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Abstract 25 

Whilst the newly established biomechanical conditions following mandibular 26 

reconstruction using fibula free flap can be a critical determinant for achieving 27 

favorable bone union, little has been known about their association in a time-dependent 28 

fashion. This study evaluated the bone healing/remodeling activity in reconstructed 29 

mandible and its influence on jaw biomechanics using CT data, and further quantified 30 

their correlation with mechanobiological responses through an in-silico approach. A 66-31 

year-old male patient received mandibular reconstruction was studied. Post-operative 32 

CT scans were taken at 0, 4, 16 and 28 months. Longitudinal change of bone 33 

morphologies and mineral densities were measured at three bone union interfaces (two 34 

between the fibula and mandibular bones and one between the osteotomized fibulas) to 35 

investigate bone healing/remodeling events. Three-dimensional finite element models 36 

were created to quantify mechanobiological responses in the bone at these different time 37 

points. Bone mineral density increased rapidly along the bone interfaces over the first 38 

four months. Cortical bridging formed at the osteotomized interface earlier than the 39 

other two interfaces with larger shape discrepancy between fibula and mandibular bones. 40 

Bone morphology significantly affected mechanobiological responses in the 41 

osteotomized region (R
2
>0.77). The anatomic position and shape discrepancy at bone 42 

union affected the bone healing/remodeling process. 43 

 44 

Keywords: Fibula free flap; Finite element analysis; Jaw biomechanics; Mandibular 45 

reconstruction; Bone remodeling. 46 

  47 
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1. Introduction 48 

Free vascularized osteocutaneous tissue transfer has become a well-established 49 

procedure for maxillomandibular reconstruction following large resection due to trauma, 50 

atrophy, and tumors ablation [1,2]. Fibula free flap (FFF) provides superior length and 51 

long vascular pedicles for mandibular reconstruction, with proven subsequent high 52 

reliability and adaptability [3]. Nevertheless, some clinical complications remain with 53 

delayed or poor union between the grafted fibula bone and host native mandible [4,5]. 54 

Recent CT evaluations reported 20% [6] and 9% [7] non-union rates, respectively. Bone 55 

union determines the strength and health of the reconstructed mandible, both of which 56 

are essential for further occlusal and prosthetic rehabilitation. In the case of bone 57 

fracture healing, the mechanobiological environment, which is thought to regulate 58 

cellular behaviors, can be a critical determinant [8]. 59 

Unlike general bone fracture healing processes, FFF mandibular reconstruction 60 

may be affected by additional factors, such as shape discrepancy between different 61 

bones and poor bone vascularity [4,9]. Further, the loss of several masticatory muscles 62 

due to resection can cause unbalanced jaw movement and abnormal mastication, leading 63 

to significant change in the biomechanical conditions [10,11]. Thus the 64 

mechanobiological responses in the jaw can be altered significantly; and such a change 65 

in-turn affects subsequent bone remodeling activities [12,13]. To assist surgical planning 66 

and oral rehabilitation it is essential to understand bone healing/remodeling activity and 67 

its influence on jaw biomechanics, thereby preventing delayed or poor union of bone 68 

grafts. 69 

Finite element (FE) analysis has the adequacy for the biomechanical studies on 70 
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orthopaedic [14-16] and dental problems [17-19]. Several those studies demonstrated 71 

their compelling advantages for understanding the biomechanics and mechanobiology 72 

of reconstructed mandibles in-silico [20,21]. With recent advances in micro 73 

computerized tomography (CT), bone mineral density (BMD) and morphological 74 

changes can be measured to evaluate bone remodeling sequences noninvasively 75 

[13,22,23]. The CT-based 3D FE models can be thus created to quantify biomechanical 76 

responses to functional forces in a patient-specific and time-dependent manner [24,25]. 77 

This study aims to (1) examine longitudinal changes in bone morphology and 78 

mineral density in the course of healing/remodeling after mandibular reconstruction 79 

with FFF; and (2) investigate the associated variation in mandibular biomechanics in 80 

terms of mechanical stimulus. The postoperative CT scans were performed at 4 critical 81 

time points over two and half years’ clinical follow-up, and the CT images were 82 

segmented for both 2D multiple planar reconstructions (MPR) and 3D (volumetric) 83 

analyses. The bone condition was analyzed in both spatial and temporal manner, in 84 

terms of morphology and BMD. Nonlinear 3D FE analyses were conducted to quantify 85 

the bone mechanobiological stimuli at these different time points; and then correlated to 86 

the corresponding in-vivo clinical data. By establishing this combined in-vivo and in-87 

silico approach, the mutual influence between tissue conditions and mandibular 88 

mechanobiology was assessed. The results are expected to provide important insights 89 

into surgical plan for mandibular reconstruction. 90 

2. Materials and Methods 91 

2.1 Clinical Treatment 92 

A 66-year-old male patient received mandibular reconstruction with 93 
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osteotomized FFF, due to a squamous-cell carcinoma at the right molar gingiva at the 94 

Department of Otolaryngology-Head and Neck Surgery, Tohoku University Hospital in 95 

Japan. Upon harvesting, the fibular bone was segmented to match the defect jaw 96 

morphology. A titanium fixation plate (Synthes, Solothurn, Switzerland), which was 97 

pre-bent using the CT-based 3D patient model before surgery, was configured to be 98 

fixed monocortically with a total of 11 titanium screws (Synthes, Solothurn, 99 

Switzerland) as shown in Fig. 1. The first CT scan (M0) was performed at the end of 100 

surgery, and the follow-up CTs were taken at 4, 16 and 28 months after surgery (namely, 101 

M4, M16, and M28, respectively). A removable partial denture was inserted into this 102 

subject 6 months after the surgery; however, the subject did not use it for mastication, 103 

due to fear of biting on the reconstructed side. The periodontal conditions of the 104 

remaining teeth and the removable partial denture have been maintained at the 105 

Maxillofacial Prosthetics Clinic in Tohoku University Hospital every three months.  106 

