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Highlights

• Quantitative EEG methods have potential to provide clinically relevant informa-
tion.

• Two examined methods correctly depict the effects of resective epilepsy surgery.

• Their broad consensus supports their application in presurgical evaluation.

• Cross-method validation could help overcome the task’s missing ground truth.

Abstract

Background: Quantitative analysis of intracranial EEG is a promising tool to

assist clinicians in the planning of resective brain surgery in patients suffering from

pharmacoresistant epilepsies. Quantifying the accuracy of such tools, however, is

nontrivial as a ground truth to verify predictions about hypothetical resections is

missing.

New Method: As one possibility to address this, we use customized hypotheses

tests to examine the agreement of the methods on a common set of patients. One

method uses machine learning techniques to enable the predictive modeling of EEG

time series. The other estimates nonlinear interrelation between EEG channels.

Both methods were independently shown to distinguish patients with excellent post-

surgical outcome (Engel class I) from those without improvement (Engel class IV)

when assessing the electrodes associated with the tissue that was actually resected

during brain surgery. Using the AND and OR conjunction of both methods we

evaluate the performance gain that can be expected when combining them.

Results: Both methods’ assessments correlate strongly positively with the sim-

ilarity between a hypothetical resection and the corresponding actual resection in

class I patients. Moreover, the Spearman rank correlation between the methods’

patient rankings is significantly positive.

Comparison with Existing Method(s): To our best knowledge, this is the first

study comparing surgery target assessments from fundamentally differing techniques.

Conclusions: Although conceptually completely independent, there is a rela-

tion between the predictions obtained from both methods. Their broad consensus

supports their application in clinical practice to provide physicians additional infor-

mation in the process of presurgical evaluation.

Key words: epilepsy; quantitative EEG; resective surgery; predictive modeling;

functional network; method validation
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1 Introduction

Epilepsy is one of the most prevalent neurological disorders and affects at least 50 million
people worldwide (World Health Organization, 2001). In approximately one third of
all patients seizure freedom is not achieved by pharmaceutical therapies and in these
cases surgical treatment should then be considered. The goal of epilepsy surgery is to
selectively resect brain tissue with the aim that this procedure renders the patient seizure
free. However, there is currently no diagnostic method to unequivocally delineate the
neuroanatomical areas that are necessary and sufficient to generate epileptic seizures,
the epileptogenic zone (EZ) (Rosenow & Lüders, 2001; Lüders et al., 2006). Instead,
the area showing first ictal epileptiform EEG signals (the seizure onset zone, SOZ) is
often used in clinical practice as a proxy for the EZ, since the SOZ is thought to overlap
with the EZ (Rosenow & Lüders, 2001). However, the exact boundaries of the SOZ
and the actual extent of overlap with the EZ for any given patient remain unknown.
Moreover, a recent study found that to attain seizure freedom, complete resection of
the SOZ was necessary in only one out of eight pediatric patients (Huang et al., 2012).
Together with evidence that long-term seizure freedom is only achieved in up to 2/3 of
patients who undergo surgery (Wiebe et al., 2001; Téllez-Zenteno et al., 2005; de Tisi
et al., 2011; Engel et al., 2012), doubt can be cast regarding whether the SOZ is the
best approximation to the EZ, or whether alternative methods to identify which regions
of tissue to resect could be beneficial. An additional challenge to the use of the SOZ is
that it is determined predominantly by visual analysis of EEG recordings, which is not
only time consuming but also prone to inter-rater variability.

To address these shortcomings, a variety of quantitative intracranial EEG (iEEG)
analysis methods have been developed to aid identification of candidate tissue for surgical
resection. Many different approaches are used to assign estimates about epileptogenic-
ity of brain tissues associated with specific channels of intracranial electrodes (see e.g.
(Pereda et al., 2005; Lehnertz et al., 2009; Wendling et al., 2010; van Mierlo et al.,
2014)). Some studies examined the relation of quantitatively determined channels with
the channels determined visually as the site of seizure onset (see e.g. (Urrestarazu et
al., 2007; Worrell et al., 2008; Jacobs et al., 2009; Gnatkovsky et al., 2011, 2014; Boido
et al., 2014; Geier et al., 2015)). Others explicitly verified the potential of quantita-
tive measures to act as biomarkers of the epileptogenic zone by its relation with the
actually resected brain tissue or the post-surgical seizure control. Some by capturing
high-frequency oscillations (see e.g. (Jacobs et al., 2010; Wu et al., 2010; Modur et al.,
2011; Park et al., 2012; Roehri et al., 2017)), others using graph theory to determine
nodes’ values of connectivity, centrality or similar (see e.g. (Jung et al., 2011; Zubler
et al., 2015; Wilke et al., 2011; van Mierlo et al., 2013)) and also different techniques
(see e.g. (Bartolomei et al., 2008; J.-Y. Kim et al., 2014; J. S. Kim et al., 2010)). Many
of these methods have shown to provide useful information in the preoperative process.
Rummel et al. recently investigated how post-operative seizure control is associated
with different qEEG measures representative for four different classes of signal analysis
methods (Rummel et al., 2015). They calculated four different measures and salient
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channels were selected by a data-driven manner for each measure. For three of these
measures, the overlap between salient channels and actually resected channels was sig-
nificantly larger for class I patients compared to class IV patients. A measure derived
from a nonlinear interrelation matrix could best differentiate between actual resections
with favorable and unfavorable outcome by identifying their overlap with the channels
associated with the resected brain tissue.

Computational models capable of drawing inferences about specific hypothetical re-
sections under modifiable input conditions have been developed rather recently. Hutch-
ings et al. used diffusion tensor imaging data and showed their model to successfully
identify regions known to be involved in temporal lobe epilepsy (TLE), however, it was
not validated with actual patient outcomes (Hutchings et al., 2015). Sinha et al. used
interictal electrographic recordings to generate their model, which then in simulated re-
sections showed agreement with the clinical outcome for five of six patients (Sinha et
al., 2014). These two models allow to make predictions on the ictogenicity of individual
nodes of a derived network. Sinha et al. recently extended their approach to make
predictions about the overall efficacy of a surgical resection by averaging the seizure
likelihood of all nodes under a resection and comparing it to the average obtained from
random resections (Sinha et al., 2016). When simulating the actual resections the pre-
dicted outcomes coincided with the actual outcomes in 13 of 16 patients. Goodfellow
et al. introduced a model that is able to quantify local and global ictogenicity of a
network under perturbations of specific nodes (Goodfellow et al., 2016). They found
that the overlap between resected tissue and the nodes having the biggest ictogenici-
ties is significantly larger in patients with good response to surgery than in class IV
patients. Furthermore, the model predicts a greater reduction in network ictogenicity
when simulating actual resections of class I patients than for class IV patients. Based
on the global network ictogenicity they classified correctly 14 out of 16 patients (AUC =
0.87). Steimer et al. presented a distributional, soft clustering model for the predictive
modeling of multivariate, peri-ictal iEEG time series (Steimer et al., 2017). This model
permits patient-specific predictions about seizure propensity under arbitrary simulated
resections of brain tissue. Whereas the simulated resection of the brain areas that were
actually surgically removed reduces the model’s seizure probability in most Engel class I
patients, for most Engel class IV patients the model confirms the inefficiency of the ac-
tual resection to impede an imminent seizure. Moreover, successful actual resections are
significantly separated from unsuccessful ones and from equally-sized random resections
while unsuccessful actual resections cannot be separated from random resections.

