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Abstract

We investigate the achievable sum degrees of freedom (DoF) in a class of single-antenna multi-user multi-
hop relay networks. The networks consist of multiple information sources and destinations, without direct signal
propagation link between them, so that multiple layers of relays are deployed to assist in information delivery.
We consider the situation that relays are unable to shield their receptions from the harmful self-interference and
from the interference generated by other relays. Hence ideal full-duplex relaying is not applicable. Utilizing half-
duplex decode-and-forward relays, a cluster successive relaying (CSR) transmission scheme is adopted to conduct
message transmission. The CSR scheme divides each layer of relays into two successively activated relay clusters
to compensate the extra channel consumption demanded by the half-duplex operation. We propose two interference
alignment strategies to deal with the interference issues. By properly clustering the relays in each layer, we find
the asymptotically achievable sum DoF, subject to time-varying and frequency-selective fading respectively. These
results can lead to new lower bounds for the available DoF in the considered class of multi-user multi-hop networks.

Index Terms

Degrees of freedom (DoF), multi-user multi-hop networks, half-duplex relaying, interference alignment.

I. INTRODUCTION

Thanks to the elegant concept of interference alignment (IA) [1]–[4], our understanding of the per-
formance limits in large wireless communication networks has been greatly improved over the last few
years. Through evaluating the sum degrees of freedom (DoF), how the total transmission data rate in a
wireless network may scale with varying signal-to-noise ratio (SNR) can be roughly quantified. A number
of discoveries have revealed that the achievable sum DoF can be related to the network scale. This exhibits
great advantages of potential network-level transmission designs over the conventional orthogonal link-
level designs.

The basic idea behind IA is to force multi-user interference signals to align in a compact receive subspace
so that more radio resources can be allocated for desired information transmission. For multiple-input
multiple-output (MIMO) systems the multi-dimensional receive space is readily generated in the spatial
domain (see e.g., [5]–[8]). But for single-antenna networks it can be created through the channel-extension
technique [2], [9] in time-varying or frequency-selective fading environments. For instance, it has been
shown that the asymptotically achievable sum DoF in a single-antenna M -user interference channel (i.e.,
a network with M source-destination pairs) can be as high as M
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Fig. 1. A single-antenna multi-user multi-hop network. Four types of interference would occur if relays operate in the full-duplex fashion.
Hence we consider applying half-duplex relays to conduct message transmissions.

X channel (i.e., a network with Ms sources and Md destinations) can be MsMd

Ms+Md−1
[9]. Both results are

much larger than one, which is the sum DoF achieved by classic orthogonal transmissions.
Recently the research attention has been naturally extended from single-hop networks to multi-hop

relay networks. When the sources’ signals can reach all destinations, the optimally achievable sum DoF
(referred to as available DoF throughout the paper) would be limited by the result in the direct single-
hop source-destination network [10]. From the DoF perspective, relays can be discarded without causing
performance loss. When there is no direct communication link between the sources and destinations,
however, an interesting discovery has been made. Consider a single-antenna M -user two-hop network
with M dedicated source-destination pairs. When the number of relays is sufficiently large, the achievable
sum DoF can reach M , which is twice the result attained in an M -user interference channel [11]–[13].
The fact holds even when the network has more than two hops [14], [15]. This means that relays can
bring not only information delivery paths between the sources and destinations, but also DoF gains over
single-hop networks.

But realizing the above results demands an ideal full-duplex relaying assumption. Consider a multi-user
multi-hop network as shown in Fig. 1. If all the relays transmit and receive signals simultaneously using
the same frequency band, in addition to desired signals coming from the preceding layer, each relay
in fact also experiences four types of interference: the unwanted signals generated by terminals located
respectively in the preceding layer, in the same layer, and in the following layer, as well as the signals
generated by its own transmit antenna. We term these interference signals forward interference, within-
layer interference, backward interference, and self-interference respectively. Most existing investigations
on DoF analysis in wireless multi-hop networks take only the forward interference into account, and
ignore the other three types. This consideration simplifies the transmission design problem and facilitates
reaching insightful discoveries. But the results may not reflect the actual performance in more general
conditions where those interference signals cannot be directly neglected. Certainly, half-duplex relaying
serves as a natural solution to tackling these interference issues. After all, in a two-hop network, permitting
the relays to use orthogonal channels to receive and forward source messages can completely eliminate
the self-interference and within-layer interference. Nevertheless, the extra channel usage demanded by
half-duplex operation has the potential to reduce spectral efficiency. For example, utilizing half-duplex
relays in the schemes proposed by [11]–[15] would halve the sum DoF results achieved in ideal full-
duplex systems, as shown in [9], [16]. If source messages have to go through more hops to reach the
destinations, the result would decrease further.

To address this problem, our previous work [17] proposed a spectrally-efficient half-duplex cluster
successive relaying (CSR) transmission scheme for a single-antenna M -user two-hop network. The system
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model was later extended to multi-user multi-hop networks in [18]. Different from most conventional
relaying schemes that demand all relays in the same layer to operate in the same mode (either listening or
forwarding) together, we divide each layer of relays into two identical clusters and alternatively activate
them.1 It was shown that, the achievable sum DoF can be much larger than the results attained by directly
adopting half-duplex relays in the schemes proposed by [11]–[15]. Interestingly, if the number of relays
in each layer approaches infinity, the achievable sum DoF approaches an upper bound for the available
DoF. The exact available DoF is thus identified. The result is actually the same as that obtained in ideal
full-duplex systems. This implies that the aforementioned interference issues may not necessarily reduce
the system’s DoF. Properly designed half-duplex relaying schemes can still serve to identify multi-hop
networks’ performance limits.

However, when the number of relays in each layer is limited, the optimally achievable sum DoF is
currently still unknown. Pinpointing the exact available DoF in a general multi-user multi-hop relay
network is extremely involved. The highest sum DoF presented in existing works would provide an
achievable lower bound and help identify the region that the available DoF reside. In this paper, we will
show that the known lower bound can be further increased, through finding new achievable sum DoF for
the CSR scheme. Actually most existing works on the concept of successive relaying demands a symmetric
setup such that at any time instant the number of listening relays and that of forwarding relays should
be the same. Consequently, in [17], [18] if a relay layer contains an odd number of terminals, one relay
would be discarded from the system. This requirement, which was believed to cause no performance loss,
simplifies the IA transceiver filters design and performance analysis. But we argue that it may lead to an
inefficient use of the system’s hardware resources. In this paper we consider permitting the two clusters
to have different sizes so that all relays can participate in the message transmission process. By careful
relay clustering and IA construction, we show that improved sum DoF can be attained. The novelties of
this paper can be summarized as follows.

1) We consider communications in a class of single-antenna wireless relay networks, which consist of
multiple sources, multiple destinations, and multiple layers of intermediate relays. Different from
most related works (e.g., [11]–[15]), we take all the four types of interference signals shown in Fig. 1
into account. Ideal full-duplex relaying is not applicable.2 We consider deploying half-duplex decode-
and-forward (DF) relays to carry out message transmission and adopt the CSR scheme to combat
potential spectral efficiency loss induced by the half-duplex operation. The remaining interference
issues are handled by IA construction at the distributed terminals. We show that properly designed
half-duplex relaying strategy can provide better DoF results than directly adopting half-duplex relays
in those schemes proposed for ideal full-duplex scenarios.

2) To better utilize the network’s hardware resources, we relax the requirement of having two identical
clusters in each relay layer, as posed by the original CSR scheme design in [17], [18]. We first fix the
relay clustering strategy and show that applying the CSR scheme converts the considered multi-hop
network into an equivalent single-hop network. For time-varying fading, the IA transceiver filters for
the equivalent network are constructed. Then the asymptotically achievable sum DoF in the original
multi-hop network are derived. Finally, we study how to divide each layer of relays into clusters
in order to maximize the CSR scheme’s achievable sum DoF. It is shown that, by appropriately
involving all available relays, a higher sum DoF than those presented in prior literatures can be
obtained.

1Using two relays to take turns forwarding source messages is widely referred to as successive relaying or alternative relaying. It has
attracted considerable attentions in the past decade as an effective way to compensate the half-duplex multiplexing gain loss in single-user
relay networks (see e.g., [19]–[22]). In addition to our works on systems with arbitrary sources, arbitrary destinations and arbitrary layers
of relays, recently the concept has also been adopted in M -user two-hop single-antenna [23], [24] and MIMO [25], [26] systems to identify
the DoF performance in large relay networks.

2Although the full-duplex technology has advanced rapidly in recent years, the capability of self-interference mitigation usually demands
complex algorithms and costly hardware [27], and thus may not be widely applicable to small, cheap, and power-limited devices in the
near future. In addition, even if the relay self-interference can be significantly reduced, the within-layer and backward interference can still
severely harm the system performance if terminals operate in the full-duplex fashion.
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3) In addition, when the channel fading is frequency-selective, based on channel reciprocity we show
that IA design for a dual equivalent network can serve as an extra option to carry out message
delivery. This may lead to a further enhancement of the achievable sum DoF, compared with the
time-varying fading case. Although the basic idea behind the channel-extension based IA filters
construction is similar to those presented in [2], [9], [18], the design has its own constraints and
solutions. The DoF results cannot be directly conjectured from existing works. Using these results,
we can identify new lower bounds for the available DoF. To the best of our knowledge, these are the
best results so far in the considered class of single-antenna multi-user multi-hop networks. Therefore
they can help provide new knowledge regarding the performance limits in large relay networks.

The remainder of the paper is organized as follows. In Section II we describe our system model, the
CSR transmission process, and the main results of the paper. The achievability of these DoF results is
established in Sections III and IV. Specifically, Section III elaborates two IA construction strategies for
the equivalent single-hop network created by the CSR scheme. Section IV provides the achievable sum
DoF analysis in the original multi-hop network. Finally, Section V concludes the paper.

