predators. These 

studies have required the application of dietary stable isotope analysis as well 

as more conventional means of collecting ecological data, such as point 

counts and prey abundance sampling. I have also contributed to a more 

detailed understanding of gamekeeper motivations for predator control. This is 

a stakeholder group who, despite having a central role in conservation 

conflicts, has been the subject of little academic attention. This was facilitated 

by the application of inductive, qualitative methods to explore complicated 

reasoning through the perspective of those that conduct predator control.  

 

I now revisit the original aims of this thesis before reviewing how my findings 

relate to each one: 

 

1. Review the literature for evidence of the existence of ‘problem’ animals 

in human-wildlife impacts and assess if ‘selective removal’ is a 

generally viable policy from social and ecological perspectives.  

2. Evaluate the use of dietary stable isotope analysis as a potential 

method for studying the diet of wild predators.  

3. Assess the ecological evidence that, within buzzard populations, there 

is a limited number of ‘problem’ buzzards that disproportionately feed 

on released gamebirds.  

4. Investigate the numerical and functional responses of buzzards to 

gamebird abundance on shooting estates. 
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5. Explore the motivations behind predator management from the 

perspective of those that conduct it, the gamekeepers. 

 

In this discussion, I synthesise the key findings of this study in relation to 

these original aims. I then go on to discuss their management implications 

within conflicts over game management and human-predator conflicts more 

widely. Finally, this thesis concludes with a review of outstanding questions 

and recommendations for future research.  

Addressing the aims of this thesis 
Aim 1: Assess the evidence of the existence of ‘problem’ animals in human-

wildlife impacts and evaluate if ‘selective removal’ is a generally viable policy.  

 

There is much anecdotal evidence from those suffering human-wildlife 

impacts that specific animals are disproportionately responsible (Linnell et al. 

1999). Indeed, this perception is central to recent licences that allow the killing 

of specific birds of prey in the UK. However, as yet, there had been no 

synthesis as to whether this was a viable and effective management policy. In 

Chapter 2, I conducted a literature review that assessed the ecological 

evidence for ‘problem individuals’ playing a role within human-wildlife impacts. 

 

There is now substantial evidence that within-population behavioural variation 

is common in wild animals, influencing a suite of natural processes. In wildlife 

management I found evidence that ‘problem’ animals were involved in many 

human-wildlife impacts, with the clearest examples in generalist species with 

high behavioural plasticity. Often, mitigation measures appear to take this into 

account, yet the accuracy of methods to identify and target these individuals is 

variable and species specific. I highlighted that three approaches were 

available for those adopting ‘selective’ management, focused on identity, 

location and demographic class. Lethal control of these animals was often the 

only practical option for wildlife managers. Indeed, translocations can, on 

occasion, make impacts worse. 
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In Chapter 2, I also acknowledged the human aspects of wildlife management 

by exploring whether problem individual removal met social objectives. 

Removing specific individuals can generally be seen as more socially 

acceptable than generalised population control, though this prospect is still 

likely to receive opposition from some quarters. Evidence for selective 

management increasing tolerance towards species, though assumed, is 

uncertain and requires further investigation. Despite successes, I identified 

that targeting problem individuals should not be seen as a long-term solution. 

The behaviour these animals exhibit, though often rare in population terms, 

seldom appears to be truly unique. Consequently, any benefits of removal 

might be short-lived as problem animals are quickly replaced. As these 

strategies often involve on-going lethal management, I highlight the need to 

consider the indirect effects of ‘selective’ management such as skewed sex 

ratios, breakdown in social systems and, in the long term, trait selection.  

 

The findings from Chapter 2 formed the foundation of two further chapters of 

my thesis. First, this work highlights the importance of precision in determining 

between-individual variation in diet, leading to my investigation in Chapter 3 of 

stable isotope analysis as a tool in quantifying individual variation in diet. 

Second, my review highlighted that, although ‘selective management’ and 

problem animal removal is common in wildlife management, it is rarely 

specifically evaluated with ecological evidence, leading to my work in Chapter 

4 on an ecological basis for identifying problem individuals.  

 

Aim 2: Evaluate the use of dietary stable isotope analysis as a potential 

method for studying the diet of wild predators. 

 

In conflicts over animal management, the diet of predators is often of specific 

interest. Yet collecting the necessary fine-scale dietary data is tricky, 

conventionally relying on indirect methods (such as analysing faeces, prey 

remains or regurgitated pellets) that are known to contain unpredictable 
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biases. In Chapter 3, I evaluated the performance of dietary stable isotope 
analysis at quantifying buzzard diet using the δ13C and δ15N stable isotope 
ratios from the feathers and blood of buzzard nestlings. I studied dietary 
composition determined with multiple Bayesian stable isotope mixing models 
(BSIMMs) run with various trophic discrimination factors (TDFs) and 
with/without informative priors. These were then compared to estimates of diet 
collected from direct observations using remote cameras of prey provisioned 
to nestlings in the same nests. My results show that BSIMMs with different 
TDFs varied markedly in their performance, though I highlight a recently 
developed statistical package (SIDER; Healy et al. 2016) as producing 

BSIMMs with the greatest similarity to the observed diet. These models 
produced strong agreement at the population level and, for the main prey of 
buzzards, at the individual nest level. I use the provisioning data to show how 
the inclusion of informative priors from conventional analysis of prey remains, 
markedly reduced model performance. The results of this chapter show that 
BSIMMs can provide highly accurate assessments of diet in wild animals at 
population and finer scales.  
 
In recognition of the findings in Chapter 3, I utilised dietary stable isotope 
analysis in Chapter 4 to assess the diet of adult birds over a broader time 
period. These results also gave me a confidence that my selection of model 
inputs, specifically TDFs and keeping informative priors absent, would yield 
reliable data.  
 

Aim 3: Assess the ecological evidence that, within buzzard populations, there 

are a limited number of ‘problem’ buzzards that disproportionally feed on 

released gamebirds.  

 

In Chapter 4 I bring together the findings of Chapters 2 and 3 by applying 
dietary stable isotope analysis to assess the existence of ‘problem buzzards’ 
that are disproportionately feeding on gamebirds. In so doing I also evaluated 
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the efficacy of recent mitigation methods that have licensed the killing of 
specific birds. I analysed the stable isotope (δ13C and δ15N) ratios of adult 
buzzards and their known food sources using BSIMMs to estimate the relative 
contribution that released pheasant poults make to buzzard diets. This was 
possible as released pheasants were isotopically distinct from other buzzard 
prey, including wild pheasants, as a result of their distinctive anthropogenic 
diet pre-release. I observed significantly higher released pheasant 
consumption by buzzards from territories with a release pen that had a 
perceived predation problem than those in territories with no release pen. 
However, variation in the released pheasant consumption in buzzards from 

territories with a release pen and no perceived predation problem suggests 
that in some pens, pheasant consumption is going undetected or unremarked 
as a problem. Analysis of the tissue of a small sample of alleged ‘problem 
buzzards’, caught and released under license within pheasant release pens, 
suggested that buzzards caught within pens consumed more released 
pheasants than their conspecifics. However, this was only apparent in tissue 
formed in the preceding days and weeks (red blood cells and blood plasma) 
suggesting that ‘problem’ behaviour might not be consistently expressed over 
long time periods. Although these results suggest that released pheasant 
consumption is not limited to buzzards in territories around ‘problem pens’, 
they provide evidence that the current management strategy (only removing 
those birds found feeding within pens) can target these individuals somewhat 
effectively.   
 

Aim 4: Investigate the numerical and functional responses of buzzards to 

gamebird abundance on shooting estates. 

 

In Chapter 5 I sought to investigate buzzard ecology on shooting estates. 

Shooting interests perceive that buzzards respond to high local abundance of 

pheasants both numerically, in the form of increased population densities 

and/or productivity, and functionally, by increasing the contribution of 
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pheasants to their diet. To examine these hypotheses, I studied how the 

relative abundance of pheasants, as well as two alternative prey items 

(rabbits and field voles), correlated with buzzard density, foraging and 

breeding success on, and around, pheasant shooting estates in southwest 

England. I provided evidence that nearest neighbour distance between 

buzzard nests, a proxy for buzzard breeding density, decreased as the 

abundance of both pheasants and rabbits increased. However, the 

provisioning data from the nest cameras showed that only rabbit provisioning 

rate was related to nestling number. Of the three prey groups, rabbits were 

also the only prey for which there was a significant positive relationship 

between abundance and provisioning rate, strongly suggesting that rabbits, 

not pheasants or field voles, are preferred buzzard prey. My results provide 

evidence that the provisioning of pheasant prey during the nestling period 

does not significantly influence the productivity of buzzard pairs. However, the 

positive relationship we observed between pheasant abundance and buzzard 

density has the potential to influence perceptions of impact by association. 

This feedback between encounter rate and perception of impact is further 

explored during Chapter 6.  

 

Aim 5: Explore the motivations behind predator management from the 

perspective of those that conduct it, the gamekeepers. 

 

Predator killing, both legal and illegal, is a frequent cause of conservation 

conflict. This is particularly true of conflicts over game management in the UK 

where disagreement over predator control is common and shooting estates 

are often linked with illegal killing. Despite the central role of game managers 

as stakeholders and actors in this activity, surprisingly little attention has been 

paid to their perspectives and motivations. In Chapter 6 I sought to address 

this by conducting semi-structured interviews on the subject of predator 

control with 20 gamekeepers across the south of England. I explored how 

various aspects of predator ecology (including those investigated in Chapters 

2, 4 and 5) were perceived. The results suggest that, while predator control is 
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structured around perceived impacts, there are a number of currently 

unacknowledged factors that influence how management decisions are made 

in practice. Six separate motivations for predator management emerged: 

professional norms, personal norms, potential penalties, perceived impact, 

personal enjoyment and perceived efficacy. I illustrate how these might 

influence actions using the Theory of Planned Behaviour to structure a 

conceptual model. The results of this chapter not only uncover potential 

underlying drivers of predator control but also characterise the information 

sources used to make decisions and detail how specific concepts are 

perceived and defined. I use the discussion to outline how this work could be 

taken forward to identify the predictors with the greatest influence over 

specific predator conflicts. Tailoring conflict management in such a way has 

the potential to address conflicts at their root leading to more effective 

mitigation.  

Synthesis of key contributions 
In this section I will discuss the themes of my thesis and how my findings link 

together. My objective is to synthesise the key results and discuss how they 

might be used to address both conflicts over predator management generally 

and gamebird predation specifically. 

 

Addressing the ecological aspects of predator management 

For the removal of problem individuals to be effective in mitigating human-

wildlife impacts, the targeted subset of the animal population must be 

disproportionately responsible (Linnell et al. 1999; Swan et al. 2017). This 

makes the data presented in Chapter 4 particularly pertinent to the current 

methods used to reduce buzzard impact at pheasant pens. The results 

present a mixed picture. On the one hand, I show that buzzards living near 

problem pens do indeed consume significantly more pheasants than those 

living away from pens and, that of our subsample of four ‘problem’ buzzards, 

two had been consuming enough released pheasants to make then distinct 

from the wider population. On the other hand, I observed no significant 
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differences in released pheasant consumption between those buzzards with 

territories including ‘problem pens’ and other buzzards with pens in their 

territories. I suggest that, when taken together, these results provide tentative 

evidence to support current mitigation methods (licensed removal of buzzards 

observed in pens). However, it might be considered that this approach 

represents a trade off between sensitivity and specificity of the detection 

method (i.e. catching in pens), in that it suggests that not all the buzzards 

consuming pheasants will be identified but, of those that are, most will be 

correctly identified as pheasant killers. I recommend that, if further licences 

are granted to remove individuals, dietary stable isotope analysis be applied 

to evaluate this assumption. This stable isotope method proved an efficient 

and readily applicable method to studying the predation of released 

gamebirds. 

 

Another key finding of this thesis that advances our understanding of buzzard 

ecology was the significant relationship between buzzard nesting densities 

and the abundance of ‘wild’ (pheasants that had either survived the previous 

shooting seasons or had hatched in the wild) game. Drawing on this result, 

and the frequent references to buzzard populations being above their ‘natural’ 

carrying capacity in the discussions presented in Chapter 6, I suggest that 

positive relationship between buzzard and pheasant abundance might serve 

to increase perceptions of impact through the association of the two species. 

However, the dietary data presented in Chapter 5 indicates that pheasants 

generally represent a relatively small proportion of diet (at least in the buzzard 

nesting season), despite being abundant in many territories. Instead, the 

majority of buzzard diet is comprised of prey such as rabbits, small rodents 

and amphibians. Of these (non-game) prey, rabbits were the most important 

prey in terms of overall nutritional contribution (Chapter 3) and determining 

buzzard productivity (Chapter 5).  

 

Although I have provided evidence that some buzzards disproportionately 

feed on released pheasant poults, the results from Chapters 4 and 5 suggest 
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that the contribution that pheasants make to the diet of the ‘average’ buzzard 

is low. This is in keeping with previous studies (Kenward et al. 2001; Valkama 

et al. 2005). However, recent work on buzzards and grouse has highlighted 

that, while predation is relatively rare, the cumulative effect of high densities of 

buzzards has the potential to have “a considerable impact” under certain 

conditions (Francksen 2016: p 172). Ultimately however, the question of 

whether buzzards are having a significant impact on the number of pheasants 

available to shoot cannot be answered yet. This is partly because neither of 

the two dietary assessment methods (stable isotope analysis and nest 

cameras) used in this study permitted a clear differentiation between predated 

and scavenged food sources. This is a common problem for studies that 

examine small game predation (Allen 2001; Turner & Sage 2004; Francksen 

et al. 2016). We know from an extensive radio tracking project of released 

pheasants that approximately 10% of mortality is ‘accidental’ (e.g. vehicle or 

fence collisions) (Turner 2007). And, although there is little published 

evidence to support Sim’s (2003) assertion that the majority of gamebirds in 

buzzard diet are scavenged, we did observe clear signs of scavenging (e.g. 

maggots within the carcass) on some, but not all, of the larger pheasants 

brought back to the nest.  

 

There are other ecological mechanisms by which the impacts of predation 

might not carry through into a reduction in pheasants available to shoot. For 

example, it is possible that some predators kill more sick birds that would not 

have survived to the shooting season. Disproportionate raptor predation on 

parasitised gamebirds has already been observed in upland ecosystems 

(Hudson, Dobson & Newborn 1992).  Such a loss would not be additive to 

mortality experienced without predation and would thus have little influence on 

shooting returns (Redpath & Thirgood 2003). It is also possible that high 

densities of buzzards might moderate predation of pheasants by other 

predators; recent research has raised the prospect that buzzards might serve 

to reduce the densities of alternative predators, such as foxes Vulpes vulpes 
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or carrion crows Corvus corone, through direct predation or competitive 

suppression (Lees, Newton & Balmford 2013; Rooney & Montgomery 2013). 

  

Addressing the social aspect of predator management 

There is a conviction among conservation scientists that wildlife management 

should guided by a systematic appraisal of the evidence rather than more 

traditional knowledge, perceptions, anecdotes and “myths” (Sutherland et al. 

2004). While this is generally laudable, “robust scientific evidence alone is not 

sufficient to manage predators effectively” (Woodroffe & Redpath 2015: 

p1313). Social factors can have direct implications for conservation 

objectives, especially when conflicts involve predator killing (Goldman, de 

Pinho & Perry 2013; O’Rourke 2014; Inskip et al. 2014; Verissimo & Campbell 

2015; Pohja-Mykrä 2016). Indeed, the influences of social factors 

(perceptions, values, beliefs, etc.) on predator control have been outlined in 

this study. While I recommend that conservation practitioners should attempt 

to understand and engage with gamekeeper perspectives, translating this into 

successful conservation objectives is not a trivial undertaking. 

 

One avenue that appears particularly relevant to promoting coexistence with 

predators is attempting to increase tolerance toward these animals (Treves & 

Bruskotter 2014). This might be possible if the value of predators to broad 

publics is translated into tangible benefits to those impacted (Dickman, 

Macdonald & Macdonald 2011). Tolerance for predators has been facilitated 

through financial payments (Nelson 2009), however, there is no precedent for 

government based compensation for predators in the UK (Wilson 2004).  

 

If we accept, possibly controversially, that protective legislation alone will not 

be sufficient to prevent predator killing (Thirgood & Redpath 2008). A 

pertinent question in relation to this thesis would be whether allowing the 

removal of a limited number of buzzards would increase gamekeeper 

tolerance towards the species as a whole? Although this question has been 

explored in general in relation to ‘problem individual’ removal in Chapter 2, I 
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take this opportunity to highlight some key findings. There is good evidence 

that affording individuals control over an activity or threat will make them more 

likely to accept risks (Starr 1969; Dickman 2010). There is also evidence that, 

when people see animal populations as individuals, they compartmentalise 

their bad behaviour as being the fault of an individual rather than a species 

(Lescureux & Linnell 2010; Dorresteijn et al. 2016). We also know that some 

wildlife authorities might opt to kill, or allow the killing of, animals as a 

mechanism to increase tolerance (Hoare 2001). Whether this translates into 

tolerance for predators remains uncertain. The acceptance capacity toward 

brown bears in Croatia appears to have declined when local residents were 

not able to remove individuals through hunting (Majić et al. 2011). However, 

the results of Chapron and Treves (2016) suggest that policies that allowed 

the culling of some animals (intended to increase tolerance for the species as 

a whole) actually increased illegal killing.  

 

In Chapter 6, I provide evidence that tolerance (in the form of motivation to 

control) is partly a function of the professional norms and values of the 

gamekeeping profession. Despite questionable attempts by conservationists 

to impose certain values to save threatened species (Dickman et al. 2015), 

changing the way that individuals think about the natural world is difficult over 

short timescales (Manfredo et al. 2017). Instead, there is potential to develop 

initiatives that are consistent with values that are already present (Manfredo, 

Teel & Dietsch 2016). In the context of predator killing and game 

management it would mean identifying the motivations that have the most 

influence on behaviour and tailoring mitigation efforts specifically to address 

them. There are examples where this has worked to protect predators. In 

Maasailand, Kenya, young men were motivated to kill lions by strong cultural 

drivers such as the opportunity to increase their social status (Hazzah et al. 

2014). By employing these men as ‘Lion Guardians’, these cultural drivers 

appear to have been maintained alongside the desired effect of greater 

coexistence between lions and the Maasai (Hazzah et al. 2014).  
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Although attempting to build such a model that is relevant to gamekeepers 

and birds of prey is beyond the scope of this thesis, I suggest that there are 

motivations described in Chapter 6 that might provide the foundations for 

considering such a strategy. For example, despite the killing of wildlife being a 

common aspect of their profession, gamekeepers articulated a strong 

personal responsibility towards protecting both game and other wildlife, 

including predators that were perceived as rare. I hypothesise that designing 

mitigation strategies that incorporate and work with such values or beliefs will 

have greater acceptability and longevity. Mitigation efforts that focus solely on 

financial or ecological impacts without considering stakeholder acceptability 

may fail, despite their sound evidential foundations. For instance, despite 

studies showing that diversionary feeding is remarkably successful in 

reducing red grouse predation by hen harriers (Redpath, Thirgood & Leckie 

2001), the uptake of this mitigation method has been poor, due possibly to the 

strongly negative views toward it, expressed by key stakeholders (Milner & 

Redpath 2013). 