The availability of many alternative methods to predict which tissue should be re-
sected raises the issue of selecting an appropriate method for a given patient. Unfor-
tunately, because the true effect of all possible resections except those actually carried
out cannot be known, determining accuracies of such methods is always restricted to
very few data points and thus remains vague. A starting point to address this is to
explicitly compare predictions arising from different methods and quantify, in the first
instance, to what extent predictions differ, if at all. Providing a framework to answer
this question would significantly advance the clinical usefulness of quantitative methods
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in epilepsy surgery and other treatments for neurological and neuropsychiatric disorders
more generally.

For this cross-method verification of two fundamentally differing methods we focus
on comparing two methods that have recently been developed and tested at our institute
and have shown convincing performances by quantitative comparison with the actual re-
section and outcome in patients undergoing surgery. That is, we directly compare the
assessments of hypothetical resections by the nonlinear interrelation measure examined
by Rummel et al. (Rummel et al., 2015) with the resections’ seizure suppressing efficien-
cies as estimated by the model of Steimer et al. (Steimer et al., 2017). Both methods
have shown promise in the prediction of tissue resection in epilepsy surgery. However,
it remains unclear if their predictions are coherent beyond the common feature that
successful actual resections are recognized as effective and thus get high performances.
To investigate the extent to which predictions from these methods are in agreement, we
compare in a first part the individual performances of the two methods for a common
set of patients. In addition, we examined the performance gain that can be expected
when combining the methods’ binary classifiers. In a second part we present the results
of the investigation looking for a link between these methods’ classification of arbitrary
resections. Finally, we discuss the obtained results and address issues of possible future
work aiming to derive objective markers of target tissue or to assess such approaches.

2 Methods

2.1 Patients & Data

In this study we included the peri-ictal intracranial EEG recordings of 20 patients of the
epilepsy surgery program of the Inselspital Bern (15 female, 5 male; median age 31y, IQR
16y, range 10-66y). A precondition for the selection of patients was the availability of the
information about the resected brain tissue (incl. the associated electrodes) and their
outcome according to the Engel classification scheme (Engel et al., 1993). We included
patients who were post-surgically free of disabling seizures and auras for at least one year
(Engel class I) or who showed no worthwhile improvement following resection (Engel class
IV). All patients are listed with further details in Table I.
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Table I: Patients included in this study.
Indicated is the outcome of the resective surgery according to the Engel classification
scheme, the syndrome, laterality and etiology, the number of implanted electrodes (el.),
the number of electrodes associated with resected brain tissue (res. el.) and the number
of electrodes showing epileptiform activity at least 10% of the total seizure time (epi.
el.). For easier comparison with earlier publications the labels used in (Steimer et al.,
2017) and (Rummel et al., 2015) are also given (hyphen means this patient was not used
in the respective publication). Abbreviations: MTLE: mesial temporal lobe epilepsy,
LTLE: lateral temporal lobe epilepsy, PLE: parietal lobe epilepsy, FLE: frontal lobe
epilepsy, TLE: temporal lobe epilepsy, FTE: fronto-temporal epilepsy, R: right, L: left.
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All recordings were visually inspected by an experienced epileptologist/electroencephalographer
(K.S.) to remove channels exhibiting permanent artifacts (<5% of channels) and to deter-
mine the clinical seizure onset (the time of earliest EEG change associated with seizures)
and its corresponding zone (SOZ). Furthermore, pre- and post-operative MR images and
post-implantation CT images were coregistered to identify the resected brain tissue and
the position of the electrodes and thereby the channels recording from the subsequently
resected tissue. These channels constitute the actual resection. A more detailed descrip-
tion of this procedure can be found in (Rummel et al., 2015). In addition, the number
of channels showing epileptiform activity at least 10% of the total seizure time was de-
termined according to the channel-wise absolute signal slope as described in detail in
(Schindler et al., 2007). Due to the fast low-amplitude and slow high-amplitude EEG
activity at the onset of and during intracranially recorded seizures this quantity increases
and is thus an appropriate marker of epileptiform activity.

As argued in detail in Steimer et al. (Steimer et al., 2017), since patients are supplied
again with seizure suppressing medication after resection, early recordings are presum-
ably more representative for the postoperative state because remnants of the medication
(withdrawn after implantation) may still be potent. Therefore we used the first occur-
ring seizure after implantation except for patients 8 and 13 where we used the second
seizure because the first one was corrupted by artifacts. In both examined approaches
the intracranial EEG data is used at a sampling rate of 512 Hz, re-referenced against
the median of all artifact-free channels, band-pass filtered between 0.5 and 150 Hz using
a fourth-order Butterworth filter (applying forward and backward filtering to minimize
phase shift) and then subdivided into consecutive overlapping windows. Further prepro-
cessing steps of both approaches are specified in their descriptions in Appendix A.

Retrospective data analysis had been approved by the ethics committee of the Canton
of Bern/Switzerland. All patients gave written informed consent that their EEG data
may be used for research purposes.

2.2 Distributional Soft Clustering of Multivariate Time Series

The goal of this approach is to characterize certain signal dynamics that are representa-
tive for different epochs of the peri-ictal segment of an EEG recording. These particular
dynamics, stored as states of a model generated based on the EEG recording, ideally
represent different brain states (e.g. interictal, seizure onset, etc.). The states that are
active during the seizure are considered the ictal states while the others are the non-ictal
states. The model also specifies the probabilities of all states to emerge from any other
state. The models were generated on a peri-ictal part of the iEEG recordings includ-
ing the complete seizure and the preceding 180s of the preictal period. It is necessary
to include preictal data to allow the model to learn non-ictal states and the transition
to ictal states (seizures). A more detailed description of this method can be found in
Appendix A.1.