2.2 CT Imaging Acquisition and 2D Image Analysis 107 

Multi-detector helical CT scans were performed for the follow-up examinations 108 

using Somatom Emotion 6 (Siemens, Erlangen, Germany) at 120 kV and 80 mA with 109 

the spatial resolution of 0.4, 0.4, and 0.8 mm in the radial, tangential, and axial 110 

directions. The CT data was further processed with the medical image viewer software 111 

(EV Insite S, PSP Co., Tokyo, Japan), for the detection and alignment of anatomic 112 

landmarks between the different cross-sectional examinations. The mandibular plane 113 

was defined using three reference points; namely, left Gonion point, Menton point, and 114 

inflection point of a titanium fixation plate (green triangles in Fig. 2a). Six planes 115 

parallel to this mandibular plane were selected for the quantitative analysis of bone 116 

union at three docking sites (DS1, DS2, and DS3, respectively) with 2 mm intervals by 117 
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multiple planar reconstructions (MPR) (Fig. 2b) [12]. On each plane, a 2 mm
3
 volume 118 

of interest (VOI) was considered along the superior-inferior axis (Fig. 2b). Since a 119 

significant correlation between Hounsfield units (HU) obtained from clinical CT scans 120 

and bone mineral density (BMD) were established [26], the HU values change in VOIs 121 

can be regarded as the BMD changes over time here, particularly for bone unification at 122 

the contact interfaces. All the VOIs were placed at the same positions throughout these 123 

four time points, based on the distance from the titanium fixation plate and screws as a 124 

reference.  125 

2.3 3D Registration and Volumetric Analysis 126 

3D registration was carried out for investigating the longitudinal changes in 127 

bone surface profile and mineral density using Amira 2016.22 (Zuse Institute Berlin 128 

(ZIB), Berlin, Germany) (Fig. 3a). The titanium fixation plate was selected as the 129 

reference geometry for its rigidness and high contrast. To quantify the variation of BMD 130 

at the docking sites, the change in greyscales was correlated with the distance from the 131 

inferior to the superior aspect. The average value of the pixel intensity (i.e. greyscale) 132 

was calculated in the cortical bone region on each slice (at a regular spacing of 0.8 mm 133 

along the coronal axis), enabling a plot of pixel value change along the axial direction. 134 

To determine the HU values of the cortical bone, several profile lines were constructed 135 

at the CT images cross the region of mature cortical bone. By sampling the histogram 136 

distribution, a HU value of 1536 was determined to be a threshold for determining 137 

cortical bone pixels, which is consistent with the reported HU value of cortical bone for 138 

cone beam CT in literature [27]. By using this cortical bone threshold, variation in both 139 

bone density and volume at the same region for the four time points were quantified. 140 

The detailed variation in bone volume (i.e. volume of the cortical bone voxel cuboids) 141 
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along this direction was plotted using the same approach. In addition, the variation in 142 

pixel number, rather than the pixel intensity, in the cortical bone region was considered.  143 

2.4 Finite Element Analysis 144 

Four case-specific FE models were created based on the CT data taken at M0, 145 

M4, M16, and M28, respectively [28,29]. The CT images were imported into ScanIP 146 

Ver. 4.3 (Simpleware Ltd, Exeter, UK) for segmentation. The segmented masks (bone, 147 

individual tooth and titanium fixation plate) were further processed in Rhinoceros 4.0 148 

(Robert McNeel & Associates, Seattle, USA) to create parametric models with non-149 

uniform rational B-spline (NURBS) (Fig. 3b). Following the development of the 150 

mandibular models, the total 11 fixation screws were modeled according to the 151 

manufacturing specifications in Solidworks 2013 (SolidWorks Corp, Waltham, MA, 152 

USA). Those screws were virtually inserted into the models in Rhinoceros 4.0 as guided 153 

by the CT images. Considering that the patient disuse the denture in his daily life and 154 

has no parafunctional habit, the denture was not inserted in the models. To ensure the 155 

numerical accuracy, an adaptive mesh was generated based on a mesh convergence test. 156 

Ten-node quadratic tetrahedral elements with hybrid formulation (C3D10H) were 157 

adopted to ensure smoothness along the contact interfaces.  158 

A pixel-based mapping algorithm was adopted to create the heterogeneous bone 159 

density distributions at the different time points, reflecting the changes of the 160 

anatomical conditions [29]. A homogeneous isotropic linear-elastic model was used to 161 

define the teeth (Young’s modulus E =20,000 MPa, Poisson’s ratio ν =0.2), titanium 162 

fixation plates and screws (Ti6Al7Nb: E=110,000 MPa, ν=0.3) [21,30]. 163 

The hinge constraints were prescribed for the corresponding mandibular 164 

condyles. In this subject, the large bone resection was accompanied by the functional 165 
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loss of the right masseter, medial pterygoid and temporalis muscles; and consequently 166 

masticatory conditions changed dramatically post-surgery. Due to lack of information 167 

regarding muscular forces after such a large resection [20], the magnitudes and 168 

directions of individual forces were derived based on the literature for the remaining 169 

muscles (masseter mascle: 59.23 N, medial pterygoid muscle: 39.60 N, lateral pterygoid 170 

muscle: 34.44 N, and temporalis: 34.09 N, respectively) [31]. 171 

Strain energy density (SED) was quantified as a mechanobiological stimulus to 172 

analyze the bone responses in the three docking sites and VOIs. SED has been 173 

considered an effective stimulus to bone remodeling in long bones [32] and mandible 174 

[24,33] and can be a scalar quantity to combine stress and strain but eliminate their 175 

directionalities [34]. The SEDs at different time points were correlated with the 176 

corresponding change in the bone density. In this study, linear regression analysis was 177 

performed using IBM SPSS Statistics Ver. 21.0 (IBM Corp., New York, NY, USA) to 178 

examine the correlations between stimuli and bone remodeling progression in all VOIs. 179 

The R
2
 values presented the goodness of fit for the predictor functions, thereby 180 

indicating the extent of correlation. 181 

3. Results 182 

3.1 MPR Image Assessment for Bone Morphology and Mineral Density 183 

Fig. 4 shows the longitudinal changes in bone profile from the CT-based MPR 184 

images. In docking site DS1, a significant amount of callus bone formed at time point 185 

M4, and the cortical bridging successfully formed in both buccal and lingual regions at 186 

