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Abstract: Developing an adaptation option is challenging for long-term 11 

engineering decisions due to uncertain future climatic conditions; this is 12 

especially true for urban flood risk management. This study develops a 13 

real options approach to assess adaptation options in urban surface water 14 

flood risk management under climate change. This approach is 15 

demonstrated using a case study of Waterloo in London, UK, in which 16 

three Sustainable Drainage System (SuDS) measures for surface water 17 

flood management, i.e., green roof, bio-retention and permeable 18 

pavement are assessed. A trinomial tree model is used to represent the 19 

change in rainfall intensity over future horizons (2050s and 2080s) with 20 

the climate change data from UK Climate Projections 2009. A 21 

two-dimensional Cellular Automata based model CADDIES is used to 22 

simulate surface water flooding. The results from the case study indicate 23 
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that the real options approach is more cost effective than the fixed 24 

adaptation approach. The benefit of real options adaptations is found to 25 

be higher with an increasing cost of SuDS measures compared to fixed 26 

adaptation. This study provides new evidence on the benefits of real 27 

options analysis in urban surface water flood risk management given the 28 

uncertainty associated with climate change. 29 

Key words: Real options; Flood risk; Climate change; Adaptation 30 

measures; NPV; SuDS 31 

1. Introduction 32 

Urban surface water flooding, as one of the major natural hazards in 33 

both developed and developing countries, can cause great environmental 34 

and economic damage and social interruption (Zhou et al. 2012; 35 

Hirabayashi et al. 2013; Yin et al. 2015; Jenkins et al. 2017; Löwe et al. 36 

2017). For example, the summer floods of 2007 in UK led to 55,000 37 

properties flooded with an estimated economic loss of £3.2 billion (Pitt 38 

2008). This situation can get worse over the next decades due to climate 39 

change and rapid urbanization (Dawson et al. 2008; Jenkins et al. 2017). 40 

The expected annual damage (EAD) from surface water flooding in 41 

England can increase by 135% by 2080 under future climate scenario 42 

(Sayers et al. 2015). Therefore, there is a need to assess the impact of 43 

climate change and develop effective adaptation measures in response to 44 
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increasing flood risk (Koukoui et al. 2015; Zhang et al. 2017). 45 

Significant efforts have been made during the last few decades to 46 

develop cost-effective, long-term adaptation measures for alleviating 47 

increased flood risk through cost benefit analysis (Löwe et al. 2017). For 48 

example, Koukoui et al. (2015) described a tipping point-opportunity 49 

method to identify the adaptation strategy with lower costs, considering 50 

the effects of climate change. Zhou et al. (2012) developed a pluvial 51 

flood risk assessment framework to identify and access adaptation 52 

measures based on the cost-benefit process. Löwe et al. (2017) developed 53 

a new framework to assess flood risk adaptation measures by coupling a 54 

1D-2D hydrodynamic flood model with an agent-based urban 55 

development model to consider the long-term effects of urban 56 

development and climate change. 57 

However, there are large uncertainties in assessing the long-term 58 

performance and benefit of adaptation measures, due to multiple sources 59 

of uncertainty such as climate change and land use change (Hino & Hall 60 

2017). Furthermore, based on the worst climate change scenario, the 61 

investments can be very large over a long-term planning horizon (e.g., 30 62 

years), this may lead to overdesign for the uncertainty of climate change. 63 

To bridge this gap, real options analysis is introduced in this study to 64 

handle the uncertainties in future infrastructure investments and provide 65 

decision support for appropriate climate change adaptation. 66 
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The real options approach originated from the study of financial 67 