With this data-specific model, it is possible to predict how probable each repre-
sentative state is for a given time point under changeable input conditions. Phrased
differently, it is possible to alter the input signals and the model predicts how the sys-
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tem’s dynamics evolve from a given time point on. In the present case, altering the input
signals means simulating resections of certain brain regions (by eliminating the input sig-
nals of the electrodes associated with these regions), and predicting the future dynamics
means giving the probability of developing ictal states. We used the same performance
measure to rate simulated resections as introduced by Steimer et al. (Steimer et al.,
2017). Accordingly, when talking about this soft clustering (SC) approach, performance
of a resection describes how much more probable the model remains in a non-ictal state
under this very resection than without any resection. In equation 1 (cf. Equation 2.2
in (Steimer et al., 2017)), 〈pno,ict〉 is the summed probability of all ictal states when
no channels are virtually resected, 〈pres,ict〉 is the summed probability of all ictal states
when a resection res is simulated and 〈pres,ict〉norm is the normalized dynamical out-
come performance that is used as performance measure of the soft clustering approach
(subsequently referred to as SC performance).

〈pres,ict〉norm :=
〈pno,ict〉 − 〈pres,ict〉

〈pno,ict〉
(1)

2.3 Multivariate Nonlinear Interrelation based Functional Networks

This approach defines functional networks with a patient’s EEG channels as nodes and
the edges defined by their nonlinear interrelations. As a measure of nonlinear interrela-
tion, we used mutual information. In order to generate assessments of resections, it is
necessary to quantify some property of each node of the functional network. As suggested
in (Rummel et al., 2015) we used the node strength of the functional connectivity matrix
as channel-wise quantifier of nonlinear interrelation. For this approach, we considered
data from the first half of a seizure since this segment of the underlying data has been
shown to contain information relevant for the prediction of surgical outcomes (Rummel
et al., 2015; Goodfellow et al., 2016). A more detailed description of the derivation of
the mutual information matrix and the node strength can be found in Appendix A.2.

When talking about the functional network (FN) approach, the performance of a
resection is the fraction of nonlinear interrelation (specified by the node strength) that
is present in the channels of this resection. In equation 2, n is the number of channels
and channel i has node strength si. For a virtual resection res, the collective node
strength sres is the sum of the channels’ individual values in that resection divided by
the summed node strength of all channels. So the performance measure of this approach
is proportional to the fraction of the total node strength that is comprised by a virtual
resection (subsequently referred to as FN performance).

sres :=

∑
i∈res si∑n
i=1 si

(2)

Since the distribution of node strength across channels and the number of channels
in a resection vary between patients, each patient’s distribution of performances of non-
overlapping random resections was normalized to have a mean of 1 and the values of
the actual resections and the overlapping resections were adjusted with the respective
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patient’s normalizing factor (see section 2.4 for details on random resections). This
simplifies comparison and aggregation of results, however, FN preformance values can
consequently not be interpreted as the standardized fraction of the total node strength.

2.4 Comparison of Methods

The main goal of this study was to investigate, to what extent two different quantitative
analysis methods rate resections similarly. To address this question we sought to study
not only the actual resections that were performed, but also a suite of hypothetical resec-
tions. This allows us to assess more generally whether insight would differ across different
methods. As our sample sizes (patient numbers) are small and underlying distributions
of measures are unknown, we used bootstrapping to determine the significance of test
results. For each test we generated appropriate data that constituted the distribution of
the test statistic under the null hypothesis and the relative position of the actual data
in this distribution determined the corresponding p-value. Specification of each test’s
null hypothesis and a detailed description of what is done in every performed test using
bootstrapping can be found in Appendix B. This procedure is distribution-independent
and takes the possibility of sporadic samples not representative of the population into
consideration (Adèr et al., 2008). The significance level α for all tests was 0.05.

To compare methods applied to patients’ actual resections we examined how each
measure separates the two outcome groups. We tested whether the mean ratings of the
actual resections of both groups are equal (see Appendix B.1 for test details). We further
assessed the extent to which the two measures yielded equivalent rankings for patients,
in terms of the magnitude of “performance”. We did this by computing Spearman’s rank
correlation coefficient between the resulting patient ranks derived from both methods
(see also Appendix B.2). We also calculated each method’s performance as binary clas-
sifier by computing the receiver operating characteristic (ROC) and the corresponding
area under the curve (AUC). In addition, we examined how decisions about the benefit
of resections were influenced when the separate binary classifier performances of both
methods were combined. To do so, we determined the optimal binary classifiers by set-
ting the threshold according to the point on the ROC-curve with minimal distance to
100% sensitivity and specificity and combined them by an AND-conjunction (resections
are only assessed as beneficial if both methods agree on it) and by an OR-conjunction
(resections are assessed as beneficial if at least one method concludes so). Then, we
counted for all classifiers the correct and incorrect classifications and calculated the cor-
responding sensitivities, specificities, and positive and negative predictive values. In this
context true positives and true negatives are correctly classified beneficial resp. not ben-
eficial resections, false negatives are resections assessed as not beneficial although they
rendered the patient seizure free in reality and false positives are resections assessed
as beneficial although they did not have any curative effect in reality. A similar proce-
dure was applied to seizure prediction algorithms and found to increase the classification
performance (Feldwisch-Drentrup et al., 2010).

In order to extend our insight into the performance and comparison of our methods
beyond resections that were actually performed, we generated a suite of artificial resec-
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tions. For each patient we created two different sets of random resections of equivalent
size to the actual resection: 3000 random resections were not allowed to overlap with
the actual resection and 300 random resections were specified to overlap with the actual
resection in a varying number of channels. Using the non-overlapping random resections
of all patients, we determined how likely the distribution of performances of these resec-
tions overlapped with the actual resections of each outcome class. In order to do this we
used the L1-based distance between the cumulative distribution functions to measure
their similarity (see also Appendix B.3).

Using overlapping random resections, we determined to what extent the rating of a
random resection depends on its overlap (in terms of channels) with the actual resection.
Let the number of channels in the actual resection be m. We generated m groups, each
containing b300/mc random resections, and the resections of every group overlap with
the actual resection in a number of channels between 0 and m−1. All random resections
were then evaluated by both methods and we determined the dependence of resection
ratings on their overlap with the actual resection. We quantified this dependence with
Pearson’s product-moment correlation coefficient and checked for a significant differ-
ence between class I and class IV patients (see also Appendix B.4). To determine the
dependences between ratings and overlaps for groups of patients, an additional step is
necessary because the actual resections of different patients contain different numbers of
channels. First, we transformed the size of every resections’ overlap to its fraction of the
corresponding actual resection. According to their overlap fractions, we then split all
virtual resections of the selected patients into 9 bins between 0 and 1 (nine is the mean
size of all actual resections). Consequently, if a patient’s actual resection contains less
than nine channels, its virtual resections do not contribute to all bins and vice versa, if
the actual resection contains more than nine channels, some virtual resections with dif-
ferent overlaps contribute to the same bin. In this way, it is possible to observe the same
characteristic as before but for groups of patients, namely class I and class IV patients.
We then determined separately for both outcome classes the Pearson’s product-moment
correlation coefficients between the bin-wise mean ratings of both methods (including
the actual resections as an additional bin representing full overlap) and the overlap (the
bin centers). In addition we calculated the correlation coefficient and its significance
among the ratings (see also Appendix B.5). To determine the relation between the
methods’ ratings excluding the overlap as an explanatory variable, we used the concept
of partial correlation. We computed the residuals of both ratings using the overlap as
regressor and then determined the correlation coefficient between these residuals. This
allows us to assess the conditional independence of the ratings, that is, if there is a direct
dependence among them or only via the overlap as a third variable (see also Appendix
B.5).