M16. In DS2, the cortical bridging formed at M4 in both the buccal and lingual regions. 187 

Also, the cortical-like bone appeared to fill the entire interface, while some resorption 188 



9 

 

occurred at the upper and bottom surfaces of cortical bone. In DS3, there was large 189 

discrepancy of bone shape at the initial stage. However, the bone shapes gradually 190 

remodeled and cortical bridging was found in both the buccal and lingual regions at 191 

M16.  192 

Fig. 5 shows that the averaged HU value was calculated for each VOI to 193 

quantify the change of BMD. For DS1, both superior and inferior cortical bones 194 

underwent resorption from M0 to M16, while the BMD peaked in the trabecular 195 

interface regions at M4 before undergoing resorption. In contrast, the grafted bones at 196 

DS2 performed exceedingly well in terms of new bone formation, despite being 197 

osteotomized, seen in rapid increases of BMD in the first four months. For DS3, the 198 

cancellous/trabecular region underwent much more dramatic remodeling than the 199 

cortical bone with rapid increase in BMD from M0 to M4 but decrease from M4 to M16. 200 

3.2 Volumetric Assessment of Bone Mineral Density and Morphology 201 

Bone morphological changes were visualized as the apposition and resorption on 202 

the bone surface by 3D volumetric registration in the three docking sites (Fig. 6). The 203 

longitudinal changes in bone volume were site-specific and the rate of volume increase 204 

in the cortical bone region was positive in all the three sites from M4 to M16 (Fig. 7a). 205 

Fig. 7b exhibits the longitudinal change rate of bone volume at each docking site. Bone 206 

volume increased remarkably from M4 to M16 due to new bone formation, especially at 207 

the region from 15 mm to 25 mm for DS1 and from 20 mm to 30 mm for DS3 on the 208 

sectional plane of mandible as visualized in Fig. 6. Fig. 7c plotted the site-specific 209 

change rate of BMD based on the average grayscale in the cortical bone region. Note 210 

that the BMD decreased in the first four months for all the docking sites.  211 
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3.3 Mechanobiological Stimulus Distribution  212 

Fig. 8 shows the longitudinal changes in the SED distribution and corresponding 213 

CT MPR images of the reconstructed mandible. Both global and local SED distributions 214 

changed with time significantly. The longitudinal changes in morphology and BMD 215 

were remarkable particularly for DS1, leading to substantial variation in the SED 216 

distribution.  217 

The SED at VOIs in the cortical bone region was generally higher than that in 218 

the cancellous region in DS1 and DS2 (Fig. 9). At each VOI, the SED decreased with 219 

time at DS1 and DS3, especially in the superior region of DS1. While the increase in 220 

SED with time could be found in some VOIs, the SED dropped from M0 to M4 and 221 

then gradually increased till M28 (but never exceeds that at M0), at 6, 8, and 10 mm 222 

VOIs in DS2. 223 

Linear regression analysis between the HU values and SED in VOIs indicated 224 

that there was a strong dependence on the HU values only in DS2 (p<0.05), as shown in 225 

Fig. 10. 226 

4. Discussion 227 

Both 2D MPR images and 3D volumetric analyses enabled to quantify and 228 

visualize time-dependent bone apposition and resorption in terms of morphology and 229 

BMD in this FFF reconstructive mandible. This study is believed to be the first of its 230 

kind for investigating the anatomical sequence of healing/remodeling process and its 231 

correlation with mechanobiological responses in a reconstructive mandible. 232 

The clinical process of cortical bridging at bone docking regions was found to be 233 
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significantly site-specific based on the results of both 2D MPR images and 3D 234 

volumetric analyses. Biological healing at bone union is influenced by complex cellular 235 

and molecular activities, and can be affected by the dimension of bone segment gap [35] 236 

and contact shape [9]. In this study, we set up a criterion to justify the cortical bridging, 237 

namely, no gap was observed between the two bones in the six cross sectional planes as 238 

shown in Fig. 4. According to this criterion, the contact region in DS2 achieved earlier 239 

cortical bridging than the other two sites. 240 

The BMD became higher within the first four months in all the VOIs except for 241 

the cortical bone regions in DS1 (Fig. 5). Those cortical regions appeared to undergo 242 

significant resorption, while the osseous callus was generally found at the interface of 243 

trabecular regions during the bone-healing phase [36,37]. The BMDs of all the cortical 244 

bone regions in the docking sites were also found to decrease in the first four months, 245 

which was most remarkable for DS2 (Fig. 7c). Despite a vascularized bone graft, the 246 

lower bone vascularity may have caused the reduction of BMD on the cortical region of 247 

the fibula graft [38,39]. Despite the lowered BMD, 3D volumetric analysis revealed a 248 

higher increase rate of bone volume in DS1 than the other two sites over the same time 249 

period (Fig. 7a). Primary bone apposition may have developed throughout formation of 250 

the osseous callus at the endochondral and periosteal areas (Figs. 4 and 5) [35]. The 251 

woven bone with low BMD appears to initially form for filling the gap and reducing 252 

morphological discrepancy, which may be related to the initial volume increase in DS1. 253 

Lamellae bone with high BMD appears to form after M4 [37]. Lower bone vascularity 254 

in the distal segment of osteotomy [39] may limit those biological healing activities in 255 

DS2 and DS3 compared to DS1, further contributing to the initial reduction in the bone 256 

volume (Fig. 7a).  257 
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Considering the positive increase rates attributable to bone apposition at all three 258 

docking sites from M4 to M16, bone (re)modeling activity had a primary effect on post-259 

healing bone formation [40,41]. Osseous callus at the interface regions in DS1 and DS3 260 

gradually became cancellous bone, forming a natural mandibular structure during the 261 

course. Nevertheless, the healing and remodeling process at the docking site, especially 262 

with large shape discrepancy, is considered to be significantly slower than those of the 263 

general bone fracture [37,42]. Note that the mandible can be distorted during daily oral 264 

function [43]. Despite the mechanical fixation by titanium plate, the distortion can affect 265 

the mechanical stability of the docking sites, which might also delay the healing process 266 