decision making (Myers 1984).  The success of financial options 68 

development and application led to the award of Nobel Prize in Economic 69 

Sciences to Robert Merton and Myron Scholes in 1997. A real option 70 

means the right but not the obligation to take future actions. Thus, unlike 71 

the traditional planning approach, which considers only one-off 72 

investment option and ignores the flexibility under significant future 73 

uncertainties, real options can consider management flexibility and 74 

volatility by making changes to an investment when new information 75 

comes in the future. Many tools have been developed for the analysis of 76 

real options, and most of them are based upon the Black-Scholes model 77 

and binominal model, such as binominal and trinomial decision trees 78 

(Gersonius et al. 2013). Apart from financial option analysis, real options 79 

is also an important analytical tool that has been applied to a number of 80 

diverse fields such as management of infrastructure systems, renewable 81 

energy and water supply. For example, Zhao et al. (2004) used real 82 

options for decision making in highway development, operation, 83 

expansion and rehabilitation. Jeuland and Whittington (2014) developed a 84 

methodology for planning new water resources infrastructure investment 85 

and operating strategies considering climate change uncertainty. Kim et al. 86 

(2017b) proposed a real options-based framework to assess economic 87 

benefits of adapting hydropower plants to climate change. 88 
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In recent years, the concept of real options has been used in the flood 89 

risk management for developing cost-effective adaptation measures in 90 

order to reduce the consequences of climate change. Woodward et al. 91 

(2011) assessed a set of interventions in a flood system across a range of 92 

future climate change scenarios. Furthermore, Woodward et al. (2014) 93 

developed a new methodology by capturing the concepts of real options 94 

and multiobjective optimization to evaluate potential flood risk 95 

management opportunities. Hino and Hall (2017) analyzed real options in 96 

flood risk management by considering the joint effects of uncertainties in 97 

socioeconomic drivers and climate change. However, all these studies 98 

above focused on the design of flood defense systems (more specifically 99 

on flood walls). In urban flooding, however, there were only a few studies 100 

on the use of real options to build flexibility into urban drainage 101 

infrastructure (Gersonius et al. 2013; Kim et al. 2017a). There is a need 102 

to further develop the real options approach in urban surface water flood 103 

management and test its effectiveness in developing adaptation measures 104 

related to Sustainable Drainage Systems (SuDS). 105 

In this paper, we aim to present a real options approach for urban 106 

surface water flood risk management under long-term climate change 107 

scenarios. The trinomial tree model is used to represent the future 108 

changes in rainfall intensity over two planning horizons in 2050 and 2080. 109 

The Cellular Automata Dual-DraInagE Simulation (CADDIES) model 110 
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(Guidolin et al. 2016) is used for flood simulation. The Waterloo urban 111 

catchment in London is used as a case study to assess SuDS measures for 112 

surface water flood management including green roof, bio-retention and 113 

permeable pavement. Real options measures are compared to a fixed 114 

adaptation approach. The results obtained from the case study show the 115 

advantage of real options in urban surface water flood risk management 116 

considering future climate change. 117 

2. Methodology 118 

Fig. 1 summarizes the real options approach used in this study. The 119 

climate change data from UKCP09 (Murphy et al. 2009) are used to 120 

generate climate change scenarios. To investigate the performance of the 121 

real options approach on flood risk reduction under future climate change, 122 

two different adaptation approaches (i.e. ‘do nothing’ baseline and fixed 123 

adaptation approach) are used for comparison with the real options 124 

approach through cost-benefit analysis. Furthermore, three kinds of SuDS 125 

measures, i.e., green roof, bio-retention and permeable pavement, are 126 

chosen to generate adaptation scenarios. The depth-damage curves 127 

combined with the inundation (extent and depth) from CADDIES flood 128 

model are used to assess flood damage. These are detailed below. 129 

 130 

 131 
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 132 

Fig. 1. The real options approach for assessing the performance of different 133 

adaptation measures.  134 

2.1. Climate change scenarios 135 

The trinomial tree model, which is an extension of the lattice 136 

binomial model (Boyle 1988), is used to represent the uncertainty of 137 

rainfall due to climate change. This model was originally developed for 138 

real options analysis in financial investments, but has been used in many 139 

fields due to its flexibility and effectiveness, such as renewable energy 140 

and urban drainage infrastructure (Gersonius et al. 2013; Dittrich et al. 141 

2016; Gong & Li 2016; Tang et al. 2017). In this model, the stochastic 142 
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process is simplified by three jump parameters (u for moving up, d for 143 