3 Results

We first studied the performance of each method in terms of their ability to separate
class I and class IV patients. We found that using the soft clustering approach the
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majority of the random resections did not considerably decrease the likelihood of the
seizure states compared to no resection (most random resections are clustered towards
0 performance in Figure 1a). The actual resections of all class I patients are unlikely
to originate from this distribution (p = 5.9 ∗ 10−4, test section B.3). In contrast, the
actual resections of all class IV patients are very likely to originate from the distribution
of random resections (p = 0.467, test section B.3). A notable outlier is Patient 15 for
whom the model wrongly predicts that the actual resection would be highly seizure
prohibiting. We also found that some random resections had high performances. This
is not surprising as it is very likely that resections other than the actual resection could
have had a curative effect for the patient if performed. Class I and class IV patients
are also significantly separated by the class-wise performances of the patients’ actual
resections (p = 3.1 ∗ 10−4, test section B.1). Using SC performance as a classifier, the
area under the ROC curve is 0.85, indicating good patient-level classification.

Figure 1b illustrates the ability of the functional network approach to separate class I
from class IV patients. As for SC, most actual resections of class I patients were found to
lie outside or at the very edge of the distribution of random resections (p = 5.7∗10−4, test
section B.3), whereas class IV patients showed strong overlap with this distribution (p =
0.294, test section B.3). Again, patient 15 was misclassified as having good response. For
the FN measure, patient 5 was also clearly misclassified, as a poor, rather than a good,
responder. Despite these two failures the method significantly separates class I and class
IV patients by the class-wise performances of their actual resections (p = 1.6∗10−4, test
section B.1). The ROC analysis for the FN measure yielded an area under the ROC
curve of 0.86.
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Figure 1: Assessments of random and actually carried out resections by the soft clustering
(a) and the functional network (b) approach. Ratings of all patients’ random resections
are accumulated in the histograms and ratings of actual carried out surgeries are shown
beneath as red diamonds for class I patients or blue diamonds for class IV patients.
The ROC-curves illustrate the methods’ performances as binary classifiers. The point
on the ROC-curve with minimal distance to perfect performance (cross) determines the
threshold of the optimal binary classifier (dotted vertical line).

In conclusion, both methods are individually able to distinguish class I from class
IV patients by rating the actual resections and also by comparing them to random
resections. In addition, the rankings of the patients by both methods correlate positively
and significantly: Spearman’s ρ = 0.60, p = 0.0027 (test section B.2). This correlation
is visualized in Figure 2.
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Figure 2: Comparison of the patients’ rankings by both methods. Red diamonds show
class I patients while blue diamonds show class IV patients with the corresponding
patient label to the right. The dotted diagonal indicates complete agreement between
the ranking of both methods. The rankings of both methods correlate positively and
significantly (Spearman’s ρ = 0.60, p = 0.0027).

We further determined the performances of the optimal binary classifiers of both
methods and their combinations by AND- and OR-conjunction. The thresholds lie
between patients 12 and 20 for the SC approach (see Figure 1a) and between patients 10
and 19 for the FN approach (see Figure 1b). The measures of all classifiers are given in
Table II. These thresholds additionally point out a considerable difference between the
methods. While in the SC approach the random resections above this threshold account
for about 25% of all random resections, it is only about 2% in the FN approach.

SC FN AND-conj. OR-conj.

False negative 2 2 4 0
False positive 2 1 1 2

Sensitivity 0.85 0.85 0.69 1.0
Specificity 0.71 0.86 0.86 0.71
PPV 0.85 0.92 0.90 0.86
NPV 0.71 0.75 0.60 1.0

Table II: Binary classifier performances.
Classification errors and corresponding measures for the separate optimal binary classi-
fiers of both methods and their combinations. Abbreviations: PPV: positive predictive
value, NPV: negative predictive value.

Next, we analyzed the methods’ dependences on a random resection’s overlap with
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the actual resection. We grouped random resections according to the size of their overlap
with the patient’s actual resection and evaluated how the methods’ assessments are
related to this overlap. Figure 3 shows the results of one class I and one class IV
patient. It is clear that both methods rate virtual resections with a larger overlap with
a higher performance in the class I patient. However, no such dependence exists for
the class IV patient. Panels (b) and (d) again indicate a relation between the two
methods. Whereas the methods’ common positive trend (increasing performance with
increasing overlap) observable in panel (b) appears in most class I patients, the negative
trend (decreasing performance with increasing overlap) observable in panel (d) is not a
general characteristic of class IV patients.
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Figure 3: Single patients’ evaluation of random resections having a defined overlap with
the actual resection. Panels (a) and (b) show the results for class I patient 8. Panel
(a) shows the separate ratings of all 300 virtual resections by both methods (top: SC,
bottom: FN). The overlap of the random resections with the actual resection is indicated
on the x-axis and also color coded. The actual resection is shown as diamond. Panel
(b) shows the group-wise means of both methods with errorbars indicating the standard
error of the mean and the same color coding for the overlap as in panel (a). Panels (c)
and (d) show the same for class IV patient 16.

We quantified the relationship between overlap and performance using the correlation
coefficient for each patient. Results are shown in Table III. The null hypothesis that both
classes have the same mean correlation coefficient, can be rejected for the soft clustering
approach (p = 0.0403, test section B.4) and for the functional network approach (p =
0.0051, test section B.4). The high correlations of most class I patients in the functional
network approach are induced by the fact that this approach’s rating of a set is the
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fraction of node strengths comprised by the channels in this set. For this reason it is
inherent to the functional network approach that ratings of sets change gradually with
cumulative alterations. Thus, the more channels of the actual resection do have among
the highest node strength values, the more likely any additive exchange of channels will
cause the set’s fraction of total node strength to decrease. This consequently induces
a positive correlation between overlap and ratings. Hence, these results confirm that
the functional network approach has a strong tendency to assign high node strengths to
actually resected channels in class I patients.