 

Incorporating both predator ecology and stakeholder motivations  

In this thesis, I have explored not only the ecological aspects of predation and 

predator behaviour but also the social-psychological drivers that influence 

predator management. Yet, the behaviour and presence of wild animals and 

the responses of humans to these stimuli, feed back jointly into social–

ecological systems (Sjölander-Lindqvist, Johansson & Sandström 2015). 

There is growing interest in multidisciplinary management frameworks that 

account for both of these drivers concurrently (White et al. 2009; Dickman 

2010; Redpath et al. 2013; Carter et al. 2017). In this section of the discussion 

I fit the results of this thesis into one such framework, illustrating how predator 

management occurs simultaneously within social and ecological contexts.  
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Figure 1. Social-ecological system framework for predator control on 

gamebird shooting estates.  The area within the dashed circle indicates the 

co-occurrence of gamekeepers (or their traps, snares and poisons) and 

predators in space and time. Factors shown here are taken from the findings 

of this thesis and from relevant literature. The social-ecological framework is 

adapted from Carter et al. (2017) 

 

I adapted a nested social-ecological system framework originally developed 

by Carter et al. (2017) to explore carnivore poaching (Figure 1). In this figure 

the two innermost shells illustrate that control is only possible when predators 

and humans (or their tools) co-occur in space and time. The two middle shells 

detail the individual attributes of both people and predators that might 

influence human tolerance. I draw from the findings of Chapters 2 and 4 to 

populate the individual predator characteristics. For instance, I include ‘sex’ as 

a factor here, as there is a general trend for males to be overrepresented in 

human-wildlife impacts (Königson et al. 2013; Mutinda et al. 2014; Moseby, 

Peacock & Read 2015). Individual factors on the human side are principally 

those personal motivations outlined in Chapter 6. Here, overlapping shells 

illustrate the feedback mechanisms that influence how decisions are made. 

For instance, predator visibility might serve to increase the perceptions of 

impact. The outer-most levels of this framework detail the broad factors that 

determine how gamekeepers as a ‘community of practice’ interact with 
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predatory species (Carter et al. 2017). This includes social influences such as 

professional norms (outlined in Chapter 6) but also characteristics of the 

predator species, such as its spatial distribution and dietary breadth (outlined 

in Chapter 5).   

 

Future research directions  

My work has highlighted a number of social and ecological questions that 

would advance the field of conservation conflicts, particularly those 

concerning predator impacts or selective management. By highlighting these 

areas for future research I also acknowledge a few of the limitations of this 

thesis and key caveats. Due to the propensity for scientific evidence to be 

contested or dismissed in conflicts (Woodroffe & Redpath 2015), it is crucial 

that such studies are not perceived by any of the parties concerned to be 

biased (Kenward et al. 2001). 

 

(I) What are the ecological drivers of problem behaviours, and can 

proactive management of such drivers alleviate impact? 

This question is at the core of the ecological side of problem animal 

management, yet few studies have addressed it explicitly. While tackling the 

ecological drivers requires an analysis of the correlates of certain behaviours 

(such as Artelle et al. 2016), finding proactive mitigation measures for 

behaviours that are rarely expressed could prove potentially costly. In this 

instance, wildlife managers need to weigh up social, financial and ethical 

costs of both reactive animal removal or proactive mitigation. In the case of 

buzzard predation on released pheasants, the work of Kenward et al. (2001) 

that highlights specific release pen characteristics provides a cost effective 

start. Experimental manipulation of pen characteristics with the simultaneous 

application of carcass recovery and dietary isotope analysis of buzzard tissue 

would provide the data to test this properly. 

 

(II) Does removing ‘problem buzzards’ reduce impacts and how long 

are benefits apparent?  
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There is a lack of randomised experiments that investigate whether predator 

control meets its stated objectives (Woodroffe & Redpath 2015; Treves, Krofel 

& McManus 2016). Although evidence suggests that removing ‘problem’ 

buzzards will pose little threat to long-term conservation objectives (Kenward 

et al. 2000, 2007), little is known about the effects of culling raptor populations 

(Viñuela & Arroyo 2002). Buzzard pairs maintain exclusive territories 

(Prytherch 2013) and there is growing evidence that removing territorial 

predators as a livestock protection measure can create indirect negative 

feedbacks such as increasing populations and impacts (Peebles et al. 2013; 

Minnie, Gaylard & Kerley 2015). That said, Parrott (2015) provides anecdotal 

evidence that the removal of a single adult ‘problem’ buzzard at a free-range 

chicken farm was enough to stop all predation problems. 

 

(III) Is pheasant provisioning influenced by the abundance of alternative 

prey sources?  

The ecological data presented in this thesis come from a detailed study of a 

single year. However, the reliability of the findings would be increased by a 

more extensive study. There are also questions that arise from the findings 

that warrant investigation over a wider temporal period. Specifically, while I 

provide evidence in Chapter 5 that pheasants were not provisioned in 

proportion to their abundance, it would be particularly interesting to explore if 

the rate of pheasant provisioning changed in relation to prey densities in that 

territory. Buzzards are generalist predators and therefore it is possible that 
they might increase predation of gamebird prey in response to declines in 
primary prey species (rabbits). This is known as the alternative prey 
hypothesis (APH) (Angelstam, Lindström & Widén 1984). There is conflicting 

support for the APH influencing gamebird predation. Studies from Finland 

show that as the abundance of mammals declined, the proportion of 

gamebirds in predator diets increased (Reif et al. 2001, 2004). However, 

recent research by Francksen et al. (2017) looking at buzzard diet in the 

uplands did not observe an increase in grouse consumption when the primary 

prey declined.  
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(IV) What are the relative influences of the various motivations for 

predator control? 

Where specific behaviours are being investigated, a quantitative analysis of 

the conceptual model provided in Chapter 6 would not only allow researchers 

to calculate the overall probability of a behaviour (Marchini & Macdonald 

2012), but also highlight the differential influence of the various motivations 

(St John, Keane & Milner-Gulland 2013). Potential options include a 

structured questionnaire that includes Likert-type answers where respondents 

are given a spectrum of tick boxes between strongly agree and strongly 

disagree (St. John et al. 2014), or Q-methodology, in which participants sort 

relevant statements about the issue into an order that best reflects their 

viewpoint (Watts & Stenner 2005). Having such data could allow any 

intervention measures to be specifically targeted at the motivation most likely 

to influence behaviour.  

 

(V) Does framing human-wildlife impacts as a consequence of 

individual-level behaviour create more or less disparity between 

stakeholder preferences to mitigation methods? 

While there would be great utility in predicting the behaviours of certain actors 

(e.g. those where objectives are to change behaviours), managing 

conservation conflicts requires compromise between two or more parties 

(Redpath et al. 2013). Here, value may lie in investigating stakeholder 

preferences towards certain mitigation measures (Don Carlos et al. 2009). Of 

specific interest to this thesis would be research that measures whether 

changing the framing of impacts from populations to individuals would create 

more or less disparity between stakeholder preferences to mitigation 

methods.  
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Conclusions  
Finding effective methods to manage conservation conflicts is a daunting task 

with few examples of successful resolution. Instead, conflicts need to be 

managed through dialogue and compromise. This requires an interdisciplinary 

perspective that investigates the motivations of key stakeholders, the reality of 

the perceived impacts and the efficacy of any methods intended to remedy 

them. By exploring conflicts surrounding predation and game management in 

the U.K., this thesis makes a contribution to our academic understanding of all 

three of these levels. It is clear that predator management (both legal or 

illegal) on game shooting estates is not simply a consequence of perceived 

financial risk, rather a complex combination of different motivations that 

include professional norms, personal moralities and interpretations of the 

natural world during daily observation. I highlight that within these motivations 

there are interactions and feedbacks that require consideration. While 

addressing such social-ecological drivers represents a challenge for those 

who wish to increase tolerance, mitigation measures that incorporate and 

work with these motivations have the potential to achieve lasting benefits.  
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Appendices 

Appendix 1: Summary of studies examining buzzard diet in the U.K. and across Europe.  
N = Number of dietary samples, NT = Number of territories/nests, Units percentage by frequency (%) unless otherwise stated, (*) 

denotes U.K. studies whose area was known to contain shooting estates, † = unpublished studies, (?) unknown, (-) unrecorded 

Reference Country Dietary analysis 
method 

N 

 
NT Unit 

M
am

m
als 

B
irds 

G
a

m
e
b

ird
s
 

H
erpetofauna 

Invertebrates 

C
arrion 

O
thers/ 

U
nidentified 

Francksen et al. (2016)*  Langholm, South 

Scotland 

(winter) 

Pellet analysis 2100 44 % 73.3 7 2.6 - 19.6 - - 

Francksen, Whittingham & 

Baines (2016)* 
Langholm, South 

Scotland 

Video records 1005 32 % 58.9 13.1 2 14 0.5 - 13.5 

 (summer) Prey remains 486 32 % 34 58 21.6 5.3 2.7 - - 

  Pellet analysis 476 32 % 60.7 14.5 4.9 1.1 23.7 - - 

Prytherch (2016) Avon, Southwest 

England 

Prey remains 301 10

8 

% 40.0 58.9 3.6 0.7 - 0.3 - 

Graham et al., (1995)* Langholm, South Pellet analysis 581 19 % 74.0 16.9 - 2.6 6.4 0 0.2 
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Scotland 

  Prey remains  365 19 % 48.8 46.6 15.1 1.4 0.2 0 0.2 

Newton, Davis & Davis 

(1982) 
Cambrian 

Mountains, Wales 

Pellet analysis 1297 91 % 43.1 15.7 0 0.3 23.7 17 0.2 

Kenward et al. (2001)*  Dorset, 

Southwest 

England 

Prey remains  233 61 % ? ? 2.6 ? ? ? ? 

Sim et al. (2001)* West Midlands, 

England  

Prey remains 253 77 % 61.2 35.6 5.1 0.4 0 0.4 0 

Dare (2015)* Dartmoor, 

Southwest 

England 

Pellet analysis 214 ? % 69 2 - 29 - - - 

     Prey remains 508 ? % 67.1 14.4 - 14.8 ? ? ? 

Jardine (2003) Colonsay, 

Scotland 

Prey remains 313 ? % 61.7 37.7 0.6 0.3 - - 0.3 

    ? % (wt) 87.8 12.1 2.6 0.1 - - 0.0 

Swan (2011)* † Central Scotland Prey remains 170 38 % 57.6 35.3 5.3 4.1 - 2.9 0 

  Pellet analysis 118 38 % 75.4 15.3 - 9.3 - 0 0 

  Video records 263 6 % 41.8 11.8 1.9 37.6 - 0 8.7 

Rooney & Montgomery 

(2013)*  
Northeast Ireland Prey & pellets 1194 61 % 41 41.2 2.3 0.5 17.3 - - 
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Zuberogoitia et al. (2006) Northern Spain Prey remains 158 ? % 42.4 27.2 0.6 30.4 0 - - 

 Southern Spain  Prey remains 167 ? % 38.3 38.3 5.4 37.1 2.4 - - 

Reif et al. (2001) Western Finland Prey & pellets 1906 11

3 

% 54.7 36.1 7.4 6.5 - - 2.8 

     % (wt) 38.3 55.2 30.3 4.1 - - 2.4 

Selås (2001) Southern Norway Prey & pellets  839 22 % 46.0 30.3 2.5 23.7 - - - 

Selås et al. (2007) Southern Norway Video records 82 11 % 36.6 31.7 0 31.7 - - - 

  Prey & pellets 148 11 % 29.7 35.8 0 34.5 - - - 

Manosa & Cordero (1992) Northeast Spain Prey remains  598 80 % 69.6 16.1 5.0 14.0 - - - 

  Pellet analysis  201 80 % 49.8 12.4 - 35.8 2.0 - - 

  Stomach contents 240 69 % 18.8 1.25 0.4 6.7 73.0 - - 

Sergio et al. (2002) Northern Italy Prey remains  142 25 % 28.9 46.5 0 23.9 - - 0.7 

Goszczynski et al. (2005) Central Poland  Prey & pellets 747 80 % (wt) 38.5 60.7 1.0 0.6 - - - 

Tornberg & Reif (2007) Northern Finland Prey remains 23 7 % 43.4 47.8 34.7 8.6 - - - 

  Video records 104 7 % 52.8 16.3 9.6 5.8 - - 24.9 

Skierczyński (2006) Northeast Poland Prey & pellets 328 12 % 80.2 13.2 0 0 6.6 - - 
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Appendix 2: Remote camera setup 
The nest surveillance cameras were set up as follows. A bullet camera (black & 

white CMOS 380 TVL) with a waterproof covering was positioned ~1m from the 

nest up with a ball and socket mount. A mobile screen allowed a second observer 

on the ground to direct the climber to position the camera until the majority of the 

nest cup was both in the frame and in focus. The camera was connected to a DVR 

(digital video recorder) with motion activation technology at the base of the tree via 

a 20m AV cable. DVRs were programmed to record 5 frames a second for a 

maximum of 5 minutes when movement was detected. A 32 GB SDHC memory 

card allowed for < 8 days of footage. The system was powered by 12V leisure 

battery (33Ah or 120Ah). Cameras were installed on nests during the first or 

second nest visit. SD cards and batteries were changed every 5-6 days until the 

chick was > 40 days old. This cut off point was to ensure chicks did not fledge 

early due to disturbance, however, cameras were left recording and collected once 

fledging had occurred. 
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Appendix 3: Assigning weights to provisioning observations  
Within a prey type or species, raptors may show selectivity; predating certain age 

(Hoy et al. 2015) or weight (Gotmark & Post 1996) classes disproportionately to 

their relative abundance. For example, Gotmark & Post, (1996) observed a 

decrease in relative predation risk for sparrowhawk Accipiter nisus once they had 

passed a threshold of body mass (in this instance 40g). This could be the result of 

underdeveloped predator avoidance strategies in juvenile prey (Hoy et al. 2015) or 

difficulties in catching and killing larger prey (Gotmark & Post 1996). I attempted to 

account for this in my study reviewing the footage and listing all species where 

size of buzzard prey indicated that juveniles were selected. We, like Resano-

Mayor et al. (2014), also noted that large prey carcasses were often brought onto 

the nest partly eaten. As a result the footage of all prey items >100g were re-

watched and the proportion of the carcass available on arrival to the nest was 

estimated. This value was then multiplied by the prey weight for that size category 

in order to gain the best possible estimate of mass available to the chick(s). On the 

rare occasions that carcass proportion could not be estimated, e.g. if the whole 

carcass could not be observed before consumption, the average carcass 

proportion of that prey type was used.  For prey that could not be identified from 

the camera footage, e.g. eaten while the bird is facing away, two approaches were 

taken to approximate the weight of the item; either the item was given the weight 

of a recently identified item consumed within a similar timeframe or, the amount of 

minutes it took to consume was used as a proxy for mass (this was judged to be 

~20g per minute). 
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Appendix 4: Ethics statement for buzzard catching, ringing and sampling 
All animal procedures used in this study were conducted under the U.K. Home 
Office project licence #30/3274 and conformed with the U.K. Animals (Scientific 
Procedures) Act, 1986. All research received prior ethical approval from the 
University of Exeter Animal Welfare and Ethics Committee. Animals were handled 
by trained and experienced personnel under further licences from both the British 
Trust for Ornithology (CO/6164) and Natural England (2015-7805-SCI-SCI).  
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Appendix 5: Buzzard diet from conventional methods (prey and pellet analysis) at 20 buzzard Buteo buteo nests in Cornwall, U.K.  
Data are presented showing frequency (N), percentage total frequency (% N), the estimated mean biomass (Est. mean BIO), the 

total biomass (Total BIO) in weight (g) and percentage (%) 
  Taxon Prey group Species Method 

  
N % N Est. mean 

BIO (g)* 
Total 
BIO (g) 

% 
total 
BIO 

   

Mammals Lagomorpha Rabbits Rabbit Oryctolagus cuniculus Prey 74 22.2 185.6 13733 28.1 

        Pellet 37 11.1 185.6 6867 14.0 

     n/a Hare Lepus europaeus Prey 1 0.3 185.6 186 0.4 

  Rodentia Small rodents Vole Microtus agrestis / Myodes 

glareolus 

Prey 18 5.4 17.9 323 0.7 

        Pellet 28 8.4 17.9 502 1.0 

    Small rodents Wood mouse Apodemus 

sylvaticus 

Prey 1 0.3 21.3 21 0.0 

     n/a Brown rat Rattus norvegicus Prey 1 0.3 142.2 142 0.3 

     n/a Grey squirrel Sciurus carolinensis Prey 9 2.7 367.4 3306 6.8 

       Pellet 4 1.2 367.4 1469 3.0 

 Soricomorpha Shrews & moles Mole Talpa europaea Prey 2 0.6 86.8 174 0.4 

       Pellet 8 2.4 86.8 694 1.4 

    Shrews & moles Shrew Soricidae Prey 2 0.6 7.1 14 0.0 

        Pellet 1 0.3 7.1 7 0.0 



179	
	
 

     n/a Fox Vulpes vulpes Prey 1 0.3 100.0 100 0.2 

     n/a Sheep Ovis aries Pellet 1 0.3 100.0 100 0.2 

Birds Galliformes Gamebirds Pheasant Phasianus colchicus Prey 43 12.9 192.0 8256 16.9 

     n/a      Released pheasant Prey 18 5.4 198.4 3570 7.3 

    Gamebirds Partridge Alectoris rufa Prey 2 0.6 228.0 456 0.9 

  Passeriformes   n/a Thrush Turdidae Prey 4 1.2 76.3 305 0.6 

     n/a Other Passeriformes Prey 16 4.8 15.2 238 0.5 

        Pellet 11 3.3 15.2 168 0.3 

    Corvids Magpie Pica pica Prey 3 0.9 157.3 472 1.0 

    Corvids Jay Garrulus glandarius Prey 1 0.3 157.3 157 0.3 

    Corvids Unidentified Corvidae Prey 29 8.7 157.3 4562 9.3 

        Pellet 2 0.6 157.3 315 0.6 

  Columbidae  n/a Woodpigeon Columba palumbus Prey 7 2.1 236.5 1656 3.4 

  Rallidae  n/a Moorhen Gallinula chloropus Prey 1 0.3 230.0 230 0.5 

Amphibians Anura Frogs & toads Common frog Rana temporaria Prey 1 0.3 26.0 26 0.1 

        Pellet 2 0.6 26.0 52 0.1 

Unidentified    n/a Unidentified reptile Pellet 1 0.3 55.6 55 0.1 

     n/a Unidentified small mammals Prey 1 0.3 17.9 18 0.0 

     n/a Unidentified large bird Pellet 4 1.2 192.0 768 1.6 

Total         334 100 4026 48941 100 

Total identified    328 98 3760 48099 98 

Total in 6 prey groups    254 76 1717 36630 75 

Notes: * the mean biomass per item is taken from direct observations of chick provisioning from analysis of video footage.  
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Appendix 6: Buzzard diet from direct observations of chick provisioning (frequency) from analysis of video footage at 20 buzzard 

nests in Cornwall, U.K.  
Data are presented showing frequency (N), percentage total frequency (% N), frequency of each size grouping (N size group). 