Notations: |A| denotes the cardinality of set A. ⌊·⌋ and ⌈·⌉ represent the floor and ceiling functions
respectively. The transpose and rank of matrix A are denoted by AT and rank(A). span(A) denotes the
space spanned by the column vectors of A. O denotes an all-zero matrix.

II. SYSTEM MODEL AND MAIN RESULTS

A. Network and Channel Models
In this paper we consider a class of wireless single-antenna multi-user multi-hop communication

networks. The networks consist of N + 2 (N ≥ 1) layers of terminals, i.e., a source layer with Ms ≥ 2
independent sources, a destination layer with Md ≥ 2 independent destinations, and N layers of relays
between them. The ith (i ∈ {1, 2, · · · , N}) relay layer deploys Ki ≥ 4 distributed DF relay nodes. Every
source attempts to send one independent message to every destination. In other words, the information
delivery demand is similar to that in a single-hop Ms × Md X channel: A total of MsMd messages
generated from the Ms sources should be delivered to the Md destinations, through the relays. Such
(N + 1)-hop networks are denoted by a general form {Ms, K1, · · · , KN ,Md}(N+1) throughout the paper.
A simple four-hop {3, 7, 9, 8, 5}(4) example network is illustrated in Fig. 1.

The considered networks exhibit a layered structure. Non-adjacent layers do not have direct signal
propagation links. But if a terminal is operating in the receiving mode, it always overhears concurrent
transmissions of other terminals located in the same layer and of those in adjacent layers using the same
frequency band. The channel fading coefficients between these terminals are modelled by independent
random variables generated from a continuous distribution, with absolute values bounded away from zero
and infinity [10]. In addition, due to hardware limitation, the relays cannot shield their reception from
their own transmission, if they operate in a full-duplex fashion. Therefore, we consider using half-duplex
relaying to avoid the self-interference and keep the remaining three types of interference shown in Fig. 1
to be controllable.

The message transmission process is conducted via a slotted fashion, in either a narrow-band time-
varying or a wide-band frequency-selective block-fading environment: The source messages are delivered
to the destinations using multiple (unit-length) time slots. Under time-varying fading, channel fading
coefficients would change independently across different time slots. Under frequency-selective fading,
the available frequency band can be converted into multiple parallel independently-faded frequency-
flat unit frequency channels, and the fading coefficients remain unchanged for the entire transmission
duration. Channel knowledge regarding the whole network is causally available at all terminals.3 Perfect

3Essentially the channel-extension based IA design does not distinguish these two fading setups. Most previous investigations on the DoF
in single-antenna networks attain the same result in both cases. However, for frequency-selective fading, terminals can have the channel
knowledge regarding the whole transmission duration since fading coefficients do not change, while for time-varying fading future channel
knowledge is not attainable. As will be discussed later, armed with the former level of channel knowledge, we can have an extra option to
construct IA design and potentially further improve the system’s achievable sum DoF performance in frequency-selective fading environments.
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synchronization among terminals is also assumed.
Use ρ to denote the maximum transmit power of a terminal. The achievable sum DoF, dΣ, represent

the scaling behaviour of the sum transmission data rate, RΣ, regarding ρ as:

dΣ = lim
ρ→∞

RΣ

log2 ρ
. (1)

Certainly, if the available DoF (i.e., the optimally achievable sum DoF), d∗Σ, can be identified, then we
can characterize the network’s sum capacity CΣ by CΣ(ρ) = d∗Σ log2 ρ + o(log2 ρ) when ρ→∞. For an
{Ms, K1, · · · , KN ,Md}(N+1) network, it is easy to use the cut-set bound analysis to upper bound d∗Σ by
d∗Σ ≤ min {Ms, K1, · · · , KN ,Md}. But so far the exact value of d∗Σ is known only for a few special cases.
For instance, if the within-layer interference, backward interference and self-interference shown in Fig. 1
do not exist, then one can use ideal full-duplex relays and apply the transmission scheme proposed in [14]
to obtain d∗Σ = min {Ms, K1, · · · , KN ,Md}. If these interference signals cannot be neglected, [18] proves
that, when the number of relays in each layer approaches infinity, then using half-duplex relays can still
attain d∗Σ = min {Ms, K1, · · · , KN ,Md} = min {Ms,Md}. This means that these interference issues may
not necessarily affect network capacity’s scaling behaviour, no matter how many layers of relays have to
be used to conduct transmissions.

However, for network structures with finite relays in each layer, identifying d∗Σ is extremely involved.
In general one can only obtain a bounded characteristic of d∗Σ as

dΣ ≤ d∗Σ ≤ min {Ms, K1, · · · , KN ,Md} . (2)

Fining a higher value of the achievable sum DoF dΣ would reduce the gap between the lower and upper
bounds, and reduce the uncertainty regarding d∗Σ. This is the objective of our paper.

In fact, to deliver information in the considered {Ms, K1, · · · , KN ,Md}(N+1) network, we can again
adopt the scheme proposed by [14] but use half-duplex relays. Due to the half-duplex operation, this
approach may cause the available channel resources to be inefficiently utilized, especially when the
numbers of hops and relays are large. To handle this issue, our previous works [17], [18] proposed a
CSR scheme that divides each layer of relays into two identical clusters and alternatively activates them
to mimic full-duplex relays. When the number of relays in each layer is relatively large, the achievable
sum DoF can be greater than the former method. However, the original CSR scheme design requires
the two relay clusters to have the same size. If a relay layer has an odd number of terminals, one relay
will be discarded. In this paper, we will show that this requirement does not efficiently use the available
hardware resources. By allowing the two clusters to have different sizes, we can properly involve all the
relays in the message delivery process and achieve higher sum DoF. Thus a new lower bound for d∗Σ can
be provided. In the following subsections, we will first describe the CSR transmission process and then
present the main results of the paper. The achievability will be proved in Sections III and IV.

B. The CSR Scheme
In this subsection, we describe how the MsMd source messages are transmitted to the destinations, by

applying the CSR scheme. Divide each layer of relays into two clusters. We denote the sets of sources
and destinations by S and D, respectively. The two relay clusters in the ith (i ∈ {1, 2, · · · , N}) relay
layer are denoted by Ri,1 and Ri,2. The first cluster contains |Ri,1| = ri (2 ≤ ri ≤ Ki − 2) relays, and
the second cluster has |Ri,2| = Ki − ri relays.

Recall that every source intends to send an independent message to every destination. We divide each
of these source messages into L (L ≥ 1) sub-message sets. The L sub-message sets (i.e., one message)
generated by the sth (s ∈ {1, 2, · · · ,Ms}) source and desired by the dth (d ∈ {1, 2, · · · ,Md}) destination
are denoted by I [1]d,s, I

[2]
d,s, · · · , I

[L]
d,s . Every sub-message set contains the same number of I independent

unit-DoF sub-messages, which means each sub-message can be encoded into a Gaussian codeword with
data rate log2 ρ + o(log2 ρ) for large ρ. Hence every source has a total of LMd sub-message sets (i.e.,
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I [1]1,s, · · · , I
[1]
Md,s

, I [2]1,s, · · · , I
[2]
Md,s

, · · · , I [L]1,s , · · · , I [L]Md,s
) to transmit and every destination expects LMs

sub-message sets (i.e, I [1]d,1, · · · , I [1]d,Ms
, I [2]d,1, · · · , I

[2]
d,Ms

, · · · , I [L]d,1, · · · , I [L]d,Ms
).

The message transmission process is conducted using L + N consecutive time intervals. For time-
varying fading, the nth (n ∈ {1, 2, · · · , L+N}) time interval contains F[n] unit time slots. For frequency-
selective fading, every time interval is a unit time slot, but the available frequency band contains F[n]

independent unit frequency channels. During each of the first L time intervals, every source broadcasts
Md sub-message sets, one dedicated for each destination, to the first layer of relays. That is, during the
nth (n ∈ {1, 2, · · · , L}) time interval, the sth source transmits I [n]1,s, I

[n]
2,s, · · · , I

[n]
Md,s

. The two clusters in
each relay layer are activated alternatively. At one time interval, the relays within one cluster listen to the
transmissions of the terminals in the preceding layer, and the relays within the other cluster forward their
previously received sub-messages to the following layer. At the next interval, the two clusters exchange
their functioning. In each hop, every transmitter evenly divides its transmit sub-messages and send them
to the receivers respectively.

Specifically, during the first time interval, S transmits MsMd sub-message sets I [1]1,1, · · · , I
[1]
Md,1

, I [1]1,2,
· · · , I [1]Md,2

, · · · , I [1]1,Ms
, · · · , I [1]Md,Ms

to the relays in R1,1. During the second time interval, S transmits
MsMd new sub-message sets I [2]1,1, · · · , I

[2]
Md,1

, I [2]1,2, · · · , I
[2]
Md,2

, · · · , I [2]1,Ms
, · · · , I [2]Md,Ms

to the other relay
cluster R1,2. The relays in R1,1 now forward the sub-messages they received in the first time interval, i.e.,
I [1]1,1, · · · , I

[1]
Md,1

, I [1]1,2, · · · , I
[1]
Md,2

, · · · , I [1]1,Ms
, · · · , I [1]Md,Ms

, to the relays in R2,2. Certainly, the reception of
R1,2 is interfered by the transmission of R1,1. This is the within-layer interference.

During the third time interval, S transmits MsMd new sub-message sets I [3]1,1, · · · , I
[3]
Md,1

, I [3]1,2, · · · , I
[3]
Md,2

,
· · · , I [3]1,Ms

, · · · , I [3]Md,Ms
again to the relays in R1,1. At the same time, R1,2 forwards I [2]1,1, · · · , I

[2]
Md,1

, I [2]1,2,
· · · , I [2]Md,2

, · · · , I [2]1,Ms
, · · · , I [2]Md,Ms

to the relays in R2,1, and R2,2 forwards I [1]1,1, · · · , I
[1]
Md,1

, I [1]1,2, · · · ,
I [1]Md,2

, · · · , I [1]1,Ms
, · · · , I [1]Md,Ms

to the relays in R3,1. Now the reception of R1,1 experiences within-layer
interference generated by R1,2 and backward interference generated by R2,2. The reception of R2,1 also
experiences within-layer interference from R2,2.