Patient Class CC SC CC FN

1 I 0.29 0.94
2 I 0.20 0.91
3 I -0.07 0.33
4 I 0.59 0.76
5 I 0.60 -0.25
6 I 0.61 0.94
7 I 0.22 0.89
8 I 0.75 0.93
9 I 0.39 0.58

10 I 0.32 0.71
11 I 0.59 0.93
12 I -0.02 0.97
13 I -0.18 0.76

14 IV -0.16 -0.02
15 IV 0.55 0.94
16 IV -0.23 -0.40
17 IV -0.41 0.46
18 IV 0.04 0.31
19 IV 0.59 0.64
20 IV 0.07 -0.14

Table III: Pearson’s correlation coefficient between the rating of random resections and
their overlap with the corresponding actual resection.
Classes have significantly different means in both, the soft clustering approach (p =
0.0403) and the functional network approach (p = 0.0051).

Figure 4 visualizes the results for class I and IV patients grouped separately. For
class I patients, a significant correlation between the overlap of random resections (with
the actual resection) and their rating exists in the functional network approach (ρ =
0.9707, p = 0, test section B.5) and in the soft clustering approach (ρ = 0.8584, p =
6.5 ∗ 10−4, test section B.5). For class IV patients, the ratings of the soft clustering
approach do not show significant correlation with the overlap of virtual resections (ρ =
0.2476, p = 0.245, test section B.5), while the ratings of the funtional network approach
do correlate significantly with the overlap of virtual resections (ρ = 0.5619, p = 0.046,
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test section B.5). This correlation is obviously induced by the strong correlations of
patients 15 and 19 (Table III) since without them the significant correlation disappears
(ρ = −0.3199, p = 0.788, test section B.5). Accordingly, the ratings of the two methods
significantly correlate positively for class I patients (ρ = 0.8748, p = 8.2 ∗ 10−4, test
section B.5), whereas for class IV patients the same cannot be stated (ρ = 0.1303, p =
0.366, test section B.5).

When the overlap is used as an explanatory variable for the ratings of each method
and the correlation is calculated on the residuals, the significant correlation between the
methods’ ratings disappears also in the outcome class I group (ρ = 0.3369, p = 0.169, test
section B.5). This suggests the ratings of the methods to be conditionally independent
given the overlap of a hypothetical resection.
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Figure 4: Comparison of both methods’ evaluations of all random and actual resections
of all patients, assembled class-wise and grouped by their overlap with the corresponding
actual resection. All random resections of all patients in an outcome class are split into
nine bins according to their overlap as fraction of the respective patient’s actual resection.
The bin-wise means of both methods’ ratings are shown with the corresponding overlap
color coded. The mean of the class’ actual resections is shown as diamond (red for class
I and blue for class IV). Errorbars indicate the standard error of the mean. Panel (a)
shows the relation of both methods in class I patients and panel (b) the same for class
IV patients. (The larger errorbars for the groups of actual resections compared to those
of random resections is due to the much smaller number of data points in the groups of
actual resections.)

Although apparently the methods’ ratings do not generally coincide for resections
not overlapping with a successful actual resection, such cases exist. In Figure 5 we show
a resection of class IV patient 16 that is assessed by both methods as highly beneficial
and among the best random resections without overlap with the actual resection. Its
performance values are 0.88 in the SC approach and 0.68 in the FN approach whereas
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this patient’s actual resection has performance values of 0.12 (SC) and 0 (FN). While
the actual resection was focused on the temporal pole, the methods’ selection targets
mainly the posterior areas of the temporal lobe. This resection would however hardly
be performed in reality because of possible compromise to the posterior language area
(including Wernicke’s area), something the quantitative methods do not account for
at present. Irrespective of its overlap with eloquent cortex it is impossible to verify
the benefit of such a hypothetical resection retrospectively, a fundamental limitation
regarding the validation of quantitative methods we further discuss in section 4.

Figure 5: Representation of the actual resection of class IV patient 16 and a hypothetical
resection assessed by both methods as highly beneficial. A pre-surgical MR recording
was coregistered with a post-implantation CT recording do determine the position of
the iEEG-electrodes (colored dots). The channels removed during the actual resection
are located around the temporal pole (blue dots) whereas the hypothetical resection is
mainly located in the posterior temporal lobe (yellow dots).

4 Discussion

We analyzed the agreement of two methodologically entirely different methods’ assess-
ments of possible epilepsy surgery targets. One method is based on functional network
theory and estimates the nonlinear interrelation between EEG channels (here referred
to as functional network approach). It defines EEG features that stand out from the
background in a dynamic and data-driven manner. Thus, it assigns properties to time
series but does not permit predictions for future time points where no information about
the time series is available or if the underlying system is modified. The other method
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uses machine learning techniques to predict the likelihood of a seizure state (here re-
ferred to as soft clustering approach). A probabilistic clustering model for iEEG time
series is derived which allows for predictions about the effects of resective surgery under
controlled modulation. In particular, it provides the possibility to judge a set of virtually
resected channels collectively instead of each channel separately. Despite their different
procedures, both can be used to predict the effect of hypothetical resections.

The statistical claims in this study are limited by the restricted amount of data that
was available and matched our inclusion criteria, especially the need to have knowledge
about the post-surgical outcome for at least 1 year. To countervail this limitation we
used bootstrapping in all hypothesis tests. Also, one should note that the fraction of
resected electrode channels was significantly smaller in class IV patients compared to
class I patients (test analog to section B.1 using fractions of resected electrodes instead
of ratings: p = 0.0197). This difference is consistent with the fact that in class I patients
a better hypothesis of the SOZ could be generated based on non-invasive procedures
before the implantation and thus the intracranial electrodes were more targeted towards
this area. Having this in mind, it is not surprising that the fraction of resected channels
also correlated with the methods’ ratings. While some data suggested a true relation
between resection size and ratings (e.g. patient 15: large resection and high ratings
despite class IV), others contradicted this assumption (e.g. patients 12 and 13: high
ratings albeit small resections). Additional class I patients with small resections and/or
class IV patients with large resections will be necessary to identify a potentially true,
unbiased relation between resection size and rating. To test for a possible influence by the
area of seizure spread, we determined the fraction of channels to where the ictal activity
propagates during the seizure. If a channel showed epileptiform activity at least 10% of
the total seizure time according to a procedure described in (Schindler et al., 2007) it
was considered as involved in the seizure. The fraction of involved channels cannot be
separated significantly outcome-class-wise (test analog to section B.1 using fractions of
involved channels instead of ratings, p = 0.112), nor do they significantly correlate with
the fractions of channels actually resected (test analog to section B.2 using fractions of
involved and resected channels instead of rankings, p = 0.302) or the assessments of
either method (test analog to section B.2 using fractions of involved channels and each
method’s rating instead of rankings, both p > 0.65). Thus, we conclude the seizure
spread to have no relation with the outcome, the size of the actual resection or the
ratings of the examined quantitative methods.