[9]. 267 

 Mechanical loading is known to stimulate bone healing and remodeling process, 268 

likely enhancing bone mass and functionality [40]. The mechanobiological impetus can 269 

thus be related to the bone remodeling activity [12,13]. SED has been considered an 270 

effective stimulus to bone remodeling in long bones [32] as well as mandible [24,33]. 271 

This study revealed the correlation between SED and healing/remodeling outcome over 272 

the time period concerned. 273 

The variation in SED distribution was attributed to the time longitudinal change 274 

in the mandibular morphology (Figs. 8 and 9), as well as load transfer in the 275 

restructured mandible, particularly through the fibula grafts. In other words, the 276 

functional load was initially transferred to the fibula graft completely via the titanium 277 

fixation plate (M0); but subsequently, a greater proportion of load transferred through 278 

the bony tissue as the extent of bone union increased. In addition, the remaining 279 

unbalanced muscle activities readapt with time [10,11]. All these factors have a 280 

collective effect on the mechanobiological responses.  281 
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As shown in Fig. 10, the SED had a strong dependence on the HU values in DS2 282 

(p<0.05). The HU value altered the load bearing capability of the fibula bone, meaning 283 

that the SED is associated with HU values. Lower bone vascularity and good bone 284 

contact condition at DS2 possibly enhance the effect of mechanobiological stimuli on 285 

BMD adaptation, which might be related to the earlier process of cortical bridging at the 286 

DS2. For DS1 and DS3, significant shape discrepancy due to reconstruction generated 287 

non-physiological stress/strain concentration, which might have distorted the 288 

distribution of SED and its correlation to remodeling.  289 

Clinically, the implant-supported denture is considered as the most suitable 290 

option for functional rehabilitation following mandibular reconstruction [2]. Although 291 

the timing of implant placement is still controversial, several studies adopted the time 292 

for implant placement at least 6-12 months after the reconstruction with FFF [1,44,45]. 293 

Considering the cortical bridging as a predictor of bone union strength [7,46], all the 294 

bone unions can be confirmed through CT scanning, especially in the cases with a large 295 

bone discrepancy. Specifically, favorable initial bone contacts with small shape 296 

discrepancy are considered a primary factor for earlier success of cortical bridging.  297 

There are still some limitations in this study. Constrained by the clinical protocol 298 

and radiation dosage allowance, the scanning resolution of CTs could have affected 299 

modeling accuracy. The FE analyses still included several assumptions, such as 300 

simulation under static loading conditions and rotational movement on the mandibular 301 

condyles. The applied muscle forces did not precisely reflect specific condition of this 302 

subject; plus the muscle forces are anticipated to change over time after reconstruction 303 

[47,48]. Consequently, the resultant reaction responses on both temporomandibular 304 

joints might become asymmetric and physiologically complicated. Finally, while the 305 
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study was featured as patient-specific, the results were based on only one particular 306 

subject. In addition, other patient’s factors, such as the systematic background and the 307 

treatment process, could be generally the decisive factors to the bone healing and 308 

remodeling process at the docking sites. Further evaluation and data acquisition of other 309 

subjects with inevitably varied conditions are necessary before generalizing these 310 

clinical and biomechanical findings.  311 

5. Conclusion 312 

This newly developed analysis procedure provided a quantitative clinical follow-313 

up of mandibular reconstruction with fibula free flap (FFF) and fundamental 314 

understanding of time-dependent biomechanical responses in the reconstructed 315 

mandible. It was found that the bone healing and remodeling process at the docking 316 

sites were site-specific; and cortical bridging in the osteotomized region took place 317 

faster than that in the other docking sites between mandibular and fibula bones for the 318 

specific patient concerned. Within the limitation of this study, the anatomic position and 319 

the discrepancy of initial shape at the docking sites between the host mandible and 320 

fibula graft affected the bone healing and remodeling process. It divulged a correlation 321 

between mechanobiological stimulus (strain energy density - SED) and the longitudinal 322 

change in bone mineral density (BMD) and morphology, especially at the osteotomized 323 

region. The longitudinal CT data and mechanobiological correlation generated in this 324 

study provided new insights into patient-specific surgical planning and occlusal 325 

rehabilitation.  326 

  327 
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Abstract 25 

Whilst the newly established biomechanical conditions following mandibular 26 

reconstruction using fibula free flap can be a critical determinant for achieving 27 

favorable bone union, little has been known about their association in a time-dependent 28 

fashion. This study evaluated the bone healing/remodeling activity in reconstructed 29 

mandible and its influence on jaw biomechanics using CT data, and further quantified 30 

its their correlation with mechanobiological responses through an in-silico approach. A 31 

66-year-old male patient received mandibular reconstruction was studied. Post-32 

operative CT scans were taken at 0, 4, 16 and 28 months. Longitudinal change of bone 33 

morphologies and mineral densities were measured at three bone union interfaces (two 34 

between the fibula and mandibular bones and one between the osteotomized fibulas) to 35 

investigate bone healing/remodeling events. Three-dimensional finite element models 36 

were created to quantify mechanobiological responses in the bone at these different time 37 

points. Bone mineral density increased rapidly along the bone interfaces over the first 38 

four months. Cortical bridging formed at the osteotomized interface earlier than the 39 

other two interfaces with larger shape discrepancy between fibula and mandibular bones. 40 

Bone morphology significantly affected mechanobiological responses in the 41 

osteotomized region (R
2
>0.77). The anatomic position and shape discrepancy at bone 42 

union affected the bone healing/remodeling process. 43 

 44 

Keywords: Fibula free flap; Finite element analysis; Jaw biomechanics; Mandibular 45 

reconstruction; Bone remodeling. 46 
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1. Introduction 48 

Free vascularized osteocutaneous tissue transfer has become a well-established 49 

procedure for maxillomandibular reconstruction following large resection due to trauma, 50 

atrophy, and tumors ablation [1,2]. Fibula free flap (FFF) provides superior length and 51 

long vascular pedicles for mandibular reconstruction, with proven subsequent high 52 

reliability and adaptability [3]. Nevertheless, some clinical complications remain with 53 

delayed or poor union between the grafted fibula bone and host native mandible [4,5]. 54 