moving down and m for remaining the same) to describe the possible 144 

changes of a system’s status with related transition probabilities (pu, pd 145 

and pm) over a time period. Meanwhile, these parameters and their 146 

corresponding probabilities can be calculated by Eqs. (1) ~ (6) 147 

(Zaboronski & Zhang 2008).  148 
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where r is drift rate, σ is the volatility and t is the length of the time 155 

period. 156 

It is possible to estimate the change of the future rainfall intensity 157 

with u, d and m. Further, when a system’s status remains same, i.e., the 158 

rainfall intensity won’t change over a time period, so the value of m is set 159 

as 1. For example, the rainfall intensity is denoted by S at time t0, then it 160 

will change to S*u, S*d or S for each climate change scenario at time t1. 161 

Based on the mean and standard deviation of the normal approximation 162 
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of the climate change data from UKCP09, the drift rate r and volatility σ 163 

can be estimated for the change in rainfall intensity by Eqs.(7)~(8) 164 

(Gersonius et al. 2013), as below: 165 
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where   is the mean value for normal approximation of the rainfall 168 

change of T years, and s is the standard deviation. 169 

2.2. Approach for adaptation 170 

The real options approach is compared with the traditional fixed 171 

adaptation approach. In the fixed adaptation approach, as shown in Fig. 2, 172 

all adaptation measures Af are implemented at year t0 regardless of future 173 

climate predictions. For the real options approach, adaptation measures 174 

are adopted only for the scenarios in which the rainfall intensity increases. 175 

For example, adaptation measures of Ar1 will be implemented when the 176 

rainfall intensity increases following the upward path with a probability 177 

of pu at year t0, then Ar1 (with a probability of pmpu) or Ar2 (with a 178 

probability of pupu) will be implemented at year t1 depending on different 179 

scenarios of rainfall prediction at year t2. 180 
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 181 

Fig. 2. The diagram of trinomial tree model and overview of intervention approaches 182 

for fixed adaptation scenario and real options scenario. Af represents the adaptation 183 

measures used in fixed adaptation scenario, and Ar1 or Ar2 represents the adaptation 184 

measures used in the real options scenario. 185 

2.3. Flood risk assessment 186 

2.3.1. Flood modelling 187 

In this paper, the CADDIES model was used for the surface water 188 

mapping to assess the flood risk. CADDIES is a fast 2D urban flood 189 

simulation model for high resolution or large scale simulations based on 190 

the principle of cellular automata (CA). This model performs a 2D pluvial 191 

flood inundation simulation using simple transition rules for modeling 192 

complex physical systems. Furthermore, the model allows each grid cell 193 

using its own roughness value or infiltration rate to represent spatial 194 

variations of land cover condition, soil infiltration and drainage capacity. 195 

This model’s effectiveness has been proven on the 2D benchmark test 196 

cases and real world case studies (Guidolin et al. 2016). 197 
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2.3.2. Flood risk assessment 198 

Expected annual damage (EAD) is often used to evaluate the 199 

benefits for adaptation measures in flood risk management decision 200 

making, especially for a long-term flood risk intervention strategy 201 

(Woodward et al. 2011; Zhou et al. 2012; Woodward et al. 2014; Hino & 202 

Hall 2017; Löwe et al. 2017). EAD is the frequency weighted sum of 203 

damage for the full range of possible damaging flood events and would 204 

occur in a particular area over a very long period of time, which can be 205 

defined as below: 206 

1

0

( )EAD D p dp                         (9) 207 

where D is the flood damage and p is the annual exceedance probability 208 

for a rainfall event. 209 

In this paper, we consider the direct tangible flood damages on 210 

building to quantify the impact of flooding and the benefits of 211 

implementing different adapting strategies. The damage is determined 212 

using the flood depth information obtained from CADDIES and the 213 

depth-damage functions for different building uses. Furthermore, the 214 

trapezoidal rule (Olsen et al. 2015) is used to approximate the EAD using 215 

three events. For example, three rainfall events with the annual 216 

exceedance probability of p1, p2 and p3 are illustrated to calculate the 217 

damage in Fig. 1. 218 
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For each adaptation scenario, the total damage is calculated by 219 