  Taxonomic Prey group Species N % N N size group 

   grouping S M L 
Mammals Lagomorpha Rabbits Rabbit Oryctolagus cuniculus 178 12.6 139 37 2 

  Rodentia Small rodents Voles Microtus agrestis / Myodes 

glareolus 

359 25.5 24 211 124 

    Small rodents Wood mouse Apodemus sylvaticus 49 3.5 11 22 16 

     n/a Brown rat Rattus norvegicus 22 1.6 7 10 5 

     n/a Grey squirrel Sciurus carolinensis 9 0.6 1 8 0 

  Soricomorpha Shrews & moles Mole Talpa europaea 59 4.2 6 43 10 

    Shrews & moles Shrews Soricidae 66 4.7 8 34 24 

  Mustelidae  n/a Weasel Mustela nivalis 6 0.4 0 5 1 

Birds Galliformes Gamebirds Pheasant Phasianus colchicus 30 2.1 9 14 7 

     n/a      Released pheasants 39 2.8 0 30 9 

  Passeriformes  n/a Thrushes Turdidae 26 1.9 2 19 5 

     n/a Unidentified Passeriformes 39 2.8 12 27 0 

    Corvids Corvidae  30 2.1 2 19 9 

  Columbiformes   n/a Woodpigeon Columba palumbus 7 0.5 1 4 2 

  Accipitriformes  n/a Buzzard Buteo buteo 1 0.1 1 0 0 

  Gruiformes  n/a Moorhen Gallinula chloropus 1 0.1 0 1 0 
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Amphibians Anura Frogs & toads Common frog Rana temporaria 104 7.4 32 47 24 

    Frogs & toads Common toad Bufo bufo 108 7.7 16 56 36 

Reptiles Squamata  n/a Slow worm Anguis fragilis 2 0.1 0 2 0 

     n/a Grass snake Natrix natrix 5 0.4 0 2 3 

     n/a Adder Vipera berus 1 0.1 0 0 1 

Fish Anguilliformes  n/a European eel Anguilla anguilla 2 0.1 0 1 1 

Invertebrates Megadrilacea  n/a Earthworms 9 0.6 4 2 3 

Unidentified     Unidentified small mammals 104 7.4 21 80 3 

      Small prey (est. <50g) 138 9.8 - - - 

      Medium prey (est. 50-150g) 10 0.71 - - - 

      Large prey (est. >150g) 5 0.35 - - - 

Total       1409 100       

Total identified   1152 82    

Total in 6 prey groups   983 70    
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Appendix 7: Buzzard diet from direct observations of chick provisioning (weight) from analysis of video footage at 20 buzzard 

nests in Cornwall, U.K.  
Data presented show the mean percentage of carcass provisioned in each size group (mean % carcass), the mean biomass for 

each species (mean BIO) in weight (g) and the total biomass for each species (total BIO) in weight (g) and percentage (%). 

  Taxonomic Prey group Species Mean % carcass Mean 
BIO (g) 

Total 
BIO (g) 

% total 
BIO    grouping S M L 

Mammals Lagomorpha Rabbits Rabbit Oryctolagus cuniculus 0.7 0.6 0.4 185.6 33161.1 37.4 
  Rodentia Small rodents Voles Microtus agrestis / Myodes 

glareolus 
- - - 17.9 6427.0 7.2 

    Small rodents Wood mouse Apodemus sylvaticus - - - 21.3 1044.0 1.2 
     n/a Brown rat Rattus norvegicus 0.8 0.5 0.5 142.2 3196.2 3.6 
     n/a Grey squirrel Sciurus carolinensis 0.2 0.7 - 367.4 3306.2 3.7 
  Soricomorpha Shrews & moles Mole Talpa europaea - - - 86.8 5108.8 5.8 
    Shrews & moles Shrews Soricidae - - - 7.1 470.0 0.5 
  Mustelidae  n/a Weasel Mustela nivalis - - - 58.7 352.0 0.4 

Birds Galliformes Gamebirds Pheasant Phasianus colchicus 1 0.5 0.2 192.0 5760.2 6.5 
     n/a      Released pheasants - 0.4 0.2 192.0 7836.4 8.8 
  Passeriformes  n/a Thrushes Turdidae - - - 76.3 1984.0 2.2 
     n/a Unidentified Passeriformes - - - 15.2 594.0 0.7 
    Corvids Corvidae  0.8 0.5 0.5 157.3 4719.0 5.3 
  Columbiformes   n/a Woodpigeon Columba palumbus 1 0.7 0.6 236.5 1626.8 1.8 
  Accipitriformes  n/a Buzzard Buteo buteo 1 - - 50.0 50.0 0.1 
  Gruiformes  n/a Moorhen Gallinula chloropus - 1 - 230.0 230.0 0.3 
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Amphibians Anura Frogs & toads Common frog Rana temporaria - - - 26.0 2704.0 3.0 
    Frogs & toads Common toad Bufo bufo - - - 29.6 3196.0 3.6 
Reptiles Squamata  n/a Slow worm Anguis fragilis - - - 13.2 26.4 0.0 
     n/a Grass snake Natrix natrix - -   70.6 353.0 0.4 
     n/a Adder Vipera berus - - - 83.0 83.0 0.1 
Fish Anguilliformes  n/a European eel Anguilla anguilla - 1 1 300.0 600 0.7 
Invertebrates Megadrilacea  n/a Earthworms - - - 4.1 36.83 0.0 
Unidentified     Unidentified small mammals - - - 14.7 1524.0 1.7 
      Small prey (est. <50g) - - - 16.2 2236 2.5 
      Medium prey (est. 50-150g) - - - 104.0 1040 1.2 
      Large prey (est. >150g) - - - 200.0 1050 1.2 

Total               88715 100 
Total identified       82865 93 
Total in 6 prey groups       62590 71 
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Appendix 8: Weights used for buzzard prey size categories and their sources.  
  Species Estimated weight (g) Weight source 
  S M L S M L 

 Mammals Rabbit Oryctolagus cuniculus 200 558 915 [1 a] [1a, 1b] [1 b] 

 Voles Microtus agrestis or Myodes glareolus. 15 17 20 [2 a] [2 a]  [2 a] 

  Mouse Apodemus sylvaticus 18 21 24 [2 b]  [2 b] [2 b] 

  Brown rat Rattus norvegicus 200 241 282 [3] [3, 4] [4] 

  Grey squirrel Sciurus carolinensis 483 544 588 [5] [5] [5] 

   Mole Talpa europaea 74 85 102 [6] [6] [6] 

  Shrews Soricidae 6 7 8 [2 c] [2 c] [2 c] 

  Weasel Mustela nivalis 36 54 82 M -	1 3$  L -	1 3$  [7 a] 

 Stoat Mustela erminea 124 188 285 M -	1 3$  L -	1 3$  [7]b 

 Birds Pheasant Phasianus colchicus 44 489 1363 [8 a] [8 b] [8 c] 

 Thrushes Turdidae. 49 74 96 M -	1 3$  [9 a] [9 b] 

  Unidentified small passerine 9 18 22 [9 c] [9 d] [9 e] 

  Corvids Corvidae spp. 150 225 469 M -	1 3$  [9 f] [9 g] 

  Woodpigeon Columba palumbus 207 314 524 M -	1 3$  L -	1 3$  [9 h] 

  Moorhen Gallinula chloropus na 230 349 n/a  L -	1 3$  [9 i] 
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 Amphibians Common frog Rana temporaria 17  25 40 M -	1 3$  [3 b] [10] 

 Common toad Bufo bufo 23 28  35 [11 a]  [11 a]  [11 a]  

 Reptiles Slow worm Anguis fragilis 11 13  17 [12]  [12]   [12] 

 Snake spp. 35 52  83 [11 b] [11 b] [11 b]  

Fish European eel Anguilla anguilla n/a 300 n/a  n/a [12]  n/a 

Invertebrates Earthworm spp. 2.8 4.3 5.7 M -	1 3$  [13]  M +	1 3$  

Notes: Where a complete dataset of weights is available I took the median to be medium, the first quartile to be small and the third to be 

large. Where two sources are presented I took the mean of both to be the medium weight. Sources: [1] Harris & Yalden (2008): a the 

average weight of a juvenile Oryctolagus cuniculus, b the average weight of an adult Oryctolagus cuniculus; [2] R. A. McDonald, P. Cooper 

& L. Furness unpublished data from small mammal trapping in Cornwall, U.K: a weights of Microtus agrestis and Myodes glareolus (n = 21), 
b weights of Apodemus sylvaticus (n = 160), c weights of Sorex araneus (n = 15); [3] Dare (2015): a weight of juvenile Rattus norvegicus 

found on buzzard nests, b weight of average Rana temporaria on found on buzzard nests; [4] Jones et al. (2009); [5] R. A. McDonald, 

unpublished data: weights of Sciurus carolinensis in Northern England (n =409); [6] F. Stoker, unpublished data: weights of Talpa europaea 

trapped as part of on going pest control across Cornwall (n = 55); [7] McDonald et al. (1998): a average weight of an adult Mustela nivalis, b 

average weight of an adult Mustela erminea; [8] M. Whiteside & J. Madden unpublished data weights from an on-going study on released 

Phasianus colchicus in southwest England: a mean weight of week old chick (n = 50), b mean weight of six week old male (n = 483), c mean 

weight of adult female (n =25); [9] Cramp & Simmons, 1980: weights are from adult a Turdus merula, b Turdus philomelos, c Troglodytes 

troglodytes, d Erithacus rubecula, e Fringilla coelebs, f Corvus monedula, g the average of Corvus corone, Corvus frugilegus, Pica pica, h 

Columba palumbus,  i Gallinula chloropus.; [10] Petty (1999); [11] C. Reading unpublished data: a weights of Bufo bufo collected as part of 

on-going studies in the south of England  (n = 17985), b weights of Natrix natrix collected in the south of England (n = 372); [12] Stumpel 

(1985); [13] Kruuk (1978) 
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Appendix 9: The stable isotope ratios (δ15N and δ13C) of species frequently recorded in the diet of buzzards in Cornwall, U.K.  
The table gives the sample size (n), as well as the mean and standard deviation for both isotopes. When multiple species have 

been sampled within a taxonomic Order, the average is also presented in bold. Muscle tissue was sampled from fresh dietary items 

found in buzzard nests. Additional tissue was collected opportunistically for frogs, toads and released pheasants. 

Order Species n δ13C δ15N 
  Mean SD  Mean SD 
Lagomorpha Oryctolagus cuniculus 24 -28.76 0.52 6.11 1.69 

Rodentia All 17 -28.33 1.49 4.19 2.59 
 Apodemus sylvaticus 3 -27.29 3.05 5.08 2.37 

 Microtus agrestis & Myodes glareolus 14 -28.56 1.00 4.00 2.68 

Eulipotyphia All 7 -25.77 1.01 9.02 1.73 
 Sorex araneus 2 -26.53 1.51 8.47 0.98 

 Talpa europaea 5 -25.47 0.75 9.23 2.01 

Passeriformes Corvidae spp. 5 -24.97 0.58 8.60 1.53 

Galliformes All 19 -25.05 1.37 4.90 1.46 
    Phasianus colchicus (Wild)  8 -24.34 1.94 6.45 0.69 

    P. colchicus (Released)  11 -25.57 0.11 3.78 0.42 

Anura All 7 -26.54 0.44 6.25 1.47 
 Rana temporaria 4 -26.63 0.58 5.70 1.81 

 Bufo bufo 3 -26.42 0.21 6.99 0.46 
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Appendix 10: Difference in the isotopic ratios of ‘wild’ putative buzzard prey from the isotopic ratios of released pheasants in 

Cornwall, U.K.  
Differences were analysed using general linear models. Separate models were applied for δ15N and δ13C with released poult set as 

the intercept (df = 75).  

 
 
 
 
 
 
 

  

 δ13C δ15N 
Dietary source Est. S.E t value P Est. S.E. t value P 

Released pheasant -25.57 0.315   3.78 0.558   

Wild pheasant 1.23 0.485 1.74 0.086 2.56 0.832 3.08 0.003 
Amphibian -0.97 0.505 -1.92 0.058 2.48 0.895 2.77 0.007 
Corvid, shrew & mole 0.13 0.436 0.30 0.765 5.07 0.773 6.56 < 0.001 
Rabbit & rodent -3.01 0.354 -8.50 < 0.001  1.54 0.629 2.45 0.017 
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Appendix 11: Estimates of the proportional representation of food sources consumed by buzzards, estimated by Bayesian stable 

isotope mixing models.  
Values are means ± SD. 

BSIMM tissue Nestling 

feathers 

Nestling blood Adult feathers Problem buzzard 

feathers 

Problem 

buzzard blood 

Dietary category      
Rabbit & rodent 0.576 ± 0.057 0.680 ± 0.042 0.252 ± 0.072 0.222 ± 0.126 0.263 ± 0.107 
Corvid, shrew & mole 0.111 ± 0.057 0.047 ± 0.029 0.332 ±  0.066 0.162 ±  0.096 0.115 ± 0.067 
Wild pheasant 0.048 ± 0.031 0.025 ±  0.016 0.096 ± 0.056 0.189 ± 0.134 0.129 ± 0.084 
Released pheasant 0.055 ± 0.034 0.039 ± 0.025 0.080 ± 0.045 0.182 ± 0.109 0.262 ± 0.119 
Amphibian 0.211 ± 0.100 0.210 ± 0.066 0.239 ± 0.151  0.245 ± 0.163  0.231 ± 0.142 

Notes: The number of samples included in models differed (nestling feathers = 41, nestling blood = 82, adult feathers = 86 and adult blood =8). 

For blood samples both red blood cell samples and blood plasma for each buzzard were included in the models. 
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Appendix 12: Results of the linear mixed effects model analysis for released 

poult consumption by territory category.  
The significant P value indicates a significant reduction in the goodness of 

model fit between model structures 2 and 3. 

Model  d.f. AIC Log Lik !" P 

Random effects structure      

Random = ~ 1 | territory      

Fixed effects structure      

1. Released pheasant in diet ~ territory 

category * age + feather type + site 

117 120.2 -49.1   

2. Released pheasant in diet ~ territory 
category * age + site 

118 118.5 -49.2 0.2489 0.6179 

3. Released pheasant in diet ~ territory 

category + age + site 

120 123.3 -53.6 8.7964 0.0123 * 

Random effects on the slope and intercept were determined at the level of replicates 

nested within ‘territory’. The results of the model selection procedure on the fixed effect 

terms are given and the most parsimonious model is highlighted in bold. 
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Appendix 13: Post hoc comparisons between the ‘territory category’ factor 

levels (calculated using least-squares means, with Satterthwaite’s 

approximation for degrees of freedom) on model structure 2 (Appendix 12).  
(i) denotes no release pen, (ii) denotes a release pen with no problems and 

(iii) denotes a release pen with problems.  
Pairing Estimate SE d.f. t. ratio P value 

Adults      

i - ii -0.0161 0.0150 33.11 -1.074 0.5367 

I - iii -0.0468 0.0169 23.05 -2.768 0.0284 * 

Ii - iii -0.0307 0.0190 23.05 -1.616 0.2591 

Nestlings      

I – ii  0.0237 0.0182 52.79 1.303 0.3997 

I – iii  0.0211 0.0199 52.79 1.063 0.5409 

Ii - iii  0.0026 0.0229 64.28 -0.114 0.9928 

Notes: Results are averaged over the levels of site 

 

 

  



191	
	
 

Appendix 14: Results of the linear mixed effects model analysis for released 

poult consumption by ‘problem buzzards’.  
The significant P value indicates a significant reduction in the goodness of 

model fit between model structures 1 and 2. 

Model  d.f. AIC Log Lik Chisq P 

Random effects structure      

Random = ~ 1 | territory      

Fixed effects structure      

1. Released pheasant in diet ~ 

problem buzzard * tissue + site + age 

207 135.4 -56.7   

2. Released pheasant in diet ~ 

problem buzzard + tissue + site + age 

209 137.9 -59.9 6.4493 0.0398*  

Random effects on the slope and intercept were determined at the level of replicates 

nested within ‘territory’. 
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Appendix 15: Example of semi-structured interview schedule.  
Questions were not necessarily asked in the order presented. Questions were 

asked generally (about all predators) and specifically (about specific species 

once they had been introduced by the respondent).  
 

Background  
• What attracted you to gamekeeping? Current position? 

• How did you learn your skills? Who taught you most? 

• What are the best parts/ challenges? 

• What type of shoot is it? Size? Habitat type? 

 

Background to predation 
• Which predators are legally controlled? 

• Which predators take pheasants or their eggs? And on this estate?  

• Which cause most problems? Does this change over the year? 

• What loss is small enough to tolerate? 

• Would you stop if you perceived a sudden decline? 

• Are there any species whose population growth would concern you?  

 
Behavioural beliefs / Outcome evaluation: 

• What are the costs/benefits of predator control?  

• What do you think would happen if there was no predator control?  

• Does killing predators matter?  

• Do you think there are indirect impacts of predators? 

• What benefits of predators have you observed?  

• Do you think other gamekeepers overlook/unfairly target some 

predators? 

• (Projective) Why do you think some keepers kill protected predators?  

 

Normative beliefs/ Motivation to comply: 

• Who would you ask for advice on predator management? 

• How do you feel when others see predators on this shoot?  



193	
	
 

• Do you ever ask others for their advice on predator management?  

• (If relevant) How does it affect you having a neighbouring shooting 

estate(s)? 

• Do you think its important to behave how [name of group previously 

mentioned by respondent] expect you to behave?  

 

Power beliefs / Control beliefs:  
• How are decisions on predator management made?  

• What would prevent you from killing a predator that was having an 

impact?  

• How easy is it to control predators?  

• Would you consider applying for a licence to remove predator that was 

legally protected? 

 

Examples of statements from previous interviews that gamekeepers were 

asked their opinions on:  

• “A gamekeeper is solely responsible for protecting birds on his own 

beat.” 

•  “If a predator’s a nuisance, it needs thinning out”  

• “Gamekeepers could never wipe any species out.”  

• “I get a sense of pride having a rare predator on my estate” 

• “Putting older birds into pens means you have to kill less predators”  

• “You can judge predator impact by the number that you see about.” 

• “Everything has to be in a certain balance” 

 

 

 

  



194	
	
 

  



195	
	
 

 

 
 
 

REFERENCES 

 

 
 
  



196	
	
 

References 
Adams, W.M. (1997) Rationalisation and conservation: ecology and the 

management of nature in the United Kingdom. Transactions of the 

Institute of British Geographers, 22, 277–291. 