Recent CT evaluations reported 20% [6] and 9% [7] non-union rates, respectively. Bone 55 

union determines the strength and health of the reconstructed mandible, both of which 56 

are essential for further konoocclusal and prosthetic rehabilitation. In the case of bone 57 

fracture healing, the mechanobiological environment, which is thought to regulate 58 

cellular behaviors, can be a critical determinant [8]. 59 

Unlike general bone fracture healing processes, FFF mandibular reconstruction 60 

may be affected by additional factors, such as shape discrepancy between different 61 

bones and poor bone vascularity [4,9]. Further, the loss of several masticatory muscles 62 

due to resection can cause unbalanced jaw movement and abnormal mastication, leading 63 

to significant change in the biomechanical conditions [10,11]. Thus the 64 

mechanobiological responses in the jaw can be altered significantly; and such a change 65 

in-turn affects subsequent bone remodeling activities [12,13]. To assist surgical planning 66 

and oral rehabilitation it is essential to understand bone healing/remodeling activity and 67 

its influence on jaw biomechanics, thereby preventing delayed or poor union of bone 68 

grafts. 69 

Finite element (FE) analysis has the adequacy for the biomechanical studies on 70 
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orthopaedic [14-16] and dental problems [17-19]. Several those studies demonstrated 71 

their compelling advantages for understanding the biomechanics and mechanobiology 72 

of reconstructed mandibles in-silico [20,21]. Several finite element (FE) studies 73 

demonstrated their compelling advantages for understanding the biomechanics and 74 

mechanobiology of reconstructed mandibles [14,15]. With recent advances in micro 75 

computerized tomography (CT), bone mineral density (BMD) and morphological 76 

changes can be measured to evaluate bone remodeling sequences noninvasively 77 

[16,1713,22,23]. The CT-based 3D FE models can be thus created to quantify 78 

biomechanical responses to functional forces in a patient-specific and time-dependent 79 

manner [13,1824,25]. 80 

This study aims to (1) examine longitudinal changes in bone morphology and 81 

mineral density in the course of healing/remodeling after mandibular reconstruction 82 

with FFF; and (2) investigate the associated variation in mandibular biomechanics in 83 

terms of mechanical stimulus. The postoperative CT scans were performed at 4 critical 84 

time points over two and half years’ clinical follow-up, and the CT images were 85 

segmented for both 2D multiple planar reconstructions (MPR) and 3D (volumetric) 86 

analyses. The bone condition was analyzed in both spatial and temporal manner, in 87 

terms of morphology and BMD. Nonlinear 3D FE analyses were conducted to quantify 88 

the bone mechanobiological stimuli at these different time points; and then correlated to 89 

the corresponding in-vivo clinical data. By establishing this combined in-vivo and in-90 

silico approach, the mutual influence between tissue conditions and mandibular 91 

mechanobiology was assessed. The results are expected to provide important insights 92 

into surgical plan for mandibular reconstruction. 93 
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2. Materials and Methods 94 

2.1 Clinical Treatment 95 

A 66-year-old male patient received mandibular reconstruction with 96 

osteotomized FFF, due to a squamous-cell carcinoma at the right molar gingiva at the 97 

Department of Otolaryngology-Head and Neck Surgery, Tohoku University Hospital in 98 

Japan. Upon harvesting, the fibular bone was segmented to match the defect jaw 99 

morphology. A titanium fixation plate (Synthes, Solothurn, Switzerland), which was 100 

pre-bent using the CT-based 3D patient model before surgery, was configured to be 101 

fixed monocortically with a total of 11 titanium screws (Synthes, Solothurn, 102 

Switzerland) as shown in Fig. 1. The first CT scan (M0) was performed at the end of 103 

surgery, and the follow-up CTs were taken at 4, 16 and 28 months after surgery (namely, 104 

M4, M16, and M28, respectively). A removable partial denture was inserted into this 105 

subject 6 months after the surgery; however, the subject did not use it for mastication, 106 

due to fear of biting on the reconstructed side. The periodontal conditions of the 107 

remaining teeth and the removable partial denture have been maintained at the 108 

Maxillofacial Prosthetics Clinic in Tohoku University Hospital every three months.  109 

2.2 CT Imaging Acquisition and 2D Image Analysis 110 

Multi-detector helical CT scans were performed for the follow-up examinations 111 

using Somatom Emotion 6 (Siemens, Erlangen, Germany) at 120 kV and 80 mA with 112 

the spatial resolution of 0.4, 0.4, and 0.8 mm in the radial, tangential, and axial 113 

directions. The CT data was further processed with the medical image viewer software 114 

(EV Insite S, PSP Co., Tokyo, Japan), for the detection and alignment of anatomic 115 

landmarks between the different cross-sectional examinations. The mandibular plane 116 
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was defined using three reference points; namely, left Gonion point, Menton point, and 117 

inflection point of a titanium fixation plate (green triangles in Fig. 2a). Six planes 118 

parallel to this mandibular plane were selected for the quantitative analysis of bone 119 

union at three docking sites (DS1, DS2, and DS3, respectively) with 2 mm intervals by 120 

multiple planar reconstructions (MPR) (Fig. 2b) [12]. On each plane, a 2 mm
3
 volume 121 

of interest (VOI) was placed considered along the superior-inferior axis (Fig. 2b). Since 122 

a significant correlation between Hounsfield units (HU) obtained from clinical CT scans 123 

and bone mineral density (BMD) were found established [1926], the HU values change 124 

in VOIs can be regarded as the BMD changes over time here, particularly for bone 125 

unification at the contact interfaces. All the VOIs were placed at the same positions 126 

throughout these four time points, based on the distance from the titanium fixation plate 127 

and screws as a reference.  128 

2.3 3D Registration and Volumetric Analysis 129 

3D registration was carried out for investigating the longitudinal changes in 130 

bone surface profile and mineral density using Amira 2016.22 (Zuse Institute Berlin 131 

(ZIB), Berlin, Germany) (Fig. 3a). The titanium fixation plate was selected as the 132 

reference geometry for its rigidness and high contrast. To quantify the variation of BMD 133 

at the docking sites, the change in greyscales was correlated with the distance from the 134 

inferior to the superior aspect. The average value of the pixel intensity (i.e. greyscale) 135 

was calculated in the cortical bone region on each slice (at a regular spacing of 0.8 mm 136 

along the coronal axisal), enabling a plot of pixel value change along the axial direction. 137 