The process continues similarly. Choose L to be large. Then during most time intervals, we can
summarize the operations of all the clusters as follows, and illustrate them in Fig. 2(a).
• During an odd time interval: S , R1,2, R2,2, · · · , RN,2 operate in the transmitting mode. R1,1, R2,1,
· · · , RN,1, D operate in the receiving mode. In other words, terminals within Ri,1 (i ∈ {1, 2, · · · , N})
intend to receive a total of MsMd sub-message sets from the terminals within Ri−1,2 (S for the case
i = 1). But their reception is interfered by the transmission of Ri,2 (i.e., the within-layer interference)
and Ri+1,2 (i.e., the backward interference).

• During an even time interval: S, R1,1, R2,1, · · · , RN,1 operate in the transmitting mode. R1,2, R2,2,
· · · , RN,2, D operate in the receiving mode. Terminals within Ri,2 desire to receive a total of MsMd

sub-message sets from the terminals within Ri−1,1 (S for the case i = 1), while being interfered by
Ri,1 (within-layer interference) and Ri+1,1 (backward interference).

Since the network has N+1 hops, the last MsMd sub-message sets I [L]1,1 , · · · , I [L]Md,1
, I [L]1,2 , · · · , I [L]Md,2

, · · · ,
I [L]1,Ms

, · · · , I [L]Md,Ms
would be delivered by the last layer of relays to the destinations during the (L+N)th

time interval. Therefore, if all the source messages can be reliably delivered to the destinations, then a total
of

∑L+N
n=1 F[n] unit channels are used to complete the transmission of LMsMdI unit-DoF sub-messages.

The achievable sum DoF, dCSR, is calculated as

dCSR = lim
ρ→∞

LMsMdI (log2 ρ+ o(log2 ρ))(∑L+N
n=1 F[n]

)
log2 ρ

=
LMsMdI∑L+N

n=1 F[n]

. (3)

A high dCSR can be achieved by signal transmission strategies that produce a large value of I with
a small value of

∑L+N
n=1 F[n]. To find such solutions, we inspect the CSR transmission process and Fig.

2(a). It can be clearly seen that during any individual time interval, the transmission in the considered
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Fig. 2. (a) The CSR transmission process in two consecutive time intervals. (b) The primary equivalent network, and (c) the dual equivalent
network. Solid arrow lines represent intended transmission directions. Dashed arrow lines represent inter-cluster interference.

(N +1)-hop network is similar to that in a single-hop network as displayed in Fig. 2(b). This single-hop
network contains N +1 pairs of transmitter-receiver clusters, denoted by Si and Di (i = 1, 2, · · · , N +1)
respectively. Every transmitter cluster Si intends to send the same number of MsMdI sub-messages to
Di. For i ∈ {1, 2, · · · , N − 1}, in addition to the signals coming from Si, the reception of Di experiences
two types of inter-cluster interference, generated by Si+1 and Si+2 respectively. The reception of DN

is interfered by the transmission of one unintended cluster SN+1. Receivers in DN+1 do not experience
inter-cluster interference. In the remainder of the paper, we term this single-hop network the primary
equivalent network.

Clearly, during an odd time interval, the transmitter clusters S1, S2, · · · , SN+1 in the primary equivalent
network represent the clusters S , R1,2, · · · , RN,2 operating in the transmitting mode in the original multi-
hop network. The receiver clusters D1, D2, · · · , DN+1 representR1,1,R2,1, · · · , D, the clusters that operate
in the receiving mode. Similarly, during an even time interval, S1, S2, · · · , SN+1 represent S , R1,1, · · · ,
RN,1, and D1, D2, · · · , DN+1 represent R1,2, R2,2, · · · , D. The inter-cluster interference between Si+1

and Di is the within-layer interference, and that between Si+2 and Di is the backward interference in the
{Ms, K1, · · · , KN ,Md}(N+1) network. These are displayed in Fig. 2(a).

Since the CSR scheme can convert the original multi-hop network into an equivalent single-hop network,
we can actually focus on each individual time interval and find signal transmission solutions for the
equivalent network, as long as the fact that a relay can only forward the sub-messages it received in the
past time interval is taken into account. In this paper we utilize the channel-extension based IA technique
to efficiently tackle the interference in the primary equivalent network. By this mean, we can decide the
values of I , F[n], and also the number of relays in each cluster ri to maximize dCSR expressed in (3). In
the next subsection, we present the main findings of the paper. The detailed IA design and DoF analysis
are provided afterwards.
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C. Main Results
To facilitate presentation, we define a function η(ms, k1, · · · , kn,md) regarding integer parameters ms ≥

2, md ≥ 2, n ≥ 1, and k1, · · · , kn ≥ 4 as:

η(ms, k1, · · · , kn,md) = min

{
2

2
ms

+ 1

⌊ k12 ⌋
+ 1

⌈ k12 ⌉
,

2
1
ms

+ 1

⌊ k12 ⌋
+ 1⌊

min{k1,··· ,kn}
2

⌋ + 1⌈
min{k1,··· ,kn}

2

⌉ ,
2

1
ms

+ 1

⌊ k12 ⌋
+
⌊ kn2 ⌋+md−1

⌊ kn2 ⌋md

,
2

⌊ kn2 ⌋+md−1

⌊ kn2 ⌋md
+ 1⌊

min{k1,··· ,kn}
2

⌋ + 1⌈
min{k1,··· ,kn}

2

⌉ ,

1
1⌊

min{k1,··· ,kn}
2

⌋ + 1⌈
min{k1,··· ,kn}

2

⌉ , 2

⌊ kn2 ⌋+md−1

⌊ kn2 ⌋md
+
⌈ kn2 ⌉+md−1

⌈ kn2 ⌉md

}
. (4)

We will use η(ms, k1, · · · , kn,md) to express the achievable sum DoF of our CSR scheme, dCSR. Let us
start from the time-varying fading environment. The result is summarized as follows.

Proposition 1. Under time-varying fading, applying the CSR scheme in the considered single-antenna
{Ms, K1, · · · , KN ,Md}(N+1) network can asymptotically achieve the sum DoF

dCSR = η(Ms, K1, · · · , KN ,Md). (5)

This result is obtained by setting |Ri,1| = ri =
⌊
Ki

2

⌋
and |Ri,2| = Ki−ri =

⌈
Ki

2

⌉
for all i ∈ {1, 2, · · · , N}.

In our previous work [18], by demanding both relay clusters in each layer to have the same size of⌊
Ki

2

⌋
, the following sum DoF can be asymptotically achieved:

dCSR-old = min

 Ms

⌊
K1

2

⌋
Ms +

⌊
K1

2

⌋ ,
⌊
min{K1,··· ,KN}

2

⌋
2

,

⌊
KN

2

⌋
Md⌊

KN

2

⌋
+Md − 1

 . (6)

From Proposition 1, it is not difficult to show that when K1, K2, · · · , KN are all even numbers, the
expression for the new achievable sum DoF (5) is identical to (6). However, if some relay layers contain
odd numbers of terminals, the result in (5) can be larger. We will use a few simple examples to explicitly
demonstrate such a result.

Firstly, consider a three-hop {3, 8, 8, 5}(3) example network. The result provided in [18], i.e. equation (6),
shows that, by dividing each relay layer into two 4-relay clusters, the achievable sum DoF is dCSR-old =

12
7

.
This result is much larger than 1, the sum DoF achieved by adopting the half-duplex version of the scheme
proposed by [14]. Now consider that each relay layer has 9 terminals. Using equation (6) the result remains
to be 12

7
, because although an extra relay exists in each layer it will be discarded. Proposition 1, however,

shows that a larger sum DoF dCSR = 120
67

can actually be attained (a 4.5% improvement). In fact dCSR = 120
67

remains the same in {3, 9, 9, · · · , 9, 5}(N+1) networks for any value of N ≥ 1. The number of layers of
half-duplex relays that the source messages have to go through does not affect the achievable sum DoF.

To more explicitly exhibit the advantage of properly involving all relays in the message transmission
process, we display the dCSR achieved in three-hop {3, 2K + 1, 2K + 1, 5}(3) networks (i.e., both relay
layers contain an odd number of 2K + 1 relays) versus the values of K in Fig. 3. The DoF gain over
dCSR-old can be clearly observed. When the number of relays increases, dCSR also increases to approach 3,
the upper bound min {Ms, K1, K2,Md} for the available DoF. This is in line with the result presented in
[18].

If we swap the numbers of sources and destinations in the above three-hop network and consider a
{5, 9, 9, 3}(3) network, the achievable sum DoF calculated in Proposition 1 is dCSR = 60

29
. It is interesting

to observe different values of dCSR in the {3, 9, 9, 5}(3) and {5, 9, 9, 3}(3) networks. This is partly because,



9

2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

K

A
ch

ie
va

bl
e 

su
m

 D
oF

 

 

Upper bound for the available DoF

d
CSR−old

, achieved in [18]

d
CSR

 for time−varying fading, Proposition 1

d
CSR

 for frequency−selective fading, Proposition 2

min(M
s
,K

1
,...,K

N
,M

d
)/3

Fig. 3. Achievable sum DoF of the CSR scheme in {3, 2K + 1, 2K + 1, 5}(3) networks.

the CSR scheme converts the considered multi-hop network into a single-hop equivalent network with an
asymmetric structure. Those two multi-hop systems thus have different equivalent networks. The other
reason is that these results are only the lower bounds for d∗Σ. They are obtained by different IA strategies
and it is not yet known whether they accurately reflect the actual behaviour of d∗Σ. Moreover, although this
observation holds in time-varying fading environments, in this paper we will show that under frequency-
selective fading the achievable sum DoF in the {3, 9, 9, 5}(3) network can be improved from 120

67
by

15.5% to dCSR = 60
29

. Certainly, the sizes of different relay layers do not need to be identical. Proposition
1 is applicable to general {Ms, K1, · · · , KN ,Md}(N+1) networks. For instance, considering a four-hop
{3, 13, 18, 25, 5}(4) network, the new achievable sum DoF is dCSR = 84

41
, which is 2.4% larger than dCSR-old =

2 obtained using equation (6).
Now, let us present the achievable sum DoF result when the fading is frequency-selective.