Ainsworth, G., Calladine, J., Martay, B., Park, K., Redpath, S., Wernham, C., 

Wilson, M. & Young, J. (2016) Understanding Predation. Scotland’s 

Moorland Forum. 

Ajzen, I. (1985) From Intentions to Actions: A Theory of Planned Behavior. 

Springer Berlin Heidelberg. 

Ajzen, I. & Fishbein, M. (1980) Understanding Attitudes and Predicting Social 

Behaviour. Prentice Hall, Englewood Cliffs, NJ. 

Allen, D.S. (2001) Raptors and the Rearing of Pheasants: A Preliminary 

Evaluation of Techniques to Reduce Losses of Young Pheasants to 

Raptors at Release Pens. ADAS Consulting Ltd. Report to the British 

Association for Shooting and Conservation, Rossett, UK. 

Allen, B.L., Allen, L.R., Andren, H., Ballard, G., Boitani, L., Engeman, R.M., 

Fleming, P.J.S., Ford, A.T., Haswell, P.M., Kowalczyk, R., Linnell, J.D.C., 

David Mech, L. & Parker, D.M. (2017) Can we save large carnivores 

without losing large carnivore science? Food Webs, 12, 64–75. 

Allen, D.S., Packer, J.J., Feare, C.J. & Blanchard, C. (2000) Raptors and the 

Rearing of Pheasants: Problems and Management Needs. ADAS 

Consulting Ltd. Report to the British Association for Shooting and 

Conservation. 

Amar, A., Arroyo, B., Redpath, S.M. & Thirgood, S. (2004) Habitat predicts 

losses of red grouse to individual hen harriers. Journal of Applied 

Ecology, 41, 305–314. 

Amar, A., Court, I.R., Davison, M., Downing, S., Grimshaw, T., Pickford, T. & 

Raw, D. (2012) Linking nest histories, remotely sensed land use data and 

wildlife crime records to explore the impact of grouse moor management 

on peregrine falcon populations. Biological Conservation, 145, 86–94. 

Amar, A., Redpath, S.M., Sim, I. & Buchanan, G. (2010) Spatial and temporal 

associations between recovering populations of common raven Corvus 



197	
	
 

corax and British upland wader populations. Journal of Applied Ecology, 

47, 253–262. 

Angelstam, P., Lindström, E. & Widén, P. (1984) Role of predation in short-

term population fluctuations of some birds and mammals in 

Fennoscandia. Oecologia, 199–208. 

Araújo, M.S., Bolnick, D.I. & Layman, C. a. (2011) The ecological causes of 

individual specialisation. Ecology letters, 14, 948–58. 

Archie, E.A. & Chiyo, P.I. (2012) Elephant behaviour and conservation: social 

relationships, the effects of poaching, and genetic tools for management. 

Molecular Ecology, 21, 765–778. 

Armitage, C.J. & Conner, M. (2001) Efficacy of the Theory of Planned 

Behaviour: A meta-analytic review. British Journal of Social Psychology, 

40, 471–499. 

Arraut, E.M., Macdonald, D.W. & Kenward, R.E. (2015) In the wake of 

buzzards: from modelling to conservation in a changing landscape. 

Wildlife Conservation on Farmland: Volume 2 Conflict in the Countryside 

(eds D.W. Macdonald & R.E. Feber), pp. 203–221. Oxford University 

Press. 

Arroyo, B., Delibes-Mateos, M., Díaz-Fernández, S. & Viñuela, J. (2012) 

Hunting management in relation to profitability aims: Red-legged 

partridge hunting in central Spain. European Journal of Wildlife Research, 

58, 847–855. 

Artelle, K.A., Anderson, S.C., Reynolds, J.D., Cooper, A.B., Paquet, P.C. & 

Darimont, C.T. (2016) Ecology of conflict: marine food supply affects 

human-wildlife interactions on land. Scientific Reports, 6, 25936. 

Arts, K., Fischer, A. & van der Wal, R. (2012) Common stories of 

reintroduction: A discourse analysis of documents supporting animal 

reintroductions to Scotland. Land Use Policy, 29, 911–920. 

Athreya, V., Odden, M., Linnell, J.D.C. & Karanth, K.U. (2011) Translocation 

as a tool for mitigating conflict with leopards in human-dominated 

landscapes of India. Conservation Biology, 25, 133–41. 

Austrian Bear Emergency Team. (2006) JJ1 ‘Bruno’ in Austria and Germany 



198	
	
 

2006. Vienna, Austria. 

Avery, M.L. & Cummings, J.L. (2004) Livestock depredations by black 

vultures and golden eagles. Sheep and Goat Research Journal, 19, 58–

63. 

Baines, D., Redpath, S.M., Richardson, M. & Thirgood, S. (2008) The direct 

and indirect effects of predation by Hen Harriers Circus cyaneus on 

trends in breeding birds on a Scottish grouse moor. Ibis, 150, 27–36. 

Barua, M., Bhagwat, S. a. & Jadhav, S. (2013) The hidden dimensions of 

human–wildlife conflict: Health impacts, opportunity and transaction 

costs. Biological Conservation, 157, 309–316. 

BASC. (2009) Policy on Raptors: The British Association for Shooting and 

Conservation Council Meeting. British Association for Shooting and 

Conservation, Rossett, United Kingdom. 

BASC. (2011) Aim of the Game: Driven Game Shooting in Britain Today. 

Wrexham, UK. 

BASC. (2015) BASC statement on game bird release numbers, 

https://basc.org.uk/blog/press-releases/latest-news/basc-statement-on-

game-bird-release-numbers/ 

Bates, D., Maechler, M., Bolker, B. & Walker, S. (2015) Fitting linear mixed-

effects models using lme4. Journal of Statistical Software, 67, 1–48. 

Bearhop, S., Waldron, S., Thompson, D. & Furness, R. (2000) 

Bioamplification of mercury in great skua Catharacta skua chicks: The 

influence of trophic status as determined by stable isotope signatures of 

blood and feathers. Marine Pollution Bulletin, 40, 181–185. 

Bearhop, S., Waldron, S., Votier, S.C. & Furness, R.W. (2002) Factors that 

influence assimilation rates and fractionation of nitrogen and carbon 

stable isotopes in avian blood and feathers. Physiological and 

Biochemical Zoology, 75, 451–458. 

Beja, P., Gordinho, L., Reino, L., Loureiro, F., Santos-Reis, M. & Borralho, R. 

(2008) Predator abundance in relation to small game management in 

southern Portugal: conservation implications. European Journal of 

Wildlife Research, 55, 227–238. 



199	
	
 

Benjamini, Y. & Hochberg, Y. (1995) Controlling the False Discovery Rate: A 

Practical and Powerful Approach to Multiple Testing. Journal of the Royal 

Statistical Society, 57, 289–300. 

Bentzen, T.W., Shideler, R.T. & O’Hara, T.M. (2014) Use of stable isotope 

analysis to identify food-conditioned grizzly bears on Alaska’s North 

Slope. Ursus, 25, 14–23. 

Bergstrom, B.J. (2017) Carnivore conservation: shifting the paradigm from 

control to coexistence. Journal of Mammalogy, 98, 1–6. 

Bergstrom, B.J., Arias, L.C., Davidson, A.D., Ferguson, A.W., Randa, L.A. & 

Sheffield, S.R. (2014) License to kill: reforming federal wildlife control to 

restore biodiversity and ecosystem function. Conservation Letters, 7, 

131–142. 

Bhattacharyya, A. (1946) On a measure of divergence between two 

multinomial populations. The Indian Journal of Statistics, 7, 401–406. 

Bicknell, J., Smart, J., Hoccom, D., Amar, A., Evans, A., Walton, P., Knott, J. 

& Lodge, T. (2010) Impacts of Non-Native Gamebird Release in the UK : 

A Review. Sandy, Bedfordshire, UK. 

Bodey, T.W., Bearhop, S. & McDonald, R.A. (2011) Localised control of an 

introduced predator: creating problems for the future? Biological 

Invasions, 13, 2817–2828. 

Bodey, T.W., McDonald, R.A. & Bearhop, S. (2009) Mesopredators constrain 

a top predator: competitive release of ravens after culling crows. Biology 

Letters, 5, 617–620. 

Boecklen, W.J., Yarnes, C.T., Cook, B.A. & James, A.C. (2011) On the Use of 

Stable Isotopes in Trophic Ecology. Annual Review of Ecology, Evolution, 

and Systematics, 42, 411–440. 

Bolnick, D.I., Amarasekare, P., Araújo, M.S., Bürger, R., Levine, J.M., Novak, 

M., Rudolf, V.H.W., Schreiber, S.J., Urban, M.C. & Vasseur, D.A. (2011) 

Why intraspecific trait variation matters in community ecology. Trends in 

Ecology and Evolution, 26, 183–92. 

Bolnick, D.I., Svanbäck, R., Fordyce, J.A., Yang, L.H., Davis, J.M., Hulsey, 

C.D. & Forister, M.L. (2003) The ecology of individuals: incidence and 



200	
	
 

implications of individual specialization. The American Naturalist, 161, 1–

28. 

Bond, A.L. & Diamond, A.W. (2011) Recent Bayesian stable-isotope mixing 

models are highly sensitive to variation in discrimination factors. 

Ecological Applications, 21, 1017–1023. 

Booth, J.E., Gaston, K.J., Evans, K.L. & Armsworth, P.R. (2011) The value of 

species rarity in biodiversity recreation: A birdwatching example. 

Biological Conservation, 144, 2728–2732. 

Bradley, E.H., Robinson, H.S., Bangs, E.E., Kunkel, K., Jimenex, M.D., Gude, 

J.A. & Grimm, T. (2015) Effects of wolf removal on livestock depredation 

recurrence and wolf recovery in Montana, Idaho, and Wyoming. Journal 

of Wildlife Management, 79, 1337–1346. 

Browne-Nunez, C., Treves, A., MacFarland, D., Voyles, Z. & Turng, C. (2015) 

Tolerance of wolves in Wisconsin: A mixed-methods examination of 

policy effects on attitudes and behavioral inclinations. Biological 

Conservation, 189, 59–71. 

Buller, H. (2008) Safe from the wolf: Biosecurity, biodiversity, and competing 

philosophies of nature. Environment and Planning A, 40, 1583–1597. 

Bulte, E., Gerking, S., List, J.A. & De Zeeuw, A. (2005) The effect of varying 

the causes of environmental problems on stated WTP values: Evidence 

from a field study. Journal of Environmental Economics and 

Management, 49, 330–342. 

Buner, F. & Schaub, M. (2008) How do different releasing techniques affect 

the survival of reintroduced grey partridge Perdix perdix? Wildlife Biology, 

14, 26–35. 

Burke, T., Page, B., van Dyk, G., Millspaugh, J. & Slotow, R. (2008) Risk and 

ethical concerns of hunting male elephant: Behavioural and physiological 

assays of the remaining elephants. PLoS ONE, 3. 

Burton, R.J.F., Kuczera, C. & Schwarz, G. (2008) Exploring farmers’ cultural 

resistance to voluntary agri-environmental schemes. Sociologia Ruralis, 

48, 16–37. 

Butler, J.R., Middlemas, S.J., Graham, I.M. & Harris, R.N. (2011) Perceptions 



201	
	
 

and costs of seal impacts on Atlantic salmon fisheries in the Moray Firth, 

Scotland: Implications for the adaptive co-management of seal-fishery 

conflict. Marine Policy, 35, 317–323. 

Campbell, M. & Mackay, K.J. (2009) Communicating the Role of Hunting for 

Wildlife Management. Human Dimensions of Wildlife, 14, 21–36. 

Caniglia, R., Fabbri, E., Mastrogiuseppe, L. & Randi, E. (2013) Who is who? 

Identification of livestock predators using forensic genetic approaches. 

Forensic Science International: Genetics, 7, 397–404. 

Cardinale, B.J., Duffy, J.E., Gonzalez, A., Hooper, D.U., Perrings, C., Venail, 

P., Narwani, A., Mace, G.M., Tilman, D., A.Wardle, D., Kinzig, A.P., Daily, 

G.C., Loreau, M., Grace, J.B., Larigauderie, A., Srivastava, D.S. & 

Naeem, S. (2012) Biodiversity loss and its impact on humanity. Nature, 

486, 59–67. 

Carpiano, R.M. (2009) Come take a walk with me: The ‘Go-Along’ interview 

as a novel method for studying the implications of place for health and 

well-being. Health and Place, 15, 263–272. 

Carter, N.H. & Linnell, J.D.C. (2016) Co-Adaptation Is Key to Coexisting with 

Large Carnivores. Trends in Ecology & Evolution, 31, 575–578. 

Carter, N.H., López-Bao, J.V., Bruskotter, J.T., Gore, M., Chapron, G., 

Johnson, A., Epstein, Y., Shrestha, M., Frank, J., Ohrens, O. & Treves, A. 

(2017) A conceptual framework for understanding illegal killing of large 

carnivores. Ambio, 46, 251–264. 

Catry, T., Ramos, J.A., Jaquemet, S., Faulquier, L., Berlincourt, M., 

Hauselmann, A., Pinet, P. & Corre, M. Le. (2009) Comparative foraging 

ecology of a tropical seabird community of the Seychelles, western Indian 

Ocean. Marine Ecology Progress Series, 374, 259–272. 

Caut, S., Angulo, E. & Courchamp, F. (2008) Caution on isotopic model use 

for analyses of consumer diet. Canadian Journal of Zoology, 86, 438–

445. 

Caut, S., Angulo, E. & Courchamp, F. (2009) Variation in discrimination 

factors (∆ 15N and ∆ 13C): the effect of diet isotopic values and 

applications for diet reconstruction. Journal of Applied Ecology, 46, 443–



202	
	
 

453. 

Cavalcanti, S.M.C. & Gese, E.M. (2010) Kill rates and predation patterns of 

jaguars (Panthera onca) in the southern Pantanal, Brazil. Journal of 

Mammalogy, 91, 722–736. 

Cavalcanti, S.M.C., Marchini, S., Zimmermann, A., Gese, E.M. & Macdonald, 

D.W. (2010) Jaguars, livestock, and people in Brazil: realities and 

perceptions behind the conflict. The biology and conservation of wild 

felids (eds D.W. Macdonald & A. Loveridge), pp. 383–402. Oxford 

University Press, Oxford, UK. 

Ceballos, G. (2002) Mammal Population Losses and the Extinction Crisis. 

Science, 296, 904–907. 

Cerling, T.E., Wittemyer, G., Rasmussen, H.B., Vollrath, F., Cerling, C.E., 

Robinson, T.J. & Douglas-Hamilton, I. (2006) Stable isotopes in elephant 

hair document migration patterns and diet changes. Proceedings of the 

National Academy of Sciences of the United States of America, 103, 

371–3. 

Chapron, G., Kaczensky, P., Linnell, J.D.C., von Arx, M., Huber, D., Andrén, 

H., López-bao, J.V. & Adamec, M. (2014) Recovery of large carnivores in 

Europe’s modern human-dominated landscapes. Science, 346, 1517–

1519. 

Chapron, G. & López-Bao, J.V. (2016) Coexistence with Large Carnivores 

Informed by Community Ecology. Trends in Ecology & Evolution, 31, 

578–580. 

Chapron, G. & Treves, A. (2016) Blood does not buy goodwill: allowing culling 

increases poaching of a large carnivore. Proceedings of the Royal 

Society B: Biological Sciences, 283. 

Chiyo, P.I., Moss, C.J., Archie, E.A., Hollister-Smith, J.A. & Alberts, S.C. 

(2011) Using molecular and observational techniques to estimate the 

number and raiding patterns of crop-raiding elephants. Journal of Applied 

Ecology, 48, 788–796. 

Ciuti, S., Muhly, T.B., Paton, D.G., McDevitt, A.D., Musiani, M. & Boyce, M.S. 

(2012) Human selection of elk behavioural traits in a landscape of fear. 



203	
	
 

Proceedings of The Royal Society B: Biological Sciences, 279, 4407–16. 

Clarke, R., Combridge, M. & Combridge, P. (1997) A comparison of the 

feeding ecology of wintering Hen Harriers Circus cyaneus centred on two 

heathland areas in England. Ibis, 139, 4–18. 

Clayton, S. & Myers, G. (2009) Conservation Psychology. Wiley-Blackwell. 

Clements, R. (2000) Range expansion of the Common Buzzard in Britain. 

British Birds, 93, 242–248. 

Clements, R. (2002) The Common Buzzard in Britain : a new population 

estimate. British Birds, 95, 377–383. 

Conner, M.M., Jaeger, M.M., Weller, T.J. & Mccullough, D.R. (1998) Effect of 

coyote romoval on sheep depredation in Northern California. The Journal 

of Wildlife Management, 62, 690–699. 

Conover, M. (2002) Resolving Human-Wildlife Conflicts: The Science of 

Wildlife Damage Management. Lewis Publishers, Boca Raton, Florida. 

Cramp, S. & Simmons, K.E.L. (1980) The Birds of the Western Palearctic, 

Vols 1-8. Oxford University Press, Oxford, UK. 

Cromsigt, J.P.G.M., Kuijper, D.P.J., Adam, M., Beschta, R.L., Churski, M., 

Eycott, A., Kerley, G.I.H., Mysterud, A., Schmidt, K. & West, K. (2013) 

Hunting for fear: innovating management of human-wildlife conflicts. 

Journal of Applied Ecology, 50, 544–549. 

Dall, S.R.X., Bell, A.M., Bolnick, D.I. & Ratnieks, F.L.W. (2012) An 

evolutionary ecology of individual differences. Ecology Letters, 15, 1189–

98. 

Dandy, N., Ballantyne, S., Moseley, D., Gill, R., Quine, C. & van der Wal, R. 

(2012) Exploring beliefs behind support for and opposition to wildlife 

management methods: A qualitative study. European Journal of Wildlife 

Research, 58, 695–706. 

Dare, P. (2015) The Life of Buzzards. Whittles Publishing, Dunbeath, 

Scotland. 

Darimont, C.T., Carlson, S.M., Kinnison, M.T., Paquet, P.C., Reimchen, T.E. 

& Wilmers, C.C. (2009) Human predators outpace other agents of trait 

change in the wild. Proceedings of the National Academy of Sciences of 



204	
	
 

the United States of America, 106, 952–954. 

David, J.H.., Cury, P., Crawford, R.J.M., Randall, R.M., Underhill, L.G. & 

Meÿer, M.A. (2003) Assessing conservation priorities in the Benguela 

ecosystem, South Africa: analysing predation by seals on threatened 

seabirds. Biological Conservation, 114, 289–292. 

Delibes-Mateos, M. (2013) Negative attitudes towards predators do not 

necessarily result in their killing. Oryx, 48, 16. 

Delibes-Mateos, M., Diaz-Fernandez, S., Ferreras, P., Vinuela, J. & Arroyo, B. 

(2013) The role of economic and social factors driving predator control in 

small-game estates in Central Spain. Ecology and Society, 18. 

DeNiro, M.J. & Epstein, S. (1978) Influence of diet on the distribution of 

carbon isotopes in animals. Geochimica et Cosmochimica Acta, 42, 495–

506. 