To determine the HU values of the cortical bone, several profile lines were constructed 138 

at the CT images cross the region of mature cortical bone. By sampling the histogram 139 

distribution, a HU value of 1536 was determined to be a threshold for determining 140 
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cortical bone pixels, which is in consistent with the reported HU value of cortical bone 141 

for cone beam CT in literature [2027]. By using this cortical bone threshold, variation in 142 

both bone density and volume at the same region for the four time points were 143 

quantified. The detailed variation in bone volume (i.e. volume of the cortical bone voxel 144 

cuboids) along this direction was plotted using the same approach. In addition, the 145 

variation in pixel number, rather than the pixel intensity, in the cortical bone region was 146 

considered.  147 

2.4 Finite Element Analysis 148 

Four case-specific FE models were created based on the CT data taken at M0, 149 

M4, M16, and M28, respectively [21,2228,29]. The CT images were imported into 150 

ScanIP Ver. 4.3 (Simpleware Ltd, Exeter, UK) for segmentation. The segmented masks 151 

(bone, individual tooth and titanium fixation plate) were further processed in 152 

Rhinoceros 4.0 (Robert McNeel & Associates, Seattle, USA) to create parametric 153 

models with non-uniform rational B-spline (NURBS) (Fig. 3b). Following the 154 

development of the mandibular models, the total 11 fixation screws were modeled 155 

according to the manufacturing specifications in Solidworks 2013 (SolidWorks Corp, 156 

Waltham, MA, USA). Those screws were virtually inserted into the models in 157 

Rhinoceros 4.0 as guided by the CT images. Considering that the patient disuse the 158 

denture in his daily life and has no parafunctional habit, the denture was not inserted in 159 

the models. To ensure the numerical accuracy, an adaptive mesh was generated based on 160 

a mesh convergence test. Ten-node Qquadratic tetrahedral elements with hybrid 161 

formulation (C3D10H) were adopted to ensure smoothness along the contact interfaces.  162 

A pixel-based mapping algorithm was adopted to create the heterogeneous bone 163 

density distributions at the different time points, reflecting the changes of the 164 
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anatomical conditions [29].
22

 A homogeneous isotropic linear-elastic model was used to 165 

define the teeth (Young’s modulus E =20,000 MPa, Poisson’s ratio ν =0.2), titanium 166 

fixation plates and screws (Ti6Al7Nb: E=110,000 MPa, ν=0.3) [15,2321,30]. 167 

The hinge constraints were prescribed for the corresponding mandibular 168 

condyles. In this subject, the large bone resection was accompanied by the functional 169 

loss of the right masseter, medial pterygoid and temporalis muscles; and consequently 170 

masticatory conditions changed dramatically post-surgery. Due to lack of information 171 

regarding muscular forces after such a large resection [1420], the magnitudes and 172 

directions of individual forces were derived based on the literature for the remaining 173 

muscles (masseter mascle: 59.23 N, medial pterygoid muscle: 39.60 N, lateral pterygoid 174 

muscle: 34.44 N, and temporalis: 34.09 N, respectively) [2431]. 175 

Strain energy density (SED) was quantified as a mechanobiological stimulus to 176 

analyze the bone responses in the three docking sites and VOIs. SED has been 177 

considered an effective stimulus to bone remodeling in long bones [32] and mandible 178 

[24,33] and can be a scalar quantity to combine stress and strain but eliminate their 179 

directionalities [34]. The SEDs at different time points were correlated with the 180 

corresponding change in the bone density. In this study, linear regression analysis was 181 

performed using IBM SPSS Statistics Ver. 21.0 (IBM Corp., New York, NY, USA) to 182 

examine the correlations between stimuli and bone remodeling progression in all VOIs. 183 

The R
2
 values presented the goodness of fit for the predictor functions, thereby 184 

indicating the extent of correlation. 185 
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3. Results 186 

3.1 MPR Image Assessment for Bone Morphology and Mineral Density 187 

Fig. 4 shows the longitudinal changes in bone profile from the CT-based MPR 188 

images. In docking site DS1, a significant amount of callus bone formed at time point 189 

M4, and the cortical bridging successfully formed in both buccal and lingual regions at 190 

M16. In DS2, the cortical bridging formed at M4 in both the buccal and lingual regions. 191 

Also, the cortical-like bone appeared to fill the entire interface, while some resorption 192 

occurred at the upper and bottom surfaces of cortical bone. In DS3, there was large 193 

discrepancy of bone shape at the initial stage. However, the bone shapes gradually 194 

remodeled and cortical bridging was found in both the buccal and lingual regions at 195 

M16.  196 

Fig. 5 shows that the averaged HU value was calculated for each VOI to 197 

quantify the change of BMD.Averaged HU value was calculated for each VOI to 198 

quantify the change of BMD (charts in Fig. 4). For DS1, both superior and inferior 199 

cortical bones underwent resorption from M0 to M16, while the BMD peaked in the 200 

trabecular interface regions at M4 before undergoing resorption. In contrast, the grafted 201 

bones at DS2 performed exceedingly well in terms of new bone formation, despite 202 

being osteotomized, with seen in rapid increases of BMD in the first four months. For 203 

DS3, the cancellous/trabecular region underwent much more severe dramatic 204 

remodeling than the cortical bone with rapid increase in BMD from M0 to M4 but 205 

decrease from M4 to M16. 206 
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3.2 Volumetric Assessment of Bone Mineral Density and Morphology 207 

Bone morphological changes were visualized as the apposition and resorption on 208 

the bone surface by 3D volumetric registration in the three docking sites (Fig. 5a-c6). 209 

The longitudinal changes in bone volume were site-specific and the rate of volume 210 

increase in the cortical bone region was positive in all the three sites from M4 to M16 211 

(Fig. 5d7a). Fig. 5e 7b exhibits the longitudinal change rate of bone volume at each 212 

docking site. Bone volume increased remarkably from M4 to M16 due to new bone 213 

formation, especially at the region from 15 mm to 25 mm for DS1 and from 20 mm to 214 