Proposition 2. Under frequency-selective fading, applying the CSR scheme in the considered single-
antenna {Ms, K1, · · · , KN ,Md}(N+1) network can asymptotically achieve the sum DoF

dCSR = max
{
η(Ms, K1, · · · , KN ,Md), η(Md, KN , · · · , K1,Ms)

}
. (7)

This result is obtained by setting |Ri,1| = ri =
⌊
Ki

2

⌋
and |Ri,2| = Ki−ri =

⌈
Ki

2

⌉
for all i ∈ {1, 2, · · · , N}.

The achievable sum DoF result presented in Proposition 2 is different from that in Proposition 1.
This is because, as mentioned earlier, the channel knowledge available at terminals can be different
in these two fading scenarios. We will show in Section III-B that with the channel state information
regarding the entire transmission duration, for frequency-selective fading, in addition to the method
that achieves η(Ms, K1, · · · , KN ,Md) shown in (5), an extra option for IA design based on channel
reciprocity can be realized. Since the CSR scheme converts the original {Ms, K1, · · · , KN ,Md}(N+1)

network into an equivalent network with asymmetric structure, the sum DoF achieved based on this new
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IA construction method, η(Md, KN , · · · , K1,Ms), can be different from η(Ms, K1, · · · , KN ,Md). The
strategy that provides higher sum DoF will be chosen to conduct message transmission, which leads to
(7).

Let us see some examples. Consider again the three-hop {3, 8, 8, 5}(3) network. Even though under time-
varying fading the value of dCSR presented in Proposition 1 remains to be the same as dCSR-old =

12
7

, in a
frequency-selective fading environment the result can be improved by 16.7% to dCSR = 2. In addition, for
the three-hop {3, 9, 9, 5}(3) network, the achievable sum DoF can be further improved to dCSR = 60

29
, larger

than the result shown in Proposition 1. The dependency of dCSR regarding K in the {3, 2K+1, 2K+1, 5}(3)
networks is also displayed in Fig. 3. A notable improvement over dCSR-old can be observed. Further, for
the aforementioned four-hop {3, 13, 18, 25, 5}(4) network, in the frequency-selective fading environment,
the achievable sum DoF is dCSR = 126

55
, which is 11.8% larger than the result in a time-varying fading

environment.
It should be noted that the results presented in Propositions 1 and 2 may not always serve as the highest

achievable lower bound (i.e., dΣ in (2)) for the available DoF in an arbitrary {Ms, K1, · · · , KN ,Md}(N+1)

network. The idea behind the concept of successive relaying is to use two alternatively activated relays
to mimic one full-duplex relay. For our CSR scheme, when the number of relays in each layer is large,
the relays would introduce sufficient degrees of freedom to efficiently align and cancel interference. In
general the CSR scheme provides high achievable sum DoF when each relay layer contains a relatively
large number of terminals. If this is not the case, we may choose using other half-duplex relaying schemes
to deliver information.

Specifically, as mentioned earlier, one can adopt the elegant transmission scheme proposed in [14]
(which can achieve the available DoF d∗Σ = min{Ms, K1, · · · , KN ,Md} in an ideal full-duplex system) but
replace the full-duplex relays with half-duplex relays. This scheme is referred to as aligned diagonalization
relaying (ADR). Directly orthogonalizing the transmissions of all the layers would cause the achievable
sum DoF to be very small when the number of hops is large. To avoid such a problem, when N > 1
we can allow the ith layer and (i+3)th layer of terminals to transmit signals non-orthogonally. Then the
whole network would not experience within-layer and backward interference, and at any time instant at
most three consecutive hops (two hops for the case N = 1) are orthogonalized. The achievable sum DoF
thus is

dADR =

{
min{Ms,K1,Md}

2
, for N = 1

min{Ms,K1,··· ,KN ,Md}
3

, for N ≥ 2
. (8)

In addition, we can also follow the method proposed in [9] and treat the transmission in each single
hop as that in an individual X channel. We term this scheme cascaded X channel relaying (CXR). It is
known that the optimally achievable sum DoF in an ms ×md X channel is dX = msmd

ms+md−1
. This means

that, averagely, delivering a unit-DoF sub-message (a Gaussian codeword with rate log2 ρ + o(log2 ρ))
demands 1

dX
= ms+md−1

msmd
unit time/frequency channels. Again, when N ≥ 2 the ith and the (i+3)th layers

of terminals can be activated together (i.e., the three consecutive layers, the ith, (i+1)th, (i+2)th layers
are always orthogonalized to avoid interference). The achievable sum DoF, dCXR, can be calculated as

dCXR =


1

Ms+K1−1
MsK1

+
K1+Md−1

K1Md

, for N = 1

min
i∈{0,1,··· ,N−2}

{
1

Ki+Ki+1−1

KiKi+1
+

Ki+1+Ki+2−1

Ki+1Ki+2
+

Ki+2+Ki+3−1

Ki+2Ki+3

}
, for N ≥ 2

(9)

where K0 = Ms and KN+1 = Md [18].
Finally, the cascaded block relaying (CBR) scheme proposed in [18] treats the considered (N +1)-hop
{Ms, K1, · · · , KN ,Md}(N+1) network as two orthogonally-activated consecutive sub-networks (blocks),
and properly chooses a transmission scheme in each block to deliver information. In particular, one
can use the ϵth (ϵ ∈ {1, 2, · · · , N}) relay layer to divide the network. Then the first block is an ϵ-hop
{Ms, K1, · · · , Kϵ−1, Kϵ}(ϵ) network and the second is a {Kϵ, Kϵ+1, · · · , KN ,Md}(K+1−ϵ) network with
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TABLE I
SOME EXAMPLE NETWORKS AND THEIR ACHIEVABLE SUM DOF (ACCURACY IS WITHIN 0.1%).

Achieved in [18] New achievable result New achievable result
Networks (time-varying/frequency-selective fading) (time-varying fading) (frequency-selective fading)

{5, 11, 30}(2) 2.538 (CXR) dΣ = 2.609
(CSR)
↑2.8% dΣ = 2.727

(CSR)
↑7.4%

{5, 7, 7, 7}(3) 1.667 (ADR) dΣ = 1.714
(CSR)
↑2.9% dΣ = 1.714

(CSR)
↑2.9%

{4, 9, 10, 6}(3) 2.000 (CSR) dΣ = 2.105
(CSR)
↑5.3% dΣ = 2.222

(CSR)
↑11.1%

{3, 17, 9, 9}(3) 2.000 (CSR) dΣ = 2.202
(CSR)
↑10.1% dΣ = 2.222

(CSR)
↑11.1%

{9, 15, 14, 19, 5}(4) 3.462 (CSR) dΣ = 3.481
(CSR)
↑0.6% dΣ = 3.481

(CSR)
↑0.6%

{3, 19, 4, 25, 5}(4) 1.286 (CBR) dΣ = 1.300
(CBR)
↑1.1% dΣ = 1.401

(CBR)
↑9.0%

{3, 19, 25, 4, 5}(4) 1.184 (CBR) dΣ = 1.192
(CBR)
↑0.7% dΣ = 1.244

(CBR)
↑5.1%

K + 1 − ϵ hops. Let us use dCBR,ϵ,1 and dCBR,ϵ,2 to denote the maximally achievable sum DoF in these
two blocks respectively. These two results can be obtained following the above discussions. For example,
if a block contains more than one hop, then we can choose among the CSR, ADR, and CXR schemes
and the maximally achievable sum DoF would be max{dCSR, dADR, dCXR}. If a block contains only one
hop, it can be considered as an X channel with achievable sum DoF calculated by dX. Now, in order to
reach the destination, averagely, each unit-DoF sub-message would require 1

dCBR,ϵ,1
unit channels to pass

the first block and 1
dCBR,ϵ,2

unit channels to pass the second. As a result, the achievable sum DoF of such
a CBR scheme is

dCBR =
1

1
dCBR,ϵ,1

+ 1
dCBR,ϵ,2

=
dCBR,ϵ,1dCBR,ϵ,2

dCBR,ϵ,1 + dCBR,ϵ,2
. (10)

For instance, consider a four-hop {3, 19, 4, 25, 5}(4) network. We can use the second layer of relays to
divide the network into a two-hop {3, 19, 4}(2) network and a two-hop {4, 25, 5}(2) network. Applying the
CSR scheme to each block leads to dCBR,2,1 =

540
237

and dCBR,2,2 =
312
103

in a time-varying fading environment.
The achievable sum DoF is dCBR = 4680

3599
, much better than the result of 1 achieved by directly applying

the CSR scheme to the whole network.
All of these four schemes (i.e., the CSR, ADR, CXR, and CBR schemes) can be applied in the considered
{Ms, K1, · · · , KN ,Md}(N+1) network. The method that provides the highest sum DoF would be chosen
to deliver information. Therefore, based on Propositions 1 and 2 we can have the following corollary
regarding the highest achievable sum DoF known so far.