First, we compared the ability of each method to correctly assess actual resections.
Both methods were able to separate class I and class IV patients by the ratings of the
actual resections and their probabilities to originate from the distribution of random
resections’ ratings (Figure 1). In addition, the ranking of patients according to the
performances of their actual resections correlated positively and significantly between the
two methods (Figure 2). We also defined the optimal binary classifier of both methods
and compared their separate performances to their combined performances to determine
a potential benefit from combining multiple quantitative methods. In general, the false
positive (false negative) rate of an AND-conjuncted (OR-conjuncted) classifier is at
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most the lowest value of the separate classifiers, and thus its specificity (sensitivity)
is at least as good as the best separate specificity (sensitivity). An AND-conjuncted
classifier is thus rather preferable if the individual classifiers have high sensitivities but
low specificities and vice versa, an OR-conjuncted classifier is rather preferable if the
individual classifiers have high specificities but low sensitivities. In our case, no clear
tendency to one or the other situation is observable. If a low false negative rate is
important the OR-conjuncted classifier would be the obvious choice. Likewise, if a low
false positive rate is important the best classifier would be the one by the FN method.
One could also set the individual methods’ thresholds to yield perfect sensitivity or
specificity and then combine them by the designated conjunction (see above). While
this approach maxizimes one of the two measures it completely disregards the other.
Consequently, this procedure results in classifiers with unbalanced behavior and we did
not notice distinct advantage from using it (results not provided). However, also due
to the methods’ correlated rankings, the differences between all examined classifiers are
small and preferences could easily change with additional patients. At this point, this
boolean combination of the methods does not have an evident beneficial effect on their
decisive performance.

We further compared the ratings of arbitrary resections in terms of their overlap
with the patient’s actual resection. In general, for both methods, virtual resections
with a larger overlap had better ratings if the actual resection rendered the patient
seizure free (class I). If the actual resection had no beneficial effect for the patient (class
IV), this relation became significantly weaker. Thus, in both methods the ratings of
virtual resections were generally influenced by the overlap with the actual resection
and its outcome (Figure 3 and 4 and Table III). In the soft clustering approach this
dependence occured particularly for large overlaps. Partial correlation analysis with
overlap as controlling variable, however, suggested conditional independence of both
methods.

Nevertheless, the methods also agreed on the misclassification of patient 15 who
clearly showed the behavior of a class I patient in all tests (including the clinical assess-
ment on which the surgery was planned), although in reality the surgical intervention
did not have any beneficial effect. This suggests a connection between both quantitative
methods that goes beyond the recognition of successful actual resections as effective and
the dependence on the overlap with these resections. However, there were also some
disagreements between the methods. Most prominently was patient 5 (class I) who was
a clear true positive in the soft clustering approach but a similarly clear false negative in
the functional network approach (Figure 1). Consequently, patient 5 is also the one clear
discrepancy in the ranking analysis (Figure 2). Disagreement does not necessarily inval-
idate the methods as their predictions may also be based upon different signal features.
Another noteworthy difference between the methods is the portion of random resections
lying above the threshold of the optimal binary classifier (Figure 1). While their fraction
is relatively low in the FN approach (about 2%) it is substantial in the SC approach
(about 25%). Higher fractions may indicate rather low specificity (see discussion below)
which is consistent with our findings in Table II although no random resections were
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integrated in this analysis.
There are many studies with the goal to assess hypothetical resections or directly

predict their outcome based on quantitative iEEG analysis (see e.g. (Urrestarazu et al.,
2007; Bartolomei et al., 2008; Worrell et al., 2008; Jacobs et al., 2009, 2010; J. S. Kim
et al., 2010; Wu et al., 2010; Jung et al., 2011; Modur et al., 2011; Wilke et al., 2011;
Gnatkovsky et al., 2011, 2014; Park et al., 2012; van Mierlo et al., 2013; Boido et al.,
2014; J.-Y. Kim et al., 2014; Sinha et al., 2014, 2016; Geier et al., 2015; Hutchings et
al., 2015; Rummel et al., 2015; Zubler et al., 2015; Goodfellow et al., 2016; Steimer et
al., 2017)). However, all methods so far share the shortcoming that they have only been
tested in a single study and although they have shown the potential to yield clinically
relevant information, they are not yet applied in clinical routine. To raise further trust
in such techniques and their assessments, they should be tested on larger sets of patients
and, as in the present study, on their consistency among each other. This study addresses
the latter problem by directly comparing two fundamentally differing methods to assess
hypothetical resections based on iEEG recordings, using one common set of patients.
The examined two methods show a high level of agreement despite their fundamentally
differing techniques. As a consequence of the extensive agreement, a potential benefit
of combining them is not identifiable. In general, the larger the agreement of different
methods, the smaller is the potential performance increase by combining them. On the
other hand, larger discrepancy among methods raises suspicion about their assessments
and is therefore not desirable. Our results showing high agreement are encouraging and
request further such studies to establish quantitative methods in the clinical preoperative
process of epilepsy surgery.

One of the biggest impediments regarding an objective evaluation and comparison of
such methods is the lack of a ground truth. For methods with the purpose to quantify
the effect of hypothetical resective surgeries, it is obviously very crucial to quantify their
correctness. However, the lack of a ground truth in terms of complete knowledge about
the outcome of every hypothetical resection poses an inevitable challenge in this regard.
In fact, the actual outcome of all possible surgeries except the one realized is unknown.
Thus, only one true positive or one true negative result is known for every patient.
This hinders the calculation of common evaluation measures such as sensitivity and
specificity. Sensitivity in this scenario means that resections leading to seizure freedom
in the patient if actually carried out are also classified as seizure prohibiting by a decisive
method. Sensitivity determination can thus only be based on class I patients, where one
true positive outcome is known. A more precise classification based on real data is hardly
possible because no other resection with proven curative effect can be known. Specificity
means that resections that would not render the patient seizure free if actually carried
out are also classified as such by a decisive method. This is also difficult to determine
as the only resections proven to be unhelpful are those carried out in class IV patients.
Apart from the possibility to use the actual resections of class IV patients, one can
compare the assessment of a class I patient’s actual resection to random resections.
Although there are probably other resections than the actual one that would have also
had a curative effect, it is plausible to suppose that most random resections would have
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had no beneficial effect in reality. Hence, a large number of random resections resulting
in a similar assessment as a successful actual resection is a strong indication for low
specificity. Similar considerations apply to related measures like positive and negative
predictive value and on the whole, the calculation of accuracies on this very limited
amount of real data remains rather unsatisfying and thus an open issue.