integration of the flood damages over all different rainfall paths with 220 

different probabilities. So even with the same adaptation measures 221 

implemented in year 2080, the EAD will be different in the fixed and real 222 

options approaches due to the probabilities of future climate scenarios 223 

considered in Equation (9). 224 

2.4. Cost benefit analysis 225 

In order to compare the benefits of different adaptation investments 226 

with the corresponding costs, cost-benefit analysis is implemented to 227 

assess the performance of real options in flood risk reduction compared to 228 

the fixed adaptation approach and ‘do nothing’ baseline. The benefits are 229 

defined as the reduction in flood damage when the adaptation 230 

implemented compared to the baseline scenario without adaptation. The 231 

investment costs of adaptation measures can be obtained for green roof, 232 

bio-retention and permeable pavement. NPVs are calculated with a 233 

discount rate in order to convert the benefits and costs at different future 234 

horizons to their present values using the equation below: 235 

                    
 

0 (1 )

T
t t

t
t

B C
NPV

r





                     (10) 236 

where tB  represents the benefits of the adaptation measure at year t, tC  237 

is the cost of the adaptation measure at year t, r denotes the discount rate 238 

and T is the total number of years considered. Higher NPV values 239 
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indicate that the relevant adaptation approaches are more cost effective in 240 

alleviating the increased flood risk. 241 

3. Case study 242 

3.1. Study area 243 

 244 

Fig. 3. Location, land cover and land use maps for the study area. 245 

 In this paper, the Waterloo area in the London Borough of 246 

Southwark is used as the case study. The digital elevation data (DEM) of 247 

bare terrain, obtained from Ordance Survey, has a 5 m×5 m resolution 248 

with the highest and lowest elevations of 115.5 m and -6.4 m, respectively. 249 

We analyzed the terrain elevation to determine the catchment boundary of 250 

the study area, and thus the closed boundary condition was set in the 251 

flood model. 252 
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As shown in Fig. 3(b), the topography data (Ordance Survey 2015) 253 

was classified into six different land cover types, including building, 254 

green land, manmade surface, rail, road and water, to set up the 255 

infiltration rate and roughness parameters in the CADDIES flood model. 256 

The Waterloo catchment covers an area of 68.8 km2, with 81.0% 257 

developed as buildings and impervious surfaces, while 19.0% of the area 258 

remains as permeable green land. 259 

Furthermore, this study area can also be classified into seven 260 

different land use types, including education, industrial, medical care 261 

center, office, residential, shop and non_constructed areas (Fig. 3(a)), for 262 

assessing direct tangible flood damages based on the depth-damage 263 

functions. The depth-damage functions are available for over 100 264 

building types in the UK’s Multi-coloured Manual (Penning-Rowsell et 265 

al. 2010). Fig. 4 shows the depth-damage functions of the six land use 266 

types considered in this study. 267 
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 268 

Fig. 4. Depth-damage functions for six land use types. 269 

3.2. Rainfall events 270 

3.2.1 Design rainfall 271 

In order to calculate the EAD under different adaptation scenarios, 272 

design rainfall events of three return periods (30-, 50- and 100-year 273 

events) with a duration of 2h were simulated using the rainfall 274 

Intensity-Duration-Frequency curves from the Flood Estimation 275 

Handbook (CEH 2015), and the rainfall hyetographs are shown in Fig. 5. 276 

Furthermore, the design rainfall depths and peak rainfall intensities under 277 

different return periods are shown in Table 1. 278 
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 279 

Fig. 5. Design rainfalls with 30-, 50- and 100-year return periods. 280 

Table 1. Rainfall depth and peak rainfall intensity of 2-hour design rainfalls for 30-, 281 

50- and 100-year return periods. 282 

Return period (year) Rainfall depth (mm) Peak rainfall intensity (mm/h) 