Corollary 1. A lower bound for the available DoF in the considered single-antenna multi-user (N+1)-hop
{Ms, K1, · · · , KN ,Md}(N+1) network is expressed as

dΣ = max
{
dADR, dCXR, dCSR, dCBR

}
. (11)

Table I lists the values of dΣ derived using Corollary 1 in a few more example networks. But the
second column uses (6) to obtain dCSR, i.e., the result achieved previously in [18]. The scheme that leads
to the highest achievable sum DoF is also placed after the DoF result (e.g., for the first {5, 11, 30}(2)
example network, the CXR scheme contributes to the calculation of dΣ). The third and fourth columns use
Propositions 1 and 2 to derive dCSR. The notation ↑ a% denotes that the new result is an a% improvement
compared with the result shown in the second column. We can clearly see that by involving all the relays
in the message transmission process, it is possible to notably improve the DoF performance. To the best
of our knowledge, this paper presents the highest achievable sum DoF known by far in single-antenna
multi-user multi-hop networks when the within-layer interference, backward interference, and relay self-
interference are not negligible so that half-duplex relaying has to be applied. Therefore, the results will
be able to serve as new lower bounds for the networks’ available DoF. In what follows, we will elaborate
the IA design and DoF analysis for the CSR scheme, to prove Propositions 1 and 2.
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III. INTERFERENCE ALIGNMENT CONSTRUCTION FOR THE EQUIVALENT NETWORK

Consider the case that the ith layer (i ∈ {1, 2, · · · , N}) of relays is divided into a cluster Ri,1 with
|Ri,1| = ri terminals (2 ≤ ri ≤ Ki − 2) and a cluster Ri,2 with |Ri,2| = Ki − ri terminals. From Section
II-B it can be seen that, during any of the L+N time intervals the CSR transmission process converts the
original multi-hop network into the single-hop primary equivalent network displayed in Fig. 2(b). In this
section, we focus only on a single time interval and present the method to efficiently deliver information
in this equivalent network. The actual achievable sum DoF in the original {Ms, K1, · · · , KN ,Md}(N+1)

network will be analyzed in Section IV. The transmission strategy considered here is based on the channel-
extension based IA technique. The linear IA filters construction is in principle similar to those approaches
presented in [9] and [18]. But the differences are also notable. First, [9] considers an X channel with a
single pair of transmitter and receiver clusters. No interference is generated from external terminals. But
in the network shown in Fig. 2(b), there are multiple pairs of transmitter and receiver clusters. And the
reception of each receiver is potentially affected by the signals from one or two unintended transmitter
clusters. This fact leads to much more interference signals to be dealt with.

More importantly, the network shown in Fig. 2(b) is in fact generated from the original (N + 1)-
hop {Ms, K1, · · · , KN ,Md}(N+1) network. The transmitters in the clusters S2, S3, · · · , SN+1 are actually
relay terminals. Considering a particular transmitter, during any time interval, the sub-messages that it can
transmit must be those it received in the past time interval. In addition, since the sources always send out
MsMdI sub-messages to the first layer of relays in each time interval, the number of sub-messages that
can be forwarded by all the relays in any transmitting relay cluster must be identical to this value. This
means, in the equivalent network, the number of sub-messages to be delivered between every transmitter-
receiver cluster pair must be the same as MsMdI . The IA design would be constructed subject to these
constraints. This is again different from the methods considered in typical interference channels and X
channels.

Further, in [18] the two relay clusters in each relay layer have the same size. Now this requirement
is withdrawn. Certain adaptations of the IA construction will be adopted. The number of sub-messages
that can be successfully delivered and the required channel usage must be carefully decided. These cause
the performance analysis to be much more involved. It is not possible to directly conjecture the new
achievable sum DoF results from [18].

In the following parts, we will present two approaches to carry out the IA design for the primary
equivalent network. For the first method, we construct beamforming matrices at the terminals within S1,
S2, · · · , SN+1. The objective is that at each terminal within D1, D2, · · · , DN+1, all the interference signals
are aligned together in a compact receive subspace, so that they can be eliminated together by proper
zero-forcing filter matrices. This strategy is termed primary equivalent network IA construction and is
elaborated as follows.

A. Primary Equivalent Network IA Construction
We treat each cluster pair Si and Di (i ∈ {1, 2, · · · , N + 1}) in the primary equivalent network as

a wireless X channel: Every transmitter in Si evenly divides its sub-messages into |Di| fractions and
sends one fraction to every receiver in Di. In order to guarantee that each transmitter transmits an integer
number of sub-messages to each receiver, we set the total number of sub-messages to be delivered between
each transmitter-receiver cluster pair as

∏N+1
j=1 |Sj||Dj|cΓ, in which c and Γ are integer constants to be

decided later. If we define integer Bi =
∏N+1

j=1 |Sj ||Dj |
|Si||Di| , then every transmitter in Si intends to send Bic

Γ
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sub-messages to every receiver in Di.4 That is, a transmitter in Si intends to send a total of Bi|Di|cΓ
independent sub-messages, and each receiver in Di expects a total of |Si|Bic

Γ independent sub-messages.
The message transmission of these transmitter-receiver clusters may interfere each other. As illustrated in
Fig. 2(b), for i ∈ {1, 2, · · · , N−1}, the reception of terminals in Di experiences inter-cluster interference
generated by Si+1 and Si+2. The reception of terminals in DN is interfered by the transmission of one
unintended cluster SN+1, and receivers in DN+1 do not experience inter-cluster interference.

Let F denote the number of unit channels that is required to complete such message transmission.
We can use the F × F diagonal matrix H[i2,i1]

q,p (i1, i2 ∈ {1, 2, · · · , N + 1}, p ∈ {1, 2, · · · , |Si1 |}, q ∈
{1, 2, · · · , |Di2 |}) to denote the channel matrix between the pth transmitter in Si1 and the qth receiver in
Di2 . The Bic

Γ unit-DoF sub-messages transmitted by the pth transmitter in Si to the qth receiver in Di are
represented by Bi different cΓ× 1 vectors x[i]

p,[(q−1)Bi+1], x[i]
p,[(q−1)Bi+2], · · · , x[i]

p,[qBi]
, each element of which

represents a Gaussian codeword with rate log2 ρ+ o(log2 ρ). Their transmitter-side beamforming matrices
are respectively denoted by F × cΓ matrices V[i]

p,[(q−1)Bi+1], V[i]
p,[(q−1)Bi+2], · · · , V[i]

p,[qBi]
, and receiver-side

zero-forcing filter matrices are denoted by cΓ × F matrices U[i]
p,[(q−1)Bi+1], U[i]

p,[(q−1)Bi+2], · · · , U[i]
p,[qBi]

.
Let B̃ = max{B1|D1|, B2|D2|, · · · , BN+1|DN+1|}. To facilitate presentation, we create a virtual trans-

mitter cluster S0 with only one terminal. This terminal is assumed to broadcast B̃(c + 1)Γ dummy
codewords, denoted by B̃ different (c + 1)Γ × 1 vectors x[0]

0,[1], x[0]
0,[2], · · · , x[0]

0,[B̃]
, using F × (c + 1)Γ

beamforming matrices V[0]
0,[1], V[0]

0,[2], · · · , V[0]

0,[B̃]
, respectively. The channel matrix between this terminal

and the qth receiver in Di is represented by an F × F diagonal matrix H[i,0]
q , the diagonal elements of

which are generated following the same distribution as those in H[i2,i1]
q,p . Our IA design would first take

the dummy codewords sent from this virtual terminal into account. In the end, the receivers can cancel
them so that having any of these codewords in the desired receive subspace would not affect the actual
capability of decoding the desired signals.

We denote the received signal at the qth receiver in Di (i ∈ {1, 2, · · · , N + 1}, q ∈ {1, 2, · · · , |Di|})
by an F × 1 vector y[i]

q . It can be expressed as a general form:

y[i]
q =

|Si|∑
p=1

H[i,i]
q,p

 qBi∑
κ=(q−1)Bi+1

V[i]
p,[κ]x

[i]
p,[κ]

+

|Si|∑
p=1

H[i,i]
q,p

(q−1)Bi∑
κ=1

V[i]
p,[κ]x

[i]
p,[κ] +

Bi|Di|∑
κ=qBi+1

V[i]
p,[κ]x

[i]
p,[κ]


+

|Si+1|∑
p=1

H[i,i+1]
q,p

Bi+1|Di+1|∑
κ=1

V[i+1]
p,[κ] x[i+1]

p,[κ]

+

|Si+2|∑
p=1

H[i,i+2]
q,p

Bi+2|Di+2|∑
κ=1

V[i+2]
p,[κ] x[i+2]

p,[κ]


+H[i,0]

q

maxs∈{0,1,2}{Bi+s|Di+s|}∑
κ=1

V[0]
0,[κ]x

[0]
0,[κ]

+ z[i]q . (12)

The first term on the right hand side (RHS) is the |Si|Bic
Γ desired sub-messages, the second term denotes

the undesired interference signals transmitted from terminals within Si (i.e., the forward interference
in the original network), the third term is the inter-cluster interference from Si+1 (i.e., the within-layer
interference, present only at terminals in D1, D2, · · · , DN ), the fourth term is the inter-cluster interference

4This setup means that, in the original {Ms,K1, · · · ,KN ,Md}(N+1) network, during any time interval the Ms sources transmit a total

of MsMdI independent sub-messages to the first layer of relays, where I =
∏N+1

j=1 |Sj ||Dj |cΓ

MsMd
=

∏N
j=1 rj(Kj − rj)c

Γ and rj is the number
of relays in Rj,1. Assume that in one particular time interval, Ri,1 is operating in the listening mode so that it is represented by Di in the

primary equivalent network. Then a relay within Ri,1 would desire a total of
∏N+1

j=1 |Sj ||Dj |cΓ

|Di|
=

MsMd
∏N

j=1 rj(Kj−rj)c
Γ

|Ri,1|
sub-messages from

Ri−1,2 at its preceding layer (i.e., Si in the primary equivalent network). In the next time interval, Ri,1 becomes a forwarding cluster (i.e.,

Si+1 in the equivalent network). As mentioned above, any terminal within Si+1 intends to send a total of
∏N+1

j=1 |Sj ||Dj |cΓ

|Si+1|
sub-messages to

Di+1. Since now
∏N+1

j=1 |Sj ||Dj |cΓ

|Si+1|
=

MsMd
∏N

j=1 rj(Kj−rj)c
Γ

|Ri,1|
, the number of sub-messages a relay would forward is exactly the same as

that it received previously.
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from Si+2 (i.e., the backward interference, present only at terminals in D1, D2, · · · , DN−1), the fifth term
is the dummy interference sent from S0, and z[i]q is unit-power additive white Gaussian noise (AWGN).
Our IA construction targets aligning all the undesired interference signals at each receiver to the subspace
decided by the dummy interference.