5 Conclusion

In this study, we investigated the relationship between two quantitative iEEG methods
regarding their predictions for the effects of resective epilepsy surgery. Both methods
are individually able to distinguish successful surgeries from unsuccessful and random
ones and based on the predicted effectiveness of performed surgeries, patients are ranked
in a correlated order between the two methods. Further, we showed that the ratings of
both methods typically depend on the number of channels in a virtual resection that is
also present in a successful actual resection. In general, the methods came to the same
assessment for most patients, even for one of the few misclassifications. We conclude
that there is a connection between the ratings of these conceptually completely different
methods, however, it is obviously not straight forward as the partial correlation analysis
revealed. Thus, further research is needed to unravel the nature of this connection. Nev-
ertheless, both methods can already provide clinically relevant information and support
physicians in the presurgical evaluation process by enabling them to test their planned
resection on its predicted effectiveness.

Provided positive evaluation on larger and unselected datasets, such methods could
objectify and simplify the cumbersome preoperative process by providing automatically
generated data. Additionally, they have the potential to reveal signal features and
dynamics that are undetectable by expert EEG reading. However, the missing ground
truth and its simultaneous necessity to validate such approaches poses a fundamental
conflict. One possibility to improve on this problem could be the congruence of multiple
methods, which was investigated here for fundamentally differing techniques.
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APPENDIX

A Quantitative Methods in Detail

This section describes for both examined quantitative methods the procedures carried
out from an intracranial EEG recording to the final prediction about the efficacy of a
particular resection of brain tissue associated with certain intracranial electrodes. The
signal preprocessing was identical for both methods (see section 2.1).

A.1 Distributional Soft Clustering of Multivariate Time Series

After bandpass filtering the EEG data, all channels were independently normalized to
a mean of zero and a standard deviation of 1. The signals were then discretized to
seven bins along the y-axis, with ±σ (SD) being the centers of the seventh and first bin
(this corresponds to a bin width of σ/3). Values outside these bins were assigned to the
nearest bin. Thus, a discretized recording of n channels has one out of m = 7n states
at every sampled instant. The discretized EEG time series were then partitioned by a
moving window and all sampling points in a window, each being 1 of m states, were
condensed into a single data point (feature). Such a feature is thus given by the m-
dimensional empirical distribution of the states in that window. These distributions of
all time windows were clustered into K = 6 clusters, being the regions in phase space (of
possible distributions) where the system under study typically resides during different
epochs of its temporal evolution. Each cluster centroid was represented by a graphical
model, specifically by a Chow-Liu tree as second-order, distributional approximation
(Chow & Liu, 1968). (This is why discretization of the signals was necessary, as Chow-
Liu trees are defined for discrete data only.) Additionally, the temporal evolution of
the probabilities of these K cluster centroids is specified by a Markov chain. Thus, the
goal in the process of generating a model is to compute the cluster centroids, Markov
chain parameters and the posterior probabilities of the cluster centroids. The generated
model specifies for every time window in the recording the probability of every centroid
to represent the current state. The summed probability of all centroids at any time
point is always one and the Markov chain specifies expected future centroid probabili-
ties through its set of transition probabilities. The model can now be used to predict
probabilities of the centroids under various different conditions. On the one hand, the
data of individual channels can be modified which directly alters the probabilities of the
centroids to represent the data. On the other hand, the data of all channels can be cut
at any time point inside the recording, leaving the future development of the centroid
probabilities to the system. All specifications necessary to reproduce the model can be
found in (Steimer et al., 2017).

We used this approach to assess the effectiveness of simulated resections to prevent
a developing seizure. Specifically, we used a peri-ictal recording to generate a model and
classified the centroids as ictal or non-ictal according to their activities in the preictal
and the ictal period of the recording. Moreover, we cut the data of all channels right at
the beginning of the seizure (when ictal centroids are already highly probable), leaving
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the seizure to develop according to the model’s predefined temporal evolution (Figure 6,
panel 2). Then, we set the data of the channels whose resection we wanted to simulate to
zero (the middle bin) and compared the likelihood of the ictal centroids to the situation
without simulated resection(Figure 6, panel 3). A decrease in the summed probability
of all ictal centroids corresponds to the model’s prediction that this particular resection
would decrease the patient’s propensity to develop seizures when actually carried out.

A.2 Multivariate Nonlinear Interrelation based Functional Networks

In this approach, the channels of the intracranial EEG recording constitute the nodes of
a functional network. To define the network’s edges, we used mutual information which
is based on information theory and is not restricted to Gaussianity or linear dependence.
Mutual information quantifies the deviation of the observed joint distribution of the
amplitudes of two time series from the product of their marginal distribution (which
would imply statistical independence). After bandpass filtering, the EEG data was par-
titioned by a moving window and the mutual information between all pairs of channels
was calculated for every window giving the mutual information matrix µ. To correct for
the influence of linear correlation we used multivariate IAAFT (iterated amplitude ad-
justed Fourier transform) surrogates (Schreiber & Schmitz, 2000). These surrogate time
series, generated for each window, have the same autocorrelations and the same cross-
correlations as the original time series. However, any nonlinear structure is removed and
their corresponding mutual information matrices µsurr can thus be used as a baseline
compensating for the effects of linear signal interrelations. This baseline was subtracted
from the original matrix µ to get the surrogate corrected mutual information matrix
M (Equation 3). Here, 〈µsurr〉 is the median of the values obtained from the set of
surrogate time series and s is a significance factor that is 1 if the original matrix element
is significantly different from the corresponding elements of the surrogate matrices and 0
otherwise. Hence, M is a sparse matrix specifying only nonlinear interrelations between
EEG channels.

M =
µ− 〈µsurr〉
1− 〈µsurr〉

∗ s (3)

Since we wanted a single value per channel (to eventually assign one value to an
arbitrary set of channels) we condensed the matrix M by calculating the average node
strengths over time. If n is the number of channels and T is the number of time windows
in the examined segment, M has the dimensions n × n × T . The node strength of
a channel was derived by summing over the absolute values of all its interrelations
(minus the interrelation with itself)(Figure 6, panel 4), and to average over time we
took each channel’s mean over all time windows in the first half of the seizure (Equation
4). Channel i accordingly had the node strength si.

si =

∑T
t=1

(∑n
j=1

(
|M i,j,t|

)
− 1
)