Derbridge, J.J., Krausman, P.R. & Darimont, C.T. (2012) Using Bayesian 

stable isotope mixing models to estimate wolf diet in a multi-prey 

ecosystem. Journal of Wildlife Management, 76, 1277–1289. 

Derbridge, J.J., Merkle, J.A., Bucci, M.E., Callahan, P., Koprowski, J.L., 

Polfus, J.L. & Krausman, P.R. (2015) Experimentally derived δ13C and 

δ15N discrimination factors for gray wolves and the impact of prior 

information in Bayesian mixing models. PLoS one, 10, e0119940. 

Dickman, A.J. (2010) Complexities of conflict: the importance of considering 

social factors for effectively resolving human-wildlife conflict. Animal 

Conservation, 13, 458–466. 

Dickman, A., Johnson, P.J., Van Kesteren, F. & MacDonald, D.W. (2015) The 

moral basis for conservation: How is it affected by culture? Frontiers in 

Ecology and the Environment, 13, 325–331. 

Dickman, A.J., Macdonald, E.A. & Macdonald, D.W. (2011) A review of 

financial instruments to pay for predator conservation and encourage 

human-carnivore coexistence. Proceedings of the National Academy of 

Sciences of the United States of America, 108, 13937–13944. 

Dickman, A., Marchini, S. & Manfredo, M. (2013) The human dimension in 

addressing conflict with large carnivores. Key Topics in Conservation 



205	
	
 

Biology 2 (eds D.W. Macdonald & K.J. Willis), pp. 110–126. John Wiley & 

Sons, Ltd. 

Dickman, C.R. & Newsome, T.M. (2015) Individual hunting behaviour and 

prey specialisation in the house cat Felis catus: implications for 

conservation and management. Applied Animal Behaviour Science, 173, 

76–87. 

Dietrich, D.R., Schmid, P., Zweifel, U., Schlatter, C., Jenni-Eiermann, S., 

Bachmann, H., Bühler, Zbinden, N. (1995)  Mortality of Birds of Prey 

Following Field Application of Granular Carbofuran: A Case Study. 

Archives of Environmental Contamination and Toxicology, 29, 140 - 145 

Ditmer, M.A., Garshelis, D.L., Noyce, K. V., Haveles, A.W. & Fieberg, J.R. 

(2016) Are American black bears in an agricultural landscape being 

sustained by crops? Journal of Mammalogy, 97, 54–67. 

Doherty, T.S. & Ritchie, E.G. (2016) Stop jumping the gun: a call for evidence-

based invasive predator managment. Conservation Letters, 10, 15–22. 

Dolton, C. & Brooke, M. de L. (1999) Changes in the biomass of birds 

breeding in Great Britain, 1968–88. Bird Study, 46, 274–278. 

Don Carlos, A.W., Bright, A.D., Teel, T.L. & Vaske, J.J. (2009) Human–black 

bear conflict in urban areas: an integrated approach to management 

response. Human Dimensions of Wildlife, 14, 174–184. 

Dorresteijn, I., Milcu, A.I., Leventon, J., Hanspach, J. & Fischer, J. (2016) 

Social factors mediating human–carnivore coexistence: Understanding 

thematic strands influencing coexistence in Central Romania. Ambio, 45, 

490–500. 

Doucette, J.L., Wissel, B. & Somers, C.M. (2011) Cormorant-fisheries 

conflicts: Stable isotopes reveal a consistent niche for avian piscivores in 

diverse food webs. Ecological Applications, 21, 2987–3001. 

Draycott, R.A.H., Hoodless, A.N. & Sage, R.B. (2007) Effects of pheasant 

management on vegetation and birds in lowland woodlands. Journal of 

Applied Ecology, 45, 334–341. 

Dubois, S. & Harshaw, H.W. (2013) Exploring ‘humane’ dimensions of wildlife. 

Human Dimensions of Wildlife, 18, 1–19. 



206	
	
 

Eden, S. & Bear, C. (2011) Models of equilibrium, natural agency and 

environmental change: Lay ecologies in UK recreational angling. 

Transactions of the Institute of British Geographers, 36, 393–407. 

Elbroch, L.M. & Wittmer, H.U. (2013) The effects of puma prey selection and 

specialization on less abundant prey in Patagonia. Journal of 

Mammalogy, 94, 259–268. 

Elliott, G.D. & Avery, M.I. (1991) A review of reports of Buzzard persecution 

1975–1989. Bird Study, 38, 52–56. 

Elston, D.A., Spezia, L., Baines, D. & Redpath, S. (2014) Working with 

stakeholders to reduce conflict- modelling the impact of varying hen 

harrier Circus cyaneus densities on red grouse Lagopus lagopus 

populations. Journal of Applied Ecology, 51, 1236–1245. 

Epstein, S. (1994) Integration of the cognitive and the psychdynamic 

unconscious. American Psychologist, 49, 709–724. 

Eriksson, M., Sandström, C. & Ericsson, G. (2015) Direct experience and 

attitude change towards bears and wolves. Wildlife Biology, 21, 131–137. 

Von Essen, E., Hansen, H.P., Nordström Källström, H., Peterson, M.N. & 

Peterson, T.R. (2014) Deconstructing the poaching phenomenon. British 

Journal of Criminology, 54, 632–651. 

Estes, J.A., Riedman, M.L., Staedler, M.M., Tinker, M.T. & Lyon, B.E. (2003) 

Individual variation in prey selection by sea otters: patterns, causes and 

implications. Journal of Animal Ecology, 72, 144–155. 

Estes, J.A., Terborgh, J., Brashares, J.S., Power, M.E., Berger, J., Bond, 

W.J., Carpenter, S.R., Essington, T.E., Holt, R.D., Jackson, J.B., 

Marquis, R.J., Oksanen, L., Oksanen, T., Paine, R.T., Pikitch, E.K., 

Ripple, W.J., Sandin, S.A., Scheffer, M., Schoener, T.W., Shurin, J.B., 

Sinclair, A.R., Soulé, M.E., Virtanen, R. & Wardle, D.A. (2011) Trophic 

downgrading of planet Earth. Science, 333, 301–306. 

Etheridge, B., Summers, R.W. & Green, R.E. (1997) The effects of illegal 

killing and destruction of nests by humans on the population dynamics of 

the Hen Harrier Circus cyaneus in Scotland. Journal of Applied Ecology, 

34, 1081–1105. 



207	
	
 

European Commission Technical Report. (2015) Defining, Preventing, and 

Reacting to Problem Bear Behaviour in Europe. Brussels, Belgium. 

Ferguson-Lees, J. & Christie, A. (2001) Raptors of the World. Houghton Mifflin 

Harcourt. 

Fernandez-de-Simon, J., Díaz-Ruiz, F., Cirilli, F., Tortosa, F.S., Villafuerte, R., 

Delibes-Mateos, M. & Ferreras, P. (2011) Towards a standardized index 

of European rabbit abundance in Iberian Mediterranean habitats. 

European Journal of Wildlife Research, 57, 1091–1100. 

Fernando, P., Leimgruber, P., Prasad, T. & Pastorini, J. (2012) Problem-

elephant translocation: translocating the problem and the elephant? PloS 

one, 7, e50917. 

Festa-Bianchet, M., Coulson, T., Gaillard, J.-M., Hogg, J.T. & Pelletier, F. 

(2006) Stochastic predation events and population persistence in bighorn 

sheep. Proceedings of The Royal Society B: Biological Sciences, 273, 

1537–43. 

Flemming, S.A. & van Heezik, Y. (2014) Stable isotope analysis as a tool to 

monitor dietary trends in little penguins Eudyptula minor. Austral Ecology, 

39, 656–667. 

Fletcher, K., Aebischer, N.J., Baines, D., Foster, R. & Hoodless, A.N. (2010) 

Changes in breeding success and abundance of ground-nesting 

moorland birds in relation to the experimental deployment of legal 

predator control. Journal of Applied Ecology, 47, 263–272. 

Fontúrbel, F.E. & Simonetti, J.A. (2011) Translocations and human-carnivore 

conflicts: problem solving or problem creating? Wildlife Biology, 17, 217–

224. 

Found, R.B. & St. Clair, C.C. (2016) Behavioural syndromes predict loss of 

migration in wild elk. Animal Behaviour, 115, 35–46. 

Francksen, R.M. (2016) Exploring the Impact of Common Buzzard Buteo 

Buteo Predation on Red Grouse  Lagopus Lagopus Scotica. Newcastle 

University. 

Francksen, R.M., Whittingham, M.J. & Baines, D. (2016) Assessing prey 

provisioned to Common Buzzard Buteo buteo chicks: a comparison of 



208	
	
 

methods. Bird Study, 63, 303–310. 

Francksen, R.M., Whittingham, M.J., Ludwig, S.C. & Baines, D. (2016) Winter 

diet of Common Buzzards Buteo buteo on a Scottish grouse moor. Bird 

Study, 63, 525–532. 

Francksen, R.M., Whittingham, M.J., Ludwig, S.C., Roos, S. & Baines, D. 

(2017) Numerical and functional responses of Common Buzzards Buteo 

buteo prey abundance on a Scottish grouse moor. Ibis, 159, 541–553. 

Franco-Trecu, V., Drago, M., Riet-Sapriza, F.G., Parnell, A., Frau, R. & 

Inchausti, P. (2013) Bias in diet determination: Incorporating traditional 

methods in Bayesian mixing models. PLoS ONE, 8, e80019. 

Frank, J., Johansson, M. & Flykt, A. (2015) Public attitude towards the 

implementation of management actions aimed at reducing human fear of 

brown bears and wolves. Wildlife Biology, 21, 122–130. 

Fukuda, Y., Manolis, C. & Appel, K. (2014) Management of human-crocodile 

conflict in the Northern Territory, Australia: Review of crocodile attacks 

and removal of problem crocodiles. The Journal of Wildlife Management, 

78, 1239–1249. 

Gabriel, P.O. & Golightly, R.T. (2014) Aversive conditioning of Steller’s Jays 

to improve marbled murrelet nest survival. Journal of Wildlife 

Management, 78, 894–903. 

Gaglio, D., Cook, T.R., Connan, M., Ryan, P.G. & Sherley, R.B. (2017) 

Dietary studies in birds: testing a non-invasive method using digital 

photography in seabirds. Methods in Ecology and Evolution, 8, 214–222. 

Galbraith, C.A., Stroud, D.A. & Thompson, D.B.A. (2003) Towards resolving 

raptor-human conflicts. Birds of Prey in a Changing Environment (eds 

D.B.A. Thompson, S.M. Redpath, A.H. Fielding, M. Marquiss, & C.A. 

Galbraith), pp. 527–536. The Stationery Office, Edinburgh. 

García-Salgado, G., Rebollo, S., Pérez-Camacho, L., Martínez-Hesterkamp, 

S., Navarro, A. & Fernández-Pereira, J.-M. (2015) Evaluation of Trail-

Cameras for Analyzing the Diet of Nesting Raptors Using the Northern 

Goshawk as a Model. Plos one, 10, e0127585. 

Gelman, A. & Rubin, D. (1992) Inference from iterative simulation using 



209	
	
 

multiple sequences. Statistical Science, 7, 457–511. 

Gibbons, D., Gates, S., Green, R.E., Fuller, R.J. & Fuller, R.M. (1995) 

Buzzards Buteo buteo and Ravens Corvus corax in the uplands of 

Britain: limits to distribution and abundance. Ibis, 137, 75–84. 

Goldman, M.J., de Pinho, J.R. & Perry, J. (2013) Beyond ritual and 

economics: Maasai lion hunting and conservation politics. Oryx, 47, 490–

500. 

Goldman, M., Roque De Pinho, J. & Perry, J. (2010) Maintaining Complex 

Relations with Large Cats: Maasai and Lions in Kenya and Tanzania. 

Human Dimensions of Wildlife, 15, 332–346. 

Goszczynski, J., Gryz, J. & Krauze, D. (2005) Fluctuations of a Common 

Buzzard Buteo Buteo population in Central Poland. Acta Ornithologica, 

40, 75–78. 

Gotmark, F. & Post, P. (1996) Prey Selection by Sparrowhawks, Accipiter 

nisus: Relative Predation Risk for Breeding Passerine Birds in Relation to 

their Size, Ecology and Behaviour. Philosophical Transactions of the 

Royal Society B: Biological Sciences, 351, 1559–1577. 

Graham, K., Beckerman, A.P. & Thirgood, S. (2005) Human-predator-prey 

conflicts: ecological correlates, prey losses and patterns of management. 

Biological Conservation, 122, 159–171. 

Graham, I.M., Harris, R.N., Matejusová, I. & Middlemas, S.J. (2011) Do 

‘rogue’ seals exist? Implications for seal conservation in the UK. Animal 

Conservation, 14, 587–598. 

Graham, I.M., Harris, R.N. & Middlemas, S.J. (2011) Seals, salmon and 

stakeholders: integrating knowledge to reduce biodiversity conflict. 

Animal Conservation, 14, 604–607. 

Graham, I.M., Redpath, S.M. & Thirgood, S.J. (1995) The diet and breeding 

density of common buzzards Buteo buteo in relation to indexes of prey 

abundance. Bird Study, 42, 165–173. 

Granadeiro, J.P., Brickle, P. & Catry, P. (2014) Do individual seabirds 

specialize in fisheries’ waste? The case of black-browed albatrosses 

foraging over the Patagonian Shelf. Animal Conservation, 17, 19–26. 



210	
	
 

Gray, L. (2012) Plans to destroy buzzard nests shelved in coalition u-turn, 

http://www.telegraph.co.uk/news/earth/wildlife/9300074/Plans-to-destroy-

buzzard-nests-shelved-in-coalition-u-turn.html 

Greggor, A.L., Berger-Tal, O., Blumstein, D.T., Angeloni, L., Bessa-Gomes, 

C., Blackwell, B.F., St Clair, C.C., Crooks, K., de Silva, S., Fernández-

Juricic, E., Goldenberg, S.Z., Mesnick, S.L., Owen, M., Price, C.J., Saltz, 

D., Schell, C.J., Suarez, A. V., Swaisgood, R.R., Winchell, C.S. & 

Sutherland, W.J. (2016) Research Priorities from Animal Behaviour for 

Maximising Conservation Progress. Trends in Ecology & Evolution, 31, 

953–964. 

GWCT. (2011) Gamekeepers and Wildlife: The Full Report. Fordingbridge, 

Hampshire. 

Haddad, N.M., Brudvig, L.A., Clobert, J., Davies, K.F., Gonzalez, A., Holt, 

R.D., Lovejoy, T.E., Sexton, J.O., Austin, M.P., Collins, C.D., Cook, W.M., 

Damschen, E.I., Ewers, R.M., Foster, B.L., Jenkins, C.N., King, A.J., 

Laurance, W.F., Levey, D.J., Margules, C.R., Melbourne, B.A., Nicholls, 

A.O., Orrock, J.L., Song, D.-X. & Townshend, J.R. (2015) Habitat 

fragmentation and its lasting impact on Earth’s ecosystems. Science 

Advances, 1, e1500052–e1500052. 

Hall, C.S. & Kress, S.W. (2008) Diet of nestling black-crowned night-herons in 

a mixed species colony: implications for tern conservation. The Wilson 

Journal of Ornithology, 120, 637–640. 

Hardey, J., Crick, H., Wernham, C., Riley, H., Etheridge, B. & Thompson, D. 

(2013) Raptors: A Field Guide for Surveys and Monitoring, Third. The 

Stationery Office, Edinburgh. 

Harper, M. (2012) Why Defra is wrong about buzzards and why I am angry, 

http://www.rspb.org.uk/community/ourwork/b/martinharper/archive/2012/0

5/24/buzzardgate-why-defra-is-wrong-and-why-i-am-

angry.aspx?pi353792403=2 

Harradine, J., Reynolds, N. & Laws, T. (1997) Raptors and Gamebirds: A 

Survey of Game Managers Affected by Raptors. Wrexham, UK. 

Harris, S. & Yalden, D. (2008) Mammals of the British Isles: Handbook, 4th 



211	
	
 

ed. The Mammal Society, Southampton. 

Hayhow, D., Bond, A., Douse, A., Eaton, M., Frost, T., Grice, P., Hall, C., 

Harris, S., Havery, S., Hearn, R., Noble, D., Oppel, S., Williams, J., Win, 

I. & Wotton, S. (2016) The State of the UK’s Birds 2016. The RSPB, 

BTO, WWT, DAERA, JNCC, NE, NRW and SNH, Sandy, Bedfordshire, 

UK. 

Hazzah, L., Dolrenry, S., Naughton, L., Edwards, C.T.T., Mwebi, O., Kearney, 

F. & Frank, L. (2014) Efficacy of two lion conservation programs in 

Maasailand, Kenya. Conservation Biology, 28, 851–860. 

Healy, K., Kelly, S.B.A., Guillerme, T., Inger, R., Bearhop, S. & Jackson, A.L. 

(2016) Predicting trophic discrimination factor using Bayesian inference 

and phylogenetic, ecological and physiological data. DEsIR: 

Discrimination Estimation in R. PeerJ. 

Hiller, T.L., Mcfadden-Hiller, J.E., Jenkins, S.R., Belant, J.L. & Tyre, A.J. 

(2015) Demography, prey abundance, and management affect number of 

cougar mortalities associated with livestock conflicts. The Journal of 

Wildlife Management, 79, 978–998. 

Hoare, R.E. (2001) Management implications of new research into problem 

elephants. Pachyderm, 30, 42–48. 

Hobson, K.A. & Clark, R.G. (1992) Assessing avian diets using stable 

isotopes I: turnover of 13C in tissues. Condor, 94, 181–188. 

Hobson, K.A. & Clark, R.G. (1993) Turnover of 13C in cellular and plasma 

fractions of blood: implications for nondestructive sampling in avian 

dietary studies. The Auk, 110, 638–641. 

Hobson, K.A., Schell, D.M., Renouf, D. & Noseworthy, E. (1996) Stable 

carbon and nitrogen isotopic fractionation between diet and tissues of 

captive seals: implications for dietary reconstructions involving marine 

mammals. Canadian Journal of Fisheries and Aquatic Sciences, 53, 528–

533. 

Hopkins, J.B., Koch, P.L., Schwartz, C.C., Ferguson, J.M., Greenleaf, S.S. & 

Kalinowski, S.T. (2012) Stable isotopes to detect food-conditioned bears 

and to evaluate human-bear management. The Journal of Wildlife 



212	
	
 

Management, 76, 703–713. 

Hoy, S.R., Petty, S.J., Millon, A., Whitfield, D.P., Marquiss, M., Davison, M. & 

Lambin, X. (2015) Age and sex-selective predation moderate the overall 

impact of predators. Journal of Animal Ecology, 84, 692–701. 

Hudson, P.J., Dobson, A.P. & Newborn, D. (1992) Do Parasites make Prey 

Vulnerable to Predation? Red Grouse and Parasites. Journal of Animal 

Ecology, 61, 681–692. 

Inger, R. & Bearhop, S. (2008) Applications of stable isotope analyses to 

avian ecology. Ibis, 150, 447–461. 