First, for every κ ∈ {1, 2, · · · , (q−1)Bi, qBi+1, qBi+2, · · · , |Di|Bi}, we intend to align the undesired
signals x[i]

1,[κ], x[i]
2,[κ], · · · , x[i]

|Si|,[κ], appeared in the second term of (12), in the (c+1)Γ-dimensional subspace
decided by H[i,0]

q V[0]
0,[κ]. This means that, for any i ∈ {1, 2, · · · , N + 1}:

span
(

H[i,i]
q,p V[i]

p,[κ]

)
⊂ span

(
H[i,0]

q V[0]
0,[κ]

)
, ∀p ∈ {1, 2, · · · , |Si|} . (13)

In addition, for every κ ∈ {1, 2, · · · , |Di+1|Bi+1}, we aim to align the inter-cluster interference signals
x[i+1]
1,[κ] , x[i+1]

2,[κ] , · · · , x[i+1]
|Si+1|,[κ], appeared in the third term of (12), to the (c+1)Γ-dimensional subspace decided

by H[i,0]
q V[0]

0,[κ]. Equivalently, for any i ∈ {1, 2, · · · , N},

span
(

H[i,i+1]
q,p V[i+1]

p,[κ]

)
⊂ span

(
H[i,0]

q V[0]
0,[κ]

)
, ∀p ∈ {1, 2, · · · , |Si+1|} . (14)

Finally, for every κ ∈ {1, 2, · · · , |Di+2|Bi+2}, we align the inter-cluster interference signals x[i+2]
1,[κ] ,

x[i+2]
2,[κ] , · · · , x[i+2]

|Si+2|,[κ], appeared in the fourth term of (12), to the (c + 1)Γ-dimensional subspace decided
by H[i,0]

q V[0]
0,[κ]. That is, for any i ∈ {1, 2, · · · , N − 1}, let

span
(

H[i,i+2]
q,p V[i+2]

p,[κ]

)
⊂ span

(
H[i,0]

q V[0]
0,[κ]

)
, ∀p ∈ {1, 2, · · · , |Si+2|}. (15)

It can be seen that, for each receiver in Di (i ∈ {1, 2, · · · , N−1}), in order to eliminate all interference
and fully recover the |Si|Bic

Γ desired Gaussian codewords, the receive space should have no less than
|Si|Bic

Γ+max{|Di|Bi, |Di+1|Bi+1, |Di+2|Bi+2}(c+1)Γ dimensions. For each receiver in DN , the receive
space should have dimensions no less than |SN |BNc

Γ + max{|DN |BN , |DN+1|BN+1}(c + 1)Γ. And for
each receiver in DN+1, the number of receive space dimensions should be no less than |SN+1|BN+1c

Γ +
(|DN+1|−1)BN+1(c+1)Γ. This means that F must be chosen to satisfy all these conditions. The minimum
value of F is thus

F = max
{
|S1|B1c

Γ +max
{
|D1|B1, |D2|B2, |D3|B3

}
(c+ 1)Γ, · · · ,

|SN−1|BN−1c
Γ +max

{
|DN−1|BN−1, |DN |BN , |DN+1|BN+1

}
(c+ 1)Γ,

|SN |BNc
Γ +max

{
|DN |BN , |DN+1|BN+1

}
(c+ 1)Γ,

|SN+1|BN+1c
Γ + (|DN+1| − 1)BN+1(c+ 1)Γ

}
. (16)

To construct the beamforming matrices at the transmitters to satisfy the conditions (13)-(15), for all
i ∈ {1, 2, · · · , N + 1} and every κ ∈ {1, 2, · · · , |Di|Bi}, we can choose

V[i]
1,[κ] = V[i]

2,[κ] = · · · = V[i]
|Si|,[κ] = V[κ]. (17)

Following [18], it can be shown that, for each κ we can use (13)-(15) to formulate a total of Γ =∑N+1
i=1 |Si| (|Di| − 1) +

∑N
i=1 |Si+1||Di|+

∑N−1
i=1 |Si+2||Di| different relations to be satisfied:

span
(
Gγ,[κ]V[κ]

)
⊂ span

(
V[0]

0,[κ]

)
, γ ∈ {1, 2, · · · ,Γ}, (18)

where each Gγ,[κ] is the product of two F × F diagonal matrices with independently-distributed and
bounded diagonal elements. Randomly generate an F × 1 vector w[κ]. Let [9]

V[κ] =

{( Γ∏
γ=1

(
Gγ,[κ]

)aγ)w[κ] : (a1, · · · , aΓ) ∈ {1, · · · , c}Γ
}
,
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V[0]
0,[κ] =

{( Γ∏
γ=1

(
Gγ,[κ]

)aγ)w[κ] : (a1, · · · , aΓ) ∈ {1, · · · , c+ 1}Γ
}
,

where the RHS represents the set of column vectors that form the corresponding left hand side (LHS)
matrices. One can show that these matrices can satisfy the conditions (13)-(15). Then the beamforming ma-
trices design is completed. Note that V[κ] is calculated via the product of a diagonal matrix

∏Γ
γ=1

(
Gγ,[κ]

)aγ
and w[κ]. Since

∏Γ
γ=1

(
Gγ,[κ]

)aγ is generated from the diagonal channel matrices, after the vectors w[κ] are
decided, the f th (f ∈ {1, 2, · · · , F}) element of each column of V[κ] is related to only the f th diagonal
elements of the network’s channel matrices. The same fact holds for V[0]

0,[κ]. Causal channel knowledge
suffices to guarantee the transmitter-side beamforming design, in both time-varying and frequency-selective
fading environments [9].

Furthermore, using a similar approach as that presented in [9], [18], we can prove that at the qth
receiver in Di, with probability one, the |Si| different Bic

Γ-dimensional subspaces for the Bi|Si|cΓ desired
codewords are independent to that for the aligned interference signals and also independent to each
other. A linear zero-forcing filter suffices to eliminate interference and recover the desired sub-messages.
Mathematically, these mean

rank
(

U[i]
p,[κ]H

[i,i]
q,p V[i]

p,[κ]

)
= cΓ, (19)

U[i]
p,[κ]H

[i,i]
q,p V[i]

p,[κ′] = O, (20)

U[i]
p,[κ]H

[i,π]
q,pπV[π]

pπ ,[κπ ]
= O, (21)

∀p ∈ {1, 2, · · · , |Si|}, κ ∈ {(q−1)Bi+1, (q−1)Bi+2, · · · , qBi}, κ′ ∈ {1, 2, · · · , κ−1, κ+1, · · · , Bi|Di|},
π ∈ {i, i + 1, i + 2} when i ∈ {1, 2, · · · , N − 1}, π ∈ {i, i + 1} when i = N , π = i when i = N + 1,
pπ ∈ {1, 2, · · · , |Sπ|}, pi ̸= p, and κπ ∈ {1, 2, · · · , Bπ|Dπ|}.

In summary, for the single-hop primary equivalent network displayed in Fig. 2(b), across F time or
frequency slots (which can be calculated by equation (16)), each transmitter cluster Si can successfully
deliver a total of MsMdI =

∏N+1
j=1 |Sj||Dj|cΓ = MsMd

∏N
j=1 rj(Kj − rj)c

Γ unit-DoF sub-messages to its
receiver cluster Di. This result will be used in Section IV to analyze the achievable sum DoF of the CSR
scheme applied in the {Ms, K1, · · · , KN ,Md}(N+1) network.

B. Dual Equivalent Network IA Construction
In this subsection, we show that a different IA design can be carried out in the frequency-selective

fading environment. Let us for now assume that terminals within each cluster Di (i ∈ {1, 2, · · · , N +1})
attempt to send

∏N+1
j=1 |Sj||Dj|cΓ sub-messages to terminals within Si. In other words, the transmission

direction of the primary equivalent network is reversed. The resulting network is termed dual equivalent
network. Fig. 2(c) illustrates the dual equivalent network corresponding to Fig. 2(b). The idea behind this
new IA construction method is to first construct beamforming matrices at the terminals within D1, D2,
· · · , DN+1 such that zero-forcing filter matrices at terminals within S1, S2, · · · , SN+1 can be established
to eliminate the aligned interference signals. Then we make use of the channel reciprocal property so
that actual data transmission in the primary equivalent network allows the transmitters within S1, S2, · · · ,
SN+1 to use these zero-forcing filter matrices to beamform their signals. At the receivers in D1, D2, · · · ,
DN+1, the beamforming matrices designed in the dual equivalent network would be applied to eliminate
interference. This method is termed dual equivalent network IA construction. Since it requires channel
knowledge of all the L+N time intervals to design the transceiver filters, it is more applicable in systems
that channel extension is realized in the frequency domain, i.e., a frequency-selective fading environment.