30 45 88 

50 51 100 

100 60 118 

3.2.2 Climate change 283 

In this study, the cumulative distribution data of rainfall intensity 284 

change (London, UK) by 2080s under high emissions were obtained from 285 

UKCP09 (UKCP09 2017), as shown in Fig. 6. Furthermore, a normal 286 

distribution (mean  = 1.260, and standard deviation s = 0.200) was 287 

fitted to the UKCP09 climate data. The drift rate r and volatility σ were 288 

calculated as 0.24% and 1.45% using Eqs. (7)~(8). 289 
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 290 

Fig. 6. Cumulative distribution of change in rainfall intensity 291 

Furthermore, a planning horizon from 2020 to 2080 was considered, 292 

and the adaptation measures will be applied in two stages, i.e., t0 = 2020, 293 

t1 = 2050. With the interval of 30 years, three jump parameters (u, d and 294 

m) with related transition probabilities ( up , dp and mp ) are estimated as 295 

below: u = 1.12, d = 0.89, m = 1, up = 76.9%, mp = 21.6% and dp = 296 

1.5%. Then we can calculate rainfall for the future years of 2050 and 297 

2080 based on the three design rainfalls with 30-, 50- and 100-year return 298 

periods. 299 

3.3. Adaptation scenarios 300 

SuDS is used to manage flood risk by slowing down and reducing 301 

the quantity of surface water runoff (Woods et al. 2015). Out of many 302 

different SuDS measures for surface water management, we considered 303 

three measures in this paper, i.e., green roof implemented for every grid 304 

cell of buildings, permeable pavement for every grid cell of roads, and 305 

bio-retention for every grid cell of manmade surface. However, as shown 306 

in Table 2, we have considered 7 combinations of measures for the fixed 307 
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adaptation approach and 19 combinations for the real options approach. 308 

For example, for the fixed adaptation scenario F5, green roof and 309 

permeable pavement will be adopted for every grid cell of each land 310 

cover in year t0=2020. For real options scenario R7, adaptation measures 311 

G will be implemented in year 2020 when the rainfall intensity is 312 

predicted to increase, i.e., following the upward path with a probability of 313 

pu. Then in 2050, adaption measures will be implemented in two cases 314 

only: 1) P will be implemented when rainfall intensity is predicted to 315 

increase from S*u to S*u*u; 2) G will be implemented when rainfall 316 

intensity is predicted to increase from S to S*u. So F5 and R7 can have 317 

the same measures in 2080 but this is true only when the rainfall intensity 318 

increases from S in 2020 to S*u in 2050 and further to S*u*u in 2080. In 319 

all other climate change scenarios, F5 and R7 will have different 320 

measures implemented in 2080. 321 

 322 

 323 

 324 

 325 

 326 

 327 

 328 

 329 
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Table 2. Adaptation scenarios for the fixed adaptation approach and real options 330 

approach. G stands for green roof, B for bio-retention and P for permeable pavement. 331 

The adaption path of Af, Ar1 and Ar2 are shown in Fig. 2. 332 

Fixed adaptation Real options 

Scenario Af Scenario Ar1 Ar2 Scenario Ar1 Ar2 

F1 G R1 B - R11 P G 

F2 B R2 B G R12 P GB 

F3 P R3 B P R13 GB - 

F4 GB R4 B GP R14 GB P 

F5 GP R5 G - R15 GP - 

F6 BP R6 G B R16 GP B 

F7 GBP R7 G P R17 BP - 

  R8 G BP R18 BP G 

  R9 P - R19 GBP - 

  R10 P B    

 333 

Table 3 shows the unit costs for each SuDS measures below: 334 

£50~90/m2 for green roof, £15~35/m2 for bio-retention and £20~40/m2 335 

for permeable pavement (HaskoningDHV 2012; Environment Agency 336 

2015). The unit cost of £70/m2, £25/m2 and £30/m2 are chosen for green 337 

roof, bio-retention and permeable pavement. The discount rate was 338 

applied according to HM Treasury guidance, i.e., 3.5% for the years 339 

between 2020 and 2050, 3.0% for the years between 2050 and 2080 340 

(Treasury & Book 2003). 341 

Table 3. Cost for the three adaptation measures 342 

Measures Green roof Bio-retention Permeable pavement 

Unit cost 

(£/m2) 