30 mm for DS3 on the sectional plane of mandible as visualized in Fig. 5a-c6. Fig. 5f 7c 215 

plotted the site-specific change rate of BMD based on the average grayscale in the 216 

cortical bone region. Note that the BMD decreased in the first four months for all the 217 

docking sites.  218 

3.3 Mechanobiological Stimulus Distribution  219 

Fig. 6a 8 shows the longitudinal changes in the SED distribution and 220 

corresponding CT MPR images of the reconstructed mandible. Both global and local 221 

SED distributions changed significantly with time significantly. The longitudinal 222 

changes in morphology and BMD were remarkable particularly for DS1, leading to 223 

substantial variation in the SED distribution.  224 

The SED at VOIs in the cortical bone region was generally higher than that in 225 

the cancellous region in DS1 and DS2 (Fig. 6b9). At each VOI, the SED decreased with 226 

time at DS1 and DS3, especially in the superior region of DS1. While the increase in 227 

SED with time could be found in some VOIs, the SED dropped from M0 to M4 and 228 

then gradually increased till M28 (but never exceeds that at M0), at 6, 8, and 10 mm 229 
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VOIs in DS2. 230 

Linear regression analysis between the HU values and SED in VOIs indicated 231 

that there was a strong dependence on the HU values only in DS2 (p<0.05), as shown in 232 

Fig. 10. 233 

4. Discussion 234 

Both 2D MPR images and 3D volumetric analyses enabled to quantify and 235 

visualize time-dependent bone apposition and resorption in terms of morphology and 236 

BMD in this FFF reconstructive mandible. This study is believed to be the first of its 237 

kind for investigating the anatomical sequence of healing/remodeling process and its 238 

correlation with mechanobiological responses in a reconstructive mandible. 239 

The clinical process of cortical bridging at bone docking regions was found to be 240 

significantly site-specific based on the results of both 2D MPR images and 3D 241 

volumetric analyses. Biological healing at bone union is influenced by complex cellular 242 

and molecular activities, and can be affected by the dimension of bone segment gap 243 

[2535] and contact shape [9]. In this study, we set up a criterion to justify the cortical 244 

bridging, namely, no gap was observed between the two bones in the six cross sectional 245 

planes as shown in Fig. 4. According to this criterion, the contact region in DS2 246 

achieved earlier cortical bridging than the other two sites.Specifically, the contact region 247 

in DS2 achieved earlier cortical bridging than the other two sites (Fig. 4).  248 

The BMD became higher within the first four months in all the VOIs except for 249 

the cortical bone regions in DS1 (Fig. 45). Those cortical regions appeared to undergo 250 

significant resorption, while the osseous callus was generally found at the interface of 251 
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trabecular regions during the bone-healing phase [26,2736,37]. The BMDs of all the 252 

cortical bone regions in the docking sites were also found to decrease in the first four 253 

months, which was most remarkable for DS2 (Fig. 5f7c). Despite a vascularized bone 254 

graft, the lower bone vascularity may have caused the reduction of BMD on the cortical 255 

region of the fibula graft [28,2938,39]. Despite the lowered BMD, 3D volumetric 256 

analysis revealed a higher increase rate of bone volume in DS1 than the other two sites 257 

over the same time period (Fig. 5d7a). Primary bone apposition may have developed 258 

throughout formation of the osseous callus at the endochondral and periosteal areas 259 

(Figs. 4a4 and 5) [2535]. The woven bone with low BMD appears to initially form for 260 

filling the gap and reducing morphological discrepancy, which may be related to the 261 

initial volume increase in DS1. Lamellae bone with high BMD appears to form after M4 262 

[2737]. Lower bone vascularity in the distal segment of osteotomy [2939] may limit 263 

those biological healing activities in DS2 and DS3 compared to DS1, further 264 

contributing to the initial reduction in the bone volume (Fig. 5d7a).  265 

Considering the positive increase rates attributable to bone apposition at all three 266 

docking sites from M4 to M16, bone (re)modeling activity had a primary effect on post-267 

healing bone formation [30,3140,41]. Osseous callus at the interface regions in DS1 and 268 

DS3 gradually became cancellous bone, forming a natural mandibular structure during 269 

the course. Nevertheless, the healing and remodeling process at the docking site, 270 

especially with large shape discrepancy, is considered to be significantly slower than 271 

those of the general bone fracture [27,3237,42]. Note that the mandible can be distorted 272 

during daily oral function [3343]. Despite the mechanical fixation by titanium plate, the 273 

distortion can affect the mechanical stability of the docking sites, which might also 274 

delay the healing process [9]. 275 
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 Mechanical loading is known to stimulate bone healing and remodeling process, 276 

likely enhancing bone mass and functionality [3040]. The mechanobiological impetus 277 

can thus be related to the bone remodeling activity [12,13]. SED has been considered an 278 

effective stimulus to bone remodeling in long bones [3432] and as well as mandible 279 

[18,3524,33]. This study revealed the correlation between SED and healing/remodeling 280 

outcome over the time period concerned. 281 

The variation in SED distribution was attributed to the time longitudinal change 282 

in the mandibular morphology (Figs. 68 and 9), as well as load transfer in the 283 

restructured mandible, particularly through the fibula grafts. In other words, the 284 

functional load was initially transferred to the fibula graft completely via the titanium 285 

fixation plate (M0); but subsequently, a greater proportion of load transferred through 286 

the bony tissue as the extent of bone union increased. In addition, the remaining 287 

unbalanced muscle activities readapt with time [10,11]. All these factors have a 288 

collective effect on the mechanobiological responses.  289 

As shown in Fig. 710, the SED had a strong dependence on the HU values in 290 

DS2 (p<0.05). The HU value altered the load bearing capability of the fibula bone, 291 

meaning that the SED is associated with HU values. Lower bone vascularity and good 292 

bone contact condition at DS2 possibly enhance the effect of mechanobiological stimuli 293 

on BMD adaptation, which might be related to the earlier process of cortical bridging at 294 

the DS2. For DS1 and DS3, significant shape discrepancy due to reconstruction 295 

generated non-physiological stress/strain concentration, which might have distorted the 296 

distribution of SED and its correlation to remodeling.  297 

Clinically, the implant-supported denture is considered as the most suitable 298 
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option for functional rehabilitation following mandibular reconstruction [2]. Although 299 

the timing of implant placement is still controversial, several studies adopted the time 300 

for implant placement at least 6–-12 months after the reconstruction with FFF 301 