To simplify presentation, we use notation
←−
S i to replace DN+2−i, and use

←−
D i to replace SN+2−i for

all i ∈ {1, 2, · · · , N + 1}. It is easy to see from Fig. 2(b) and Fig. 2(c) that the dual equivalent network
exhibits exactly the same structure as the primary equivalent network. More specifically, it contains N +1
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pairs of transmitter-receiver clusters. Every transmitter within
←−
S i intends to transmit

∏N+1
j=1 |

←−
S j ||
←−
D j |cΓ

|←−S i||
←−D i|

unit-

DoF sub-messages to every receiver in
←−
D i. The network structure is asymmetric: The reception of

←−
D i

(i ∈ {1, 2, · · · , N − 1}) is affected by inter-cluster interference from two unintended clusters
←−
S i+1 and←−

S i+2, the reception of
←−
DN is interfered by one unintended cluster

←−
S N+1, but

←−
DN+1 does not experience

inter-cluster interference.
We can follow the IA design strategy presented in the above subsection to construct the transmitter-side

beamforming and receiver-side zero-forcing matrices. Let
←−
F be the number of unit channels required to

complete transmission. Use the
←−
F ×

←−
F diagonal matrix

←−
H [i1,i2]

p,q to denote the channel matrix between
the qth transmitter in

←−
S i2 and the pth receiver in

←−
D i1 . Clearly, due to the channel reciprocity, we have←−

H [i1,i2]
p,q =

(
H[N+2−i2,N+2−i1]

q,p

)T
, where H[N+2−i2,N+2−i1]

q,p is the channel matrix between the pth transmitter

in SN+2−i1 and the qth receiver in DN+2−i2 in the primary equivalent network. Set
←−
B i =

∏N+1
j=1 |

←−
S j ||
←−
D j |

|←−S i||
←−D i|

for i ∈ {1, 2, · · · , N + 1}. We can denote the
←−
B ic

Γ Gaussian codewords that the qth transmitter in
←−
S i

desires to send to the pth receiver in
←−D i by

←−
B i different cΓ × 1 vectors ←−x [i]

q,[(p−1)
←−
B i+1]

, ←−x [i]

q,[(p−1)
←−
B i+2]

,

· · · , ←−x [i]

q,[p
←−
B i]

. Their beamforming matrices are denoted by
←−
F × cΓ matrices

←−
V [i]

q,[(p−1)
←−
B i+1]

,
←−
V [i]

q,[(p−1)
←−
B i+2]

,

· · · , ←−V [i]

q,[p
←−
B i]

respectively. Similarly, the zero-forcing filter matrices applied at the pth receiver in
←−
D i are

denoted by cΓ ×
←−
F matrices

←−
U [i]

q,[(p−1)←−B i+1]
,
←−
U [i]

q,[(p−1)←−B i+2]
, · · · , ←−U [i]

q,[p
←−
B i]

respectively.
Analogous to equation (16), let

←−
F = max

{ ∣∣∣←−S 1

∣∣∣←−B 1c
Γ +max

{∣∣∣←−D 1

∣∣∣←−B 1,
∣∣∣←−D 2

∣∣∣←−B 2,
∣∣∣←−D 3

∣∣∣←−B 3

}
(c+ 1)Γ, · · · ,∣∣∣←−S N−1

∣∣∣←−BN−1c
Γ +max

{ ∣∣∣←−DN−1

∣∣∣←−BN−1,
∣∣∣←−DN

∣∣∣←−BN ,
∣∣∣←−DN+1

∣∣∣←−BN+1

}
(c+ 1)Γ,∣∣∣←−S N

∣∣∣←−BNc
Γ +max

{∣∣∣←−DN

∣∣∣←−BN ,
∣∣∣←−DN+1

∣∣∣←−BN+1

}
(c+ 1)Γ,∣∣∣←−S N+1

∣∣∣←−BN+1c
Γ +

(∣∣∣←−DN+1

∣∣∣− 1
)←−
BN+1(c+ 1)Γ

}
, (22)

and Γ =
∑N+1

i=1

∣∣∣←−S i

∣∣∣ (∣∣∣←−D i

∣∣∣− 1
)
+
∑N

i=1

∣∣∣←−S i+1

∣∣∣ ∣∣∣←−D i

∣∣∣+∑N−1
i=1

∣∣∣←−S i+2

∣∣∣ ∣∣∣←−D i

∣∣∣. Again, with probability one
we can construct the beamforming and zero-forcing matrices to satisfy

rank
(←−

U [i]
q,[κ]

←−
H [i,i]

p,q

←−
V [i]

q,[κ]

)
= cΓ, (23)

←−
U [i]

q,[κ]

←−
H [i,i]

p,q

←−
V [i]

q,[κ′] = O, (24)
←−
U [i]

q,[κ]

←−
H [i,π]

p,qπ

←−
V [π]

qπ ,[κπ ]
= O. (25)

Given the beamforming and zero-forcing matrices designed for the dual equivalent network, we focus

back on the transmission in the primary equivalent network. Set V[i]
p,[(q−1)Bi+j] =

(←−
U [N+2−i]

q,[(p−1)
←−
BN+2−i+j]

)T

and

U[i]
p,[(q−1)Bi+j] =

(←−
V [N+2−i]

q,[(p−1)←−BN+2−i+j]

)T

, ∀i ∈ {1, 2, · · · , N +1}, p ∈ {1, 2, · · · , |Si|}, q ∈ {1, 2, · · · , |Di|},

j ∈ {1, 2, · · · , Bi}. Since H[i2,i1]
q,p =

(←−
H [N+2−i1,N+2−i2]

p,q

)T

, it can be directly seen that the conditions
(19)-(21) are also satisfied. Similar to the observation made in [9], IA is realized simultaneously for both
directions in a reciprocal bi-directional network, with the same transceiver structure. Different from the
case we discussed in Section III-A, now the design of each element of the primary equivalent network’s
transmitter-side beamforming matrices needs to know all the channel fading coefficients for the entire
transmission duration. This implies non-causal channel knowledge for time-varying fading. The solution
presented in this subsection is applicable in only the frequency-selective fading environment. In summary,
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in the primary equivalent network the transmission of MsMdI =
∏N+1

j=1 |Sj||Dj|cΓ = MsMd

∏N
j=1 rj(Kj−

rj)c
Γ unit-DoF sub-messages between every pair of transmitter-receiver clusters can be finished across

←−
F

unit frequency channels, where
←−
F is derived using (22).

IV. SYSTEM ACHIEVABLE SUM DOF ANALYSIS

Armed with the above results, we are ready to analyze the achievable sum DoF of applying the CSR
scheme in the considered {Ms, K1, · · · , KN ,Md}(N+1) network.

A. Sum DoF in Time-Varying Fading Environment
Let us start from the time-varying fading environment, by using the results presented in Section III-A.

Apply the CSR scheme in the {Ms, K1, · · · , KN ,Md}(N+1) network and choose the sizes of the clusters
R1,1, · · · , RN,1 to be r1, · · · , rN , respectively. For an odd time interval, the primary equivalent network
has |Di| = ri and |Si+1| = Ki − ri for i ∈ {1, 2, · · · , N}. The transmitting terminals in each layer
are able to successfully deliver MsMdI =

∏N+1
j=1 |Sj||Dj|cΓ = MsMd

∏N
j=1 rj (Kj − rj) c

Γ unit-DoF sub-
messages to the receiving terminals in the next layer. The number of unit time slots required to complete
the transmission in this interval is denoted by Fo, which can be calculated by substituting |S1| = Ms,
|DN+1| = Md, |Di| = ri, and |Si+1| = Ki−ri into (16). Similarly, during an even time interval, substituting
|S1| = Ms, |DN+1| = Md, |Di| = Ki−ri and |Si+1| = ri into equation (16) leads to the necessary number
of unit time slots to guarantee delivering the same number of MsMdI = MsMd

∏N
j=1 rj (Kj − rj) c

Γ unit-
DoF sub-messages in every hop. This value is denoted by Fe.

Therefore, following Section II-B, the total number of unit time slots consumed by the CSR scheme to
complete the transmission of all the LMsMdI sub-messages from the sources to the destinations can be
calculated as

∑L+N
n=1 F[n] = ⌈L+N

2
⌉Fo + ⌊L+N

2
⌋Fe. The sum DoF that can be asymptotically achieved can

be found by using equation (3) and letting L → ∞ and c → ∞. We denote this value by dCSR(r1,··· ,rN ),
as a function of r1, · · · , rN , the numbers of relays chosen in R1,1, · · · , RN,1. Thus we have

dCSR(r1,··· ,rN ) =
LMsMd

∏N
j=1 rj (Kj − rj) c

Γ

⌈L+N
2
⌉Fo + ⌊L+N

2
⌋Fe

(a)
≈

2MsMd

∏N
j=1 rj (Kj − rj) c

Γ

Fo + Fe

(b)
≈ 2

F1 + F2

, (26)

where (a) follows from ⌈L+N
2
⌉

L
≈ ⌊L+N

2
⌋

L
≈ 1

2
when L → ∞, (b) follows from cΓ

(c+1)Γ
≈ 1 when c → ∞,

and

F1 = max

{
1

r1
+max

{
1

Ms

,
1

K1 − r1
,

1

K2 − r2

}
,
1

r2
+max

{
1

K1 − r1
,

1

K2 − r2
,

1

K3 − r3

}
,

· · · , 1

rN−1
+max

{
1

KN−2 − rN−2
,

1

KN−1 − rN−1
,

1

KN − rN

}
,

1

rN
+max

{
1

KN−1 − rN−1
,

1

KN − rN

}
,
KN − rN +Md − 1

(KN − rN)Md

}
, (27)

F2 = max

{
1

K1 − r1
+max

{
1

Ms

,
1

r1
,
1

r2

}
,

1

K2 − r2
+max

{
1

r1
,
1

r2
,
1

r3

}
,

· · · , 1

KN−1 − rN−1
+max

{
1

rN−2
,

1

rN−1
,
1

rN

}
,

1

KN − rN
+max

{
1

rN−1
,
1

rN

}
,
rN +Md − 1

rNMd

}
. (28)
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To fully take advantage of the network’s hardware resources (i.e., to make the best use of all relays),
one should properly divide each relay layer in such a way that the achievable sum DoF is maximized. It
means solving the following problem:

maximize
r1,r2,··· ,rN

dCSR(r1,··· ,rN ) =
2

F1 + F2

(29)

s.t. 2 ≤ ri ≤ Ki − 2, ∀i ∈ {1, 2, · · · , N}.