Inger, R., Ruxton, G.D., Newton, J., Colhoun, K., Mackie, K., Robinson, J.A. & 

Bearhop, S. (2006) Using daily ration models and stable isotope analysis 

to predict biomass depletion by herbivores. Journal of Applied Ecology, 

43, 1022–1030. 

Inglehart, R. (1977) The Silent Revolution: Changing Values and Political 

Styles among Western Publics. Princeton University Press, New Jersey. 

Inglehart, R. & Welzel, C. (2005) Modernization, Cultural Change and 

Democracy: The Human Development Sequence. Cambridge University 

Press\, New York. 

Inskip, C., Fahad, Z., Tully, R., Roberts, T. & MacMillan, D. (2014) 

Understanding carnivore killing behaviour: Exploring the motivations for 

tiger killing in the Sundarbans, Bangladesh. Biological Conservation, 180, 

42–50. 

Ives, C.D. & Fischer, J. (2017) The self-sabotage of conservation: reply to 

Manfredo et al. Conservation Biology, in press. 

Jacobs, M.H. (2007) Wildlife Value Orientations in the Netherlands. Human 

Dimensions of Wildlife, 12, 359–365. 

Jardine, D.C. (2003) Buzzards (Buteo buteo) on Colonsay 1990-2000: 

numbers and breeding performance. Birds of Prey in a Changing 

Environment (eds D.B.A. Thompson, S.M. Redpath, A.H. Fielding, M. 

Marquiss, & C.A. Galbraith), pp. 179–182. The Stationery Office, 

Edinburgh. 

Jardine, C.B., Bond, A.L., Davidson, P.J.A., Butler, R.W. & Kuwae, T. (2015) 



213	
	
 

Biofilm consumption and variable diet composition of Western 

Sandpipers (Calidris mauri) during migratory stopover. PLoS one, 10. 

Johnson, C.N. & Wallach, A.D. (2016) The virtuous circle: predator-friendly 

farming and ecological restoration in Australia. Restoration Ecology, 24, 

821–826. 

Jones, K.E., Bielby, J., Cardillo, M., Fritz, S.A., O’Dell, J., Orme, C.D.L., Safi, 

K., Sechrest, W., Boakes, E.H., Carbone, C., Connolly, C., Cutts, M.J., 

Foster, J.K., Grenyer, R., Habib, M., Plaster, C.A., Price, S., Rigby, E.A., 

Rist, J., Teacher, A., Bininda-Emonds, O.R.P., Gittleman, J.L., Mace, G. 

& Purvis, A. (2009) PanTHERIA: a species-level database of life history, 

ecology , and geography of extant and recently extinct mammals. 

Ecology, 90, 26–48. 

Kailath, T. (1967) The Divergence and Bhatacharyya Distance Measures in 

Signal Selection. IEEE Transactions on Comm. Technology, 15, 52–60. 

Karanth, K.U., Kumar, S.N. & Vasudev, D. (2014) Photographic database 

informs management of conflict tigers. Oryx, 48, 481–485. 

Karlsson, J. & Johansson, Ö. (2010) Predictability of repeated carnivore 

attacks on livestock favours reactive use of mitigation measures. Journal 

of Applied Ecology, 47, 166–171. 

Kauhala, K., Kurkilahti, M., Ahola, M.P., Herrero, A., Karlsson, O., 

Kunnasranta, M., Tiilikainen, R. & Vetemaa, M. (2015) Age, sex and body 

condition of Baltic grey seals: are problem seals a random sample of the 

population? Annales Zoologici Fennici, 52, 103–114. 

Kenward, R. (2002) Management Tools for Reconciling Bird Hunting and 

Biodiversity. European Concerted Action within the 5th Framework 

Program: Reconciling Gamebird Hunting and Biodiversity (REGHAB). 

Kenward, R.E., Hall, D.G., Walls, S.S. & Hodder, K.H. (2001) Factors 

affecting predation by buzzards Buteo buteo on released pheasants 

Phasianus colchicus. Journal of Applied Ecology, 38, 813–822. 

Kenward, R., Katzner, T., Wink, M., Marcström, V., Walls, S., Karlbom, M., 

Pfeffer, R., Bragin, E., Hodder, K. & Levin, A. (2007) Rapid sustainability 

modeling for raptors by radiotagging and DNA-fingerprinting. Journal of 



214	
	
 

Wildlife Management, 71, 238–245. 

Kenward, R.E., Walls, S.S., Hodder, K.H., Pahkala, M., Freeman, S.N. & 

Simpson, V.R. (2000) The prevalence of non-breeders in raptor 

populations: evidence from rings, radio-tags and transect surveys. Oikos, 

91, 271–279. 

Kirby, R., Alldredge, M.W. & Pauli, J.N. (2016) The diet of black bears tracks 

the human footprint across a rapidly developing landscape. Biological 

Conservation, 200, 51–59. 

Königson, S., Fjälling, A., Berglind, M. & Lunneryd, S.-G. (2013) Male gray 

seals specialize in raiding salmon traps. Fisheries Research, 148, 117–

123. 

Kruuk, H. (1978) Foraging and spatial organisation of the European badger, 

Meles meles L. Behavioral Ecology and Sociobiology, 4, 75–89. 

Kubasiewicz, L.M., Bunnefeld, N., Tulloch, A.I.T., Quine, C.P. & Park, K.J. 

(2016) Diversionary feeding: an effective management strategy for 

conservation conflict? Biodiversity and Conservation, 25, 1–22. 

Kurle, C.M., Finkelstein, M.E., Smith, K.R., George, D., Ciani, D., Koch, P.L. & 

Smith, D.R. (2013) Discrimination Factors for Stable Isotopes of Carbon 

and Nitrogen in Blood and Feathers from Chicks and Juveniles of the 

California Condor. The Condor, 115, 492–500. 

Lambin, X., Petty, S. & Mackinnon, J. (2000) Cyclic dynamics in field vole 

populations and generalist predation. Journal of Animal Ecology, 69, 

106–118. 

Latour, B. (1993) We Have Never Been Modern. Harvard University Press, 

Cambridge. 

Lavoie, R.A., Rail, J.-F. & Lean, D.R.S. (2012) Diet Composition of Seabirds 

from Corossol Island, Canada, Using Direct Dietary and Stable Isotope 

Analyses. Waterbirds, 35, 402–419. 

Leclerc, M., Zedrosser, A. & Pelletier, F. (2017) Harvesting as a potential 

selective pressure on behavioural traits. Journal of Applied Ecology, in 

press. 

Lees, A.C., Newton, I. & Balmford, A. (2013) Pheasants, buzzards, and 



215	
	
 

trophic cascades. Conservation Letters, 6, 141–144. 

Lenth, R. V. (2016) Least-Squares Means: The R Package lsmeans. Journal 

of Statistical Software, 69, 1–33. 

Leopold, A. (1949) A Sand County Almanac: And Sketches Here and There. 

Oxford University Press. 

Lescureux, N. & Linnell, J.D.C. (2010) Knowledge and perceptions of 

Macedonian hunters and herders: The influence of species specific 

ecology of bears, wolves, and lynx. Human Ecology, 38, 389–399. 

Lewis, S.B., Fuller, M.R. & Titus, K. (2004) A comparison of 3 methods for 

assessing raptor diet during the breeding season. Wildlife Society 

Bulletin, 32, 373–385. 

Li, L.-X., Yi, X.-F., Li, M.-C. & Zhang, X.-A. (2001) Analysis of Diets of Upland 

Buzzards Using Stable Carbon and Nitrogen Isotopes. Israel Journal of 

Zoology, 50, 75–85. 

Liberg, O., Chapron, G., Wabakken, P., Pedersen, H.C., Hobbs, N.T. & Sand, 

H. (2012) Shoot, shovel and shut up: cryptic poaching slows restoration 

of a large carnivore in Europe. Proceedings of the Royal Society B: 

Biological Sciences, 279, 910–915. 

Linnell, J.D.C. (2011) Can we separate the sinners from the scapegoats? 

Animal Conservation, 14, 602–603. 

Linnell, J.D.C., Odden, J. & Mertens, A. (2012) Mitigation methods for 

conflicts associated with carnivore depredation on livestock. Carnivore 

Ecology and Conservation: A Handbook of Techniques (eds L. Boitani & 

R.A. Powell), pp. 314–332. Oxford University Press. 

Linnell, J.D.C., Odden, J., Smith, M.E., Aanes, R. & Swenson, J.E. (1999) 

Large carnivores that kill livestock: do ‘problem individuals’ really exist? 

Wildlife Society Bulletin, 27, 698–705. 

Loudon, J.E., Grobler, J.P., Sponheimer, M., Moyer, K., Lorenz, J.G. & 

Turner, T.R. (2014) Using the stable carbon and nitrogen isotope 

compositions of vervet monkeys (Chlorocebus pygerythrus) to examine 

questions in ethnoprimatology. PLoS ONE, 9, e100758. 

Lovegrove, R. (2008) Silent Fields: The Long Decline of a Nations Wildlife. 



216	
	
 

Oxford University Press, Oxford, UK. 

Loveridge, Reynolds, J.C. & Milner-Gulland, E.J. (2006) Does sport hunting 

benefit conservation? Key Topics in Conservation Biology, pp. 224–240. 

Wiley-Blackwell. 

Madden, F. & McQuinn, B. (2014) Conservation’s blind spot: The case for 

conflict transformation in wildlife conservation. Biological Conservation, 

178, 97–106. 

Madden, J.R. & Perkins, S.E. (2017) Why did the pheasant cross the road? 

Long-term road mortality patterns in relation to management changes. 

Royal Society Open Science, 4, 170617. 

Madden, J.R. & Whiteside, M.A. (2014) Selection on behavioural traits during 

‘unselective’ harvesting means that shy pheasants better survive a 

hunting season. Animal Behaviour, 87, 129–135. 

Maderspacher, F. (2007) Europe’s struggling mammals. Current Biology, 17, 

489–490. 

Majić, A., de Bodonia, A.M.T., Huber, D. & Bunnefeld, N. (2011) Dynamics of 

public attitudes toward bears and the role of bear hunting in Croatia. 

Biological Conservation, 144, 3018–3027. 

Manfredo, M.J., Bruskotter, J.T., Teel, T.L., Fulton, D., Schwartz, S.H., 

Arlinghaus, R., Oishi, S., Uskul, A.K., Redford, K., Kitayama, S. & 

Sullivan, L. (2017) Why social values cannot be changed for the sake of 

conservation. Conservation Biology, 31, 772–780. 

Manfredo, M.J. & Dayer, A.A. (2004) Concepts for Exploring the Social 

Aspects of Human–Wildlife Conflict in a Global Context. Human 

Dimensions of Wildlife, 9, 1–20. 

Manfredo, M.J., Teel, T.L. & Dietsch, A.M. (2016) Implications of human value 

shift and persistence for biodiversity conservation. Conservation Biology, 

30, 287–296. 

Manfredo, M.J., Teel, T.L. & Henry, K.L. (2009) Linking society and 

environment: A multilevel model of shifting wildlife value orientation in the 

western United States. Social Science Quartely, 90, 407–427. 

Manosa, S. & Cordero, P.J. (1992) Seasonal and sexual variation in the diet 



217	
	
 

of the common buzzard in northeastern spain. The Journal of Raptor 

Research, 26, 235–238. 

Marchini, S. (2014) Who’s in conflict with whom? Human dimensions of the 

conflicts involving wildlife. Applied Ecology and Human Dimensions in 

Biological Conservation (eds L.M. Verdade, M.C. Lyra-Jorge, & C.I. 

Piña), pp. 189–209. Springer Berlin Heidelberg, Berlin, Heidelberg. 

Marchini, S. & Macdonald, D.W. (2012) Predicting ranchers’ intention to kill 

jaguars: Case studies in Amazonia and Pantanal. Biological 

Conservation, 147, 213–221. 

Martin, J. (2011) The Transformation of Lowland Game Shooting in England 

and Wales since the Second WorldWar: The Supply Side Revolution. 

Rural History, 22, 207–226. 

Martínez-Espiñeira, R. (2006) Public attitudes toward lethal coyote control. 

Human Dimensions of Wildlife, 11, 89–100. 

Martínez Del Rio, C., Wolf, N., Carleton, S.A. & Gannes, L.Z. (2009) Isotopic 

ecology ten years after a call for more laboratory experiments. Biological 

Reviews, 84, 91–111. 

Massei, G., Quy, R.J., Gurney, J. & Cowan, D.P. (2010) Can translocations 

be used to mitigate human–wildlife conflicts? Wildlife Research, 37, 428–

439. 

Mattisson, J., Odden, J., Nilsen, E.B., Linnell, J.D.C., Persson, J. & Andrén, 

H. (2011) Factors affecting Eurasian lynx kill rates on semi-domestic 

reindeer in northern Scandinavia: Can ecological research contribute to 

the development of a fair compensation system? Biological Conservation, 

144, 3009–3017. 

Maye, D., Enticott, G., Naylor, R., Ilbery, B. & Kirwan, J. (2014) Animal 

disease and narratives of nature: Farmers’ reactions to the neoliberal 

governance of bovine Tuberculosis. Journal of Rural Studies, 36, 401–

410. 

Mazur, K.E. & Asah, S.T. (2013) Clarifying standpoints in the gray wolf 

recovery conflict: Procuring management and policy forethought. 

Biological Conservation, 167, 79–89. 



218	
	
 

Mazur, R.L., Bentzen, T., Shideler, R. & O’Hara, T. (2010) Does Aversive 

Conditioning Reduce Human–Black Bear Conflict? Journal of Wildlife 

Management, 74, 48–54. 

McDonald, R.A. & Harris, S. (1999) The use of trapping records to monitor 

populations of stoats Mustela erminea and weasels M. nivalis: The 

importance of trapping effort. Journal of Applied Ecology, 36, 679–688. 

McDonald, R.A., Harris, S., Turnbull, G., Brown, P. & Fletcher, M. (1998) 

Anticoagulant rodenticides in stoats (Mustela erminea) and weasels 

(Mustela nivalis) in England. Environmental Pollution, 103, 17–23. 

McKinnon, L., Berteaux, D., Gauthier, G. & Bêty, J. (2013) Predator-mediated 

interactions between preferred, alternative and incidental prey in the 

arctic tundra. Oikos, 122, 1042–1048. 

McMorn v. Natural England. (2015) Approved Judgment. Case No: 

CO/4133/2014. 

Messmer, T.A. (2000) The emergence of human-wildlife conflict management: 

turning challenges into opportunities. International Biodeterioration & 

Biodegradation, 45, 97–102. 

Milner-Gulland, E.. & Shea, K. (2017) Embracing uncertainty in applied 

ecology. Journal of Applied Ecology, in press. 

Milner, J.M., Nilsen, E.B. & Andreassen, H.P. (2007) Demographic side 

effects of selective hunting in ungulates and carnivores. Conservation 

Biology, 21, 36–47. 

Milner, J.M. & Redpath, S.M. (2013) Building an Evidence Base for Managing 

Species Conflict in Scotland. Scottish Natural Heritage 

Commissioned Report No. 611 

Minnie, L., Gaylard, A. & Kerley, G.I.H. (2015) Compensatory life-history 

responses of a mesopredator may undermine carnivore management 

efforts. Journal of Applied Ecology, 379–387. 

Mitchell, B., Jaeger, M. & Barrett, R. (2004) Coyote depredation management: 

current methods and research needs. Wildlife Society Bulletin, 32, 1209–

1218. 

Modlmeier, A.P., Keiser, C.N., Watters, J. V., Sih, A. & Pruitt, J.N. (2014) The 



219	
	
 

keystone individual concept: An ecological and evolutionary overview. 

Animal Behaviour, 89, 53–62. 

Monbiot, G. (2012) Stop this mad move to capture buzzards and destroy their 

nests, 

https://www.theguardian.com/environment/georgemonbiot/2012/may/24/b

uzzards-pheasant-shoots-wildlife 

Montag, J.M., Patterson, M.E. & Freimund, W.A. (2005) The Wolf Viewing 

Experience in the Lamar Valley of Yellowstone National Park. Human 

Dimensions of Wildlife, 10, 273–284. 

Moore, G.E. (1903) Principia Ethica. Cambridge University Press, Cambridge, 

UK. 

Moore, N.W. (1957) The past and present status of the Buzzard in the British 

Isles. Bird Study, 173–197. 

Moore, J.W. & Semmens, B.X. (2008) Incorporating uncertainty and prior 

information into stable isotope mixing models. Ecology Letters, 11, 470–

480. 

Morehouse, A.T., Graves, T.A., Mikle, N. & Boyce, M.S. (2016) Nature vs. 

Nurture: evidence for social learning of conflict behaviour in grizzly bears. 

Plos One, 11, e0165425. 

Moseby, K.E., Peacock, D.E. & Read, J.L. (2015) Catastrophic cat predation: 

A call for predator profiling in wildlife protection programs. Biological 

Conservation, 191, 331–340. 

Munchhausen, H.F. V & Herrmann, M.J.K. (2007) Public Perception of Large 

Carnivores: A German Survey before and after ‘Bruno’ (eds R.G. Potts & 

K. Hecker). International Council for Game and Wildlife Conservation, 

Belgrade, Serbia. 

Munsche, P.B. (1981) The Gamekeeper in English Rural Society, 1660 - 

1830. Journal of Bristish Studies, 20, 82–105. 

Musgrove, A., Aebischer, N.J., Eaton, M., Hearn, R., Newson, S., Noble, D., 

Parsons, M., Risely, K. & Stroud, D. (2013) Population estimates of birds 

in Great Britain and the United Kingdom. British Birds, 106, 64–100. 

Mutinda, M., Chenge, G., Gakuya, F., Otiende, M., Omondi, P., Kasiki, S., 



220	
	
 

Soriguer, R.C. & Alasaad, S. (2014) Detusking fence-breaker elephants 

as an approach in human-elephant conflict mitigation. PloS one, 9, 

e91749. 

Mysterud, A. (2011) Selective harvesting of large mammals: how often does it 

result in directional selection? Journal of Applied Ecology, 48, 827–834. 

Naiman, R.J., Bilby, R.E., Schindler, D.E. & Helfield, J.M. (2002) Pacific 

Salmon, Nutrients, and the Dynamics of Freshwater and Riparian 

Ecosystems. Ecosystems, 5, 399–417. 

Nakagawa, S. & Schielzeth, H. (2013) A general and simple method for 

obtaining R2 from generalized linear mixed-effects models. Methods in 

Ecology and Evolution, 4, 133–142. 

Natural England. (2016a) Licence for buzzard control, 

https://www.gov.uk/government/news/licence-for-buzzard-control 

Natural England. (2016b) Licence Decision: 2016-24189-SPM-WLM. Bristol. 

Natural England. (2016c) Summary of Licensing Decision: 2016-24189-SPM-

WML. Bristol. 

Natural England. (2016d) Technical Assessment of Application: 2016-25141-

SPM-WLM. 

Natural England. (2016e) Technical Assessment of Application: 2016-25354-

SPM-WLM. 