Lower 50 15 20 

Average 70 25 30 

Upper 90 35 40 
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3.4. Flood simulation details 343 

In CADDIES, different Manning’s roughness values were assigned 344 

to different land cover types: (1) 0.05 s/m1/3 for the building areas; (2) 345 

0.03 s/m1/3 for green lands; (3) 0.025 s/m1/3 for manmade surface areas; (4) 346 

0.05 s/m1/3 for rails; (5) 0.02 s/m1/3 for roads; and (6) 0.035 s/m1/3 for 347 

water (Environment Agency 2013). 348 

Furthermore, different constant infiltration rates were applied to 349 

different land covers to reflect both urban drainage capacity and soil 350 

infiltration. The combined sewer drainage system was designed to 351 

accommodate a rainfall event of the 15 year return period in the London 352 

Borough of Southwark (Environment Agency 2011). A combination of 353 

infiltration rates, i.e., 35 mm/h and 25 mm/h, were set for the green land 354 

cover and other covers during the model setup process according to the 355 

drainage capacity. 356 

Note that this study is to illustrate the performance of real options on 357 

flood damage reduction rather than produce the exact reduction of runoff. 358 

Thus, infiltration rates for the land covers of building, manmade surface 359 

and road are assumed to be increased by 12 mm/h, 5 mm/h and 8 mm/h 360 

when green roof, bio-retention and permeable pavement are adopted, 361 

respectively, according to the literature (Qin et al. 2013; Woods et al. 362 

2015; Alizadehtazi et al. 2016; Jato-Espino et al. 2016; Bell et al. 2017; 363 

Ossa-Moreno et al. 2017; Rocheta et al. 2017). 364 
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4. Results and discussion 365 

4.1. Expected annual damage 366 

The maximum flood depth and damage under the design rainfall of 367 

30-year return period are presented in Fig. 7. The damage values shown 368 

in Fig. 7(b) are the direct building content damage per unit area. 369 

Extensive flood is distributed over the grid cells of building, road, 370 

manmade surface and so on. For example, the inundation extent 371 

(depth>0.1m) would cover a total area of 2.3 km2, of which the grid cells 372 

of building account for 23%. Furthermore, the inundation depth in 130 373 

grid cells of building is greater than 1.0 metre. 374 

The total building flood damage for the study area can be calculated 375 

based on the unit damages. The EAD is then calculated by integration of 376 

the flood damage over the three rainfall events, each with a specific 377 

probability. In this study, the EAD for 2020, 2050 and 2080 are calculated, 378 

and for other years the EAD is calculated using linear interpolation. 379 
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 380 

Fig. 7. Maximum flood depth and direct building content damage per unit area under 381 

the 30-year design rainfall. 382 

The EADs are simulated for the real options, the fixed adaptation 383 

and the ‘do nothing’ baseline case. Compared with EAD for 2020 under 384 

‘do nothing’ scenario, relative values of EAD for 2020, 2050 and 2080 385 

under different adaptation scenarios are presented in Fig. 8. The EAD of 386 

the ‘do nothing’ baseline case increases rapidly from 2020 to 2080 due to 387 

increased rainfall intensities. Specifically, EADs are £29.2 ×106, £33.4 388 

×106 and £37.6 ×106 for year 2020, 2050 and 2080 under the ‘do nothing’ 389 

baseline case, i.e., relative EADs are 100%, 114%, 129%. However, the 390 

seven fixed adaptation scenarios can effectively reduce the EAD in a 391 

range of different values. The implementation of SuDS measures is 392 

effective in reducing flood risk, even though flood risk still increases in 393 

the planning horizon as a result of increased rainfall intensities. For 394 

example, in F1, the relative EAD is reduced to 90% in 2020 when 395 

compared to 100% in the base case, due to the green roof measure 396 
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adopted, but increases to 105% and 119% in 2050 and 2080, respectively. 397 