We use dCSR to denote the result derived using (29). The analysis in the Appendix shows

dCSR = η(Ms, K1, · · · , KN ,Md), (30)

where the function η(·) is defined by (4). This is the result presented in Proposition 1 and is achieved
when we set |Ri,1| = ri = ⌊Ki

2
⌋ and |Ri,2| = Ki− ri = ⌈Ki

2
⌉ (or |Ri,1| = ⌈Ki

2
⌉ and |Ri,2| = ⌊Ki

2
⌋) for all

i ∈ {1, 2, · · · , N}.

B. Sum DoF in Frequency-Selective Fading Environment
If the fading is frequency-selective, the results shown in the above subsection are directly applicable.

Equation (30) can be adopted to calculate the achievable sum DoF of the CSR scheme. In addition, the
dual equivalent network IA construction described in Section III-B provides an extra option for designing
the beamforming and zero-forcing filter matrices. When the cluster sizes are chosen as |Ri,1| = ri for
i ∈ {1, 2 · · · , N}, a total of MsMdI = MsMd

∏N
j=1 rj(Kj−rj)cΓ unit-DoF sub-messages can be delivered

between two adjacent layers (i.e., in each hop) in each time interval. The number of unit frequency
channels that such transmission requires can be calculated using (22). During odd time intervals, we have∣∣∣←−S 1

∣∣∣ = Md,
∣∣∣←−DN+1

∣∣∣ = Ms,
∣∣∣←−S i

∣∣∣ = rN+2−i, and
∣∣∣←−D i−1

∣∣∣ = KN+2−i − rN+2−i for i ∈ {2, 3, · · · , N + 1}.

During even time intervals,
∣∣∣←−S 1

∣∣∣ = Md,
∣∣∣←−DN+1

∣∣∣ = Ms,
∣∣∣←−S i

∣∣∣ = KN+2−i− rN+2−i, and
∣∣∣←−D i−1

∣∣∣ = rN+2−i.
Substituting these values into (22) and letting L → ∞ and c → ∞, the asymptotically achievable sum
DoF,

←−
d CSR(r1,··· ,rN ), is

←−
d CSR(r1,··· ,rN ) =

LMsMd

∏N
j=1 rj (Kj − rj) c

Γ∑L+N
n=1 F[n]

≈ 2
←−
F 1 +

←−
F 2

, (31)

where
←−
F 1 = max

{
1

KN − rN
+max

{
1

Md

,
1

rN
,

1

rN−1

}
,

1

KN−1 − rN−1
+max

{
1

rN
,

1

rN−1
,

1

rN−2

}
,

· · · , 1

K2 − r2
+max

{
1

r3
,
1

r2
,
1

r1

}
,

1

K1 − r1
+max

{
1

r2
,
1

r1

}
,
r1 +Ms − 1

r1Ms

}
, (32)

←−
F 2 = max

{
1

rN
+max

{
1

Md

,
1

KN − rN
,

1

KN−1 − rN−1

}
,

1

rN−1
+max

{
1

KN − rN
,

1

KN−1 − rN−1
,

1

KN−2 − rN−2

}
,

· · · , 1
r2

+max

{
1

K3 − r3
,

1

K2 − r2
,

1

K1 − r1

}
,

1

r1
+max

{
1

K2 − r2
,

1

K1 − r1

}
,
K1 − r1 +Ms − 1

(K1 − r1)Ms

}
. (33)



19

Again, to attain the highest achievable sum DoF, we solve:

maximize
r1,r2,··· ,rN

←−
d CSR(r1,··· ,rN ) =

2
←−
F 1 +

←−
F 2

(34)

s.t. 2 ≤ ri ≤ Ki − 2, ∀i ∈ {1, 2, · · · , N}.
Following the analysis in the Appendix, we can see that the value of η(Md, KN , · · · , K1,Ms) serves

as the solution to (34). To achieve this result one should also choose |Ri,1| = ri =
⌊
Ki

2

⌋
and |Ri,2| =

Ki − ri =
⌈
Ki

2

⌉
(or |Ri,1| =

⌈
Ki

2

⌉
and |Ri,2| =

⌊
Ki

2

⌋
) for all i ∈ {1, 2, · · · , N}.

Now we have two transmission strategies that can be adopted in an {Ms, K1, · · · , KN ,Md}(N+1)

network. Their achievable sum DoF are η(Ms, K1, · · · , KN ,Md) and η(Md, KN , · · · , K1,Ms) respectively.
Depending on the network topology, the scheme that provides better performance can be selected to carry
out message transmission. This leads to the result in Proposition 2:

dCSR = max
{
η(Ms, K1, · · · , KN ,Md), η(Md, KN , · · · , K1,Ms)

}
.

V. CONCLUSIONS

We have studied the potential communication performance limits in a class of single-antenna multi-
user multi-hop networks, where the interference between relays located in the same layer and in adjacent
layers cannot be neglected. In addition, self-interference cannot be mitigated if relays operate in the
full-duplex fashion. We have considered deploying half-duplex DF relays in these networks and adopted
a CSR transmission scheme to efficiently deliver information. Allowing the two relay clusters in each
relay layer to contain different numbers of terminals, all available relays can be involved and properly
clustered to participate in the message transmission process. Two IA construction solutions have been
proposed to handle the multi-user interference issues. It has been shown that in the time-varying fading
environment, the sum DoF achieved by previous works can be notably improved. When the fading is
frequency-selective, the result can be even higher. These results thus can produce new lower bounds for
the available DoF in the considered class of relay networks.

It is worth mentioning that the tightness of the lower bounds obtained in this paper is unknown. This is
mainly because when all interference issues present in a general multi-user multi-hop network are taken
into account, how to optimally carry out transmission design to eliminate their negative impacts is far
from an easy task. The advantages of our CSR scheme stems from using multiple relays to create high-
dimensional transmission space between the sources and destinations to align and cancel interference.
Increasing the number of relays in each layer potentially improves the ability of combating interference
and closes the gap between the lower bound and upper bound for the available DoF. However, if only a
limited number of relays are deployed, at this point of time it is difficult to draw any conclusion regarding
the optimality of the results presented in this paper. Whether these results can be further improved will
be considered as interesting and meaningful future works.
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APPENDIX

A. Proof of Equation (30)
Solving (29) is equivalent to finding solutions to minimize F1 + F2. Define

F̃ = max

{
max
1≤i≤N

{
1

ri
+

1

Ki − ri

}
, max
1≤i≤N−1

{
1

ri
+

1

Ki+1 − ri+1

}
, max
2≤i≤N

{
1

ri
+

1

Ki−1 − ri−1

}}
.
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It is not difficult to see that

F̃ ≥ max

{
1

⌊K1

2
⌋
+

1

⌈K1

2
⌉
, · · · , 1

⌊KN

2
⌋
+

1

⌈KN

2
⌉

}
=

1⌊
min{K1,··· ,KN}

2

⌋ +
1⌈

min{K1,··· ,KN}
2

⌉ .
The lower bound is achievable when we choose ri = ⌊Ki

2
⌋ for all i ∈ {1, 2, · · · , N}.

Consider equations (27) and (28). After some mathematical manipulations we can express F1 and F2 as
F1 = max

{
1
r1
+ 1

Ms
, F̃ , KN−rN+Md−1

(KN−rN )Md

}
and F2 = max

{
1

K1−r1 +
1
Ms

, F̃ , rN+Md−1
rNMd

}
. Therefore, we have

F1 + F2 = max

{
1

K1 − r1
+

1

r1
+

2

Ms

,max

{
1

r1
+

1

Ms

,
1

K1 − r1
+

1

Ms

}
+ F̃ ,

1

r1
+

1

Ms

+
rN +Md − 1

rNMd

, 2F̃ ,
1

K1 − r1
+

1

Ms

+
KN − rN +Md − 1

(KN − rN)Md

,

max

{
rN +Md − 1

rNMd

,
KN − rN +Md − 1

(KN − rN)Md

}
+ F̃ ,

KN − rN +Md − 1

(KN − rN)Md

+
rN +Md − 1

rNMd

}
.

Since

max

{
ri +Md − 1

riMd

,
Ki − ri +Md − 1

(Ki − ri)Md

}
≥

⌊
Ki

2

⌋
+Md − 1⌊
Ki

2

⌋
Md

,

i
ri +Md − 1

riMd

+
Ki − ri +Md − 1

(Ki − ri)Md

≥
⌊
Ki

2

⌋
+Md − 1⌊
Ki

2

⌋
Md

+

⌈
Ki

2

⌉
+Md − 1⌈
Ki

2

⌉
Md

,

1
Ki−ri +

1
ri
≥ 1

⌊Ki
2
⌋
+ 1

⌈Ki
2
⌉
, and max

{
1
ri
, 1
Ki−ri

}
≥ 1

⌊Ki
2 ⌋

, it can be seen that the value

max

{
1

⌊K1

2
⌋
+

1

⌈K1

2
⌉
+

2

Ms

,
1⌊
K1

2

⌋ +
1

Ms

+

⌊
KN

2

⌋
+Md − 1⌊

KN

2

⌋
Md

,

1⌊
K1

2

⌋ +
1

Ms

+
1⌊

min{K1,··· ,KN}
2

⌋ +
1⌈

min{K1,··· ,KN}
2

⌉ ,
⌊
KN

2

⌋
+Md − 1⌊

KN

2

⌋
Md

+
1⌊

min{K1,··· ,KN}
2

⌋ +
1⌈

min{K1,··· ,KN}
2

⌉ ,
2⌊

min{K1,··· ,KN}
2

⌋ +
2⌈

min{K1,··· ,KN}
2

⌉ , ⌊KN

2

⌋
+Md − 1⌊

KN

2

⌋
Md

+

⌈
KN

2

⌉
+Md − 1⌈

KN

2

⌉
Md

}

serves as an achievable lower bound for F1 +F2. The achievability is established when we set ri = ⌊Ki

2
⌋

(or ri = ⌈Ki

2
⌉) for all i ∈ {1, 2, · · · , N}. Using this lower bound, we can see that the maximized value

of dCSR(r1,··· ,rN ), i.e., dCSR, is expressed as (30). The analysis in Section IV-B is similar.
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