Naughton-Treves, L. & Treves, A. (2005) Socio-ecological factors shaping 

local support for wildlife: crop-raiding by elephants and other wildlife in 

Africa. People and Wildlife: Conflict or Coexistence? (eds R. Woodroffe, 

S.J. Thirgood, & A. Rabinowitz), pp. 252–277. Cambridge University 

Press, Cambridge. 

Neff, C. & Hueter, R. (2013) Science, policy, and the public discourse of shark 

‘attack’: A proposal for reclassifying human-shark interactions. Journal of 

Environmental Studies and Sciences, 3, 65–73. 

Nelson, F. (2009) Developing payments for ecosystem services approaches 

to carnivore conservation. Human Dimensions of Wildlife, 14, 381–392. 

Newsome, S.D., Collins, P.W. & Sharpe, P. (2015) Foraging ecology of a 

reintroduced population of breeding Bald Eagles on the Channel Islands, 



221	
	
 

California, USA, inferred from prey remains and stable isotope analysis. 

The Condor, 117, 396–413. 

Newton, I. (1979) Population Ecology of Raptors. Poyser, Berkhamstead, UK. 

Newton, I., Davis, P.E. & Davis, J.E. (1982) Ravens and buzzards in relation 

to sheep-farming and forestry in Wales. Journal of Applied Ecology, 19, 

681–706. 

NGO. (2011) Buzzard Licensing in England: Observations and Suggestions 

from the National Gamekeepers’ Organisation Following Recent 

Rejections by Natural England of Several Applications for Buzzard 

Licences to Protect Gamebirds. Darlington, United Kingdom. 

Nogués-Bravo, D., Simberloff, D., Rahbek, C. & Sanders, N.J. (2016) 

Rewilding is the new Pandora’s box in conservation. Current Biology, 26, 

87–91. 

Nuno, A. & St John, F.A. V. (2014) How to ask sensitive questions in 

conservation: A review of specialized questioning techniques. Biological 

Conservation, 189, 5–15. 

Nurse, A. (2011) Policing wildlife: perspectives on criminality in wildlife crime. 

Papers from the British Criminology Conference, 11, 38–53. 

O’Rourke, E. (2014) The reintroduction of the white-tailed sea eagle to 

Ireland: people and wildlife. Land Use Policy, 38, 129–137. 

Oldfield, T.E.E., Smith, R.J., Harrop, S.R. & Leader-Williams, N. (2003) Field 

sports and conservation in the United Kingdom. Nature, 423, 531–533. 

Olson, E.R., Stenglein, J.L., Shelley, V., Rissman, A.R., Browne-Nuñez, C., 

Voyles, Z., Wydeven, A.P. & Van Deelen, T. (2015) Pendulum swings in 

wolf management led to conflict, illegal kills, and a legislated wolf hunt. 

Conservation Letters, 8, 351–360. 

Ordiz, A., Bischof, R. & Swenson, J.E. (2013) Saving large carnivores, but 

losing the apex predator? Biological Conservation, 168, 128–133. 

Orr, A.J., VanBlaricom, G.R., DeLong, R.L., Cruz-Escalona, V.H. & Newsome, 

S.D. (2011) Intraspecific comparison of diet of California sea lions 

(Zalophus californianus) assessed using fecal and stable isotope 

analyses. Canadian Journal of Zoology, 89, 109–122. 



222	
	
 

Packer, J. & Birks, J.D.S. (1999) An assessment of British farmers’ and 

gamekeepers’ experiences, attitudes and practices in relation to the 

European Polecat Mustela putorius. Mammal Review, 29, 75–92. 

Parish, D.M.B. & Sotherton, N.W. (2007) The fate of released captive-reared 

grey partridges Perdix perdix: implications for reintroduction programmes. 

Wildlife Biology, 13, 140–149. 

Park, K.J., Graham, K., Calladine, J. & Wernham, C.W. (2008) Impacts of 

birds of prey on gamebirds in the UK: a review. Ibis, 150, 9–26. 

Parnell, A.C. & Inger, R. (2016) simmr: A stable isotope mixing model. R 

package version 0.3. 

Parnell, A.C., Inger, R., Bearhop, S. & Jackson, A.L. (2010) Source 

Partitioning Using Stable Isotopes: Coping with Too Much Variation. 

PLoS one, 5, e9672. 

Parnell, A.C., Phillips, D.L., Bearhop, S., Semmens, B.X., Ward, E.J., Moore, 

J.W., Jackson, A.L., Grey, J., Kelly, D. & Inger, R. (2013) Bayesian stable 

isotope mixing models. Environmetrics, 24, 387–399. 

Parrott, D. (2015) Impacts and management of common buzzards Buteo 

buteo at pheasant Phasianus colchicus release pens in the UK: a review. 

European Journal of Wildlife Research, 61, 181–197. 

Patrick, S.C., Bearhop, S., Grémillet, D., Lescroël, A., Grecian, W.J., Bodey, 

T.W., Hamer, K.C., Wakefield, E., Le Nuz, M. & Votier, S.C. (2014) 

Individual differences in searching behaviour and spatial foraging 

consistency in a central place marine predator. Oikos, 123, 33–40. 

Peebles, K.A., Wielgus, R.B., Maletzke, B.T. & Swanson, M.E. (2013) Effects 

of remedial sport hunting on cougar complaints and livestock 

depredations. PloS one, 8, e79713. 

Peterson, N.M., Birckhead, J.L., Leong, K., Peterson, M.J. & Peterson, T.R. 

(2010) Rearticulating the myth of human-wildlife conflict. Conservation 

Letters, 3, 74–82. 

Peterson, B.J. & Fry, B. (1987) Stable isotopes in ecosystem studies. Annual 

Review in Ecology and Sytematics, 18, 293–320. 

Pettorelli, N., Hilborn, A., Duncan, C. & Durant, S.M. (2015) Individual 



223	
	
 

variability: the missing component to our understanding of predator–prey 

interactions. Advances in Ecological Research, 52, 19–44. 

Petty, S.J. (1999) Diet of tawny owls (Strix aluco) in relation to field vole 

(Microtus agrestis) abundance in a conifer forest in northern England. 

Journal of Zoology, 248, 451–465. 

Phillips, D.L. & Gregg, J.W. (2003) Source partitioning using stable isotopes: 

Coping with too many sources. Oecologia, 136, 261–269. 

Phillips, D.L., Inger, R., Bearhop, S., Jackson, A.L., Moore, J.W., Parnell, 

A.C., Semmens, B.X. & Ward, E.J. (2014) Best practices for use of stable 

isotope mixing models in food-web studies. Canadian Journal of Zoology, 

835, 823–835. 

Podlesak, D.W. & McWilliams, S.R. (2006) Metabolic Routing of Dietary 

Nutrients in Birds: Effects of Diet Quality and Macronutrient Composition 

Revealed Using Stable Isotopes. Physiological and Biochemical Zoology, 

79, 534–549. 

Pohja-Mykrä, M. (2016) Felony or act of justice? - Illegal killing of large 

carnivores as defiance of authorities. Journal of Rural Studies, 44, 46–54. 

Polito, M.J., Trivelpiece, W.Z., Karnovsky, N.J., Ng, E., Patterson, W.P. & 

Emslie, S.D. (2011) Integrating Stomach Content and Stable Isotope 

Analyses to Quantify the Diets of Pygoscelid Penguins. PLoS one, 6, 

e26642. 

Prytherch, R. (2013) The breeding biology of the common buzzard. British 

Birds, 106, 264–279. 

Prytherch, R. (2016) Common buzzard nests, nest trees and prey remains in 

Avon. British Birds, 109, 256–264. 

Public & Corporate Economic Consultants. (2006) The Economic and 

Environmental Impact of Sporting Shooting. Cambridge, UK. 

R Core Team. (2016) R: A language and environment for statistical 

computing. 

Ramos, R., Ramírez, F., Sanpera, C., Jover, L. & Ruiz, X. (2009) Feeding 

ecology of yellow-legged gulls Larus michahellis in the western 

Mediterranean: A comparative assessment using conventional and 



224	
	
 

isotopic methods. Marine Ecology Progress Series, 377, 289–297. 

Ramp, D. & Bekoff, M. (2015) Compassion as a practical and evolved ethic 

for conservation. BioScience, 65, 323–327. 

Rankin, D.J. & Kokko, H. (2007) Do males matter? The role of males in 

population dynamics. Oikos, 116, 335–348. 

Redpath, S.M. (1991) The Impact of Hen Harriers on Red Grouse Breeding 

Success. Journal of Applied Ecology, 28, 659–671. 

Redpath, S., Amar, A., Madders, M., Leckie, F. & Thirgood, S. (2002) Hen 

harrier foraging success in relation to land use in Scotland. Animal 

Conservation, 5, 113–118. 

Redpath, S.M., Arroyo, B., Leckie, F.M., Bacon, P., Bayfield, N., Gutiérrez, 

R.J. & Thirgood, S.J. (2004) Using decision modeling with stakeholders 

to reduce human–wildlife conflict: a raptor–grouse case study. 

Conservation Biology, 18, 350–359. 

Redpath, S.M., Bhatia, S. & Young, J. (2015) Tilting at wildlife: reconsidering 

human–wildlife conflict. Oryx, 49, 222–225. 

Redpath, S.M., Clark, R.G., Madders, M. & Thirgood, S.J. (2001) Assessing 

raptor diet: comparing pellets, prey reminas, and observational data at 

hen harrier nests. The Condor, 103, 184–188. 

Redpath, S., Linnell, J.D.C., Festa-Bianchet, M., Boitani, L., Bunnefeld, N., 

Dickman, A.J., Gutiérrez, R.J., Irvine, R.J., Johansson, M., Majić, A., 

McMahon, B.J., Pooley, S., Sandström, C., Sjölander-Lindqvist, A., 

Skogen, K., Swenson, J.E., Trouwborst, A., Young, J. & Milner-Gulland, 

E.J. (2017) Don’t forget to look down - collaborative approaches to 

predator conservation. Biological Reviews, 92, 2157–2163. 

Redpath, S.M. & Thirgood, S.J. (2003) The impact of hen harrier (Circus 

cyaneus) predation of red grouse (Lagopus lagopus scoticus) 

populations: linking models with field data. Birds of Prey in a Changing 

Environment (eds D.B.A. Thompson, S.M. Redpath, A.H. Fielding, M. 

Marquiss, & C.A. Galbraith), pp. 499–510. The Stationery Office, 

Edinburgh. 

Redpath, S.M. & Thirgood, S. (2009) Hen harriers and red grouse: moving 



225	
	
 

towards consensus? Journal of Applied Ecology, 46, 961–963. 

Redpath, S.M., Thirgood, S.J. & Leckie, F.M. (2001) Does supplementary 

feeding reduce predation of red grouse by hen harriers? Journal of 

Applied Ecology, 38, 1157–1168. 

Redpath, S.M., Young, J., Evely, A., Adams, W.M., Sutherland, W.J., 

Whitehouse, A., Amar, A., Lambert, R.A., Linnell, J.D.C., Watt, A. & 

Gutiérrez, R.J. (2013) Understanding and managing conservation 

conflicts. Trends in Ecology and Evolution, 28, 100–9. 

Reed, M.S. (2008) Stakeholder participation for environmental management: 

A literature review. Biological Conservation, 141, 2417–2431. 

Reed, M.S., Graves, A., Dandy, N., Posthumus, H., Hubacek, K., Morris, J., 

Prell, C., Quinn, C.H. & Stringer, L.C. (2009) Who’s in and why? A 

typology of stakeholder analysis methods for natural resource 

management. Journal of Environmental Management, 90, 1933–1949. 

Reif, V., Jungell, S., Korpimäki, E., Tornberg, R. & Mykrä, S. (2004) Numerical 

response of common buzzards and predation rate of main and alternative 

prey under fluctuating food conditions. , 599–607. 

Reif, V., Tornberg, R., Jungell, S. & Korpima, E. (2001) Diet variation of 

common buzzards in Finland supports the alternative prey hypothesis. 

Ecography, 24, 267–274. 

Resano-Mayor, J., Hernandez-matias, A., Real, J., Pares, F., Inger, R. & 

Bearhop, S. (2014) Comparing pellet and stable isotope analyses of 

nestling Bonelli’s Eagle Aquila fasciata diet. Ibis, 156, 176–188. 

Reynolds, J.C., Stoate, C., Brockless, M.H., Aebischer, N.J. & Tapper, S.C. 

(2010) The consequences of predator control for brown hares (Lepus 

europaeus) on UK farmland. European Journal of Wildlife Research, 56, 

541–549. 

Reynolds, J.C. & Tapper, S.C. (1996) Control of mammalian predators in 

game management and conservation. Mammal Review, 26, 127–156. 

Ripple, W.J., Estes, J.A., Beschta, R.L., Wilmers, C.C., Ritchie, E.G., 

Hebblewhite, M., Berger, J., Elmhagen, B., Letnic, M., Nelson, M.P., 

Schmitz, O.J., Smith, D.W., Wallach, A.D. & Wirsing, A.J. (2014) Status 



226	
	
 

and ecological effects of the world’s largest carnivores. Science, 343, 

1241484. 

Ritchie, E.G. & Johnson, C.N. (2009) Predator interactions, mesopredator 

release and biodiversity conservation. Ecology Letters, 12, 982–998. 

Robinson, R.A., Leech, D.I.., Massimino, D., Woodward, I., Eglington, S.M.., 

Marchant, J. H., , Sullivan, M. J. P., , Barimore, C., Dadam, D., 

Hammond, M.J., Harris, S.J., Noble, D.G., Walker, R.H. & Baillie, S.R. 

(2016) BirdTrends 2016: Trends in Numbers, Breeding Success and 

Survival for UK Breeding Birds. Research Report 691. BTO, Thetford. 

Rogers, A.S., DeStefano, S. & Ingraldi, M.F. (2005) Quantifying northern 

goshawk diets using remote cameras and observations from blinds. 

Journal of Raptor Research, 39, 303–309. 

Rooney, E. & Montgomery, W.I. (2013) Diet diversity of the Common Buzzard 

(Buteo buteo) in a vole-less environment. Bird Study, 60, 147–155. 

Rossier, S.T., Gehring, T.M., N, S.R., Rossier, M.T., Wydeven, A.P. & 

Hawley, J.E. (2012) Shock collars as site-aversive conditioning tool for 

wolves. Wildlife Society Bulletin, 36, 176–184. 

RSPB. (2012) Birdcrime 2011: Offences against Wild Bird Legislation in 2011. 

Sandy, Bedfordshire, UK. 

RSPB. (2013) Birdcrime 2012 - Offences against Wild Bird Legislation in 

2012. Sandy, Bedfordshire, UK. 

RSPB. (2014) Birdcrime 2013: Offences against Wild Bird Legislation in 2013. 

Sandy, Bedfordshire, UK. 

RSPB. (2015a) THe Illegal Killing of Birds of Prey in Scotland: 1994–2014: A 

Review. Sandy, Bedfordshire, UK. 

RSPB. (2015b) Birdcrime 2014: Offences against Wild Bird Legislation in the 

UK. Sandy, Bedfordshire, UK. 

RSPB. (2016) Birdcrime: Offences against Wild Bird Legislation in 2015. 

Sandy, Bedfordshire, UK. 

Rust, N.A., Abrams, A., Challender, D.W.S., Chapron, G., Ghoddousi, A., 

Glikman, J.A., Gowan, C.H., Hughes, C., Rastogi, A., Said, A., Sutton, A., 

Taylor, N., Thomas, S., Unnikrishnan, H., Webber, A.D., Wordingham, G. 



227	
	
 

& Hill, C.M. (2017) Quantity Does Not Always Mean Quality: The 

Importance of Qualitative Social Science in Conservation Research. 

Society & Natural Resources, 30, 1304–1310. 

Sage, R.B., Ludolf, C. & Robertson, P.A. (2005) The ground flora of ancient 

semi-natural woodlands in pheasant release pens in England. Biological 

Conservation, 122, 243–252. 

Sage, R.B., Parish, D.M.B., Woodburn, M.I.A. & Thompson, P.G.L. (2005) 

Songbirds using crops planted on farmland as cover for game birds. 

European Journal of Wildlife Research, 51, 248–253. 

Sanz-Aguilar, A., Martínez-Abraín, A., Tavecchia, G., Mínguez, E. & Oro, D. 

(2009) Evidence-based culling of a facultative predator: efficacy and 

efficiency components. Biological Conservation, 142, 424–431. 

Schakner, Z.A., Buhnerkempe, M.G., Tennis, M.J., Stansell, R.J., van der 

Leeuw, B.K., Lloyd-Smith, J.O. & Blumstein, D.T. (2016) Epidemiological 

models to control the spread of information in marine mammals. 

Proceedings of the Royal Society of London B: Biological Sciences, 283. 

Schmidt-Rothmund, D., Dennis, R. & Saurola, P. (2014) The Osprey in the 

Western Palearctic: Breeding Population Size and Trends in the Early 

21st Century. Journal of Raptor Research, 48, 375–386. 

Selås, V. (2001) Predation on reptiles and birds by the common buzzard, 

Buteo buteo, in relation to changes in its main prey, voles. Canadian 

Journal of Zoology, 79, 2086–2093. 

Selås, V., Tveiten, R. & Aanonsen, O.M. (2007) Diet of common buzzards 

(Buteo buteo) in southern Norway determined from prey remains and 

video recordings. Ornis Fennica, 84, 97–104. 

Selier, S.-A.J., Page, B.R., Vanak, A.T. & Slotow, R. (2014) Sustainability of 

elephant hunting across international borders in southern Africa: A case 

study of the greater Mapungubwe Transfrontier Conservation Area. The 

Journal of Wildlife Management, 78, 122–132. 

Sergio, F., Boto, A., Scandolara, C. & Bogliani, G. (2002) Density, nest sites, 

diet and productivity of Common Buzzards (Buteo buteo) in the Italian 

pre-Alps. Journal of Raptor Research, 36, 24–32. 



228	
	
 

Sergio, F., Newton, I., Marchesi, L. & Pedrini, P. (2006) Ecologically justified 

charisma: Preservation of top predators delivers biodiversity 

conservation. Journal of Applied Ecology, 43, 1049–1055. 

Sergio, F., Schmitz, O.J., Krebs, C.J., Holt, R.D., Heithaus, M.R., Wirsing, 

A.J., Ripple, W.J., Ritchie, E., Ainley, D., Oro, D., Jhala, Y., Hiraldo, F. & 

Korpimäki, E. (2014) Towards a cohesive, holistic view of top predation: 

A definition, synthesis and perspective. Oikos, 123, 1234–1243. 

Sharp, R. (2010) The Great Game: the interaction of field sports and 

conservation in Britain from the 1950s to 2008. Silent Summer: The State 

of Wildlife in Britain and Ireland (ed N. Maclean), p. Cambridge University 

Press, Cambridge, UK. 

Sih, A., Cote, J., Evans, M., Fogarty, S. & Pruitt, J. (2012) Ecological 

implications of behavioural syndromes. Ecology letters, 15, 278–89. 