It is clear that scenario F7 is the most effective amongst the fixed 398 

scenarios, because all three measures are adopted at year 2020, with the 399 

smallest relative EAD for the year 2050 and 2080, i.e., 96% and 111%, 400 

respectively. 401 

The 19 real options scenarios show a similar trend to the fixed 402 

adaptation approach between year 2020 and 2050 and the EADs are 403 

further reduced when adaptation measures are adopted at year 2050. 404 

However, when same measures are adopted, the real options approach 405 

tends to result in a slightly larger EAD than the fixed adaptation approach. 406 

This is because these adaptation measures are only implemented when the 407 

rainfall increases following the upward path. For example, relative EADs 408 

are 96% and 111% for year 2050 and 2080 under the scenario of F7, but 409 

they are 97% and 112% under the scenario of R19, though both scenarios 410 

consider three kinds of adaptation measures in the planning horizon. 411 

 412 
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Fig. 8. Relative values of expected annual damage for 2020, 2050 and 2080 under 413 

different adaptation scenarios compared with expected annual damage for 2020 under 414 

‘do nothing’ scenario. N represents ‘do nothing’ baseline case. 415 

4.2. Net present value 416 

Cost-benefit analysis is conducted to compare different adaptation 417 

approaches. The benefit of an adaptation measure can be calculated as the 418 

difference between the EADs before and after the adaptation adopted. 419 

Fig. 9 shows NPVs for the 7 fixed adaptation scenarios and 19 real 420 

options scenarios. In the fixed adaptation scenarios, F7 has the smallest 421 

NPV, -£2.00 ×109, even though it has the largest benefit (reduced EAD). 422 

This is related to the high cost of F7 due to the implementation of all 423 

three kinds of adaptation measures regardless of the future climate. 424 

Furthermore, the real options approach has higher NPV than fixed 425 

adaptation approach by adopting the same measures in the planning 426 

horizon when the rainfall increases following the upward path. For 427 

example, both F7 and R19 consider the same SuDS measures, but their 428 

NPVs are -£2.00 ×109 and -£1.02 ×109, respectively. This implies that the 429 

real options approach is substantially more cost effective than fixed 430 

adaptation approach. 431 

The results in Fig. 9 show that all the calculated NPVs of the fixed 432 

adaptation and real options are negative. This is because only direct 433 

tangible damage to buildings is considered in this study. However, more 434 

benefits can be provided from flood reduction due to the adoption of 435 
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SuDS measures. For example, economic benefits can arise from reduced 436 

road damage, basement damage, sewer damage and traffic delays. 437 

Furthermore, SuDS can also provide ecosystem service benefits (wider 438 

benefits), including mitigation of heat island effects and noise, 439 

improvements in water and air quality (Ossa-Moreno et al. 2017). 440 

Negative NPVs obtained from flood adaptation assessment are not 441 

uncommon in the literature (Zhou et al. 2012; Löwe et al. 2017), for 442 

example, Löwe et al. (2017) found that the performance of adaptation 443 

strategies strongly depended on many factors, and thus may led to 444 

negative NPVs values. 445 

 446 

Fig. 9. Net present values of 7 fixed adaptation scenarios and 19 real options 447 

scenarios 448 

4.3. Uncertainty analysis 449 

Uncertainties in the adaptation costs and SuDS measures drainage 450 

capacity are considered in the cost-benefit analysis and the results are 451 
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analysed below.  452 