[1,36,3744,45]. Considering the cortical bridging as a predictor of bone union strength 302 

[7,3846], all the bone unions can be confirmed through CT scanning, especially in the 303 

cases with a large bone discrepancy. Specifically, favorable initial bone contacts with 304 

small shape discrepancy are considered a primary factor for earlier success of cortical 305 

bridging.  306 

There are still some limitations in this study. Constrained by the clinical protocol 307 

and radiation dosage allowance, the scanning resolution of CTs could have affected 308 

modeling accuracy. The FE analyses still included several assumptions, such as 309 

simulation under static loading conditions and rotational movement on the mandibular 310 

condyles. The applied muscle forces did not precisely reflect specific condition of this 311 

subject; plus the muscle forces are anticipated to change over time after reconstruction 312 

[39,4047,48]. Consequently, the resultant reaction responses on both 313 

temporomandibular joints might become asymmetric and physiologically complicated. 314 

Finally, while the study was featured as patient-specific, the results were based on only 315 

one particular subject. In addition, other patient’s factors, such as the systematic 316 

background and the treatment process, could be generally the decisive factors to the 317 

bone healing and remodeling process at the docking sites. Further evaluation and data 318 

acquisition of other subjects with inevitably varied conditions are necessary before 319 

generalizing these clinical and biomechanical findings.  320 
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5. Conclusion 321 

This newly developed analysing methodsanalysis procedure provided a 322 

quantitative clinical follow-up of mandibular reconstruction with fibula free flap (FFF) 323 

and fundamental understanding of time-dependent biomechanical responses in the 324 

reconstructed mandible. It was found that the bone healing and remodeling process at 325 

the docking sites were site-specific; and cortical bridging in the osteotomized region 326 

took place faster than that in the other docking sites between mandibular and fibula 327 

bones for the specific patient concerned. Within the limitation of this study, the 328 

anatomic position and the discrepancy of initial shape at the docking sites between the 329 

host mandible and fibula graft affected the bone healing and remodeling process. It 330 

revealed divulged a correlation between mechanobiological stimulus (strain energy 331 

density - SED) and the longitudinal change in bone mineral density (BMD) and 332 

morphology, especially at the osteotomized region. The longitudinal CT data and 333 

mechanobiological correlation generated in this study provided new insights into 334 

patient-specific surgical planning and occlusal rehabilitation.  335 

  336 
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Captions to illustrations 1 

Figure 1. Intraoperative view illustrating the fibula bone affixed to the titanium 2 

fixation plate. 3 

White triangle: mandibular bone, Black triangle: fibula bone. Green arrows: Screw 4 

position (8 of 11 screws are shown in this picture). The flap pedicles were anastomosed 5 

with the thyroid artery and the external jugular vein.  6 

 7 

Figure 2. Clinical X-ray and CT images for assessment. 8 

(a) Postoperative radiograph (M0). Yellow boxes: three investigated docking sites (DS1, 9 

DS2 and DS3) for the bone union. Green triangles: reference points for defining 10 

mandibular plane for 2D MPR (multiple planar reconstructions) analysis. (b) CT MPR 11 

cross-sectional images of contact interface perpendicular to the mandibular plane (green 12 

line in (b)) at three docking sites at M0; brown: mandible, yellow: anterior fragment of 13 

fibula bone, green: posterior fragment of fibula bone. Lateral lines: planes for analysis, 14 

boxes: cubic (2 mm
3
) volume of interests (VOIs).  15 

 16 

Figure 3. Procedure of 3D image registration and computational model for finite 17 

element analysis. 18 

(a) Procedure of 3D image registration for investigating the longitudinal changes in 19 

bone surface profile and mineral density; the example for the DS1 between M0 model 20 

(orange) and M4 model (blue). Titanium fixation plate was selected as the reference 21 

geometry for the registration. (b) 3D modeling for the patient’s jaw model (M0) with 22 

Figure Legends



2 

 

non-uniform rational B-spline (NURBS).  23 

 24 

Figure 4. MPR CT image analysis. 25 

(a) DS 1, (b) DS 2, (c) DS 3. Individual planes and VOIs are defined in Figure 2. Each 26 

plane position stated in terms of the distance from the bottom. Both top and bottom 27 

planes included the cortical bone region of fibula graft at M0.  28 

 29 

Figure 5. Time-dependent changes in HU value. 30 

(a) DS 1, (b) DS 2, (c) DS 3.  31 

 32 

Figure 6. Volumetric analysis of bone morphology changes by 3D image 33 

registration and superimposition.  34 

(a) DS 1, (b) DS 2, (c) DS 3 35 

 36 

Figure 7. Volumetric analysis of bone morphological changes. 37 

(a) Volume increase rate in the cortical bone region, (b) Site-specific volume change 38 

rate (%), (c) Site-specific BMD (greyscale) increase rate (%) based on the grayscale on 39 

the cortical bone region. 40 

 41 

Figure 8. Mechanobiological stimulus distributions. 42 

(a) M0, (b) M4, (c) M16, (d) M28. SED distribution was shown at the different time 43 
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points and in different regions along with corresponding CT MPR images (anterior end 44 

of fibula graft in DS1 and posterior end of fibula graft in DS3). 45 

 46 

Figure 9. Average values of SED in each VOI assigned in the same location as in 47 

the CT MPR image.  48 

VOI position stated in terms of the distance from the bottom at each docking site shown 49 

in Fig. 2. 50 

 51 

Figure 10. Linear regression analysis between CT Hounsfield Unit (HU) and SED 52 

in volume of interests (VOIs)  53 

The VOIs were on the same location in each multiple planar reconstruction (MPR) 54 

image at each docking site shown in Fig. 2. *P < 0.05, **P < 0.01. 55 
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