Sim, I.M.W. (2003) Land use, common buzzards (Buteo buteo) and rabbits 

(Oryctolagus cuniculus) in the Welsh Marches. Birds of Prey in a 

Changing Environment (eds D.B.A. Thompson, S.M. Redpath, A.H. 

Fielding, M. Marquiss, & C.A. Galbraith), pp. 351–371. The Stationery 

Office, Edinburgh. 

Sim, I.M.W., Cross, A.V., Lamacraft, D.L. & Pain, D.J. (2001) Correlates of 

Common Buzzard Buteo buteo  density and breeding success in the 

West Midlands. Bird Study, 48, 317–329. 

Sim, I.M.W., Dillon, I.A., Eaton, M.A., Etheridge, B., Lindley, P., Riley, H., 

Saunders, R., Sharpe, C. & Tickner, M. (2007) Status of the Hen Harrier 

Circus cyaneus in the UK and Isle of Man in 2004, and a comparison with 

the 1988/89 and 1998 surveys. Bird Study, 54, 256–267. 

Simmons, R.E., Avery, D.M. & Avery, G. (1991) Biases in diets determined 

from pellets and remains: correction factors for a mammal and bird eating 

raptor. Journal of Raptor Research, 25, 63–67. 

Sjölander-Lindqvist, A., Johansson, M. & Sandström, C. (2015) Individual and 

collective responses to large carnivore management: the roles of trust, 

representation, knowledge spheres, communication and leadership. 

Wildlife Biology, 21, 175–185. 



229	
	
 

Skierczyński, M. (2006) Food niche overlap of three sympatric raptors 

breeding in agricultural landscape in Western Pomerania region of 

Poland. Buteo, 15, 17–22. 

Smart, J., Amar, A., Sim, I.M.W., Etheridge, B., Cameron, D., Christie, G. & 

Wilson, J.D. (2010) Illegal killing slows population recovery of a re-

introduced raptor of high conservation concern – The red kite Milvus 

milvus. Biological Conservation, 143, 1278–1286. 

Smith, J.A., Wang, Y. & Wilmers, C.C. (2015) Top carnivores increase their 

kill rates on prey as a response to human-induced fear. Proceedings of 

the Royal Society B: Biological Sciences, 282, 20142711. 

Smithers, B.L., Boal, C.W. & Andersen, D.E. (2005) Northern goshawk diet in 

Minnesota : An analysis using video recording systems. Journal of Raptor 

Research, 39, 264–273. 

Smout, S., Asseburg, C., Matthiopoulos, J., Fernández, C., Redpath, S.M., 

Thirgood, S.J. & Harwood, J. (2010) The functional response of a 

generalist predator. PloS one, 5, e10761. 

Sokos, C.K., Birtsas, P.K. & Tsachalidis, E.P. (2008) The aims of galliforms 

release and choice of techniques. Wildlife Biology, 14, 412–422. 

Sotherton, N., Tapper, S. & Smith, A. (2009) Hen harriers and red grouse: 

economic aspects of red grouse shooting and the implications for 

moorland conservation. Journal of Applied Ecology, 46, 955–960. 

St John, F.A. V, Edwards-Jones, G. & Jones, J.P.G. (2010) Conservation and 

human behaviour: Lessons from social psychology. Wildlife Research, 

37, 658–667. 

St John, F.A. V, Keane, A.M., Jones, J.P.G. & Milner-Gulland, E.J. (2014) 

Robust study design is as important on the social as it is on the 

ecological side of applied ecological research. Journal of Applied 

Ecology, 51, 1479–1485. 

St John, F.A. V, Keane, A.M. & Milner-Gulland, E.J. (2013) Effective 

conservation depends upon understanding human behaviour. Key Topics 

in Conservation Biology 2 (eds D.W. Macdonald & K. Willis), pp. 344–

361. Wiley. 



230	
	
 

Starr, C. (1969) Social Benefit versus Technological Risk. Science, 165, 

1232–1238. 

Stern, P. & Dietz, T. (1994) The Values of Basis of Environmental Concern. 

Journal of Social Issues, 50, 65–84. 

Stubing, S. 1995. Earthworms as the main food of a winter population of 

common buzzards. Avifaunistischer Sammelbericht fur den Schwalm-

Eder-Kreis, 10, 146 

Stumpel, A.H.P. (1985) Biometrical and ecological data from a Netherlands 

population of Anguis fragilis. Amphibia-Reptilia, 6, 181–194. 

Suryawanshi, K.R., Bhatnagar, Y.V., Redpath, S.M. & Mishra, C. (2013) 

People, predators and perceptions: patterns of livestock depredation by 

snow leopards and wolves. Journal of Applied Ecology, 50, 550–560. 

Sutherland, W.J., Pullin, A.S., Dolman, P.M. & Knight, T.M. (2004) The need 

for evidence-based conservation. Trends in Ecology and Evolution, 19, 

305–308. 

Swan, G. (2011) Spatial Variation in the Breeding Success of the Common 

Buzzard Buteo Buteo in Relation to Habitat Type and Diet. Imperial 

College London. 

Swan, G.J.F., Redpath, S.M., Bearhop, S. & McDonald, R.A. (2017) Ecology 

of Problem Individuals and the Efficacy of Selective Wildlife Management. 

Trends in Ecology & Evolution, 32, 518–530. 

Swann, R.L. & Etheridge, B. (1995) A comparison of breeding success and 

prey of the Common Buzzard Buteo buteo in two areas of northern 

Scotland. Bird Study, 42, 37–43. 

Tapper, S.C. (1992) Game Heritage. The Game Conservancy Trust, 

Fordingbridge, Hampshire. 

Tapper, S.C. (1999) A Question of Balance: Game Animals and Their Role in 

the British Countryside. The Game Conservancy Trust, Fordingbridge, 

Hampshire. 

Tapper, S., Potts, G.R. & Brockless, M.H. (1996) The effect of an 

experimental reduction in predation pressure on the breeding success 

and population density of grey partridges Perdix perdix. Journal of 



231	
	
 

Applied Ecology, 33, 965–978. 

Teel, T.L., Manfredo, M.J. & Stinchfield, H.M. (2007) The Need and 

Theoretical Basis for Exploring Wildlife Value Orientations Cross-

Culturally. Human Dimensions of Wildlife, 12, 297–305. 

Tharme, A.P., Green, R.E., Baines, D., Bainbridge, I.P. & O’Brien, M. (2001) 

The effect of management for red grouse shooting on the population 

density of breeding birds on heather-dominated moorland. Journal of 

Applied Ecology, 38, 439–457. 

Thirgood, S. & Redpath, S.M. (2008) Hen harriers and red grouse: science, 

politics and human-wildlife conflict. Journal of Applied Ecology, 45, 1550–

1554. 

Thirgood, S.J., Redpath, S.M., Hudson, P.J. & Donnelly, E. (1997) Estimating 

the cause and rate of mortality in red grouse Lagopus lagopus scoticus. 

Wildlife Biology, 4, 65–71. 

Thirgood, S.J., Redpath, S.M., Rothery, P. & Aebischer, N.J. (2000) Raptor 

predation and population limitation in red grouse. Journal of Animal 

Ecology, 69, 504–516. 

Thirgood, S.J., Woodroffe, R. & Rabinowitz, A. (2005) The impact of human-

wildlife conflict on human lives and livelihoods. People and Wildlife: 

Conflict or Coexistence? (eds R. Woodroffe, S. Thirgood, & A. 

Rabinowit), pp. 13–26. Cambridge University Press, Cambridge, UK. 

Thompson, P.S., Amar, A., Hoccom, D.G., Knott, J. & Wilson, J.D. (2009) 

Resolving the conflict between driven-grouse shooting and conservation 

of hen harriers. Journal of Applied Ecology, 46, 950–954. 

Thompson, P.M., Mackey, B., Barton, T.R., Duck, C. & Butler, J.R. a. (2007) 

Assessing the potential impact of salmon fisheries management on the 

conservation status of harbour seals (Phoca vitulina) in north-east 

Scotland. Animal Conservation, 10, 48–56. 

Tornberg, R. & Reif, V. (2007) Assessing the diet of birds of prey: a 

comparison of prey items found in nests and images. Ornis Fennica, 84, 

21–31. 

Treves, A. & Bruskotter, J. (2014) Tolerance for predatory wildlife. Science, 



232	
	
 

344, 476–7. 

Treves, A., Chapron, G., Lopez-Bao, J. V., Shoemaker, C., Goeckner, A.R. & 

Bruskotter, J.T. (2015) Predators and the public trust. Biological Reviews, 

92. 

Treves, A. & Karanth, K.U. (2003) Human-Carnivore Conflict and 

Perspectives on Carnivore Management Worldwide. Conservation 

Biology, 17, 1491–1499. 

Treves, A., Krofel, M. & McManus, J. (2016) Predator control should not be a 

shot in the dark. Frontiers in Ecology and the Environment, 14, 380–388. 

Treves, A. & Naughton-Treves, L. (2005) Evaluating lethal control in the 

management of human-wildlife conflict. People and Wildlife: Conflict or 

Coexistence? (eds R. Woodroffe, S. Thirgood, & A. Rabinowitz), pp. 86–

106. Cambridge University Press. 

Treves, A., Naughton-Treves, L. & Shelley, V. (2013) Longitudinal analysis of 

attitudes toward wolves. Conservation Biology, 27, 315–323. 

Treves, A., Wallace, R.B., Naughton-Treves, L. & Morales, A. (2006) Co-

managing human–wildlife conflicts: a review. Human Dimensions of 

Wildlife, 11, 383–396. 

Trewby, I.D., Wilson, G.J., Delahay, R.J., Walker, N., Young, R., Davison, J., 

Cheeseman, C., Robertson, P.A., Gorman, M.L. & McDonald, R.A. 

(2008) Experimental evidence of competitive release in sympatric 

carnivores. Biology Letters, 4, 170–172. 

Trout, R.C. & Tittensor, A.M. (1989) Can predators regulate wild Rabbit 

Oryctolugus cuniculus population density in England and Wales? 

Mammal Review, 19, 153–173. 

Tubbs, C.R. (1974) The Buzzard. David & Charles, Newton Abbot, Devon. 

Turner, C. (2007) The Fate and Management of Pheasants (Phasianus 

Colchicus) Released in the UK. Imperial College London. 

Turner, C. & Sage, R. (2004) Fate of released pheasants. The Game 

Conservancy Trust Review of 2003, 35, 74–75. 

Valkama, J., Korpimäki, E., Arroyo, B., Beja, P., Bretagnolle, V., Bro, E., 

Kenward, R., Mañosa, S., Redpath, S.M., Thirgood, S. & Viñuela, J. 



233	
	
 

(2005) Birds of prey as limiting factors of gamebird populations in Europe: 

a review. Biological reviews of the Cambridge Philosophical Society, 80, 

171–203. 

Vanderklift, M.A. & Ponsard, S. (2003) Sources of variation in consumer-diet 

δ15N enrichment: A meta-analysis. Oecologia, 136, 169–182. 

Venter, O., Sanderson, E.W., Magrach, A., Allan, J.R., Beher, J., Jones, K.R., 

Possingham, H.P., Laurance, W.F., Wood, P., Fekete, B.M., Levy, M.A. & 

Watson, J.E.M. (2016) Sixteen years of change in the global terrestrial 

human footprint and implications for biodiversity conservation. Nature 

Communications, 7, 12558. 

Verissimo, D. & Campbell, B. (2015) Understanding stakeholder conflict 

between conservation and hunting in Malta. Biological Conservation, 191, 

812–818. 

Viñuela, J. & Arroyo, B. (2002) Gamebird Hunting and Biodiversity 

Conservation: Synthesis, Recommendations and Future Research 

Priorities. European Concerted Action within the 5th Framework Program: 

Reconciling Gamebird Hunting and Biodiversity (REGHAB). 

Voigt, C.C., Thalwitzer, S., Melzheimer, J., Blanc, A.-S., Jago, M. & Wachter, 

B. (2014) The conflict between cheetahs and humans on Namibian 

farmland elucidated by stable isotope diet analysis. PloS one, 9, 

e101917. 

Voyles, Z., Treves, A. & MacFarland, D. (2015) Spatiotemporal effects of 

nuisance black bear management actions in Wisconsin. Ursus, 26, 11–

20. 

Wallach, A.D., Johnson, C.N., Ritchie, E.G. & O’Neill, A.J. (2010) Predator 

control promotes invasive dominated ecological states. Ecology Letters, 

13, 1008–1018. 

Walls, S.S. & Kenward, R. (2001) Spatial consequences of relatedness and 

age in buzzards. Animal Behaviour, 61, 1069–1078. 

Walpole, M.J. & Thouless, C.R. (2005) Increasing the value of wildlife through 

non-consumptive use? Deconstructing the myths of ecotourism and 

community-based tourism in the tropics. People and Wildlife: Conflict or 



234	
	
 

Coexistence? (eds R. Woodroffe, S.J. Thirgood, & A. Rabinowitz), pp. 

122–139. Cambridge University Press. 

Wang, S.W. & Macdonald, D.W. (2006) Livestock predation by carnivores in 

Jigme Singye Wangchuck National Park, Bhutan. Biological 

Conservation, 129, 558–565. 

Warne, R.M., Jones, D.N. & Astheimer, L.B. (2010) Attacks on humans by 

Australian magpies (Cracticus tibicen): territoriality, brood-defence or 

testosterone? Emu, 110, 332–338. 

Warton, D.J. & Hui, F.K.C. (2011) The arcsine is asinine: the analysis of 

proportions in ecology. Ecology, 92, 3–10. 

Watson, M., Aebischer, N.J., Potts, G.R. & Ewald, J.A. (2007) The relative 

effects of raptor predation and shooting on overwinter mortality of grey 

partridges in the United Kingdom. Journal of Applied Ecology, 44, 972–

982. 

Watts, S. & Stenner, P. (2005) Doing Q ethodology: theory, method and 

interpretation. Qualitative Research in Psychology, 2, 67–91. 

Weise, F.J., Lemeris, J., Stratford, K.J., van Vuuren, R.J., Munro, S.J., 

Crawford, S.J., Marker, L.J. & Stein, A.B. (2015) A home away from 

home: insights from successful leopard Panthera pardus translocations. 

Biodiversity and Conservation, 24, 1755–1774. 

Weiser, E.L. & Powell, A.N. (2011) Evaluating gull diets: A comparison of 

conventional methods and stable isotope analysis. Journal of Field 

Ornithology, 82, 297–310. 

White, R.M., Fischer, A., Marshall, K., Travis, J.M.J., Webb, T.J., di Falco, S., 

Redpath, S.M. & van der Wal, R. (2009) Developing an integrated 

conceptual framework to understand biodiversity conflicts. Land Use 

Policy, 26, 242–253. 

Whitfield, D. (2004) The effects of persecution on age of breeding and territory 

occupation in golden eagles in Scotland. Biological Conservation, 118, 

249–259. 

Whitfield, D.P. & Fielding, A.H. (2017) Analyses of the Fates of Satellite 

Tracked Golden Eagles in Scotland. Scottish Natural Heritage 



235	
	
 

Commissioned Report No. 982. 

Whitfield, D.P., McLeod, D.R.., Watson, J., Fielding, A.H. & Haworth, P.F. 

(2003) The association of grouse moor in Scotland with the illegal use of 

poisons to control predators. Biological Conservation, 114, 157–163. 

Wilson, C.J. (2004) Could we live with reintroduced large carnivores in the 

UK? Mammal Review, 34, 211–232. 

Wilson, R.S. (2008) Balancing emotion and cognition: A case for decision 

aiding in conservation efforts. Conservation Biology, 22, 1452–1460. 

Wolf, C. & Ripple, W.J. (2017) Range contractions of the world’s large 

carnivores. R. Soc. open sci, 4. 

Wolf, M. & Weissing, F.J. (2012) Animal personalities: consequences for 

ecology and evolution. Trends in Ecology and Evolution, 27, 452–61. 

Woodroffe, R. & Frank, L.G. (2005) Lethal control of African lions (Panthera 

leo): local and regional population impacts. Animal Conservation, 8, 91–

98. 

Woodroffe, R. & Redpath, S.M. (2015) When the hunter becomes the hunted. 

Science, 348, 1312–1314. 

Woodroffe, R., Thirgood, S.J. & Rabinowitz, A. (2005a) The impact of human-

wildlife conflict on natural systems. People and Wildlife: Conflict or 

Coexistence? (eds R. Woodroffe, S.J. Thirgood, & A. Rabinowitz), pp. 1–

13. Cambridge University Press, Cambridge, UK. 

Woodroffe, R., Thirgood, S.J. & Rabinowitz, A. (2005b) People and Wildlife: 

Conflict or Coexistence? Cambridge University Press, Cambridge, UK. 

Yeakel, J.D., Novak, M., Guimarães, P.R., Dominy, N.J., Koch, P.L., Ward, 

E.J., Moore, J.W. & Semmens, B.X. (2011) Merging resource availability 

with isotope mixing models: The role of neutral interaction assumptions. 

PLoS ONE, 6, e22015. 

Yeakel, J.D., Patterson, B.D., Fox-Dobbs, K., Okumura, M.M., Cerling, T.E., 

Moore, J.W., Koch, P.L. & Dominy, N.J. (2009) Cooperation and 

individuality among man-eating lions. Proceedings of the National 

Academy of Sciences of the United States of America, 106, 19040–

19043. 



236	
	
 

Young, J.C., Butler, J.R.A., Jordan, A. & Watt, A.D. (2012) Less government 

intervention in biodiversity management: risks and opportunities. 

Biodiversity and Conservation, 21, 1095–1100. 

Young, J.C., Marzano, M., White, R.M., McCracken, D.I., Redpath, S.M., 

Carss, D.N., Quine, C.P. & Watt, A.D. (2010) The emergence of 

biodiversity conflicts from biodiversity impacts: characteristics and 

management strategies. Biodiversity and Conservation, 19, 3973–3990. 

Zarco-González, M.M., Monroy-Vilchis, O., Rodríguez-Soto, C. & Urios, V. 

(2012) Spatial factors and management associated with livestock 

predations by Puma concolor in Central Mexico. Human Ecology, 40, 

631–638. 

Zedrosser, A., Steyaert, S.M.J.G., Gossow, H. & Swenson, J.E. (2011) Brown 

bear conservation and the ghost of persecution past. Biological 

Conservation, 144, 2163–2170. 

Zuberogoitia, I., Martínez, J.E., Martínez, J.A., Zabala, J., Calvo, J.F., Castillo, 

I., Azkona, A., Iraeta, A. & Hidalgo, S. (2006) Influence of management 

practices on nest site habitat selection, breeding and diet of the common 

buzzard Buteo buteo in two different areas of Spain. Ardeola, 53, 83–98. 

Zuberogoitia, I., Martínez, J.A., Zabala, J., Martínez, J.E., Castillo, I., Azkona, 

A. & Hidalgo, S. (2005) Sexing, ageing and moult of Buzzards Buteo 

buteo in a southern European area. Ringing & Migration, 22, 153–158. 

 