4.3.1 Adaptation cost uncertainty 453 

In the analyses discussed above, the average costs shown in Table 3 454 

are considered. The lower and upper costs were chosen for further 455 

analysis. The NPVs of 26 adaptation scenarios under low, medium and 456 

high cost scenarios are shown in Fig. 10. The 26 scenarios are divided 457 

into 7 categories according to the kind of measures adopted during the 458 

planning horizon: CG, CB and CP when only one measure is adopted, CGB, 459 

CGP and CBP when two measures adopted, and CGBP when all three 460 

measures adopted. The NPV tends to decrease as the cost of SuDS 461 

measures increases. For example, NPVs are -£0.72×109, -£1.00×109 and 462 

-£1.36×109 for scenario F1 under low, medium and high cost scenarios, 463 

separately. Furthermore, the difference between the fixed adaptation 464 

approach and the real options approach in each category increases as the 465 

increase of costs. The real options approach has a bigger advantage than 466 

the fixed adaptation approach when the cost increases. For example, for 467 

the category of CGBP, the differences in NPV between F7 and R18 under 468 

low, medium and high cost scenarios are £0.67×109, £0.98×109 and 469 

£1.30×109, respectively. 470 
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 471 

Fig. 10. Net present values under low, medium and high cost scenarios. 472 

4.3.2 SuDS measures drainage capacity uncertainty 473 

In order to study the influence of the uncertainty in drainage 474 

capacity of the SuDS measures, two scenarios of infiltration rate were set 475 

up for flood damage analysis based on the current drainage capacity 476 

(denoted by ‘S’): ‘SR’ represents a 50% reduction of the increased 477 

infiltration rate for SuDS measures of green roof, bio-retention and 478 

permeable pavement, and ‘SI’ represents a 50% increase of the increased 479 

infiltration rate for each SuDS measure. The EAD for fixed adaptation 480 

scenario F7 and real adaptation scenario R19 are shown in Fig. 11. 481 
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 482 

Fig. 11. Expected annual damages of adaptation scenarios F7 and R19 under different 483 

drainage capacity scenarios of ‘S’, ‘SR’ and ‘SI’. N represents ‘do nothing’ baseline 484 

case. 485 

Fig. 11 illustrates the variations in EAD during the planning horizon 486 

for the adaptation scenarios F7 and R19 under different drainage capacity 487 

scenarios. For fixed adaptation scenario F7, a big difference in flood 488 

damage is shown under the drainage capacity scenario of ‘S’, ‘SR’ and 489 

‘SI’. That is, EAD values can be reduced when the drainage capacity is 490 

increased. However, EAD values might be higher when the drainage 491 

capacity is reduced under the scenario of ‘SR’. 492 

The real option adaptation scenario R19 shows the similar 493 

characteristics to the fixed adaptation F7 though its flood damage is 494 

larger than that of F7. Furthermore, the difference between R19 and F7 495 

tends to become smaller with a decrease in the drainage capacity. For 496 
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example, the difference of EAD between R19 and F7 are £2.0×106 and 497 

£0.6×106 for year 2050 and 2080 under ‘SI’, while only £0.7×106 and 498 

£0.2×106 for ‘SR’. 499 

5. Conclusions 500 

In this paper a real options approach was developed to assess 501 

adaptation options in urban surface water flood risk management under 502 

climate change. A CA-based urban two-dimensional model was used to 503 

simulate surface water flooding. The trinomial tree model was used to 504 

calculate the transition probability of rainfall intensity change over the 505 

planning horizon with the climate change data from UKCP09. Two 506 

approaches, fixed adaptation and real options, were investigated and 507 

compared using a case study of the Waterloo catchment in London, UK. 508 

Main conclusions are drawn as below: 509 

1) The real options approach is more cost effective compared to the 510 

fixed adaptation approach. When the same SuDS measures are adopted 511 

during the planning horizon, the real options approach can have a slightly 512 

higher EAD but have a much lower cost when compared with the fixed 513 

approach, which makes it achieve a higher NPV during the planning 514 

horizon. 515 

2) The real options approach achieves a bigger advantage than the 516 

fixed adaptation approach with an increasing cost of adaptation 517 
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measures but the benefit is reduced when the drainage capacity of SuDS 518 

measures decreases.  519 

3) The results obtained from the case study indicate the real options 520 

approach is able to handle the uncertainty of climate change in assessing 521 

SuDS measures for surface water flood risk management. 522 

This study considers three SuDS measures only in a case study of 523 

the Waterloo catchment. More SuDS measures will be further 524 

investigated in the future in order to explore the advantage of using real 525 

options on urban surface water flood risk management. 526 
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