T
(4)
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To use this approach to assess the effectiveness of simulated resections, we calculated
the fraction of the total node strength comprised by a particular set of channels. This
value is the relative predicted performance of this set to decrease the patient’s propensity
to develop seizures if the corresponding resection would actually be carried out.
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Figure 6: EEG data and evaluations of both examined methods of patient 8 (cf. Figure
3a). Panel 1: Intracranial EEG recording. Clinically determined seizure onset is at 180
seconds and channels recording from tissue that was resected later are in red. Panels 2 &
3 show the evaluation of the soft clustering method. The probabilities of the K cluster
centroids (y-axis) are shown over time, whereof clusters 3 to 6 are classified as ictal.
The cyan lines indicate the time point where the input data was cut and subsequent
centroid probabilities developed according to the model. Panel 2 shows the probabilities
of the centroids if no resection is simulated and panel 3 shows the same if the actually
performed resection is simulated. Panel 4 quantifies for each channel (y-axis, same order
as in panel 1) the nonlinear interrelations over time. The cyan lines enclose the first
half of the seizure, the segment used for evaluation, and the arrows indicate the actually
resected channels.
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B Bootstrapping Tests in Detail

The essential idea of bootstrapping is to determine the significance of some statistical
measure based completely on the empirical data. This has the advantage that no as-
sumptions about the underlying distribution have to be made. It is also appropriate
when the sample size is small and sporadic samples could distort its representation of
the population. Both conditions, the unknown underlying distribution and the small
sample sizes are present in our case. Hence, we chose to apply bootstrapping methods
in all our significance tests. The basic concept of these methods is to generate the test
statistics’ distribution exclusively from the distribution of the empirical data. To do
so, we selected and, if required, modified the empirical data in a way that depends on
the specific null hypothesis and is described below separately for every test. From each
resulting data set, we independently drew Nsamp = 100, 000 random samples. In this
context, sample means a set of values drawn with replacement from an original set and
having the same size as the original set. Calculating the desired test statistic on these
random and independent samples, gives an appropriate distribution of values under the
null hypothesis. The same test statistic is also calculated on the original data. The frac-
tion of random samples having a higher value than the actual data is the corresponding
p-value.

This basic idea was applied in all performed significance tests. Subsequently, for
every test a short description is given for how the data under the null hypothesis and the
corresponding p-value were calculated. Additionally, Figure 7 summarizes the procedure
for all cases in a flow chart.
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Original Data 

� B.1: Ratings of the actual resections 

� B.2: Patients' rankings given by both 

methods' ratings 

� B.3: CDF given by the ratings of the random 
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� B.4: Correlations between ratings of 

random resections and their overlaps 

� B.5: Ratings of random resections and their 

overlaps 

Data under the null hypothesis 

� B.1: Original data shifted to have class-wise 

means of zero 

� B.2: Shuffled patients' rankings 

� B.3: CDFs of samples drawn from the 

ratings of the actual resections 

� B.4: Original data shifted to have class-wise 

means of zero 

� B.5: Shuffled ratings  

Test statistic 

� B.1: Difference of class-wise means 

� B.2: Correlation between methods' 

ratings 

� B.3: L1-distance between CDFs 

� B.4: Difference of class-wise means 

� B.5: Correlations between ratings and 

overlaps and ratings of both methods 

without and with overlap as controlling 

variable 

p-value 

The fraction of test statistic values 

calculated from the samples of the data 

under the null hypothesis that is larger than 

the respective value calculated from the 

original data. 

calculate for 

original data 

calculate for 

each sample 

randomize & 

sample data 

Figure 7: Flow chart summarizing all bootstrapping tests. The original data is modified
in a specific way and 100’000 random samples are drawn with replacement to constitute
the data under the null hypothesis. The same test statistic is calculated on the original
data and on all randomized samples. The value of the original data in the distribution of
the null hypothesis determines the p-value. Abbreviations: CDF: cumulative distribution
function.

B.1 Separation of the two outcome groups by their actual resections

The goal of this test was to examine for both methods separately if the ratings of the
actual resections separate the groups of class I and class IV patients. We shifted the
empirical distributions (the ratings of both outcome groups) so they both have a mean
= 0 and drew randomly Nsamp samples of each distribution. The differences in the
means of the pairwise but independent samples constituted the distribution under the
null hypothesis that both distributions have the same mean. The corresponding p-value
was the fraction of random sample-pairs having a bigger difference in their means than
the actual outcome groups.

B.2 Correlation of patients’ rankings as given by their ratings

The goal of this test was to examine if the methods rank the patients in a correlated
order according to the ratings of their actual resection. Hence, we independently drew
Nsamp samples of each empirical distribution (each method’s ranking) to generate pairs
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of uncorrelated data which constituted the distribution under the null hypothesis that
there is no correlation between the rankings of both methods. The corresponding p-value
was the fraction of random sample-pairs having a bigger rank correlation coefficient than
the actual rankings.

B.3 Congruency of the distributions of the actual resections and the random resec-
tions

The goal of this test was to examine if the actual resections of an outcome class are
likely to originate from the same distribution as the random resections. Hence, for both
methods and both outcome groups separately, we generated Nsamp independent pairs of
samples of the empirical distribution (the ratings of actual resections) and measured the
L1-based distances between the pairs’ cumulative distribution functions (CDF). These
values constituted the distribution under the null hypothesis that two empirical distri-
butions have the same source. In addition, we determined the average L1-based distance
between these samples and the CDF given by the ratings of the random resections. The
fraction of values in the distribution under the null hypothesis that was bigger than this
average L1-based distance was the corresponding p-value.

B.4 Class difference in correlation of random resection ratings and overlap

The goal of this test was to examine if, depending on the outcome of the patient, the
ratings of random resections correlate differently with their overlaps (the number of
channels that are also in this patient’s actual resection). Hence, the means of both
datasets (each containing the appropriate correlation coefficients of one outcome group)
were set to zero and the differences between the means of Nsamp independent pairs
of randomly drawn samples constituted the data under the null hypothesis that both
classes have the same mean correlation coefficient. Accordingly, the fraction of random
sample-pairs having a bigger difference in their mean correlation coefficient than the
actual datasets was the corresponding p-value.

B.5 Group-wise correlation between overlap and ratings and partial correlation of
ratings

The goal of these tests was to examine relations between ratings of resections and their
overlaps with the actual resection. First, we determined for both methods and both
outcome groups separately the relation between the ratings and the overlaps of all vir-
tual resections. We randomly drew Nsamp samples of each empirical distribution (the
ratings and the overlaps) to generate pairs of uncorrelated data which constituted the
distribution under the null hypothesis that there is no correlation between a methods’
ratings and the overlaps of random resections. Accordingly, the corresponding p-value
is the fraction of random sample-pairs having a bigger correlation coefficient than the
actual datasets. Then, we used the ratings of both methods as empirical distributions
to examine in exactly the same way the correlation among the ratings of both methods.
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Finally we used the concept of partial correlation to excluded the possible influence of
the overlap as a controlling variable by calculating the residuals of both methods’ ratings
using the overlap as regressor. These residuals then were the empirical distributions to
examine in the same way as before the correlation between the ratings but with the
effect of the overlap removed.
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